phy-4600/lecture_notes/3-28/hydrogen atom

92 lines
2.6 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Theory of the Hydrogen Atom
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
V(𝐫) = -e²/r
For any hydrogenic ion with nuclear charge Z
V(𝐫) = -Ze²/r
Eigenfunctions in spherical coordinates:
Ψₑ﹐ₗ﹐ₘ(r,θ,φ) = Rₑ﹐ₗ(r) Yₗ﹐ₘ(θ,φ) = Uₑ﹐ₗ/r Yₗ﹐ₘ(θ,φ)
Derived from first principles the wave equation of an electron in the
hydrogen atom.
- Start with Dirac Notation
- Replace with known general functions
- transform to eigenvalue equation in position space
- replace pieces with function F and find derivatives
F = ∑ Cₖρ
pic 3 first take had factors that needed to be fixed
- Led to the Laguerre Polynomials
These are infinite, though, so
- Force Laguerre Polynomial solutions to truncate
Derivation
━━━━━━━━━━
The Hydrogen atom follows the central potential development from the
previous lecture.
❬r,θ,φ❙Ψ❭ = R(r)ₑ,ₗ yₗ﹐ₘ(θ,φ)
Rₑ﹐ₗ(r) = Uₑ﹐ₗ(r) /r
ρ ≡ √⎛8͟m͟ │E│⎞r
⎝ ħ² ⎠
λ = Z͟e͟² √⎛_͟m͟_͟ ⎞
ħ ⎝2│E│⎠
d͟²͟ U - 1͟ l(l+1) + ⎛λ͟ - 1͟⎞U = 0
dρ² ρ² ⎝ρ 4⎠
as ρ→0, U→ρˡ⁺¹
for ρ→∞,
d͟²͟ U - 1͟U = 0
dρ² 4
d͟²͟ U - 1͟U = 0
dρ² 4
U(ρ) = A exp(-ρ/2) + B exp(ρ/2) = A exp(-ρ/2)
(ρ→∞, B=0)
U(ρ) = ρˡ⁺¹ exp(-ρ/2) Fₑ﹐ₗ(ρ)
d͟ U = (l+1)ρˡ exp(-ρ/2) Fₑ﹐ₗ(ρ)
dρ
-½ ρˡ⁺¹ exp(-ρ/2) Fₑ﹐ₗ(ρ)
+ ρˡ⁺¹ exp(-ρ/2) d͟ Fₑ﹐ₗ(ρ)
dρ
d͟ U = ⎛l͟+͟1͟ - 1͟ ⎞ U + ρˡ⁺¹ exp(-ρ/2) d͟ F(ρ)
dρρ 2 ⎠ dρ
d͟²͟ U = -(l͟+͟1͟) U + ⎛l͟+͟1͟ - 1͟⎞² U
dρ² ρ² ⎝ ρ 2⎠
+ 2⎛l͟+͟1͟ - 1͟⎞ρˡ⁺¹ exp(-ρ/2) d͟F͟
ρ 2⎠ dρ
+ ρˡ⁺¹ exp(-ρ/2) d͟²͟ F(ρ)
dρ²
⎡−͟ħ͟² d² + l͟ (l+1)ħ² - Z͟e͟²⎤Uₑ﹐ₗ(r) = E Uₑ﹐ₗ(r)
⎣2m dr² 2mr² r ⎦
ρ = √⎛8͟m͟ │E│⎞r
⎝ ħ² ⎠
⎛⎞
⎝⎠