phy-4600/lecture_notes/3-28/hydrogen atom

92 lines
2.6 KiB
Plaintext
Raw Normal View History

2016-03-29 18:00:53 +00:00
Theory of the Hydrogen Atom
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
V(𝐫) = -e²/r
2016-03-29 18:00:53 +00:00
For any hydrogenic ion with nuclear charge Z
V(𝐫) = -Ze²/r
2016-03-29 18:00:53 +00:00
Eigenfunctions in spherical coordinates:
Ψₑ﹐ₗ﹐ₘ(r,θ,φ) = Rₑ﹐ₗ(r) Yₗ﹐ₘ(θ,φ) = Uₑ﹐ₗ/r Yₗ﹐ₘ(θ,φ)
Derived from first principles the wave equation of an electron in the
hydrogen atom.
- Start with Dirac Notation
2016-03-29 18:00:53 +00:00
- Replace with known general functions
- transform to eigenvalue equation in position space
- replace pieces with function F and find derivatives
F = ∑ Cₖρ
pic 3 first take had factors that needed to be fixed
- Led to the Laguerre Polynomials
These are infinite, though, so
- Force Laguerre Polynomial solutions to truncate
Derivation
━━━━━━━━━━
The Hydrogen atom follows the central potential development from the
previous lecture.
❬r,θ,φ❙Ψ❭ = R(r)ₑ,ₗ yₗ﹐ₘ(θ,φ)
Rₑ﹐ₗ(r) = Uₑ﹐ₗ(r) /r
ρ ≡ √⎛8͟m͟ │E│⎞r
⎝ ħ² ⎠
λ = Z͟e͟² √⎛_͟m͟_͟ ⎞
ħ ⎝2│E│⎠
d͟²͟ U - 1͟ l(l+1) + ⎛λ͟ - 1͟⎞U = 0
dρ² ρ² ⎝ρ 4⎠
as ρ→0, U→ρˡ⁺¹
for ρ→∞,
d͟²͟ U - 1͟U = 0
dρ² 4
d͟²͟ U - 1͟U = 0
dρ² 4
U(ρ) = A exp(-ρ/2) + B exp(ρ/2) = A exp(-ρ/2)
(ρ→∞, B=0)
U(ρ) = ρˡ⁺¹ exp(-ρ/2) Fₑ﹐ₗ(ρ)
d͟ U = (l+1)ρˡ exp(-ρ/2) Fₑ﹐ₗ(ρ)
dρ
-½ ρˡ⁺¹ exp(-ρ/2) Fₑ﹐ₗ(ρ)
+ ρˡ⁺¹ exp(-ρ/2) d͟ Fₑ﹐ₗ(ρ)
dρ
d͟ U = ⎛l͟+͟1͟ - 1͟ ⎞ U + ρˡ⁺¹ exp(-ρ/2) d͟ F(ρ)
dρρ 2 ⎠ dρ
d͟²͟ U = -(l͟+͟1͟) U + ⎛l͟+͟1͟ - 1͟⎞² U
dρ² ρ² ⎝ ρ 2⎠
+ 2⎛l͟+͟1͟ - 1͟⎞ρˡ⁺¹ exp(-ρ/2) d͟F͟
ρ 2⎠ dρ
+ ρˡ⁺¹ exp(-ρ/2) d͟²͟ F(ρ)
dρ²
⎡−͟ħ͟² d² + l͟ (l+1)ħ² - Z͟e͟²⎤Uₑ﹐ₗ(r) = E Uₑ﹐ₗ(r)
⎣2m dr² 2mr² r ⎦
ρ = √⎛8͟m͟ │E│⎞r
⎝ ħ² ⎠
⎛⎞
⎝⎠