2016-03-29 18:00:53 +00:00
|
|
|
|
Theory of the Hydrogen Atom
|
|
|
|
|
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
|
2016-03-30 16:23:09 +00:00
|
|
|
|
V(𝐫) = -e²/r
|
2016-03-29 18:00:53 +00:00
|
|
|
|
|
2016-03-30 16:23:09 +00:00
|
|
|
|
For any hydrogenic ion with nuclear charge Z
|
|
|
|
|
V(𝐫) = -Ze²/r
|
2016-03-29 18:00:53 +00:00
|
|
|
|
|
2016-03-30 16:23:09 +00:00
|
|
|
|
Eigenfunctions in spherical coordinates:
|
|
|
|
|
|
|
|
|
|
Ψₑ﹐ₗ﹐ₘ(r,θ,φ) = Rₑ﹐ₗ(r) Yₗ﹐ₘ(θ,φ) = Uₑ﹐ₗ/r Yₗ﹐ₘ(θ,φ)
|
|
|
|
|
|
|
|
|
|
Derived from first principles the wave equation of an electron in the
|
|
|
|
|
hydrogen atom.
|
|
|
|
|
|
|
|
|
|
- Start with Dirac Notation
|
2016-03-29 18:00:53 +00:00
|
|
|
|
- Replace with known general functions
|
|
|
|
|
- transform to eigenvalue equation in position space
|
|
|
|
|
- replace pieces with function F and find derivatives
|
|
|
|
|
F = ∑ Cₖρᵏ
|
|
|
|
|
|
|
|
|
|
pic 3 first take had factors that needed to be fixed
|
|
|
|
|
|
|
|
|
|
- Led to the Laguerre Polynomials
|
|
|
|
|
These are infinite, though, so
|
|
|
|
|
- Force Laguerre Polynomial solutions to truncate
|
|
|
|
|
|
2016-03-30 16:23:09 +00:00
|
|
|
|
Derivation
|
|
|
|
|
━━━━━━━━━━
|
|
|
|
|
The Hydrogen atom follows the central potential development from the
|
|
|
|
|
previous lecture.
|
|
|
|
|
|
|
|
|
|
❬r,θ,φ❙Ψ❭ = R(r)ₑ,ₗ yₗ﹐ₘ(θ,φ)
|
|
|
|
|
|
|
|
|
|
Rₑ﹐ₗ(r) = Uₑ﹐ₗ(r) /r
|
|
|
|
|
|
|
|
|
|
ρ ≡ √⎛8͟m͟ │E│⎞r
|
|
|
|
|
⎝ ħ² ⎠
|
|
|
|
|
|
|
|
|
|
λ = Z͟e͟² √⎛_͟m͟_͟ ⎞
|
|
|
|
|
ħ ⎝2│E│⎠
|
|
|
|
|
|
|
|
|
|
d͟²͟ U - 1͟ l(l+1) + ⎛λ͟ - 1͟⎞U = 0
|
|
|
|
|
dρ² ρ² ⎝ρ 4⎠
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
as ρ→0, U→ρˡ⁺¹
|
|
|
|
|
|
|
|
|
|
for ρ→∞,
|
|
|
|
|
|
|
|
|
|
d͟²͟ U - 1͟U = 0
|
|
|
|
|
dρ² 4
|
|
|
|
|
|
|
|
|
|
d͟²͟ U - 1͟U = 0
|
|
|
|
|
dρ² 4
|
|
|
|
|
|
|
|
|
|
U(ρ) = A exp(-ρ/2) + B exp(ρ/2) = A exp(-ρ/2)
|
|
|
|
|
(ρ→∞, B=0)
|
|
|
|
|
|
|
|
|
|
U(ρ) = ρˡ⁺¹ exp(-ρ/2) Fₑ﹐ₗ(ρ)
|
|
|
|
|
|
|
|
|
|
d͟ U = (l+1)ρˡ exp(-ρ/2) Fₑ﹐ₗ(ρ)
|
|
|
|
|
dρ
|
|
|
|
|
-½ ρˡ⁺¹ exp(-ρ/2) Fₑ﹐ₗ(ρ)
|
|
|
|
|
|
|
|
|
|
+ ρˡ⁺¹ exp(-ρ/2) d͟ Fₑ﹐ₗ(ρ)
|
|
|
|
|
dρ
|
|
|
|
|
|
|
|
|
|
d͟ U = ⎛l͟+͟1͟ - 1͟ ⎞ U + ρˡ⁺¹ exp(-ρ/2) d͟ F(ρ)
|
|
|
|
|
dρ ⎝ ρ 2 ⎠ dρ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
d͟²͟ U = -(l͟+͟1͟) U + ⎛l͟+͟1͟ - 1͟⎞² U
|
|
|
|
|
dρ² ρ² ⎝ ρ 2⎠
|
|
|
|
|
+ 2⎛l͟+͟1͟ - 1͟⎞ρˡ⁺¹ exp(-ρ/2) d͟F͟
|
|
|
|
|
⎝ ρ 2⎠ dρ
|
|
|
|
|
+ ρˡ⁺¹ exp(-ρ/2) d͟²͟ F(ρ)
|
|
|
|
|
dρ²
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
⎡−͟ħ͟² d² + l͟ (l+1)ħ² - Z͟e͟²⎤Uₑ﹐ₗ(r) = E Uₑ﹐ₗ(r)
|
|
|
|
|
⎣2m dr² 2mr² r ⎦
|
|
|
|
|
|
|
|
|
|
ρ = √⎛8͟m͟ │E│⎞r
|
|
|
|
|
⎝ ħ² ⎠
|
|
|
|
|
|
|
|
|
|
⎛⎞
|
|
|
|
|
⎝⎠
|
|
|
|
|
|