mirror of
https://asciireactor.com/otho/phy-4600.git
synced 2024-12-05 02:05:06 +00:00
still exam 1
This commit is contained in:
parent
4c4d4d0ead
commit
bc9de8cd89
@ -24,7 +24,7 @@ and because H is a hermitian operator, 〈a|b〉 = 〈b|a〉, so
|
||||
|
||||
〈a|Ĥ|b〉 = δ (〈a|b〉 + 〈a|b〉) = δ 2〈a|b〉;
|
||||
|
||||
because of the hermition property,
|
||||
because of the Hermitian property,
|
||||
〈b|Ĥ|a〉 = 〈a|Ĥ|b〉 = δ 2〈a|b〉;
|
||||
|
||||
finally,
|
||||
@ -60,13 +60,27 @@ This gives the equation α₁ + α₁|〈a|b〉|² + 2β₁〈a|b〉 = E₁α₁
|
||||
β₁ = ͟α͟₁͟(͟E͟₁͟ ͟-͟ ͟1͟ ͟-͟ ͟|͟〈͟a͟|͟b͟〉͟|͟²͟)͟
|
||||
2〈a|b〉
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Using the normalization condition, the values of each constant can be obtained. Plugging the value for α₁ into the equation reveals a quadratic equation.
|
||||
|
||||
|
||||
|
||||
|α₁|² + |β₁|² = 1, so
|
||||
|
||||
|α₁|² + | ͟α͟₁͟(͟E͟₁͟ ͟-͟ ͟1͟ ͟-͟ ͟|͟〈͟a͟|͟b͟〉͟|͟²͟)͟ |² = 1.
|
||||
|α₁|² + | ͟α͟₁͟(͟E͟₁͟ ͟-͟ ͟1͟ ͟-͟ ͟|͟〈a͟|͟b͟〉͟|͟²͟)͟ |² = 1.
|
||||
| 2〈a|b〉 |
|
||||
|
||||
|
||||
@ -77,7 +91,7 @@ Using the normalization condition, the values of each constant can be obtained.
|
||||
_________
|
||||
α₁ = ±√1 - |β₁|², so
|
||||
_________ _________
|
||||
±√̅1 - |β₁|² (1 - E₁) + 2β₁〈a|b〉 + ±√1 - |β₁|² |〈a|b〉|² = 0.
|
||||
±√1 - |β₁|² (1 - E₁) + 2β₁〈a|b〉 + ±√1 - |β₁|² |〈a|b〉|² = 0.
|
||||
|
||||
The quadratic formula therefore says that
|
||||
|
||||
@ -86,4 +100,4 @@ Using the normalization condition, the values of each constant can be obtained.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -1,9 +1,9 @@
|
||||
Two operators' matrix representations are known in the |1〉, |2〉, |3〉 basis, where and b are real numbers:
|
||||
|
||||
A ≐ B ≐
|
||||
⎛ a 0 0 ⎞ ⎛ b 0 0 ⎞
|
||||
⎜ 0 -a 0 ⎟ ⎜ 0 0 -ιb ⎟
|
||||
⎝ 0 0 -a ⎠ and ⎝ 0 ιb 0 ⎠.
|
||||
 ≐ B̂ ≐
|
||||
⎛ a 0 0 ⎞ ⎛ b 0 0 ⎞
|
||||
⎜ 0 -a 0 ⎟ ⎜ 0 0 -ιb ⎟
|
||||
⎝ 0 0 -a ⎠ and ⎝ 0 ιb 0 ⎠.
|
||||
|
||||
B exhibits a degenerate spectrum when it has repeated eigenvalues. The eigenvalues of B are obtained from its characteristic equation.
|
||||
|
||||
@ -27,21 +27,25 @@ For the given operators, then, the commutator is
|
||||
|
||||
which reduces to
|
||||
|
||||
⎛ ab 0 0 ⎞ ⎛ ab 0 0 ⎞
|
||||
⎜ 0 0 ιab ⎟ - ⎜ 0 0 ιab ⎟ = 0.
|
||||
⎝ 0 -ιab 0 ⎠ ⎝ 0 -ιab 0 ⎠
|
||||
⎛ ab 0 0 ⎞ ⎛ ab 0 0 ⎞
|
||||
⎜ 0 0 ιab ⎟ - ⎜ 0 0 ιab ⎟ = 0.
|
||||
⎝ 0 -ιab 0 ⎠ ⎝ 0 -ιab 0 ⎠
|
||||
|
||||
(b) Therefore, these operators commute.
|
||||
|
||||
Since the operators commute, they share common eigenstates. Therefore, if the eigenstates for one operator can be determined, they are determined for both operators. Since the problem states that a new set of orthonormal kets need be determined, and the given set are the eigenstates related to the operator A, then the eigenstates of the operator B should be determined.
|
||||
|
||||
Since the operators commute, they share a set of common eigenstates. The eigenstates of  are apparent from inspection:
|
||||
|
||||
|a₁〉 ≐ ⎛1⎞ |a₂〉 ≐ ⎛0⎞ and |a₃〉 ≐ ⎛0⎞
|
||||
⎜0⎟ ⎜1⎟ ⎜0⎟
|
||||
⎝0⎠, ⎝0⎠, ⎝1⎠.
|
||||
|
||||
The eigenvalues are already known (λ = b,b,-b.), and using the eigenvalue equations, the eigenstates can be determined. The eigenvalue equation
|
||||
|
||||
⎛ b 0 0 ⎞ ⎛ α₁ ⎞ ⎛ b α₁ ⎞ ⎛ α₁ ⎞
|
||||
⎜ 0 0 -ιb ⎟ ⎜ β₁ ⎟ = ⎜ -ι b γ₁ ⎟ = b ⎜ β₁ ⎟
|
||||
⎝ 0 ιb 0 ⎠ ⎝ γ₁ ⎠ ⎝ ι b β₁ ⎠ ⎝ γ₁ ⎠ reveals
|
||||
⎛ b 0 0 ⎞ ⎛ α₁ ⎞ ⎛ b α₁ ⎞ ⎛ α₁ ⎞
|
||||
⎜ 0 0 -ιb ⎟ ⎜ β₁ ⎟ = ⎜ -ι b γ₁ ⎟ = b ⎜ β₁ ⎟
|
||||
⎝ 0 ιb 0 ⎠ ⎝ γ₁ ⎠ ⎝ ι b β₁ ⎠ ⎝ γ₁ ⎠
|
||||
|
||||
-ι γ₁ = β₁, and
|
||||
ι b β₁ = γ₁
|
||||
reveals -ι γ₁ = β₁, which, combined with the normalization condition, will allow the determination of two eigenstates of the B̂.
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user