mirror of
https://asciireactor.com/otho/phy-4600.git
synced 2024-12-05 02:15:08 +00:00
adding derivations for central potential and hydrogen atom
This commit is contained in:
parent
70afc56db0
commit
5c2846e8ba
131
lecture_notes/3-25/central potential states
Normal file
131
lecture_notes/3-25/central potential states
Normal file
@ -0,0 +1,131 @@
|
|||||||
|
Bound states of a central potential
|
||||||
|
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
|
||||||
|
|
||||||
|
For any central potential V(r) = V(│r│) the eigenfunctions of H can be
|
||||||
|
separated as
|
||||||
|
|
||||||
|
❬r❙E,l,mₗ❭ = Rₑ﹐ₗ(r) Yₗ﹐ₘ(θ,φ)
|
||||||
|
|
||||||
|
(pic) The radial S.E. is
|
||||||
|
|
||||||
|
⎡−͟ħ͟²⎛ ∂͟²͟ + 2͟ ∂͟ ⎞ + l͟(l͟+͟1͟)ħ͟² + V(│r│) ⎤ Rₑ﹐ₗ(r) = E Rₑ﹐ₗ(r)
|
||||||
|
⎣2m ⎝ ∂r² r ∂r ⎠ 2 m r² ⎦
|
||||||
|
|
||||||
|
(pic) Developed radial schrodinger equation using U(r) replacement
|
||||||
|
|
||||||
|
Rₑ﹐ₗ(r) = Uₑ﹐ₗ(r) /r
|
||||||
|
|
||||||
|
⎡−͟ħ͟²⎛ ∂͟²͟ + 2͟ ∂͟ ⎞⎤ U͟ = E ∂͟²͟ U
|
||||||
|
⎣2m ⎝ ∂r² r ∂r ⎠⎦ r ∂r²
|
||||||
|
|
||||||
|
∂͟ U͟ = 1͟ ∂͟ U - U͟
|
||||||
|
∂r r r ∂r r²
|
||||||
|
|
||||||
|
∂͟²͟ U͟ = 1͟ ∂͟²͟ U + 2͟U͟ - 2͟ ∂͟ U
|
||||||
|
∂r² r r ∂r² r³ r²∂r
|
||||||
|
|
||||||
|
⎡−͟ħ͟²⎛ ∂͟²͟ U͟ + 2͟ ∂͟ U͟ ⎞⎤ = E ∂͟²͟ U
|
||||||
|
⎣2m ⎝ ∂r² r r ∂r r ⎠⎦ ∂r²
|
||||||
|
────────────────────────────────────────────────────────────────────────────────
|
||||||
|
⎡−͟ħ͟²⎛ 1͟ ∂͟²͟ U + 2͟U͟ - 2͟ ∂͟ U + 2͟ 1͟ ∂͟ U - 2͟ U͟ ⎞⎤
|
||||||
|
⎣2m ⎝ r ∂r² r³ r²∂r r r ∂r r r² ⎠⎦
|
||||||
|
|
||||||
|
= E 1͟ ∂͟²͟ U + E 2͟U͟ - E 2͟ ∂͟U
|
||||||
|
r ∂r² r³ r²∂r
|
||||||
|
────────────────────────────────────────────────────────────────────────────────
|
||||||
|
⎡−͟ħ͟²⎛ 1͟ ∂͟²͟ + 2͟ - 2͟ ∂͟ + 2͟ ∂͟ - 2͟ ⎞U⎤
|
||||||
|
⎣2m ⎝ r ∂r² r³ r²∂r r² ∂r r³⎠ ⎦
|
||||||
|
|
||||||
|
= E ⎛1͟ ∂͟²͟ + 2͟ - 2͟ ∂ ⎞U
|
||||||
|
⎝r ∂r² r³ r²∂r⎠
|
||||||
|
────────────────────────────────────────────────────────────────────────────────
|
||||||
|
⎡⎛−͟ħ͟² 1͟ ∂͟²͟ + −͟ħ͟² 2͟ - −͟ħ͟² 2͟ ∂͟ + −͟ħ͟² 2͟ ∂͟ - −͟ħ͟² 2͟ ⎞U⎤
|
||||||
|
⎣⎝2m r ∂r² 2m r³ 2m r²∂r 2m r² ∂r 2m r³⎠ ⎦
|
||||||
|
|
||||||
|
= E ⎛1͟ ∂͟²͟ + 2͟ - 2͟ ∂ ⎞U
|
||||||
|
⎝r ∂r² r³ r²∂r⎠
|
||||||
|
────────────────────────────────────────────────────────────────────────────────
|
||||||
|
⎡⎛−͟ħ͟² 1͟ ∂͟²͟ - −͟ħ͟² 2͟ ∂͟ + −͟ħ͟² 2͟ ∂͟ + −͟ħ͟² 2͟ - −͟ħ͟² 2͟ ⎞U⎤
|
||||||
|
⎣⎝2m r ∂r² 2m r²∂r 2m r² ∂r 2m r³ 2m r³⎠ ⎦
|
||||||
|
|
||||||
|
= E ⎛1͟ ∂͟²͟ + 2͟ - 2͟ ∂ ⎞U
|
||||||
|
⎝r ∂r² r³ r²∂r⎠
|
||||||
|
────────────────────────────────────────────────────────────────────────────────
|
||||||
|
↓
|
||||||
|
Not sure this makes sense, but the final result is
|
||||||
|
↓
|
||||||
|
|
||||||
|
⎡−͟ħ͟²∂͟²͟ - ħ͟² l(l+1) + V(│r│)⎤ Uₑ﹐ₗ(r) = E Uₑ﹐ₗ(r)
|
||||||
|
⎣2m ∂r² 2mr² ⎦
|
||||||
|
|
||||||
|
|
||||||
|
Normalization Condition
|
||||||
|
|
||||||
|
∞ ∞
|
||||||
|
∫ │Rₑ﹐ₗ│² r² dr = ∫ │Uₑ﹐ₗ│² dr
|
||||||
|
0 0
|
||||||
|
|
||||||
|
|
||||||
|
If V(r) is not more singular at the origin than 1/r^2 then the SE has power
|
||||||
|
series solutions.
|
||||||
|
|
||||||
|
Thus for small r we take U(r) → rˢ
|
||||||
|
|
||||||
|
(pic) substitute U(r) = rˢ into S.E.
|
||||||
|
|
||||||
|
Uₑ﹐ₗ(r) ≈ rˢ
|
||||||
|
|
||||||
|
⎡−͟ħ͟² ∂͟²͟ + ħ͟² l(l+1) + V(│r│)⎤ rˢ = E rˢ
|
||||||
|
⎣2m ∂r² 2mr² ⎦
|
||||||
|
|
||||||
|
−͟ħ͟² s(s-1)∂͟ rˢ⁻² + l͟ (l+1)ħ²rˢ⁻² + V(│r│)rˢ = E rˢ
|
||||||
|
2m ∂r 2m
|
||||||
|
|
||||||
|
−͟ħ͟² ⎛s(s-1)∂͟ + l͟ (l+1)ħ²⎞rˢ⁻² + V(│r│)rˢ = E rˢ
|
||||||
|
2m ⎝ ∂r 2m ⎠
|
||||||
|
|
||||||
|
|
||||||
|
−͟ħ͟² ⎛s(s-1)∂͟ + l͟ (l+1)ħ²⎞rˢ⁻² + V(│r│)rˢ = E rˢ
|
||||||
|
2m ⎝ ∂r 2m ⎠
|
||||||
|
|
||||||
|
−͟ħ͟² ⎛s(s-1)∂͟ + l͟ (l+1)ħ²⎞ + V(│r│)r² = E r²
|
||||||
|
2m ⎝ ∂r 2m ⎠
|
||||||
|
|
||||||
|
|
||||||
|
For r → 0,
|
||||||
|
r² → 0,
|
||||||
|
V(r) r² → 0.
|
||||||
|
⇓
|
||||||
|
s(s-1) + l(l+1) = 0
|
||||||
|
⇓
|
||||||
|
s = l+1 or s = -l
|
||||||
|
|
||||||
|
If s = -l, the normalization conditions
|
||||||
|
|
||||||
|
∞ │∞
|
||||||
|
∫ r⁻²ˡ dr = 1/(2l-1) 1/(r²ˡ⁻¹) │ → diverges
|
||||||
|
0 │0
|
||||||
|
|
||||||
|
|
||||||
|
So, for small r,
|
||||||
|
|
||||||
|
Uₑ﹐ₗ(r) → (r→0) → rˡ⁺¹;
|
||||||
|
|
||||||
|
Rₑ﹐ₗ(r) → (r→0) → rˡ.
|
||||||
|
|
||||||
|
Eigenfunctions
|
||||||
|
━━━━━━━━━━━━━━
|
||||||
|
|
||||||
|
Ψₑ﹐ₗ﹐ₘ(r,θ,φ) = Rₑ﹐ₗ(r) Yₗ﹐ₘ(θ,φ) = Uₑ﹐ₗ /r Yₗ﹐ₘ(θ,φ)
|
||||||
|
|
||||||
|
⇒ d͟²͟ U - 1͟ l(l+1) + ⎛λ͟ - 1͟⎞U = 0
|
||||||
|
dρ² ρ² ⎝ρ 4⎠
|
||||||
|
|
||||||
|
⎡−͟ħ͟² d² + l͟ (l+1)ħ² - Z͟e͟²⎤Uₑ﹐ₗ(r) = E Uₑ﹐ₗ(r)
|
||||||
|
⎣2m dr² 2mr² r ⎦
|
||||||
|
|
||||||
|
ρ = √⎛8͟m͟ │E│⎞r
|
||||||
|
⎝ ħ² ⎠
|
||||||
|
|
||||||
|
λ = Z͟e͟² √⎛_͟m͟_͟ ⎞
|
||||||
|
ħ ⎝2│E│⎠
|
1
lecture_notes/3-25/hydrogen atom
Symbolic link
1
lecture_notes/3-25/hydrogen atom
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../3-28/hydrogen atom
|
@ -1,65 +1,10 @@
|
|||||||
Bound states of a central potential
|
Computed the bound states of a central potential with eigenfunctions of H
|
||||||
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
|
|
||||||
|
|
||||||
|
❬r❙E,l,mₗ❭ = Rₑ﹐ₗ(r) Yₗ﹐ₘ(θ,ϕ).
|
||||||
|
|
||||||
For any central potential V(r) = V(│r│) the eigenfunctions of H can be separated as
|
(pic) Developed radial schrodinger equation using U(r) replacement
|
||||||
|
|
||||||
❬r❙E,l,mₗ❭ = Rₑ﹐ₗ(r) Yₗ﹐ₘ(θ,ϕ)
|
|
||||||
|
|
||||||
The radial S.E. is
|
|
||||||
|
|
||||||
⎡−͟ħ͟² ⎛ ∂͟²͟ + 2͟∂͟ ⎞ + l͟(l͟+͟1͟)ħ͟² + V(│r│) ⎤ Rₑ﹐ₗ(r) = E Rₑ﹐ₗ(r)
|
|
||||||
⎣2m ⎝ ∂r² r∂r ⎠ 2 m r² ⎦
|
|
||||||
|
|
||||||
|
|
||||||
Rₑ﹐ₗ(r) = U͟ₑ͟﹐͟ₗ͟(r)
|
|
||||||
r
|
|
||||||
|
|
||||||
(pic) ...
|
|
||||||
|
|
||||||
(pic) Developed radial schrodinger equation using U(r) replacement
|
|
||||||
|
|
||||||
- Developed normalization condition
|
|
||||||
|
|
||||||
If V(r) is not more singular at the origin than 1/r^2 then the SE has power series solutions.
|
|
||||||
|
|
||||||
Thus for small r we take U(r) → rˢ
|
|
||||||
|
|
||||||
(pic) substitute U(r) = rˢ into S.E.
|
|
||||||
|
|
||||||
-ħ²/2m [(s(s-1) + l(l+1)] + V r² = E r²
|
|
||||||
|
|
||||||
For r → 0
|
|
||||||
r² → 0
|
|
||||||
V(r) r² → 0
|
|
||||||
|
|
||||||
⇒ s(s-1) + l(l+1) = 0
|
|
||||||
⇒ s = l+1 or s = -l
|
|
||||||
|
|
||||||
If s = -l, the normalization conditions
|
|
||||||
|
|
||||||
∞ │∞
|
|
||||||
∫ r⁻²ˡ dr = 1/(2l-1) 1/(r²ˡ⁻¹) │ → diverges
|
|
||||||
0 │0
|
|
||||||
|
|
||||||
|
|
||||||
Uₑ﹐ₗ(r) → (r→0) → rˡ⁺¹
|
|
||||||
|
|
||||||
Rₑ﹐ₗ(r) → (r→0) → rˡ
|
|
||||||
|
|
||||||
|
|
||||||
The Hydrogen Atom
|
|
||||||
━━━━━━━━━━━━━━━━━
|
|
||||||
|
|
||||||
V(r) = -e²/r
|
|
||||||
|
|
||||||
For a hydrogenic ion with nuclear charge Z
|
|
||||||
|
|
||||||
V(r) = -Ze²/r
|
|
||||||
|
|
||||||
Eigenfunctions:
|
|
||||||
|
|
||||||
Ψₑ﹐ₗ﹐ₘ(r,θ,φ) = Rₑ﹐ₗ(r) Yₗ﹐ₘ(θ,φ) = Uₑ﹐ₗ/r Yₗ﹐ₘ(θ,φ)
|
|
||||||
|
|
||||||
|
If V(r) is not more singular at the origin than 1/r^2 then the SE has power series solutions.
|
||||||
|
|
||||||
|
Began the Hydrogen Atom
|
||||||
|
|
||||||
|
0
lecture_notes/3-28/.ps
Normal file
0
lecture_notes/3-28/.ps
Normal file
1
lecture_notes/3-28/3-28-overview.txt
Normal file
1
lecture_notes/3-28/3-28-overview.txt
Normal file
@ -0,0 +1 @@
|
|||||||
|
Developed Theory for The Hydrogen Atom
|
@ -1,9 +1,18 @@
|
|||||||
Theory of the Hydrogen Atom
|
Theory of the Hydrogen Atom
|
||||||
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
|
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
|
||||||
|
V(𝐫) = -e²/r
|
||||||
|
|
||||||
Derived from first principles the wave equation of an electron in the hydrogen atom.
|
For any hydrogenic ion with nuclear charge Z
|
||||||
|
V(𝐫) = -Ze²/r
|
||||||
|
|
||||||
-Start with Dirac Notation
|
Eigenfunctions in spherical coordinates:
|
||||||
|
|
||||||
|
Ψₑ﹐ₗ﹐ₘ(r,θ,φ) = Rₑ﹐ₗ(r) Yₗ﹐ₘ(θ,φ) = Uₑ﹐ₗ/r Yₗ﹐ₘ(θ,φ)
|
||||||
|
|
||||||
|
Derived from first principles the wave equation of an electron in the
|
||||||
|
hydrogen atom.
|
||||||
|
|
||||||
|
- Start with Dirac Notation
|
||||||
- Replace with known general functions
|
- Replace with known general functions
|
||||||
- transform to eigenvalue equation in position space
|
- transform to eigenvalue equation in position space
|
||||||
- replace pieces with function F and find derivatives
|
- replace pieces with function F and find derivatives
|
||||||
@ -15,4 +24,68 @@ Theory of the Hydrogen Atom
|
|||||||
These are infinite, though, so
|
These are infinite, though, so
|
||||||
- Force Laguerre Polynomial solutions to truncate
|
- Force Laguerre Polynomial solutions to truncate
|
||||||
|
|
||||||
-
|
Derivation
|
||||||
|
━━━━━━━━━━
|
||||||
|
The Hydrogen atom follows the central potential development from the
|
||||||
|
previous lecture.
|
||||||
|
|
||||||
|
❬r,θ,φ❙Ψ❭ = R(r)ₑ,ₗ yₗ﹐ₘ(θ,φ)
|
||||||
|
|
||||||
|
Rₑ﹐ₗ(r) = Uₑ﹐ₗ(r) /r
|
||||||
|
|
||||||
|
ρ ≡ √⎛8͟m͟ │E│⎞r
|
||||||
|
⎝ ħ² ⎠
|
||||||
|
|
||||||
|
λ = Z͟e͟² √⎛_͟m͟_͟ ⎞
|
||||||
|
ħ ⎝2│E│⎠
|
||||||
|
|
||||||
|
d͟²͟ U - 1͟ l(l+1) + ⎛λ͟ - 1͟⎞U = 0
|
||||||
|
dρ² ρ² ⎝ρ 4⎠
|
||||||
|
|
||||||
|
|
||||||
|
as ρ→0, U→ρˡ⁺¹
|
||||||
|
|
||||||
|
for ρ→∞,
|
||||||
|
|
||||||
|
d͟²͟ U - 1͟U = 0
|
||||||
|
dρ² 4
|
||||||
|
|
||||||
|
d͟²͟ U - 1͟U = 0
|
||||||
|
dρ² 4
|
||||||
|
|
||||||
|
U(ρ) = A exp(-ρ/2) + B exp(ρ/2) = A exp(-ρ/2)
|
||||||
|
(ρ→∞, B=0)
|
||||||
|
|
||||||
|
U(ρ) = ρˡ⁺¹ exp(-ρ/2) Fₑ﹐ₗ(ρ)
|
||||||
|
|
||||||
|
d͟ U = (l+1)ρˡ exp(-ρ/2) Fₑ﹐ₗ(ρ)
|
||||||
|
dρ
|
||||||
|
-½ ρˡ⁺¹ exp(-ρ/2) Fₑ﹐ₗ(ρ)
|
||||||
|
|
||||||
|
+ ρˡ⁺¹ exp(-ρ/2) d͟ Fₑ﹐ₗ(ρ)
|
||||||
|
dρ
|
||||||
|
|
||||||
|
d͟ U = ⎛l͟+͟1͟ - 1͟ ⎞ U + ρˡ⁺¹ exp(-ρ/2) d͟ F(ρ)
|
||||||
|
dρ ⎝ ρ 2 ⎠ dρ
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
d͟²͟ U = -(l͟+͟1͟) U + ⎛l͟+͟1͟ - 1͟⎞² U
|
||||||
|
dρ² ρ² ⎝ ρ 2⎠
|
||||||
|
+ 2⎛l͟+͟1͟ - 1͟⎞ρˡ⁺¹ exp(-ρ/2) d͟F͟
|
||||||
|
⎝ ρ 2⎠ dρ
|
||||||
|
+ ρˡ⁺¹ exp(-ρ/2) d͟²͟ F(ρ)
|
||||||
|
dρ²
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
⎡−͟ħ͟² d² + l͟ (l+1)ħ² - Z͟e͟²⎤Uₑ﹐ₗ(r) = E Uₑ﹐ₗ(r)
|
||||||
|
⎣2m dr² 2mr² r ⎦
|
||||||
|
|
||||||
|
ρ = √⎛8͟m͟ │E│⎞r
|
||||||
|
⎝ ħ² ⎠
|
||||||
|
|
||||||
|
⎛⎞
|
||||||
|
⎝⎠
|
||||||
|
|
||||||
|
2335
lecture_notes/3-28/hydrogen atom.ps
Normal file
2335
lecture_notes/3-28/hydrogen atom.ps
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user