mirror of
https://asciireactor.com/otho/phy-4600.git
synced 2024-12-05 02:05:06 +00:00
finished most of chap 7 (a) homework
This commit is contained in:
parent
04c9365a20
commit
563ee4f2f8
File diff suppressed because it is too large
Load Diff
@ -85,84 +85,41 @@ Matrix analysis can be used to find the eigenvectors for these eigenstates. The
|
|||||||
⎧ b = √2 a
|
⎧ b = √2 a
|
||||||
⎨ (a + c) = √2 b
|
⎨ (a + c) = √2 b
|
||||||
⎩ b = √2 c
|
⎩ b = √2 c
|
||||||
|
|
||||||
|
Following this to conclusion just like with spin operators will provide the eigenstates, and then from that the wave function can be expressed using the x basis, and probabilities obtained.
|
||||||
|
|
||||||
|
|
||||||
|
I need to stop here, but I will produce at least sthe histogram from part a:
|
||||||
|
|
||||||
|
(𝐜)
|
||||||
|
|
||||||
|
𝓟(L̂𝓏)
|
||||||
|
|
||||||
|
╭─────────────────────────╮
|
||||||
|
│ │
|
||||||
|
│ │
|
||||||
|
│ │
|
||||||
|
│ │
|
||||||
|
│ │
|
||||||
|
│ │
|
||||||
|
│ │
|
||||||
|
¹⁶/₂₉ ├ ▓ │
|
||||||
|
│ ▓ │
|
||||||
|
│ ▓ │
|
||||||
Applying the operator to the states in Ψ,
|
│ ▓ │
|
||||||
|
│ ▓ │
|
||||||
L̂𝓍❙1 1❭ ≐
|
│ ▓ │
|
||||||
ħ͟ ⎛ 0 1 0 ⎞⎛1⎞ = ħ͟ ⎛0⎞ = ħ͟ ❙1 0❭.
|
│ ▓ │
|
||||||
√2 ⎜ 1 0 1 ⎟⎜0⎟ √2 ⎜1⎟ √2
|
⁹/₂₉ ├ ▓ ▓ │
|
||||||
⎝ 0 1 0 ⎠⎝0⎠ ⎝0⎠
|
│ ▓ ▓ │
|
||||||
|
│ ▓ ▓ │
|
||||||
L̂𝓍❙1 0❭ ≐
|
│ ▓ ▓ │
|
||||||
ħ͟ ⎛ 0 1 0 ⎞⎛0⎞ = ħ͟ ⎛1⎞ = ħ͟ (❙1 1❭ + ❙1 -1❭), and
|
│ ▓ ▓ │
|
||||||
√2 ⎜ 1 0 1 ⎟⎜1⎟ √2 ⎜0⎟ √2
|
⁴/₂₉ ├ ▓ ▓ ▓ │
|
||||||
⎝ 0 1 0 ⎠⎝0⎠ ⎝1⎠
|
│ ▓ ▓ ▓ │
|
||||||
|
│ ▓ ▓ ▓ │
|
||||||
L̂𝓍❙1 -1❭ ≐
|
│ ▓ ▓ ▓ │
|
||||||
ħ͟ ⎛ 0 1 0 ⎞⎛0⎞ = ħ͟ ⎛0⎞ = ħ͟ ❙1 0❭.
|
╰─────────────────────────╯
|
||||||
√2 ⎜ 1 0 1 ⎟⎜0⎟ √2 ⎜1⎟ √2
|
-ħ 0 ħ
|
||||||
⎝ 0 1 0 ⎠⎝1⎠ ⎝0⎠
|
|
||||||
|
|
||||||
|
|
||||||
L̂𝓍❙Ψ❭ = ⎛ 2͟ L̂𝓍❙1 1❭ + ι 3͟ L̂𝓍❙1 0❭ - 4͟ L̂𝓍❙1 -1❭ ⎞
|
|
||||||
⎝ √29 √29 √29 ⎠
|
|
||||||
|
|
||||||
2͟ L̂𝓍❙1 1❭ = 2͟ ħ❙1 0❭,
|
|
||||||
√29 √58
|
|
||||||
|
|
||||||
ι 3͟ L̂𝓍❙1 0❭ = ι 3͟ ħ (❙1 1❭ + ❙1 -1❭), and
|
|
||||||
√29 √58
|
|
||||||
|
|
||||||
4͟ L̂𝓍❙1 -1❭ = 4͟ ħ❙1 0❭.
|
|
||||||
√29 √58
|
|
||||||
|
|
||||||
Then,
|
|
||||||
|
|
||||||
L̂𝓍❙Ψ❭ = ħ ⎛ -2͟ ❙1 0❭ + ι 3͟ (❙1 1❭ + ❙1 -1❭)⎞
|
|
||||||
⎝ √58 √58 ⎠
|
|
||||||
|
|
||||||
Normalizing the function,
|
|
||||||
|
|
||||||
C⎛⎛-2͟ ⎞² + ⎛ι 3͟ ⎞² + ⎛ι 3͟ ⎞²⎞ = 1.
|
|
||||||
⎝⎝√58⎠ ⎝ √58⎠ ⎝ √58⎠ ⎠
|
|
||||||
|
|
||||||
C⎛4 - 9 - 9⎞ = 58 = C(14).
|
|
||||||
⎝ ⎠
|
|
||||||
|
|
||||||
C = 58/14 = 29/7.
|
|
||||||
|
|
||||||
The probability of measuring one of the possible angular momenta will be given by
|
|
||||||
|
|
||||||
│❬l m❙L̂𝓍❙Ψ❭│².
|
|
||||||
|
|
||||||
❬1 1❙L̂𝓍❙Ψ❭ = ❬1 1❙2͟9͟⎛ -2͟ ❙1 0❭ + ι 3͟ (❙1 1❭ + ❙1 -1❭)⎞
|
|
||||||
7 ⎝ √58 √58 ⎠
|
|
||||||
|
|
||||||
= 2͟9͟ ι͟3͟ ❬1 1❙1 1❭ = ι 8͟7͟
|
|
||||||
7 √58 7√58
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
L̂𝓍❙Ψ❭ = ⎛ + ι 3͟ L̂𝓍❙1 0❭ - 4͟ L̂𝓍❙1 -1❭ ⎞
|
|
||||||
⎝ √29 √29 ⎠
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
File diff suppressed because it is too large
Load Diff
@ -83,6 +83,3 @@ Histogram of probabilities:
|
|||||||
╰─────────────────┼────────────────╯
|
╰─────────────────┼────────────────╯
|
||||||
2ħ² 6ħ² 0 ħ
|
2ħ² 6ħ² 0 ħ
|
||||||
𝐋̂² L̂𝓏
|
𝐋̂² L̂𝓏
|
||||||
|
|
||||||
h
|
|
||||||
|
|
||||||
|
File diff suppressed because it is too large
Load Diff
@ -1,4 +1,4 @@
|
|||||||
7.35 is nothing more than a definition of spherical coordinates.
|
The transformation from polar coordinates to cartesian is the set of equations
|
||||||
|
|
||||||
⎧ x = r sinθ cosϕ
|
⎧ x = r sinθ cosϕ
|
||||||
⎪
|
⎪
|
||||||
@ -6,21 +6,142 @@
|
|||||||
⎪
|
⎪
|
||||||
⎩ z = r cosθ
|
⎩ z = r cosθ
|
||||||
|
|
||||||
|
The transformation from cartesian to polar coordinates is the set
|
||||||
|
|
||||||
|
⎧ r = √(x²+y²+z²)
|
||||||
|
⎪
|
||||||
|
⎪ cos(θ) = z͟ = _͟z͟
|
||||||
|
⎨ r √(x²+y²+z²)
|
||||||
|
⎪
|
||||||
|
⎪ tan(ϕ) = y͟
|
||||||
|
⎩ x
|
||||||
|
|
||||||
Some differential forms may come in handy.
|
Some differential forms may come in handy.
|
||||||
|
|
||||||
|
⎧ dcos(θ) = -sin(θ) dθ
|
||||||
|
⎨
|
||||||
|
⎪ dtan(ϕ) = _͟1͟ dϕ
|
||||||
|
⎩ cos²(ϕ)
|
||||||
|
|
||||||
∂/∂θ:
|
∂/∂θ:
|
||||||
⎧ ∂x = r cosϕ cosθ ∂θ
|
|
||||||
|
⎧ ∂͟x = r cosϕ cosθ
|
||||||
|
⎪ ∂θ
|
||||||
⎪
|
⎪
|
||||||
⎨ ∂y = r sinϕ cosθ ∂θ
|
⎨ ∂͟y = r sinϕ cosθ
|
||||||
|
⎪ ∂θ
|
||||||
⎪
|
⎪
|
||||||
⎩ ∂z = - r sinθ ∂θ
|
⎪ ∂͟z = -r sinθ
|
||||||
|
⎩ ∂θ
|
||||||
|
|
||||||
∂/∂ϕ:
|
∂/∂ϕ:
|
||||||
⎧ ∂x = - r sinθ sinϕ ∂ϕ
|
|
||||||
|
⎧ ∂͟x = -r sinθ sinϕ
|
||||||
|
⎪ ∂ϕ
|
||||||
⎪
|
⎪
|
||||||
⎨ ∂y = r sinθ cosϕ ∂ϕ
|
⎨ ∂͟y = r sinθ cosϕ
|
||||||
|
⎪ ∂ϕ
|
||||||
|
⎪
|
||||||
|
⎪ ∂͟z = 0
|
||||||
|
⎩ ∂ϕ
|
||||||
|
|
||||||
|
∂/∂x:
|
||||||
|
|
||||||
|
⎧ ∂͟r = √(x²+y²+z²) = x͟
|
||||||
|
⎪ ∂x r
|
||||||
⎪
|
⎪
|
||||||
⎩ ∂z = 0 ∂ϕ
|
⎪ ∂͟cos(θ) = -z͟x͟
|
||||||
|
⎨ ∂x r³
|
||||||
|
⎪
|
||||||
|
⎪ ∂͟tan(ϕ) = -y͟
|
||||||
|
⎩ ∂x x²
|
||||||
|
|
||||||
|
∂/∂y:
|
||||||
|
|
||||||
|
⎧ ∂͟r = √(x²+y²+z²) = y͟
|
||||||
|
⎪ ∂y r
|
||||||
|
⎪
|
||||||
|
⎪ ∂͟cos(θ) = -z͟y͟
|
||||||
|
⎨ ∂y r³
|
||||||
|
⎪
|
||||||
|
⎪ ∂͟tan(ϕ) = 1͟
|
||||||
|
⎩ ∂y x
|
||||||
|
|
||||||
|
∂/∂z:
|
||||||
|
|
||||||
|
⎧ ∂͟r = √(x²+y²+z²) = z͟
|
||||||
|
⎪ ∂z r
|
||||||
|
⎪
|
||||||
|
⎪ ∂͟cos(θ) = z͟ = 1͟ ⎛r ∂͟z͟ - z ∂͟r͟⎞ = 1͟ - z͟²
|
||||||
|
⎨ ∂z r r² ⎝ ∂z ∂z⎠ r r³
|
||||||
|
⎪
|
||||||
|
⎪ ∂͟tan(ϕ) = 0
|
||||||
|
⎩ ∂z
|
||||||
|
|
||||||
|
|
||||||
|
These differential forms can be used to transform each cartesian differentiation operator.
|
||||||
|
|
||||||
|
∂͟ = ∂͟r͟ ∂͟ + ∂͟c͟o͟s͟θ͟ ∂͟ + ∂͟t͟a͟n͟ϕ͟ ∂͟ ;
|
||||||
|
∂x ∂x ∂r ∂x ∂cosθ ∂x ∂tanϕ
|
||||||
|
|
||||||
|
∂͟ = x͟ ∂͟ - z͟x͟ _͟1͟ ∂͟ - y͟ cos²(ϕ) ∂͟ ;
|
||||||
|
∂x r ∂r r³ -sinθ ∂θ x² ∂ϕ
|
||||||
|
|
||||||
|
∂͟ = sin(θ) cos(ϕ) ∂͟
|
||||||
|
∂x ∂r
|
||||||
|
+ 1͟ sin(θ) cos(ϕ) cos(θ) _͟1͟ ∂͟
|
||||||
|
r sin(θ) ∂θ
|
||||||
|
- r͟ s͟i͟n͟(ϕ͟) s͟i͟n͟(θ͟) cos²(ϕ͟) ∂͟ ;
|
||||||
|
r² cos²(ϕ) sin²(θ) ∂ϕ
|
||||||
|
|
||||||
|
∂͟ = sin(θ) cos(ϕ) ∂͟ + 1͟ cos(ϕ) cos(θ) ∂͟ - 1͟ s͟i͟n͟(ϕ͟) ∂͟ .
|
||||||
|
∂x ∂r r ∂θ r sin(θ) ∂ϕ
|
||||||
|
|
||||||
|
───────────────────────────────────────────────
|
||||||
|
|
||||||
|
∂͟ = ∂͟r͟ ∂͟ + ∂͟c͟o͟s͟θ͟ ∂͟ + ∂͟t͟a͟n͟ϕ͟ ∂͟ ;
|
||||||
|
∂y ∂y ∂r ∂y ∂cosθ ∂y ∂tanϕ
|
||||||
|
|
||||||
|
∂͟ = y͟ ∂͟ - z͟y͟ ∂͟ + 1͟ ∂͟ ;
|
||||||
|
∂y r ∂r r³ ∂cosθ x ∂tanϕ
|
||||||
|
|
||||||
|
∂͟ = sin(θ) sin(ϕ) ∂͟ - 1͟ sin(θ) cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟ ;
|
||||||
|
∂y ∂r r -sin(θ) ∂θ r sin(θ) ∂ϕ
|
||||||
|
|
||||||
|
∂͟ = sin(θ) sin(ϕ) ∂͟ + 1͟ cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟ .
|
||||||
|
∂y ∂r r ∂θ r sin(θ) ∂ϕ
|
||||||
|
|
||||||
|
───────────────────────────────────────────────
|
||||||
|
|
||||||
|
∂͟ = ∂͟r͟ ∂͟ + ∂͟c͟o͟s͟θ͟ ∂͟ + ∂͟t͟a͟n͟ϕ͟ ∂͟ ;
|
||||||
|
∂z ∂z ∂r ∂z ∂cosθ ∂z ∂tanϕ
|
||||||
|
|
||||||
|
∂͟ = z͟ ∂͟ + ⎛1͟ - z͟²⎞∂͟ + 0 ;
|
||||||
|
∂z r ∂r ⎝r r³⎠∂cosθ
|
||||||
|
|
||||||
|
∂͟ = cos(θ) ∂͟ + 1͟⎛1 - cos²(θ)⎞ _͟1͟ ∂͟ ;
|
||||||
|
∂z ∂r r⎝ ⎠ -sin(θ) ∂θ
|
||||||
|
|
||||||
|
∂͟ = cos(θ) ∂͟ - _͟1͟_ ⎛1 - cos²(θ)⎞ ∂͟ ;
|
||||||
|
∂z ∂r rsin(θ)⎝ ⎠ ∂θ
|
||||||
|
|
||||||
|
∂͟ = cos(θ) ∂͟ - _͟1͟_ sin²(θ) ∂͟ ;
|
||||||
|
∂z ∂r rsin(θ) ∂θ
|
||||||
|
|
||||||
|
∂͟ = cos(θ) ∂͟ - s͟i͟n͟(θ͟) ∂͟ .
|
||||||
|
∂z ∂r r ∂θ
|
||||||
|
|
||||||
|
|
||||||
|
The set of differential operator transformations is
|
||||||
|
|
||||||
|
⎧ ∂͟ = sin(θ) cos(ϕ) ∂͟ + 1͟ cos(ϕ) cos(θ) ∂͟ - 1͟ s͟i͟n͟(ϕ͟) ∂͟
|
||||||
|
⎪ ∂x ∂r r ∂θ r sin(θ) ∂ϕ
|
||||||
|
⎪
|
||||||
|
⎨ ∂͟ = sin(θ) sin(ϕ) ∂͟ + 1͟ cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟
|
||||||
|
⎪ ∂y ∂r r ∂θ r sin(θ) ∂ϕ
|
||||||
|
⎪
|
||||||
|
⎪ ∂͟ = cos(θ) ∂͟ - s͟i͟n͟(θ͟) ∂͟
|
||||||
|
⎩ ∂z ∂r r ∂θ
|
||||||
|
|
||||||
|
|
||||||
7.47 is the set of algebraic conditions expressed by the vector definition 𝐋 = 𝐫 × 𝐩.
|
7.47 is the set of algebraic conditions expressed by the vector definition 𝐋 = 𝐫 × 𝐩.
|
||||||
@ -45,91 +166,87 @@ Substituting 7.35 into 7.47,
|
|||||||
⎪ L̂𝓏 = -ιħ (r sinθ cosϕ ∂͟_ - r sinθ sinϕ ∂͟_ )
|
⎪ L̂𝓏 = -ιħ (r sinθ cosϕ ∂͟_ - r sinθ sinϕ ∂͟_ )
|
||||||
⎩ ∂y ∂x
|
⎩ ∂y ∂x
|
||||||
|
|
||||||
|
Substituting the transformed differentiation operators,
|
||||||
|
|
||||||
|
⎧ L̂𝓍 = -ιħ⎛r sinθ sinϕ ⎛cos(θ) ∂͟ - s͟i͟n͟(θ͟) ∂͟ ⎞
|
||||||
Geometry is shown on the attached notes page.
|
⎪ ⎝ ⎝ ∂r r ∂θ⎠
|
||||||
|
⎪
|
||||||
For L̂𝓍:
|
⎪ - r cosθ ⎛sin(θ) sin(ϕ) ∂͟ + 1͟ cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟ ⎞⎞
|
||||||
|
⎪ ⎝ ∂r r ∂θ r sin(θ) ∂ϕ⎠⎠
|
||||||
∂͟z͟ = -r sinθ
|
|
||||||
∂θ
|
|
||||||
∂͟y͟ = r sinθ cosϕ
|
|
||||||
∂ϕ
|
|
||||||
|
|
||||||
L̂𝓍 = -ιħ ( r sinθ sinϕ ∂͟θ͟ ∂͟_ - r cosθ ∂͟ϕ͟ ∂͟_ )
|
|
||||||
∂θ ∂z ∂ϕ ∂y
|
|
||||||
|
|
||||||
L̂𝓍 = ιħ ( -r sinθ sinϕ ∂͟θ͟ ∂͟_ + r cosθ ∂͟ϕ͟ ∂͟_ )
|
|
||||||
∂z ∂θ ∂y ∂ϕ
|
|
||||||
|
|
||||||
L̂𝓍 = ιħ ( −͟r͟ s͟i͟n͟θ͟ sinϕ ∂͟_ + c͟o͟s͟θ͟ ∂͟_ )
|
|
||||||
-r sinθ ∂θ sinθ cosϕ ∂ϕ
|
|
||||||
|
|
||||||
L̂𝓍 = ιħ ( sinϕ ∂͟_ + c͟o͟t͟θ͟ ∂͟_ )
|
|
||||||
∂θ cosϕ ∂ϕ
|
|
||||||
|
|
||||||
For L̂𝓎:
|
|
||||||
|
|
||||||
∂x = r cosϕ cosθ ∂θ
|
|
||||||
∂z = 0 ∂ϕ
|
|
||||||
|
|
||||||
L̂𝓎 = -ιħ (r cosθ ∂͟_ - r sinθ cosϕ ∂͟_ )
|
|
||||||
∂x ∂z
|
|
||||||
|
|
||||||
L̂𝓎 = ιħ (-r cosθ ∂͟θ͟ ∂͟_ + r sinθ cosϕ ∂͟ϕ͟ ∂͟_ )
|
|
||||||
∂θ ∂x ∂ϕ ∂z
|
|
||||||
|
|
||||||
L̂𝓎 = ιħ (-r cosθ ∂͟θ͟ ∂͟_ + r sinθ cosϕ ∂͟ϕ͟ ∂͟_ )
|
|
||||||
∂x ∂θ ∂z ∂ϕ
|
|
||||||
|
|
||||||
L̂𝓎 = ιħ (- _͟1͟ cosθ ∂͟_ + r sinθ cosϕ 0 ∂͟_ )
|
|
||||||
cosϕ cosθ ∂θ ∂ϕ
|
|
||||||
|
|
||||||
L̂𝓎 = ιħ (- _͟1͟ ∂͟_ )
|
|
||||||
cosϕ ∂θ
|
|
||||||
|
|
||||||
L̂𝓎 = -ιħ _͟1͟ ∂͟_
|
|
||||||
cosϕ ∂θ
|
|
||||||
|
|
||||||
For L̂𝓏:
|
|
||||||
|
|
||||||
∂x = -r sinθ sinϕ ∂ϕ
|
|
||||||
∂y = r sinθ cosϕ ∂ϕ
|
|
||||||
|
|
||||||
L̂𝓏 = -ιħ (r sinθ cosϕ ∂͟͟ϕ͟ ∂͟_ - r sinθ sinϕ ∂͟͟ϕ͟ ∂͟_ )
|
|
||||||
∂ϕ ∂y ∂ϕ ∂x
|
|
||||||
|
|
||||||
L̂𝓏 = -ιħ (r͟ s͟i͟n͟θ͟ c͟o͟s͟ϕ͟ ∂͟_ + r͟ s͟i͟n͟θ͟ s͟i͟n͟ϕ͟ ∂͟_ )
|
|
||||||
r sinθ cosϕ ∂ϕ r sinθ sinϕ ∂ϕ
|
|
||||||
|
|
||||||
L̂𝓏 = -ιħ ∂͟_ ( 1 + 1 )
|
|
||||||
∂ϕ
|
|
||||||
|
|
||||||
L̂𝓏 = -2ιħ ∂͟_
|
|
||||||
∂ϕ
|
|
||||||
|
|
||||||
So, according to my calculus, the final solutions should be the set
|
|
||||||
|
|
||||||
⎧ L̂𝓍 = ιħ ( sinϕ ∂͟_ + c͟o͟t͟θ͟ ∂͟_ )
|
|
||||||
⎪ ∂θ cosϕ ∂ϕ
|
|
||||||
⎪
|
⎪
|
||||||
⎨ L̂𝓎 = -ιħ _͟1͟ ∂͟_
|
|
||||||
⎪ cosϕ ∂θ
|
|
||||||
⎪
|
⎪
|
||||||
⎪ L̂𝓏 = -2ιħ ∂͟_
|
⎪ L̂𝓎 = -ιħ⎛r cosθ⎛sin(θ) cos(ϕ) ∂͟ + 1͟ cos(ϕ) cos(θ) ∂͟ - 1͟ s͟i͟n͟(ϕ͟) ∂͟ ⎞
|
||||||
⎩ ∂ϕ
|
⎪ ⎝ ⎝ ∂r r ∂θ r sin(θ) ∂ϕ⎠
|
||||||
|
⎨
|
||||||
|
⎪ - r sinθ cosϕ ⎛cos(θ) ∂͟ - s͟i͟n͟(θ͟) ∂͟ ⎞⎞
|
||||||
|
⎪ ⎝ ∂r r ∂θ⎠⎠
|
||||||
|
⎪
|
||||||
|
⎪
|
||||||
|
⎪ L̂𝓏 = -ιħ⎛r sinθ cosϕ⎛sin(θ) sin(ϕ) ∂͟ + 1͟ cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟ ⎞
|
||||||
|
⎪ ⎝ ⎝ ∂r r ∂θ r sin(θ) ∂ϕ⎠
|
||||||
|
⎪
|
||||||
|
⎪ - r sinθ sinϕ ⎛sin(θ) cos(ϕ) ∂͟ + 1͟ cos(ϕ) cos(θ) ∂͟ - 1͟ s͟i͟n͟(ϕ͟) ∂͟ ⎞⎞
|
||||||
|
⎩ ⎝ ∂r r ∂θ r sin(θ) ∂ϕ⎠⎠
|
||||||
|
|
||||||
The spherical representation, i.e. ending place, is the set
|
Simplifying...
|
||||||
|
|
||||||
|
⎧ L̂𝓍 = -ιħ⎛r sinθ sinϕ cosθ ∂͟ - sinϕ sin²θ ∂͟
|
||||||
|
⎪ ⎝ ∂r ∂θ
|
||||||
|
⎪
|
||||||
|
⎪ - r cosθ sinθ sinϕ ∂͟ - cos²θ sinϕ ∂͟ - c͟o͟s͟θ͟ cosϕ ∂͟ ⎞
|
||||||
|
⎪ ∂r ∂θ sinθ ∂ϕ⎠
|
||||||
|
⎪
|
||||||
|
⎪
|
||||||
|
⎪ L̂𝓎 = -ιħ⎛r cosθ sinθ cosϕ ∂͟ + cosθ cosϕ cosθ ∂͟ - c͟o͟s͟θ͟ sinϕ ∂͟
|
||||||
|
⎪ ⎝ ∂r ∂θ sinθ ∂ϕ
|
||||||
|
⎨
|
||||||
|
⎪ - r sinθ cosϕ cosθ ∂͟ + sinθ cosϕ sinθ ∂͟ ⎞
|
||||||
|
⎪ ∂r ∂θ⎠
|
||||||
|
⎪
|
||||||
|
⎪
|
||||||
|
⎪ L̂𝓏 = -ιħ⎛r sin²θ cosϕ sinϕ ∂͟ + sinθ cosθ sinϕ cosϕ ∂͟ + cosϕ c͟o͟s͟ϕ͟ ∂͟
|
||||||
|
⎪ ⎝ ∂r ∂θ ∂ϕ
|
||||||
|
⎪
|
||||||
|
⎪ - r sin²θ sinϕ cosϕ ∂͟ - sinθ cosθ sinϕ cosϕ ∂͟ + sinθ sinϕ s͟i͟n͟ϕ͟ ∂͟ ⎞
|
||||||
|
⎩ ∂r ∂θ sinθ ∂ϕ⎠
|
||||||
|
|
||||||
|
|
||||||
|
⎧ L̂𝓍 = -ιħ⎛- sinϕ sin²θ ∂͟ - cos²θ sinϕ ∂͟ - c͟o͟s͟θ͟ cosϕ ∂͟ ⎞
|
||||||
|
⎪ ⎝ ∂θ ∂θ sinθ ∂ϕ⎠
|
||||||
|
⎪
|
||||||
|
⎨ L̂𝓎 = -ιħ⎛cosθ cosϕ cosθ ∂͟ - c͟o͟s͟θ͟ sinϕ ∂͟ + sinθ cosϕ sinθ ∂͟ ⎞
|
||||||
|
⎪ ⎝ ∂θ sinθ ∂ϕ ∂θ⎠
|
||||||
|
⎪
|
||||||
|
⎪ L̂𝓏 = -ιħ⎛cosϕ c͟o͟s͟ϕ͟ ∂͟ + sinθ sinϕ s͟i͟n͟ϕ͟ ∂͟ ⎞
|
||||||
|
⎩ ⎝ ∂ϕ sinθ ∂ϕ⎠
|
||||||
|
|
||||||
|
|
||||||
|
⎧ L̂𝓍 = ιħ⎛ sinϕ sin²θ ∂͟ + cos²θ sinϕ ∂͟ + c͟o͟s͟θ͟ cosϕ ∂͟ ⎞
|
||||||
|
⎪ ⎝ ∂θ ∂θ sinθ ∂ϕ⎠
|
||||||
|
⎪
|
||||||
|
⎨ L̂𝓎 = ιħ⎛-cos²θ cosϕ ∂͟ - sin²θ cosϕ ∂͟ + c͟o͟s͟θ͟ sinϕ ∂͟ ⎞
|
||||||
|
⎪ ⎝ ∂θ ∂θ sinθ ∂ϕ ⎠
|
||||||
|
⎪
|
||||||
|
⎪ L̂𝓏 = -ιħ⎛cos²ϕ ∂͟ + sin²ϕ ∂͟ ⎞
|
||||||
|
⎩ ⎝ ∂ϕ ∂ϕ⎠
|
||||||
|
|
||||||
|
|
||||||
|
⎧ L̂𝓍 = ιħ⎛ sinϕ ∂͟ + cotθ cosϕ ∂͟ ⎞
|
||||||
|
⎪ ⎝ ∂θ ∂ϕ⎠
|
||||||
|
⎪
|
||||||
|
⎨ L̂𝓎 = ιħ⎛-cosϕ ∂͟ + cotθ sinϕ ∂͟ ⎞
|
||||||
|
⎪ ⎝ ∂θ ∂ϕ ⎠
|
||||||
|
⎪
|
||||||
|
⎪ L̂𝓏 = -ιħ∂͟
|
||||||
|
⎩ ∂ϕ
|
||||||
|
|
||||||
|
The spherical representation is the following set, which perfectly matches the obtained result.
|
||||||
|
|
||||||
⎧ L̂𝓍 = ιħ (sinϕ ∂͟_ + cosϕ cotθ ∂͟_ )
|
⎧ L̂𝓍 = ιħ (sinϕ ∂͟_ + cosϕ cotθ ∂͟_ )
|
||||||
⎪ ∂θ ∂ϕ
|
⎪ ∂θ ∂ϕ
|
||||||
⎪
|
⎪
|
||||||
⎨ L̂𝓎 = ιħ (-cosϕ ∂͟_ + sinϕ cotθ ∂͟_ )
|
⎨ L̂𝓎 = ιħ (-cosϕ ∂͟_ + sinϕ cotθ ∂͟_ )
|
||||||
⎪ ∂θ ∂ϕ
|
⎪ ∂θ ∂ϕ
|
||||||
⎪
|
⎪
|
||||||
⎪ L̂𝓏 = -ιħ ∂͟_
|
⎪ L̂𝓏 = -ιħ ∂͟_
|
||||||
⎩ ∂ϕ
|
⎩ ∂ϕ
|
||||||
|
|
||||||
|
|
||||||
My set DOES NOT match this. I must be going about this the wrong way. I have to give it more thought. Perhaps a purely geometric approach will improve my answers: I'll try that over the weekend.
|
|
||||||
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user