mirror of
https://asciireactor.com/otho/phy-4600.git
synced 2024-12-05 02:15:08 +00:00
Merge branch 'master' of https://github.com/othocaes/phy-4600
This commit is contained in:
commit
1df3870588
10
lecture_notes/2-12/Time Evolution of a Free Electron
Normal file
10
lecture_notes/2-12/Time Evolution of a Free Electron
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
Ĥ = p̂²
|
||||||
|
2mₑ
|
||||||
|
|
||||||
|
∞
|
||||||
|
|Ψ(t)〉 = exp( -ι Ĥ t) ∫ dp |p〉 〈p|Ψ〉
|
||||||
|
ħ -∞
|
||||||
|
|
||||||
|
〈x|Ψ(t)〉 = exp( -ι Ĥ t ) dp 〈x|p〉 〈p|Ψ〉
|
||||||
|
ħ
|
||||||
|
|
@ -30,4 +30,10 @@ Similarly, S𝓍 (S𝓍 + ħ)(S𝓍 - ħ) ≐
|
|||||||
|
|
||||||
⎛ 0 1 0 ⎞ ⎛ 1 1 0 ⎞ ⎛ -1 1 0 ⎞ ⎛ 1 1 1 ⎞ ⎛ -1 1 0 ⎞ ⎛ 0 1 0 ⎞
|
⎛ 0 1 0 ⎞ ⎛ 1 1 0 ⎞ ⎛ -1 1 0 ⎞ ⎛ 1 1 1 ⎞ ⎛ -1 1 0 ⎞ ⎛ 0 1 0 ⎞
|
||||||
ħ³ ⎜ 1 0 1 ⎟ ⎜ 1 1 1 ⎟ ⎜ 1 -1 1 ⎟ = ħ³ ⎜ 1 2 1 ⎟ ⎜ 1 -1 1 ⎟ = ħ³ ⎜ 1 0 1 ⎟.
|
ħ³ ⎜ 1 0 1 ⎟ ⎜ 1 1 1 ⎟ ⎜ 1 -1 1 ⎟ = ħ³ ⎜ 1 2 1 ⎟ ⎜ 1 -1 1 ⎟ = ħ³ ⎜ 1 0 1 ⎟.
|
||||||
⎝ 0 1 0 ⎠ ⎝ 0 1 1 ⎠ ⎝ 0 1 -1 ⎠ ⎝ 1 1 1 ⎠ ⎝ 0 1 -1 ⎠ ⎝ 0 1 0 ⎠
|
⎝ 0 1 0 ⎠ ⎝ 0 1 1 ⎠ ⎝ 0 1 -1 ⎠ ⎝ 1 1 1 ⎠ ⎝ 0 1 -1 ⎠ ⎝ 0 1 0 ⎠
|
||||||
|
|
||||||
|
This expression results in the non-zero matrix
|
||||||
|
|
||||||
|
⎛ 0 1 0 ⎞
|
||||||
|
ħ³ ⎜ 1 0 1 ⎟.
|
||||||
|
⎝ 0 1 0 ⎠
|
@ -1,7 +1,24 @@
|
|||||||
Show that ͟d͟〈͟p͟〉͟ = -〳͟d͟V͟(͟x͟)͟〵 when a particle is subjected to a potential 〈V(x)〉.
|
Show that ͟d͟〈͟p͟〉͟ = -〳͟d͟V͟(͟x͟)͟〵 when a particle is subjected to a potential 〈V(x)〉.
|
||||||
dt 〵 dx 〳
|
dt 〵dx 〳
|
||||||
|
|
||||||
|
|
||||||
|
The time derivative of the expectation value of the momentum is a known quantity, from
|
||||||
|
Time Dependence of Expectation Value of General Momentum Operator:
|
||||||
|
|
||||||
|
d〈p〉 = 1.
|
||||||
|
dt ιħ
|
||||||
|
|
||||||
|
The problem is therefore reduced to finding whether -/dV(x)\ reduces to 1.
|
||||||
|
\dx / ιħ
|
||||||
|
|
||||||
|
-/dV(x)\ = -〈Ψ| d V(x) |Ψ〉.
|
||||||
|
\dx / dx
|
||||||
|
|
||||||
|
Viewing the expression in this form reveals a relationship between the space derivative and the operators V(x) and |Ψ〉. The chain rule allows this derivative to be computed.
|
||||||
|
|
||||||
|
-〈Ψ| d V(x) |Ψ〉 = -〈Ψ| ⎛d V(x)|Ψ> + d |Ψ> V(x)⎞.
|
||||||
|
dx ⎝dx dx ⎠
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
File diff suppressed because it is too large
Load Diff
@ -4,3 +4,5 @@
|
|||||||
|
|
||||||
a) The eigenstates of the Hamiltonian can be determined by
|
a) The eigenstates of the Hamiltonian can be determined by
|
||||||
|
|
||||||
|
🔋
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user