not sure
10
lecture_notes/1-27/Constant of Motion
Normal file
@ -0,0 +1,10 @@
|
||||
Compatible Observables occur when commutator is equal to 0.
|
||||
|
||||
[Â,B̂] = ÂB̂ - B̂Â
|
||||
|
||||
Constant of Motion
|
||||
------------------
|
||||
if d/dt  = 0 and [Ĥ,Â] = 0, where Ĥ is the Hamiltonian operator.
|
||||
then  is a constant of motion
|
||||
|
||||
Thm: Two operators such that [Â,B̂] always have common Eigenstates
|
BIN
lecture_notes/1-27/Derivative of A Operator.jpg
Normal file
After Width: | Height: | Size: 409 KiB |
@ -1,13 +1,16 @@
|
||||
Computed Derivative (pic) d/dt <Â> (pic)
|
||||
|
||||
Discovered/Introduced Commutator
|
||||
Cpmpatible Observables occur when commutator is equal to 0.
|
||||
Computed Derivative d/dt <Â>:
|
||||
|
||||
[Ĥ,Â] = ĤÂ - ÂĤ
|
||||
d <Â> = d 〈Ψ(t)|Â|Ψ(t)〉
|
||||
dt dt
|
||||
|
||||
⎛d 〈Ψ(t)⎞ Â|Ψ(t)〉 + 〈Ψ(t)|Â ⎛d Ψ(t)〉⎞ + 〈Ψ(t)|d Â|Ψ(t)〉
|
||||
⎝dt ⎠ ⎝dt ⎠ dt
|
||||
↓
|
||||
ι 〈Ψ(t)|Ĥ Â|Ψ(t)〉 + 〈Ψ(t)|Â Ĥ -ι|Ψ(t)〉 + 〈Ψ(t)|d Â|Ψ(t)〉
|
||||
ħ ħ dt
|
||||
↓
|
||||
ι 〈Ψ(t)|Ĥ Â - Â Ĥ|Ψ(t)〉 + 〈Ψ(t)|d Â|Ψ(t)〉
|
||||
ħ dt
|
||||
|
||||
Constant of Motion
|
||||
------------------
|
||||
if d/dt  = 0 and [Ĥ,Â] = 0,
|
||||
then  is a constant of motion
|
||||
|
||||
Thm: Two operators such that [Â,B̂] always have common Eigenstates
|
||||
|
BIN
lecture_notes/1-27/IMG_20160127_131202.jpg
Normal file
After Width: | Height: | Size: 470 KiB |
BIN
lecture_notes/1-27/IMG_20160127_131402.jpg
Normal file
After Width: | Height: | Size: 395 KiB |
BIN
lecture_notes/1-27/IMG_20160127_132453.jpg
Normal file
After Width: | Height: | Size: 402 KiB |
BIN
lecture_notes/1-27/IMG_20160127_132918.jpg
Normal file
After Width: | Height: | Size: 358 KiB |
BIN
lecture_notes/1-27/IMG_20160127_133504.jpg
Normal file
After Width: | Height: | Size: 417 KiB |
BIN
lecture_notes/1-27/IMG_20160127_133506.jpg
Normal file
After Width: | Height: | Size: 403 KiB |
BIN
lecture_notes/1-27/IMG_20160127_134331.jpg
Normal file
After Width: | Height: | Size: 499 KiB |
@ -2,5 +2,5 @@
|
||||
|
||||
Ĥ = |a〉 δ 〈b| + |b〉 δ 〈a|, with δ a real number.
|
||||
|
||||
a)
|
||||
a) The eigenstates of the Hamiltonian can be determined by
|
||||
|
||||
|