mirror of
https://asciireactor.com/otho/phy-4600.git
synced 2024-12-04 19:05:07 +00:00
working on chap 7 hw #1
This commit is contained in:
parent
3991cf6fcf
commit
04c9365a20
8
HW
8
HW
@ -8,3 +8,11 @@ Chap 9: 7, 11, 12, 13, 14
|
|||||||
|
|
||||||
Chap 7: 5, 7, 8, one from last class, 11
|
Chap 7: 5, 7, 8, one from last class, 11
|
||||||
due friday 3-18, the class one is: show L̂𝓏 and p² commute
|
due friday 3-18, the class one is: show L̂𝓏 and p² commute
|
||||||
|
|
||||||
|
Chap 7: 10, 13, 18, 23, 30 due april 1
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Exam 2: harmonic oscillator 1d, harmonic oscillator 3d, square well, angular momentum
|
||||||
|
|
||||||
|
|
||||||
|
22
concepts
Normal file
22
concepts
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
the meaning of an operator - how it relates to an action that is a measurement and also an action on the state
|
||||||
|
|
||||||
|
the meaning of an eigenstate and an eigenvalue for an operator
|
||||||
|
|
||||||
|
the concept of a complete set of orthogonal operators that commute
|
||||||
|
- this says something about having common states
|
||||||
|
|
||||||
|
superposition states
|
||||||
|
|
||||||
|
unitary operators:
|
||||||
|
|
||||||
|
❙Ψ❭ = ∑ ❙n❭❬n❙Ψ❭ = ∑Cₙ❙n❭
|
||||||
|
|
||||||
|
❬n❙Ψ❭ = ∫ dx ❬n❙x❭❬x❙Ψ❭
|
||||||
|
|
||||||
|
= ∫ dx n†(x) Ψ(x)
|
||||||
|
|
||||||
|
time evolution
|
||||||
|
|
||||||
|
schrodinger equation - specific cases: infinite or finite well, harmonic oscillator, hydrogen atom
|
||||||
|
|
||||||
|
angular momentum operators
|
58
lecture_notes/2-29/overview
Normal file
58
lecture_notes/2-29/overview
Normal file
@ -0,0 +1,58 @@
|
|||||||
|
Problems with known polarization
|
||||||
|
|
||||||
|
(pic) Uniformly polarized sphere
|
||||||
|
|
||||||
|
Gauss' Law in Dielectric
|
||||||
|
|
||||||
|
ε₀∇⋅𝐄 = ρ = ρfree + ρbound
|
||||||
|
= ρfree - ∇⋅𝐏
|
||||||
|
|
||||||
|
ε₀∇⋅𝐄 + ∇⋅𝐏 = ρfree
|
||||||
|
|
||||||
|
∇⋅(ε₀𝐄 + 𝐏) = ρfree/ε₀
|
||||||
|
|
||||||
|
𝐃 ≡ ε₀𝐄 + 𝐏
|
||||||
|
|
||||||
|
Bar Electret
|
||||||
|
|
||||||
|
- Analogous to Magnetic bar
|
||||||
|
|
||||||
|
Two limits and an intermediate case.
|
||||||
|
|
||||||
|
∇×𝐃 = ∇×(ε₀𝐄 + 𝐏) = ∇×𝐏
|
||||||
|
|
||||||
|
𝐄 for bar electret, properties:
|
||||||
|
|
||||||
|
(𝐄₂ - 𝐄₁)⋅𝐧̂₁→₂ = σ/ε₀ with σ = σᵦ + σfree
|
||||||
|
|
||||||
|
Curl eq shows 𝐄"₂ - 𝐄"₁ = 0 (tangential components).
|
||||||
|
|
||||||
|
(𝐃₂ - 𝐃₁)⋅𝐧̂₁→₂ = σfree
|
||||||
|
|
||||||
|
(𝐃"₂ - 𝐃"₁) = 𝐏"₂ - 𝐏"₁
|
||||||
|
|
||||||
|
𝐏 = ε₀χₑ𝐄
|
||||||
|
|
||||||
|
• χₑ is the susceptibility of a linear dielectric material.
|
||||||
|
|
||||||
|
𝐃 = ε₀𝐄 + 𝐏 = ε₀𝐄 + ε₀χₑ𝐄 = ε₀(1+χₑ) 𝐄
|
||||||
|
|
||||||
|
• ε₀(1+χₑ) ≡ permittivity
|
||||||
|
• 1+χₑ = dielectric constant
|
||||||
|
|
||||||
|
Metal Sphere
|
||||||
|
|
||||||
|
(pic) What is V(0)?
|
||||||
|
|
||||||
|
(pic) ε becomes relevant in electric field
|
||||||
|
|
||||||
|
|
||||||
|
𝐄 = ⎧ 𝐃/ε = Q𝐫̂/(4πεr²), R<r<b
|
||||||
|
⎨
|
||||||
|
⎩ 𝐃/ε = Q𝐫̂/(4πε₀r²), b<r
|
||||||
|
|
||||||
|
R b ∞
|
||||||
|
V(∞) - V(0) = -∫ 𝐄⋅d𝐥 - ∫ 𝐄⋅d𝐥 - ∫ 𝐄⋅d𝐥
|
||||||
|
0 R b
|
||||||
|
|
||||||
|
= 0 - ...
|
65
lecture_notes/3-25/overview
Normal file
65
lecture_notes/3-25/overview
Normal file
@ -0,0 +1,65 @@
|
|||||||
|
Bound states of a central potential
|
||||||
|
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
|
||||||
|
|
||||||
|
|
||||||
|
For any central potential V(r) = V(│r│) the eigenfunctions of H can be separated as
|
||||||
|
|
||||||
|
❬r❙E,l,mₗ❭ = Rₑ﹐ₗ(r) Yₗ﹐ₘ(θ,ϕ)
|
||||||
|
|
||||||
|
The radial S.E. is
|
||||||
|
|
||||||
|
⎡−͟ħ͟² ⎛ ∂͟²͟ + 2͟∂͟ ⎞ + l͟(l͟+͟1͟)ħ͟² + V(│r│) ⎤ Rₑ﹐ₗ(r) = E Rₑ﹐ₗ(r)
|
||||||
|
⎣2m ⎝ ∂r² r∂r ⎠ 2 m r² ⎦
|
||||||
|
|
||||||
|
|
||||||
|
Rₑ﹐ₗ(r) = U͟ₑ͟﹐͟ₗ͟(r)
|
||||||
|
r
|
||||||
|
|
||||||
|
(pic) ...
|
||||||
|
|
||||||
|
(pic) Developed radial schrodinger equation using U(r) replacement
|
||||||
|
|
||||||
|
- Developed normalization condition
|
||||||
|
|
||||||
|
If V(r) is not more singular at the origin than 1/r^2 then the SE has power series solutions.
|
||||||
|
|
||||||
|
Thus for small r we take U(r) → rˢ
|
||||||
|
|
||||||
|
(pic) substitute U(r) = rˢ into S.E.
|
||||||
|
|
||||||
|
-ħ²/2m [(s(s-1) + l(l+1)] + V r² = E r²
|
||||||
|
|
||||||
|
For r → 0
|
||||||
|
r² → 0
|
||||||
|
V(r) r² → 0
|
||||||
|
|
||||||
|
⇒ s(s-1) + l(l+1) = 0
|
||||||
|
⇒ s = l+1 or s = -l
|
||||||
|
|
||||||
|
If s = -l, the normalization conditions
|
||||||
|
|
||||||
|
∞ │∞
|
||||||
|
∫ r⁻²ˡ dr = 1/(2l-1) 1/(r²ˡ⁻¹) │ → diverges
|
||||||
|
0 │0
|
||||||
|
|
||||||
|
|
||||||
|
Uₑ﹐ₗ(r) → (r→0) → rˡ⁺¹
|
||||||
|
|
||||||
|
Rₑ﹐ₗ(r) → (r→0) → rˡ
|
||||||
|
|
||||||
|
|
||||||
|
The Hydrogen Atom
|
||||||
|
━━━━━━━━━━━━━━━━━
|
||||||
|
|
||||||
|
V(r) = -e²/r
|
||||||
|
|
||||||
|
For a hydrogenic ion with nuclear charge Z
|
||||||
|
|
||||||
|
V(r) = -Ze²/r
|
||||||
|
|
||||||
|
Eigenfunctions:
|
||||||
|
|
||||||
|
Ψₑ﹐ₗ﹐ₘ(r,θ,φ) = Rₑ﹐ₗ(r) Yₗ﹐ₘ(θ,φ) = Uₑ﹐ₗ/r Yₗ﹐ₘ(θ,φ)
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -47,6 +47,61 @@ The eigenvalue equations for the L̂𝓏 operator are simplified because L̂𝓏
|
|||||||
√2 ⎜ 1 0 1 ⎟
|
√2 ⎜ 1 0 1 ⎟
|
||||||
⎝ 0 1 0 ⎠.
|
⎝ 0 1 0 ⎠.
|
||||||
|
|
||||||
|
The general eigenvalue equation is
|
||||||
|
|
||||||
|
L̂𝓍❙λ,mₗ❭ = λ❙λ,mₗ❭, where the eigenvalues λ are the possible measured values of L̂𝓍. The eigenvalues can be obtained from the secular equation
|
||||||
|
|
||||||
|
det│L̂𝓍 - λ𝕀│ = 0
|
||||||
|
|
||||||
|
ħ͟ ⎛ 0 1 0 ⎞ - ⎛ λ 0 0 ⎞ = ⎛ -λ ħ/√2 0 ⎞
|
||||||
|
√2 ⎜ 1 0 1 ⎟ ⎜ 0 λ 0 ⎟ ⎜ ħ/√2 -λ ħ/√2 ⎟
|
||||||
|
⎝ 0 1 0 ⎠ ⎝ 0 0 λ ⎠ ⎝ 0 ħ/√2 -λ ⎠.
|
||||||
|
|
||||||
|
│⎛ -λ ħ/√2 0 ⎞│ = (-λ(λ² - ħ²/2) + (ħ²/2) λ) = -λ³ + ħ²λ.
|
||||||
|
│⎜ ħ/√2 -λ ħ/√2 ⎟│
|
||||||
|
│⎝ 0 ħ/√2 -λ ⎠│
|
||||||
|
|
||||||
|
λ(-λ² + ħ²) = -λ(λ² - ħ²)) = 0.
|
||||||
|
|
||||||
|
One eigenvalue is immediately obvious: λ = 0. The other two are given by
|
||||||
|
|
||||||
|
λ² = ħ², so the eigenvalues are
|
||||||
|
λ = 0,±ħ.
|
||||||
|
|
||||||
|
These are exactly the expected measured values for a spin component.
|
||||||
|
|
||||||
|
The eigenvalue equations are
|
||||||
|
|
||||||
|
L̂𝓍❙1 1❭𝓍 = ħ❙1 1❭𝓍 ,
|
||||||
|
L̂𝓍❙1 0❭𝓍 = 0❙1 1❭𝓍 , and
|
||||||
|
L̂𝓍❙1 -1❭𝓍 = -ħ❙1 -1❭𝓍 .
|
||||||
|
|
||||||
|
Matrix analysis can be used to find the eigenvectors for these eigenstates. The first one is
|
||||||
|
|
||||||
|
ħ͟ ⎛ 0 1 0 ⎞ ⎛ a ⎞ = ħ ⎛ a ⎞, which gives the system
|
||||||
|
√2 ⎜ 1 0 1 ⎟ ⎜ b ⎟ ⎜ b ⎟
|
||||||
|
⎝ 0 1 0 ⎠ ⎝ c ⎠ ⎝ c ⎠
|
||||||
|
|
||||||
|
⎧ b = √2 a
|
||||||
|
⎨ (a + c) = √2 b
|
||||||
|
⎩ b = √2 c
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Applying the operator to the states in Ψ,
|
Applying the operator to the states in Ψ,
|
||||||
|
|
||||||
L̂𝓍❙1 1❭ ≐
|
L̂𝓍❙1 1❭ ≐
|
||||||
@ -79,22 +134,28 @@ Applying the operator to the states in Ψ,
|
|||||||
|
|
||||||
Then,
|
Then,
|
||||||
|
|
||||||
L̂𝓍❙Ψ❭ = ħ⎛ -2͟ ❙1 0❭ + ι 3͟ (❙1 1❭ + ❙1 -1❭)⎞
|
L̂𝓍❙Ψ❭ = ħ ⎛ -2͟ ❙1 0❭ + ι 3͟ (❙1 1❭ + ❙1 -1❭)⎞
|
||||||
⎝ √58 √58 ⎠
|
⎝ √58 √58 ⎠
|
||||||
|
|
||||||
Normalizing the function,
|
Normalizing the function,
|
||||||
|
|
||||||
C⎛⎛-2͟ ⎞² + ⎛ι 3͟ ⎞² + ⎛ι 3͟ ⎞²⎞ = 1.
|
C⎛⎛-2͟ ⎞² + ⎛ι 3͟ ⎞² + ⎛ι 3͟ ⎞²⎞ = 1.
|
||||||
⎝⎝√58⎠ ⎝ √58⎠ ⎝ √58⎠ ⎠
|
⎝⎝√58⎠ ⎝ √58⎠ ⎝ √58⎠ ⎠
|
||||||
|
|
||||||
|
C⎛4 - 9 - 9⎞ = 58 = C(14).
|
||||||
|
⎝ ⎠
|
||||||
|
|
||||||
STOPPED HERE
|
C = 58/14 = 29/7.
|
||||||
|
|
||||||
C = 58⎛⎛1͟⎞ - ⎛ι 3 ⎞⁻² + ⎛ι 3 ⎞⁻²⎞
|
|
||||||
⎝⎝4⎠ ⎝ ⎠ ⎝ ⎠ ⎠
|
|
||||||
So,
|
|
||||||
|
|
||||||
\|❬1 1❙L̂𝓍❙Ψ❭\|^2 =
|
The probability of measuring one of the possible angular momenta will be given by
|
||||||
|
|
||||||
|
│❬l m❙L̂𝓍❙Ψ❭│².
|
||||||
|
|
||||||
|
❬1 1❙L̂𝓍❙Ψ❭ = ❬1 1❙2͟9͟⎛ -2͟ ❙1 0❭ + ι 3͟ (❙1 1❭ + ❙1 -1❭)⎞
|
||||||
|
7 ⎝ √58 √58 ⎠
|
||||||
|
|
||||||
|
= 2͟9͟ ι͟3͟ ❬1 1❙1 1❭ = ι 8͟7͟
|
||||||
|
7 √58 7√58
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -6,35 +6,130 @@
|
|||||||
⎪
|
⎪
|
||||||
⎩ z = r cosθ
|
⎩ z = r cosθ
|
||||||
|
|
||||||
|
Some differential forms may come in handy.
|
||||||
|
|
||||||
|
∂/∂θ:
|
||||||
|
⎧ ∂x = r cosϕ cosθ ∂θ
|
||||||
|
⎪
|
||||||
|
⎨ ∂y = r sinϕ cosθ ∂θ
|
||||||
|
⎪
|
||||||
|
⎩ ∂z = - r sinθ ∂θ
|
||||||
|
|
||||||
|
∂/∂ϕ:
|
||||||
|
⎧ ∂x = - r sinθ sinϕ ∂ϕ
|
||||||
|
⎪
|
||||||
|
⎨ ∂y = r sinθ cosϕ ∂ϕ
|
||||||
|
⎪
|
||||||
|
⎩ ∂z = 0 ∂ϕ
|
||||||
|
|
||||||
|
|
||||||
7.47 is the set of algebraic conditions expressed by the vector definition 𝐋 = 𝐫 × 𝐩.
|
7.47 is the set of algebraic conditions expressed by the vector definition 𝐋 = 𝐫 × 𝐩.
|
||||||
|
|
||||||
⎧ L̂𝓍 = yp𝓏 - zp𝓎 = -ιħ (y ∂͟_ - z ∂͟_ )
|
⎧ L̂𝓍 = yp𝓏 - zp𝓎 = -ιħ (y ∂͟_ - z ∂͟_ )
|
||||||
⎪ ∂y ∂y
|
⎪ ∂z ∂y
|
||||||
⎪
|
⎪
|
||||||
⎨ L̂𝓎 = zp𝓍 - xp𝓏 = -ιħ (z ∂͟_ - x ∂͟_ )
|
⎨ L̂𝓎 = zp𝓍 - xp𝓏 = -ιħ (z ∂͟_ - x ∂͟_ )
|
||||||
⎪ ∂y ∂y
|
⎪ ∂x ∂z
|
||||||
⎪
|
⎪
|
||||||
⎪ L̂𝓏 = xp𝓎 - yp𝓍 = -ιħ (x ∂͟_ - y ∂͟_ )
|
⎪ L̂𝓏 = xp𝓎 - yp𝓍 = -ιħ (x ∂͟_ - y ∂͟_ )
|
||||||
⎩ ∂y ∂y
|
⎩ ∂y ∂x
|
||||||
|
|
||||||
Substituing 7.35 into 7.47,
|
Substituting 7.35 into 7.47,
|
||||||
|
|
||||||
⎧ L̂𝓍 = -ιħ (r sinθ sinϕ ∂͟_ - r cosθ ∂͟_ )
|
⎧ L̂𝓍 = -ιħ (r sinθ sinϕ ∂͟_ - r cosθ ∂͟_ )
|
||||||
⎪ ∂y ∂y
|
⎪ ∂z ∂y
|
||||||
⎪
|
⎪
|
||||||
⎨ L̂𝓎 = -ιħ (r cosθ ∂͟_ - r sinθ cosϕ ∂͟_ )
|
⎨ L̂𝓎 = -ιħ (r cosθ ∂͟_ - r sinθ cosϕ ∂͟_ )
|
||||||
⎪ ∂y ∂y
|
⎪ ∂x ∂z
|
||||||
⎪
|
⎪
|
||||||
⎪ L̂𝓏 = -ιħ (r sinθ cosϕ ∂͟_ - r sinθ sinϕ ∂͟_ )
|
⎪ L̂𝓏 = -ιħ (r sinθ cosϕ ∂͟_ - r sinθ sinϕ ∂͟_ )
|
||||||
⎩ ∂y ∂y
|
⎩ ∂y ∂x
|
||||||
|
|
||||||
|
|
||||||
⎧ L̂𝓍 = -ιħ (r sinθ sinϕ ∂͟_ - r cosθ ∂͟_ )
|
|
||||||
⎪ ∂y ∂y
|
Geometry is shown on the attached notes page.
|
||||||
|
|
||||||
|
For L̂𝓍:
|
||||||
|
|
||||||
|
∂͟z͟ = -r sinθ
|
||||||
|
∂θ
|
||||||
|
∂͟y͟ = r sinθ cosϕ
|
||||||
|
∂ϕ
|
||||||
|
|
||||||
|
L̂𝓍 = -ιħ ( r sinθ sinϕ ∂͟θ͟ ∂͟_ - r cosθ ∂͟ϕ͟ ∂͟_ )
|
||||||
|
∂θ ∂z ∂ϕ ∂y
|
||||||
|
|
||||||
|
L̂𝓍 = ιħ ( -r sinθ sinϕ ∂͟θ͟ ∂͟_ + r cosθ ∂͟ϕ͟ ∂͟_ )
|
||||||
|
∂z ∂θ ∂y ∂ϕ
|
||||||
|
|
||||||
|
L̂𝓍 = ιħ ( −͟r͟ s͟i͟n͟θ͟ sinϕ ∂͟_ + c͟o͟s͟θ͟ ∂͟_ )
|
||||||
|
-r sinθ ∂θ sinθ cosϕ ∂ϕ
|
||||||
|
|
||||||
|
L̂𝓍 = ιħ ( sinϕ ∂͟_ + c͟o͟t͟θ͟ ∂͟_ )
|
||||||
|
∂θ cosϕ ∂ϕ
|
||||||
|
|
||||||
|
For L̂𝓎:
|
||||||
|
|
||||||
|
∂x = r cosϕ cosθ ∂θ
|
||||||
|
∂z = 0 ∂ϕ
|
||||||
|
|
||||||
|
L̂𝓎 = -ιħ (r cosθ ∂͟_ - r sinθ cosϕ ∂͟_ )
|
||||||
|
∂x ∂z
|
||||||
|
|
||||||
|
L̂𝓎 = ιħ (-r cosθ ∂͟θ͟ ∂͟_ + r sinθ cosϕ ∂͟ϕ͟ ∂͟_ )
|
||||||
|
∂θ ∂x ∂ϕ ∂z
|
||||||
|
|
||||||
|
L̂𝓎 = ιħ (-r cosθ ∂͟θ͟ ∂͟_ + r sinθ cosϕ ∂͟ϕ͟ ∂͟_ )
|
||||||
|
∂x ∂θ ∂z ∂ϕ
|
||||||
|
|
||||||
|
L̂𝓎 = ιħ (- _͟1͟ cosθ ∂͟_ + r sinθ cosϕ 0 ∂͟_ )
|
||||||
|
cosϕ cosθ ∂θ ∂ϕ
|
||||||
|
|
||||||
|
L̂𝓎 = ιħ (- _͟1͟ ∂͟_ )
|
||||||
|
cosϕ ∂θ
|
||||||
|
|
||||||
|
L̂𝓎 = -ιħ _͟1͟ ∂͟_
|
||||||
|
cosϕ ∂θ
|
||||||
|
|
||||||
|
For L̂𝓏:
|
||||||
|
|
||||||
|
∂x = -r sinθ sinϕ ∂ϕ
|
||||||
|
∂y = r sinθ cosϕ ∂ϕ
|
||||||
|
|
||||||
|
L̂𝓏 = -ιħ (r sinθ cosϕ ∂͟͟ϕ͟ ∂͟_ - r sinθ sinϕ ∂͟͟ϕ͟ ∂͟_ )
|
||||||
|
∂ϕ ∂y ∂ϕ ∂x
|
||||||
|
|
||||||
|
L̂𝓏 = -ιħ (r͟ s͟i͟n͟θ͟ c͟o͟s͟ϕ͟ ∂͟_ + r͟ s͟i͟n͟θ͟ s͟i͟n͟ϕ͟ ∂͟_ )
|
||||||
|
r sinθ cosϕ ∂ϕ r sinθ sinϕ ∂ϕ
|
||||||
|
|
||||||
|
L̂𝓏 = -ιħ ∂͟_ ( 1 + 1 )
|
||||||
|
∂ϕ
|
||||||
|
|
||||||
|
L̂𝓏 = -2ιħ ∂͟_
|
||||||
|
∂ϕ
|
||||||
|
|
||||||
|
So, according to my calculus, the final solutions should be the set
|
||||||
|
|
||||||
|
⎧ L̂𝓍 = ιħ ( sinϕ ∂͟_ + c͟o͟t͟θ͟ ∂͟_ )
|
||||||
|
⎪ ∂θ cosϕ ∂ϕ
|
||||||
⎪
|
⎪
|
||||||
⎨ L̂𝓎 = ιħ (r cosθ ∂͟_ + r sinθ cosϕ ∂͟_ )
|
⎨ L̂𝓎 = -ιħ _͟1͟ ∂͟_
|
||||||
⎪ ∂y ∂y
|
⎪ cosϕ ∂θ
|
||||||
⎪
|
⎪
|
||||||
⎪ L̂𝓏 = -ιħ (r sinθ cosϕ ∂͟_ - r sinθ sinϕ ∂͟_ )
|
⎪ L̂𝓏 = -2ιħ ∂͟_
|
||||||
⎩ ∂y ∂y
|
⎩ ∂ϕ
|
||||||
|
|
||||||
|
|
||||||
|
The spherical representation, i.e. ending place, is the set
|
||||||
|
|
||||||
|
⎧ L̂𝓍 = ιħ (sinϕ ∂͟_ + cosϕ cotθ ∂͟_ )
|
||||||
|
⎪ ∂θ ∂ϕ
|
||||||
|
⎪
|
||||||
|
⎨ L̂𝓎 = ιħ (-cosϕ ∂͟_ + sinϕ cotθ ∂͟_ )
|
||||||
|
⎪ ∂θ ∂ϕ
|
||||||
|
⎪
|
||||||
|
⎪ L̂𝓏 = -ιħ ∂͟_
|
||||||
|
⎩ ∂ϕ
|
||||||
|
|
||||||
|
|
||||||
|
My set DOES NOT match this. I must be going about this the wrong way. I have to give it more thought. Perhaps a purely geometric approach will improve my answers: I'll try that over the weekend.
|
Loading…
Reference in New Issue
Block a user