phy-4600/solutions/chap3/prob4/tex/draft.tex

20 lines
745 B
TeX
Raw Normal View History

2016-02-12 17:26:39 +00:00
\documentclass{article}
\usepackage{unicode-math}
%\usepackage{mathrsfs}
%\usepackage{amsmath}
%\usepackage{euscript}
%\usepackage[utf8x]{inputenc}
%\usepackage{mathdesign}
%\setmathfont{DejaVuSansMono.ttf}
\setmathfont{xits-math.otf}
%\usepackage{unixode}
\begin{document}
A spin-1/2 particle has a magnetic moment 𝛍 and is placed in a uniform magnetic field 𝐁, which is aligned with the z-axis, so 𝐁 = B𝓏 𝑧̂ = B𝓏 ẑ. It is known that the Hamiltonian operator for this sytem commutes with the spin component operator in the z direction (z basis?) but not with spin component operators in the x and y directions. The following argument should prove that hypothesis.
The Hamiltonian Ĥ =
$\mathscr{z}$
$z$
\end{document}