\documentclass{article} \usepackage{unicode-math} %\usepackage{mathrsfs} %\usepackage{amsmath} %\usepackage{euscript} %\usepackage[utf8x]{inputenc} %\usepackage{mathdesign} %\setmathfont{DejaVuSansMono.ttf} \setmathfont{xits-math.otf} %\usepackage{unixode} \begin{document} A spin-1/2 particle has a magnetic moment 𝛍 and is placed in a uniform magnetic field 𝐁, which is aligned with the z-axis, so 𝐁 = B𝓏 𝑧̂ = B𝓏 ẑ. It is known that the Hamiltonian operator for this sytem commutes with the spin component operator in the z direction (z basis?) but not with spin component operators in the x and y directions. The following argument should prove that hypothesis. The Hamiltonian Ĥ = $\mathscr{z}$ $z$ \end{document}