2016-03-14 05:10:25 +00:00
The harmonic oscillator potential is V(x) = ½kx² = ½mω²x². The hamiltonian is time independent.
The initial state vector is
Ψ(t=0) = A⎛❙0❭ + 2exp(ι͟π͟)❙1❭⎞
⎝ 2 ⎠
Finding the normalization constant A is simple enough, since
1 = A² + (2Aexp(ι͟π͟))² = A²(1 + (2exp(ι͟π͟))²).
2 2
A = √⎛ ______͟1͟______ ⎞ = √⎛ ________͟1͟_______ ⎞
⎜ 1 + (2exp(ι͟π͟))² ⎟ ⎜ 1 + 4exp(ι͟π͟ - ι͟π͟ ) ⎟,
⎝ 2 ⎠ ⎝ 2 2 ⎠
(𝐚 )
A = √⎛ ____͟1͟____ ⎞ = √⅕.
⎝ 1 + 4exp(0) ⎠
The time evolution prescription for a time-independent hamiltonian is
Ψ(t) = exp(-ι ͟E͟ₙ͟t) Ψ(t=0);
ħ
Ψ(t) = exp(-ι ͟E͟ₙ͟t) √⅕⎛❙0❭ + 2exp(ι͟π͟)❙1❭⎞.
ħ ⎝ 2 ⎠
(𝐛 )
Ψ(t) = √⅕⎛exp⎛-ι ͟E͟₀͟t⎞❙0❭ + 2 exp⎛ι ⎛_͟π͟ - E͟₁͟t⎞⎞❙1❭⎞.
⎝ ⎝ ħ ⎠ ⎝ ⎝ 2 ħ ⎠⎠ ⎠
The expecation values ❬x̂❭ and ❬p̂❭ are of interest.
❬x̂❭ = ❬Ψ⃰(t)❙x̂❙Ψ(t)❭.
Ψ⃰(t) = √⅕⎛exp⎛ι ͟E͟₀͟t⎞❬0❙ + 2 exp⎛ι ⎛E͟₁͟t - _͟π͟⎞⎞❬1❙⎞.
⎝ ⎝ ħ ⎠ ⎝ ⎝ ħ 2⎠⎠ ⎠
❬x̂❭ = ⅕⎛exp⎛ι ͟E͟₀͟t⎞❬0❙ + 2 exp⎛ι ⎛E͟₁͟t - _͟π͟⎞⎞❬1❙⎞ x̂ ⎛exp⎛-ι ͟E͟₀͟t⎞❙0❭ + 2 exp⎛ι ⎛_͟π͟ - E͟₁͟t⎞⎞❙1❭⎞.
2016-03-14 16:41:34 +00:00
⎝ ⎝ ħ ⎠ ⎝ ⎝ ħ 2⎠⎠ ⎠ ⎝ ⎝ ħ ⎠ ⎝ ⎝ 2 ħ ⎠⎠ ⎠
2016-03-14 05:10:25 +00:00
The matrix representations of the position operator x̂ and momentum operator p̂ have been developed from the definition of the increment/decrement operators. The matrix elements may be ascertained by inspection.
2016-03-14 16:41:34 +00:00
x̂ ≐ √⎛_͟ħ͟ ⎞⎛ 0 √1 ⎞ p̂ ≐ √⎛͟ħ͟m͟ω͟⎞⎛ 0 -ι √1 ⎞
⎝2mω⎠⎝ √1 0 ⎠, ⎝ 2 ⎠⎝ ι √1 0 ⎠.
2016-03-14 05:10:25 +00:00
2016-03-14 16:41:34 +00:00
ω is a characteristic parameter of the system. It is related to the steepness of the parabolic potential curve. m is the particle's mass.
2016-03-14 05:10:25 +00:00
❬x̂❭ = ⅕⎛exp⎛ι ͟E͟₀͟t⎞ exp⎛-ι ͟E͟₀͟t⎞❬0❙x̂❙0❭ + ⎞
⎜ ⎝ ħ ⎠ ⎝ ħ ⎠ ⎟
⎜ ⎟
⎜ exp⎛ι ͟E͟₀͟t⎞ 2 exp⎛ι ⎛_͟π͟ - E͟₁͟t⎞⎞ ❬0❙x̂❙1❭ + ⎟
⎜ ⎝ ħ ⎠ ⎝ ⎝ 2 ħ ⎠⎠ ⎟
⎜ ⎟
⎜ exp⎛-ι ͟E͟₀͟t⎞ 2 exp⎛ι ⎛E͟₁͟t - _͟π͟⎞⎞ ❬1❙x̂❙0❭ + ⎟
⎜ ⎝ ħ ⎠ ⎝ ⎝ ħ 2⎠⎠ ⎟
⎜ ⎟
⎜ 2 exp⎛ι ⎛E͟₁͟t - _͟π͟⎞⎞2 exp⎛ι ⎛_͟π͟ - E͟₁͟t⎞⎞❬1❙x̂❙1❭⎞⎟
⎝ ⎝ ⎝ ħ 2⎠⎠ ⎝ ⎝ 2 ħ ⎠⎠ ⎠⎠.
2016-03-14 16:41:34 +00:00
❬0❙x̂❙0❭ = x₀₀ = ❬1❙x̂❙1❭ = x₁₁ = 0.
❬0❙x̂❙1❭ = x₀₁ = ❬1❙x̂❙0❭ = x₁₀ = √⎛_͟ħ͟ ⎞.
⎝2mω⎠
2016-03-14 05:10:25 +00:00
Substituting the matrix elements:
2016-03-14 16:41:34 +00:00
❬x̂❭ = ⅕ √⎛͟2͟͟ħ͟⎞⎛ exp⎛ι ͟E͟₀͟t + ι ⎛_͟π͟ - E͟₁͟t⎞⎞ + exp⎛-ι ͟E͟₀͟t + ι ⎛E͟₁͟t - _͟π͟⎞⎞ ⎞
⎝mω⎠⎝ ⎝ ħ ⎝ 2 ħ ⎠⎠ ⎝ ħ ⎝ ħ 2⎠⎠ ⎠;
2016-03-14 05:10:25 +00:00
2016-03-14 16:41:34 +00:00
❬x̂❭ = ⅕ √⎛͟2͟͟ħ͟⎞⎛ exp⎛ι ⎛⎛E͟₀͟− ͟E͟₁͟⎞t + _͟π͟⎞⎞ + exp⎛ι ⎛⎛E͟₁͟− ͟E͟₀͟⎞t - _͟π͟⎞⎞ ⎞
⎝mω⎠⎝ ⎝ ⎝⎝ ħ ⎠ 2⎠⎠ ⎝ ⎝⎝ ħ ⎠ 2⎠⎠ ⎠.
2016-03-14 05:10:25 +00:00
For the Harmonic Oscillator, Eₙ = ħω(n + ½).
Eₙ− Eₙ′ = ħω(n - n′ ):
E₀− E₁ = ħω(0 - 1) = -ħω;
E₁− E₀ = ħω.
2016-03-14 16:41:34 +00:00
❬x̂❭ = ⅕ √⎛͟2͟͟ħ͟⎞⎛ exp⎛ι ⎛⎛− ͟ħ͟ω͟⎞t + _͟π͟⎞⎞ + exp⎛ι ⎛⎛ħ͟ω͟⎞t - _͟π͟⎞⎞ ⎞
⎝mω⎠⎝ ⎝ ⎝⎝ ħ ⎠ 2⎠⎠ ⎝ ⎝⎝ ħ⎠ 2⎠⎠ ⎠.
❬x̂❭ = ⅕ √⎛͟2͟͟ħ͟⎞ exp(ι͟π͟)⎛ exp⎛ι ⎛− ͟ħ͟ω͟⎞t⎞ + exp⎛ι ⎛⎛ħ͟ω͟⎞t - π⎞⎞ ⎞
⎝mω⎠ 2 ⎝ ⎝ ⎝ ħ ⎠ ⎠ ⎝ ⎝⎝ ħ⎠ ⎠⎠ ⎠.
❬x̂❭ = ⅕ √⎛͟2͟͟ħ͟⎞ exp(ι͟π͟)⎛ exp⎛ι ⎛− ͟ħ͟ω͟⎞t⎞ - exp⎛ι ⎛ħ͟ω͟⎞t⎞ ⎞
⎝mω⎠ 2 ⎝ ⎝ ⎝ ħ ⎠ ⎠ ⎝ ⎝ ħ⎠ ⎠ ⎠.
This is a sine function.
❬x̂❭ = ⅕ √⎛͟2͟͟ħ͟⎞ exp(ι͟π͟) 2ι sin⎛− ͟ħ͟ω͟t͟⎞ = ⅕ √⎛͟8͟ħ͟⎞ ι² -sin(ωt).
⎝mω⎠ 2 ⎝ ħ ⎠ ⎝mω⎠
2016-03-14 05:10:25 +00:00
(𝐜 ,x̂)
2016-03-14 16:41:34 +00:00
❬x̂❭ = ⅕ √⎛͟8͟ħ͟⎞ sin(ωt).
⎝mω⎠
The expectation value progresses periodically with the time parameter t.
A very similar argument can be made for the momentum operator.
❬p̂❭ = ⅕⎛exp⎛ι ͟E͟₀͟t⎞ exp⎛-ι ͟E͟₀͟t⎞❬0❙p̂❙0❭ + ⎞
⎜ ⎝ ħ ⎠ ⎝ ħ ⎠ ⎟
⎜ ⎟
⎜ exp⎛ι ͟E͟₀͟t⎞ 2 exp⎛ι ⎛_͟π͟ - E͟₁͟t⎞⎞ ❬0❙p̂❙1❭ + ⎟
⎜ ⎝ ħ ⎠ ⎝ ⎝ 2 ħ ⎠⎠ ⎟
⎜ ⎟
⎜ exp⎛-ι ͟E͟₀͟t⎞ 2 exp⎛ι ⎛E͟₁͟t - _͟π͟⎞⎞ ❬1❙p̂❙0❭ + ⎟
⎜ ⎝ ħ ⎠ ⎝ ⎝ ħ 2⎠⎠ ⎟
⎜ ⎟
⎜ 2 exp⎛ι ⎛E͟₁͟t - _͟π͟⎞⎞2 exp⎛ι ⎛_͟π͟ - E͟₁͟t⎞⎞❬1❙p̂❙1❭⎞⎟
⎝ ⎝ ⎝ ħ 2⎠⎠ ⎝ ⎝ 2 ħ ⎠⎠ ⎠⎠.
❬0❙p̂❙0❭ = p₀₀ = ❬1❙p̂❙1❭ = p₁₁ = 0.
❬0❙p̂❙1❭ = p₀₁ = -ι √⎛͟ħ͟m͟ω͟⎞.
⎝ 2 ⎠
❬1❙p̂❙0❭ = p₁₀ = ι √⎛͟ħ͟m͟ω͟⎞.
⎝ 2 ⎠
❬p̂❭ = ⅖ ι √⎛͟ħ͟m͟ω͟⎞⎛-exp⎛ι ͟E͟₀͟t + ι ⎛_͟π͟ - E͟₁͟t⎞⎞ + exp⎛-ι ͟E͟₀͟t + ι ⎛E͟₁͟t - _͟π͟⎞⎞
⎝ 2 ⎠⎜ ⎝ ħ ⎝ 2 ħ ⎠⎠ ⎝ ħ ⎝ ħ 2⎠⎠.
❬p̂❭ = ⅖ ι √⎛͟ħ͟m͟ω͟⎞⎛exp⎛ι ⎛⎛− ͟ħ͟ω͟⎞t - _͟π͟⎞⎞ + exp⎛ι ⎛⎛ħ͟ω͟⎞t - _͟π͟⎞⎞⎞
⎝ 2 ⎠⎝ ⎝ ⎝⎝ ħ⎠ 2⎠⎠ ⎝ ⎝⎝ ħ⎠ 2⎠⎠⎠.
❬p̂❭ = ⅖ ι √⎛͟ħ͟m͟ω͟⎞ exp⎛− ͟ι ͟π͟⎞ ⎛ exp⎛ι ⎛− ͟ħ͟ω͟⎞t⎞ + exp⎛ι ⎛ħ͟ω͟⎞t⎞ ⎞
⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ ⎝ ⎝ ħ⎠ ⎠ ⎝ ⎝ ħ⎠ ⎠ ⎠.
This is a cosine.
(𝐜 ,p̂)
❬p̂❭ = ⅘ ι √⎛͟ħ͟m͟ω͟⎞ exp⎛− ͟ι ͟π͟⎞ cos(ωt) = ⅕ √(8ħmω) cos(ωt).
⎝ 2 ⎠ ⎝ 2 ⎠
2016-03-14 05:10:25 +00:00
2016-03-14 16:41:34 +00:00
Ehrenfest's theorem states
2016-03-14 05:10:25 +00:00
2016-03-14 16:41:34 +00:00
❬p̂❭ = m d͟❬͟x̂͟❭͟.
dt
2016-03-14 05:10:25 +00:00
2016-03-14 16:41:34 +00:00
m d͟❬͟x̂͟❭͟ = ⅕ mω √⎛͟8͟ħ͟⎞ cos(ωt) = ⅕ √(8mωħ) cos(ωt) = ❬p̂❭.
dt ⎝mω⎠
So, the theorem holds for this case.
2016-03-14 05:10:25 +00:00