2016-02-26 06:05:36 +00:00
|
|
|
|
❙Ψ❭ ≐ Ψ(x)
|
|
|
|
|
Ψ(x) = ❬x❙Ψ❭
|
|
|
|
|
𝓟(x) = │Ψ(x)│²
|
|
|
|
|
𝓟(x) = ⎮Ψ(x)⎮²
|
|
|
|
|
|
|
|
|
|
⌠ ∞
|
|
|
|
|
1 = ❬Ψ❙Ψ❭ = ⎮ │Ψ(x)│² dx = 1
|
|
|
|
|
⌡-∞
|
|
|
|
|
|
|
|
|
|
❙Ψ❭ → Ψ(x)
|
|
|
|
|
❬Ψ❙ → Ψ⃰(x)
|
|
|
|
|
|
|
|
|
|
 → A(x)
|
|
|
|
|
⌠b
|
|
|
|
|
𝓟(a<x<b) = ⎮ │Ψ(x)│² dx
|
|
|
|
|
⌡a
|
|
|
|
|
|
|
|
|
|
│⌠∞ │²
|
|
|
|
|
𝓟(Eₙ) = │❬Eₙ❙Ψ❭│² = │⎮ Eₙ⃰(x) Ψ(x) dx │
|
|
|
|
|
│⌡-∞ │
|
|
|
|
|
|
|
|
|
|
x̂ = x
|
|
|
|
|
|
|
|
|
|
p̂ = ι͟ ∂͟
|
|
|
|
|
ħ ∂x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
⎛- ħ͟²͟ d͟²͟ + V(x)⎞ φₙ(x) = E φₙ(x)
|
|
|
|
|
⎝ 2m dx² ⎠
|
|
|
|
|
|
|
|
|
|
Boundary conditions:
|
|
|
|
|
|
|
|
|
|
1) φₙ(x) is continuous.
|
|
|
|
|
2) d φₙ(x) is continuous unless V = ∞.
|
|
|
|
|
dx
|
|
|
|
|
|
|
|
|
|
Infinite square potential energy well:
|
|
|
|
|
|
|
|
|
|
Eₙ = n͟²͟π͟²͟ħ͟², n = 1, 2, 3, ...
|
|
|
|
|
2mL²
|
|
|
|
|
|
|
|
|
|
φₙ(x) = √⎛2͟⎞ sin⎛n͟π͟x͟⎞, n = 1, 2, 3, ...
|
|
|
|
|
⎝L⎠ ⎝ L ⎠
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Energy eigenstates obey the following properties:
|
|
|
|
|
|
|
|
|
|
Bra-ket Notation Wavefunction Notation
|
|
|
|
|
|
2016-02-28 22:15:29 +00:00
|
|
|
|
Normalization
|
2016-02-26 06:05:36 +00:00
|
|
|
|
|
|
|
|
|
⌠∞
|
|
|
|
|
❬Eₙ❙Eₙ❭ = 1 ⎮ │φₙ(x)│² dx = 1
|
|
|
|
|
⌡-∞
|
|
|
|
|
|
2016-02-28 22:15:29 +00:00
|
|
|
|
Orthogonality
|
2016-02-26 06:05:36 +00:00
|
|
|
|
|
|
|
|
|
⌠∞
|
|
|
|
|
❬Eₙ❙Eₘ❭ = δₙₘ ⎮ φₙ⃰(x) φₘ(x) dx = δₙₘ
|
|
|
|
|
⌡-∞
|
|
|
|
|
|
2016-02-28 22:15:29 +00:00
|
|
|
|
Completeness
|
|
|
|
|
|
|
|
|
|
❙Ψ❭ = ∑ cₙ ❙Eₙ❭ Ψ(x) = ∑ cₙ φₙ(x)
|
|
|
|
|
ⁿ ⁿ
|
|
|
|
|
|
|
|
|
|
|
2016-02-26 06:05:36 +00:00
|
|
|
|
|
|
|
|
|
|