phy-4600/notes/particles in a box
2016-02-28 17:15:29 -05:00

70 lines
1.6 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

❙Ψ❭ ≐ Ψ(x)
Ψ(x) = ❬x❙Ψ❭
𝓟(x) = │Ψ(x)│²
𝓟(x) = ⎮Ψ(x)⎮²
⌠ ∞
1 = ❬Ψ❙Ψ❭ = ⎮ │Ψ(x)│² dx = 1
⌡-∞
❙Ψ❭ → Ψ(x)
❬Ψ❙ → Ψ⃰(x)
 → A(x)
⌠b
𝓟(a<x<b) = ⎮ │Ψ(x)│² dx
⌡a
│⌠∞ │²
𝓟(Eₙ) = │❬Eₙ❙Ψ❭│² = │⎮ Eₙ⃰(x) Ψ(x) dx │
│⌡-∞ │
x̂ = x
p̂ = ι͟ ∂͟
ħ ∂x
⎛- ħ͟²͟ d͟²͟ + V(x)⎞ φₙ(x) = E φₙ(x)
⎝ 2m dx² ⎠
Boundary conditions:
1) φₙ(x) is continuous.
2) d φₙ(x) is continuous unless V = ∞.
dx
Infinite square potential energy well:
Eₙ = n͟²͟π͟²͟ħ͟², n = 1, 2, 3, ...
2mL²
φₙ(x) = √⎛2͟⎞ sin⎛n͟π͟x͟⎞, n = 1, 2, 3, ...
⎝L⎠ ⎝ L ⎠
Energy eigenstates obey the following properties:
Bra-ket Notation Wavefunction Notation
Normalization
⌠∞
❬Eₙ❙Eₙ❭ = 1 ⎮ │φₙ(x)│² dx = 1
⌡-∞
Orthogonality
⌠∞
❬Eₙ❙Eₘ❭ = δₙₘ ⎮ φₙ⃰(x) φₘ(x) dx = δₙₘ
⌡-∞
Completeness
❙Ψ❭ = ∑ cₙ ❙Eₙ❭ Ψ(x) = ∑ cₙ φₙ(x)
ⁿ ⁿ