mirror of
				https://asciireactor.com/otho/phy-4600.git
				synced 2025-11-04 14:58:05 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			70 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			70 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
❙Ψ❭ ≐ Ψ(x)
 | 
						||
Ψ(x) = ❬x❙Ψ❭
 | 
						||
𝓟(x) = │Ψ(x)│²
 | 
						||
𝓟(x) = ⎮Ψ(x)⎮²
 | 
						||
 | 
						||
            ⌠ ∞
 | 
						||
1 = ❬Ψ❙Ψ❭ = ⎮  │Ψ(x)│² dx = 1
 | 
						||
            ⌡-∞
 | 
						||
 | 
						||
❙Ψ❭ → Ψ(x)
 | 
						||
❬Ψ❙ → Ψ⃰(x)
 | 
						||
 | 
						||
 → A(x)
 | 
						||
           ⌠b     
 | 
						||
𝓟(a<x<b) = ⎮ │Ψ(x)│² dx                  
 | 
						||
           ⌡a
 | 
						||
                
 | 
						||
                    │⌠∞              │²     
 | 
						||
𝓟(Eₙ) = │❬Eₙ❙Ψ❭│² = │⎮ Eₙ⃰(x) Ψ(x) dx │
 | 
						||
                    │⌡-∞             │
 | 
						||
 | 
						||
x̂ = x
 | 
						||
 | 
						||
p̂ = ι͟ ∂͟
 | 
						||
    ħ ∂x                         
 | 
						||
 | 
						||
 | 
						||
⎛- ħ͟²͟ d͟²͟ + V(x)⎞ φₙ(x) = E φₙ(x)
 | 
						||
⎝  2m dx²      ⎠ 
 | 
						||
 | 
						||
Boundary conditions:
 | 
						||
 | 
						||
    1) φₙ(x) is continuous.
 | 
						||
    2) d φₙ(x) is continuous unless V = ∞.
 | 
						||
       dx
 | 
						||
 | 
						||
Infinite square potential energy well:
 | 
						||
 | 
						||
    Eₙ = n͟²͟π͟²͟ħ͟²,    n = 1, 2, 3, ...
 | 
						||
          2mL²
 | 
						||
        
 | 
						||
    φₙ(x) = √⎛2͟⎞ sin⎛n͟π͟x͟⎞,  n = 1, 2, 3, ...
 | 
						||
             ⎝L⎠    ⎝ L ⎠ 
 | 
						||
 | 
						||
 | 
						||
Energy eigenstates obey the following properties:
 | 
						||
 | 
						||
    Bra-ket Notation       Wavefunction Notation
 | 
						||
 | 
						||
        Normalization
 | 
						||
 | 
						||
                           ⌠∞       
 | 
						||
    ❬Eₙ❙Eₙ❭ = 1            ⎮ │φₙ(x)│² dx = 1
 | 
						||
                           ⌡-∞           
 | 
						||
 | 
						||
        Orthogonality
 | 
						||
 | 
						||
                           ⌠∞                    
 | 
						||
    ❬Eₙ❙Eₘ❭ = δₙₘ          ⎮ φₙ⃰(x) φₘ(x) dx = δₙₘ
 | 
						||
                           ⌡-∞                    
 | 
						||
 | 
						||
        Completeness
 | 
						||
 | 
						||
    ❙Ψ❭ = ∑ cₙ ❙Eₙ❭         Ψ(x) = ∑ cₙ φₙ(x)
 | 
						||
          ⁿ                        ⁿ
 | 
						||
 | 
						||
 | 
						||
 | 
						||
 |