mirror of
				https://asciireactor.com/otho/phy-4600.git
				synced 2025-11-04 08:38:03 +00:00 
			
		
		
		
	
		
			
	
	
		
			44 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			44 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| 
								 | 
							
								                        Exam 2 Problem 2
							 | 
						|||
| 
								 | 
							
								━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								(pic) Finished the problem using the boundary conditions
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								    boundary conditions limit the number of possible spherical harmonics.
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								                        Two Similar Particles
							 | 
						|||
| 
								 | 
							
								━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								❙a,b❭ = ❙a❭⊗❙b❭
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								                            Exchange Operator
							 | 
						|||
| 
								 | 
							
								──────────────────────────────────────────────────────────────────────────
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								𝓟₁₂❙a,b❭ = ❙a,b❭
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								𝓟₁₂(❙a❭⊗❙b❭) = ❙b❭⊗❙a❭
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								If particles are indistinguishable 
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								𝓟₁₂❙a,b❭ = exp(iδ) ❙a,b❭ = λ ❙a,b❭
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								𝓟²₁₂❙a,b❭ = λ² ❙a,b❭ = ❙a,b❭ ⇒ λ=±1
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								                            Symmetry States
							 | 
						|||
| 
								 | 
							
								──────────────────────────────────────────────────────────────────────────
							 | 
						|||
| 
								 | 
							
								(pic) Two cases: symmetric, antisymmetric
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								Symmetric States, λ=1
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								    𝓟₁₂❙a,b❭
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								(pic) Constructed the exchange operator in matrix form, then found eigen states
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								(pic) Showed that the exchange operator leads to the Pauli Exclusion Principle
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								
							 |