Exam 2 Problem 2 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ (pic) Finished the problem using the boundary conditions boundary conditions limit the number of possible spherical harmonics. Two Similar Particles ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ❙a,b❭ = ❙a❭⊗❙b❭ Exchange Operator ────────────────────────────────────────────────────────────────────────── 𝓟₁₂❙a,b❭ = ❙a,b❭ 𝓟₁₂(❙a❭⊗❙b❭) = ❙b❭⊗❙a❭ If particles are indistinguishable 𝓟₁₂❙a,b❭ = exp(iδ) ❙a,b❭ = λ ❙a,b❭ 𝓟²₁₂❙a,b❭ = λ² ❙a,b❭ = ❙a,b❭ ⇒ λ=±1 Symmetry States ────────────────────────────────────────────────────────────────────────── (pic) Two cases: symmetric, antisymmetric Symmetric States, λ=1 𝓟₁₂❙a,b❭ (pic) Constructed the exchange operator in matrix form, then found eigen states (pic) Showed that the exchange operator leads to the Pauli Exclusion Principle