mirror of
				https://asciireactor.com/otho/cs-5821.git
				synced 2025-10-31 17:58:04 +00:00 
			
		
		
		
	update
This commit is contained in:
		
							parent
							
								
									7e70712a70
								
							
						
					
					
						commit
						ec21317213
					
				
							
								
								
									
										
											BIN
										
									
								
								hw3/.RData
									
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								hw3/.RData
									
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										157
									
								
								hw3/.Rhistory
									
									
									
									
									
								
							
							
						
						
									
										157
									
								
								hw3/.Rhistory
									
									
									
									
									
								
							| @ -1,157 +0,0 @@ | ||||
| auto = read.table("auto.data",header=T,na.strings="?") | ||||
| auto$mpg01=rep(0,397) | ||||
| auto$mpg01[auto$mpg>median(auto$mpg)]=1 | ||||
| library(ISLR) | ||||
| library(MASS) | ||||
| library(class) | ||||
| train_bools <- (auto$year %% 2 == 0) | ||||
| train_data = auto[train_bools,] | ||||
| test_data = auto[!train_bools,] | ||||
| help(knn) | ||||
| help(knn) | ||||
|      train <- rbind(iris3[1:25,,1], iris3[1:25,,2], iris3[1:25,,3]) | ||||
|      test <- rbind(iris3[26:50,,1], iris3[26:50,,2], iris3[26:50,,3]) | ||||
| train | ||||
| test | ||||
| ?knn | ||||
|      cl <- factor(c(rep("s",25), rep("c",25), rep("v",25))) | ||||
| cl | ||||
| length(cl) | ||||
| length(train) | ||||
| nrows(train) | ||||
| nrow(train) | ||||
| train.X | ||||
| train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] | ||||
| train.X | ||||
| test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] | ||||
| test.X | ||||
| train.X | ||||
| train.mpg01 = auto$mpg01[train_bools] | ||||
| train.mpg01 | ||||
| length(train.mpg01) | ||||
| nrow(train.X) | ||||
| knn(train.X,train.Y,train.mpg01,K=1) | ||||
| knn(train.X,train.Y,train.mpg01,k=1) | ||||
| knn(train.X,test.X,train.mpg01,k=1) | ||||
| train.X | ||||
| na.omit(train.X) | ||||
| ?na.omit | ||||
| na.omit(train.X) | ||||
| na.omit(train.X) | ||||
| knn(na.omit(train.X),test.X,train.mpg01,k=1) | ||||
| knn(na.omit(train.X),test.X,na.omit(train.mpg01),k=1) | ||||
| knn(na.omit(train.X),na.omit(test.X),na.omit(train.mpg01),k=1) | ||||
| train.mpg012 = na.omit(auto$mpg01)[train_bools] | ||||
| train.mpg012 | ||||
| train.mpg01 | ||||
| nrow(train) | ||||
| na.omit(auto) | ||||
| auto | ||||
| na.omit(auto) | ||||
| summary(auto) | ||||
| summary(na.omit(auto)) | ||||
| Auto = na.omit(auto) | ||||
| auto = na.omit(auto) | ||||
| ncol(auto) | ||||
| nrow(auto) | ||||
| auto <- na.omit(auto) | ||||
| train_bools <- (auto$year %% 2 == 0) | ||||
| train_data = auto[train_bools,] | ||||
| test_data = auto[!train_bools,] | ||||
| train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] | ||||
| test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] | ||||
| train.mpg01 = auto$mpg01[train_bools] | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=1) | ||||
| mean(knn.pred != auto$mpg01) | ||||
| mean(knn.pred != test_data$mpg01) | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=2) | ||||
| mean(knn.pred != test_data$mpg01) | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=3) | ||||
| mean(knn.pred != test_data$mpg01) | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=4) | ||||
| mean(knn.pred != test_data$mpg0) | ||||
| knn.pred | ||||
| length(knn.pred) | ||||
| dim(knn.pred) | ||||
| length(test_data) | ||||
| ncol(test_data) | ||||
| nrow(test_data) | ||||
| q() | ||||
| qda.fit | ||||
| fit.qda | ||||
| qda.fit | ||||
| auto | ||||
| qda.fit = qda(mpg01 ~ horsepower + weight + cylinders + displacement, data = train_data) | ||||
| import(MASS) | ||||
| qda.fit = qda(mpg01 ~ horsepower + weight + cylinders + displacement, data = train_data) | ||||
| import(class) | ||||
| library(MASS) | ||||
| qda.fit = qda(mpg01 ~ horsepower + weight + cylinders + displacement, data = train_data) | ||||
| qda.fit | ||||
| > mean(qda.pred$class!=test_data$mpg01,na.rm=T) | ||||
| mean(qda.pred$class!=test_data$mpg01,na.rm=T) | ||||
| qda.fit=qda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data) | ||||
| qda.pred=predict(qda.fit,test_data,na.rm=T) | ||||
| mean(qda.pred$class!=test_data$mpg01,na.rm=T) | ||||
| qda.fit=qda(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data) | ||||
| qda.pred=predict(qda.fit,test_data,na.rm=T) | ||||
| mean(qda.pred$class!=test_data$mpg01,na.rm=T) | ||||
| qda.fit | ||||
| qda.pred=predict(qda.fit,test_data,na.rm=T) | ||||
| mean(qda.pred$class!=test_data$mpg01,na.rm=T) | ||||
| glm.fit=glm(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data,family=binomial) | ||||
| glm.probs=predict(glm.fit,test_data,type="response") | ||||
| glm.pred=rep(0,199) | ||||
| glm.pred[glm.probs>.5]=1 | ||||
| mean(glm.pred!=test_data$mpg01) | ||||
| glm.fit=glm(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data,family=binomial) | ||||
| glm.probs=predict(glm.fit,test_data,type="response") | ||||
| glm.pred=rep(0,length(test_data) | ||||
| glm.pred[glm.probs>.5]=1 | ||||
| mean(glm.pred!=test_data$mpg01) | ||||
| glm.fit=glm(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data,family=binomial) | ||||
| glm.probs=predict(glm.fit,test_data,type="response") | ||||
| glm.pred=rep(0,length(test_data)) | ||||
| glm.pred[glm.probs>.5]=1 | ||||
| mean(glm.pred!=test_data$mpg01) | ||||
| glm.fit=glm(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data,family=binomial) | ||||
| glm.probs=predict(glm.fit,test_data,type="response") | ||||
| glm.pred=rep(0,length(test_data)) | ||||
| glm.pred[glm.probs>.5]=1 | ||||
| mean(glm.pred!=test_data$mpg01) | ||||
| glm.pred | ||||
| glm.pred=rep(0,length(test_data)) | ||||
| glm.pred | ||||
| test_data | ||||
| glm.fit=glm(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data,family=binomial) | ||||
| glm.probs=predict(glm.fit,test_data,type="response") | ||||
| glm.pred=rep(0,nrow(test_data)) | ||||
| glm.pred[glm.probs>.5]=1 | ||||
| mean(glm.pred!=test_data$mpg01) | ||||
| set.seed(1) | ||||
| auto <- na.omit(auto) | ||||
| train_bools <- (auto$year %% 2 == 0) | ||||
| train_data = auto[train_bools,] | ||||
| test_data = auto[!train_bools,] | ||||
| train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$cylinders)[train_bools,] | ||||
| test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$cylinders)[!train_bools,] | ||||
| train.mpg01 = auto$mpg01[train_bools] | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=1) | ||||
| mean(knn.pred != test_data$mpg01) | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=2) | ||||
| mean(knn.pred != test_data$mpg01) | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=3) | ||||
| mean(knn.pred != test_data$mpg01) | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=4) | ||||
| mean(knn.pred != test_data$mpg0) | ||||
| import(class) | ||||
| library(class) | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=1) | ||||
| mean(knn.pred != test_data$mpg01) | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=2) | ||||
| mean(knn.pred != test_data$mpg01) | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=3) | ||||
| mean(knn.pred != test_data$mpg01) | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=4) | ||||
| mean(knn.pred != test_data$mpg0) | ||||
| q() | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user