diff --git a/hw3/.RData b/hw3/.RData deleted file mode 100644 index 97b22f9..0000000 Binary files a/hw3/.RData and /dev/null differ diff --git a/hw3/.Rhistory b/hw3/.Rhistory deleted file mode 100644 index ee5aad7..0000000 --- a/hw3/.Rhistory +++ /dev/null @@ -1,157 +0,0 @@ -auto = read.table("auto.data",header=T,na.strings="?") -auto$mpg01=rep(0,397) -auto$mpg01[auto$mpg>median(auto$mpg)]=1 -library(ISLR) -library(MASS) -library(class) -train_bools <- (auto$year %% 2 == 0) -train_data = auto[train_bools,] -test_data = auto[!train_bools,] -help(knn) -help(knn) - train <- rbind(iris3[1:25,,1], iris3[1:25,,2], iris3[1:25,,3]) - test <- rbind(iris3[26:50,,1], iris3[26:50,,2], iris3[26:50,,3]) -train -test -?knn - cl <- factor(c(rep("s",25), rep("c",25), rep("v",25))) -cl -length(cl) -length(train) -nrows(train) -nrow(train) -train.X -train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] -train.X -test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] -test.X -train.X -train.mpg01 = auto$mpg01[train_bools] -train.mpg01 -length(train.mpg01) -nrow(train.X) -knn(train.X,train.Y,train.mpg01,K=1) -knn(train.X,train.Y,train.mpg01,k=1) -knn(train.X,test.X,train.mpg01,k=1) -train.X -na.omit(train.X) -?na.omit -na.omit(train.X) -na.omit(train.X) -knn(na.omit(train.X),test.X,train.mpg01,k=1) -knn(na.omit(train.X),test.X,na.omit(train.mpg01),k=1) -knn(na.omit(train.X),na.omit(test.X),na.omit(train.mpg01),k=1) -train.mpg012 = na.omit(auto$mpg01)[train_bools] -train.mpg012 -train.mpg01 -nrow(train) -na.omit(auto) -auto -na.omit(auto) -summary(auto) -summary(na.omit(auto)) -Auto = na.omit(auto) -auto = na.omit(auto) -ncol(auto) -nrow(auto) -auto <- na.omit(auto) -train_bools <- (auto$year %% 2 == 0) -train_data = auto[train_bools,] -test_data = auto[!train_bools,] -train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] -test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] -train.mpg01 = auto$mpg01[train_bools] -knn.pred = knn(train.X,test.X,train.mpg01,k=1) -mean(knn.pred != auto$mpg01) -mean(knn.pred != test_data$mpg01) -knn.pred = knn(train.X,test.X,train.mpg01,k=2) -mean(knn.pred != test_data$mpg01) -knn.pred = knn(train.X,test.X,train.mpg01,k=3) -mean(knn.pred != test_data$mpg01) -knn.pred = knn(train.X,test.X,train.mpg01,k=4) -mean(knn.pred != test_data$mpg0) -knn.pred -length(knn.pred) -dim(knn.pred) -length(test_data) -ncol(test_data) -nrow(test_data) -q() -qda.fit -fit.qda -qda.fit -auto -qda.fit = qda(mpg01 ~ horsepower + weight + cylinders + displacement, data = train_data) -import(MASS) -qda.fit = qda(mpg01 ~ horsepower + weight + cylinders + displacement, data = train_data) -import(class) -library(MASS) -qda.fit = qda(mpg01 ~ horsepower + weight + cylinders + displacement, data = train_data) -qda.fit -> mean(qda.pred$class!=test_data$mpg01,na.rm=T) -mean(qda.pred$class!=test_data$mpg01,na.rm=T) -qda.fit=qda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data) -qda.pred=predict(qda.fit,test_data,na.rm=T) -mean(qda.pred$class!=test_data$mpg01,na.rm=T) -qda.fit=qda(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data) -qda.pred=predict(qda.fit,test_data,na.rm=T) -mean(qda.pred$class!=test_data$mpg01,na.rm=T) -qda.fit -qda.pred=predict(qda.fit,test_data,na.rm=T) -mean(qda.pred$class!=test_data$mpg01,na.rm=T) -glm.fit=glm(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data,family=binomial) -glm.probs=predict(glm.fit,test_data,type="response") -glm.pred=rep(0,199) -glm.pred[glm.probs>.5]=1 -mean(glm.pred!=test_data$mpg01) -glm.fit=glm(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data,family=binomial) -glm.probs=predict(glm.fit,test_data,type="response") -glm.pred=rep(0,length(test_data) -glm.pred[glm.probs>.5]=1 -mean(glm.pred!=test_data$mpg01) -glm.fit=glm(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data,family=binomial) -glm.probs=predict(glm.fit,test_data,type="response") -glm.pred=rep(0,length(test_data)) -glm.pred[glm.probs>.5]=1 -mean(glm.pred!=test_data$mpg01) -glm.fit=glm(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data,family=binomial) -glm.probs=predict(glm.fit,test_data,type="response") -glm.pred=rep(0,length(test_data)) -glm.pred[glm.probs>.5]=1 -mean(glm.pred!=test_data$mpg01) -glm.pred -glm.pred=rep(0,length(test_data)) -glm.pred -test_data -glm.fit=glm(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data,family=binomial) -glm.probs=predict(glm.fit,test_data,type="response") -glm.pred=rep(0,nrow(test_data)) -glm.pred[glm.probs>.5]=1 -mean(glm.pred!=test_data$mpg01) -set.seed(1) -auto <- na.omit(auto) -train_bools <- (auto$year %% 2 == 0) -train_data = auto[train_bools,] -test_data = auto[!train_bools,] -train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$cylinders)[train_bools,] -test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$cylinders)[!train_bools,] -train.mpg01 = auto$mpg01[train_bools] -knn.pred = knn(train.X,test.X,train.mpg01,k=1) -mean(knn.pred != test_data$mpg01) -knn.pred = knn(train.X,test.X,train.mpg01,k=2) -mean(knn.pred != test_data$mpg01) -knn.pred = knn(train.X,test.X,train.mpg01,k=3) -mean(knn.pred != test_data$mpg01) -knn.pred = knn(train.X,test.X,train.mpg01,k=4) -mean(knn.pred != test_data$mpg0) -import(class) -library(class) -knn.pred = knn(train.X,test.X,train.mpg01,k=1) -mean(knn.pred != test_data$mpg01) -knn.pred = knn(train.X,test.X,train.mpg01,k=2) -mean(knn.pred != test_data$mpg01) -knn.pred = knn(train.X,test.X,train.mpg01,k=3) -mean(knn.pred != test_data$mpg01) -knn.pred = knn(train.X,test.X,train.mpg01,k=4) -mean(knn.pred != test_data$mpg0) -q()