mirror of
https://asciireactor.com/otho/industry-website.git
synced 2024-11-23 01:55:06 +00:00
74 lines
1.8 KiB
Python
74 lines
1.8 KiB
Python
|
import numpy as np
|
||
|
from astropy.modeling import models, fitting
|
||
|
|
||
|
# Using Models
|
||
|
|
||
|
# The astropy.modeling package defines a number of models that are collected under a single namespace as astropy.modeling.models. Models behave like parametrized functions:
|
||
|
|
||
|
from astropy.modeling import models
|
||
|
g = models.Gaussian1D(amplitude=1.2, mean=0.9, stddev=0.5)
|
||
|
print(g)
|
||
|
# Model: Gaussian1D
|
||
|
# Inputs: ('x',)
|
||
|
# Outputs: ('y',)
|
||
|
# Model set size: 1
|
||
|
# Parameters:
|
||
|
# amplitude mean stddev
|
||
|
# --------- ---- ------
|
||
|
# 1.2 0.9 0.5
|
||
|
#
|
||
|
# Model parameters can be accessed as attributes:
|
||
|
|
||
|
g.amplitude
|
||
|
# Parameter('amplitude', value=1.2)
|
||
|
g.mean
|
||
|
# Parameter('mean', value=0.9)
|
||
|
g.stddev
|
||
|
# Parameter('stddev', value=0.5)
|
||
|
|
||
|
# and can also be updated via those attributes:
|
||
|
|
||
|
g.amplitude = 0.8
|
||
|
g.amplitude
|
||
|
# Parameter('amplitude', value=0.8)
|
||
|
|
||
|
# Models can be evaluated by calling them as functions:
|
||
|
|
||
|
g(0.1)
|
||
|
# 0.22242984036255528
|
||
|
g(np.linspace(0.5, 1.5, 7))
|
||
|
# array([ 0.58091923, 0.71746405, 0.7929204 , 0.78415894, 0.69394278,
|
||
|
# 0.54952605, 0.3894018 ])
|
||
|
|
||
|
|
||
|
|
||
|
import numpy as np
|
||
|
import matplotlib.pyplot as plt
|
||
|
from astropy.modeling import models, fitting
|
||
|
|
||
|
# Generate fake data
|
||
|
np.random.seed(0)
|
||
|
x = np.linspace(-5., 5., 200)
|
||
|
y = 3 * np.exp(-0.5 * (x - 1.3)**2 / 0.8**2)
|
||
|
y += np.random.normal(0., 0.2, x.shape)
|
||
|
|
||
|
# Fit the data using a box model
|
||
|
t_init = models.Trapezoid1D(amplitude=1., x_0=0., width=1., slope=0.5)
|
||
|
fit_t = fitting.LevMarLSQFitter()
|
||
|
t = fit_t(t_init, x, y)
|
||
|
|
||
|
# Fit the data using a Gaussian
|
||
|
g_init = models.Gaussian1D(amplitude=1., mean=0, stddev=1.)
|
||
|
fit_g = fitting.LevMarLSQFitter()
|
||
|
g = fit_g(g_init, x, y)
|
||
|
|
||
|
# Plot the data with the best-fit model
|
||
|
plt.figure(figsize=(8,5))
|
||
|
plt.plot(x, y, 'ko')
|
||
|
plt.plot(x, t(x), label='Trapezoid')
|
||
|
plt.plot(x, g(x), label='Gaussian')
|
||
|
plt.xlabel('Position')
|
||
|
plt.ylabel('Flux')
|
||
|
plt.legend(loc=2)
|
||
|
|
||
|
plt.show()
|