mirror of
https://asciireactor.com/otho/psdlag-agn.git
synced 2024-11-24 06:15:05 +00:00
9638 lines
282 KiB
C++
9638 lines
282 KiB
C++
/*************************************************************************
|
||
Copyright (c) Sergey Bochkanov (ALGLIB project).
|
||
|
||
>>> SOURCE LICENSE >>>
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation (www.fsf.org); either version 2 of the
|
||
License, or (at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
A copy of the GNU General Public License is available at
|
||
http://www.fsf.org/licensing/licenses
|
||
>>> END OF LICENSE >>>
|
||
*************************************************************************/
|
||
#include "stdafx.h"
|
||
#include "specialfunctions.h"
|
||
|
||
// disable some irrelevant warnings
|
||
#if (AE_COMPILER==AE_MSVC)
|
||
#pragma warning(disable:4100)
|
||
#pragma warning(disable:4127)
|
||
#pragma warning(disable:4702)
|
||
#pragma warning(disable:4996)
|
||
#endif
|
||
using namespace std;
|
||
|
||
/////////////////////////////////////////////////////////////////////////
|
||
//
|
||
// THIS SECTION CONTAINS IMPLEMENTATION OF C++ INTERFACE
|
||
//
|
||
/////////////////////////////////////////////////////////////////////////
|
||
namespace alglib
|
||
{
|
||
|
||
|
||
/*************************************************************************
|
||
Gamma function
|
||
|
||
Input parameters:
|
||
X - argument
|
||
|
||
Domain:
|
||
0 < X < 171.6
|
||
-170 < X < 0, X is not an integer.
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE -170,-33 20000 2.3e-15 3.3e-16
|
||
IEEE -33, 33 20000 9.4e-16 2.2e-16
|
||
IEEE 33, 171.6 20000 2.3e-15 3.2e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Original copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
|
||
Translated to AlgoPascal by Bochkanov Sergey (2005, 2006, 2007).
|
||
*************************************************************************/
|
||
double gammafunction(const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::gammafunction(x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Natural logarithm of gamma function
|
||
|
||
Input parameters:
|
||
X - argument
|
||
|
||
Result:
|
||
logarithm of the absolute value of the Gamma(X).
|
||
|
||
Output parameters:
|
||
SgnGam - sign(Gamma(X))
|
||
|
||
Domain:
|
||
0 < X < 2.55e305
|
||
-2.55e305 < X < 0, X is not an integer.
|
||
|
||
ACCURACY:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0, 3 28000 5.4e-16 1.1e-16
|
||
IEEE 2.718, 2.556e305 40000 3.5e-16 8.3e-17
|
||
The error criterion was relative when the function magnitude
|
||
was greater than one but absolute when it was less than one.
|
||
|
||
The following test used the relative error criterion, though
|
||
at certain points the relative error could be much higher than
|
||
indicated.
|
||
IEEE -200, -4 10000 4.8e-16 1.3e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
|
||
Translated to AlgoPascal by Bochkanov Sergey (2005, 2006, 2007).
|
||
*************************************************************************/
|
||
double lngamma(const double x, double &sgngam)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::lngamma(x, &sgngam, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Error function
|
||
|
||
The integral is
|
||
|
||
x
|
||
-
|
||
2 | | 2
|
||
erf(x) = -------- | exp( - t ) dt.
|
||
sqrt(pi) | |
|
||
-
|
||
0
|
||
|
||
For 0 <= |x| < 1, erf(x) = x * P4(x**2)/Q5(x**2); otherwise
|
||
erf(x) = 1 - erfc(x).
|
||
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0,1 30000 3.7e-16 1.0e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double errorfunction(const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::errorfunction(x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Complementary error function
|
||
|
||
1 - erf(x) =
|
||
|
||
inf.
|
||
-
|
||
2 | | 2
|
||
erfc(x) = -------- | exp( - t ) dt
|
||
sqrt(pi) | |
|
||
-
|
||
x
|
||
|
||
|
||
For small x, erfc(x) = 1 - erf(x); otherwise rational
|
||
approximations are computed.
|
||
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0,26.6417 30000 5.7e-14 1.5e-14
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double errorfunctionc(const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::errorfunctionc(x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Normal distribution function
|
||
|
||
Returns the area under the Gaussian probability density
|
||
function, integrated from minus infinity to x:
|
||
|
||
x
|
||
-
|
||
1 | | 2
|
||
ndtr(x) = --------- | exp( - t /2 ) dt
|
||
sqrt(2pi) | |
|
||
-
|
||
-inf.
|
||
|
||
= ( 1 + erf(z) ) / 2
|
||
= erfc(z) / 2
|
||
|
||
where z = x/sqrt(2). Computation is via the functions
|
||
erf and erfc.
|
||
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE -13,0 30000 3.4e-14 6.7e-15
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double normaldistribution(const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::normaldistribution(x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Inverse of the error function
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double inverf(const double e)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::inverf(e, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Inverse of Normal distribution function
|
||
|
||
Returns the argument, x, for which the area under the
|
||
Gaussian probability density function (integrated from
|
||
minus infinity to x) is equal to y.
|
||
|
||
|
||
For small arguments 0 < y < exp(-2), the program computes
|
||
z = sqrt( -2.0 * log(y) ); then the approximation is
|
||
x = z - log(z)/z - (1/z) P(1/z) / Q(1/z).
|
||
There are two rational functions P/Q, one for 0 < y < exp(-32)
|
||
and the other for y up to exp(-2). For larger arguments,
|
||
w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0.125, 1 20000 7.2e-16 1.3e-16
|
||
IEEE 3e-308, 0.135 50000 4.6e-16 9.8e-17
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double invnormaldistribution(const double y0)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::invnormaldistribution(y0, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Incomplete gamma integral
|
||
|
||
The function is defined by
|
||
|
||
x
|
||
-
|
||
1 | | -t a-1
|
||
igam(a,x) = ----- | e t dt.
|
||
- | |
|
||
| (a) -
|
||
0
|
||
|
||
|
||
In this implementation both arguments must be positive.
|
||
The integral is evaluated by either a power series or
|
||
continued fraction expansion, depending on the relative
|
||
values of a and x.
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0,30 200000 3.6e-14 2.9e-15
|
||
IEEE 0,100 300000 9.9e-14 1.5e-14
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1985, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double incompletegamma(const double a, const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::incompletegamma(a, x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Complemented incomplete gamma integral
|
||
|
||
The function is defined by
|
||
|
||
|
||
igamc(a,x) = 1 - igam(a,x)
|
||
|
||
inf.
|
||
-
|
||
1 | | -t a-1
|
||
= ----- | e t dt.
|
||
- | |
|
||
| (a) -
|
||
x
|
||
|
||
|
||
In this implementation both arguments must be positive.
|
||
The integral is evaluated by either a power series or
|
||
continued fraction expansion, depending on the relative
|
||
values of a and x.
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random a, x.
|
||
a x Relative error:
|
||
arithmetic domain domain # trials peak rms
|
||
IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15
|
||
IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1985, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double incompletegammac(const double a, const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::incompletegammac(a, x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Inverse of complemented imcomplete gamma integral
|
||
|
||
Given p, the function finds x such that
|
||
|
||
igamc( a, x ) = p.
|
||
|
||
Starting with the approximate value
|
||
|
||
3
|
||
x = a t
|
||
|
||
where
|
||
|
||
t = 1 - d - ndtri(p) sqrt(d)
|
||
|
||
and
|
||
|
||
d = 1/9a,
|
||
|
||
the routine performs up to 10 Newton iterations to find the
|
||
root of igamc(a,x) - p = 0.
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random a, p in the intervals indicated.
|
||
|
||
a p Relative error:
|
||
arithmetic domain domain # trials peak rms
|
||
IEEE 0.5,100 0,0.5 100000 1.0e-14 1.7e-15
|
||
IEEE 0.01,0.5 0,0.5 100000 9.0e-14 3.4e-15
|
||
IEEE 0.5,10000 0,0.5 20000 2.3e-13 3.8e-14
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double invincompletegammac(const double a, const double y0)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::invincompletegammac(a, y0, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Airy function
|
||
|
||
Solution of the differential equation
|
||
|
||
y"(x) = xy.
|
||
|
||
The function returns the two independent solutions Ai, Bi
|
||
and their first derivatives Ai'(x), Bi'(x).
|
||
|
||
Evaluation is by power series summation for small x,
|
||
by rational minimax approximations for large x.
|
||
|
||
|
||
|
||
ACCURACY:
|
||
Error criterion is absolute when function <= 1, relative
|
||
when function > 1, except * denotes relative error criterion.
|
||
For large negative x, the absolute error increases as x^1.5.
|
||
For large positive x, the relative error increases as x^1.5.
|
||
|
||
Arithmetic domain function # trials peak rms
|
||
IEEE -10, 0 Ai 10000 1.6e-15 2.7e-16
|
||
IEEE 0, 10 Ai 10000 2.3e-14* 1.8e-15*
|
||
IEEE -10, 0 Ai' 10000 4.6e-15 7.6e-16
|
||
IEEE 0, 10 Ai' 10000 1.8e-14* 1.5e-15*
|
||
IEEE -10, 10 Bi 30000 4.2e-15 5.3e-16
|
||
IEEE -10, 10 Bi' 30000 4.9e-15 7.3e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
void airy(const double x, double &ai, double &aip, double &bi, double &bip)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
alglib_impl::airy(x, &ai, &aip, &bi, &bip, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return;
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Bessel function of order zero
|
||
|
||
Returns Bessel function of order zero of the argument.
|
||
|
||
The domain is divided into the intervals [0, 5] and
|
||
(5, infinity). In the first interval the following rational
|
||
approximation is used:
|
||
|
||
|
||
2 2
|
||
(w - r ) (w - r ) P (w) / Q (w)
|
||
1 2 3 8
|
||
|
||
2
|
||
where w = x and the two r's are zeros of the function.
|
||
|
||
In the second interval, the Hankel asymptotic expansion
|
||
is employed with two rational functions of degree 6/6
|
||
and 7/7.
|
||
|
||
ACCURACY:
|
||
|
||
Absolute error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0, 30 60000 4.2e-16 1.1e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double besselj0(const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::besselj0(x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Bessel function of order one
|
||
|
||
Returns Bessel function of order one of the argument.
|
||
|
||
The domain is divided into the intervals [0, 8] and
|
||
(8, infinity). In the first interval a 24 term Chebyshev
|
||
expansion is used. In the second, the asymptotic
|
||
trigonometric representation is employed using two
|
||
rational functions of degree 5/5.
|
||
|
||
ACCURACY:
|
||
|
||
Absolute error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0, 30 30000 2.6e-16 1.1e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double besselj1(const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::besselj1(x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Bessel function of integer order
|
||
|
||
Returns Bessel function of order n, where n is a
|
||
(possibly negative) integer.
|
||
|
||
The ratio of jn(x) to j0(x) is computed by backward
|
||
recurrence. First the ratio jn/jn-1 is found by a
|
||
continued fraction expansion. Then the recurrence
|
||
relating successive orders is applied until j0 or j1 is
|
||
reached.
|
||
|
||
If n = 0 or 1 the routine for j0 or j1 is called
|
||
directly.
|
||
|
||
ACCURACY:
|
||
|
||
Absolute error:
|
||
arithmetic range # trials peak rms
|
||
IEEE 0, 30 5000 4.4e-16 7.9e-17
|
||
|
||
|
||
Not suitable for large n or x. Use jv() (fractional order) instead.
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double besseljn(const ae_int_t n, const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::besseljn(n, x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Bessel function of the second kind, order zero
|
||
|
||
Returns Bessel function of the second kind, of order
|
||
zero, of the argument.
|
||
|
||
The domain is divided into the intervals [0, 5] and
|
||
(5, infinity). In the first interval a rational approximation
|
||
R(x) is employed to compute
|
||
y0(x) = R(x) + 2 * log(x) * j0(x) / PI.
|
||
Thus a call to j0() is required.
|
||
|
||
In the second interval, the Hankel asymptotic expansion
|
||
is employed with two rational functions of degree 6/6
|
||
and 7/7.
|
||
|
||
|
||
|
||
ACCURACY:
|
||
|
||
Absolute error, when y0(x) < 1; else relative error:
|
||
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0, 30 30000 1.3e-15 1.6e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double bessely0(const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::bessely0(x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Bessel function of second kind of order one
|
||
|
||
Returns Bessel function of the second kind of order one
|
||
of the argument.
|
||
|
||
The domain is divided into the intervals [0, 8] and
|
||
(8, infinity). In the first interval a 25 term Chebyshev
|
||
expansion is used, and a call to j1() is required.
|
||
In the second, the asymptotic trigonometric representation
|
||
is employed using two rational functions of degree 5/5.
|
||
|
||
ACCURACY:
|
||
|
||
Absolute error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0, 30 30000 1.0e-15 1.3e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double bessely1(const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::bessely1(x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Bessel function of second kind of integer order
|
||
|
||
Returns Bessel function of order n, where n is a
|
||
(possibly negative) integer.
|
||
|
||
The function is evaluated by forward recurrence on
|
||
n, starting with values computed by the routines
|
||
y0() and y1().
|
||
|
||
If n = 0 or 1 the routine for y0 or y1 is called
|
||
directly.
|
||
|
||
ACCURACY:
|
||
Absolute error, except relative
|
||
when y > 1:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0, 30 30000 3.4e-15 4.3e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double besselyn(const ae_int_t n, const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::besselyn(n, x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Modified Bessel function of order zero
|
||
|
||
Returns modified Bessel function of order zero of the
|
||
argument.
|
||
|
||
The function is defined as i0(x) = j0( ix ).
|
||
|
||
The range is partitioned into the two intervals [0,8] and
|
||
(8, infinity). Chebyshev polynomial expansions are employed
|
||
in each interval.
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0,30 30000 5.8e-16 1.4e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double besseli0(const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::besseli0(x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Modified Bessel function of order one
|
||
|
||
Returns modified Bessel function of order one of the
|
||
argument.
|
||
|
||
The function is defined as i1(x) = -i j1( ix ).
|
||
|
||
The range is partitioned into the two intervals [0,8] and
|
||
(8, infinity). Chebyshev polynomial expansions are employed
|
||
in each interval.
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0, 30 30000 1.9e-15 2.1e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1985, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double besseli1(const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::besseli1(x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Modified Bessel function, second kind, order zero
|
||
|
||
Returns modified Bessel function of the second kind
|
||
of order zero of the argument.
|
||
|
||
The range is partitioned into the two intervals [0,8] and
|
||
(8, infinity). Chebyshev polynomial expansions are employed
|
||
in each interval.
|
||
|
||
ACCURACY:
|
||
|
||
Tested at 2000 random points between 0 and 8. Peak absolute
|
||
error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15.
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0, 30 30000 1.2e-15 1.6e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double besselk0(const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::besselk0(x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Modified Bessel function, second kind, order one
|
||
|
||
Computes the modified Bessel function of the second kind
|
||
of order one of the argument.
|
||
|
||
The range is partitioned into the two intervals [0,2] and
|
||
(2, infinity). Chebyshev polynomial expansions are employed
|
||
in each interval.
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0, 30 30000 1.2e-15 1.6e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double besselk1(const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::besselk1(x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Modified Bessel function, second kind, integer order
|
||
|
||
Returns modified Bessel function of the second kind
|
||
of order n of the argument.
|
||
|
||
The range is partitioned into the two intervals [0,9.55] and
|
||
(9.55, infinity). An ascending power series is used in the
|
||
low range, and an asymptotic expansion in the high range.
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0,30 90000 1.8e-8 3.0e-10
|
||
|
||
Error is high only near the crossover point x = 9.55
|
||
between the two expansions used.
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1988, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double besselkn(const ae_int_t nn, const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::besselkn(nn, x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Beta function
|
||
|
||
|
||
- -
|
||
| (a) | (b)
|
||
beta( a, b ) = -----------.
|
||
-
|
||
| (a+b)
|
||
|
||
For large arguments the logarithm of the function is
|
||
evaluated using lgam(), then exponentiated.
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0,30 30000 8.1e-14 1.1e-14
|
||
|
||
Cephes Math Library Release 2.0: April, 1987
|
||
Copyright 1984, 1987 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double beta(const double a, const double b)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::beta(a, b, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Incomplete beta integral
|
||
|
||
Returns incomplete beta integral of the arguments, evaluated
|
||
from zero to x. The function is defined as
|
||
|
||
x
|
||
- -
|
||
| (a+b) | | a-1 b-1
|
||
----------- | t (1-t) dt.
|
||
- - | |
|
||
| (a) | (b) -
|
||
0
|
||
|
||
The domain of definition is 0 <= x <= 1. In this
|
||
implementation a and b are restricted to positive values.
|
||
The integral from x to 1 may be obtained by the symmetry
|
||
relation
|
||
|
||
1 - incbet( a, b, x ) = incbet( b, a, 1-x ).
|
||
|
||
The integral is evaluated by a continued fraction expansion
|
||
or, when b*x is small, by a power series.
|
||
|
||
ACCURACY:
|
||
|
||
Tested at uniformly distributed random points (a,b,x) with a and b
|
||
in "domain" and x between 0 and 1.
|
||
Relative error
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0,5 10000 6.9e-15 4.5e-16
|
||
IEEE 0,85 250000 2.2e-13 1.7e-14
|
||
IEEE 0,1000 30000 5.3e-12 6.3e-13
|
||
IEEE 0,10000 250000 9.3e-11 7.1e-12
|
||
IEEE 0,100000 10000 8.7e-10 4.8e-11
|
||
Outputs smaller than the IEEE gradual underflow threshold
|
||
were excluded from these statistics.
|
||
|
||
Cephes Math Library, Release 2.8: June, 2000
|
||
Copyright 1984, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double incompletebeta(const double a, const double b, const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::incompletebeta(a, b, x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Inverse of imcomplete beta integral
|
||
|
||
Given y, the function finds x such that
|
||
|
||
incbet( a, b, x ) = y .
|
||
|
||
The routine performs interval halving or Newton iterations to find the
|
||
root of incbet(a,b,x) - y = 0.
|
||
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
x a,b
|
||
arithmetic domain domain # trials peak rms
|
||
IEEE 0,1 .5,10000 50000 5.8e-12 1.3e-13
|
||
IEEE 0,1 .25,100 100000 1.8e-13 3.9e-15
|
||
IEEE 0,1 0,5 50000 1.1e-12 5.5e-15
|
||
With a and b constrained to half-integer or integer values:
|
||
IEEE 0,1 .5,10000 50000 5.8e-12 1.1e-13
|
||
IEEE 0,1 .5,100 100000 1.7e-14 7.9e-16
|
||
With a = .5, b constrained to half-integer or integer values:
|
||
IEEE 0,1 .5,10000 10000 8.3e-11 1.0e-11
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1996, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double invincompletebeta(const double a, const double b, const double y)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::invincompletebeta(a, b, y, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Binomial distribution
|
||
|
||
Returns the sum of the terms 0 through k of the Binomial
|
||
probability density:
|
||
|
||
k
|
||
-- ( n ) j n-j
|
||
> ( ) p (1-p)
|
||
-- ( j )
|
||
j=0
|
||
|
||
The terms are not summed directly; instead the incomplete
|
||
beta integral is employed, according to the formula
|
||
|
||
y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ).
|
||
|
||
The arguments must be positive, with p ranging from 0 to 1.
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random points (a,b,p), with p between 0 and 1.
|
||
|
||
a,b Relative error:
|
||
arithmetic domain # trials peak rms
|
||
For p between 0.001 and 1:
|
||
IEEE 0,100 100000 4.3e-15 2.6e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double binomialdistribution(const ae_int_t k, const ae_int_t n, const double p)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::binomialdistribution(k, n, p, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Complemented binomial distribution
|
||
|
||
Returns the sum of the terms k+1 through n of the Binomial
|
||
probability density:
|
||
|
||
n
|
||
-- ( n ) j n-j
|
||
> ( ) p (1-p)
|
||
-- ( j )
|
||
j=k+1
|
||
|
||
The terms are not summed directly; instead the incomplete
|
||
beta integral is employed, according to the formula
|
||
|
||
y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ).
|
||
|
||
The arguments must be positive, with p ranging from 0 to 1.
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random points (a,b,p).
|
||
|
||
a,b Relative error:
|
||
arithmetic domain # trials peak rms
|
||
For p between 0.001 and 1:
|
||
IEEE 0,100 100000 6.7e-15 8.2e-16
|
||
For p between 0 and .001:
|
||
IEEE 0,100 100000 1.5e-13 2.7e-15
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double binomialcdistribution(const ae_int_t k, const ae_int_t n, const double p)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::binomialcdistribution(k, n, p, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Inverse binomial distribution
|
||
|
||
Finds the event probability p such that the sum of the
|
||
terms 0 through k of the Binomial probability density
|
||
is equal to the given cumulative probability y.
|
||
|
||
This is accomplished using the inverse beta integral
|
||
function and the relation
|
||
|
||
1 - p = incbi( n-k, k+1, y ).
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random points (a,b,p).
|
||
|
||
a,b Relative error:
|
||
arithmetic domain # trials peak rms
|
||
For p between 0.001 and 1:
|
||
IEEE 0,100 100000 2.3e-14 6.4e-16
|
||
IEEE 0,10000 100000 6.6e-12 1.2e-13
|
||
For p between 10^-6 and 0.001:
|
||
IEEE 0,100 100000 2.0e-12 1.3e-14
|
||
IEEE 0,10000 100000 1.5e-12 3.2e-14
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double invbinomialdistribution(const ae_int_t k, const ae_int_t n, const double y)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::invbinomialdistribution(k, n, y, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Calculation of the value of the Chebyshev polynomials of the
|
||
first and second kinds.
|
||
|
||
Parameters:
|
||
r - polynomial kind, either 1 or 2.
|
||
n - degree, n>=0
|
||
x - argument, -1 <= x <= 1
|
||
|
||
Result:
|
||
the value of the Chebyshev polynomial at x
|
||
*************************************************************************/
|
||
double chebyshevcalculate(const ae_int_t r, const ae_int_t n, const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::chebyshevcalculate(r, n, x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Summation of Chebyshev polynomials using Clenshaw<61>s recurrence formula.
|
||
|
||
This routine calculates
|
||
c[0]*T0(x) + c[1]*T1(x) + ... + c[N]*TN(x)
|
||
or
|
||
c[0]*U0(x) + c[1]*U1(x) + ... + c[N]*UN(x)
|
||
depending on the R.
|
||
|
||
Parameters:
|
||
r - polynomial kind, either 1 or 2.
|
||
n - degree, n>=0
|
||
x - argument
|
||
|
||
Result:
|
||
the value of the Chebyshev polynomial at x
|
||
*************************************************************************/
|
||
double chebyshevsum(const real_1d_array &c, const ae_int_t r, const ae_int_t n, const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::chebyshevsum(const_cast<alglib_impl::ae_vector*>(c.c_ptr()), r, n, x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Representation of Tn as C[0] + C[1]*X + ... + C[N]*X^N
|
||
|
||
Input parameters:
|
||
N - polynomial degree, n>=0
|
||
|
||
Output parameters:
|
||
C - coefficients
|
||
*************************************************************************/
|
||
void chebyshevcoefficients(const ae_int_t n, real_1d_array &c)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
alglib_impl::chebyshevcoefficients(n, const_cast<alglib_impl::ae_vector*>(c.c_ptr()), &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return;
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Conversion of a series of Chebyshev polynomials to a power series.
|
||
|
||
Represents A[0]*T0(x) + A[1]*T1(x) + ... + A[N]*Tn(x) as
|
||
B[0] + B[1]*X + ... + B[N]*X^N.
|
||
|
||
Input parameters:
|
||
A - Chebyshev series coefficients
|
||
N - degree, N>=0
|
||
|
||
Output parameters
|
||
B - power series coefficients
|
||
*************************************************************************/
|
||
void fromchebyshev(const real_1d_array &a, const ae_int_t n, real_1d_array &b)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
alglib_impl::fromchebyshev(const_cast<alglib_impl::ae_vector*>(a.c_ptr()), n, const_cast<alglib_impl::ae_vector*>(b.c_ptr()), &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return;
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Chi-square distribution
|
||
|
||
Returns the area under the left hand tail (from 0 to x)
|
||
of the Chi square probability density function with
|
||
v degrees of freedom.
|
||
|
||
|
||
x
|
||
-
|
||
1 | | v/2-1 -t/2
|
||
P( x | v ) = ----------- | t e dt
|
||
v/2 - | |
|
||
2 | (v/2) -
|
||
0
|
||
|
||
where x is the Chi-square variable.
|
||
|
||
The incomplete gamma integral is used, according to the
|
||
formula
|
||
|
||
y = chdtr( v, x ) = igam( v/2.0, x/2.0 ).
|
||
|
||
The arguments must both be positive.
|
||
|
||
ACCURACY:
|
||
|
||
See incomplete gamma function
|
||
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double chisquaredistribution(const double v, const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::chisquaredistribution(v, x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Complemented Chi-square distribution
|
||
|
||
Returns the area under the right hand tail (from x to
|
||
infinity) of the Chi square probability density function
|
||
with v degrees of freedom:
|
||
|
||
inf.
|
||
-
|
||
1 | | v/2-1 -t/2
|
||
P( x | v ) = ----------- | t e dt
|
||
v/2 - | |
|
||
2 | (v/2) -
|
||
x
|
||
|
||
where x is the Chi-square variable.
|
||
|
||
The incomplete gamma integral is used, according to the
|
||
formula
|
||
|
||
y = chdtr( v, x ) = igamc( v/2.0, x/2.0 ).
|
||
|
||
The arguments must both be positive.
|
||
|
||
ACCURACY:
|
||
|
||
See incomplete gamma function
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double chisquarecdistribution(const double v, const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::chisquarecdistribution(v, x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Inverse of complemented Chi-square distribution
|
||
|
||
Finds the Chi-square argument x such that the integral
|
||
from x to infinity of the Chi-square density is equal
|
||
to the given cumulative probability y.
|
||
|
||
This is accomplished using the inverse gamma integral
|
||
function and the relation
|
||
|
||
x/2 = igami( df/2, y );
|
||
|
||
ACCURACY:
|
||
|
||
See inverse incomplete gamma function
|
||
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double invchisquaredistribution(const double v, const double y)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::invchisquaredistribution(v, y, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Dawson's Integral
|
||
|
||
Approximates the integral
|
||
|
||
x
|
||
-
|
||
2 | | 2
|
||
dawsn(x) = exp( -x ) | exp( t ) dt
|
||
| |
|
||
-
|
||
0
|
||
|
||
Three different rational approximations are employed, for
|
||
the intervals 0 to 3.25; 3.25 to 6.25; and 6.25 up.
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0,10 10000 6.9e-16 1.0e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double dawsonintegral(const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::dawsonintegral(x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Complete elliptic integral of the first kind
|
||
|
||
Approximates the integral
|
||
|
||
|
||
|
||
pi/2
|
||
-
|
||
| |
|
||
| dt
|
||
K(m) = | ------------------
|
||
| 2
|
||
| | sqrt( 1 - m sin t )
|
||
-
|
||
0
|
||
|
||
using the approximation
|
||
|
||
P(x) - log x Q(x).
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0,1 30000 2.5e-16 6.8e-17
|
||
|
||
Cephes Math Library, Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double ellipticintegralk(const double m)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::ellipticintegralk(m, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Complete elliptic integral of the first kind
|
||
|
||
Approximates the integral
|
||
|
||
|
||
|
||
pi/2
|
||
-
|
||
| |
|
||
| dt
|
||
K(m) = | ------------------
|
||
| 2
|
||
| | sqrt( 1 - m sin t )
|
||
-
|
||
0
|
||
|
||
where m = 1 - m1, using the approximation
|
||
|
||
P(x) - log x Q(x).
|
||
|
||
The argument m1 is used rather than m so that the logarithmic
|
||
singularity at m = 1 will be shifted to the origin; this
|
||
preserves maximum accuracy.
|
||
|
||
K(0) = pi/2.
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0,1 30000 2.5e-16 6.8e-17
|
||
|
||
<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Cephes
|
||
*************************************************************************/
|
||
double ellipticintegralkhighprecision(const double m1)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::ellipticintegralkhighprecision(m1, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Incomplete elliptic integral of the first kind F(phi|m)
|
||
|
||
Approximates the integral
|
||
|
||
|
||
|
||
phi
|
||
-
|
||
| |
|
||
| dt
|
||
F(phi_\m) = | ------------------
|
||
| 2
|
||
| | sqrt( 1 - m sin t )
|
||
-
|
||
0
|
||
|
||
of amplitude phi and modulus m, using the arithmetic -
|
||
geometric mean algorithm.
|
||
|
||
|
||
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random points with m in [0, 1] and phi as indicated.
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE -10,10 200000 7.4e-16 1.0e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double incompleteellipticintegralk(const double phi, const double m)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::incompleteellipticintegralk(phi, m, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Complete elliptic integral of the second kind
|
||
|
||
Approximates the integral
|
||
|
||
|
||
pi/2
|
||
-
|
||
| | 2
|
||
E(m) = | sqrt( 1 - m sin t ) dt
|
||
| |
|
||
-
|
||
0
|
||
|
||
using the approximation
|
||
|
||
P(x) - x log x Q(x).
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0, 1 10000 2.1e-16 7.3e-17
|
||
|
||
Cephes Math Library, Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double ellipticintegrale(const double m)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::ellipticintegrale(m, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Incomplete elliptic integral of the second kind
|
||
|
||
Approximates the integral
|
||
|
||
|
||
phi
|
||
-
|
||
| |
|
||
| 2
|
||
E(phi_\m) = | sqrt( 1 - m sin t ) dt
|
||
|
|
||
| |
|
||
-
|
||
0
|
||
|
||
of amplitude phi and modulus m, using the arithmetic -
|
||
geometric mean algorithm.
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random arguments with phi in [-10, 10] and m in
|
||
[0, 1].
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE -10,10 150000 3.3e-15 1.4e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1993, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double incompleteellipticintegrale(const double phi, const double m)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::incompleteellipticintegrale(phi, m, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Exponential integral Ei(x)
|
||
|
||
x
|
||
- t
|
||
| | e
|
||
Ei(x) = -|- --- dt .
|
||
| | t
|
||
-
|
||
-inf
|
||
|
||
Not defined for x <= 0.
|
||
See also expn.c.
|
||
|
||
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0,100 50000 8.6e-16 1.3e-16
|
||
|
||
Cephes Math Library Release 2.8: May, 1999
|
||
Copyright 1999 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double exponentialintegralei(const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::exponentialintegralei(x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Exponential integral En(x)
|
||
|
||
Evaluates the exponential integral
|
||
|
||
inf.
|
||
-
|
||
| | -xt
|
||
| e
|
||
E (x) = | ---- dt.
|
||
n | n
|
||
| | t
|
||
-
|
||
1
|
||
|
||
|
||
Both n and x must be nonnegative.
|
||
|
||
The routine employs either a power series, a continued
|
||
fraction, or an asymptotic formula depending on the
|
||
relative values of n and x.
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0, 30 10000 1.7e-15 3.6e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1985, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double exponentialintegralen(const double x, const ae_int_t n)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::exponentialintegralen(x, n, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
F distribution
|
||
|
||
Returns the area from zero to x under the F density
|
||
function (also known as Snedcor's density or the
|
||
variance ratio density). This is the density
|
||
of x = (u1/df1)/(u2/df2), where u1 and u2 are random
|
||
variables having Chi square distributions with df1
|
||
and df2 degrees of freedom, respectively.
|
||
The incomplete beta integral is used, according to the
|
||
formula
|
||
|
||
P(x) = incbet( df1/2, df2/2, (df1*x/(df2 + df1*x) ).
|
||
|
||
|
||
The arguments a and b are greater than zero, and x is
|
||
nonnegative.
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random points (a,b,x).
|
||
|
||
x a,b Relative error:
|
||
arithmetic domain domain # trials peak rms
|
||
IEEE 0,1 0,100 100000 9.8e-15 1.7e-15
|
||
IEEE 1,5 0,100 100000 6.5e-15 3.5e-16
|
||
IEEE 0,1 1,10000 100000 2.2e-11 3.3e-12
|
||
IEEE 1,5 1,10000 100000 1.1e-11 1.7e-13
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double fdistribution(const ae_int_t a, const ae_int_t b, const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::fdistribution(a, b, x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Complemented F distribution
|
||
|
||
Returns the area from x to infinity under the F density
|
||
function (also known as Snedcor's density or the
|
||
variance ratio density).
|
||
|
||
|
||
inf.
|
||
-
|
||
1 | | a-1 b-1
|
||
1-P(x) = ------ | t (1-t) dt
|
||
B(a,b) | |
|
||
-
|
||
x
|
||
|
||
|
||
The incomplete beta integral is used, according to the
|
||
formula
|
||
|
||
P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ).
|
||
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random points (a,b,x) in the indicated intervals.
|
||
x a,b Relative error:
|
||
arithmetic domain domain # trials peak rms
|
||
IEEE 0,1 1,100 100000 3.7e-14 5.9e-16
|
||
IEEE 1,5 1,100 100000 8.0e-15 1.6e-15
|
||
IEEE 0,1 1,10000 100000 1.8e-11 3.5e-13
|
||
IEEE 1,5 1,10000 100000 2.0e-11 3.0e-12
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double fcdistribution(const ae_int_t a, const ae_int_t b, const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::fcdistribution(a, b, x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Inverse of complemented F distribution
|
||
|
||
Finds the F density argument x such that the integral
|
||
from x to infinity of the F density is equal to the
|
||
given probability p.
|
||
|
||
This is accomplished using the inverse beta integral
|
||
function and the relations
|
||
|
||
z = incbi( df2/2, df1/2, p )
|
||
x = df2 (1-z) / (df1 z).
|
||
|
||
Note: the following relations hold for the inverse of
|
||
the uncomplemented F distribution:
|
||
|
||
z = incbi( df1/2, df2/2, p )
|
||
x = df2 z / (df1 (1-z)).
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random points (a,b,p).
|
||
|
||
a,b Relative error:
|
||
arithmetic domain # trials peak rms
|
||
For p between .001 and 1:
|
||
IEEE 1,100 100000 8.3e-15 4.7e-16
|
||
IEEE 1,10000 100000 2.1e-11 1.4e-13
|
||
For p between 10^-6 and 10^-3:
|
||
IEEE 1,100 50000 1.3e-12 8.4e-15
|
||
IEEE 1,10000 50000 3.0e-12 4.8e-14
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double invfdistribution(const ae_int_t a, const ae_int_t b, const double y)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::invfdistribution(a, b, y, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Fresnel integral
|
||
|
||
Evaluates the Fresnel integrals
|
||
|
||
x
|
||
-
|
||
| |
|
||
C(x) = | cos(pi/2 t**2) dt,
|
||
| |
|
||
-
|
||
0
|
||
|
||
x
|
||
-
|
||
| |
|
||
S(x) = | sin(pi/2 t**2) dt.
|
||
| |
|
||
-
|
||
0
|
||
|
||
|
||
The integrals are evaluated by a power series for x < 1.
|
||
For x >= 1 auxiliary functions f(x) and g(x) are employed
|
||
such that
|
||
|
||
C(x) = 0.5 + f(x) sin( pi/2 x**2 ) - g(x) cos( pi/2 x**2 )
|
||
S(x) = 0.5 - f(x) cos( pi/2 x**2 ) - g(x) sin( pi/2 x**2 )
|
||
|
||
|
||
|
||
ACCURACY:
|
||
|
||
Relative error.
|
||
|
||
Arithmetic function domain # trials peak rms
|
||
IEEE S(x) 0, 10 10000 2.0e-15 3.2e-16
|
||
IEEE C(x) 0, 10 10000 1.8e-15 3.3e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
void fresnelintegral(const double x, double &c, double &s)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
alglib_impl::fresnelintegral(x, &c, &s, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return;
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Calculation of the value of the Hermite polynomial.
|
||
|
||
Parameters:
|
||
n - degree, n>=0
|
||
x - argument
|
||
|
||
Result:
|
||
the value of the Hermite polynomial Hn at x
|
||
*************************************************************************/
|
||
double hermitecalculate(const ae_int_t n, const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::hermitecalculate(n, x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Summation of Hermite polynomials using Clenshaw<61>s recurrence formula.
|
||
|
||
This routine calculates
|
||
c[0]*H0(x) + c[1]*H1(x) + ... + c[N]*HN(x)
|
||
|
||
Parameters:
|
||
n - degree, n>=0
|
||
x - argument
|
||
|
||
Result:
|
||
the value of the Hermite polynomial at x
|
||
*************************************************************************/
|
||
double hermitesum(const real_1d_array &c, const ae_int_t n, const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::hermitesum(const_cast<alglib_impl::ae_vector*>(c.c_ptr()), n, x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Representation of Hn as C[0] + C[1]*X + ... + C[N]*X^N
|
||
|
||
Input parameters:
|
||
N - polynomial degree, n>=0
|
||
|
||
Output parameters:
|
||
C - coefficients
|
||
*************************************************************************/
|
||
void hermitecoefficients(const ae_int_t n, real_1d_array &c)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
alglib_impl::hermitecoefficients(n, const_cast<alglib_impl::ae_vector*>(c.c_ptr()), &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return;
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Jacobian Elliptic Functions
|
||
|
||
Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m),
|
||
and dn(u|m) of parameter m between 0 and 1, and real
|
||
argument u.
|
||
|
||
These functions are periodic, with quarter-period on the
|
||
real axis equal to the complete elliptic integral
|
||
ellpk(1.0-m).
|
||
|
||
Relation to incomplete elliptic integral:
|
||
If u = ellik(phi,m), then sn(u|m) = sin(phi),
|
||
and cn(u|m) = cos(phi). Phi is called the amplitude of u.
|
||
|
||
Computation is by means of the arithmetic-geometric mean
|
||
algorithm, except when m is within 1e-9 of 0 or 1. In the
|
||
latter case with m close to 1, the approximation applies
|
||
only for phi < pi/2.
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random points with u between 0 and 10, m between
|
||
0 and 1.
|
||
|
||
Absolute error (* = relative error):
|
||
arithmetic function # trials peak rms
|
||
IEEE phi 10000 9.2e-16* 1.4e-16*
|
||
IEEE sn 50000 4.1e-15 4.6e-16
|
||
IEEE cn 40000 3.6e-15 4.4e-16
|
||
IEEE dn 10000 1.3e-12 1.8e-14
|
||
|
||
Peak error observed in consistency check using addition
|
||
theorem for sn(u+v) was 4e-16 (absolute). Also tested by
|
||
the above relation to the incomplete elliptic integral.
|
||
Accuracy deteriorates when u is large.
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
void jacobianellipticfunctions(const double u, const double m, double &sn, double &cn, double &dn, double &ph)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
alglib_impl::jacobianellipticfunctions(u, m, &sn, &cn, &dn, &ph, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return;
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Calculation of the value of the Laguerre polynomial.
|
||
|
||
Parameters:
|
||
n - degree, n>=0
|
||
x - argument
|
||
|
||
Result:
|
||
the value of the Laguerre polynomial Ln at x
|
||
*************************************************************************/
|
||
double laguerrecalculate(const ae_int_t n, const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::laguerrecalculate(n, x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Summation of Laguerre polynomials using Clenshaw<61>s recurrence formula.
|
||
|
||
This routine calculates c[0]*L0(x) + c[1]*L1(x) + ... + c[N]*LN(x)
|
||
|
||
Parameters:
|
||
n - degree, n>=0
|
||
x - argument
|
||
|
||
Result:
|
||
the value of the Laguerre polynomial at x
|
||
*************************************************************************/
|
||
double laguerresum(const real_1d_array &c, const ae_int_t n, const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::laguerresum(const_cast<alglib_impl::ae_vector*>(c.c_ptr()), n, x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Representation of Ln as C[0] + C[1]*X + ... + C[N]*X^N
|
||
|
||
Input parameters:
|
||
N - polynomial degree, n>=0
|
||
|
||
Output parameters:
|
||
C - coefficients
|
||
*************************************************************************/
|
||
void laguerrecoefficients(const ae_int_t n, real_1d_array &c)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
alglib_impl::laguerrecoefficients(n, const_cast<alglib_impl::ae_vector*>(c.c_ptr()), &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return;
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Calculation of the value of the Legendre polynomial Pn.
|
||
|
||
Parameters:
|
||
n - degree, n>=0
|
||
x - argument
|
||
|
||
Result:
|
||
the value of the Legendre polynomial Pn at x
|
||
*************************************************************************/
|
||
double legendrecalculate(const ae_int_t n, const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::legendrecalculate(n, x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Summation of Legendre polynomials using Clenshaw<61>s recurrence formula.
|
||
|
||
This routine calculates
|
||
c[0]*P0(x) + c[1]*P1(x) + ... + c[N]*PN(x)
|
||
|
||
Parameters:
|
||
n - degree, n>=0
|
||
x - argument
|
||
|
||
Result:
|
||
the value of the Legendre polynomial at x
|
||
*************************************************************************/
|
||
double legendresum(const real_1d_array &c, const ae_int_t n, const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::legendresum(const_cast<alglib_impl::ae_vector*>(c.c_ptr()), n, x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Representation of Pn as C[0] + C[1]*X + ... + C[N]*X^N
|
||
|
||
Input parameters:
|
||
N - polynomial degree, n>=0
|
||
|
||
Output parameters:
|
||
C - coefficients
|
||
*************************************************************************/
|
||
void legendrecoefficients(const ae_int_t n, real_1d_array &c)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
alglib_impl::legendrecoefficients(n, const_cast<alglib_impl::ae_vector*>(c.c_ptr()), &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return;
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Poisson distribution
|
||
|
||
Returns the sum of the first k+1 terms of the Poisson
|
||
distribution:
|
||
|
||
k j
|
||
-- -m m
|
||
> e --
|
||
-- j!
|
||
j=0
|
||
|
||
The terms are not summed directly; instead the incomplete
|
||
gamma integral is employed, according to the relation
|
||
|
||
y = pdtr( k, m ) = igamc( k+1, m ).
|
||
|
||
The arguments must both be positive.
|
||
ACCURACY:
|
||
|
||
See incomplete gamma function
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double poissondistribution(const ae_int_t k, const double m)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::poissondistribution(k, m, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Complemented Poisson distribution
|
||
|
||
Returns the sum of the terms k+1 to infinity of the Poisson
|
||
distribution:
|
||
|
||
inf. j
|
||
-- -m m
|
||
> e --
|
||
-- j!
|
||
j=k+1
|
||
|
||
The terms are not summed directly; instead the incomplete
|
||
gamma integral is employed, according to the formula
|
||
|
||
y = pdtrc( k, m ) = igam( k+1, m ).
|
||
|
||
The arguments must both be positive.
|
||
|
||
ACCURACY:
|
||
|
||
See incomplete gamma function
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double poissoncdistribution(const ae_int_t k, const double m)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::poissoncdistribution(k, m, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Inverse Poisson distribution
|
||
|
||
Finds the Poisson variable x such that the integral
|
||
from 0 to x of the Poisson density is equal to the
|
||
given probability y.
|
||
|
||
This is accomplished using the inverse gamma integral
|
||
function and the relation
|
||
|
||
m = igami( k+1, y ).
|
||
|
||
ACCURACY:
|
||
|
||
See inverse incomplete gamma function
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double invpoissondistribution(const ae_int_t k, const double y)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::invpoissondistribution(k, y, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Psi (digamma) function
|
||
|
||
d -
|
||
psi(x) = -- ln | (x)
|
||
dx
|
||
|
||
is the logarithmic derivative of the gamma function.
|
||
For integer x,
|
||
n-1
|
||
-
|
||
psi(n) = -EUL + > 1/k.
|
||
-
|
||
k=1
|
||
|
||
This formula is used for 0 < n <= 10. If x is negative, it
|
||
is transformed to a positive argument by the reflection
|
||
formula psi(1-x) = psi(x) + pi cot(pi x).
|
||
For general positive x, the argument is made greater than 10
|
||
using the recurrence psi(x+1) = psi(x) + 1/x.
|
||
Then the following asymptotic expansion is applied:
|
||
|
||
inf. B
|
||
- 2k
|
||
psi(x) = log(x) - 1/2x - > -------
|
||
- 2k
|
||
k=1 2k x
|
||
|
||
where the B2k are Bernoulli numbers.
|
||
|
||
ACCURACY:
|
||
Relative error (except absolute when |psi| < 1):
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0,30 30000 1.3e-15 1.4e-16
|
||
IEEE -30,0 40000 1.5e-15 2.2e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double psi(const double x)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::psi(x, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Student's t distribution
|
||
|
||
Computes the integral from minus infinity to t of the Student
|
||
t distribution with integer k > 0 degrees of freedom:
|
||
|
||
t
|
||
-
|
||
| |
|
||
- | 2 -(k+1)/2
|
||
| ( (k+1)/2 ) | ( x )
|
||
---------------------- | ( 1 + --- ) dx
|
||
- | ( k )
|
||
sqrt( k pi ) | ( k/2 ) |
|
||
| |
|
||
-
|
||
-inf.
|
||
|
||
Relation to incomplete beta integral:
|
||
|
||
1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z )
|
||
where
|
||
z = k/(k + t**2).
|
||
|
||
For t < -2, this is the method of computation. For higher t,
|
||
a direct method is derived from integration by parts.
|
||
Since the function is symmetric about t=0, the area under the
|
||
right tail of the density is found by calling the function
|
||
with -t instead of t.
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random 1 <= k <= 25. The "domain" refers to t.
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE -100,-2 50000 5.9e-15 1.4e-15
|
||
IEEE -2,100 500000 2.7e-15 4.9e-17
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double studenttdistribution(const ae_int_t k, const double t)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::studenttdistribution(k, t, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Functional inverse of Student's t distribution
|
||
|
||
Given probability p, finds the argument t such that stdtr(k,t)
|
||
is equal to p.
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random 1 <= k <= 100. The "domain" refers to p:
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE .001,.999 25000 5.7e-15 8.0e-16
|
||
IEEE 10^-6,.001 25000 2.0e-12 2.9e-14
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double invstudenttdistribution(const ae_int_t k, const double p)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
double result = alglib_impl::invstudenttdistribution(k, p, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return *(reinterpret_cast<double*>(&result));
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Sine and cosine integrals
|
||
|
||
Evaluates the integrals
|
||
|
||
x
|
||
-
|
||
| cos t - 1
|
||
Ci(x) = eul + ln x + | --------- dt,
|
||
| t
|
||
-
|
||
0
|
||
x
|
||
-
|
||
| sin t
|
||
Si(x) = | ----- dt
|
||
| t
|
||
-
|
||
0
|
||
|
||
where eul = 0.57721566490153286061 is Euler's constant.
|
||
The integrals are approximated by rational functions.
|
||
For x > 8 auxiliary functions f(x) and g(x) are employed
|
||
such that
|
||
|
||
Ci(x) = f(x) sin(x) - g(x) cos(x)
|
||
Si(x) = pi/2 - f(x) cos(x) - g(x) sin(x)
|
||
|
||
|
||
ACCURACY:
|
||
Test interval = [0,50].
|
||
Absolute error, except relative when > 1:
|
||
arithmetic function # trials peak rms
|
||
IEEE Si 30000 4.4e-16 7.3e-17
|
||
IEEE Ci 30000 6.9e-16 5.1e-17
|
||
|
||
Cephes Math Library Release 2.1: January, 1989
|
||
Copyright 1984, 1987, 1989 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
void sinecosineintegrals(const double x, double &si, double &ci)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
alglib_impl::sinecosineintegrals(x, &si, &ci, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return;
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
|
||
/*************************************************************************
|
||
Hyperbolic sine and cosine integrals
|
||
|
||
Approximates the integrals
|
||
|
||
x
|
||
-
|
||
| | cosh t - 1
|
||
Chi(x) = eul + ln x + | ----------- dt,
|
||
| | t
|
||
-
|
||
0
|
||
|
||
x
|
||
-
|
||
| | sinh t
|
||
Shi(x) = | ------ dt
|
||
| | t
|
||
-
|
||
0
|
||
|
||
where eul = 0.57721566490153286061 is Euler's constant.
|
||
The integrals are evaluated by power series for x < 8
|
||
and by Chebyshev expansions for x between 8 and 88.
|
||
For large x, both functions approach exp(x)/2x.
|
||
Arguments greater than 88 in magnitude return MAXNUM.
|
||
|
||
|
||
ACCURACY:
|
||
|
||
Test interval 0 to 88.
|
||
Relative error:
|
||
arithmetic function # trials peak rms
|
||
IEEE Shi 30000 6.9e-16 1.6e-16
|
||
Absolute error, except relative when |Chi| > 1:
|
||
IEEE Chi 30000 8.4e-16 1.4e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
void hyperbolicsinecosineintegrals(const double x, double &shi, double &chi)
|
||
{
|
||
alglib_impl::ae_state _alglib_env_state;
|
||
alglib_impl::ae_state_init(&_alglib_env_state);
|
||
try
|
||
{
|
||
alglib_impl::hyperbolicsinecosineintegrals(x, &shi, &chi, &_alglib_env_state);
|
||
alglib_impl::ae_state_clear(&_alglib_env_state);
|
||
return;
|
||
}
|
||
catch(alglib_impl::ae_error_type)
|
||
{
|
||
throw ap_error(_alglib_env_state.error_msg);
|
||
}
|
||
}
|
||
}
|
||
|
||
/////////////////////////////////////////////////////////////////////////
|
||
//
|
||
// THIS SECTION CONTAINS IMPLEMENTATION OF COMPUTATIONAL CORE
|
||
//
|
||
/////////////////////////////////////////////////////////////////////////
|
||
namespace alglib_impl
|
||
{
|
||
static double gammafunc_gammastirf(double x, ae_state *_state);
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
static void bessel_besselmfirstcheb(double c,
|
||
double* b0,
|
||
double* b1,
|
||
double* b2,
|
||
ae_state *_state);
|
||
static void bessel_besselmnextcheb(double x,
|
||
double c,
|
||
double* b0,
|
||
double* b1,
|
||
double* b2,
|
||
ae_state *_state);
|
||
static void bessel_besselm1firstcheb(double c,
|
||
double* b0,
|
||
double* b1,
|
||
double* b2,
|
||
ae_state *_state);
|
||
static void bessel_besselm1nextcheb(double x,
|
||
double c,
|
||
double* b0,
|
||
double* b1,
|
||
double* b2,
|
||
ae_state *_state);
|
||
static void bessel_besselasympt0(double x,
|
||
double* pzero,
|
||
double* qzero,
|
||
ae_state *_state);
|
||
static void bessel_besselasympt1(double x,
|
||
double* pzero,
|
||
double* qzero,
|
||
ae_state *_state);
|
||
|
||
|
||
|
||
|
||
static double ibetaf_incompletebetafe(double a,
|
||
double b,
|
||
double x,
|
||
double big,
|
||
double biginv,
|
||
ae_state *_state);
|
||
static double ibetaf_incompletebetafe2(double a,
|
||
double b,
|
||
double x,
|
||
double big,
|
||
double biginv,
|
||
ae_state *_state);
|
||
static double ibetaf_incompletebetaps(double a,
|
||
double b,
|
||
double x,
|
||
double maxgam,
|
||
ae_state *_state);
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
static void trigintegrals_chebiterationshichi(double x,
|
||
double c,
|
||
double* b0,
|
||
double* b1,
|
||
double* b2,
|
||
ae_state *_state);
|
||
|
||
|
||
|
||
|
||
|
||
/*************************************************************************
|
||
Gamma function
|
||
|
||
Input parameters:
|
||
X - argument
|
||
|
||
Domain:
|
||
0 < X < 171.6
|
||
-170 < X < 0, X is not an integer.
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE -170,-33 20000 2.3e-15 3.3e-16
|
||
IEEE -33, 33 20000 9.4e-16 2.2e-16
|
||
IEEE 33, 171.6 20000 2.3e-15 3.2e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Original copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
|
||
Translated to AlgoPascal by Bochkanov Sergey (2005, 2006, 2007).
|
||
*************************************************************************/
|
||
double gammafunction(double x, ae_state *_state)
|
||
{
|
||
#ifndef ALGLIB_INTERCEPTS_SPECFUNCS
|
||
double p;
|
||
double pp;
|
||
double q;
|
||
double qq;
|
||
double z;
|
||
ae_int_t i;
|
||
double sgngam;
|
||
double result;
|
||
|
||
|
||
sgngam = 1;
|
||
q = ae_fabs(x, _state);
|
||
if( ae_fp_greater(q,33.0) )
|
||
{
|
||
if( ae_fp_less(x,0.0) )
|
||
{
|
||
p = ae_ifloor(q, _state);
|
||
i = ae_round(p, _state);
|
||
if( i%2==0 )
|
||
{
|
||
sgngam = -1;
|
||
}
|
||
z = q-p;
|
||
if( ae_fp_greater(z,0.5) )
|
||
{
|
||
p = p+1;
|
||
z = q-p;
|
||
}
|
||
z = q*ae_sin(ae_pi*z, _state);
|
||
z = ae_fabs(z, _state);
|
||
z = ae_pi/(z*gammafunc_gammastirf(q, _state));
|
||
}
|
||
else
|
||
{
|
||
z = gammafunc_gammastirf(x, _state);
|
||
}
|
||
result = sgngam*z;
|
||
return result;
|
||
}
|
||
z = 1;
|
||
while(ae_fp_greater_eq(x,3))
|
||
{
|
||
x = x-1;
|
||
z = z*x;
|
||
}
|
||
while(ae_fp_less(x,0))
|
||
{
|
||
if( ae_fp_greater(x,-0.000000001) )
|
||
{
|
||
result = z/((1+0.5772156649015329*x)*x);
|
||
return result;
|
||
}
|
||
z = z/x;
|
||
x = x+1;
|
||
}
|
||
while(ae_fp_less(x,2))
|
||
{
|
||
if( ae_fp_less(x,0.000000001) )
|
||
{
|
||
result = z/((1+0.5772156649015329*x)*x);
|
||
return result;
|
||
}
|
||
z = z/x;
|
||
x = x+1.0;
|
||
}
|
||
if( ae_fp_eq(x,2) )
|
||
{
|
||
result = z;
|
||
return result;
|
||
}
|
||
x = x-2.0;
|
||
pp = 1.60119522476751861407E-4;
|
||
pp = 1.19135147006586384913E-3+x*pp;
|
||
pp = 1.04213797561761569935E-2+x*pp;
|
||
pp = 4.76367800457137231464E-2+x*pp;
|
||
pp = 2.07448227648435975150E-1+x*pp;
|
||
pp = 4.94214826801497100753E-1+x*pp;
|
||
pp = 9.99999999999999996796E-1+x*pp;
|
||
qq = -2.31581873324120129819E-5;
|
||
qq = 5.39605580493303397842E-4+x*qq;
|
||
qq = -4.45641913851797240494E-3+x*qq;
|
||
qq = 1.18139785222060435552E-2+x*qq;
|
||
qq = 3.58236398605498653373E-2+x*qq;
|
||
qq = -2.34591795718243348568E-1+x*qq;
|
||
qq = 7.14304917030273074085E-2+x*qq;
|
||
qq = 1.00000000000000000320+x*qq;
|
||
result = z*pp/qq;
|
||
return result;
|
||
#else
|
||
return _ialglib_i_gammafunction(x);
|
||
#endif
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Natural logarithm of gamma function
|
||
|
||
Input parameters:
|
||
X - argument
|
||
|
||
Result:
|
||
logarithm of the absolute value of the Gamma(X).
|
||
|
||
Output parameters:
|
||
SgnGam - sign(Gamma(X))
|
||
|
||
Domain:
|
||
0 < X < 2.55e305
|
||
-2.55e305 < X < 0, X is not an integer.
|
||
|
||
ACCURACY:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0, 3 28000 5.4e-16 1.1e-16
|
||
IEEE 2.718, 2.556e305 40000 3.5e-16 8.3e-17
|
||
The error criterion was relative when the function magnitude
|
||
was greater than one but absolute when it was less than one.
|
||
|
||
The following test used the relative error criterion, though
|
||
at certain points the relative error could be much higher than
|
||
indicated.
|
||
IEEE -200, -4 10000 4.8e-16 1.3e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
|
||
Translated to AlgoPascal by Bochkanov Sergey (2005, 2006, 2007).
|
||
*************************************************************************/
|
||
double lngamma(double x, double* sgngam, ae_state *_state)
|
||
{
|
||
#ifndef ALGLIB_INTERCEPTS_SPECFUNCS
|
||
double a;
|
||
double b;
|
||
double c;
|
||
double p;
|
||
double q;
|
||
double u;
|
||
double w;
|
||
double z;
|
||
ae_int_t i;
|
||
double logpi;
|
||
double ls2pi;
|
||
double tmp;
|
||
double result;
|
||
|
||
*sgngam = 0;
|
||
|
||
*sgngam = 1;
|
||
logpi = 1.14472988584940017414;
|
||
ls2pi = 0.91893853320467274178;
|
||
if( ae_fp_less(x,-34.0) )
|
||
{
|
||
q = -x;
|
||
w = lngamma(q, &tmp, _state);
|
||
p = ae_ifloor(q, _state);
|
||
i = ae_round(p, _state);
|
||
if( i%2==0 )
|
||
{
|
||
*sgngam = -1;
|
||
}
|
||
else
|
||
{
|
||
*sgngam = 1;
|
||
}
|
||
z = q-p;
|
||
if( ae_fp_greater(z,0.5) )
|
||
{
|
||
p = p+1;
|
||
z = p-q;
|
||
}
|
||
z = q*ae_sin(ae_pi*z, _state);
|
||
result = logpi-ae_log(z, _state)-w;
|
||
return result;
|
||
}
|
||
if( ae_fp_less(x,13) )
|
||
{
|
||
z = 1;
|
||
p = 0;
|
||
u = x;
|
||
while(ae_fp_greater_eq(u,3))
|
||
{
|
||
p = p-1;
|
||
u = x+p;
|
||
z = z*u;
|
||
}
|
||
while(ae_fp_less(u,2))
|
||
{
|
||
z = z/u;
|
||
p = p+1;
|
||
u = x+p;
|
||
}
|
||
if( ae_fp_less(z,0) )
|
||
{
|
||
*sgngam = -1;
|
||
z = -z;
|
||
}
|
||
else
|
||
{
|
||
*sgngam = 1;
|
||
}
|
||
if( ae_fp_eq(u,2) )
|
||
{
|
||
result = ae_log(z, _state);
|
||
return result;
|
||
}
|
||
p = p-2;
|
||
x = x+p;
|
||
b = -1378.25152569120859100;
|
||
b = -38801.6315134637840924+x*b;
|
||
b = -331612.992738871184744+x*b;
|
||
b = -1162370.97492762307383+x*b;
|
||
b = -1721737.00820839662146+x*b;
|
||
b = -853555.664245765465627+x*b;
|
||
c = 1;
|
||
c = -351.815701436523470549+x*c;
|
||
c = -17064.2106651881159223+x*c;
|
||
c = -220528.590553854454839+x*c;
|
||
c = -1139334.44367982507207+x*c;
|
||
c = -2532523.07177582951285+x*c;
|
||
c = -2018891.41433532773231+x*c;
|
||
p = x*b/c;
|
||
result = ae_log(z, _state)+p;
|
||
return result;
|
||
}
|
||
q = (x-0.5)*ae_log(x, _state)-x+ls2pi;
|
||
if( ae_fp_greater(x,100000000) )
|
||
{
|
||
result = q;
|
||
return result;
|
||
}
|
||
p = 1/(x*x);
|
||
if( ae_fp_greater_eq(x,1000.0) )
|
||
{
|
||
q = q+((7.9365079365079365079365*0.0001*p-2.7777777777777777777778*0.001)*p+0.0833333333333333333333)/x;
|
||
}
|
||
else
|
||
{
|
||
a = 8.11614167470508450300*0.0001;
|
||
a = -5.95061904284301438324*0.0001+p*a;
|
||
a = 7.93650340457716943945*0.0001+p*a;
|
||
a = -2.77777777730099687205*0.001+p*a;
|
||
a = 8.33333333333331927722*0.01+p*a;
|
||
q = q+a/x;
|
||
}
|
||
result = q;
|
||
return result;
|
||
#else
|
||
return _ialglib_i_lngamma(x, sgngam);
|
||
#endif
|
||
}
|
||
|
||
|
||
static double gammafunc_gammastirf(double x, ae_state *_state)
|
||
{
|
||
double y;
|
||
double w;
|
||
double v;
|
||
double stir;
|
||
double result;
|
||
|
||
|
||
w = 1/x;
|
||
stir = 7.87311395793093628397E-4;
|
||
stir = -2.29549961613378126380E-4+w*stir;
|
||
stir = -2.68132617805781232825E-3+w*stir;
|
||
stir = 3.47222221605458667310E-3+w*stir;
|
||
stir = 8.33333333333482257126E-2+w*stir;
|
||
w = 1+w*stir;
|
||
y = ae_exp(x, _state);
|
||
if( ae_fp_greater(x,143.01608) )
|
||
{
|
||
v = ae_pow(x, 0.5*x-0.25, _state);
|
||
y = v*(v/y);
|
||
}
|
||
else
|
||
{
|
||
y = ae_pow(x, x-0.5, _state)/y;
|
||
}
|
||
result = 2.50662827463100050242*y*w;
|
||
return result;
|
||
}
|
||
|
||
|
||
|
||
|
||
/*************************************************************************
|
||
Error function
|
||
|
||
The integral is
|
||
|
||
x
|
||
-
|
||
2 | | 2
|
||
erf(x) = -------- | exp( - t ) dt.
|
||
sqrt(pi) | |
|
||
-
|
||
0
|
||
|
||
For 0 <= |x| < 1, erf(x) = x * P4(x**2)/Q5(x**2); otherwise
|
||
erf(x) = 1 - erfc(x).
|
||
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0,1 30000 3.7e-16 1.0e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double errorfunction(double x, ae_state *_state)
|
||
{
|
||
double xsq;
|
||
double s;
|
||
double p;
|
||
double q;
|
||
double result;
|
||
|
||
|
||
s = ae_sign(x, _state);
|
||
x = ae_fabs(x, _state);
|
||
if( ae_fp_less(x,0.5) )
|
||
{
|
||
xsq = x*x;
|
||
p = 0.007547728033418631287834;
|
||
p = -0.288805137207594084924010+xsq*p;
|
||
p = 14.3383842191748205576712+xsq*p;
|
||
p = 38.0140318123903008244444+xsq*p;
|
||
p = 3017.82788536507577809226+xsq*p;
|
||
p = 7404.07142710151470082064+xsq*p;
|
||
p = 80437.3630960840172832162+xsq*p;
|
||
q = 0.0;
|
||
q = 1.00000000000000000000000+xsq*q;
|
||
q = 38.0190713951939403753468+xsq*q;
|
||
q = 658.070155459240506326937+xsq*q;
|
||
q = 6379.60017324428279487120+xsq*q;
|
||
q = 34216.5257924628539769006+xsq*q;
|
||
q = 80437.3630960840172826266+xsq*q;
|
||
result = s*1.1283791670955125738961589031*x*p/q;
|
||
return result;
|
||
}
|
||
if( ae_fp_greater_eq(x,10) )
|
||
{
|
||
result = s;
|
||
return result;
|
||
}
|
||
result = s*(1-errorfunctionc(x, _state));
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Complementary error function
|
||
|
||
1 - erf(x) =
|
||
|
||
inf.
|
||
-
|
||
2 | | 2
|
||
erfc(x) = -------- | exp( - t ) dt
|
||
sqrt(pi) | |
|
||
-
|
||
x
|
||
|
||
|
||
For small x, erfc(x) = 1 - erf(x); otherwise rational
|
||
approximations are computed.
|
||
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0,26.6417 30000 5.7e-14 1.5e-14
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double errorfunctionc(double x, ae_state *_state)
|
||
{
|
||
double p;
|
||
double q;
|
||
double result;
|
||
|
||
|
||
if( ae_fp_less(x,0) )
|
||
{
|
||
result = 2-errorfunctionc(-x, _state);
|
||
return result;
|
||
}
|
||
if( ae_fp_less(x,0.5) )
|
||
{
|
||
result = 1.0-errorfunction(x, _state);
|
||
return result;
|
||
}
|
||
if( ae_fp_greater_eq(x,10) )
|
||
{
|
||
result = 0;
|
||
return result;
|
||
}
|
||
p = 0.0;
|
||
p = 0.5641877825507397413087057563+x*p;
|
||
p = 9.675807882987265400604202961+x*p;
|
||
p = 77.08161730368428609781633646+x*p;
|
||
p = 368.5196154710010637133875746+x*p;
|
||
p = 1143.262070703886173606073338+x*p;
|
||
p = 2320.439590251635247384768711+x*p;
|
||
p = 2898.0293292167655611275846+x*p;
|
||
p = 1826.3348842295112592168999+x*p;
|
||
q = 1.0;
|
||
q = 17.14980943627607849376131193+x*q;
|
||
q = 137.1255960500622202878443578+x*q;
|
||
q = 661.7361207107653469211984771+x*q;
|
||
q = 2094.384367789539593790281779+x*q;
|
||
q = 4429.612803883682726711528526+x*q;
|
||
q = 6089.5424232724435504633068+x*q;
|
||
q = 4958.82756472114071495438422+x*q;
|
||
q = 1826.3348842295112595576438+x*q;
|
||
result = ae_exp(-ae_sqr(x, _state), _state)*p/q;
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Normal distribution function
|
||
|
||
Returns the area under the Gaussian probability density
|
||
function, integrated from minus infinity to x:
|
||
|
||
x
|
||
-
|
||
1 | | 2
|
||
ndtr(x) = --------- | exp( - t /2 ) dt
|
||
sqrt(2pi) | |
|
||
-
|
||
-inf.
|
||
|
||
= ( 1 + erf(z) ) / 2
|
||
= erfc(z) / 2
|
||
|
||
where z = x/sqrt(2). Computation is via the functions
|
||
erf and erfc.
|
||
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE -13,0 30000 3.4e-14 6.7e-15
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double normaldistribution(double x, ae_state *_state)
|
||
{
|
||
double result;
|
||
|
||
|
||
result = 0.5*(errorfunction(x/1.41421356237309504880, _state)+1);
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Inverse of the error function
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double inverf(double e, ae_state *_state)
|
||
{
|
||
double result;
|
||
|
||
|
||
result = invnormaldistribution(0.5*(e+1), _state)/ae_sqrt(2, _state);
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Inverse of Normal distribution function
|
||
|
||
Returns the argument, x, for which the area under the
|
||
Gaussian probability density function (integrated from
|
||
minus infinity to x) is equal to y.
|
||
|
||
|
||
For small arguments 0 < y < exp(-2), the program computes
|
||
z = sqrt( -2.0 * log(y) ); then the approximation is
|
||
x = z - log(z)/z - (1/z) P(1/z) / Q(1/z).
|
||
There are two rational functions P/Q, one for 0 < y < exp(-32)
|
||
and the other for y up to exp(-2). For larger arguments,
|
||
w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0.125, 1 20000 7.2e-16 1.3e-16
|
||
IEEE 3e-308, 0.135 50000 4.6e-16 9.8e-17
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double invnormaldistribution(double y0, ae_state *_state)
|
||
{
|
||
double expm2;
|
||
double s2pi;
|
||
double x;
|
||
double y;
|
||
double z;
|
||
double y2;
|
||
double x0;
|
||
double x1;
|
||
ae_int_t code;
|
||
double p0;
|
||
double q0;
|
||
double p1;
|
||
double q1;
|
||
double p2;
|
||
double q2;
|
||
double result;
|
||
|
||
|
||
expm2 = 0.13533528323661269189;
|
||
s2pi = 2.50662827463100050242;
|
||
if( ae_fp_less_eq(y0,0) )
|
||
{
|
||
result = -ae_maxrealnumber;
|
||
return result;
|
||
}
|
||
if( ae_fp_greater_eq(y0,1) )
|
||
{
|
||
result = ae_maxrealnumber;
|
||
return result;
|
||
}
|
||
code = 1;
|
||
y = y0;
|
||
if( ae_fp_greater(y,1.0-expm2) )
|
||
{
|
||
y = 1.0-y;
|
||
code = 0;
|
||
}
|
||
if( ae_fp_greater(y,expm2) )
|
||
{
|
||
y = y-0.5;
|
||
y2 = y*y;
|
||
p0 = -59.9633501014107895267;
|
||
p0 = 98.0010754185999661536+y2*p0;
|
||
p0 = -56.6762857469070293439+y2*p0;
|
||
p0 = 13.9312609387279679503+y2*p0;
|
||
p0 = -1.23916583867381258016+y2*p0;
|
||
q0 = 1;
|
||
q0 = 1.95448858338141759834+y2*q0;
|
||
q0 = 4.67627912898881538453+y2*q0;
|
||
q0 = 86.3602421390890590575+y2*q0;
|
||
q0 = -225.462687854119370527+y2*q0;
|
||
q0 = 200.260212380060660359+y2*q0;
|
||
q0 = -82.0372256168333339912+y2*q0;
|
||
q0 = 15.9056225126211695515+y2*q0;
|
||
q0 = -1.18331621121330003142+y2*q0;
|
||
x = y+y*y2*p0/q0;
|
||
x = x*s2pi;
|
||
result = x;
|
||
return result;
|
||
}
|
||
x = ae_sqrt(-2.0*ae_log(y, _state), _state);
|
||
x0 = x-ae_log(x, _state)/x;
|
||
z = 1.0/x;
|
||
if( ae_fp_less(x,8.0) )
|
||
{
|
||
p1 = 4.05544892305962419923;
|
||
p1 = 31.5251094599893866154+z*p1;
|
||
p1 = 57.1628192246421288162+z*p1;
|
||
p1 = 44.0805073893200834700+z*p1;
|
||
p1 = 14.6849561928858024014+z*p1;
|
||
p1 = 2.18663306850790267539+z*p1;
|
||
p1 = -1.40256079171354495875*0.1+z*p1;
|
||
p1 = -3.50424626827848203418*0.01+z*p1;
|
||
p1 = -8.57456785154685413611*0.0001+z*p1;
|
||
q1 = 1;
|
||
q1 = 15.7799883256466749731+z*q1;
|
||
q1 = 45.3907635128879210584+z*q1;
|
||
q1 = 41.3172038254672030440+z*q1;
|
||
q1 = 15.0425385692907503408+z*q1;
|
||
q1 = 2.50464946208309415979+z*q1;
|
||
q1 = -1.42182922854787788574*0.1+z*q1;
|
||
q1 = -3.80806407691578277194*0.01+z*q1;
|
||
q1 = -9.33259480895457427372*0.0001+z*q1;
|
||
x1 = z*p1/q1;
|
||
}
|
||
else
|
||
{
|
||
p2 = 3.23774891776946035970;
|
||
p2 = 6.91522889068984211695+z*p2;
|
||
p2 = 3.93881025292474443415+z*p2;
|
||
p2 = 1.33303460815807542389+z*p2;
|
||
p2 = 2.01485389549179081538*0.1+z*p2;
|
||
p2 = 1.23716634817820021358*0.01+z*p2;
|
||
p2 = 3.01581553508235416007*0.0001+z*p2;
|
||
p2 = 2.65806974686737550832*0.000001+z*p2;
|
||
p2 = 6.23974539184983293730*0.000000001+z*p2;
|
||
q2 = 1;
|
||
q2 = 6.02427039364742014255+z*q2;
|
||
q2 = 3.67983563856160859403+z*q2;
|
||
q2 = 1.37702099489081330271+z*q2;
|
||
q2 = 2.16236993594496635890*0.1+z*q2;
|
||
q2 = 1.34204006088543189037*0.01+z*q2;
|
||
q2 = 3.28014464682127739104*0.0001+z*q2;
|
||
q2 = 2.89247864745380683936*0.000001+z*q2;
|
||
q2 = 6.79019408009981274425*0.000000001+z*q2;
|
||
x1 = z*p2/q2;
|
||
}
|
||
x = x0-x1;
|
||
if( code!=0 )
|
||
{
|
||
x = -x;
|
||
}
|
||
result = x;
|
||
return result;
|
||
}
|
||
|
||
|
||
|
||
|
||
/*************************************************************************
|
||
Incomplete gamma integral
|
||
|
||
The function is defined by
|
||
|
||
x
|
||
-
|
||
1 | | -t a-1
|
||
igam(a,x) = ----- | e t dt.
|
||
- | |
|
||
| (a) -
|
||
0
|
||
|
||
|
||
In this implementation both arguments must be positive.
|
||
The integral is evaluated by either a power series or
|
||
continued fraction expansion, depending on the relative
|
||
values of a and x.
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0,30 200000 3.6e-14 2.9e-15
|
||
IEEE 0,100 300000 9.9e-14 1.5e-14
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1985, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double incompletegamma(double a, double x, ae_state *_state)
|
||
{
|
||
double igammaepsilon;
|
||
double ans;
|
||
double ax;
|
||
double c;
|
||
double r;
|
||
double tmp;
|
||
double result;
|
||
|
||
|
||
igammaepsilon = 0.000000000000001;
|
||
if( ae_fp_less_eq(x,0)||ae_fp_less_eq(a,0) )
|
||
{
|
||
result = 0;
|
||
return result;
|
||
}
|
||
if( ae_fp_greater(x,1)&&ae_fp_greater(x,a) )
|
||
{
|
||
result = 1-incompletegammac(a, x, _state);
|
||
return result;
|
||
}
|
||
ax = a*ae_log(x, _state)-x-lngamma(a, &tmp, _state);
|
||
if( ae_fp_less(ax,-709.78271289338399) )
|
||
{
|
||
result = 0;
|
||
return result;
|
||
}
|
||
ax = ae_exp(ax, _state);
|
||
r = a;
|
||
c = 1;
|
||
ans = 1;
|
||
do
|
||
{
|
||
r = r+1;
|
||
c = c*x/r;
|
||
ans = ans+c;
|
||
}
|
||
while(ae_fp_greater(c/ans,igammaepsilon));
|
||
result = ans*ax/a;
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Complemented incomplete gamma integral
|
||
|
||
The function is defined by
|
||
|
||
|
||
igamc(a,x) = 1 - igam(a,x)
|
||
|
||
inf.
|
||
-
|
||
1 | | -t a-1
|
||
= ----- | e t dt.
|
||
- | |
|
||
| (a) -
|
||
x
|
||
|
||
|
||
In this implementation both arguments must be positive.
|
||
The integral is evaluated by either a power series or
|
||
continued fraction expansion, depending on the relative
|
||
values of a and x.
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random a, x.
|
||
a x Relative error:
|
||
arithmetic domain domain # trials peak rms
|
||
IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15
|
||
IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1985, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double incompletegammac(double a, double x, ae_state *_state)
|
||
{
|
||
double igammaepsilon;
|
||
double igammabignumber;
|
||
double igammabignumberinv;
|
||
double ans;
|
||
double ax;
|
||
double c;
|
||
double yc;
|
||
double r;
|
||
double t;
|
||
double y;
|
||
double z;
|
||
double pk;
|
||
double pkm1;
|
||
double pkm2;
|
||
double qk;
|
||
double qkm1;
|
||
double qkm2;
|
||
double tmp;
|
||
double result;
|
||
|
||
|
||
igammaepsilon = 0.000000000000001;
|
||
igammabignumber = 4503599627370496.0;
|
||
igammabignumberinv = 2.22044604925031308085*0.0000000000000001;
|
||
if( ae_fp_less_eq(x,0)||ae_fp_less_eq(a,0) )
|
||
{
|
||
result = 1;
|
||
return result;
|
||
}
|
||
if( ae_fp_less(x,1)||ae_fp_less(x,a) )
|
||
{
|
||
result = 1-incompletegamma(a, x, _state);
|
||
return result;
|
||
}
|
||
ax = a*ae_log(x, _state)-x-lngamma(a, &tmp, _state);
|
||
if( ae_fp_less(ax,-709.78271289338399) )
|
||
{
|
||
result = 0;
|
||
return result;
|
||
}
|
||
ax = ae_exp(ax, _state);
|
||
y = 1-a;
|
||
z = x+y+1;
|
||
c = 0;
|
||
pkm2 = 1;
|
||
qkm2 = x;
|
||
pkm1 = x+1;
|
||
qkm1 = z*x;
|
||
ans = pkm1/qkm1;
|
||
do
|
||
{
|
||
c = c+1;
|
||
y = y+1;
|
||
z = z+2;
|
||
yc = y*c;
|
||
pk = pkm1*z-pkm2*yc;
|
||
qk = qkm1*z-qkm2*yc;
|
||
if( ae_fp_neq(qk,0) )
|
||
{
|
||
r = pk/qk;
|
||
t = ae_fabs((ans-r)/r, _state);
|
||
ans = r;
|
||
}
|
||
else
|
||
{
|
||
t = 1;
|
||
}
|
||
pkm2 = pkm1;
|
||
pkm1 = pk;
|
||
qkm2 = qkm1;
|
||
qkm1 = qk;
|
||
if( ae_fp_greater(ae_fabs(pk, _state),igammabignumber) )
|
||
{
|
||
pkm2 = pkm2*igammabignumberinv;
|
||
pkm1 = pkm1*igammabignumberinv;
|
||
qkm2 = qkm2*igammabignumberinv;
|
||
qkm1 = qkm1*igammabignumberinv;
|
||
}
|
||
}
|
||
while(ae_fp_greater(t,igammaepsilon));
|
||
result = ans*ax;
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Inverse of complemented imcomplete gamma integral
|
||
|
||
Given p, the function finds x such that
|
||
|
||
igamc( a, x ) = p.
|
||
|
||
Starting with the approximate value
|
||
|
||
3
|
||
x = a t
|
||
|
||
where
|
||
|
||
t = 1 - d - ndtri(p) sqrt(d)
|
||
|
||
and
|
||
|
||
d = 1/9a,
|
||
|
||
the routine performs up to 10 Newton iterations to find the
|
||
root of igamc(a,x) - p = 0.
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random a, p in the intervals indicated.
|
||
|
||
a p Relative error:
|
||
arithmetic domain domain # trials peak rms
|
||
IEEE 0.5,100 0,0.5 100000 1.0e-14 1.7e-15
|
||
IEEE 0.01,0.5 0,0.5 100000 9.0e-14 3.4e-15
|
||
IEEE 0.5,10000 0,0.5 20000 2.3e-13 3.8e-14
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double invincompletegammac(double a, double y0, ae_state *_state)
|
||
{
|
||
double igammaepsilon;
|
||
double iinvgammabignumber;
|
||
double x0;
|
||
double x1;
|
||
double x;
|
||
double yl;
|
||
double yh;
|
||
double y;
|
||
double d;
|
||
double lgm;
|
||
double dithresh;
|
||
ae_int_t i;
|
||
ae_int_t dir;
|
||
double tmp;
|
||
double result;
|
||
|
||
|
||
igammaepsilon = 0.000000000000001;
|
||
iinvgammabignumber = 4503599627370496.0;
|
||
x0 = iinvgammabignumber;
|
||
yl = 0;
|
||
x1 = 0;
|
||
yh = 1;
|
||
dithresh = 5*igammaepsilon;
|
||
d = 1/(9*a);
|
||
y = 1-d-invnormaldistribution(y0, _state)*ae_sqrt(d, _state);
|
||
x = a*y*y*y;
|
||
lgm = lngamma(a, &tmp, _state);
|
||
i = 0;
|
||
while(i<10)
|
||
{
|
||
if( ae_fp_greater(x,x0)||ae_fp_less(x,x1) )
|
||
{
|
||
d = 0.0625;
|
||
break;
|
||
}
|
||
y = incompletegammac(a, x, _state);
|
||
if( ae_fp_less(y,yl)||ae_fp_greater(y,yh) )
|
||
{
|
||
d = 0.0625;
|
||
break;
|
||
}
|
||
if( ae_fp_less(y,y0) )
|
||
{
|
||
x0 = x;
|
||
yl = y;
|
||
}
|
||
else
|
||
{
|
||
x1 = x;
|
||
yh = y;
|
||
}
|
||
d = (a-1)*ae_log(x, _state)-x-lgm;
|
||
if( ae_fp_less(d,-709.78271289338399) )
|
||
{
|
||
d = 0.0625;
|
||
break;
|
||
}
|
||
d = -ae_exp(d, _state);
|
||
d = (y-y0)/d;
|
||
if( ae_fp_less(ae_fabs(d/x, _state),igammaepsilon) )
|
||
{
|
||
result = x;
|
||
return result;
|
||
}
|
||
x = x-d;
|
||
i = i+1;
|
||
}
|
||
if( ae_fp_eq(x0,iinvgammabignumber) )
|
||
{
|
||
if( ae_fp_less_eq(x,0) )
|
||
{
|
||
x = 1;
|
||
}
|
||
while(ae_fp_eq(x0,iinvgammabignumber))
|
||
{
|
||
x = (1+d)*x;
|
||
y = incompletegammac(a, x, _state);
|
||
if( ae_fp_less(y,y0) )
|
||
{
|
||
x0 = x;
|
||
yl = y;
|
||
break;
|
||
}
|
||
d = d+d;
|
||
}
|
||
}
|
||
d = 0.5;
|
||
dir = 0;
|
||
i = 0;
|
||
while(i<400)
|
||
{
|
||
x = x1+d*(x0-x1);
|
||
y = incompletegammac(a, x, _state);
|
||
lgm = (x0-x1)/(x1+x0);
|
||
if( ae_fp_less(ae_fabs(lgm, _state),dithresh) )
|
||
{
|
||
break;
|
||
}
|
||
lgm = (y-y0)/y0;
|
||
if( ae_fp_less(ae_fabs(lgm, _state),dithresh) )
|
||
{
|
||
break;
|
||
}
|
||
if( ae_fp_less_eq(x,0.0) )
|
||
{
|
||
break;
|
||
}
|
||
if( ae_fp_greater_eq(y,y0) )
|
||
{
|
||
x1 = x;
|
||
yh = y;
|
||
if( dir<0 )
|
||
{
|
||
dir = 0;
|
||
d = 0.5;
|
||
}
|
||
else
|
||
{
|
||
if( dir>1 )
|
||
{
|
||
d = 0.5*d+0.5;
|
||
}
|
||
else
|
||
{
|
||
d = (y0-yl)/(yh-yl);
|
||
}
|
||
}
|
||
dir = dir+1;
|
||
}
|
||
else
|
||
{
|
||
x0 = x;
|
||
yl = y;
|
||
if( dir>0 )
|
||
{
|
||
dir = 0;
|
||
d = 0.5;
|
||
}
|
||
else
|
||
{
|
||
if( dir<-1 )
|
||
{
|
||
d = 0.5*d;
|
||
}
|
||
else
|
||
{
|
||
d = (y0-yl)/(yh-yl);
|
||
}
|
||
}
|
||
dir = dir-1;
|
||
}
|
||
i = i+1;
|
||
}
|
||
result = x;
|
||
return result;
|
||
}
|
||
|
||
|
||
|
||
|
||
/*************************************************************************
|
||
Airy function
|
||
|
||
Solution of the differential equation
|
||
|
||
y"(x) = xy.
|
||
|
||
The function returns the two independent solutions Ai, Bi
|
||
and their first derivatives Ai'(x), Bi'(x).
|
||
|
||
Evaluation is by power series summation for small x,
|
||
by rational minimax approximations for large x.
|
||
|
||
|
||
|
||
ACCURACY:
|
||
Error criterion is absolute when function <= 1, relative
|
||
when function > 1, except * denotes relative error criterion.
|
||
For large negative x, the absolute error increases as x^1.5.
|
||
For large positive x, the relative error increases as x^1.5.
|
||
|
||
Arithmetic domain function # trials peak rms
|
||
IEEE -10, 0 Ai 10000 1.6e-15 2.7e-16
|
||
IEEE 0, 10 Ai 10000 2.3e-14* 1.8e-15*
|
||
IEEE -10, 0 Ai' 10000 4.6e-15 7.6e-16
|
||
IEEE 0, 10 Ai' 10000 1.8e-14* 1.5e-15*
|
||
IEEE -10, 10 Bi 30000 4.2e-15 5.3e-16
|
||
IEEE -10, 10 Bi' 30000 4.9e-15 7.3e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
void airy(double x,
|
||
double* ai,
|
||
double* aip,
|
||
double* bi,
|
||
double* bip,
|
||
ae_state *_state)
|
||
{
|
||
double z;
|
||
double zz;
|
||
double t;
|
||
double f;
|
||
double g;
|
||
double uf;
|
||
double ug;
|
||
double k;
|
||
double zeta;
|
||
double theta;
|
||
ae_int_t domflg;
|
||
double c1;
|
||
double c2;
|
||
double sqrt3;
|
||
double sqpii;
|
||
double afn;
|
||
double afd;
|
||
double agn;
|
||
double agd;
|
||
double apfn;
|
||
double apfd;
|
||
double apgn;
|
||
double apgd;
|
||
double an;
|
||
double ad;
|
||
double apn;
|
||
double apd;
|
||
double bn16;
|
||
double bd16;
|
||
double bppn;
|
||
double bppd;
|
||
|
||
*ai = 0;
|
||
*aip = 0;
|
||
*bi = 0;
|
||
*bip = 0;
|
||
|
||
sqpii = 5.64189583547756286948E-1;
|
||
c1 = 0.35502805388781723926;
|
||
c2 = 0.258819403792806798405;
|
||
sqrt3 = 1.732050807568877293527;
|
||
domflg = 0;
|
||
if( ae_fp_greater(x,25.77) )
|
||
{
|
||
*ai = 0;
|
||
*aip = 0;
|
||
*bi = ae_maxrealnumber;
|
||
*bip = ae_maxrealnumber;
|
||
return;
|
||
}
|
||
if( ae_fp_less(x,-2.09) )
|
||
{
|
||
domflg = 15;
|
||
t = ae_sqrt(-x, _state);
|
||
zeta = -2.0*x*t/3.0;
|
||
t = ae_sqrt(t, _state);
|
||
k = sqpii/t;
|
||
z = 1.0/zeta;
|
||
zz = z*z;
|
||
afn = -1.31696323418331795333E-1;
|
||
afn = afn*zz-6.26456544431912369773E-1;
|
||
afn = afn*zz-6.93158036036933542233E-1;
|
||
afn = afn*zz-2.79779981545119124951E-1;
|
||
afn = afn*zz-4.91900132609500318020E-2;
|
||
afn = afn*zz-4.06265923594885404393E-3;
|
||
afn = afn*zz-1.59276496239262096340E-4;
|
||
afn = afn*zz-2.77649108155232920844E-6;
|
||
afn = afn*zz-1.67787698489114633780E-8;
|
||
afd = 1.00000000000000000000E0;
|
||
afd = afd*zz+1.33560420706553243746E1;
|
||
afd = afd*zz+3.26825032795224613948E1;
|
||
afd = afd*zz+2.67367040941499554804E1;
|
||
afd = afd*zz+9.18707402907259625840E0;
|
||
afd = afd*zz+1.47529146771666414581E0;
|
||
afd = afd*zz+1.15687173795188044134E-1;
|
||
afd = afd*zz+4.40291641615211203805E-3;
|
||
afd = afd*zz+7.54720348287414296618E-5;
|
||
afd = afd*zz+4.51850092970580378464E-7;
|
||
uf = 1.0+zz*afn/afd;
|
||
agn = 1.97339932091685679179E-2;
|
||
agn = agn*zz+3.91103029615688277255E-1;
|
||
agn = agn*zz+1.06579897599595591108E0;
|
||
agn = agn*zz+9.39169229816650230044E-1;
|
||
agn = agn*zz+3.51465656105547619242E-1;
|
||
agn = agn*zz+6.33888919628925490927E-2;
|
||
agn = agn*zz+5.85804113048388458567E-3;
|
||
agn = agn*zz+2.82851600836737019778E-4;
|
||
agn = agn*zz+6.98793669997260967291E-6;
|
||
agn = agn*zz+8.11789239554389293311E-8;
|
||
agn = agn*zz+3.41551784765923618484E-10;
|
||
agd = 1.00000000000000000000E0;
|
||
agd = agd*zz+9.30892908077441974853E0;
|
||
agd = agd*zz+1.98352928718312140417E1;
|
||
agd = agd*zz+1.55646628932864612953E1;
|
||
agd = agd*zz+5.47686069422975497931E0;
|
||
agd = agd*zz+9.54293611618961883998E-1;
|
||
agd = agd*zz+8.64580826352392193095E-2;
|
||
agd = agd*zz+4.12656523824222607191E-3;
|
||
agd = agd*zz+1.01259085116509135510E-4;
|
||
agd = agd*zz+1.17166733214413521882E-6;
|
||
agd = agd*zz+4.91834570062930015649E-9;
|
||
ug = z*agn/agd;
|
||
theta = zeta+0.25*ae_pi;
|
||
f = ae_sin(theta, _state);
|
||
g = ae_cos(theta, _state);
|
||
*ai = k*(f*uf-g*ug);
|
||
*bi = k*(g*uf+f*ug);
|
||
apfn = 1.85365624022535566142E-1;
|
||
apfn = apfn*zz+8.86712188052584095637E-1;
|
||
apfn = apfn*zz+9.87391981747398547272E-1;
|
||
apfn = apfn*zz+4.01241082318003734092E-1;
|
||
apfn = apfn*zz+7.10304926289631174579E-2;
|
||
apfn = apfn*zz+5.90618657995661810071E-3;
|
||
apfn = apfn*zz+2.33051409401776799569E-4;
|
||
apfn = apfn*zz+4.08718778289035454598E-6;
|
||
apfn = apfn*zz+2.48379932900442457853E-8;
|
||
apfd = 1.00000000000000000000E0;
|
||
apfd = apfd*zz+1.47345854687502542552E1;
|
||
apfd = apfd*zz+3.75423933435489594466E1;
|
||
apfd = apfd*zz+3.14657751203046424330E1;
|
||
apfd = apfd*zz+1.09969125207298778536E1;
|
||
apfd = apfd*zz+1.78885054766999417817E0;
|
||
apfd = apfd*zz+1.41733275753662636873E-1;
|
||
apfd = apfd*zz+5.44066067017226003627E-3;
|
||
apfd = apfd*zz+9.39421290654511171663E-5;
|
||
apfd = apfd*zz+5.65978713036027009243E-7;
|
||
uf = 1.0+zz*apfn/apfd;
|
||
apgn = -3.55615429033082288335E-2;
|
||
apgn = apgn*zz-6.37311518129435504426E-1;
|
||
apgn = apgn*zz-1.70856738884312371053E0;
|
||
apgn = apgn*zz-1.50221872117316635393E0;
|
||
apgn = apgn*zz-5.63606665822102676611E-1;
|
||
apgn = apgn*zz-1.02101031120216891789E-1;
|
||
apgn = apgn*zz-9.48396695961445269093E-3;
|
||
apgn = apgn*zz-4.60325307486780994357E-4;
|
||
apgn = apgn*zz-1.14300836484517375919E-5;
|
||
apgn = apgn*zz-1.33415518685547420648E-7;
|
||
apgn = apgn*zz-5.63803833958893494476E-10;
|
||
apgd = 1.00000000000000000000E0;
|
||
apgd = apgd*zz+9.85865801696130355144E0;
|
||
apgd = apgd*zz+2.16401867356585941885E1;
|
||
apgd = apgd*zz+1.73130776389749389525E1;
|
||
apgd = apgd*zz+6.17872175280828766327E0;
|
||
apgd = apgd*zz+1.08848694396321495475E0;
|
||
apgd = apgd*zz+9.95005543440888479402E-2;
|
||
apgd = apgd*zz+4.78468199683886610842E-3;
|
||
apgd = apgd*zz+1.18159633322838625562E-4;
|
||
apgd = apgd*zz+1.37480673554219441465E-6;
|
||
apgd = apgd*zz+5.79912514929147598821E-9;
|
||
ug = z*apgn/apgd;
|
||
k = sqpii*t;
|
||
*aip = -k*(g*uf+f*ug);
|
||
*bip = k*(f*uf-g*ug);
|
||
return;
|
||
}
|
||
if( ae_fp_greater_eq(x,2.09) )
|
||
{
|
||
domflg = 5;
|
||
t = ae_sqrt(x, _state);
|
||
zeta = 2.0*x*t/3.0;
|
||
g = ae_exp(zeta, _state);
|
||
t = ae_sqrt(t, _state);
|
||
k = 2.0*t*g;
|
||
z = 1.0/zeta;
|
||
an = 3.46538101525629032477E-1;
|
||
an = an*z+1.20075952739645805542E1;
|
||
an = an*z+7.62796053615234516538E1;
|
||
an = an*z+1.68089224934630576269E2;
|
||
an = an*z+1.59756391350164413639E2;
|
||
an = an*z+7.05360906840444183113E1;
|
||
an = an*z+1.40264691163389668864E1;
|
||
an = an*z+9.99999999999999995305E-1;
|
||
ad = 5.67594532638770212846E-1;
|
||
ad = ad*z+1.47562562584847203173E1;
|
||
ad = ad*z+8.45138970141474626562E1;
|
||
ad = ad*z+1.77318088145400459522E2;
|
||
ad = ad*z+1.64234692871529701831E2;
|
||
ad = ad*z+7.14778400825575695274E1;
|
||
ad = ad*z+1.40959135607834029598E1;
|
||
ad = ad*z+1.00000000000000000470E0;
|
||
f = an/ad;
|
||
*ai = sqpii*f/k;
|
||
k = -0.5*sqpii*t/g;
|
||
apn = 6.13759184814035759225E-1;
|
||
apn = apn*z+1.47454670787755323881E1;
|
||
apn = apn*z+8.20584123476060982430E1;
|
||
apn = apn*z+1.71184781360976385540E2;
|
||
apn = apn*z+1.59317847137141783523E2;
|
||
apn = apn*z+6.99778599330103016170E1;
|
||
apn = apn*z+1.39470856980481566958E1;
|
||
apn = apn*z+1.00000000000000000550E0;
|
||
apd = 3.34203677749736953049E-1;
|
||
apd = apd*z+1.11810297306158156705E1;
|
||
apd = apd*z+7.11727352147859965283E1;
|
||
apd = apd*z+1.58778084372838313640E2;
|
||
apd = apd*z+1.53206427475809220834E2;
|
||
apd = apd*z+6.86752304592780337944E1;
|
||
apd = apd*z+1.38498634758259442477E1;
|
||
apd = apd*z+9.99999999999999994502E-1;
|
||
f = apn/apd;
|
||
*aip = f*k;
|
||
if( ae_fp_greater(x,8.3203353) )
|
||
{
|
||
bn16 = -2.53240795869364152689E-1;
|
||
bn16 = bn16*z+5.75285167332467384228E-1;
|
||
bn16 = bn16*z-3.29907036873225371650E-1;
|
||
bn16 = bn16*z+6.44404068948199951727E-2;
|
||
bn16 = bn16*z-3.82519546641336734394E-3;
|
||
bd16 = 1.00000000000000000000E0;
|
||
bd16 = bd16*z-7.15685095054035237902E0;
|
||
bd16 = bd16*z+1.06039580715664694291E1;
|
||
bd16 = bd16*z-5.23246636471251500874E0;
|
||
bd16 = bd16*z+9.57395864378383833152E-1;
|
||
bd16 = bd16*z-5.50828147163549611107E-2;
|
||
f = z*bn16/bd16;
|
||
k = sqpii*g;
|
||
*bi = k*(1.0+f)/t;
|
||
bppn = 4.65461162774651610328E-1;
|
||
bppn = bppn*z-1.08992173800493920734E0;
|
||
bppn = bppn*z+6.38800117371827987759E-1;
|
||
bppn = bppn*z-1.26844349553102907034E-1;
|
||
bppn = bppn*z+7.62487844342109852105E-3;
|
||
bppd = 1.00000000000000000000E0;
|
||
bppd = bppd*z-8.70622787633159124240E0;
|
||
bppd = bppd*z+1.38993162704553213172E1;
|
||
bppd = bppd*z-7.14116144616431159572E0;
|
||
bppd = bppd*z+1.34008595960680518666E0;
|
||
bppd = bppd*z-7.84273211323341930448E-2;
|
||
f = z*bppn/bppd;
|
||
*bip = k*t*(1.0+f);
|
||
return;
|
||
}
|
||
}
|
||
f = 1.0;
|
||
g = x;
|
||
t = 1.0;
|
||
uf = 1.0;
|
||
ug = x;
|
||
k = 1.0;
|
||
z = x*x*x;
|
||
while(ae_fp_greater(t,ae_machineepsilon))
|
||
{
|
||
uf = uf*z;
|
||
k = k+1.0;
|
||
uf = uf/k;
|
||
ug = ug*z;
|
||
k = k+1.0;
|
||
ug = ug/k;
|
||
uf = uf/k;
|
||
f = f+uf;
|
||
k = k+1.0;
|
||
ug = ug/k;
|
||
g = g+ug;
|
||
t = ae_fabs(uf/f, _state);
|
||
}
|
||
uf = c1*f;
|
||
ug = c2*g;
|
||
if( domflg%2==0 )
|
||
{
|
||
*ai = uf-ug;
|
||
}
|
||
if( domflg/2%2==0 )
|
||
{
|
||
*bi = sqrt3*(uf+ug);
|
||
}
|
||
k = 4.0;
|
||
uf = x*x/2.0;
|
||
ug = z/3.0;
|
||
f = uf;
|
||
g = 1.0+ug;
|
||
uf = uf/3.0;
|
||
t = 1.0;
|
||
while(ae_fp_greater(t,ae_machineepsilon))
|
||
{
|
||
uf = uf*z;
|
||
ug = ug/k;
|
||
k = k+1.0;
|
||
ug = ug*z;
|
||
uf = uf/k;
|
||
f = f+uf;
|
||
k = k+1.0;
|
||
ug = ug/k;
|
||
uf = uf/k;
|
||
g = g+ug;
|
||
k = k+1.0;
|
||
t = ae_fabs(ug/g, _state);
|
||
}
|
||
uf = c1*f;
|
||
ug = c2*g;
|
||
if( domflg/4%2==0 )
|
||
{
|
||
*aip = uf-ug;
|
||
}
|
||
if( domflg/8%2==0 )
|
||
{
|
||
*bip = sqrt3*(uf+ug);
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
/*************************************************************************
|
||
Bessel function of order zero
|
||
|
||
Returns Bessel function of order zero of the argument.
|
||
|
||
The domain is divided into the intervals [0, 5] and
|
||
(5, infinity). In the first interval the following rational
|
||
approximation is used:
|
||
|
||
|
||
2 2
|
||
(w - r ) (w - r ) P (w) / Q (w)
|
||
1 2 3 8
|
||
|
||
2
|
||
where w = x and the two r's are zeros of the function.
|
||
|
||
In the second interval, the Hankel asymptotic expansion
|
||
is employed with two rational functions of degree 6/6
|
||
and 7/7.
|
||
|
||
ACCURACY:
|
||
|
||
Absolute error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0, 30 60000 4.2e-16 1.1e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double besselj0(double x, ae_state *_state)
|
||
{
|
||
double xsq;
|
||
double nn;
|
||
double pzero;
|
||
double qzero;
|
||
double p1;
|
||
double q1;
|
||
double result;
|
||
|
||
|
||
if( ae_fp_less(x,0) )
|
||
{
|
||
x = -x;
|
||
}
|
||
if( ae_fp_greater(x,8.0) )
|
||
{
|
||
bessel_besselasympt0(x, &pzero, &qzero, _state);
|
||
nn = x-ae_pi/4;
|
||
result = ae_sqrt(2/ae_pi/x, _state)*(pzero*ae_cos(nn, _state)-qzero*ae_sin(nn, _state));
|
||
return result;
|
||
}
|
||
xsq = ae_sqr(x, _state);
|
||
p1 = 26857.86856980014981415848441;
|
||
p1 = -40504123.71833132706360663322+xsq*p1;
|
||
p1 = 25071582855.36881945555156435+xsq*p1;
|
||
p1 = -8085222034853.793871199468171+xsq*p1;
|
||
p1 = 1434354939140344.111664316553+xsq*p1;
|
||
p1 = -136762035308817138.6865416609+xsq*p1;
|
||
p1 = 6382059341072356562.289432465+xsq*p1;
|
||
p1 = -117915762910761053603.8440800+xsq*p1;
|
||
p1 = 493378725179413356181.6813446+xsq*p1;
|
||
q1 = 1.0;
|
||
q1 = 1363.063652328970604442810507+xsq*q1;
|
||
q1 = 1114636.098462985378182402543+xsq*q1;
|
||
q1 = 669998767.2982239671814028660+xsq*q1;
|
||
q1 = 312304311494.1213172572469442+xsq*q1;
|
||
q1 = 112775673967979.8507056031594+xsq*q1;
|
||
q1 = 30246356167094626.98627330784+xsq*q1;
|
||
q1 = 5428918384092285160.200195092+xsq*q1;
|
||
q1 = 493378725179413356211.3278438+xsq*q1;
|
||
result = p1/q1;
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Bessel function of order one
|
||
|
||
Returns Bessel function of order one of the argument.
|
||
|
||
The domain is divided into the intervals [0, 8] and
|
||
(8, infinity). In the first interval a 24 term Chebyshev
|
||
expansion is used. In the second, the asymptotic
|
||
trigonometric representation is employed using two
|
||
rational functions of degree 5/5.
|
||
|
||
ACCURACY:
|
||
|
||
Absolute error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0, 30 30000 2.6e-16 1.1e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double besselj1(double x, ae_state *_state)
|
||
{
|
||
double s;
|
||
double xsq;
|
||
double nn;
|
||
double pzero;
|
||
double qzero;
|
||
double p1;
|
||
double q1;
|
||
double result;
|
||
|
||
|
||
s = ae_sign(x, _state);
|
||
if( ae_fp_less(x,0) )
|
||
{
|
||
x = -x;
|
||
}
|
||
if( ae_fp_greater(x,8.0) )
|
||
{
|
||
bessel_besselasympt1(x, &pzero, &qzero, _state);
|
||
nn = x-3*ae_pi/4;
|
||
result = ae_sqrt(2/ae_pi/x, _state)*(pzero*ae_cos(nn, _state)-qzero*ae_sin(nn, _state));
|
||
if( ae_fp_less(s,0) )
|
||
{
|
||
result = -result;
|
||
}
|
||
return result;
|
||
}
|
||
xsq = ae_sqr(x, _state);
|
||
p1 = 2701.122710892323414856790990;
|
||
p1 = -4695753.530642995859767162166+xsq*p1;
|
||
p1 = 3413234182.301700539091292655+xsq*p1;
|
||
p1 = -1322983480332.126453125473247+xsq*p1;
|
||
p1 = 290879526383477.5409737601689+xsq*p1;
|
||
p1 = -35888175699101060.50743641413+xsq*p1;
|
||
p1 = 2316433580634002297.931815435+xsq*p1;
|
||
p1 = -66721065689249162980.20941484+xsq*p1;
|
||
p1 = 581199354001606143928.050809+xsq*p1;
|
||
q1 = 1.0;
|
||
q1 = 1606.931573481487801970916749+xsq*q1;
|
||
q1 = 1501793.594998585505921097578+xsq*q1;
|
||
q1 = 1013863514.358673989967045588+xsq*q1;
|
||
q1 = 524371026216.7649715406728642+xsq*q1;
|
||
q1 = 208166122130760.7351240184229+xsq*q1;
|
||
q1 = 60920613989175217.46105196863+xsq*q1;
|
||
q1 = 11857707121903209998.37113348+xsq*q1;
|
||
q1 = 1162398708003212287858.529400+xsq*q1;
|
||
result = s*x*p1/q1;
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Bessel function of integer order
|
||
|
||
Returns Bessel function of order n, where n is a
|
||
(possibly negative) integer.
|
||
|
||
The ratio of jn(x) to j0(x) is computed by backward
|
||
recurrence. First the ratio jn/jn-1 is found by a
|
||
continued fraction expansion. Then the recurrence
|
||
relating successive orders is applied until j0 or j1 is
|
||
reached.
|
||
|
||
If n = 0 or 1 the routine for j0 or j1 is called
|
||
directly.
|
||
|
||
ACCURACY:
|
||
|
||
Absolute error:
|
||
arithmetic range # trials peak rms
|
||
IEEE 0, 30 5000 4.4e-16 7.9e-17
|
||
|
||
|
||
Not suitable for large n or x. Use jv() (fractional order) instead.
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double besseljn(ae_int_t n, double x, ae_state *_state)
|
||
{
|
||
double pkm2;
|
||
double pkm1;
|
||
double pk;
|
||
double xk;
|
||
double r;
|
||
double ans;
|
||
ae_int_t k;
|
||
ae_int_t sg;
|
||
double result;
|
||
|
||
|
||
if( n<0 )
|
||
{
|
||
n = -n;
|
||
if( n%2==0 )
|
||
{
|
||
sg = 1;
|
||
}
|
||
else
|
||
{
|
||
sg = -1;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
sg = 1;
|
||
}
|
||
if( ae_fp_less(x,0) )
|
||
{
|
||
if( n%2!=0 )
|
||
{
|
||
sg = -sg;
|
||
}
|
||
x = -x;
|
||
}
|
||
if( n==0 )
|
||
{
|
||
result = sg*besselj0(x, _state);
|
||
return result;
|
||
}
|
||
if( n==1 )
|
||
{
|
||
result = sg*besselj1(x, _state);
|
||
return result;
|
||
}
|
||
if( n==2 )
|
||
{
|
||
if( ae_fp_eq(x,0) )
|
||
{
|
||
result = 0;
|
||
}
|
||
else
|
||
{
|
||
result = sg*(2.0*besselj1(x, _state)/x-besselj0(x, _state));
|
||
}
|
||
return result;
|
||
}
|
||
if( ae_fp_less(x,ae_machineepsilon) )
|
||
{
|
||
result = 0;
|
||
return result;
|
||
}
|
||
k = 53;
|
||
pk = 2*(n+k);
|
||
ans = pk;
|
||
xk = x*x;
|
||
do
|
||
{
|
||
pk = pk-2.0;
|
||
ans = pk-xk/ans;
|
||
k = k-1;
|
||
}
|
||
while(k!=0);
|
||
ans = x/ans;
|
||
pk = 1.0;
|
||
pkm1 = 1.0/ans;
|
||
k = n-1;
|
||
r = 2*k;
|
||
do
|
||
{
|
||
pkm2 = (pkm1*r-pk*x)/x;
|
||
pk = pkm1;
|
||
pkm1 = pkm2;
|
||
r = r-2.0;
|
||
k = k-1;
|
||
}
|
||
while(k!=0);
|
||
if( ae_fp_greater(ae_fabs(pk, _state),ae_fabs(pkm1, _state)) )
|
||
{
|
||
ans = besselj1(x, _state)/pk;
|
||
}
|
||
else
|
||
{
|
||
ans = besselj0(x, _state)/pkm1;
|
||
}
|
||
result = sg*ans;
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Bessel function of the second kind, order zero
|
||
|
||
Returns Bessel function of the second kind, of order
|
||
zero, of the argument.
|
||
|
||
The domain is divided into the intervals [0, 5] and
|
||
(5, infinity). In the first interval a rational approximation
|
||
R(x) is employed to compute
|
||
y0(x) = R(x) + 2 * log(x) * j0(x) / PI.
|
||
Thus a call to j0() is required.
|
||
|
||
In the second interval, the Hankel asymptotic expansion
|
||
is employed with two rational functions of degree 6/6
|
||
and 7/7.
|
||
|
||
|
||
|
||
ACCURACY:
|
||
|
||
Absolute error, when y0(x) < 1; else relative error:
|
||
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0, 30 30000 1.3e-15 1.6e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double bessely0(double x, ae_state *_state)
|
||
{
|
||
double nn;
|
||
double xsq;
|
||
double pzero;
|
||
double qzero;
|
||
double p4;
|
||
double q4;
|
||
double result;
|
||
|
||
|
||
if( ae_fp_greater(x,8.0) )
|
||
{
|
||
bessel_besselasympt0(x, &pzero, &qzero, _state);
|
||
nn = x-ae_pi/4;
|
||
result = ae_sqrt(2/ae_pi/x, _state)*(pzero*ae_sin(nn, _state)+qzero*ae_cos(nn, _state));
|
||
return result;
|
||
}
|
||
xsq = ae_sqr(x, _state);
|
||
p4 = -41370.35497933148554125235152;
|
||
p4 = 59152134.65686889654273830069+xsq*p4;
|
||
p4 = -34363712229.79040378171030138+xsq*p4;
|
||
p4 = 10255208596863.94284509167421+xsq*p4;
|
||
p4 = -1648605817185729.473122082537+xsq*p4;
|
||
p4 = 137562431639934407.8571335453+xsq*p4;
|
||
p4 = -5247065581112764941.297350814+xsq*p4;
|
||
p4 = 65874732757195549259.99402049+xsq*p4;
|
||
p4 = -27502866786291095837.01933175+xsq*p4;
|
||
q4 = 1.0;
|
||
q4 = 1282.452772478993804176329391+xsq*q4;
|
||
q4 = 1001702.641288906265666651753+xsq*q4;
|
||
q4 = 579512264.0700729537480087915+xsq*q4;
|
||
q4 = 261306575504.1081249568482092+xsq*q4;
|
||
q4 = 91620380340751.85262489147968+xsq*q4;
|
||
q4 = 23928830434997818.57439356652+xsq*q4;
|
||
q4 = 4192417043410839973.904769661+xsq*q4;
|
||
q4 = 372645883898616588198.9980+xsq*q4;
|
||
result = p4/q4+2/ae_pi*besselj0(x, _state)*ae_log(x, _state);
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Bessel function of second kind of order one
|
||
|
||
Returns Bessel function of the second kind of order one
|
||
of the argument.
|
||
|
||
The domain is divided into the intervals [0, 8] and
|
||
(8, infinity). In the first interval a 25 term Chebyshev
|
||
expansion is used, and a call to j1() is required.
|
||
In the second, the asymptotic trigonometric representation
|
||
is employed using two rational functions of degree 5/5.
|
||
|
||
ACCURACY:
|
||
|
||
Absolute error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0, 30 30000 1.0e-15 1.3e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double bessely1(double x, ae_state *_state)
|
||
{
|
||
double nn;
|
||
double xsq;
|
||
double pzero;
|
||
double qzero;
|
||
double p4;
|
||
double q4;
|
||
double result;
|
||
|
||
|
||
if( ae_fp_greater(x,8.0) )
|
||
{
|
||
bessel_besselasympt1(x, &pzero, &qzero, _state);
|
||
nn = x-3*ae_pi/4;
|
||
result = ae_sqrt(2/ae_pi/x, _state)*(pzero*ae_sin(nn, _state)+qzero*ae_cos(nn, _state));
|
||
return result;
|
||
}
|
||
xsq = ae_sqr(x, _state);
|
||
p4 = -2108847.540133123652824139923;
|
||
p4 = 3639488548.124002058278999428+xsq*p4;
|
||
p4 = -2580681702194.450950541426399+xsq*p4;
|
||
p4 = 956993023992168.3481121552788+xsq*p4;
|
||
p4 = -196588746272214065.8820322248+xsq*p4;
|
||
p4 = 21931073399177975921.11427556+xsq*p4;
|
||
p4 = -1212297555414509577913.561535+xsq*p4;
|
||
p4 = 26554738314348543268942.48968+xsq*p4;
|
||
p4 = -99637534243069222259967.44354+xsq*p4;
|
||
q4 = 1.0;
|
||
q4 = 1612.361029677000859332072312+xsq*q4;
|
||
q4 = 1563282.754899580604737366452+xsq*q4;
|
||
q4 = 1128686837.169442121732366891+xsq*q4;
|
||
q4 = 646534088126.5275571961681500+xsq*q4;
|
||
q4 = 297663212564727.6729292742282+xsq*q4;
|
||
q4 = 108225825940881955.2553850180+xsq*q4;
|
||
q4 = 29549879358971486742.90758119+xsq*q4;
|
||
q4 = 5435310377188854170800.653097+xsq*q4;
|
||
q4 = 508206736694124324531442.4152+xsq*q4;
|
||
result = x*p4/q4+2/ae_pi*(besselj1(x, _state)*ae_log(x, _state)-1/x);
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Bessel function of second kind of integer order
|
||
|
||
Returns Bessel function of order n, where n is a
|
||
(possibly negative) integer.
|
||
|
||
The function is evaluated by forward recurrence on
|
||
n, starting with values computed by the routines
|
||
y0() and y1().
|
||
|
||
If n = 0 or 1 the routine for y0 or y1 is called
|
||
directly.
|
||
|
||
ACCURACY:
|
||
Absolute error, except relative
|
||
when y > 1:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0, 30 30000 3.4e-15 4.3e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double besselyn(ae_int_t n, double x, ae_state *_state)
|
||
{
|
||
ae_int_t i;
|
||
double a;
|
||
double b;
|
||
double tmp;
|
||
double s;
|
||
double result;
|
||
|
||
|
||
s = 1;
|
||
if( n<0 )
|
||
{
|
||
n = -n;
|
||
if( n%2!=0 )
|
||
{
|
||
s = -1;
|
||
}
|
||
}
|
||
if( n==0 )
|
||
{
|
||
result = bessely0(x, _state);
|
||
return result;
|
||
}
|
||
if( n==1 )
|
||
{
|
||
result = s*bessely1(x, _state);
|
||
return result;
|
||
}
|
||
a = bessely0(x, _state);
|
||
b = bessely1(x, _state);
|
||
for(i=1; i<=n-1; i++)
|
||
{
|
||
tmp = b;
|
||
b = 2*i/x*b-a;
|
||
a = tmp;
|
||
}
|
||
result = s*b;
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Modified Bessel function of order zero
|
||
|
||
Returns modified Bessel function of order zero of the
|
||
argument.
|
||
|
||
The function is defined as i0(x) = j0( ix ).
|
||
|
||
The range is partitioned into the two intervals [0,8] and
|
||
(8, infinity). Chebyshev polynomial expansions are employed
|
||
in each interval.
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0,30 30000 5.8e-16 1.4e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double besseli0(double x, ae_state *_state)
|
||
{
|
||
double y;
|
||
double v;
|
||
double z;
|
||
double b0;
|
||
double b1;
|
||
double b2;
|
||
double result;
|
||
|
||
|
||
if( ae_fp_less(x,0) )
|
||
{
|
||
x = -x;
|
||
}
|
||
if( ae_fp_less_eq(x,8.0) )
|
||
{
|
||
y = x/2.0-2.0;
|
||
bessel_besselmfirstcheb(-4.41534164647933937950E-18, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, 3.33079451882223809783E-17, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, -2.43127984654795469359E-16, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, 1.71539128555513303061E-15, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, -1.16853328779934516808E-14, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, 7.67618549860493561688E-14, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, -4.85644678311192946090E-13, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, 2.95505266312963983461E-12, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, -1.72682629144155570723E-11, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, 9.67580903537323691224E-11, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, -5.18979560163526290666E-10, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, 2.65982372468238665035E-9, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, -1.30002500998624804212E-8, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, 6.04699502254191894932E-8, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, -2.67079385394061173391E-7, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, 1.11738753912010371815E-6, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, -4.41673835845875056359E-6, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, 1.64484480707288970893E-5, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, -5.75419501008210370398E-5, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, 1.88502885095841655729E-4, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, -5.76375574538582365885E-4, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, 1.63947561694133579842E-3, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, -4.32430999505057594430E-3, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, 1.05464603945949983183E-2, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, -2.37374148058994688156E-2, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, 4.93052842396707084878E-2, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, -9.49010970480476444210E-2, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, 1.71620901522208775349E-1, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, -3.04682672343198398683E-1, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, 6.76795274409476084995E-1, &b0, &b1, &b2, _state);
|
||
v = 0.5*(b0-b2);
|
||
result = ae_exp(x, _state)*v;
|
||
return result;
|
||
}
|
||
z = 32.0/x-2.0;
|
||
bessel_besselmfirstcheb(-7.23318048787475395456E-18, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, -4.83050448594418207126E-18, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 4.46562142029675999901E-17, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 3.46122286769746109310E-17, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, -2.82762398051658348494E-16, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, -3.42548561967721913462E-16, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 1.77256013305652638360E-15, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 3.81168066935262242075E-15, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, -9.55484669882830764870E-15, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, -4.15056934728722208663E-14, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 1.54008621752140982691E-14, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 3.85277838274214270114E-13, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 7.18012445138366623367E-13, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, -1.79417853150680611778E-12, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, -1.32158118404477131188E-11, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, -3.14991652796324136454E-11, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 1.18891471078464383424E-11, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 4.94060238822496958910E-10, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 3.39623202570838634515E-9, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 2.26666899049817806459E-8, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 2.04891858946906374183E-7, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 2.89137052083475648297E-6, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 6.88975834691682398426E-5, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 3.36911647825569408990E-3, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 8.04490411014108831608E-1, &b0, &b1, &b2, _state);
|
||
v = 0.5*(b0-b2);
|
||
result = ae_exp(x, _state)*v/ae_sqrt(x, _state);
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Modified Bessel function of order one
|
||
|
||
Returns modified Bessel function of order one of the
|
||
argument.
|
||
|
||
The function is defined as i1(x) = -i j1( ix ).
|
||
|
||
The range is partitioned into the two intervals [0,8] and
|
||
(8, infinity). Chebyshev polynomial expansions are employed
|
||
in each interval.
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0, 30 30000 1.9e-15 2.1e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1985, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double besseli1(double x, ae_state *_state)
|
||
{
|
||
double y;
|
||
double z;
|
||
double v;
|
||
double b0;
|
||
double b1;
|
||
double b2;
|
||
double result;
|
||
|
||
|
||
z = ae_fabs(x, _state);
|
||
if( ae_fp_less_eq(z,8.0) )
|
||
{
|
||
y = z/2.0-2.0;
|
||
bessel_besselm1firstcheb(2.77791411276104639959E-18, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -2.11142121435816608115E-17, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 1.55363195773620046921E-16, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -1.10559694773538630805E-15, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 7.60068429473540693410E-15, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -5.04218550472791168711E-14, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 3.22379336594557470981E-13, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -1.98397439776494371520E-12, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 1.17361862988909016308E-11, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -6.66348972350202774223E-11, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 3.62559028155211703701E-10, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -1.88724975172282928790E-9, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 9.38153738649577178388E-9, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -4.44505912879632808065E-8, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 2.00329475355213526229E-7, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -8.56872026469545474066E-7, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 3.47025130813767847674E-6, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -1.32731636560394358279E-5, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 4.78156510755005422638E-5, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -1.61760815825896745588E-4, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 5.12285956168575772895E-4, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -1.51357245063125314899E-3, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 4.15642294431288815669E-3, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -1.05640848946261981558E-2, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 2.47264490306265168283E-2, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -5.29459812080949914269E-2, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 1.02643658689847095384E-1, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -1.76416518357834055153E-1, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 2.52587186443633654823E-1, &b0, &b1, &b2, _state);
|
||
v = 0.5*(b0-b2);
|
||
z = v*z*ae_exp(z, _state);
|
||
}
|
||
else
|
||
{
|
||
y = 32.0/z-2.0;
|
||
bessel_besselm1firstcheb(7.51729631084210481353E-18, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 4.41434832307170791151E-18, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -4.65030536848935832153E-17, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -3.20952592199342395980E-17, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 2.96262899764595013876E-16, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 3.30820231092092828324E-16, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -1.88035477551078244854E-15, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -3.81440307243700780478E-15, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 1.04202769841288027642E-14, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 4.27244001671195135429E-14, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -2.10154184277266431302E-14, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -4.08355111109219731823E-13, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -7.19855177624590851209E-13, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 2.03562854414708950722E-12, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 1.41258074366137813316E-11, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 3.25260358301548823856E-11, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -1.89749581235054123450E-11, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -5.58974346219658380687E-10, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -3.83538038596423702205E-9, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -2.63146884688951950684E-8, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -2.51223623787020892529E-7, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -3.88256480887769039346E-6, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -1.10588938762623716291E-4, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -9.76109749136146840777E-3, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 7.78576235018280120474E-1, &b0, &b1, &b2, _state);
|
||
v = 0.5*(b0-b2);
|
||
z = v*ae_exp(z, _state)/ae_sqrt(z, _state);
|
||
}
|
||
if( ae_fp_less(x,0) )
|
||
{
|
||
z = -z;
|
||
}
|
||
result = z;
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Modified Bessel function, second kind, order zero
|
||
|
||
Returns modified Bessel function of the second kind
|
||
of order zero of the argument.
|
||
|
||
The range is partitioned into the two intervals [0,8] and
|
||
(8, infinity). Chebyshev polynomial expansions are employed
|
||
in each interval.
|
||
|
||
ACCURACY:
|
||
|
||
Tested at 2000 random points between 0 and 8. Peak absolute
|
||
error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15.
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0, 30 30000 1.2e-15 1.6e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double besselk0(double x, ae_state *_state)
|
||
{
|
||
double y;
|
||
double z;
|
||
double v;
|
||
double b0;
|
||
double b1;
|
||
double b2;
|
||
double result;
|
||
|
||
|
||
ae_assert(ae_fp_greater(x,0), "Domain error in BesselK0: x<=0", _state);
|
||
if( ae_fp_less_eq(x,2) )
|
||
{
|
||
y = x*x-2.0;
|
||
bessel_besselmfirstcheb(1.37446543561352307156E-16, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, 4.25981614279661018399E-14, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, 1.03496952576338420167E-11, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, 1.90451637722020886025E-9, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, 2.53479107902614945675E-7, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, 2.28621210311945178607E-5, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, 1.26461541144692592338E-3, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, 3.59799365153615016266E-2, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, 3.44289899924628486886E-1, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(y, -5.35327393233902768720E-1, &b0, &b1, &b2, _state);
|
||
v = 0.5*(b0-b2);
|
||
v = v-ae_log(0.5*x, _state)*besseli0(x, _state);
|
||
}
|
||
else
|
||
{
|
||
z = 8.0/x-2.0;
|
||
bessel_besselmfirstcheb(5.30043377268626276149E-18, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, -1.64758043015242134646E-17, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 5.21039150503902756861E-17, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, -1.67823109680541210385E-16, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 5.51205597852431940784E-16, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, -1.84859337734377901440E-15, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 6.34007647740507060557E-15, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, -2.22751332699166985548E-14, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 8.03289077536357521100E-14, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, -2.98009692317273043925E-13, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 1.14034058820847496303E-12, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, -4.51459788337394416547E-12, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 1.85594911495471785253E-11, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, -7.95748924447710747776E-11, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 3.57739728140030116597E-10, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, -1.69753450938905987466E-9, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 8.57403401741422608519E-9, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, -4.66048989768794782956E-8, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 2.76681363944501510342E-7, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, -1.83175552271911948767E-6, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 1.39498137188764993662E-5, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, -1.28495495816278026384E-4, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 1.56988388573005337491E-3, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, -3.14481013119645005427E-2, &b0, &b1, &b2, _state);
|
||
bessel_besselmnextcheb(z, 2.44030308206595545468E0, &b0, &b1, &b2, _state);
|
||
v = 0.5*(b0-b2);
|
||
v = v*ae_exp(-x, _state)/ae_sqrt(x, _state);
|
||
}
|
||
result = v;
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Modified Bessel function, second kind, order one
|
||
|
||
Computes the modified Bessel function of the second kind
|
||
of order one of the argument.
|
||
|
||
The range is partitioned into the two intervals [0,2] and
|
||
(2, infinity). Chebyshev polynomial expansions are employed
|
||
in each interval.
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0, 30 30000 1.2e-15 1.6e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double besselk1(double x, ae_state *_state)
|
||
{
|
||
double y;
|
||
double z;
|
||
double v;
|
||
double b0;
|
||
double b1;
|
||
double b2;
|
||
double result;
|
||
|
||
|
||
z = 0.5*x;
|
||
ae_assert(ae_fp_greater(z,0), "Domain error in K1", _state);
|
||
if( ae_fp_less_eq(x,2) )
|
||
{
|
||
y = x*x-2.0;
|
||
bessel_besselm1firstcheb(-7.02386347938628759343E-18, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -2.42744985051936593393E-15, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -6.66690169419932900609E-13, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -1.41148839263352776110E-10, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -2.21338763073472585583E-8, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -2.43340614156596823496E-6, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -1.73028895751305206302E-4, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -6.97572385963986435018E-3, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -1.22611180822657148235E-1, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -3.53155960776544875667E-1, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 1.52530022733894777053E0, &b0, &b1, &b2, _state);
|
||
v = 0.5*(b0-b2);
|
||
result = ae_log(z, _state)*besseli1(x, _state)+v/x;
|
||
}
|
||
else
|
||
{
|
||
y = 8.0/x-2.0;
|
||
bessel_besselm1firstcheb(-5.75674448366501715755E-18, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 1.79405087314755922667E-17, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -5.68946255844285935196E-17, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 1.83809354436663880070E-16, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -6.05704724837331885336E-16, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 2.03870316562433424052E-15, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -7.01983709041831346144E-15, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 2.47715442448130437068E-14, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -8.97670518232499435011E-14, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 3.34841966607842919884E-13, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -1.28917396095102890680E-12, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 5.13963967348173025100E-12, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -2.12996783842756842877E-11, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 9.21831518760500529508E-11, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -4.19035475934189648750E-10, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 2.01504975519703286596E-9, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -1.03457624656780970260E-8, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 5.74108412545004946722E-8, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -3.50196060308781257119E-7, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 2.40648494783721712015E-6, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -1.93619797416608296024E-5, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 1.95215518471351631108E-4, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, -2.85781685962277938680E-3, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 1.03923736576817238437E-1, &b0, &b1, &b2, _state);
|
||
bessel_besselm1nextcheb(y, 2.72062619048444266945E0, &b0, &b1, &b2, _state);
|
||
v = 0.5*(b0-b2);
|
||
result = ae_exp(-x, _state)*v/ae_sqrt(x, _state);
|
||
}
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Modified Bessel function, second kind, integer order
|
||
|
||
Returns modified Bessel function of the second kind
|
||
of order n of the argument.
|
||
|
||
The range is partitioned into the two intervals [0,9.55] and
|
||
(9.55, infinity). An ascending power series is used in the
|
||
low range, and an asymptotic expansion in the high range.
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0,30 90000 1.8e-8 3.0e-10
|
||
|
||
Error is high only near the crossover point x = 9.55
|
||
between the two expansions used.
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1988, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double besselkn(ae_int_t nn, double x, ae_state *_state)
|
||
{
|
||
double k;
|
||
double kf;
|
||
double nk1f;
|
||
double nkf;
|
||
double zn;
|
||
double t;
|
||
double s;
|
||
double z0;
|
||
double z;
|
||
double ans;
|
||
double fn;
|
||
double pn;
|
||
double pk;
|
||
double zmn;
|
||
double tlg;
|
||
double tox;
|
||
ae_int_t i;
|
||
ae_int_t n;
|
||
double eul;
|
||
double result;
|
||
|
||
|
||
eul = 5.772156649015328606065e-1;
|
||
if( nn<0 )
|
||
{
|
||
n = -nn;
|
||
}
|
||
else
|
||
{
|
||
n = nn;
|
||
}
|
||
ae_assert(n<=31, "Overflow in BesselKN", _state);
|
||
ae_assert(ae_fp_greater(x,0), "Domain error in BesselKN", _state);
|
||
if( ae_fp_less_eq(x,9.55) )
|
||
{
|
||
ans = 0.0;
|
||
z0 = 0.25*x*x;
|
||
fn = 1.0;
|
||
pn = 0.0;
|
||
zmn = 1.0;
|
||
tox = 2.0/x;
|
||
if( n>0 )
|
||
{
|
||
pn = -eul;
|
||
k = 1.0;
|
||
for(i=1; i<=n-1; i++)
|
||
{
|
||
pn = pn+1.0/k;
|
||
k = k+1.0;
|
||
fn = fn*k;
|
||
}
|
||
zmn = tox;
|
||
if( n==1 )
|
||
{
|
||
ans = 1.0/x;
|
||
}
|
||
else
|
||
{
|
||
nk1f = fn/n;
|
||
kf = 1.0;
|
||
s = nk1f;
|
||
z = -z0;
|
||
zn = 1.0;
|
||
for(i=1; i<=n-1; i++)
|
||
{
|
||
nk1f = nk1f/(n-i);
|
||
kf = kf*i;
|
||
zn = zn*z;
|
||
t = nk1f*zn/kf;
|
||
s = s+t;
|
||
ae_assert(ae_fp_greater(ae_maxrealnumber-ae_fabs(t, _state),ae_fabs(s, _state)), "Overflow in BesselKN", _state);
|
||
ae_assert(!(ae_fp_greater(tox,1.0)&&ae_fp_less(ae_maxrealnumber/tox,zmn)), "Overflow in BesselKN", _state);
|
||
zmn = zmn*tox;
|
||
}
|
||
s = s*0.5;
|
||
t = ae_fabs(s, _state);
|
||
ae_assert(!(ae_fp_greater(zmn,1.0)&&ae_fp_less(ae_maxrealnumber/zmn,t)), "Overflow in BesselKN", _state);
|
||
ae_assert(!(ae_fp_greater(t,1.0)&&ae_fp_less(ae_maxrealnumber/t,zmn)), "Overflow in BesselKN", _state);
|
||
ans = s*zmn;
|
||
}
|
||
}
|
||
tlg = 2.0*ae_log(0.5*x, _state);
|
||
pk = -eul;
|
||
if( n==0 )
|
||
{
|
||
pn = pk;
|
||
t = 1.0;
|
||
}
|
||
else
|
||
{
|
||
pn = pn+1.0/n;
|
||
t = 1.0/fn;
|
||
}
|
||
s = (pk+pn-tlg)*t;
|
||
k = 1.0;
|
||
do
|
||
{
|
||
t = t*(z0/(k*(k+n)));
|
||
pk = pk+1.0/k;
|
||
pn = pn+1.0/(k+n);
|
||
s = s+(pk+pn-tlg)*t;
|
||
k = k+1.0;
|
||
}
|
||
while(ae_fp_greater(ae_fabs(t/s, _state),ae_machineepsilon));
|
||
s = 0.5*s/zmn;
|
||
if( n%2!=0 )
|
||
{
|
||
s = -s;
|
||
}
|
||
ans = ans+s;
|
||
result = ans;
|
||
return result;
|
||
}
|
||
if( ae_fp_greater(x,ae_log(ae_maxrealnumber, _state)) )
|
||
{
|
||
result = 0;
|
||
return result;
|
||
}
|
||
k = n;
|
||
pn = 4.0*k*k;
|
||
pk = 1.0;
|
||
z0 = 8.0*x;
|
||
fn = 1.0;
|
||
t = 1.0;
|
||
s = t;
|
||
nkf = ae_maxrealnumber;
|
||
i = 0;
|
||
do
|
||
{
|
||
z = pn-pk*pk;
|
||
t = t*z/(fn*z0);
|
||
nk1f = ae_fabs(t, _state);
|
||
if( i>=n&&ae_fp_greater(nk1f,nkf) )
|
||
{
|
||
break;
|
||
}
|
||
nkf = nk1f;
|
||
s = s+t;
|
||
fn = fn+1.0;
|
||
pk = pk+2.0;
|
||
i = i+1;
|
||
}
|
||
while(ae_fp_greater(ae_fabs(t/s, _state),ae_machineepsilon));
|
||
result = ae_exp(-x, _state)*ae_sqrt(ae_pi/(2.0*x), _state)*s;
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Internal subroutine
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
static void bessel_besselmfirstcheb(double c,
|
||
double* b0,
|
||
double* b1,
|
||
double* b2,
|
||
ae_state *_state)
|
||
{
|
||
|
||
|
||
*b0 = c;
|
||
*b1 = 0.0;
|
||
*b2 = 0.0;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Internal subroutine
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
static void bessel_besselmnextcheb(double x,
|
||
double c,
|
||
double* b0,
|
||
double* b1,
|
||
double* b2,
|
||
ae_state *_state)
|
||
{
|
||
|
||
|
||
*b2 = *b1;
|
||
*b1 = *b0;
|
||
*b0 = x*(*b1)-(*b2)+c;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Internal subroutine
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
static void bessel_besselm1firstcheb(double c,
|
||
double* b0,
|
||
double* b1,
|
||
double* b2,
|
||
ae_state *_state)
|
||
{
|
||
|
||
|
||
*b0 = c;
|
||
*b1 = 0.0;
|
||
*b2 = 0.0;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Internal subroutine
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
static void bessel_besselm1nextcheb(double x,
|
||
double c,
|
||
double* b0,
|
||
double* b1,
|
||
double* b2,
|
||
ae_state *_state)
|
||
{
|
||
|
||
|
||
*b2 = *b1;
|
||
*b1 = *b0;
|
||
*b0 = x*(*b1)-(*b2)+c;
|
||
}
|
||
|
||
|
||
static void bessel_besselasympt0(double x,
|
||
double* pzero,
|
||
double* qzero,
|
||
ae_state *_state)
|
||
{
|
||
double xsq;
|
||
double p2;
|
||
double q2;
|
||
double p3;
|
||
double q3;
|
||
|
||
*pzero = 0;
|
||
*qzero = 0;
|
||
|
||
xsq = 64.0/(x*x);
|
||
p2 = 0.0;
|
||
p2 = 2485.271928957404011288128951+xsq*p2;
|
||
p2 = 153982.6532623911470917825993+xsq*p2;
|
||
p2 = 2016135.283049983642487182349+xsq*p2;
|
||
p2 = 8413041.456550439208464315611+xsq*p2;
|
||
p2 = 12332384.76817638145232406055+xsq*p2;
|
||
p2 = 5393485.083869438325262122897+xsq*p2;
|
||
q2 = 1.0;
|
||
q2 = 2615.700736920839685159081813+xsq*q2;
|
||
q2 = 156001.7276940030940592769933+xsq*q2;
|
||
q2 = 2025066.801570134013891035236+xsq*q2;
|
||
q2 = 8426449.050629797331554404810+xsq*q2;
|
||
q2 = 12338310.22786324960844856182+xsq*q2;
|
||
q2 = 5393485.083869438325560444960+xsq*q2;
|
||
p3 = -0.0;
|
||
p3 = -4.887199395841261531199129300+xsq*p3;
|
||
p3 = -226.2630641933704113967255053+xsq*p3;
|
||
p3 = -2365.956170779108192723612816+xsq*p3;
|
||
p3 = -8239.066313485606568803548860+xsq*p3;
|
||
p3 = -10381.41698748464093880530341+xsq*p3;
|
||
p3 = -3984.617357595222463506790588+xsq*p3;
|
||
q3 = 1.0;
|
||
q3 = 408.7714673983499223402830260+xsq*q3;
|
||
q3 = 15704.89191515395519392882766+xsq*q3;
|
||
q3 = 156021.3206679291652539287109+xsq*q3;
|
||
q3 = 533291.3634216897168722255057+xsq*q3;
|
||
q3 = 666745.4239319826986004038103+xsq*q3;
|
||
q3 = 255015.5108860942382983170882+xsq*q3;
|
||
*pzero = p2/q2;
|
||
*qzero = 8*p3/q3/x;
|
||
}
|
||
|
||
|
||
static void bessel_besselasympt1(double x,
|
||
double* pzero,
|
||
double* qzero,
|
||
ae_state *_state)
|
||
{
|
||
double xsq;
|
||
double p2;
|
||
double q2;
|
||
double p3;
|
||
double q3;
|
||
|
||
*pzero = 0;
|
||
*qzero = 0;
|
||
|
||
xsq = 64.0/(x*x);
|
||
p2 = -1611.616644324610116477412898;
|
||
p2 = -109824.0554345934672737413139+xsq*p2;
|
||
p2 = -1523529.351181137383255105722+xsq*p2;
|
||
p2 = -6603373.248364939109255245434+xsq*p2;
|
||
p2 = -9942246.505077641195658377899+xsq*p2;
|
||
p2 = -4435757.816794127857114720794+xsq*p2;
|
||
q2 = 1.0;
|
||
q2 = -1455.009440190496182453565068+xsq*q2;
|
||
q2 = -107263.8599110382011903063867+xsq*q2;
|
||
q2 = -1511809.506634160881644546358+xsq*q2;
|
||
q2 = -6585339.479723087072826915069+xsq*q2;
|
||
q2 = -9934124.389934585658967556309+xsq*q2;
|
||
q2 = -4435757.816794127856828016962+xsq*q2;
|
||
p3 = 35.26513384663603218592175580;
|
||
p3 = 1706.375429020768002061283546+xsq*p3;
|
||
p3 = 18494.26287322386679652009819+xsq*p3;
|
||
p3 = 66178.83658127083517939992166+xsq*p3;
|
||
p3 = 85145.16067533570196555001171+xsq*p3;
|
||
p3 = 33220.91340985722351859704442+xsq*p3;
|
||
q3 = 1.0;
|
||
q3 = 863.8367769604990967475517183+xsq*q3;
|
||
q3 = 37890.22974577220264142952256+xsq*q3;
|
||
q3 = 400294.4358226697511708610813+xsq*q3;
|
||
q3 = 1419460.669603720892855755253+xsq*q3;
|
||
q3 = 1819458.042243997298924553839+xsq*q3;
|
||
q3 = 708712.8194102874357377502472+xsq*q3;
|
||
*pzero = p2/q2;
|
||
*qzero = 8*p3/q3/x;
|
||
}
|
||
|
||
|
||
|
||
|
||
/*************************************************************************
|
||
Beta function
|
||
|
||
|
||
- -
|
||
| (a) | (b)
|
||
beta( a, b ) = -----------.
|
||
-
|
||
| (a+b)
|
||
|
||
For large arguments the logarithm of the function is
|
||
evaluated using lgam(), then exponentiated.
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0,30 30000 8.1e-14 1.1e-14
|
||
|
||
Cephes Math Library Release 2.0: April, 1987
|
||
Copyright 1984, 1987 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double beta(double a, double b, ae_state *_state)
|
||
{
|
||
double y;
|
||
double sg;
|
||
double s;
|
||
double result;
|
||
|
||
|
||
sg = 1;
|
||
ae_assert(ae_fp_greater(a,0)||ae_fp_neq(a,ae_ifloor(a, _state)), "Overflow in Beta", _state);
|
||
ae_assert(ae_fp_greater(b,0)||ae_fp_neq(b,ae_ifloor(b, _state)), "Overflow in Beta", _state);
|
||
y = a+b;
|
||
if( ae_fp_greater(ae_fabs(y, _state),171.624376956302725) )
|
||
{
|
||
y = lngamma(y, &s, _state);
|
||
sg = sg*s;
|
||
y = lngamma(b, &s, _state)-y;
|
||
sg = sg*s;
|
||
y = lngamma(a, &s, _state)+y;
|
||
sg = sg*s;
|
||
ae_assert(ae_fp_less_eq(y,ae_log(ae_maxrealnumber, _state)), "Overflow in Beta", _state);
|
||
result = sg*ae_exp(y, _state);
|
||
return result;
|
||
}
|
||
y = gammafunction(y, _state);
|
||
ae_assert(ae_fp_neq(y,0), "Overflow in Beta", _state);
|
||
if( ae_fp_greater(a,b) )
|
||
{
|
||
y = gammafunction(a, _state)/y;
|
||
y = y*gammafunction(b, _state);
|
||
}
|
||
else
|
||
{
|
||
y = gammafunction(b, _state)/y;
|
||
y = y*gammafunction(a, _state);
|
||
}
|
||
result = y;
|
||
return result;
|
||
}
|
||
|
||
|
||
|
||
|
||
/*************************************************************************
|
||
Incomplete beta integral
|
||
|
||
Returns incomplete beta integral of the arguments, evaluated
|
||
from zero to x. The function is defined as
|
||
|
||
x
|
||
- -
|
||
| (a+b) | | a-1 b-1
|
||
----------- | t (1-t) dt.
|
||
- - | |
|
||
| (a) | (b) -
|
||
0
|
||
|
||
The domain of definition is 0 <= x <= 1. In this
|
||
implementation a and b are restricted to positive values.
|
||
The integral from x to 1 may be obtained by the symmetry
|
||
relation
|
||
|
||
1 - incbet( a, b, x ) = incbet( b, a, 1-x ).
|
||
|
||
The integral is evaluated by a continued fraction expansion
|
||
or, when b*x is small, by a power series.
|
||
|
||
ACCURACY:
|
||
|
||
Tested at uniformly distributed random points (a,b,x) with a and b
|
||
in "domain" and x between 0 and 1.
|
||
Relative error
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0,5 10000 6.9e-15 4.5e-16
|
||
IEEE 0,85 250000 2.2e-13 1.7e-14
|
||
IEEE 0,1000 30000 5.3e-12 6.3e-13
|
||
IEEE 0,10000 250000 9.3e-11 7.1e-12
|
||
IEEE 0,100000 10000 8.7e-10 4.8e-11
|
||
Outputs smaller than the IEEE gradual underflow threshold
|
||
were excluded from these statistics.
|
||
|
||
Cephes Math Library, Release 2.8: June, 2000
|
||
Copyright 1984, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double incompletebeta(double a, double b, double x, ae_state *_state)
|
||
{
|
||
double t;
|
||
double xc;
|
||
double w;
|
||
double y;
|
||
ae_int_t flag;
|
||
double sg;
|
||
double big;
|
||
double biginv;
|
||
double maxgam;
|
||
double minlog;
|
||
double maxlog;
|
||
double result;
|
||
|
||
|
||
big = 4.503599627370496e15;
|
||
biginv = 2.22044604925031308085e-16;
|
||
maxgam = 171.624376956302725;
|
||
minlog = ae_log(ae_minrealnumber, _state);
|
||
maxlog = ae_log(ae_maxrealnumber, _state);
|
||
ae_assert(ae_fp_greater(a,0)&&ae_fp_greater(b,0), "Domain error in IncompleteBeta", _state);
|
||
ae_assert(ae_fp_greater_eq(x,0)&&ae_fp_less_eq(x,1), "Domain error in IncompleteBeta", _state);
|
||
if( ae_fp_eq(x,0) )
|
||
{
|
||
result = 0;
|
||
return result;
|
||
}
|
||
if( ae_fp_eq(x,1) )
|
||
{
|
||
result = 1;
|
||
return result;
|
||
}
|
||
flag = 0;
|
||
if( ae_fp_less_eq(b*x,1.0)&&ae_fp_less_eq(x,0.95) )
|
||
{
|
||
result = ibetaf_incompletebetaps(a, b, x, maxgam, _state);
|
||
return result;
|
||
}
|
||
w = 1.0-x;
|
||
if( ae_fp_greater(x,a/(a+b)) )
|
||
{
|
||
flag = 1;
|
||
t = a;
|
||
a = b;
|
||
b = t;
|
||
xc = x;
|
||
x = w;
|
||
}
|
||
else
|
||
{
|
||
xc = w;
|
||
}
|
||
if( (flag==1&&ae_fp_less_eq(b*x,1.0))&&ae_fp_less_eq(x,0.95) )
|
||
{
|
||
t = ibetaf_incompletebetaps(a, b, x, maxgam, _state);
|
||
if( ae_fp_less_eq(t,ae_machineepsilon) )
|
||
{
|
||
result = 1.0-ae_machineepsilon;
|
||
}
|
||
else
|
||
{
|
||
result = 1.0-t;
|
||
}
|
||
return result;
|
||
}
|
||
y = x*(a+b-2.0)-(a-1.0);
|
||
if( ae_fp_less(y,0.0) )
|
||
{
|
||
w = ibetaf_incompletebetafe(a, b, x, big, biginv, _state);
|
||
}
|
||
else
|
||
{
|
||
w = ibetaf_incompletebetafe2(a, b, x, big, biginv, _state)/xc;
|
||
}
|
||
y = a*ae_log(x, _state);
|
||
t = b*ae_log(xc, _state);
|
||
if( (ae_fp_less(a+b,maxgam)&&ae_fp_less(ae_fabs(y, _state),maxlog))&&ae_fp_less(ae_fabs(t, _state),maxlog) )
|
||
{
|
||
t = ae_pow(xc, b, _state);
|
||
t = t*ae_pow(x, a, _state);
|
||
t = t/a;
|
||
t = t*w;
|
||
t = t*(gammafunction(a+b, _state)/(gammafunction(a, _state)*gammafunction(b, _state)));
|
||
if( flag==1 )
|
||
{
|
||
if( ae_fp_less_eq(t,ae_machineepsilon) )
|
||
{
|
||
result = 1.0-ae_machineepsilon;
|
||
}
|
||
else
|
||
{
|
||
result = 1.0-t;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
result = t;
|
||
}
|
||
return result;
|
||
}
|
||
y = y+t+lngamma(a+b, &sg, _state)-lngamma(a, &sg, _state)-lngamma(b, &sg, _state);
|
||
y = y+ae_log(w/a, _state);
|
||
if( ae_fp_less(y,minlog) )
|
||
{
|
||
t = 0.0;
|
||
}
|
||
else
|
||
{
|
||
t = ae_exp(y, _state);
|
||
}
|
||
if( flag==1 )
|
||
{
|
||
if( ae_fp_less_eq(t,ae_machineepsilon) )
|
||
{
|
||
t = 1.0-ae_machineepsilon;
|
||
}
|
||
else
|
||
{
|
||
t = 1.0-t;
|
||
}
|
||
}
|
||
result = t;
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Inverse of imcomplete beta integral
|
||
|
||
Given y, the function finds x such that
|
||
|
||
incbet( a, b, x ) = y .
|
||
|
||
The routine performs interval halving or Newton iterations to find the
|
||
root of incbet(a,b,x) - y = 0.
|
||
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
x a,b
|
||
arithmetic domain domain # trials peak rms
|
||
IEEE 0,1 .5,10000 50000 5.8e-12 1.3e-13
|
||
IEEE 0,1 .25,100 100000 1.8e-13 3.9e-15
|
||
IEEE 0,1 0,5 50000 1.1e-12 5.5e-15
|
||
With a and b constrained to half-integer or integer values:
|
||
IEEE 0,1 .5,10000 50000 5.8e-12 1.1e-13
|
||
IEEE 0,1 .5,100 100000 1.7e-14 7.9e-16
|
||
With a = .5, b constrained to half-integer or integer values:
|
||
IEEE 0,1 .5,10000 10000 8.3e-11 1.0e-11
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1996, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double invincompletebeta(double a, double b, double y, ae_state *_state)
|
||
{
|
||
double aaa;
|
||
double bbb;
|
||
double y0;
|
||
double d;
|
||
double yyy;
|
||
double x;
|
||
double x0;
|
||
double x1;
|
||
double lgm;
|
||
double yp;
|
||
double di;
|
||
double dithresh;
|
||
double yl;
|
||
double yh;
|
||
double xt;
|
||
ae_int_t i;
|
||
ae_int_t rflg;
|
||
ae_int_t dir;
|
||
ae_int_t nflg;
|
||
double s;
|
||
ae_int_t mainlooppos;
|
||
ae_int_t ihalve;
|
||
ae_int_t ihalvecycle;
|
||
ae_int_t newt;
|
||
ae_int_t newtcycle;
|
||
ae_int_t breaknewtcycle;
|
||
ae_int_t breakihalvecycle;
|
||
double result;
|
||
|
||
|
||
i = 0;
|
||
ae_assert(ae_fp_greater_eq(y,0)&&ae_fp_less_eq(y,1), "Domain error in InvIncompleteBeta", _state);
|
||
|
||
/*
|
||
* special cases
|
||
*/
|
||
if( ae_fp_eq(y,0) )
|
||
{
|
||
result = 0;
|
||
return result;
|
||
}
|
||
if( ae_fp_eq(y,1.0) )
|
||
{
|
||
result = 1;
|
||
return result;
|
||
}
|
||
|
||
/*
|
||
* these initializations are not really necessary,
|
||
* but without them compiler complains about 'possibly uninitialized variables'.
|
||
*/
|
||
dithresh = 0;
|
||
rflg = 0;
|
||
aaa = 0;
|
||
bbb = 0;
|
||
y0 = 0;
|
||
x = 0;
|
||
yyy = 0;
|
||
lgm = 0;
|
||
dir = 0;
|
||
di = 0;
|
||
|
||
/*
|
||
* normal initializations
|
||
*/
|
||
x0 = 0.0;
|
||
yl = 0.0;
|
||
x1 = 1.0;
|
||
yh = 1.0;
|
||
nflg = 0;
|
||
mainlooppos = 0;
|
||
ihalve = 1;
|
||
ihalvecycle = 2;
|
||
newt = 3;
|
||
newtcycle = 4;
|
||
breaknewtcycle = 5;
|
||
breakihalvecycle = 6;
|
||
|
||
/*
|
||
* main loop
|
||
*/
|
||
for(;;)
|
||
{
|
||
|
||
/*
|
||
* start
|
||
*/
|
||
if( mainlooppos==0 )
|
||
{
|
||
if( ae_fp_less_eq(a,1.0)||ae_fp_less_eq(b,1.0) )
|
||
{
|
||
dithresh = 1.0e-6;
|
||
rflg = 0;
|
||
aaa = a;
|
||
bbb = b;
|
||
y0 = y;
|
||
x = aaa/(aaa+bbb);
|
||
yyy = incompletebeta(aaa, bbb, x, _state);
|
||
mainlooppos = ihalve;
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
dithresh = 1.0e-4;
|
||
}
|
||
yp = -invnormaldistribution(y, _state);
|
||
if( ae_fp_greater(y,0.5) )
|
||
{
|
||
rflg = 1;
|
||
aaa = b;
|
||
bbb = a;
|
||
y0 = 1.0-y;
|
||
yp = -yp;
|
||
}
|
||
else
|
||
{
|
||
rflg = 0;
|
||
aaa = a;
|
||
bbb = b;
|
||
y0 = y;
|
||
}
|
||
lgm = (yp*yp-3.0)/6.0;
|
||
x = 2.0/(1.0/(2.0*aaa-1.0)+1.0/(2.0*bbb-1.0));
|
||
d = yp*ae_sqrt(x+lgm, _state)/x-(1.0/(2.0*bbb-1.0)-1.0/(2.0*aaa-1.0))*(lgm+5.0/6.0-2.0/(3.0*x));
|
||
d = 2.0*d;
|
||
if( ae_fp_less(d,ae_log(ae_minrealnumber, _state)) )
|
||
{
|
||
x = 0;
|
||
break;
|
||
}
|
||
x = aaa/(aaa+bbb*ae_exp(d, _state));
|
||
yyy = incompletebeta(aaa, bbb, x, _state);
|
||
yp = (yyy-y0)/y0;
|
||
if( ae_fp_less(ae_fabs(yp, _state),0.2) )
|
||
{
|
||
mainlooppos = newt;
|
||
continue;
|
||
}
|
||
mainlooppos = ihalve;
|
||
continue;
|
||
}
|
||
|
||
/*
|
||
* ihalve
|
||
*/
|
||
if( mainlooppos==ihalve )
|
||
{
|
||
dir = 0;
|
||
di = 0.5;
|
||
i = 0;
|
||
mainlooppos = ihalvecycle;
|
||
continue;
|
||
}
|
||
|
||
/*
|
||
* ihalvecycle
|
||
*/
|
||
if( mainlooppos==ihalvecycle )
|
||
{
|
||
if( i<=99 )
|
||
{
|
||
if( i!=0 )
|
||
{
|
||
x = x0+di*(x1-x0);
|
||
if( ae_fp_eq(x,1.0) )
|
||
{
|
||
x = 1.0-ae_machineepsilon;
|
||
}
|
||
if( ae_fp_eq(x,0.0) )
|
||
{
|
||
di = 0.5;
|
||
x = x0+di*(x1-x0);
|
||
if( ae_fp_eq(x,0.0) )
|
||
{
|
||
break;
|
||
}
|
||
}
|
||
yyy = incompletebeta(aaa, bbb, x, _state);
|
||
yp = (x1-x0)/(x1+x0);
|
||
if( ae_fp_less(ae_fabs(yp, _state),dithresh) )
|
||
{
|
||
mainlooppos = newt;
|
||
continue;
|
||
}
|
||
yp = (yyy-y0)/y0;
|
||
if( ae_fp_less(ae_fabs(yp, _state),dithresh) )
|
||
{
|
||
mainlooppos = newt;
|
||
continue;
|
||
}
|
||
}
|
||
if( ae_fp_less(yyy,y0) )
|
||
{
|
||
x0 = x;
|
||
yl = yyy;
|
||
if( dir<0 )
|
||
{
|
||
dir = 0;
|
||
di = 0.5;
|
||
}
|
||
else
|
||
{
|
||
if( dir>3 )
|
||
{
|
||
di = 1.0-(1.0-di)*(1.0-di);
|
||
}
|
||
else
|
||
{
|
||
if( dir>1 )
|
||
{
|
||
di = 0.5*di+0.5;
|
||
}
|
||
else
|
||
{
|
||
di = (y0-yyy)/(yh-yl);
|
||
}
|
||
}
|
||
}
|
||
dir = dir+1;
|
||
if( ae_fp_greater(x0,0.75) )
|
||
{
|
||
if( rflg==1 )
|
||
{
|
||
rflg = 0;
|
||
aaa = a;
|
||
bbb = b;
|
||
y0 = y;
|
||
}
|
||
else
|
||
{
|
||
rflg = 1;
|
||
aaa = b;
|
||
bbb = a;
|
||
y0 = 1.0-y;
|
||
}
|
||
x = 1.0-x;
|
||
yyy = incompletebeta(aaa, bbb, x, _state);
|
||
x0 = 0.0;
|
||
yl = 0.0;
|
||
x1 = 1.0;
|
||
yh = 1.0;
|
||
mainlooppos = ihalve;
|
||
continue;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
x1 = x;
|
||
if( rflg==1&&ae_fp_less(x1,ae_machineepsilon) )
|
||
{
|
||
x = 0.0;
|
||
break;
|
||
}
|
||
yh = yyy;
|
||
if( dir>0 )
|
||
{
|
||
dir = 0;
|
||
di = 0.5;
|
||
}
|
||
else
|
||
{
|
||
if( dir<-3 )
|
||
{
|
||
di = di*di;
|
||
}
|
||
else
|
||
{
|
||
if( dir<-1 )
|
||
{
|
||
di = 0.5*di;
|
||
}
|
||
else
|
||
{
|
||
di = (yyy-y0)/(yh-yl);
|
||
}
|
||
}
|
||
}
|
||
dir = dir-1;
|
||
}
|
||
i = i+1;
|
||
mainlooppos = ihalvecycle;
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
mainlooppos = breakihalvecycle;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* breakihalvecycle
|
||
*/
|
||
if( mainlooppos==breakihalvecycle )
|
||
{
|
||
if( ae_fp_greater_eq(x0,1.0) )
|
||
{
|
||
x = 1.0-ae_machineepsilon;
|
||
break;
|
||
}
|
||
if( ae_fp_less_eq(x,0.0) )
|
||
{
|
||
x = 0.0;
|
||
break;
|
||
}
|
||
mainlooppos = newt;
|
||
continue;
|
||
}
|
||
|
||
/*
|
||
* newt
|
||
*/
|
||
if( mainlooppos==newt )
|
||
{
|
||
if( nflg!=0 )
|
||
{
|
||
break;
|
||
}
|
||
nflg = 1;
|
||
lgm = lngamma(aaa+bbb, &s, _state)-lngamma(aaa, &s, _state)-lngamma(bbb, &s, _state);
|
||
i = 0;
|
||
mainlooppos = newtcycle;
|
||
continue;
|
||
}
|
||
|
||
/*
|
||
* newtcycle
|
||
*/
|
||
if( mainlooppos==newtcycle )
|
||
{
|
||
if( i<=7 )
|
||
{
|
||
if( i!=0 )
|
||
{
|
||
yyy = incompletebeta(aaa, bbb, x, _state);
|
||
}
|
||
if( ae_fp_less(yyy,yl) )
|
||
{
|
||
x = x0;
|
||
yyy = yl;
|
||
}
|
||
else
|
||
{
|
||
if( ae_fp_greater(yyy,yh) )
|
||
{
|
||
x = x1;
|
||
yyy = yh;
|
||
}
|
||
else
|
||
{
|
||
if( ae_fp_less(yyy,y0) )
|
||
{
|
||
x0 = x;
|
||
yl = yyy;
|
||
}
|
||
else
|
||
{
|
||
x1 = x;
|
||
yh = yyy;
|
||
}
|
||
}
|
||
}
|
||
if( ae_fp_eq(x,1.0)||ae_fp_eq(x,0.0) )
|
||
{
|
||
mainlooppos = breaknewtcycle;
|
||
continue;
|
||
}
|
||
d = (aaa-1.0)*ae_log(x, _state)+(bbb-1.0)*ae_log(1.0-x, _state)+lgm;
|
||
if( ae_fp_less(d,ae_log(ae_minrealnumber, _state)) )
|
||
{
|
||
break;
|
||
}
|
||
if( ae_fp_greater(d,ae_log(ae_maxrealnumber, _state)) )
|
||
{
|
||
mainlooppos = breaknewtcycle;
|
||
continue;
|
||
}
|
||
d = ae_exp(d, _state);
|
||
d = (yyy-y0)/d;
|
||
xt = x-d;
|
||
if( ae_fp_less_eq(xt,x0) )
|
||
{
|
||
yyy = (x-x0)/(x1-x0);
|
||
xt = x0+0.5*yyy*(x-x0);
|
||
if( ae_fp_less_eq(xt,0.0) )
|
||
{
|
||
mainlooppos = breaknewtcycle;
|
||
continue;
|
||
}
|
||
}
|
||
if( ae_fp_greater_eq(xt,x1) )
|
||
{
|
||
yyy = (x1-x)/(x1-x0);
|
||
xt = x1-0.5*yyy*(x1-x);
|
||
if( ae_fp_greater_eq(xt,1.0) )
|
||
{
|
||
mainlooppos = breaknewtcycle;
|
||
continue;
|
||
}
|
||
}
|
||
x = xt;
|
||
if( ae_fp_less(ae_fabs(d/x, _state),128.0*ae_machineepsilon) )
|
||
{
|
||
break;
|
||
}
|
||
i = i+1;
|
||
mainlooppos = newtcycle;
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
mainlooppos = breaknewtcycle;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* breaknewtcycle
|
||
*/
|
||
if( mainlooppos==breaknewtcycle )
|
||
{
|
||
dithresh = 256.0*ae_machineepsilon;
|
||
mainlooppos = ihalve;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* done
|
||
*/
|
||
if( rflg!=0 )
|
||
{
|
||
if( ae_fp_less_eq(x,ae_machineepsilon) )
|
||
{
|
||
x = 1.0-ae_machineepsilon;
|
||
}
|
||
else
|
||
{
|
||
x = 1.0-x;
|
||
}
|
||
}
|
||
result = x;
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Continued fraction expansion #1 for incomplete beta integral
|
||
|
||
Cephes Math Library, Release 2.8: June, 2000
|
||
Copyright 1984, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
static double ibetaf_incompletebetafe(double a,
|
||
double b,
|
||
double x,
|
||
double big,
|
||
double biginv,
|
||
ae_state *_state)
|
||
{
|
||
double xk;
|
||
double pk;
|
||
double pkm1;
|
||
double pkm2;
|
||
double qk;
|
||
double qkm1;
|
||
double qkm2;
|
||
double k1;
|
||
double k2;
|
||
double k3;
|
||
double k4;
|
||
double k5;
|
||
double k6;
|
||
double k7;
|
||
double k8;
|
||
double r;
|
||
double t;
|
||
double ans;
|
||
double thresh;
|
||
ae_int_t n;
|
||
double result;
|
||
|
||
|
||
k1 = a;
|
||
k2 = a+b;
|
||
k3 = a;
|
||
k4 = a+1.0;
|
||
k5 = 1.0;
|
||
k6 = b-1.0;
|
||
k7 = k4;
|
||
k8 = a+2.0;
|
||
pkm2 = 0.0;
|
||
qkm2 = 1.0;
|
||
pkm1 = 1.0;
|
||
qkm1 = 1.0;
|
||
ans = 1.0;
|
||
r = 1.0;
|
||
n = 0;
|
||
thresh = 3.0*ae_machineepsilon;
|
||
do
|
||
{
|
||
xk = -x*k1*k2/(k3*k4);
|
||
pk = pkm1+pkm2*xk;
|
||
qk = qkm1+qkm2*xk;
|
||
pkm2 = pkm1;
|
||
pkm1 = pk;
|
||
qkm2 = qkm1;
|
||
qkm1 = qk;
|
||
xk = x*k5*k6/(k7*k8);
|
||
pk = pkm1+pkm2*xk;
|
||
qk = qkm1+qkm2*xk;
|
||
pkm2 = pkm1;
|
||
pkm1 = pk;
|
||
qkm2 = qkm1;
|
||
qkm1 = qk;
|
||
if( ae_fp_neq(qk,0) )
|
||
{
|
||
r = pk/qk;
|
||
}
|
||
if( ae_fp_neq(r,0) )
|
||
{
|
||
t = ae_fabs((ans-r)/r, _state);
|
||
ans = r;
|
||
}
|
||
else
|
||
{
|
||
t = 1.0;
|
||
}
|
||
if( ae_fp_less(t,thresh) )
|
||
{
|
||
break;
|
||
}
|
||
k1 = k1+1.0;
|
||
k2 = k2+1.0;
|
||
k3 = k3+2.0;
|
||
k4 = k4+2.0;
|
||
k5 = k5+1.0;
|
||
k6 = k6-1.0;
|
||
k7 = k7+2.0;
|
||
k8 = k8+2.0;
|
||
if( ae_fp_greater(ae_fabs(qk, _state)+ae_fabs(pk, _state),big) )
|
||
{
|
||
pkm2 = pkm2*biginv;
|
||
pkm1 = pkm1*biginv;
|
||
qkm2 = qkm2*biginv;
|
||
qkm1 = qkm1*biginv;
|
||
}
|
||
if( ae_fp_less(ae_fabs(qk, _state),biginv)||ae_fp_less(ae_fabs(pk, _state),biginv) )
|
||
{
|
||
pkm2 = pkm2*big;
|
||
pkm1 = pkm1*big;
|
||
qkm2 = qkm2*big;
|
||
qkm1 = qkm1*big;
|
||
}
|
||
n = n+1;
|
||
}
|
||
while(n!=300);
|
||
result = ans;
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Continued fraction expansion #2
|
||
for incomplete beta integral
|
||
|
||
Cephes Math Library, Release 2.8: June, 2000
|
||
Copyright 1984, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
static double ibetaf_incompletebetafe2(double a,
|
||
double b,
|
||
double x,
|
||
double big,
|
||
double biginv,
|
||
ae_state *_state)
|
||
{
|
||
double xk;
|
||
double pk;
|
||
double pkm1;
|
||
double pkm2;
|
||
double qk;
|
||
double qkm1;
|
||
double qkm2;
|
||
double k1;
|
||
double k2;
|
||
double k3;
|
||
double k4;
|
||
double k5;
|
||
double k6;
|
||
double k7;
|
||
double k8;
|
||
double r;
|
||
double t;
|
||
double ans;
|
||
double z;
|
||
double thresh;
|
||
ae_int_t n;
|
||
double result;
|
||
|
||
|
||
k1 = a;
|
||
k2 = b-1.0;
|
||
k3 = a;
|
||
k4 = a+1.0;
|
||
k5 = 1.0;
|
||
k6 = a+b;
|
||
k7 = a+1.0;
|
||
k8 = a+2.0;
|
||
pkm2 = 0.0;
|
||
qkm2 = 1.0;
|
||
pkm1 = 1.0;
|
||
qkm1 = 1.0;
|
||
z = x/(1.0-x);
|
||
ans = 1.0;
|
||
r = 1.0;
|
||
n = 0;
|
||
thresh = 3.0*ae_machineepsilon;
|
||
do
|
||
{
|
||
xk = -z*k1*k2/(k3*k4);
|
||
pk = pkm1+pkm2*xk;
|
||
qk = qkm1+qkm2*xk;
|
||
pkm2 = pkm1;
|
||
pkm1 = pk;
|
||
qkm2 = qkm1;
|
||
qkm1 = qk;
|
||
xk = z*k5*k6/(k7*k8);
|
||
pk = pkm1+pkm2*xk;
|
||
qk = qkm1+qkm2*xk;
|
||
pkm2 = pkm1;
|
||
pkm1 = pk;
|
||
qkm2 = qkm1;
|
||
qkm1 = qk;
|
||
if( ae_fp_neq(qk,0) )
|
||
{
|
||
r = pk/qk;
|
||
}
|
||
if( ae_fp_neq(r,0) )
|
||
{
|
||
t = ae_fabs((ans-r)/r, _state);
|
||
ans = r;
|
||
}
|
||
else
|
||
{
|
||
t = 1.0;
|
||
}
|
||
if( ae_fp_less(t,thresh) )
|
||
{
|
||
break;
|
||
}
|
||
k1 = k1+1.0;
|
||
k2 = k2-1.0;
|
||
k3 = k3+2.0;
|
||
k4 = k4+2.0;
|
||
k5 = k5+1.0;
|
||
k6 = k6+1.0;
|
||
k7 = k7+2.0;
|
||
k8 = k8+2.0;
|
||
if( ae_fp_greater(ae_fabs(qk, _state)+ae_fabs(pk, _state),big) )
|
||
{
|
||
pkm2 = pkm2*biginv;
|
||
pkm1 = pkm1*biginv;
|
||
qkm2 = qkm2*biginv;
|
||
qkm1 = qkm1*biginv;
|
||
}
|
||
if( ae_fp_less(ae_fabs(qk, _state),biginv)||ae_fp_less(ae_fabs(pk, _state),biginv) )
|
||
{
|
||
pkm2 = pkm2*big;
|
||
pkm1 = pkm1*big;
|
||
qkm2 = qkm2*big;
|
||
qkm1 = qkm1*big;
|
||
}
|
||
n = n+1;
|
||
}
|
||
while(n!=300);
|
||
result = ans;
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Power series for incomplete beta integral.
|
||
Use when b*x is small and x not too close to 1.
|
||
|
||
Cephes Math Library, Release 2.8: June, 2000
|
||
Copyright 1984, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
static double ibetaf_incompletebetaps(double a,
|
||
double b,
|
||
double x,
|
||
double maxgam,
|
||
ae_state *_state)
|
||
{
|
||
double s;
|
||
double t;
|
||
double u;
|
||
double v;
|
||
double n;
|
||
double t1;
|
||
double z;
|
||
double ai;
|
||
double sg;
|
||
double result;
|
||
|
||
|
||
ai = 1.0/a;
|
||
u = (1.0-b)*x;
|
||
v = u/(a+1.0);
|
||
t1 = v;
|
||
t = u;
|
||
n = 2.0;
|
||
s = 0.0;
|
||
z = ae_machineepsilon*ai;
|
||
while(ae_fp_greater(ae_fabs(v, _state),z))
|
||
{
|
||
u = (n-b)*x/n;
|
||
t = t*u;
|
||
v = t/(a+n);
|
||
s = s+v;
|
||
n = n+1.0;
|
||
}
|
||
s = s+t1;
|
||
s = s+ai;
|
||
u = a*ae_log(x, _state);
|
||
if( ae_fp_less(a+b,maxgam)&&ae_fp_less(ae_fabs(u, _state),ae_log(ae_maxrealnumber, _state)) )
|
||
{
|
||
t = gammafunction(a+b, _state)/(gammafunction(a, _state)*gammafunction(b, _state));
|
||
s = s*t*ae_pow(x, a, _state);
|
||
}
|
||
else
|
||
{
|
||
t = lngamma(a+b, &sg, _state)-lngamma(a, &sg, _state)-lngamma(b, &sg, _state)+u+ae_log(s, _state);
|
||
if( ae_fp_less(t,ae_log(ae_minrealnumber, _state)) )
|
||
{
|
||
s = 0.0;
|
||
}
|
||
else
|
||
{
|
||
s = ae_exp(t, _state);
|
||
}
|
||
}
|
||
result = s;
|
||
return result;
|
||
}
|
||
|
||
|
||
|
||
|
||
/*************************************************************************
|
||
Binomial distribution
|
||
|
||
Returns the sum of the terms 0 through k of the Binomial
|
||
probability density:
|
||
|
||
k
|
||
-- ( n ) j n-j
|
||
> ( ) p (1-p)
|
||
-- ( j )
|
||
j=0
|
||
|
||
The terms are not summed directly; instead the incomplete
|
||
beta integral is employed, according to the formula
|
||
|
||
y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ).
|
||
|
||
The arguments must be positive, with p ranging from 0 to 1.
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random points (a,b,p), with p between 0 and 1.
|
||
|
||
a,b Relative error:
|
||
arithmetic domain # trials peak rms
|
||
For p between 0.001 and 1:
|
||
IEEE 0,100 100000 4.3e-15 2.6e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double binomialdistribution(ae_int_t k,
|
||
ae_int_t n,
|
||
double p,
|
||
ae_state *_state)
|
||
{
|
||
double dk;
|
||
double dn;
|
||
double result;
|
||
|
||
|
||
ae_assert(ae_fp_greater_eq(p,0)&&ae_fp_less_eq(p,1), "Domain error in BinomialDistribution", _state);
|
||
ae_assert(k>=-1&&k<=n, "Domain error in BinomialDistribution", _state);
|
||
if( k==-1 )
|
||
{
|
||
result = 0;
|
||
return result;
|
||
}
|
||
if( k==n )
|
||
{
|
||
result = 1;
|
||
return result;
|
||
}
|
||
dn = n-k;
|
||
if( k==0 )
|
||
{
|
||
dk = ae_pow(1.0-p, dn, _state);
|
||
}
|
||
else
|
||
{
|
||
dk = k+1;
|
||
dk = incompletebeta(dn, dk, 1.0-p, _state);
|
||
}
|
||
result = dk;
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Complemented binomial distribution
|
||
|
||
Returns the sum of the terms k+1 through n of the Binomial
|
||
probability density:
|
||
|
||
n
|
||
-- ( n ) j n-j
|
||
> ( ) p (1-p)
|
||
-- ( j )
|
||
j=k+1
|
||
|
||
The terms are not summed directly; instead the incomplete
|
||
beta integral is employed, according to the formula
|
||
|
||
y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ).
|
||
|
||
The arguments must be positive, with p ranging from 0 to 1.
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random points (a,b,p).
|
||
|
||
a,b Relative error:
|
||
arithmetic domain # trials peak rms
|
||
For p between 0.001 and 1:
|
||
IEEE 0,100 100000 6.7e-15 8.2e-16
|
||
For p between 0 and .001:
|
||
IEEE 0,100 100000 1.5e-13 2.7e-15
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double binomialcdistribution(ae_int_t k,
|
||
ae_int_t n,
|
||
double p,
|
||
ae_state *_state)
|
||
{
|
||
double dk;
|
||
double dn;
|
||
double result;
|
||
|
||
|
||
ae_assert(ae_fp_greater_eq(p,0)&&ae_fp_less_eq(p,1), "Domain error in BinomialDistributionC", _state);
|
||
ae_assert(k>=-1&&k<=n, "Domain error in BinomialDistributionC", _state);
|
||
if( k==-1 )
|
||
{
|
||
result = 1;
|
||
return result;
|
||
}
|
||
if( k==n )
|
||
{
|
||
result = 0;
|
||
return result;
|
||
}
|
||
dn = n-k;
|
||
if( k==0 )
|
||
{
|
||
if( ae_fp_less(p,0.01) )
|
||
{
|
||
dk = -nuexpm1(dn*nulog1p(-p, _state), _state);
|
||
}
|
||
else
|
||
{
|
||
dk = 1.0-ae_pow(1.0-p, dn, _state);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
dk = k+1;
|
||
dk = incompletebeta(dk, dn, p, _state);
|
||
}
|
||
result = dk;
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Inverse binomial distribution
|
||
|
||
Finds the event probability p such that the sum of the
|
||
terms 0 through k of the Binomial probability density
|
||
is equal to the given cumulative probability y.
|
||
|
||
This is accomplished using the inverse beta integral
|
||
function and the relation
|
||
|
||
1 - p = incbi( n-k, k+1, y ).
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random points (a,b,p).
|
||
|
||
a,b Relative error:
|
||
arithmetic domain # trials peak rms
|
||
For p between 0.001 and 1:
|
||
IEEE 0,100 100000 2.3e-14 6.4e-16
|
||
IEEE 0,10000 100000 6.6e-12 1.2e-13
|
||
For p between 10^-6 and 0.001:
|
||
IEEE 0,100 100000 2.0e-12 1.3e-14
|
||
IEEE 0,10000 100000 1.5e-12 3.2e-14
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double invbinomialdistribution(ae_int_t k,
|
||
ae_int_t n,
|
||
double y,
|
||
ae_state *_state)
|
||
{
|
||
double dk;
|
||
double dn;
|
||
double p;
|
||
double result;
|
||
|
||
|
||
ae_assert(k>=0&&k<n, "Domain error in InvBinomialDistribution", _state);
|
||
dn = n-k;
|
||
if( k==0 )
|
||
{
|
||
if( ae_fp_greater(y,0.8) )
|
||
{
|
||
p = -nuexpm1(nulog1p(y-1.0, _state)/dn, _state);
|
||
}
|
||
else
|
||
{
|
||
p = 1.0-ae_pow(y, 1.0/dn, _state);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
dk = k+1;
|
||
p = incompletebeta(dn, dk, 0.5, _state);
|
||
if( ae_fp_greater(p,0.5) )
|
||
{
|
||
p = invincompletebeta(dk, dn, 1.0-y, _state);
|
||
}
|
||
else
|
||
{
|
||
p = 1.0-invincompletebeta(dn, dk, y, _state);
|
||
}
|
||
}
|
||
result = p;
|
||
return result;
|
||
}
|
||
|
||
|
||
|
||
|
||
/*************************************************************************
|
||
Calculation of the value of the Chebyshev polynomials of the
|
||
first and second kinds.
|
||
|
||
Parameters:
|
||
r - polynomial kind, either 1 or 2.
|
||
n - degree, n>=0
|
||
x - argument, -1 <= x <= 1
|
||
|
||
Result:
|
||
the value of the Chebyshev polynomial at x
|
||
*************************************************************************/
|
||
double chebyshevcalculate(ae_int_t r,
|
||
ae_int_t n,
|
||
double x,
|
||
ae_state *_state)
|
||
{
|
||
ae_int_t i;
|
||
double a;
|
||
double b;
|
||
double result;
|
||
|
||
|
||
result = 0;
|
||
|
||
/*
|
||
* Prepare A and B
|
||
*/
|
||
if( r==1 )
|
||
{
|
||
a = 1;
|
||
b = x;
|
||
}
|
||
else
|
||
{
|
||
a = 1;
|
||
b = 2*x;
|
||
}
|
||
|
||
/*
|
||
* Special cases: N=0 or N=1
|
||
*/
|
||
if( n==0 )
|
||
{
|
||
result = a;
|
||
return result;
|
||
}
|
||
if( n==1 )
|
||
{
|
||
result = b;
|
||
return result;
|
||
}
|
||
|
||
/*
|
||
* General case: N>=2
|
||
*/
|
||
for(i=2; i<=n; i++)
|
||
{
|
||
result = 2*x*b-a;
|
||
a = b;
|
||
b = result;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Summation of Chebyshev polynomials using Clenshaw<61>s recurrence formula.
|
||
|
||
This routine calculates
|
||
c[0]*T0(x) + c[1]*T1(x) + ... + c[N]*TN(x)
|
||
or
|
||
c[0]*U0(x) + c[1]*U1(x) + ... + c[N]*UN(x)
|
||
depending on the R.
|
||
|
||
Parameters:
|
||
r - polynomial kind, either 1 or 2.
|
||
n - degree, n>=0
|
||
x - argument
|
||
|
||
Result:
|
||
the value of the Chebyshev polynomial at x
|
||
*************************************************************************/
|
||
double chebyshevsum(/* Real */ ae_vector* c,
|
||
ae_int_t r,
|
||
ae_int_t n,
|
||
double x,
|
||
ae_state *_state)
|
||
{
|
||
double b1;
|
||
double b2;
|
||
ae_int_t i;
|
||
double result;
|
||
|
||
|
||
b1 = 0;
|
||
b2 = 0;
|
||
for(i=n; i>=1; i--)
|
||
{
|
||
result = 2*x*b1-b2+c->ptr.p_double[i];
|
||
b2 = b1;
|
||
b1 = result;
|
||
}
|
||
if( r==1 )
|
||
{
|
||
result = -b2+x*b1+c->ptr.p_double[0];
|
||
}
|
||
else
|
||
{
|
||
result = -b2+2*x*b1+c->ptr.p_double[0];
|
||
}
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Representation of Tn as C[0] + C[1]*X + ... + C[N]*X^N
|
||
|
||
Input parameters:
|
||
N - polynomial degree, n>=0
|
||
|
||
Output parameters:
|
||
C - coefficients
|
||
*************************************************************************/
|
||
void chebyshevcoefficients(ae_int_t n,
|
||
/* Real */ ae_vector* c,
|
||
ae_state *_state)
|
||
{
|
||
ae_int_t i;
|
||
|
||
ae_vector_clear(c);
|
||
|
||
ae_vector_set_length(c, n+1, _state);
|
||
for(i=0; i<=n; i++)
|
||
{
|
||
c->ptr.p_double[i] = 0;
|
||
}
|
||
if( n==0||n==1 )
|
||
{
|
||
c->ptr.p_double[n] = 1;
|
||
}
|
||
else
|
||
{
|
||
c->ptr.p_double[n] = ae_exp((n-1)*ae_log(2, _state), _state);
|
||
for(i=0; i<=n/2-1; i++)
|
||
{
|
||
c->ptr.p_double[n-2*(i+1)] = -c->ptr.p_double[n-2*i]*(n-2*i)*(n-2*i-1)/4/(i+1)/(n-i-1);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Conversion of a series of Chebyshev polynomials to a power series.
|
||
|
||
Represents A[0]*T0(x) + A[1]*T1(x) + ... + A[N]*Tn(x) as
|
||
B[0] + B[1]*X + ... + B[N]*X^N.
|
||
|
||
Input parameters:
|
||
A - Chebyshev series coefficients
|
||
N - degree, N>=0
|
||
|
||
Output parameters
|
||
B - power series coefficients
|
||
*************************************************************************/
|
||
void fromchebyshev(/* Real */ ae_vector* a,
|
||
ae_int_t n,
|
||
/* Real */ ae_vector* b,
|
||
ae_state *_state)
|
||
{
|
||
ae_int_t i;
|
||
ae_int_t k;
|
||
double e;
|
||
double d;
|
||
|
||
ae_vector_clear(b);
|
||
|
||
ae_vector_set_length(b, n+1, _state);
|
||
for(i=0; i<=n; i++)
|
||
{
|
||
b->ptr.p_double[i] = 0;
|
||
}
|
||
d = 0;
|
||
i = 0;
|
||
do
|
||
{
|
||
k = i;
|
||
do
|
||
{
|
||
e = b->ptr.p_double[k];
|
||
b->ptr.p_double[k] = 0;
|
||
if( i<=1&&k==i )
|
||
{
|
||
b->ptr.p_double[k] = 1;
|
||
}
|
||
else
|
||
{
|
||
if( i!=0 )
|
||
{
|
||
b->ptr.p_double[k] = 2*d;
|
||
}
|
||
if( k>i+1 )
|
||
{
|
||
b->ptr.p_double[k] = b->ptr.p_double[k]-b->ptr.p_double[k-2];
|
||
}
|
||
}
|
||
d = e;
|
||
k = k+1;
|
||
}
|
||
while(k<=n);
|
||
d = b->ptr.p_double[i];
|
||
e = 0;
|
||
k = i;
|
||
while(k<=n)
|
||
{
|
||
e = e+b->ptr.p_double[k]*a->ptr.p_double[k];
|
||
k = k+2;
|
||
}
|
||
b->ptr.p_double[i] = e;
|
||
i = i+1;
|
||
}
|
||
while(i<=n);
|
||
}
|
||
|
||
|
||
|
||
|
||
/*************************************************************************
|
||
Chi-square distribution
|
||
|
||
Returns the area under the left hand tail (from 0 to x)
|
||
of the Chi square probability density function with
|
||
v degrees of freedom.
|
||
|
||
|
||
x
|
||
-
|
||
1 | | v/2-1 -t/2
|
||
P( x | v ) = ----------- | t e dt
|
||
v/2 - | |
|
||
2 | (v/2) -
|
||
0
|
||
|
||
where x is the Chi-square variable.
|
||
|
||
The incomplete gamma integral is used, according to the
|
||
formula
|
||
|
||
y = chdtr( v, x ) = igam( v/2.0, x/2.0 ).
|
||
|
||
The arguments must both be positive.
|
||
|
||
ACCURACY:
|
||
|
||
See incomplete gamma function
|
||
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double chisquaredistribution(double v, double x, ae_state *_state)
|
||
{
|
||
double result;
|
||
|
||
|
||
ae_assert(ae_fp_greater_eq(x,0)&&ae_fp_greater_eq(v,1), "Domain error in ChiSquareDistribution", _state);
|
||
result = incompletegamma(v/2.0, x/2.0, _state);
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Complemented Chi-square distribution
|
||
|
||
Returns the area under the right hand tail (from x to
|
||
infinity) of the Chi square probability density function
|
||
with v degrees of freedom:
|
||
|
||
inf.
|
||
-
|
||
1 | | v/2-1 -t/2
|
||
P( x | v ) = ----------- | t e dt
|
||
v/2 - | |
|
||
2 | (v/2) -
|
||
x
|
||
|
||
where x is the Chi-square variable.
|
||
|
||
The incomplete gamma integral is used, according to the
|
||
formula
|
||
|
||
y = chdtr( v, x ) = igamc( v/2.0, x/2.0 ).
|
||
|
||
The arguments must both be positive.
|
||
|
||
ACCURACY:
|
||
|
||
See incomplete gamma function
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double chisquarecdistribution(double v, double x, ae_state *_state)
|
||
{
|
||
double result;
|
||
|
||
|
||
ae_assert(ae_fp_greater_eq(x,0)&&ae_fp_greater_eq(v,1), "Domain error in ChiSquareDistributionC", _state);
|
||
result = incompletegammac(v/2.0, x/2.0, _state);
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Inverse of complemented Chi-square distribution
|
||
|
||
Finds the Chi-square argument x such that the integral
|
||
from x to infinity of the Chi-square density is equal
|
||
to the given cumulative probability y.
|
||
|
||
This is accomplished using the inverse gamma integral
|
||
function and the relation
|
||
|
||
x/2 = igami( df/2, y );
|
||
|
||
ACCURACY:
|
||
|
||
See inverse incomplete gamma function
|
||
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double invchisquaredistribution(double v, double y, ae_state *_state)
|
||
{
|
||
double result;
|
||
|
||
|
||
ae_assert((ae_fp_greater_eq(y,0)&&ae_fp_less_eq(y,1))&&ae_fp_greater_eq(v,1), "Domain error in InvChiSquareDistribution", _state);
|
||
result = 2*invincompletegammac(0.5*v, y, _state);
|
||
return result;
|
||
}
|
||
|
||
|
||
|
||
|
||
/*************************************************************************
|
||
Dawson's Integral
|
||
|
||
Approximates the integral
|
||
|
||
x
|
||
-
|
||
2 | | 2
|
||
dawsn(x) = exp( -x ) | exp( t ) dt
|
||
| |
|
||
-
|
||
0
|
||
|
||
Three different rational approximations are employed, for
|
||
the intervals 0 to 3.25; 3.25 to 6.25; and 6.25 up.
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0,10 10000 6.9e-16 1.0e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double dawsonintegral(double x, ae_state *_state)
|
||
{
|
||
double x2;
|
||
double y;
|
||
ae_int_t sg;
|
||
double an;
|
||
double ad;
|
||
double bn;
|
||
double bd;
|
||
double cn;
|
||
double cd;
|
||
double result;
|
||
|
||
|
||
sg = 1;
|
||
if( ae_fp_less(x,0) )
|
||
{
|
||
sg = -1;
|
||
x = -x;
|
||
}
|
||
if( ae_fp_less(x,3.25) )
|
||
{
|
||
x2 = x*x;
|
||
an = 1.13681498971755972054E-11;
|
||
an = an*x2+8.49262267667473811108E-10;
|
||
an = an*x2+1.94434204175553054283E-8;
|
||
an = an*x2+9.53151741254484363489E-7;
|
||
an = an*x2+3.07828309874913200438E-6;
|
||
an = an*x2+3.52513368520288738649E-4;
|
||
an = an*x2+(-8.50149846724410912031E-4);
|
||
an = an*x2+4.22618223005546594270E-2;
|
||
an = an*x2+(-9.17480371773452345351E-2);
|
||
an = an*x2+9.99999999999999994612E-1;
|
||
ad = 2.40372073066762605484E-11;
|
||
ad = ad*x2+1.48864681368493396752E-9;
|
||
ad = ad*x2+5.21265281010541664570E-8;
|
||
ad = ad*x2+1.27258478273186970203E-6;
|
||
ad = ad*x2+2.32490249820789513991E-5;
|
||
ad = ad*x2+3.25524741826057911661E-4;
|
||
ad = ad*x2+3.48805814657162590916E-3;
|
||
ad = ad*x2+2.79448531198828973716E-2;
|
||
ad = ad*x2+1.58874241960120565368E-1;
|
||
ad = ad*x2+5.74918629489320327824E-1;
|
||
ad = ad*x2+1.00000000000000000539E0;
|
||
y = x*an/ad;
|
||
result = sg*y;
|
||
return result;
|
||
}
|
||
x2 = 1.0/(x*x);
|
||
if( ae_fp_less(x,6.25) )
|
||
{
|
||
bn = 5.08955156417900903354E-1;
|
||
bn = bn*x2-2.44754418142697847934E-1;
|
||
bn = bn*x2+9.41512335303534411857E-2;
|
||
bn = bn*x2-2.18711255142039025206E-2;
|
||
bn = bn*x2+3.66207612329569181322E-3;
|
||
bn = bn*x2-4.23209114460388756528E-4;
|
||
bn = bn*x2+3.59641304793896631888E-5;
|
||
bn = bn*x2-2.14640351719968974225E-6;
|
||
bn = bn*x2+9.10010780076391431042E-8;
|
||
bn = bn*x2-2.40274520828250956942E-9;
|
||
bn = bn*x2+3.59233385440928410398E-11;
|
||
bd = 1.00000000000000000000E0;
|
||
bd = bd*x2-6.31839869873368190192E-1;
|
||
bd = bd*x2+2.36706788228248691528E-1;
|
||
bd = bd*x2-5.31806367003223277662E-2;
|
||
bd = bd*x2+8.48041718586295374409E-3;
|
||
bd = bd*x2-9.47996768486665330168E-4;
|
||
bd = bd*x2+7.81025592944552338085E-5;
|
||
bd = bd*x2-4.55875153252442634831E-6;
|
||
bd = bd*x2+1.89100358111421846170E-7;
|
||
bd = bd*x2-4.91324691331920606875E-9;
|
||
bd = bd*x2+7.18466403235734541950E-11;
|
||
y = 1.0/x+x2*bn/(bd*x);
|
||
result = sg*0.5*y;
|
||
return result;
|
||
}
|
||
if( ae_fp_greater(x,1.0E9) )
|
||
{
|
||
result = sg*0.5/x;
|
||
return result;
|
||
}
|
||
cn = -5.90592860534773254987E-1;
|
||
cn = cn*x2+6.29235242724368800674E-1;
|
||
cn = cn*x2-1.72858975380388136411E-1;
|
||
cn = cn*x2+1.64837047825189632310E-2;
|
||
cn = cn*x2-4.86827613020462700845E-4;
|
||
cd = 1.00000000000000000000E0;
|
||
cd = cd*x2-2.69820057197544900361E0;
|
||
cd = cd*x2+1.73270799045947845857E0;
|
||
cd = cd*x2-3.93708582281939493482E-1;
|
||
cd = cd*x2+3.44278924041233391079E-2;
|
||
cd = cd*x2-9.73655226040941223894E-4;
|
||
y = 1.0/x+x2*cn/(cd*x);
|
||
result = sg*0.5*y;
|
||
return result;
|
||
}
|
||
|
||
|
||
|
||
|
||
/*************************************************************************
|
||
Complete elliptic integral of the first kind
|
||
|
||
Approximates the integral
|
||
|
||
|
||
|
||
pi/2
|
||
-
|
||
| |
|
||
| dt
|
||
K(m) = | ------------------
|
||
| 2
|
||
| | sqrt( 1 - m sin t )
|
||
-
|
||
0
|
||
|
||
using the approximation
|
||
|
||
P(x) - log x Q(x).
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0,1 30000 2.5e-16 6.8e-17
|
||
|
||
Cephes Math Library, Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double ellipticintegralk(double m, ae_state *_state)
|
||
{
|
||
double result;
|
||
|
||
|
||
result = ellipticintegralkhighprecision(1.0-m, _state);
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Complete elliptic integral of the first kind
|
||
|
||
Approximates the integral
|
||
|
||
|
||
|
||
pi/2
|
||
-
|
||
| |
|
||
| dt
|
||
K(m) = | ------------------
|
||
| 2
|
||
| | sqrt( 1 - m sin t )
|
||
-
|
||
0
|
||
|
||
where m = 1 - m1, using the approximation
|
||
|
||
P(x) - log x Q(x).
|
||
|
||
The argument m1 is used rather than m so that the logarithmic
|
||
singularity at m = 1 will be shifted to the origin; this
|
||
preserves maximum accuracy.
|
||
|
||
K(0) = pi/2.
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0,1 30000 2.5e-16 6.8e-17
|
||
|
||
<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Cephes
|
||
*************************************************************************/
|
||
double ellipticintegralkhighprecision(double m1, ae_state *_state)
|
||
{
|
||
double p;
|
||
double q;
|
||
double result;
|
||
|
||
|
||
if( ae_fp_less_eq(m1,ae_machineepsilon) )
|
||
{
|
||
result = 1.3862943611198906188E0-0.5*ae_log(m1, _state);
|
||
}
|
||
else
|
||
{
|
||
p = 1.37982864606273237150E-4;
|
||
p = p*m1+2.28025724005875567385E-3;
|
||
p = p*m1+7.97404013220415179367E-3;
|
||
p = p*m1+9.85821379021226008714E-3;
|
||
p = p*m1+6.87489687449949877925E-3;
|
||
p = p*m1+6.18901033637687613229E-3;
|
||
p = p*m1+8.79078273952743772254E-3;
|
||
p = p*m1+1.49380448916805252718E-2;
|
||
p = p*m1+3.08851465246711995998E-2;
|
||
p = p*m1+9.65735902811690126535E-2;
|
||
p = p*m1+1.38629436111989062502E0;
|
||
q = 2.94078955048598507511E-5;
|
||
q = q*m1+9.14184723865917226571E-4;
|
||
q = q*m1+5.94058303753167793257E-3;
|
||
q = q*m1+1.54850516649762399335E-2;
|
||
q = q*m1+2.39089602715924892727E-2;
|
||
q = q*m1+3.01204715227604046988E-2;
|
||
q = q*m1+3.73774314173823228969E-2;
|
||
q = q*m1+4.88280347570998239232E-2;
|
||
q = q*m1+7.03124996963957469739E-2;
|
||
q = q*m1+1.24999999999870820058E-1;
|
||
q = q*m1+4.99999999999999999821E-1;
|
||
result = p-q*ae_log(m1, _state);
|
||
}
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Incomplete elliptic integral of the first kind F(phi|m)
|
||
|
||
Approximates the integral
|
||
|
||
|
||
|
||
phi
|
||
-
|
||
| |
|
||
| dt
|
||
F(phi_\m) = | ------------------
|
||
| 2
|
||
| | sqrt( 1 - m sin t )
|
||
-
|
||
0
|
||
|
||
of amplitude phi and modulus m, using the arithmetic -
|
||
geometric mean algorithm.
|
||
|
||
|
||
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random points with m in [0, 1] and phi as indicated.
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE -10,10 200000 7.4e-16 1.0e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double incompleteellipticintegralk(double phi, double m, ae_state *_state)
|
||
{
|
||
double a;
|
||
double b;
|
||
double c;
|
||
double e;
|
||
double temp;
|
||
double pio2;
|
||
double t;
|
||
double k;
|
||
ae_int_t d;
|
||
ae_int_t md;
|
||
ae_int_t s;
|
||
ae_int_t npio2;
|
||
double result;
|
||
|
||
|
||
pio2 = 1.57079632679489661923;
|
||
if( ae_fp_eq(m,0) )
|
||
{
|
||
result = phi;
|
||
return result;
|
||
}
|
||
a = 1-m;
|
||
if( ae_fp_eq(a,0) )
|
||
{
|
||
result = ae_log(ae_tan(0.5*(pio2+phi), _state), _state);
|
||
return result;
|
||
}
|
||
npio2 = ae_ifloor(phi/pio2, _state);
|
||
if( npio2%2!=0 )
|
||
{
|
||
npio2 = npio2+1;
|
||
}
|
||
if( npio2!=0 )
|
||
{
|
||
k = ellipticintegralk(1-a, _state);
|
||
phi = phi-npio2*pio2;
|
||
}
|
||
else
|
||
{
|
||
k = 0;
|
||
}
|
||
if( ae_fp_less(phi,0) )
|
||
{
|
||
phi = -phi;
|
||
s = -1;
|
||
}
|
||
else
|
||
{
|
||
s = 0;
|
||
}
|
||
b = ae_sqrt(a, _state);
|
||
t = ae_tan(phi, _state);
|
||
if( ae_fp_greater(ae_fabs(t, _state),10) )
|
||
{
|
||
e = 1.0/(b*t);
|
||
if( ae_fp_less(ae_fabs(e, _state),10) )
|
||
{
|
||
e = ae_atan(e, _state);
|
||
if( npio2==0 )
|
||
{
|
||
k = ellipticintegralk(1-a, _state);
|
||
}
|
||
temp = k-incompleteellipticintegralk(e, m, _state);
|
||
if( s<0 )
|
||
{
|
||
temp = -temp;
|
||
}
|
||
result = temp+npio2*k;
|
||
return result;
|
||
}
|
||
}
|
||
a = 1.0;
|
||
c = ae_sqrt(m, _state);
|
||
d = 1;
|
||
md = 0;
|
||
while(ae_fp_greater(ae_fabs(c/a, _state),ae_machineepsilon))
|
||
{
|
||
temp = b/a;
|
||
phi = phi+ae_atan(t*temp, _state)+md*ae_pi;
|
||
md = ae_trunc((phi+pio2)/ae_pi, _state);
|
||
t = t*(1.0+temp)/(1.0-temp*t*t);
|
||
c = 0.5*(a-b);
|
||
temp = ae_sqrt(a*b, _state);
|
||
a = 0.5*(a+b);
|
||
b = temp;
|
||
d = d+d;
|
||
}
|
||
temp = (ae_atan(t, _state)+md*ae_pi)/(d*a);
|
||
if( s<0 )
|
||
{
|
||
temp = -temp;
|
||
}
|
||
result = temp+npio2*k;
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Complete elliptic integral of the second kind
|
||
|
||
Approximates the integral
|
||
|
||
|
||
pi/2
|
||
-
|
||
| | 2
|
||
E(m) = | sqrt( 1 - m sin t ) dt
|
||
| |
|
||
-
|
||
0
|
||
|
||
using the approximation
|
||
|
||
P(x) - x log x Q(x).
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0, 1 10000 2.1e-16 7.3e-17
|
||
|
||
Cephes Math Library, Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double ellipticintegrale(double m, ae_state *_state)
|
||
{
|
||
double p;
|
||
double q;
|
||
double result;
|
||
|
||
|
||
ae_assert(ae_fp_greater_eq(m,0)&&ae_fp_less_eq(m,1), "Domain error in EllipticIntegralE: m<0 or m>1", _state);
|
||
m = 1-m;
|
||
if( ae_fp_eq(m,0) )
|
||
{
|
||
result = 1;
|
||
return result;
|
||
}
|
||
p = 1.53552577301013293365E-4;
|
||
p = p*m+2.50888492163602060990E-3;
|
||
p = p*m+8.68786816565889628429E-3;
|
||
p = p*m+1.07350949056076193403E-2;
|
||
p = p*m+7.77395492516787092951E-3;
|
||
p = p*m+7.58395289413514708519E-3;
|
||
p = p*m+1.15688436810574127319E-2;
|
||
p = p*m+2.18317996015557253103E-2;
|
||
p = p*m+5.68051945617860553470E-2;
|
||
p = p*m+4.43147180560990850618E-1;
|
||
p = p*m+1.00000000000000000299E0;
|
||
q = 3.27954898576485872656E-5;
|
||
q = q*m+1.00962792679356715133E-3;
|
||
q = q*m+6.50609489976927491433E-3;
|
||
q = q*m+1.68862163993311317300E-2;
|
||
q = q*m+2.61769742454493659583E-2;
|
||
q = q*m+3.34833904888224918614E-2;
|
||
q = q*m+4.27180926518931511717E-2;
|
||
q = q*m+5.85936634471101055642E-2;
|
||
q = q*m+9.37499997197644278445E-2;
|
||
q = q*m+2.49999999999888314361E-1;
|
||
result = p-q*m*ae_log(m, _state);
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Incomplete elliptic integral of the second kind
|
||
|
||
Approximates the integral
|
||
|
||
|
||
phi
|
||
-
|
||
| |
|
||
| 2
|
||
E(phi_\m) = | sqrt( 1 - m sin t ) dt
|
||
|
|
||
| |
|
||
-
|
||
0
|
||
|
||
of amplitude phi and modulus m, using the arithmetic -
|
||
geometric mean algorithm.
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random arguments with phi in [-10, 10] and m in
|
||
[0, 1].
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE -10,10 150000 3.3e-15 1.4e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1993, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double incompleteellipticintegrale(double phi, double m, ae_state *_state)
|
||
{
|
||
double pio2;
|
||
double a;
|
||
double b;
|
||
double c;
|
||
double e;
|
||
double temp;
|
||
double lphi;
|
||
double t;
|
||
double ebig;
|
||
ae_int_t d;
|
||
ae_int_t md;
|
||
ae_int_t npio2;
|
||
ae_int_t s;
|
||
double result;
|
||
|
||
|
||
pio2 = 1.57079632679489661923;
|
||
if( ae_fp_eq(m,0) )
|
||
{
|
||
result = phi;
|
||
return result;
|
||
}
|
||
lphi = phi;
|
||
npio2 = ae_ifloor(lphi/pio2, _state);
|
||
if( npio2%2!=0 )
|
||
{
|
||
npio2 = npio2+1;
|
||
}
|
||
lphi = lphi-npio2*pio2;
|
||
if( ae_fp_less(lphi,0) )
|
||
{
|
||
lphi = -lphi;
|
||
s = -1;
|
||
}
|
||
else
|
||
{
|
||
s = 1;
|
||
}
|
||
a = 1.0-m;
|
||
ebig = ellipticintegrale(m, _state);
|
||
if( ae_fp_eq(a,0) )
|
||
{
|
||
temp = ae_sin(lphi, _state);
|
||
if( s<0 )
|
||
{
|
||
temp = -temp;
|
||
}
|
||
result = temp+npio2*ebig;
|
||
return result;
|
||
}
|
||
t = ae_tan(lphi, _state);
|
||
b = ae_sqrt(a, _state);
|
||
|
||
/*
|
||
* Thanks to Brian Fitzgerald <fitzgb@mml0.meche.rpi.edu>
|
||
* for pointing out an instability near odd multiples of pi/2
|
||
*/
|
||
if( ae_fp_greater(ae_fabs(t, _state),10) )
|
||
{
|
||
|
||
/*
|
||
* Transform the amplitude
|
||
*/
|
||
e = 1.0/(b*t);
|
||
|
||
/*
|
||
* ... but avoid multiple recursions.
|
||
*/
|
||
if( ae_fp_less(ae_fabs(e, _state),10) )
|
||
{
|
||
e = ae_atan(e, _state);
|
||
temp = ebig+m*ae_sin(lphi, _state)*ae_sin(e, _state)-incompleteellipticintegrale(e, m, _state);
|
||
if( s<0 )
|
||
{
|
||
temp = -temp;
|
||
}
|
||
result = temp+npio2*ebig;
|
||
return result;
|
||
}
|
||
}
|
||
c = ae_sqrt(m, _state);
|
||
a = 1.0;
|
||
d = 1;
|
||
e = 0.0;
|
||
md = 0;
|
||
while(ae_fp_greater(ae_fabs(c/a, _state),ae_machineepsilon))
|
||
{
|
||
temp = b/a;
|
||
lphi = lphi+ae_atan(t*temp, _state)+md*ae_pi;
|
||
md = ae_trunc((lphi+pio2)/ae_pi, _state);
|
||
t = t*(1.0+temp)/(1.0-temp*t*t);
|
||
c = 0.5*(a-b);
|
||
temp = ae_sqrt(a*b, _state);
|
||
a = 0.5*(a+b);
|
||
b = temp;
|
||
d = d+d;
|
||
e = e+c*ae_sin(lphi, _state);
|
||
}
|
||
temp = ebig/ellipticintegralk(m, _state);
|
||
temp = temp*((ae_atan(t, _state)+md*ae_pi)/(d*a));
|
||
temp = temp+e;
|
||
if( s<0 )
|
||
{
|
||
temp = -temp;
|
||
}
|
||
result = temp+npio2*ebig;
|
||
return result;
|
||
}
|
||
|
||
|
||
|
||
|
||
/*************************************************************************
|
||
Exponential integral Ei(x)
|
||
|
||
x
|
||
- t
|
||
| | e
|
||
Ei(x) = -|- --- dt .
|
||
| | t
|
||
-
|
||
-inf
|
||
|
||
Not defined for x <= 0.
|
||
See also expn.c.
|
||
|
||
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0,100 50000 8.6e-16 1.3e-16
|
||
|
||
Cephes Math Library Release 2.8: May, 1999
|
||
Copyright 1999 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double exponentialintegralei(double x, ae_state *_state)
|
||
{
|
||
double eul;
|
||
double f;
|
||
double f1;
|
||
double f2;
|
||
double w;
|
||
double result;
|
||
|
||
|
||
eul = 0.5772156649015328606065;
|
||
if( ae_fp_less_eq(x,0) )
|
||
{
|
||
result = 0;
|
||
return result;
|
||
}
|
||
if( ae_fp_less(x,2) )
|
||
{
|
||
f1 = -5.350447357812542947283;
|
||
f1 = f1*x+218.5049168816613393830;
|
||
f1 = f1*x-4176.572384826693777058;
|
||
f1 = f1*x+55411.76756393557601232;
|
||
f1 = f1*x-331338.1331178144034309;
|
||
f1 = f1*x+1592627.163384945414220;
|
||
f2 = 1.000000000000000000000;
|
||
f2 = f2*x-52.50547959112862969197;
|
||
f2 = f2*x+1259.616186786790571525;
|
||
f2 = f2*x-17565.49581973534652631;
|
||
f2 = f2*x+149306.2117002725991967;
|
||
f2 = f2*x-729494.9239640527645655;
|
||
f2 = f2*x+1592627.163384945429726;
|
||
f = f1/f2;
|
||
result = eul+ae_log(x, _state)+x*f;
|
||
return result;
|
||
}
|
||
if( ae_fp_less(x,4) )
|
||
{
|
||
w = 1/x;
|
||
f1 = 1.981808503259689673238E-2;
|
||
f1 = f1*w-1.271645625984917501326;
|
||
f1 = f1*w-2.088160335681228318920;
|
||
f1 = f1*w+2.755544509187936721172;
|
||
f1 = f1*w-4.409507048701600257171E-1;
|
||
f1 = f1*w+4.665623805935891391017E-2;
|
||
f1 = f1*w-1.545042679673485262580E-3;
|
||
f1 = f1*w+7.059980605299617478514E-5;
|
||
f2 = 1.000000000000000000000;
|
||
f2 = f2*w+1.476498670914921440652;
|
||
f2 = f2*w+5.629177174822436244827E-1;
|
||
f2 = f2*w+1.699017897879307263248E-1;
|
||
f2 = f2*w+2.291647179034212017463E-2;
|
||
f2 = f2*w+4.450150439728752875043E-3;
|
||
f2 = f2*w+1.727439612206521482874E-4;
|
||
f2 = f2*w+3.953167195549672482304E-5;
|
||
f = f1/f2;
|
||
result = ae_exp(x, _state)*w*(1+w*f);
|
||
return result;
|
||
}
|
||
if( ae_fp_less(x,8) )
|
||
{
|
||
w = 1/x;
|
||
f1 = -1.373215375871208729803;
|
||
f1 = f1*w-7.084559133740838761406E-1;
|
||
f1 = f1*w+1.580806855547941010501;
|
||
f1 = f1*w-2.601500427425622944234E-1;
|
||
f1 = f1*w+2.994674694113713763365E-2;
|
||
f1 = f1*w-1.038086040188744005513E-3;
|
||
f1 = f1*w+4.371064420753005429514E-5;
|
||
f1 = f1*w+2.141783679522602903795E-6;
|
||
f2 = 1.000000000000000000000;
|
||
f2 = f2*w+8.585231423622028380768E-1;
|
||
f2 = f2*w+4.483285822873995129957E-1;
|
||
f2 = f2*w+7.687932158124475434091E-2;
|
||
f2 = f2*w+2.449868241021887685904E-2;
|
||
f2 = f2*w+8.832165941927796567926E-4;
|
||
f2 = f2*w+4.590952299511353531215E-4;
|
||
f2 = f2*w+(-4.729848351866523044863E-6);
|
||
f2 = f2*w+2.665195537390710170105E-6;
|
||
f = f1/f2;
|
||
result = ae_exp(x, _state)*w*(1+w*f);
|
||
return result;
|
||
}
|
||
if( ae_fp_less(x,16) )
|
||
{
|
||
w = 1/x;
|
||
f1 = -2.106934601691916512584;
|
||
f1 = f1*w+1.732733869664688041885;
|
||
f1 = f1*w-2.423619178935841904839E-1;
|
||
f1 = f1*w+2.322724180937565842585E-2;
|
||
f1 = f1*w+2.372880440493179832059E-4;
|
||
f1 = f1*w-8.343219561192552752335E-5;
|
||
f1 = f1*w+1.363408795605250394881E-5;
|
||
f1 = f1*w-3.655412321999253963714E-7;
|
||
f1 = f1*w+1.464941733975961318456E-8;
|
||
f1 = f1*w+6.176407863710360207074E-10;
|
||
f2 = 1.000000000000000000000;
|
||
f2 = f2*w-2.298062239901678075778E-1;
|
||
f2 = f2*w+1.105077041474037862347E-1;
|
||
f2 = f2*w-1.566542966630792353556E-2;
|
||
f2 = f2*w+2.761106850817352773874E-3;
|
||
f2 = f2*w-2.089148012284048449115E-4;
|
||
f2 = f2*w+1.708528938807675304186E-5;
|
||
f2 = f2*w-4.459311796356686423199E-7;
|
||
f2 = f2*w+1.394634930353847498145E-8;
|
||
f2 = f2*w+6.150865933977338354138E-10;
|
||
f = f1/f2;
|
||
result = ae_exp(x, _state)*w*(1+w*f);
|
||
return result;
|
||
}
|
||
if( ae_fp_less(x,32) )
|
||
{
|
||
w = 1/x;
|
||
f1 = -2.458119367674020323359E-1;
|
||
f1 = f1*w-1.483382253322077687183E-1;
|
||
f1 = f1*w+7.248291795735551591813E-2;
|
||
f1 = f1*w-1.348315687380940523823E-2;
|
||
f1 = f1*w+1.342775069788636972294E-3;
|
||
f1 = f1*w-7.942465637159712264564E-5;
|
||
f1 = f1*w+2.644179518984235952241E-6;
|
||
f1 = f1*w-4.239473659313765177195E-8;
|
||
f2 = 1.000000000000000000000;
|
||
f2 = f2*w-1.044225908443871106315E-1;
|
||
f2 = f2*w-2.676453128101402655055E-1;
|
||
f2 = f2*w+9.695000254621984627876E-2;
|
||
f2 = f2*w-1.601745692712991078208E-2;
|
||
f2 = f2*w+1.496414899205908021882E-3;
|
||
f2 = f2*w-8.462452563778485013756E-5;
|
||
f2 = f2*w+2.728938403476726394024E-6;
|
||
f2 = f2*w-4.239462431819542051337E-8;
|
||
f = f1/f2;
|
||
result = ae_exp(x, _state)*w*(1+w*f);
|
||
return result;
|
||
}
|
||
if( ae_fp_less(x,64) )
|
||
{
|
||
w = 1/x;
|
||
f1 = 1.212561118105456670844E-1;
|
||
f1 = f1*w-5.823133179043894485122E-1;
|
||
f1 = f1*w+2.348887314557016779211E-1;
|
||
f1 = f1*w-3.040034318113248237280E-2;
|
||
f1 = f1*w+1.510082146865190661777E-3;
|
||
f1 = f1*w-2.523137095499571377122E-5;
|
||
f2 = 1.000000000000000000000;
|
||
f2 = f2*w-1.002252150365854016662;
|
||
f2 = f2*w+2.928709694872224144953E-1;
|
||
f2 = f2*w-3.337004338674007801307E-2;
|
||
f2 = f2*w+1.560544881127388842819E-3;
|
||
f2 = f2*w-2.523137093603234562648E-5;
|
||
f = f1/f2;
|
||
result = ae_exp(x, _state)*w*(1+w*f);
|
||
return result;
|
||
}
|
||
w = 1/x;
|
||
f1 = -7.657847078286127362028E-1;
|
||
f1 = f1*w+6.886192415566705051750E-1;
|
||
f1 = f1*w-2.132598113545206124553E-1;
|
||
f1 = f1*w+3.346107552384193813594E-2;
|
||
f1 = f1*w-3.076541477344756050249E-3;
|
||
f1 = f1*w+1.747119316454907477380E-4;
|
||
f1 = f1*w-6.103711682274170530369E-6;
|
||
f1 = f1*w+1.218032765428652199087E-7;
|
||
f1 = f1*w-1.086076102793290233007E-9;
|
||
f2 = 1.000000000000000000000;
|
||
f2 = f2*w-1.888802868662308731041;
|
||
f2 = f2*w+1.066691687211408896850;
|
||
f2 = f2*w-2.751915982306380647738E-1;
|
||
f2 = f2*w+3.930852688233823569726E-2;
|
||
f2 = f2*w-3.414684558602365085394E-3;
|
||
f2 = f2*w+1.866844370703555398195E-4;
|
||
f2 = f2*w-6.345146083130515357861E-6;
|
||
f2 = f2*w+1.239754287483206878024E-7;
|
||
f2 = f2*w-1.086076102793126632978E-9;
|
||
f = f1/f2;
|
||
result = ae_exp(x, _state)*w*(1+w*f);
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Exponential integral En(x)
|
||
|
||
Evaluates the exponential integral
|
||
|
||
inf.
|
||
-
|
||
| | -xt
|
||
| e
|
||
E (x) = | ---- dt.
|
||
n | n
|
||
| | t
|
||
-
|
||
1
|
||
|
||
|
||
Both n and x must be nonnegative.
|
||
|
||
The routine employs either a power series, a continued
|
||
fraction, or an asymptotic formula depending on the
|
||
relative values of n and x.
|
||
|
||
ACCURACY:
|
||
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0, 30 10000 1.7e-15 3.6e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1985, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double exponentialintegralen(double x, ae_int_t n, ae_state *_state)
|
||
{
|
||
double r;
|
||
double t;
|
||
double yk;
|
||
double xk;
|
||
double pk;
|
||
double pkm1;
|
||
double pkm2;
|
||
double qk;
|
||
double qkm1;
|
||
double qkm2;
|
||
double psi;
|
||
double z;
|
||
ae_int_t i;
|
||
ae_int_t k;
|
||
double big;
|
||
double eul;
|
||
double result;
|
||
|
||
|
||
eul = 0.57721566490153286060;
|
||
big = 1.44115188075855872*ae_pow(10, 17, _state);
|
||
if( ((n<0||ae_fp_less(x,0))||ae_fp_greater(x,170))||(ae_fp_eq(x,0)&&n<2) )
|
||
{
|
||
result = -1;
|
||
return result;
|
||
}
|
||
if( ae_fp_eq(x,0) )
|
||
{
|
||
result = (double)1/(double)(n-1);
|
||
return result;
|
||
}
|
||
if( n==0 )
|
||
{
|
||
result = ae_exp(-x, _state)/x;
|
||
return result;
|
||
}
|
||
if( n>5000 )
|
||
{
|
||
xk = x+n;
|
||
yk = 1/(xk*xk);
|
||
t = n;
|
||
result = yk*t*(6*x*x-8*t*x+t*t);
|
||
result = yk*(result+t*(t-2.0*x));
|
||
result = yk*(result+t);
|
||
result = (result+1)*ae_exp(-x, _state)/xk;
|
||
return result;
|
||
}
|
||
if( ae_fp_less_eq(x,1) )
|
||
{
|
||
psi = -eul-ae_log(x, _state);
|
||
for(i=1; i<=n-1; i++)
|
||
{
|
||
psi = psi+(double)1/(double)i;
|
||
}
|
||
z = -x;
|
||
xk = 0;
|
||
yk = 1;
|
||
pk = 1-n;
|
||
if( n==1 )
|
||
{
|
||
result = 0.0;
|
||
}
|
||
else
|
||
{
|
||
result = 1.0/pk;
|
||
}
|
||
do
|
||
{
|
||
xk = xk+1;
|
||
yk = yk*z/xk;
|
||
pk = pk+1;
|
||
if( ae_fp_neq(pk,0) )
|
||
{
|
||
result = result+yk/pk;
|
||
}
|
||
if( ae_fp_neq(result,0) )
|
||
{
|
||
t = ae_fabs(yk/result, _state);
|
||
}
|
||
else
|
||
{
|
||
t = 1;
|
||
}
|
||
}
|
||
while(ae_fp_greater_eq(t,ae_machineepsilon));
|
||
t = 1;
|
||
for(i=1; i<=n-1; i++)
|
||
{
|
||
t = t*z/i;
|
||
}
|
||
result = psi*t-result;
|
||
return result;
|
||
}
|
||
else
|
||
{
|
||
k = 1;
|
||
pkm2 = 1;
|
||
qkm2 = x;
|
||
pkm1 = 1.0;
|
||
qkm1 = x+n;
|
||
result = pkm1/qkm1;
|
||
do
|
||
{
|
||
k = k+1;
|
||
if( k%2==1 )
|
||
{
|
||
yk = 1;
|
||
xk = n+(double)(k-1)/(double)2;
|
||
}
|
||
else
|
||
{
|
||
yk = x;
|
||
xk = (double)k/(double)2;
|
||
}
|
||
pk = pkm1*yk+pkm2*xk;
|
||
qk = qkm1*yk+qkm2*xk;
|
||
if( ae_fp_neq(qk,0) )
|
||
{
|
||
r = pk/qk;
|
||
t = ae_fabs((result-r)/r, _state);
|
||
result = r;
|
||
}
|
||
else
|
||
{
|
||
t = 1;
|
||
}
|
||
pkm2 = pkm1;
|
||
pkm1 = pk;
|
||
qkm2 = qkm1;
|
||
qkm1 = qk;
|
||
if( ae_fp_greater(ae_fabs(pk, _state),big) )
|
||
{
|
||
pkm2 = pkm2/big;
|
||
pkm1 = pkm1/big;
|
||
qkm2 = qkm2/big;
|
||
qkm1 = qkm1/big;
|
||
}
|
||
}
|
||
while(ae_fp_greater_eq(t,ae_machineepsilon));
|
||
result = result*ae_exp(-x, _state);
|
||
}
|
||
return result;
|
||
}
|
||
|
||
|
||
|
||
|
||
/*************************************************************************
|
||
F distribution
|
||
|
||
Returns the area from zero to x under the F density
|
||
function (also known as Snedcor's density or the
|
||
variance ratio density). This is the density
|
||
of x = (u1/df1)/(u2/df2), where u1 and u2 are random
|
||
variables having Chi square distributions with df1
|
||
and df2 degrees of freedom, respectively.
|
||
The incomplete beta integral is used, according to the
|
||
formula
|
||
|
||
P(x) = incbet( df1/2, df2/2, (df1*x/(df2 + df1*x) ).
|
||
|
||
|
||
The arguments a and b are greater than zero, and x is
|
||
nonnegative.
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random points (a,b,x).
|
||
|
||
x a,b Relative error:
|
||
arithmetic domain domain # trials peak rms
|
||
IEEE 0,1 0,100 100000 9.8e-15 1.7e-15
|
||
IEEE 1,5 0,100 100000 6.5e-15 3.5e-16
|
||
IEEE 0,1 1,10000 100000 2.2e-11 3.3e-12
|
||
IEEE 1,5 1,10000 100000 1.1e-11 1.7e-13
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double fdistribution(ae_int_t a, ae_int_t b, double x, ae_state *_state)
|
||
{
|
||
double w;
|
||
double result;
|
||
|
||
|
||
ae_assert((a>=1&&b>=1)&&ae_fp_greater_eq(x,0), "Domain error in FDistribution", _state);
|
||
w = a*x;
|
||
w = w/(b+w);
|
||
result = incompletebeta(0.5*a, 0.5*b, w, _state);
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Complemented F distribution
|
||
|
||
Returns the area from x to infinity under the F density
|
||
function (also known as Snedcor's density or the
|
||
variance ratio density).
|
||
|
||
|
||
inf.
|
||
-
|
||
1 | | a-1 b-1
|
||
1-P(x) = ------ | t (1-t) dt
|
||
B(a,b) | |
|
||
-
|
||
x
|
||
|
||
|
||
The incomplete beta integral is used, according to the
|
||
formula
|
||
|
||
P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ).
|
||
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random points (a,b,x) in the indicated intervals.
|
||
x a,b Relative error:
|
||
arithmetic domain domain # trials peak rms
|
||
IEEE 0,1 1,100 100000 3.7e-14 5.9e-16
|
||
IEEE 1,5 1,100 100000 8.0e-15 1.6e-15
|
||
IEEE 0,1 1,10000 100000 1.8e-11 3.5e-13
|
||
IEEE 1,5 1,10000 100000 2.0e-11 3.0e-12
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double fcdistribution(ae_int_t a, ae_int_t b, double x, ae_state *_state)
|
||
{
|
||
double w;
|
||
double result;
|
||
|
||
|
||
ae_assert((a>=1&&b>=1)&&ae_fp_greater_eq(x,0), "Domain error in FCDistribution", _state);
|
||
w = b/(b+a*x);
|
||
result = incompletebeta(0.5*b, 0.5*a, w, _state);
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Inverse of complemented F distribution
|
||
|
||
Finds the F density argument x such that the integral
|
||
from x to infinity of the F density is equal to the
|
||
given probability p.
|
||
|
||
This is accomplished using the inverse beta integral
|
||
function and the relations
|
||
|
||
z = incbi( df2/2, df1/2, p )
|
||
x = df2 (1-z) / (df1 z).
|
||
|
||
Note: the following relations hold for the inverse of
|
||
the uncomplemented F distribution:
|
||
|
||
z = incbi( df1/2, df2/2, p )
|
||
x = df2 z / (df1 (1-z)).
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random points (a,b,p).
|
||
|
||
a,b Relative error:
|
||
arithmetic domain # trials peak rms
|
||
For p between .001 and 1:
|
||
IEEE 1,100 100000 8.3e-15 4.7e-16
|
||
IEEE 1,10000 100000 2.1e-11 1.4e-13
|
||
For p between 10^-6 and 10^-3:
|
||
IEEE 1,100 50000 1.3e-12 8.4e-15
|
||
IEEE 1,10000 50000 3.0e-12 4.8e-14
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double invfdistribution(ae_int_t a,
|
||
ae_int_t b,
|
||
double y,
|
||
ae_state *_state)
|
||
{
|
||
double w;
|
||
double result;
|
||
|
||
|
||
ae_assert(((a>=1&&b>=1)&&ae_fp_greater(y,0))&&ae_fp_less_eq(y,1), "Domain error in InvFDistribution", _state);
|
||
|
||
/*
|
||
* Compute probability for x = 0.5
|
||
*/
|
||
w = incompletebeta(0.5*b, 0.5*a, 0.5, _state);
|
||
|
||
/*
|
||
* If that is greater than y, then the solution w < .5
|
||
* Otherwise, solve at 1-y to remove cancellation in (b - b*w)
|
||
*/
|
||
if( ae_fp_greater(w,y)||ae_fp_less(y,0.001) )
|
||
{
|
||
w = invincompletebeta(0.5*b, 0.5*a, y, _state);
|
||
result = (b-b*w)/(a*w);
|
||
}
|
||
else
|
||
{
|
||
w = invincompletebeta(0.5*a, 0.5*b, 1.0-y, _state);
|
||
result = b*w/(a*(1.0-w));
|
||
}
|
||
return result;
|
||
}
|
||
|
||
|
||
|
||
|
||
/*************************************************************************
|
||
Fresnel integral
|
||
|
||
Evaluates the Fresnel integrals
|
||
|
||
x
|
||
-
|
||
| |
|
||
C(x) = | cos(pi/2 t**2) dt,
|
||
| |
|
||
-
|
||
0
|
||
|
||
x
|
||
-
|
||
| |
|
||
S(x) = | sin(pi/2 t**2) dt.
|
||
| |
|
||
-
|
||
0
|
||
|
||
|
||
The integrals are evaluated by a power series for x < 1.
|
||
For x >= 1 auxiliary functions f(x) and g(x) are employed
|
||
such that
|
||
|
||
C(x) = 0.5 + f(x) sin( pi/2 x**2 ) - g(x) cos( pi/2 x**2 )
|
||
S(x) = 0.5 - f(x) cos( pi/2 x**2 ) - g(x) sin( pi/2 x**2 )
|
||
|
||
|
||
|
||
ACCURACY:
|
||
|
||
Relative error.
|
||
|
||
Arithmetic function domain # trials peak rms
|
||
IEEE S(x) 0, 10 10000 2.0e-15 3.2e-16
|
||
IEEE C(x) 0, 10 10000 1.8e-15 3.3e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
void fresnelintegral(double x, double* c, double* s, ae_state *_state)
|
||
{
|
||
double xxa;
|
||
double f;
|
||
double g;
|
||
double cc;
|
||
double ss;
|
||
double t;
|
||
double u;
|
||
double x2;
|
||
double sn;
|
||
double sd;
|
||
double cn;
|
||
double cd;
|
||
double fn;
|
||
double fd;
|
||
double gn;
|
||
double gd;
|
||
double mpi;
|
||
double mpio2;
|
||
|
||
|
||
mpi = 3.14159265358979323846;
|
||
mpio2 = 1.57079632679489661923;
|
||
xxa = x;
|
||
x = ae_fabs(xxa, _state);
|
||
x2 = x*x;
|
||
if( ae_fp_less(x2,2.5625) )
|
||
{
|
||
t = x2*x2;
|
||
sn = -2.99181919401019853726E3;
|
||
sn = sn*t+7.08840045257738576863E5;
|
||
sn = sn*t-6.29741486205862506537E7;
|
||
sn = sn*t+2.54890880573376359104E9;
|
||
sn = sn*t-4.42979518059697779103E10;
|
||
sn = sn*t+3.18016297876567817986E11;
|
||
sd = 1.00000000000000000000E0;
|
||
sd = sd*t+2.81376268889994315696E2;
|
||
sd = sd*t+4.55847810806532581675E4;
|
||
sd = sd*t+5.17343888770096400730E6;
|
||
sd = sd*t+4.19320245898111231129E8;
|
||
sd = sd*t+2.24411795645340920940E10;
|
||
sd = sd*t+6.07366389490084639049E11;
|
||
cn = -4.98843114573573548651E-8;
|
||
cn = cn*t+9.50428062829859605134E-6;
|
||
cn = cn*t-6.45191435683965050962E-4;
|
||
cn = cn*t+1.88843319396703850064E-2;
|
||
cn = cn*t-2.05525900955013891793E-1;
|
||
cn = cn*t+9.99999999999999998822E-1;
|
||
cd = 3.99982968972495980367E-12;
|
||
cd = cd*t+9.15439215774657478799E-10;
|
||
cd = cd*t+1.25001862479598821474E-7;
|
||
cd = cd*t+1.22262789024179030997E-5;
|
||
cd = cd*t+8.68029542941784300606E-4;
|
||
cd = cd*t+4.12142090722199792936E-2;
|
||
cd = cd*t+1.00000000000000000118E0;
|
||
*s = ae_sign(xxa, _state)*x*x2*sn/sd;
|
||
*c = ae_sign(xxa, _state)*x*cn/cd;
|
||
return;
|
||
}
|
||
if( ae_fp_greater(x,36974.0) )
|
||
{
|
||
*c = ae_sign(xxa, _state)*0.5;
|
||
*s = ae_sign(xxa, _state)*0.5;
|
||
return;
|
||
}
|
||
x2 = x*x;
|
||
t = mpi*x2;
|
||
u = 1/(t*t);
|
||
t = 1/t;
|
||
fn = 4.21543555043677546506E-1;
|
||
fn = fn*u+1.43407919780758885261E-1;
|
||
fn = fn*u+1.15220955073585758835E-2;
|
||
fn = fn*u+3.45017939782574027900E-4;
|
||
fn = fn*u+4.63613749287867322088E-6;
|
||
fn = fn*u+3.05568983790257605827E-8;
|
||
fn = fn*u+1.02304514164907233465E-10;
|
||
fn = fn*u+1.72010743268161828879E-13;
|
||
fn = fn*u+1.34283276233062758925E-16;
|
||
fn = fn*u+3.76329711269987889006E-20;
|
||
fd = 1.00000000000000000000E0;
|
||
fd = fd*u+7.51586398353378947175E-1;
|
||
fd = fd*u+1.16888925859191382142E-1;
|
||
fd = fd*u+6.44051526508858611005E-3;
|
||
fd = fd*u+1.55934409164153020873E-4;
|
||
fd = fd*u+1.84627567348930545870E-6;
|
||
fd = fd*u+1.12699224763999035261E-8;
|
||
fd = fd*u+3.60140029589371370404E-11;
|
||
fd = fd*u+5.88754533621578410010E-14;
|
||
fd = fd*u+4.52001434074129701496E-17;
|
||
fd = fd*u+1.25443237090011264384E-20;
|
||
gn = 5.04442073643383265887E-1;
|
||
gn = gn*u+1.97102833525523411709E-1;
|
||
gn = gn*u+1.87648584092575249293E-2;
|
||
gn = gn*u+6.84079380915393090172E-4;
|
||
gn = gn*u+1.15138826111884280931E-5;
|
||
gn = gn*u+9.82852443688422223854E-8;
|
||
gn = gn*u+4.45344415861750144738E-10;
|
||
gn = gn*u+1.08268041139020870318E-12;
|
||
gn = gn*u+1.37555460633261799868E-15;
|
||
gn = gn*u+8.36354435630677421531E-19;
|
||
gn = gn*u+1.86958710162783235106E-22;
|
||
gd = 1.00000000000000000000E0;
|
||
gd = gd*u+1.47495759925128324529E0;
|
||
gd = gd*u+3.37748989120019970451E-1;
|
||
gd = gd*u+2.53603741420338795122E-2;
|
||
gd = gd*u+8.14679107184306179049E-4;
|
||
gd = gd*u+1.27545075667729118702E-5;
|
||
gd = gd*u+1.04314589657571990585E-7;
|
||
gd = gd*u+4.60680728146520428211E-10;
|
||
gd = gd*u+1.10273215066240270757E-12;
|
||
gd = gd*u+1.38796531259578871258E-15;
|
||
gd = gd*u+8.39158816283118707363E-19;
|
||
gd = gd*u+1.86958710162783236342E-22;
|
||
f = 1-u*fn/fd;
|
||
g = t*gn/gd;
|
||
t = mpio2*x2;
|
||
cc = ae_cos(t, _state);
|
||
ss = ae_sin(t, _state);
|
||
t = mpi*x;
|
||
*c = 0.5+(f*ss-g*cc)/t;
|
||
*s = 0.5-(f*cc+g*ss)/t;
|
||
*c = *c*ae_sign(xxa, _state);
|
||
*s = *s*ae_sign(xxa, _state);
|
||
}
|
||
|
||
|
||
|
||
|
||
/*************************************************************************
|
||
Calculation of the value of the Hermite polynomial.
|
||
|
||
Parameters:
|
||
n - degree, n>=0
|
||
x - argument
|
||
|
||
Result:
|
||
the value of the Hermite polynomial Hn at x
|
||
*************************************************************************/
|
||
double hermitecalculate(ae_int_t n, double x, ae_state *_state)
|
||
{
|
||
ae_int_t i;
|
||
double a;
|
||
double b;
|
||
double result;
|
||
|
||
|
||
result = 0;
|
||
|
||
/*
|
||
* Prepare A and B
|
||
*/
|
||
a = 1;
|
||
b = 2*x;
|
||
|
||
/*
|
||
* Special cases: N=0 or N=1
|
||
*/
|
||
if( n==0 )
|
||
{
|
||
result = a;
|
||
return result;
|
||
}
|
||
if( n==1 )
|
||
{
|
||
result = b;
|
||
return result;
|
||
}
|
||
|
||
/*
|
||
* General case: N>=2
|
||
*/
|
||
for(i=2; i<=n; i++)
|
||
{
|
||
result = 2*x*b-2*(i-1)*a;
|
||
a = b;
|
||
b = result;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Summation of Hermite polynomials using Clenshaw<61>s recurrence formula.
|
||
|
||
This routine calculates
|
||
c[0]*H0(x) + c[1]*H1(x) + ... + c[N]*HN(x)
|
||
|
||
Parameters:
|
||
n - degree, n>=0
|
||
x - argument
|
||
|
||
Result:
|
||
the value of the Hermite polynomial at x
|
||
*************************************************************************/
|
||
double hermitesum(/* Real */ ae_vector* c,
|
||
ae_int_t n,
|
||
double x,
|
||
ae_state *_state)
|
||
{
|
||
double b1;
|
||
double b2;
|
||
ae_int_t i;
|
||
double result;
|
||
|
||
|
||
b1 = 0;
|
||
b2 = 0;
|
||
result = 0;
|
||
for(i=n; i>=0; i--)
|
||
{
|
||
result = 2*(x*b1-(i+1)*b2)+c->ptr.p_double[i];
|
||
b2 = b1;
|
||
b1 = result;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Representation of Hn as C[0] + C[1]*X + ... + C[N]*X^N
|
||
|
||
Input parameters:
|
||
N - polynomial degree, n>=0
|
||
|
||
Output parameters:
|
||
C - coefficients
|
||
*************************************************************************/
|
||
void hermitecoefficients(ae_int_t n,
|
||
/* Real */ ae_vector* c,
|
||
ae_state *_state)
|
||
{
|
||
ae_int_t i;
|
||
|
||
ae_vector_clear(c);
|
||
|
||
ae_vector_set_length(c, n+1, _state);
|
||
for(i=0; i<=n; i++)
|
||
{
|
||
c->ptr.p_double[i] = 0;
|
||
}
|
||
c->ptr.p_double[n] = ae_exp(n*ae_log(2, _state), _state);
|
||
for(i=0; i<=n/2-1; i++)
|
||
{
|
||
c->ptr.p_double[n-2*(i+1)] = -c->ptr.p_double[n-2*i]*(n-2*i)*(n-2*i-1)/4/(i+1);
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
/*************************************************************************
|
||
Jacobian Elliptic Functions
|
||
|
||
Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m),
|
||
and dn(u|m) of parameter m between 0 and 1, and real
|
||
argument u.
|
||
|
||
These functions are periodic, with quarter-period on the
|
||
real axis equal to the complete elliptic integral
|
||
ellpk(1.0-m).
|
||
|
||
Relation to incomplete elliptic integral:
|
||
If u = ellik(phi,m), then sn(u|m) = sin(phi),
|
||
and cn(u|m) = cos(phi). Phi is called the amplitude of u.
|
||
|
||
Computation is by means of the arithmetic-geometric mean
|
||
algorithm, except when m is within 1e-9 of 0 or 1. In the
|
||
latter case with m close to 1, the approximation applies
|
||
only for phi < pi/2.
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random points with u between 0 and 10, m between
|
||
0 and 1.
|
||
|
||
Absolute error (* = relative error):
|
||
arithmetic function # trials peak rms
|
||
IEEE phi 10000 9.2e-16* 1.4e-16*
|
||
IEEE sn 50000 4.1e-15 4.6e-16
|
||
IEEE cn 40000 3.6e-15 4.4e-16
|
||
IEEE dn 10000 1.3e-12 1.8e-14
|
||
|
||
Peak error observed in consistency check using addition
|
||
theorem for sn(u+v) was 4e-16 (absolute). Also tested by
|
||
the above relation to the incomplete elliptic integral.
|
||
Accuracy deteriorates when u is large.
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
void jacobianellipticfunctions(double u,
|
||
double m,
|
||
double* sn,
|
||
double* cn,
|
||
double* dn,
|
||
double* ph,
|
||
ae_state *_state)
|
||
{
|
||
ae_frame _frame_block;
|
||
double ai;
|
||
double b;
|
||
double phi;
|
||
double t;
|
||
double twon;
|
||
ae_vector a;
|
||
ae_vector c;
|
||
ae_int_t i;
|
||
|
||
ae_frame_make(_state, &_frame_block);
|
||
*sn = 0;
|
||
*cn = 0;
|
||
*dn = 0;
|
||
*ph = 0;
|
||
ae_vector_init(&a, 0, DT_REAL, _state, ae_true);
|
||
ae_vector_init(&c, 0, DT_REAL, _state, ae_true);
|
||
|
||
ae_assert(ae_fp_greater_eq(m,0)&&ae_fp_less_eq(m,1), "Domain error in JacobianEllipticFunctions: m<0 or m>1", _state);
|
||
ae_vector_set_length(&a, 8+1, _state);
|
||
ae_vector_set_length(&c, 8+1, _state);
|
||
if( ae_fp_less(m,1.0e-9) )
|
||
{
|
||
t = ae_sin(u, _state);
|
||
b = ae_cos(u, _state);
|
||
ai = 0.25*m*(u-t*b);
|
||
*sn = t-ai*b;
|
||
*cn = b+ai*t;
|
||
*ph = u-ai;
|
||
*dn = 1.0-0.5*m*t*t;
|
||
ae_frame_leave(_state);
|
||
return;
|
||
}
|
||
if( ae_fp_greater_eq(m,0.9999999999) )
|
||
{
|
||
ai = 0.25*(1.0-m);
|
||
b = ae_cosh(u, _state);
|
||
t = ae_tanh(u, _state);
|
||
phi = 1.0/b;
|
||
twon = b*ae_sinh(u, _state);
|
||
*sn = t+ai*(twon-u)/(b*b);
|
||
*ph = 2.0*ae_atan(ae_exp(u, _state), _state)-1.57079632679489661923+ai*(twon-u)/b;
|
||
ai = ai*t*phi;
|
||
*cn = phi-ai*(twon-u);
|
||
*dn = phi+ai*(twon+u);
|
||
ae_frame_leave(_state);
|
||
return;
|
||
}
|
||
a.ptr.p_double[0] = 1.0;
|
||
b = ae_sqrt(1.0-m, _state);
|
||
c.ptr.p_double[0] = ae_sqrt(m, _state);
|
||
twon = 1.0;
|
||
i = 0;
|
||
while(ae_fp_greater(ae_fabs(c.ptr.p_double[i]/a.ptr.p_double[i], _state),ae_machineepsilon))
|
||
{
|
||
if( i>7 )
|
||
{
|
||
ae_assert(ae_false, "Overflow in JacobianEllipticFunctions", _state);
|
||
break;
|
||
}
|
||
ai = a.ptr.p_double[i];
|
||
i = i+1;
|
||
c.ptr.p_double[i] = 0.5*(ai-b);
|
||
t = ae_sqrt(ai*b, _state);
|
||
a.ptr.p_double[i] = 0.5*(ai+b);
|
||
b = t;
|
||
twon = twon*2.0;
|
||
}
|
||
phi = twon*a.ptr.p_double[i]*u;
|
||
do
|
||
{
|
||
t = c.ptr.p_double[i]*ae_sin(phi, _state)/a.ptr.p_double[i];
|
||
b = phi;
|
||
phi = (ae_asin(t, _state)+phi)/2.0;
|
||
i = i-1;
|
||
}
|
||
while(i!=0);
|
||
*sn = ae_sin(phi, _state);
|
||
t = ae_cos(phi, _state);
|
||
*cn = t;
|
||
*dn = t/ae_cos(phi-b, _state);
|
||
*ph = phi;
|
||
ae_frame_leave(_state);
|
||
}
|
||
|
||
|
||
|
||
|
||
/*************************************************************************
|
||
Calculation of the value of the Laguerre polynomial.
|
||
|
||
Parameters:
|
||
n - degree, n>=0
|
||
x - argument
|
||
|
||
Result:
|
||
the value of the Laguerre polynomial Ln at x
|
||
*************************************************************************/
|
||
double laguerrecalculate(ae_int_t n, double x, ae_state *_state)
|
||
{
|
||
double a;
|
||
double b;
|
||
double i;
|
||
double result;
|
||
|
||
|
||
result = 1;
|
||
a = 1;
|
||
b = 1-x;
|
||
if( n==1 )
|
||
{
|
||
result = b;
|
||
}
|
||
i = 2;
|
||
while(ae_fp_less_eq(i,n))
|
||
{
|
||
result = ((2*i-1-x)*b-(i-1)*a)/i;
|
||
a = b;
|
||
b = result;
|
||
i = i+1;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Summation of Laguerre polynomials using Clenshaw<61>s recurrence formula.
|
||
|
||
This routine calculates c[0]*L0(x) + c[1]*L1(x) + ... + c[N]*LN(x)
|
||
|
||
Parameters:
|
||
n - degree, n>=0
|
||
x - argument
|
||
|
||
Result:
|
||
the value of the Laguerre polynomial at x
|
||
*************************************************************************/
|
||
double laguerresum(/* Real */ ae_vector* c,
|
||
ae_int_t n,
|
||
double x,
|
||
ae_state *_state)
|
||
{
|
||
double b1;
|
||
double b2;
|
||
ae_int_t i;
|
||
double result;
|
||
|
||
|
||
b1 = 0;
|
||
b2 = 0;
|
||
result = 0;
|
||
for(i=n; i>=0; i--)
|
||
{
|
||
result = (2*i+1-x)*b1/(i+1)-(i+1)*b2/(i+2)+c->ptr.p_double[i];
|
||
b2 = b1;
|
||
b1 = result;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Representation of Ln as C[0] + C[1]*X + ... + C[N]*X^N
|
||
|
||
Input parameters:
|
||
N - polynomial degree, n>=0
|
||
|
||
Output parameters:
|
||
C - coefficients
|
||
*************************************************************************/
|
||
void laguerrecoefficients(ae_int_t n,
|
||
/* Real */ ae_vector* c,
|
||
ae_state *_state)
|
||
{
|
||
ae_int_t i;
|
||
|
||
ae_vector_clear(c);
|
||
|
||
ae_vector_set_length(c, n+1, _state);
|
||
c->ptr.p_double[0] = 1;
|
||
for(i=0; i<=n-1; i++)
|
||
{
|
||
c->ptr.p_double[i+1] = -c->ptr.p_double[i]*(n-i)/(i+1)/(i+1);
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
/*************************************************************************
|
||
Calculation of the value of the Legendre polynomial Pn.
|
||
|
||
Parameters:
|
||
n - degree, n>=0
|
||
x - argument
|
||
|
||
Result:
|
||
the value of the Legendre polynomial Pn at x
|
||
*************************************************************************/
|
||
double legendrecalculate(ae_int_t n, double x, ae_state *_state)
|
||
{
|
||
double a;
|
||
double b;
|
||
ae_int_t i;
|
||
double result;
|
||
|
||
|
||
result = 1;
|
||
a = 1;
|
||
b = x;
|
||
if( n==0 )
|
||
{
|
||
result = a;
|
||
return result;
|
||
}
|
||
if( n==1 )
|
||
{
|
||
result = b;
|
||
return result;
|
||
}
|
||
for(i=2; i<=n; i++)
|
||
{
|
||
result = ((2*i-1)*x*b-(i-1)*a)/i;
|
||
a = b;
|
||
b = result;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Summation of Legendre polynomials using Clenshaw<61>s recurrence formula.
|
||
|
||
This routine calculates
|
||
c[0]*P0(x) + c[1]*P1(x) + ... + c[N]*PN(x)
|
||
|
||
Parameters:
|
||
n - degree, n>=0
|
||
x - argument
|
||
|
||
Result:
|
||
the value of the Legendre polynomial at x
|
||
*************************************************************************/
|
||
double legendresum(/* Real */ ae_vector* c,
|
||
ae_int_t n,
|
||
double x,
|
||
ae_state *_state)
|
||
{
|
||
double b1;
|
||
double b2;
|
||
ae_int_t i;
|
||
double result;
|
||
|
||
|
||
b1 = 0;
|
||
b2 = 0;
|
||
result = 0;
|
||
for(i=n; i>=0; i--)
|
||
{
|
||
result = (2*i+1)*x*b1/(i+1)-(i+1)*b2/(i+2)+c->ptr.p_double[i];
|
||
b2 = b1;
|
||
b1 = result;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Representation of Pn as C[0] + C[1]*X + ... + C[N]*X^N
|
||
|
||
Input parameters:
|
||
N - polynomial degree, n>=0
|
||
|
||
Output parameters:
|
||
C - coefficients
|
||
*************************************************************************/
|
||
void legendrecoefficients(ae_int_t n,
|
||
/* Real */ ae_vector* c,
|
||
ae_state *_state)
|
||
{
|
||
ae_int_t i;
|
||
|
||
ae_vector_clear(c);
|
||
|
||
ae_vector_set_length(c, n+1, _state);
|
||
for(i=0; i<=n; i++)
|
||
{
|
||
c->ptr.p_double[i] = 0;
|
||
}
|
||
c->ptr.p_double[n] = 1;
|
||
for(i=1; i<=n; i++)
|
||
{
|
||
c->ptr.p_double[n] = c->ptr.p_double[n]*(n+i)/2/i;
|
||
}
|
||
for(i=0; i<=n/2-1; i++)
|
||
{
|
||
c->ptr.p_double[n-2*(i+1)] = -c->ptr.p_double[n-2*i]*(n-2*i)*(n-2*i-1)/2/(i+1)/(2*(n-i)-1);
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
/*************************************************************************
|
||
Poisson distribution
|
||
|
||
Returns the sum of the first k+1 terms of the Poisson
|
||
distribution:
|
||
|
||
k j
|
||
-- -m m
|
||
> e --
|
||
-- j!
|
||
j=0
|
||
|
||
The terms are not summed directly; instead the incomplete
|
||
gamma integral is employed, according to the relation
|
||
|
||
y = pdtr( k, m ) = igamc( k+1, m ).
|
||
|
||
The arguments must both be positive.
|
||
ACCURACY:
|
||
|
||
See incomplete gamma function
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double poissondistribution(ae_int_t k, double m, ae_state *_state)
|
||
{
|
||
double result;
|
||
|
||
|
||
ae_assert(k>=0&&ae_fp_greater(m,0), "Domain error in PoissonDistribution", _state);
|
||
result = incompletegammac(k+1, m, _state);
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Complemented Poisson distribution
|
||
|
||
Returns the sum of the terms k+1 to infinity of the Poisson
|
||
distribution:
|
||
|
||
inf. j
|
||
-- -m m
|
||
> e --
|
||
-- j!
|
||
j=k+1
|
||
|
||
The terms are not summed directly; instead the incomplete
|
||
gamma integral is employed, according to the formula
|
||
|
||
y = pdtrc( k, m ) = igam( k+1, m ).
|
||
|
||
The arguments must both be positive.
|
||
|
||
ACCURACY:
|
||
|
||
See incomplete gamma function
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double poissoncdistribution(ae_int_t k, double m, ae_state *_state)
|
||
{
|
||
double result;
|
||
|
||
|
||
ae_assert(k>=0&&ae_fp_greater(m,0), "Domain error in PoissonDistributionC", _state);
|
||
result = incompletegamma(k+1, m, _state);
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Inverse Poisson distribution
|
||
|
||
Finds the Poisson variable x such that the integral
|
||
from 0 to x of the Poisson density is equal to the
|
||
given probability y.
|
||
|
||
This is accomplished using the inverse gamma integral
|
||
function and the relation
|
||
|
||
m = igami( k+1, y ).
|
||
|
||
ACCURACY:
|
||
|
||
See inverse incomplete gamma function
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double invpoissondistribution(ae_int_t k, double y, ae_state *_state)
|
||
{
|
||
double result;
|
||
|
||
|
||
ae_assert((k>=0&&ae_fp_greater_eq(y,0))&&ae_fp_less(y,1), "Domain error in InvPoissonDistribution", _state);
|
||
result = invincompletegammac(k+1, y, _state);
|
||
return result;
|
||
}
|
||
|
||
|
||
|
||
|
||
/*************************************************************************
|
||
Psi (digamma) function
|
||
|
||
d -
|
||
psi(x) = -- ln | (x)
|
||
dx
|
||
|
||
is the logarithmic derivative of the gamma function.
|
||
For integer x,
|
||
n-1
|
||
-
|
||
psi(n) = -EUL + > 1/k.
|
||
-
|
||
k=1
|
||
|
||
This formula is used for 0 < n <= 10. If x is negative, it
|
||
is transformed to a positive argument by the reflection
|
||
formula psi(1-x) = psi(x) + pi cot(pi x).
|
||
For general positive x, the argument is made greater than 10
|
||
using the recurrence psi(x+1) = psi(x) + 1/x.
|
||
Then the following asymptotic expansion is applied:
|
||
|
||
inf. B
|
||
- 2k
|
||
psi(x) = log(x) - 1/2x - > -------
|
||
- 2k
|
||
k=1 2k x
|
||
|
||
where the B2k are Bernoulli numbers.
|
||
|
||
ACCURACY:
|
||
Relative error (except absolute when |psi| < 1):
|
||
arithmetic domain # trials peak rms
|
||
IEEE 0,30 30000 1.3e-15 1.4e-16
|
||
IEEE -30,0 40000 1.5e-15 2.2e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double psi(double x, ae_state *_state)
|
||
{
|
||
double p;
|
||
double q;
|
||
double nz;
|
||
double s;
|
||
double w;
|
||
double y;
|
||
double z;
|
||
double polv;
|
||
ae_int_t i;
|
||
ae_int_t n;
|
||
ae_int_t negative;
|
||
double result;
|
||
|
||
|
||
negative = 0;
|
||
nz = 0.0;
|
||
if( ae_fp_less_eq(x,0) )
|
||
{
|
||
negative = 1;
|
||
q = x;
|
||
p = ae_ifloor(q, _state);
|
||
if( ae_fp_eq(p,q) )
|
||
{
|
||
ae_assert(ae_false, "Singularity in Psi(x)", _state);
|
||
result = ae_maxrealnumber;
|
||
return result;
|
||
}
|
||
nz = q-p;
|
||
if( ae_fp_neq(nz,0.5) )
|
||
{
|
||
if( ae_fp_greater(nz,0.5) )
|
||
{
|
||
p = p+1.0;
|
||
nz = q-p;
|
||
}
|
||
nz = ae_pi/ae_tan(ae_pi*nz, _state);
|
||
}
|
||
else
|
||
{
|
||
nz = 0.0;
|
||
}
|
||
x = 1.0-x;
|
||
}
|
||
if( ae_fp_less_eq(x,10.0)&&ae_fp_eq(x,ae_ifloor(x, _state)) )
|
||
{
|
||
y = 0.0;
|
||
n = ae_ifloor(x, _state);
|
||
for(i=1; i<=n-1; i++)
|
||
{
|
||
w = i;
|
||
y = y+1.0/w;
|
||
}
|
||
y = y-0.57721566490153286061;
|
||
}
|
||
else
|
||
{
|
||
s = x;
|
||
w = 0.0;
|
||
while(ae_fp_less(s,10.0))
|
||
{
|
||
w = w+1.0/s;
|
||
s = s+1.0;
|
||
}
|
||
if( ae_fp_less(s,1.0E17) )
|
||
{
|
||
z = 1.0/(s*s);
|
||
polv = 8.33333333333333333333E-2;
|
||
polv = polv*z-2.10927960927960927961E-2;
|
||
polv = polv*z+7.57575757575757575758E-3;
|
||
polv = polv*z-4.16666666666666666667E-3;
|
||
polv = polv*z+3.96825396825396825397E-3;
|
||
polv = polv*z-8.33333333333333333333E-3;
|
||
polv = polv*z+8.33333333333333333333E-2;
|
||
y = z*polv;
|
||
}
|
||
else
|
||
{
|
||
y = 0.0;
|
||
}
|
||
y = ae_log(s, _state)-0.5/s-y-w;
|
||
}
|
||
if( negative!=0 )
|
||
{
|
||
y = y-nz;
|
||
}
|
||
result = y;
|
||
return result;
|
||
}
|
||
|
||
|
||
|
||
|
||
/*************************************************************************
|
||
Student's t distribution
|
||
|
||
Computes the integral from minus infinity to t of the Student
|
||
t distribution with integer k > 0 degrees of freedom:
|
||
|
||
t
|
||
-
|
||
| |
|
||
- | 2 -(k+1)/2
|
||
| ( (k+1)/2 ) | ( x )
|
||
---------------------- | ( 1 + --- ) dx
|
||
- | ( k )
|
||
sqrt( k pi ) | ( k/2 ) |
|
||
| |
|
||
-
|
||
-inf.
|
||
|
||
Relation to incomplete beta integral:
|
||
|
||
1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z )
|
||
where
|
||
z = k/(k + t**2).
|
||
|
||
For t < -2, this is the method of computation. For higher t,
|
||
a direct method is derived from integration by parts.
|
||
Since the function is symmetric about t=0, the area under the
|
||
right tail of the density is found by calling the function
|
||
with -t instead of t.
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random 1 <= k <= 25. The "domain" refers to t.
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE -100,-2 50000 5.9e-15 1.4e-15
|
||
IEEE -2,100 500000 2.7e-15 4.9e-17
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double studenttdistribution(ae_int_t k, double t, ae_state *_state)
|
||
{
|
||
double x;
|
||
double rk;
|
||
double z;
|
||
double f;
|
||
double tz;
|
||
double p;
|
||
double xsqk;
|
||
ae_int_t j;
|
||
double result;
|
||
|
||
|
||
ae_assert(k>0, "Domain error in StudentTDistribution", _state);
|
||
if( ae_fp_eq(t,0) )
|
||
{
|
||
result = 0.5;
|
||
return result;
|
||
}
|
||
if( ae_fp_less(t,-2.0) )
|
||
{
|
||
rk = k;
|
||
z = rk/(rk+t*t);
|
||
result = 0.5*incompletebeta(0.5*rk, 0.5, z, _state);
|
||
return result;
|
||
}
|
||
if( ae_fp_less(t,0) )
|
||
{
|
||
x = -t;
|
||
}
|
||
else
|
||
{
|
||
x = t;
|
||
}
|
||
rk = k;
|
||
z = 1.0+x*x/rk;
|
||
if( k%2!=0 )
|
||
{
|
||
xsqk = x/ae_sqrt(rk, _state);
|
||
p = ae_atan(xsqk, _state);
|
||
if( k>1 )
|
||
{
|
||
f = 1.0;
|
||
tz = 1.0;
|
||
j = 3;
|
||
while(j<=k-2&&ae_fp_greater(tz/f,ae_machineepsilon))
|
||
{
|
||
tz = tz*((j-1)/(z*j));
|
||
f = f+tz;
|
||
j = j+2;
|
||
}
|
||
p = p+f*xsqk/z;
|
||
}
|
||
p = p*2.0/ae_pi;
|
||
}
|
||
else
|
||
{
|
||
f = 1.0;
|
||
tz = 1.0;
|
||
j = 2;
|
||
while(j<=k-2&&ae_fp_greater(tz/f,ae_machineepsilon))
|
||
{
|
||
tz = tz*((j-1)/(z*j));
|
||
f = f+tz;
|
||
j = j+2;
|
||
}
|
||
p = f*x/ae_sqrt(z*rk, _state);
|
||
}
|
||
if( ae_fp_less(t,0) )
|
||
{
|
||
p = -p;
|
||
}
|
||
result = 0.5+0.5*p;
|
||
return result;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Functional inverse of Student's t distribution
|
||
|
||
Given probability p, finds the argument t such that stdtr(k,t)
|
||
is equal to p.
|
||
|
||
ACCURACY:
|
||
|
||
Tested at random 1 <= k <= 100. The "domain" refers to p:
|
||
Relative error:
|
||
arithmetic domain # trials peak rms
|
||
IEEE .001,.999 25000 5.7e-15 8.0e-16
|
||
IEEE 10^-6,.001 25000 2.0e-12 2.9e-14
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
double invstudenttdistribution(ae_int_t k, double p, ae_state *_state)
|
||
{
|
||
double t;
|
||
double rk;
|
||
double z;
|
||
ae_int_t rflg;
|
||
double result;
|
||
|
||
|
||
ae_assert((k>0&&ae_fp_greater(p,0))&&ae_fp_less(p,1), "Domain error in InvStudentTDistribution", _state);
|
||
rk = k;
|
||
if( ae_fp_greater(p,0.25)&&ae_fp_less(p,0.75) )
|
||
{
|
||
if( ae_fp_eq(p,0.5) )
|
||
{
|
||
result = 0;
|
||
return result;
|
||
}
|
||
z = 1.0-2.0*p;
|
||
z = invincompletebeta(0.5, 0.5*rk, ae_fabs(z, _state), _state);
|
||
t = ae_sqrt(rk*z/(1.0-z), _state);
|
||
if( ae_fp_less(p,0.5) )
|
||
{
|
||
t = -t;
|
||
}
|
||
result = t;
|
||
return result;
|
||
}
|
||
rflg = -1;
|
||
if( ae_fp_greater_eq(p,0.5) )
|
||
{
|
||
p = 1.0-p;
|
||
rflg = 1;
|
||
}
|
||
z = invincompletebeta(0.5*rk, 0.5, 2.0*p, _state);
|
||
if( ae_fp_less(ae_maxrealnumber*z,rk) )
|
||
{
|
||
result = rflg*ae_maxrealnumber;
|
||
return result;
|
||
}
|
||
t = ae_sqrt(rk/z-rk, _state);
|
||
result = rflg*t;
|
||
return result;
|
||
}
|
||
|
||
|
||
|
||
|
||
/*************************************************************************
|
||
Sine and cosine integrals
|
||
|
||
Evaluates the integrals
|
||
|
||
x
|
||
-
|
||
| cos t - 1
|
||
Ci(x) = eul + ln x + | --------- dt,
|
||
| t
|
||
-
|
||
0
|
||
x
|
||
-
|
||
| sin t
|
||
Si(x) = | ----- dt
|
||
| t
|
||
-
|
||
0
|
||
|
||
where eul = 0.57721566490153286061 is Euler's constant.
|
||
The integrals are approximated by rational functions.
|
||
For x > 8 auxiliary functions f(x) and g(x) are employed
|
||
such that
|
||
|
||
Ci(x) = f(x) sin(x) - g(x) cos(x)
|
||
Si(x) = pi/2 - f(x) cos(x) - g(x) sin(x)
|
||
|
||
|
||
ACCURACY:
|
||
Test interval = [0,50].
|
||
Absolute error, except relative when > 1:
|
||
arithmetic function # trials peak rms
|
||
IEEE Si 30000 4.4e-16 7.3e-17
|
||
IEEE Ci 30000 6.9e-16 5.1e-17
|
||
|
||
Cephes Math Library Release 2.1: January, 1989
|
||
Copyright 1984, 1987, 1989 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
void sinecosineintegrals(double x,
|
||
double* si,
|
||
double* ci,
|
||
ae_state *_state)
|
||
{
|
||
double z;
|
||
double c;
|
||
double s;
|
||
double f;
|
||
double g;
|
||
ae_int_t sg;
|
||
double sn;
|
||
double sd;
|
||
double cn;
|
||
double cd;
|
||
double fn;
|
||
double fd;
|
||
double gn;
|
||
double gd;
|
||
|
||
*si = 0;
|
||
*ci = 0;
|
||
|
||
if( ae_fp_less(x,0) )
|
||
{
|
||
sg = -1;
|
||
x = -x;
|
||
}
|
||
else
|
||
{
|
||
sg = 0;
|
||
}
|
||
if( ae_fp_eq(x,0) )
|
||
{
|
||
*si = 0;
|
||
*ci = -ae_maxrealnumber;
|
||
return;
|
||
}
|
||
if( ae_fp_greater(x,1.0E9) )
|
||
{
|
||
*si = 1.570796326794896619-ae_cos(x, _state)/x;
|
||
*ci = ae_sin(x, _state)/x;
|
||
return;
|
||
}
|
||
if( ae_fp_less_eq(x,4) )
|
||
{
|
||
z = x*x;
|
||
sn = -8.39167827910303881427E-11;
|
||
sn = sn*z+4.62591714427012837309E-8;
|
||
sn = sn*z-9.75759303843632795789E-6;
|
||
sn = sn*z+9.76945438170435310816E-4;
|
||
sn = sn*z-4.13470316229406538752E-2;
|
||
sn = sn*z+1.00000000000000000302E0;
|
||
sd = 2.03269266195951942049E-12;
|
||
sd = sd*z+1.27997891179943299903E-9;
|
||
sd = sd*z+4.41827842801218905784E-7;
|
||
sd = sd*z+9.96412122043875552487E-5;
|
||
sd = sd*z+1.42085239326149893930E-2;
|
||
sd = sd*z+9.99999999999999996984E-1;
|
||
s = x*sn/sd;
|
||
cn = 2.02524002389102268789E-11;
|
||
cn = cn*z-1.35249504915790756375E-8;
|
||
cn = cn*z+3.59325051419993077021E-6;
|
||
cn = cn*z-4.74007206873407909465E-4;
|
||
cn = cn*z+2.89159652607555242092E-2;
|
||
cn = cn*z-1.00000000000000000080E0;
|
||
cd = 4.07746040061880559506E-12;
|
||
cd = cd*z+3.06780997581887812692E-9;
|
||
cd = cd*z+1.23210355685883423679E-6;
|
||
cd = cd*z+3.17442024775032769882E-4;
|
||
cd = cd*z+5.10028056236446052392E-2;
|
||
cd = cd*z+4.00000000000000000080E0;
|
||
c = z*cn/cd;
|
||
if( sg!=0 )
|
||
{
|
||
s = -s;
|
||
}
|
||
*si = s;
|
||
*ci = 0.57721566490153286061+ae_log(x, _state)+c;
|
||
return;
|
||
}
|
||
s = ae_sin(x, _state);
|
||
c = ae_cos(x, _state);
|
||
z = 1.0/(x*x);
|
||
if( ae_fp_less(x,8) )
|
||
{
|
||
fn = 4.23612862892216586994E0;
|
||
fn = fn*z+5.45937717161812843388E0;
|
||
fn = fn*z+1.62083287701538329132E0;
|
||
fn = fn*z+1.67006611831323023771E-1;
|
||
fn = fn*z+6.81020132472518137426E-3;
|
||
fn = fn*z+1.08936580650328664411E-4;
|
||
fn = fn*z+5.48900223421373614008E-7;
|
||
fd = 1.00000000000000000000E0;
|
||
fd = fd*z+8.16496634205391016773E0;
|
||
fd = fd*z+7.30828822505564552187E0;
|
||
fd = fd*z+1.86792257950184183883E0;
|
||
fd = fd*z+1.78792052963149907262E-1;
|
||
fd = fd*z+7.01710668322789753610E-3;
|
||
fd = fd*z+1.10034357153915731354E-4;
|
||
fd = fd*z+5.48900252756255700982E-7;
|
||
f = fn/(x*fd);
|
||
gn = 8.71001698973114191777E-2;
|
||
gn = gn*z+6.11379109952219284151E-1;
|
||
gn = gn*z+3.97180296392337498885E-1;
|
||
gn = gn*z+7.48527737628469092119E-2;
|
||
gn = gn*z+5.38868681462177273157E-3;
|
||
gn = gn*z+1.61999794598934024525E-4;
|
||
gn = gn*z+1.97963874140963632189E-6;
|
||
gn = gn*z+7.82579040744090311069E-9;
|
||
gd = 1.00000000000000000000E0;
|
||
gd = gd*z+1.64402202413355338886E0;
|
||
gd = gd*z+6.66296701268987968381E-1;
|
||
gd = gd*z+9.88771761277688796203E-2;
|
||
gd = gd*z+6.22396345441768420760E-3;
|
||
gd = gd*z+1.73221081474177119497E-4;
|
||
gd = gd*z+2.02659182086343991969E-6;
|
||
gd = gd*z+7.82579218933534490868E-9;
|
||
g = z*gn/gd;
|
||
}
|
||
else
|
||
{
|
||
fn = 4.55880873470465315206E-1;
|
||
fn = fn*z+7.13715274100146711374E-1;
|
||
fn = fn*z+1.60300158222319456320E-1;
|
||
fn = fn*z+1.16064229408124407915E-2;
|
||
fn = fn*z+3.49556442447859055605E-4;
|
||
fn = fn*z+4.86215430826454749482E-6;
|
||
fn = fn*z+3.20092790091004902806E-8;
|
||
fn = fn*z+9.41779576128512936592E-11;
|
||
fn = fn*z+9.70507110881952024631E-14;
|
||
fd = 1.00000000000000000000E0;
|
||
fd = fd*z+9.17463611873684053703E-1;
|
||
fd = fd*z+1.78685545332074536321E-1;
|
||
fd = fd*z+1.22253594771971293032E-2;
|
||
fd = fd*z+3.58696481881851580297E-4;
|
||
fd = fd*z+4.92435064317881464393E-6;
|
||
fd = fd*z+3.21956939101046018377E-8;
|
||
fd = fd*z+9.43720590350276732376E-11;
|
||
fd = fd*z+9.70507110881952025725E-14;
|
||
f = fn/(x*fd);
|
||
gn = 6.97359953443276214934E-1;
|
||
gn = gn*z+3.30410979305632063225E-1;
|
||
gn = gn*z+3.84878767649974295920E-2;
|
||
gn = gn*z+1.71718239052347903558E-3;
|
||
gn = gn*z+3.48941165502279436777E-5;
|
||
gn = gn*z+3.47131167084116673800E-7;
|
||
gn = gn*z+1.70404452782044526189E-9;
|
||
gn = gn*z+3.85945925430276600453E-12;
|
||
gn = gn*z+3.14040098946363334640E-15;
|
||
gd = 1.00000000000000000000E0;
|
||
gd = gd*z+1.68548898811011640017E0;
|
||
gd = gd*z+4.87852258695304967486E-1;
|
||
gd = gd*z+4.67913194259625806320E-2;
|
||
gd = gd*z+1.90284426674399523638E-3;
|
||
gd = gd*z+3.68475504442561108162E-5;
|
||
gd = gd*z+3.57043223443740838771E-7;
|
||
gd = gd*z+1.72693748966316146736E-9;
|
||
gd = gd*z+3.87830166023954706752E-12;
|
||
gd = gd*z+3.14040098946363335242E-15;
|
||
g = z*gn/gd;
|
||
}
|
||
*si = 1.570796326794896619-f*c-g*s;
|
||
if( sg!=0 )
|
||
{
|
||
*si = -*si;
|
||
}
|
||
*ci = f*s-g*c;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Hyperbolic sine and cosine integrals
|
||
|
||
Approximates the integrals
|
||
|
||
x
|
||
-
|
||
| | cosh t - 1
|
||
Chi(x) = eul + ln x + | ----------- dt,
|
||
| | t
|
||
-
|
||
0
|
||
|
||
x
|
||
-
|
||
| | sinh t
|
||
Shi(x) = | ------ dt
|
||
| | t
|
||
-
|
||
0
|
||
|
||
where eul = 0.57721566490153286061 is Euler's constant.
|
||
The integrals are evaluated by power series for x < 8
|
||
and by Chebyshev expansions for x between 8 and 88.
|
||
For large x, both functions approach exp(x)/2x.
|
||
Arguments greater than 88 in magnitude return MAXNUM.
|
||
|
||
|
||
ACCURACY:
|
||
|
||
Test interval 0 to 88.
|
||
Relative error:
|
||
arithmetic function # trials peak rms
|
||
IEEE Shi 30000 6.9e-16 1.6e-16
|
||
Absolute error, except relative when |Chi| > 1:
|
||
IEEE Chi 30000 8.4e-16 1.4e-16
|
||
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
||
*************************************************************************/
|
||
void hyperbolicsinecosineintegrals(double x,
|
||
double* shi,
|
||
double* chi,
|
||
ae_state *_state)
|
||
{
|
||
double k;
|
||
double z;
|
||
double c;
|
||
double s;
|
||
double a;
|
||
ae_int_t sg;
|
||
double b0;
|
||
double b1;
|
||
double b2;
|
||
|
||
*shi = 0;
|
||
*chi = 0;
|
||
|
||
if( ae_fp_less(x,0) )
|
||
{
|
||
sg = -1;
|
||
x = -x;
|
||
}
|
||
else
|
||
{
|
||
sg = 0;
|
||
}
|
||
if( ae_fp_eq(x,0) )
|
||
{
|
||
*shi = 0;
|
||
*chi = -ae_maxrealnumber;
|
||
return;
|
||
}
|
||
if( ae_fp_less(x,8.0) )
|
||
{
|
||
z = x*x;
|
||
a = 1.0;
|
||
s = 1.0;
|
||
c = 0.0;
|
||
k = 2.0;
|
||
do
|
||
{
|
||
a = a*z/k;
|
||
c = c+a/k;
|
||
k = k+1.0;
|
||
a = a/k;
|
||
s = s+a/k;
|
||
k = k+1.0;
|
||
}
|
||
while(ae_fp_greater_eq(ae_fabs(a/s, _state),ae_machineepsilon));
|
||
s = s*x;
|
||
}
|
||
else
|
||
{
|
||
if( ae_fp_less(x,18.0) )
|
||
{
|
||
a = (576.0/x-52.0)/10.0;
|
||
k = ae_exp(x, _state)/x;
|
||
b0 = 1.83889230173399459482E-17;
|
||
b1 = 0.0;
|
||
trigintegrals_chebiterationshichi(a, -9.55485532279655569575E-17, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 2.04326105980879882648E-16, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 1.09896949074905343022E-15, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -1.31313534344092599234E-14, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 5.93976226264314278932E-14, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -3.47197010497749154755E-14, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -1.40059764613117131000E-12, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 9.49044626224223543299E-12, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -1.61596181145435454033E-11, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -1.77899784436430310321E-10, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 1.35455469767246947469E-9, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -1.03257121792819495123E-9, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -3.56699611114982536845E-8, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 1.44818877384267342057E-7, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 7.82018215184051295296E-7, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -5.39919118403805073710E-6, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -3.12458202168959833422E-5, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 8.90136741950727517826E-5, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 2.02558474743846862168E-3, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 2.96064440855633256972E-2, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 1.11847751047257036625E0, &b0, &b1, &b2, _state);
|
||
s = k*0.5*(b0-b2);
|
||
b0 = -8.12435385225864036372E-18;
|
||
b1 = 0.0;
|
||
trigintegrals_chebiterationshichi(a, 2.17586413290339214377E-17, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 5.22624394924072204667E-17, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -9.48812110591690559363E-16, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 5.35546311647465209166E-15, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -1.21009970113732918701E-14, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -6.00865178553447437951E-14, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 7.16339649156028587775E-13, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -2.93496072607599856104E-12, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -1.40359438136491256904E-12, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 8.76302288609054966081E-11, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -4.40092476213282340617E-10, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -1.87992075640569295479E-10, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 1.31458150989474594064E-8, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -4.75513930924765465590E-8, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -2.21775018801848880741E-7, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 1.94635531373272490962E-6, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 4.33505889257316408893E-6, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -6.13387001076494349496E-5, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -3.13085477492997465138E-4, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 4.97164789823116062801E-4, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 2.64347496031374526641E-2, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 1.11446150876699213025E0, &b0, &b1, &b2, _state);
|
||
c = k*0.5*(b0-b2);
|
||
}
|
||
else
|
||
{
|
||
if( ae_fp_less_eq(x,88.0) )
|
||
{
|
||
a = (6336.0/x-212.0)/70.0;
|
||
k = ae_exp(x, _state)/x;
|
||
b0 = -1.05311574154850938805E-17;
|
||
b1 = 0.0;
|
||
trigintegrals_chebiterationshichi(a, 2.62446095596355225821E-17, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 8.82090135625368160657E-17, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -3.38459811878103047136E-16, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -8.30608026366935789136E-16, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 3.93397875437050071776E-15, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 1.01765565969729044505E-14, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -4.21128170307640802703E-14, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -1.60818204519802480035E-13, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 3.34714954175994481761E-13, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 2.72600352129153073807E-12, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 1.66894954752839083608E-12, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -3.49278141024730899554E-11, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -1.58580661666482709598E-10, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -1.79289437183355633342E-10, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 1.76281629144264523277E-9, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 1.69050228879421288846E-8, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 1.25391771228487041649E-7, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 1.16229947068677338732E-6, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 1.61038260117376323993E-5, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 3.49810375601053973070E-4, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 1.28478065259647610779E-2, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 1.03665722588798326712E0, &b0, &b1, &b2, _state);
|
||
s = k*0.5*(b0-b2);
|
||
b0 = 8.06913408255155572081E-18;
|
||
b1 = 0.0;
|
||
trigintegrals_chebiterationshichi(a, -2.08074168180148170312E-17, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -5.98111329658272336816E-17, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 2.68533951085945765591E-16, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 4.52313941698904694774E-16, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -3.10734917335299464535E-15, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -4.42823207332531972288E-15, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 3.49639695410806959872E-14, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 6.63406731718911586609E-14, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -3.71902448093119218395E-13, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -1.27135418132338309016E-12, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 2.74851141935315395333E-12, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 2.33781843985453438400E-11, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 2.71436006377612442764E-11, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -2.56600180000355990529E-10, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -1.61021375163803438552E-9, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -4.72543064876271773512E-9, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, -3.00095178028681682282E-9, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 7.79387474390914922337E-8, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 1.06942765566401507066E-6, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 1.59503164802313196374E-5, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 3.49592575153777996871E-4, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 1.28475387530065247392E-2, &b0, &b1, &b2, _state);
|
||
trigintegrals_chebiterationshichi(a, 1.03665693917934275131E0, &b0, &b1, &b2, _state);
|
||
c = k*0.5*(b0-b2);
|
||
}
|
||
else
|
||
{
|
||
if( sg!=0 )
|
||
{
|
||
*shi = -ae_maxrealnumber;
|
||
}
|
||
else
|
||
{
|
||
*shi = ae_maxrealnumber;
|
||
}
|
||
*chi = ae_maxrealnumber;
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
if( sg!=0 )
|
||
{
|
||
s = -s;
|
||
}
|
||
*shi = s;
|
||
*chi = 0.57721566490153286061+ae_log(x, _state)+c;
|
||
}
|
||
|
||
|
||
static void trigintegrals_chebiterationshichi(double x,
|
||
double c,
|
||
double* b0,
|
||
double* b1,
|
||
double* b2,
|
||
ae_state *_state)
|
||
{
|
||
|
||
|
||
*b2 = *b1;
|
||
*b1 = *b0;
|
||
*b0 = x*(*b1)-(*b2)+c;
|
||
}
|
||
|
||
|
||
|
||
}
|
||
|