mirror of
https://asciireactor.com/otho/psdlag-agn.git
synced 2024-11-22 09:05:07 +00:00
1306 lines
53 KiB
C++
1306 lines
53 KiB
C++
/*************************************************************************
|
|
Copyright (c) Sergey Bochkanov (ALGLIB project).
|
|
|
|
>>> SOURCE LICENSE >>>
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation (www.fsf.org); either version 2 of the
|
|
License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
A copy of the GNU General Public License is available at
|
|
http://www.fsf.org/licensing/licenses
|
|
>>> END OF LICENSE >>>
|
|
*************************************************************************/
|
|
#ifndef _statistics_pkg_h
|
|
#define _statistics_pkg_h
|
|
#include "ap.h"
|
|
#include "alglibinternal.h"
|
|
#include "linalg.h"
|
|
#include "specialfunctions.h"
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (DATATYPES)
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////
|
|
namespace alglib_impl
|
|
{
|
|
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// THIS SECTION CONTAINS C++ INTERFACE
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////
|
|
namespace alglib
|
|
{
|
|
|
|
|
|
/*************************************************************************
|
|
Calculation of the distribution moments: mean, variance, skewness, kurtosis.
|
|
|
|
INPUT PARAMETERS:
|
|
X - sample
|
|
N - N>=0, sample size:
|
|
* if given, only leading N elements of X are processed
|
|
* if not given, automatically determined from size of X
|
|
|
|
OUTPUT PARAMETERS
|
|
Mean - mean.
|
|
Variance- variance.
|
|
Skewness- skewness (if variance<>0; zero otherwise).
|
|
Kurtosis- kurtosis (if variance<>0; zero otherwise).
|
|
|
|
|
|
-- ALGLIB --
|
|
Copyright 06.09.2006 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void samplemoments(const real_1d_array &x, const ae_int_t n, double &mean, double &variance, double &skewness, double &kurtosis);
|
|
void samplemoments(const real_1d_array &x, double &mean, double &variance, double &skewness, double &kurtosis);
|
|
|
|
|
|
/*************************************************************************
|
|
Calculation of the mean.
|
|
|
|
INPUT PARAMETERS:
|
|
X - sample
|
|
N - N>=0, sample size:
|
|
* if given, only leading N elements of X are processed
|
|
* if not given, automatically determined from size of X
|
|
|
|
NOTE:
|
|
|
|
This function return result which calculated by 'SampleMoments' function
|
|
and stored at 'Mean' variable.
|
|
|
|
|
|
-- ALGLIB --
|
|
Copyright 06.09.2006 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
double samplemean(const real_1d_array &x, const ae_int_t n);
|
|
double samplemean(const real_1d_array &x);
|
|
|
|
|
|
/*************************************************************************
|
|
Calculation of the variance.
|
|
|
|
INPUT PARAMETERS:
|
|
X - sample
|
|
N - N>=0, sample size:
|
|
* if given, only leading N elements of X are processed
|
|
* if not given, automatically determined from size of X
|
|
|
|
NOTE:
|
|
|
|
This function return result which calculated by 'SampleMoments' function
|
|
and stored at 'Variance' variable.
|
|
|
|
|
|
-- ALGLIB --
|
|
Copyright 06.09.2006 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
double samplevariance(const real_1d_array &x, const ae_int_t n);
|
|
double samplevariance(const real_1d_array &x);
|
|
|
|
|
|
/*************************************************************************
|
|
Calculation of the skewness.
|
|
|
|
INPUT PARAMETERS:
|
|
X - sample
|
|
N - N>=0, sample size:
|
|
* if given, only leading N elements of X are processed
|
|
* if not given, automatically determined from size of X
|
|
|
|
NOTE:
|
|
|
|
This function return result which calculated by 'SampleMoments' function
|
|
and stored at 'Skewness' variable.
|
|
|
|
|
|
-- ALGLIB --
|
|
Copyright 06.09.2006 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
double sampleskewness(const real_1d_array &x, const ae_int_t n);
|
|
double sampleskewness(const real_1d_array &x);
|
|
|
|
|
|
/*************************************************************************
|
|
Calculation of the kurtosis.
|
|
|
|
INPUT PARAMETERS:
|
|
X - sample
|
|
N - N>=0, sample size:
|
|
* if given, only leading N elements of X are processed
|
|
* if not given, automatically determined from size of X
|
|
|
|
NOTE:
|
|
|
|
This function return result which calculated by 'SampleMoments' function
|
|
and stored at 'Kurtosis' variable.
|
|
|
|
|
|
-- ALGLIB --
|
|
Copyright 06.09.2006 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
double samplekurtosis(const real_1d_array &x, const ae_int_t n);
|
|
double samplekurtosis(const real_1d_array &x);
|
|
|
|
|
|
/*************************************************************************
|
|
ADev
|
|
|
|
Input parameters:
|
|
X - sample
|
|
N - N>=0, sample size:
|
|
* if given, only leading N elements of X are processed
|
|
* if not given, automatically determined from size of X
|
|
|
|
Output parameters:
|
|
ADev- ADev
|
|
|
|
-- ALGLIB --
|
|
Copyright 06.09.2006 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void sampleadev(const real_1d_array &x, const ae_int_t n, double &adev);
|
|
void sampleadev(const real_1d_array &x, double &adev);
|
|
|
|
|
|
/*************************************************************************
|
|
Median calculation.
|
|
|
|
Input parameters:
|
|
X - sample (array indexes: [0..N-1])
|
|
N - N>=0, sample size:
|
|
* if given, only leading N elements of X are processed
|
|
* if not given, automatically determined from size of X
|
|
|
|
Output parameters:
|
|
Median
|
|
|
|
-- ALGLIB --
|
|
Copyright 06.09.2006 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void samplemedian(const real_1d_array &x, const ae_int_t n, double &median);
|
|
void samplemedian(const real_1d_array &x, double &median);
|
|
|
|
|
|
/*************************************************************************
|
|
Percentile calculation.
|
|
|
|
Input parameters:
|
|
X - sample (array indexes: [0..N-1])
|
|
N - N>=0, sample size:
|
|
* if given, only leading N elements of X are processed
|
|
* if not given, automatically determined from size of X
|
|
P - percentile (0<=P<=1)
|
|
|
|
Output parameters:
|
|
V - percentile
|
|
|
|
-- ALGLIB --
|
|
Copyright 01.03.2008 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void samplepercentile(const real_1d_array &x, const ae_int_t n, const double p, double &v);
|
|
void samplepercentile(const real_1d_array &x, const double p, double &v);
|
|
|
|
|
|
/*************************************************************************
|
|
2-sample covariance
|
|
|
|
Input parameters:
|
|
X - sample 1 (array indexes: [0..N-1])
|
|
Y - sample 2 (array indexes: [0..N-1])
|
|
N - N>=0, sample size:
|
|
* if given, only N leading elements of X/Y are processed
|
|
* if not given, automatically determined from input sizes
|
|
|
|
Result:
|
|
covariance (zero for N=0 or N=1)
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.10.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
double cov2(const real_1d_array &x, const real_1d_array &y, const ae_int_t n);
|
|
double cov2(const real_1d_array &x, const real_1d_array &y);
|
|
|
|
|
|
/*************************************************************************
|
|
Pearson product-moment correlation coefficient
|
|
|
|
Input parameters:
|
|
X - sample 1 (array indexes: [0..N-1])
|
|
Y - sample 2 (array indexes: [0..N-1])
|
|
N - N>=0, sample size:
|
|
* if given, only N leading elements of X/Y are processed
|
|
* if not given, automatically determined from input sizes
|
|
|
|
Result:
|
|
Pearson product-moment correlation coefficient
|
|
(zero for N=0 or N=1)
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.10.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
double pearsoncorr2(const real_1d_array &x, const real_1d_array &y, const ae_int_t n);
|
|
double pearsoncorr2(const real_1d_array &x, const real_1d_array &y);
|
|
|
|
|
|
/*************************************************************************
|
|
Spearman's rank correlation coefficient
|
|
|
|
Input parameters:
|
|
X - sample 1 (array indexes: [0..N-1])
|
|
Y - sample 2 (array indexes: [0..N-1])
|
|
N - N>=0, sample size:
|
|
* if given, only N leading elements of X/Y are processed
|
|
* if not given, automatically determined from input sizes
|
|
|
|
Result:
|
|
Spearman's rank correlation coefficient
|
|
(zero for N=0 or N=1)
|
|
|
|
-- ALGLIB --
|
|
Copyright 09.04.2007 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
double spearmancorr2(const real_1d_array &x, const real_1d_array &y, const ae_int_t n);
|
|
double spearmancorr2(const real_1d_array &x, const real_1d_array &y);
|
|
|
|
|
|
/*************************************************************************
|
|
Covariance matrix
|
|
|
|
SMP EDITION OF ALGLIB:
|
|
|
|
! This function can utilize multicore capabilities of your system. In
|
|
! order to do this you have to call version with "smp_" prefix, which
|
|
! indicates that multicore code will be used.
|
|
!
|
|
! This note is given for users of SMP edition; if you use GPL edition,
|
|
! or commercial edition of ALGLIB without SMP support, you still will
|
|
! be able to call smp-version of this function, but all computations
|
|
! will be done serially.
|
|
!
|
|
! We recommend you to carefully read ALGLIB Reference Manual, section
|
|
! called 'SMP support', before using parallel version of this function.
|
|
!
|
|
! You should remember that starting/stopping worker thread always have
|
|
! non-zero cost. Although multicore version is pretty efficient on
|
|
! large problems, we do not recommend you to use it on small problems -
|
|
! with covariance matrices smaller than 128*128.
|
|
|
|
INPUT PARAMETERS:
|
|
X - array[N,M], sample matrix:
|
|
* J-th column corresponds to J-th variable
|
|
* I-th row corresponds to I-th observation
|
|
N - N>=0, number of observations:
|
|
* if given, only leading N rows of X are used
|
|
* if not given, automatically determined from input size
|
|
M - M>0, number of variables:
|
|
* if given, only leading M columns of X are used
|
|
* if not given, automatically determined from input size
|
|
|
|
OUTPUT PARAMETERS:
|
|
C - array[M,M], covariance matrix (zero if N=0 or N=1)
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.10.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void covm(const real_2d_array &x, const ae_int_t n, const ae_int_t m, real_2d_array &c);
|
|
void smp_covm(const real_2d_array &x, const ae_int_t n, const ae_int_t m, real_2d_array &c);
|
|
void covm(const real_2d_array &x, real_2d_array &c);
|
|
void smp_covm(const real_2d_array &x, real_2d_array &c);
|
|
|
|
|
|
/*************************************************************************
|
|
Pearson product-moment correlation matrix
|
|
|
|
SMP EDITION OF ALGLIB:
|
|
|
|
! This function can utilize multicore capabilities of your system. In
|
|
! order to do this you have to call version with "smp_" prefix, which
|
|
! indicates that multicore code will be used.
|
|
!
|
|
! This note is given for users of SMP edition; if you use GPL edition,
|
|
! or commercial edition of ALGLIB without SMP support, you still will
|
|
! be able to call smp-version of this function, but all computations
|
|
! will be done serially.
|
|
!
|
|
! We recommend you to carefully read ALGLIB Reference Manual, section
|
|
! called 'SMP support', before using parallel version of this function.
|
|
!
|
|
! You should remember that starting/stopping worker thread always have
|
|
! non-zero cost. Although multicore version is pretty efficient on
|
|
! large problems, we do not recommend you to use it on small problems -
|
|
! with correlation matrices smaller than 128*128.
|
|
|
|
INPUT PARAMETERS:
|
|
X - array[N,M], sample matrix:
|
|
* J-th column corresponds to J-th variable
|
|
* I-th row corresponds to I-th observation
|
|
N - N>=0, number of observations:
|
|
* if given, only leading N rows of X are used
|
|
* if not given, automatically determined from input size
|
|
M - M>0, number of variables:
|
|
* if given, only leading M columns of X are used
|
|
* if not given, automatically determined from input size
|
|
|
|
OUTPUT PARAMETERS:
|
|
C - array[M,M], correlation matrix (zero if N=0 or N=1)
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.10.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void pearsoncorrm(const real_2d_array &x, const ae_int_t n, const ae_int_t m, real_2d_array &c);
|
|
void smp_pearsoncorrm(const real_2d_array &x, const ae_int_t n, const ae_int_t m, real_2d_array &c);
|
|
void pearsoncorrm(const real_2d_array &x, real_2d_array &c);
|
|
void smp_pearsoncorrm(const real_2d_array &x, real_2d_array &c);
|
|
|
|
|
|
/*************************************************************************
|
|
Spearman's rank correlation matrix
|
|
|
|
SMP EDITION OF ALGLIB:
|
|
|
|
! This function can utilize multicore capabilities of your system. In
|
|
! order to do this you have to call version with "smp_" prefix, which
|
|
! indicates that multicore code will be used.
|
|
!
|
|
! This note is given for users of SMP edition; if you use GPL edition,
|
|
! or commercial edition of ALGLIB without SMP support, you still will
|
|
! be able to call smp-version of this function, but all computations
|
|
! will be done serially.
|
|
!
|
|
! We recommend you to carefully read ALGLIB Reference Manual, section
|
|
! called 'SMP support', before using parallel version of this function.
|
|
!
|
|
! You should remember that starting/stopping worker thread always have
|
|
! non-zero cost. Although multicore version is pretty efficient on
|
|
! large problems, we do not recommend you to use it on small problems -
|
|
! with correlation matrices smaller than 128*128.
|
|
|
|
INPUT PARAMETERS:
|
|
X - array[N,M], sample matrix:
|
|
* J-th column corresponds to J-th variable
|
|
* I-th row corresponds to I-th observation
|
|
N - N>=0, number of observations:
|
|
* if given, only leading N rows of X are used
|
|
* if not given, automatically determined from input size
|
|
M - M>0, number of variables:
|
|
* if given, only leading M columns of X are used
|
|
* if not given, automatically determined from input size
|
|
|
|
OUTPUT PARAMETERS:
|
|
C - array[M,M], correlation matrix (zero if N=0 or N=1)
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.10.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void spearmancorrm(const real_2d_array &x, const ae_int_t n, const ae_int_t m, real_2d_array &c);
|
|
void smp_spearmancorrm(const real_2d_array &x, const ae_int_t n, const ae_int_t m, real_2d_array &c);
|
|
void spearmancorrm(const real_2d_array &x, real_2d_array &c);
|
|
void smp_spearmancorrm(const real_2d_array &x, real_2d_array &c);
|
|
|
|
|
|
/*************************************************************************
|
|
Cross-covariance matrix
|
|
|
|
SMP EDITION OF ALGLIB:
|
|
|
|
! This function can utilize multicore capabilities of your system. In
|
|
! order to do this you have to call version with "smp_" prefix, which
|
|
! indicates that multicore code will be used.
|
|
!
|
|
! This note is given for users of SMP edition; if you use GPL edition,
|
|
! or commercial edition of ALGLIB without SMP support, you still will
|
|
! be able to call smp-version of this function, but all computations
|
|
! will be done serially.
|
|
!
|
|
! We recommend you to carefully read ALGLIB Reference Manual, section
|
|
! called 'SMP support', before using parallel version of this function.
|
|
!
|
|
! You should remember that starting/stopping worker thread always have
|
|
! non-zero cost. Although multicore version is pretty efficient on
|
|
! large problems, we do not recommend you to use it on small problems -
|
|
! with covariance matrices smaller than 128*128.
|
|
|
|
INPUT PARAMETERS:
|
|
X - array[N,M1], sample matrix:
|
|
* J-th column corresponds to J-th variable
|
|
* I-th row corresponds to I-th observation
|
|
Y - array[N,M2], sample matrix:
|
|
* J-th column corresponds to J-th variable
|
|
* I-th row corresponds to I-th observation
|
|
N - N>=0, number of observations:
|
|
* if given, only leading N rows of X/Y are used
|
|
* if not given, automatically determined from input sizes
|
|
M1 - M1>0, number of variables in X:
|
|
* if given, only leading M1 columns of X are used
|
|
* if not given, automatically determined from input size
|
|
M2 - M2>0, number of variables in Y:
|
|
* if given, only leading M1 columns of X are used
|
|
* if not given, automatically determined from input size
|
|
|
|
OUTPUT PARAMETERS:
|
|
C - array[M1,M2], cross-covariance matrix (zero if N=0 or N=1)
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.10.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void covm2(const real_2d_array &x, const real_2d_array &y, const ae_int_t n, const ae_int_t m1, const ae_int_t m2, real_2d_array &c);
|
|
void smp_covm2(const real_2d_array &x, const real_2d_array &y, const ae_int_t n, const ae_int_t m1, const ae_int_t m2, real_2d_array &c);
|
|
void covm2(const real_2d_array &x, const real_2d_array &y, real_2d_array &c);
|
|
void smp_covm2(const real_2d_array &x, const real_2d_array &y, real_2d_array &c);
|
|
|
|
|
|
/*************************************************************************
|
|
Pearson product-moment cross-correlation matrix
|
|
|
|
SMP EDITION OF ALGLIB:
|
|
|
|
! This function can utilize multicore capabilities of your system. In
|
|
! order to do this you have to call version with "smp_" prefix, which
|
|
! indicates that multicore code will be used.
|
|
!
|
|
! This note is given for users of SMP edition; if you use GPL edition,
|
|
! or commercial edition of ALGLIB without SMP support, you still will
|
|
! be able to call smp-version of this function, but all computations
|
|
! will be done serially.
|
|
!
|
|
! We recommend you to carefully read ALGLIB Reference Manual, section
|
|
! called 'SMP support', before using parallel version of this function.
|
|
!
|
|
! You should remember that starting/stopping worker thread always have
|
|
! non-zero cost. Although multicore version is pretty efficient on
|
|
! large problems, we do not recommend you to use it on small problems -
|
|
! with correlation matrices smaller than 128*128.
|
|
|
|
INPUT PARAMETERS:
|
|
X - array[N,M1], sample matrix:
|
|
* J-th column corresponds to J-th variable
|
|
* I-th row corresponds to I-th observation
|
|
Y - array[N,M2], sample matrix:
|
|
* J-th column corresponds to J-th variable
|
|
* I-th row corresponds to I-th observation
|
|
N - N>=0, number of observations:
|
|
* if given, only leading N rows of X/Y are used
|
|
* if not given, automatically determined from input sizes
|
|
M1 - M1>0, number of variables in X:
|
|
* if given, only leading M1 columns of X are used
|
|
* if not given, automatically determined from input size
|
|
M2 - M2>0, number of variables in Y:
|
|
* if given, only leading M1 columns of X are used
|
|
* if not given, automatically determined from input size
|
|
|
|
OUTPUT PARAMETERS:
|
|
C - array[M1,M2], cross-correlation matrix (zero if N=0 or N=1)
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.10.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void pearsoncorrm2(const real_2d_array &x, const real_2d_array &y, const ae_int_t n, const ae_int_t m1, const ae_int_t m2, real_2d_array &c);
|
|
void smp_pearsoncorrm2(const real_2d_array &x, const real_2d_array &y, const ae_int_t n, const ae_int_t m1, const ae_int_t m2, real_2d_array &c);
|
|
void pearsoncorrm2(const real_2d_array &x, const real_2d_array &y, real_2d_array &c);
|
|
void smp_pearsoncorrm2(const real_2d_array &x, const real_2d_array &y, real_2d_array &c);
|
|
|
|
|
|
/*************************************************************************
|
|
Spearman's rank cross-correlation matrix
|
|
|
|
SMP EDITION OF ALGLIB:
|
|
|
|
! This function can utilize multicore capabilities of your system. In
|
|
! order to do this you have to call version with "smp_" prefix, which
|
|
! indicates that multicore code will be used.
|
|
!
|
|
! This note is given for users of SMP edition; if you use GPL edition,
|
|
! or commercial edition of ALGLIB without SMP support, you still will
|
|
! be able to call smp-version of this function, but all computations
|
|
! will be done serially.
|
|
!
|
|
! We recommend you to carefully read ALGLIB Reference Manual, section
|
|
! called 'SMP support', before using parallel version of this function.
|
|
!
|
|
! You should remember that starting/stopping worker thread always have
|
|
! non-zero cost. Although multicore version is pretty efficient on
|
|
! large problems, we do not recommend you to use it on small problems -
|
|
! with correlation matrices smaller than 128*128.
|
|
|
|
INPUT PARAMETERS:
|
|
X - array[N,M1], sample matrix:
|
|
* J-th column corresponds to J-th variable
|
|
* I-th row corresponds to I-th observation
|
|
Y - array[N,M2], sample matrix:
|
|
* J-th column corresponds to J-th variable
|
|
* I-th row corresponds to I-th observation
|
|
N - N>=0, number of observations:
|
|
* if given, only leading N rows of X/Y are used
|
|
* if not given, automatically determined from input sizes
|
|
M1 - M1>0, number of variables in X:
|
|
* if given, only leading M1 columns of X are used
|
|
* if not given, automatically determined from input size
|
|
M2 - M2>0, number of variables in Y:
|
|
* if given, only leading M1 columns of X are used
|
|
* if not given, automatically determined from input size
|
|
|
|
OUTPUT PARAMETERS:
|
|
C - array[M1,M2], cross-correlation matrix (zero if N=0 or N=1)
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.10.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void spearmancorrm2(const real_2d_array &x, const real_2d_array &y, const ae_int_t n, const ae_int_t m1, const ae_int_t m2, real_2d_array &c);
|
|
void smp_spearmancorrm2(const real_2d_array &x, const real_2d_array &y, const ae_int_t n, const ae_int_t m1, const ae_int_t m2, real_2d_array &c);
|
|
void spearmancorrm2(const real_2d_array &x, const real_2d_array &y, real_2d_array &c);
|
|
void smp_spearmancorrm2(const real_2d_array &x, const real_2d_array &y, real_2d_array &c);
|
|
|
|
|
|
/*************************************************************************
|
|
|
|
*************************************************************************/
|
|
void rankdata(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nfeatures);
|
|
void smp_rankdata(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nfeatures);
|
|
void rankdata(real_2d_array &xy);
|
|
void smp_rankdata(real_2d_array &xy);
|
|
|
|
|
|
/*************************************************************************
|
|
|
|
*************************************************************************/
|
|
void rankdatacentered(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nfeatures);
|
|
void smp_rankdatacentered(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nfeatures);
|
|
void rankdatacentered(real_2d_array &xy);
|
|
void smp_rankdatacentered(real_2d_array &xy);
|
|
|
|
|
|
/*************************************************************************
|
|
Obsolete function, we recommend to use PearsonCorr2().
|
|
|
|
-- ALGLIB --
|
|
Copyright 09.04.2007 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
double pearsoncorrelation(const real_1d_array &x, const real_1d_array &y, const ae_int_t n);
|
|
|
|
|
|
/*************************************************************************
|
|
Obsolete function, we recommend to use SpearmanCorr2().
|
|
|
|
-- ALGLIB --
|
|
Copyright 09.04.2007 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
double spearmanrankcorrelation(const real_1d_array &x, const real_1d_array &y, const ae_int_t n);
|
|
|
|
/*************************************************************************
|
|
Pearson's correlation coefficient significance test
|
|
|
|
This test checks hypotheses about whether X and Y are samples of two
|
|
continuous distributions having zero correlation or whether their
|
|
correlation is non-zero.
|
|
|
|
The following tests are performed:
|
|
* two-tailed test (null hypothesis - X and Y have zero correlation)
|
|
* left-tailed test (null hypothesis - the correlation coefficient is
|
|
greater than or equal to 0)
|
|
* right-tailed test (null hypothesis - the correlation coefficient is
|
|
less than or equal to 0).
|
|
|
|
Requirements:
|
|
* the number of elements in each sample is not less than 5
|
|
* normality of distributions of X and Y.
|
|
|
|
Input parameters:
|
|
R - Pearson's correlation coefficient for X and Y
|
|
N - number of elements in samples, N>=5.
|
|
|
|
Output parameters:
|
|
BothTails - p-value for two-tailed test.
|
|
If BothTails is less than the given significance level
|
|
the null hypothesis is rejected.
|
|
LeftTail - p-value for left-tailed test.
|
|
If LeftTail is less than the given significance level,
|
|
the null hypothesis is rejected.
|
|
RightTail - p-value for right-tailed test.
|
|
If RightTail is less than the given significance level
|
|
the null hypothesis is rejected.
|
|
|
|
-- ALGLIB --
|
|
Copyright 09.04.2007 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void pearsoncorrelationsignificance(const double r, const ae_int_t n, double &bothtails, double &lefttail, double &righttail);
|
|
|
|
|
|
/*************************************************************************
|
|
Spearman's rank correlation coefficient significance test
|
|
|
|
This test checks hypotheses about whether X and Y are samples of two
|
|
continuous distributions having zero correlation or whether their
|
|
correlation is non-zero.
|
|
|
|
The following tests are performed:
|
|
* two-tailed test (null hypothesis - X and Y have zero correlation)
|
|
* left-tailed test (null hypothesis - the correlation coefficient is
|
|
greater than or equal to 0)
|
|
* right-tailed test (null hypothesis - the correlation coefficient is
|
|
less than or equal to 0).
|
|
|
|
Requirements:
|
|
* the number of elements in each sample is not less than 5.
|
|
|
|
The test is non-parametric and doesn't require distributions X and Y to be
|
|
normal.
|
|
|
|
Input parameters:
|
|
R - Spearman's rank correlation coefficient for X and Y
|
|
N - number of elements in samples, N>=5.
|
|
|
|
Output parameters:
|
|
BothTails - p-value for two-tailed test.
|
|
If BothTails is less than the given significance level
|
|
the null hypothesis is rejected.
|
|
LeftTail - p-value for left-tailed test.
|
|
If LeftTail is less than the given significance level,
|
|
the null hypothesis is rejected.
|
|
RightTail - p-value for right-tailed test.
|
|
If RightTail is less than the given significance level
|
|
the null hypothesis is rejected.
|
|
|
|
-- ALGLIB --
|
|
Copyright 09.04.2007 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void spearmanrankcorrelationsignificance(const double r, const ae_int_t n, double &bothtails, double &lefttail, double &righttail);
|
|
|
|
/*************************************************************************
|
|
Jarque-Bera test
|
|
|
|
This test checks hypotheses about the fact that a given sample X is a
|
|
sample of normal random variable.
|
|
|
|
Requirements:
|
|
* the number of elements in the sample is not less than 5.
|
|
|
|
Input parameters:
|
|
X - sample. Array whose index goes from 0 to N-1.
|
|
N - size of the sample. N>=5
|
|
|
|
Output parameters:
|
|
BothTails - p-value for two-tailed test.
|
|
If BothTails is less than the given significance level
|
|
the null hypothesis is rejected.
|
|
LeftTail - p-value for left-tailed test.
|
|
If LeftTail is less than the given significance level,
|
|
the null hypothesis is rejected.
|
|
RightTail - p-value for right-tailed test.
|
|
If RightTail is less than the given significance level
|
|
the null hypothesis is rejected.
|
|
|
|
Accuracy of the approximation used (5<=N<=1951):
|
|
|
|
p-value relative error (5<=N<=1951)
|
|
[1, 0.1] < 1%
|
|
[0.1, 0.01] < 2%
|
|
[0.01, 0.001] < 6%
|
|
[0.001, 0] wasn't measured
|
|
|
|
For N>1951 accuracy wasn't measured but it shouldn't be sharply different
|
|
from table values.
|
|
|
|
-- ALGLIB --
|
|
Copyright 09.04.2007 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void jarqueberatest(const real_1d_array &x, const ae_int_t n, double &p);
|
|
|
|
/*************************************************************************
|
|
Mann-Whitney U-test
|
|
|
|
This test checks hypotheses about whether X and Y are samples of two
|
|
continuous distributions of the same shape and same median or whether
|
|
their medians are different.
|
|
|
|
The following tests are performed:
|
|
* two-tailed test (null hypothesis - the medians are equal)
|
|
* left-tailed test (null hypothesis - the median of the first sample
|
|
is greater than or equal to the median of the second sample)
|
|
* right-tailed test (null hypothesis - the median of the first sample
|
|
is less than or equal to the median of the second sample).
|
|
|
|
Requirements:
|
|
* the samples are independent
|
|
* X and Y are continuous distributions (or discrete distributions well-
|
|
approximating continuous distributions)
|
|
* distributions of X and Y have the same shape. The only possible
|
|
difference is their position (i.e. the value of the median)
|
|
* the number of elements in each sample is not less than 5
|
|
* the scale of measurement should be ordinal, interval or ratio (i.e.
|
|
the test could not be applied to nominal variables).
|
|
|
|
The test is non-parametric and doesn't require distributions to be normal.
|
|
|
|
Input parameters:
|
|
X - sample 1. Array whose index goes from 0 to N-1.
|
|
N - size of the sample. N>=5
|
|
Y - sample 2. Array whose index goes from 0 to M-1.
|
|
M - size of the sample. M>=5
|
|
|
|
Output parameters:
|
|
BothTails - p-value for two-tailed test.
|
|
If BothTails is less than the given significance level
|
|
the null hypothesis is rejected.
|
|
LeftTail - p-value for left-tailed test.
|
|
If LeftTail is less than the given significance level,
|
|
the null hypothesis is rejected.
|
|
RightTail - p-value for right-tailed test.
|
|
If RightTail is less than the given significance level
|
|
the null hypothesis is rejected.
|
|
|
|
To calculate p-values, special approximation is used. This method lets us
|
|
calculate p-values with satisfactory accuracy in interval [0.0001, 1].
|
|
There is no approximation outside the [0.0001, 1] interval. Therefore, if
|
|
the significance level outlies this interval, the test returns 0.0001.
|
|
|
|
Relative precision of approximation of p-value:
|
|
|
|
N M Max.err. Rms.err.
|
|
5..10 N..10 1.4e-02 6.0e-04
|
|
5..10 N..100 2.2e-02 5.3e-06
|
|
10..15 N..15 1.0e-02 3.2e-04
|
|
10..15 N..100 1.0e-02 2.2e-05
|
|
15..100 N..100 6.1e-03 2.7e-06
|
|
|
|
For N,M>100 accuracy checks weren't put into practice, but taking into
|
|
account characteristics of asymptotic approximation used, precision should
|
|
not be sharply different from the values for interval [5, 100].
|
|
|
|
-- ALGLIB --
|
|
Copyright 09.04.2007 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void mannwhitneyutest(const real_1d_array &x, const ae_int_t n, const real_1d_array &y, const ae_int_t m, double &bothtails, double &lefttail, double &righttail);
|
|
|
|
/*************************************************************************
|
|
Sign test
|
|
|
|
This test checks three hypotheses about the median of the given sample.
|
|
The following tests are performed:
|
|
* two-tailed test (null hypothesis - the median is equal to the given
|
|
value)
|
|
* left-tailed test (null hypothesis - the median is greater than or
|
|
equal to the given value)
|
|
* right-tailed test (null hypothesis - the median is less than or
|
|
equal to the given value)
|
|
|
|
Requirements:
|
|
* the scale of measurement should be ordinal, interval or ratio (i.e.
|
|
the test could not be applied to nominal variables).
|
|
|
|
The test is non-parametric and doesn't require distribution X to be normal
|
|
|
|
Input parameters:
|
|
X - sample. Array whose index goes from 0 to N-1.
|
|
N - size of the sample.
|
|
Median - assumed median value.
|
|
|
|
Output parameters:
|
|
BothTails - p-value for two-tailed test.
|
|
If BothTails is less than the given significance level
|
|
the null hypothesis is rejected.
|
|
LeftTail - p-value for left-tailed test.
|
|
If LeftTail is less than the given significance level,
|
|
the null hypothesis is rejected.
|
|
RightTail - p-value for right-tailed test.
|
|
If RightTail is less than the given significance level
|
|
the null hypothesis is rejected.
|
|
|
|
While calculating p-values high-precision binomial distribution
|
|
approximation is used, so significance levels have about 15 exact digits.
|
|
|
|
-- ALGLIB --
|
|
Copyright 08.09.2006 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void onesamplesigntest(const real_1d_array &x, const ae_int_t n, const double median, double &bothtails, double &lefttail, double &righttail);
|
|
|
|
/*************************************************************************
|
|
One-sample t-test
|
|
|
|
This test checks three hypotheses about the mean of the given sample. The
|
|
following tests are performed:
|
|
* two-tailed test (null hypothesis - the mean is equal to the given
|
|
value)
|
|
* left-tailed test (null hypothesis - the mean is greater than or
|
|
equal to the given value)
|
|
* right-tailed test (null hypothesis - the mean is less than or equal
|
|
to the given value).
|
|
|
|
The test is based on the assumption that a given sample has a normal
|
|
distribution and an unknown dispersion. If the distribution sharply
|
|
differs from normal, the test will work incorrectly.
|
|
|
|
INPUT PARAMETERS:
|
|
X - sample. Array whose index goes from 0 to N-1.
|
|
N - size of sample, N>=0
|
|
Mean - assumed value of the mean.
|
|
|
|
OUTPUT PARAMETERS:
|
|
BothTails - p-value for two-tailed test.
|
|
If BothTails is less than the given significance level
|
|
the null hypothesis is rejected.
|
|
LeftTail - p-value for left-tailed test.
|
|
If LeftTail is less than the given significance level,
|
|
the null hypothesis is rejected.
|
|
RightTail - p-value for right-tailed test.
|
|
If RightTail is less than the given significance level
|
|
the null hypothesis is rejected.
|
|
|
|
NOTE: this function correctly handles degenerate cases:
|
|
* when N=0, all p-values are set to 1.0
|
|
* when variance of X[] is exactly zero, p-values are set
|
|
to 1.0 or 0.0, depending on difference between sample mean and
|
|
value of mean being tested.
|
|
|
|
|
|
-- ALGLIB --
|
|
Copyright 08.09.2006 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void studentttest1(const real_1d_array &x, const ae_int_t n, const double mean, double &bothtails, double &lefttail, double &righttail);
|
|
|
|
|
|
/*************************************************************************
|
|
Two-sample pooled test
|
|
|
|
This test checks three hypotheses about the mean of the given samples. The
|
|
following tests are performed:
|
|
* two-tailed test (null hypothesis - the means are equal)
|
|
* left-tailed test (null hypothesis - the mean of the first sample is
|
|
greater than or equal to the mean of the second sample)
|
|
* right-tailed test (null hypothesis - the mean of the first sample is
|
|
less than or equal to the mean of the second sample).
|
|
|
|
Test is based on the following assumptions:
|
|
* given samples have normal distributions
|
|
* dispersions are equal
|
|
* samples are independent.
|
|
|
|
Input parameters:
|
|
X - sample 1. Array whose index goes from 0 to N-1.
|
|
N - size of sample.
|
|
Y - sample 2. Array whose index goes from 0 to M-1.
|
|
M - size of sample.
|
|
|
|
Output parameters:
|
|
BothTails - p-value for two-tailed test.
|
|
If BothTails is less than the given significance level
|
|
the null hypothesis is rejected.
|
|
LeftTail - p-value for left-tailed test.
|
|
If LeftTail is less than the given significance level,
|
|
the null hypothesis is rejected.
|
|
RightTail - p-value for right-tailed test.
|
|
If RightTail is less than the given significance level
|
|
the null hypothesis is rejected.
|
|
|
|
NOTE: this function correctly handles degenerate cases:
|
|
* when N=0 or M=0, all p-values are set to 1.0
|
|
* when both samples has exactly zero variance, p-values are set
|
|
to 1.0 or 0.0, depending on difference between means.
|
|
|
|
-- ALGLIB --
|
|
Copyright 18.09.2006 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void studentttest2(const real_1d_array &x, const ae_int_t n, const real_1d_array &y, const ae_int_t m, double &bothtails, double &lefttail, double &righttail);
|
|
|
|
|
|
/*************************************************************************
|
|
Two-sample unpooled test
|
|
|
|
This test checks three hypotheses about the mean of the given samples. The
|
|
following tests are performed:
|
|
* two-tailed test (null hypothesis - the means are equal)
|
|
* left-tailed test (null hypothesis - the mean of the first sample is
|
|
greater than or equal to the mean of the second sample)
|
|
* right-tailed test (null hypothesis - the mean of the first sample is
|
|
less than or equal to the mean of the second sample).
|
|
|
|
Test is based on the following assumptions:
|
|
* given samples have normal distributions
|
|
* samples are independent.
|
|
Equality of variances is NOT required.
|
|
|
|
Input parameters:
|
|
X - sample 1. Array whose index goes from 0 to N-1.
|
|
N - size of the sample.
|
|
Y - sample 2. Array whose index goes from 0 to M-1.
|
|
M - size of the sample.
|
|
|
|
Output parameters:
|
|
BothTails - p-value for two-tailed test.
|
|
If BothTails is less than the given significance level
|
|
the null hypothesis is rejected.
|
|
LeftTail - p-value for left-tailed test.
|
|
If LeftTail is less than the given significance level,
|
|
the null hypothesis is rejected.
|
|
RightTail - p-value for right-tailed test.
|
|
If RightTail is less than the given significance level
|
|
the null hypothesis is rejected.
|
|
|
|
NOTE: this function correctly handles degenerate cases:
|
|
* when N=0 or M=0, all p-values are set to 1.0
|
|
* when both samples has zero variance, p-values are set
|
|
to 1.0 or 0.0, depending on difference between means.
|
|
* when only one sample has zero variance, test reduces to 1-sample
|
|
version.
|
|
|
|
-- ALGLIB --
|
|
Copyright 18.09.2006 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void unequalvariancettest(const real_1d_array &x, const ae_int_t n, const real_1d_array &y, const ae_int_t m, double &bothtails, double &lefttail, double &righttail);
|
|
|
|
/*************************************************************************
|
|
Two-sample F-test
|
|
|
|
This test checks three hypotheses about dispersions of the given samples.
|
|
The following tests are performed:
|
|
* two-tailed test (null hypothesis - the dispersions are equal)
|
|
* left-tailed test (null hypothesis - the dispersion of the first
|
|
sample is greater than or equal to the dispersion of the second
|
|
sample).
|
|
* right-tailed test (null hypothesis - the dispersion of the first
|
|
sample is less than or equal to the dispersion of the second sample)
|
|
|
|
The test is based on the following assumptions:
|
|
* the given samples have normal distributions
|
|
* the samples are independent.
|
|
|
|
Input parameters:
|
|
X - sample 1. Array whose index goes from 0 to N-1.
|
|
N - sample size.
|
|
Y - sample 2. Array whose index goes from 0 to M-1.
|
|
M - sample size.
|
|
|
|
Output parameters:
|
|
BothTails - p-value for two-tailed test.
|
|
If BothTails is less than the given significance level
|
|
the null hypothesis is rejected.
|
|
LeftTail - p-value for left-tailed test.
|
|
If LeftTail is less than the given significance level,
|
|
the null hypothesis is rejected.
|
|
RightTail - p-value for right-tailed test.
|
|
If RightTail is less than the given significance level
|
|
the null hypothesis is rejected.
|
|
|
|
-- ALGLIB --
|
|
Copyright 19.09.2006 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void ftest(const real_1d_array &x, const ae_int_t n, const real_1d_array &y, const ae_int_t m, double &bothtails, double &lefttail, double &righttail);
|
|
|
|
|
|
/*************************************************************************
|
|
One-sample chi-square test
|
|
|
|
This test checks three hypotheses about the dispersion of the given sample
|
|
The following tests are performed:
|
|
* two-tailed test (null hypothesis - the dispersion equals the given
|
|
number)
|
|
* left-tailed test (null hypothesis - the dispersion is greater than
|
|
or equal to the given number)
|
|
* right-tailed test (null hypothesis - dispersion is less than or
|
|
equal to the given number).
|
|
|
|
Test is based on the following assumptions:
|
|
* the given sample has a normal distribution.
|
|
|
|
Input parameters:
|
|
X - sample 1. Array whose index goes from 0 to N-1.
|
|
N - size of the sample.
|
|
Variance - dispersion value to compare with.
|
|
|
|
Output parameters:
|
|
BothTails - p-value for two-tailed test.
|
|
If BothTails is less than the given significance level
|
|
the null hypothesis is rejected.
|
|
LeftTail - p-value for left-tailed test.
|
|
If LeftTail is less than the given significance level,
|
|
the null hypothesis is rejected.
|
|
RightTail - p-value for right-tailed test.
|
|
If RightTail is less than the given significance level
|
|
the null hypothesis is rejected.
|
|
|
|
-- ALGLIB --
|
|
Copyright 19.09.2006 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void onesamplevariancetest(const real_1d_array &x, const ae_int_t n, const double variance, double &bothtails, double &lefttail, double &righttail);
|
|
|
|
/*************************************************************************
|
|
Wilcoxon signed-rank test
|
|
|
|
This test checks three hypotheses about the median of the given sample.
|
|
The following tests are performed:
|
|
* two-tailed test (null hypothesis - the median is equal to the given
|
|
value)
|
|
* left-tailed test (null hypothesis - the median is greater than or
|
|
equal to the given value)
|
|
* right-tailed test (null hypothesis - the median is less than or
|
|
equal to the given value)
|
|
|
|
Requirements:
|
|
* the scale of measurement should be ordinal, interval or ratio (i.e.
|
|
the test could not be applied to nominal variables).
|
|
* the distribution should be continuous and symmetric relative to its
|
|
median.
|
|
* number of distinct values in the X array should be greater than 4
|
|
|
|
The test is non-parametric and doesn't require distribution X to be normal
|
|
|
|
Input parameters:
|
|
X - sample. Array whose index goes from 0 to N-1.
|
|
N - size of the sample.
|
|
Median - assumed median value.
|
|
|
|
Output parameters:
|
|
BothTails - p-value for two-tailed test.
|
|
If BothTails is less than the given significance level
|
|
the null hypothesis is rejected.
|
|
LeftTail - p-value for left-tailed test.
|
|
If LeftTail is less than the given significance level,
|
|
the null hypothesis is rejected.
|
|
RightTail - p-value for right-tailed test.
|
|
If RightTail is less than the given significance level
|
|
the null hypothesis is rejected.
|
|
|
|
To calculate p-values, special approximation is used. This method lets us
|
|
calculate p-values with two decimal places in interval [0.0001, 1].
|
|
|
|
"Two decimal places" does not sound very impressive, but in practice the
|
|
relative error of less than 1% is enough to make a decision.
|
|
|
|
There is no approximation outside the [0.0001, 1] interval. Therefore, if
|
|
the significance level outlies this interval, the test returns 0.0001.
|
|
|
|
-- ALGLIB --
|
|
Copyright 08.09.2006 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void wilcoxonsignedranktest(const real_1d_array &x, const ae_int_t n, const double e, double &bothtails, double &lefttail, double &righttail);
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (FUNCTIONS)
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////
|
|
namespace alglib_impl
|
|
{
|
|
void samplemoments(/* Real */ ae_vector* x,
|
|
ae_int_t n,
|
|
double* mean,
|
|
double* variance,
|
|
double* skewness,
|
|
double* kurtosis,
|
|
ae_state *_state);
|
|
double samplemean(/* Real */ ae_vector* x,
|
|
ae_int_t n,
|
|
ae_state *_state);
|
|
double samplevariance(/* Real */ ae_vector* x,
|
|
ae_int_t n,
|
|
ae_state *_state);
|
|
double sampleskewness(/* Real */ ae_vector* x,
|
|
ae_int_t n,
|
|
ae_state *_state);
|
|
double samplekurtosis(/* Real */ ae_vector* x,
|
|
ae_int_t n,
|
|
ae_state *_state);
|
|
void sampleadev(/* Real */ ae_vector* x,
|
|
ae_int_t n,
|
|
double* adev,
|
|
ae_state *_state);
|
|
void samplemedian(/* Real */ ae_vector* x,
|
|
ae_int_t n,
|
|
double* median,
|
|
ae_state *_state);
|
|
void samplepercentile(/* Real */ ae_vector* x,
|
|
ae_int_t n,
|
|
double p,
|
|
double* v,
|
|
ae_state *_state);
|
|
double cov2(/* Real */ ae_vector* x,
|
|
/* Real */ ae_vector* y,
|
|
ae_int_t n,
|
|
ae_state *_state);
|
|
double pearsoncorr2(/* Real */ ae_vector* x,
|
|
/* Real */ ae_vector* y,
|
|
ae_int_t n,
|
|
ae_state *_state);
|
|
double spearmancorr2(/* Real */ ae_vector* x,
|
|
/* Real */ ae_vector* y,
|
|
ae_int_t n,
|
|
ae_state *_state);
|
|
void covm(/* Real */ ae_matrix* x,
|
|
ae_int_t n,
|
|
ae_int_t m,
|
|
/* Real */ ae_matrix* c,
|
|
ae_state *_state);
|
|
void _pexec_covm(/* Real */ ae_matrix* x,
|
|
ae_int_t n,
|
|
ae_int_t m,
|
|
/* Real */ ae_matrix* c, ae_state *_state);
|
|
void pearsoncorrm(/* Real */ ae_matrix* x,
|
|
ae_int_t n,
|
|
ae_int_t m,
|
|
/* Real */ ae_matrix* c,
|
|
ae_state *_state);
|
|
void _pexec_pearsoncorrm(/* Real */ ae_matrix* x,
|
|
ae_int_t n,
|
|
ae_int_t m,
|
|
/* Real */ ae_matrix* c, ae_state *_state);
|
|
void spearmancorrm(/* Real */ ae_matrix* x,
|
|
ae_int_t n,
|
|
ae_int_t m,
|
|
/* Real */ ae_matrix* c,
|
|
ae_state *_state);
|
|
void _pexec_spearmancorrm(/* Real */ ae_matrix* x,
|
|
ae_int_t n,
|
|
ae_int_t m,
|
|
/* Real */ ae_matrix* c, ae_state *_state);
|
|
void covm2(/* Real */ ae_matrix* x,
|
|
/* Real */ ae_matrix* y,
|
|
ae_int_t n,
|
|
ae_int_t m1,
|
|
ae_int_t m2,
|
|
/* Real */ ae_matrix* c,
|
|
ae_state *_state);
|
|
void _pexec_covm2(/* Real */ ae_matrix* x,
|
|
/* Real */ ae_matrix* y,
|
|
ae_int_t n,
|
|
ae_int_t m1,
|
|
ae_int_t m2,
|
|
/* Real */ ae_matrix* c, ae_state *_state);
|
|
void pearsoncorrm2(/* Real */ ae_matrix* x,
|
|
/* Real */ ae_matrix* y,
|
|
ae_int_t n,
|
|
ae_int_t m1,
|
|
ae_int_t m2,
|
|
/* Real */ ae_matrix* c,
|
|
ae_state *_state);
|
|
void _pexec_pearsoncorrm2(/* Real */ ae_matrix* x,
|
|
/* Real */ ae_matrix* y,
|
|
ae_int_t n,
|
|
ae_int_t m1,
|
|
ae_int_t m2,
|
|
/* Real */ ae_matrix* c, ae_state *_state);
|
|
void spearmancorrm2(/* Real */ ae_matrix* x,
|
|
/* Real */ ae_matrix* y,
|
|
ae_int_t n,
|
|
ae_int_t m1,
|
|
ae_int_t m2,
|
|
/* Real */ ae_matrix* c,
|
|
ae_state *_state);
|
|
void _pexec_spearmancorrm2(/* Real */ ae_matrix* x,
|
|
/* Real */ ae_matrix* y,
|
|
ae_int_t n,
|
|
ae_int_t m1,
|
|
ae_int_t m2,
|
|
/* Real */ ae_matrix* c, ae_state *_state);
|
|
void rankdata(/* Real */ ae_matrix* xy,
|
|
ae_int_t npoints,
|
|
ae_int_t nfeatures,
|
|
ae_state *_state);
|
|
void _pexec_rankdata(/* Real */ ae_matrix* xy,
|
|
ae_int_t npoints,
|
|
ae_int_t nfeatures, ae_state *_state);
|
|
void rankdatacentered(/* Real */ ae_matrix* xy,
|
|
ae_int_t npoints,
|
|
ae_int_t nfeatures,
|
|
ae_state *_state);
|
|
void _pexec_rankdatacentered(/* Real */ ae_matrix* xy,
|
|
ae_int_t npoints,
|
|
ae_int_t nfeatures, ae_state *_state);
|
|
double pearsoncorrelation(/* Real */ ae_vector* x,
|
|
/* Real */ ae_vector* y,
|
|
ae_int_t n,
|
|
ae_state *_state);
|
|
double spearmanrankcorrelation(/* Real */ ae_vector* x,
|
|
/* Real */ ae_vector* y,
|
|
ae_int_t n,
|
|
ae_state *_state);
|
|
void pearsoncorrelationsignificance(double r,
|
|
ae_int_t n,
|
|
double* bothtails,
|
|
double* lefttail,
|
|
double* righttail,
|
|
ae_state *_state);
|
|
void spearmanrankcorrelationsignificance(double r,
|
|
ae_int_t n,
|
|
double* bothtails,
|
|
double* lefttail,
|
|
double* righttail,
|
|
ae_state *_state);
|
|
void jarqueberatest(/* Real */ ae_vector* x,
|
|
ae_int_t n,
|
|
double* p,
|
|
ae_state *_state);
|
|
void mannwhitneyutest(/* Real */ ae_vector* x,
|
|
ae_int_t n,
|
|
/* Real */ ae_vector* y,
|
|
ae_int_t m,
|
|
double* bothtails,
|
|
double* lefttail,
|
|
double* righttail,
|
|
ae_state *_state);
|
|
void onesamplesigntest(/* Real */ ae_vector* x,
|
|
ae_int_t n,
|
|
double median,
|
|
double* bothtails,
|
|
double* lefttail,
|
|
double* righttail,
|
|
ae_state *_state);
|
|
void studentttest1(/* Real */ ae_vector* x,
|
|
ae_int_t n,
|
|
double mean,
|
|
double* bothtails,
|
|
double* lefttail,
|
|
double* righttail,
|
|
ae_state *_state);
|
|
void studentttest2(/* Real */ ae_vector* x,
|
|
ae_int_t n,
|
|
/* Real */ ae_vector* y,
|
|
ae_int_t m,
|
|
double* bothtails,
|
|
double* lefttail,
|
|
double* righttail,
|
|
ae_state *_state);
|
|
void unequalvariancettest(/* Real */ ae_vector* x,
|
|
ae_int_t n,
|
|
/* Real */ ae_vector* y,
|
|
ae_int_t m,
|
|
double* bothtails,
|
|
double* lefttail,
|
|
double* righttail,
|
|
ae_state *_state);
|
|
void ftest(/* Real */ ae_vector* x,
|
|
ae_int_t n,
|
|
/* Real */ ae_vector* y,
|
|
ae_int_t m,
|
|
double* bothtails,
|
|
double* lefttail,
|
|
double* righttail,
|
|
ae_state *_state);
|
|
void onesamplevariancetest(/* Real */ ae_vector* x,
|
|
ae_int_t n,
|
|
double variance,
|
|
double* bothtails,
|
|
double* lefttail,
|
|
double* righttail,
|
|
ae_state *_state);
|
|
void wilcoxonsignedranktest(/* Real */ ae_vector* x,
|
|
ae_int_t n,
|
|
double e,
|
|
double* bothtails,
|
|
double* lefttail,
|
|
double* righttail,
|
|
ae_state *_state);
|
|
|
|
}
|
|
#endif
|
|
|