mirror of
https://asciireactor.com/otho/psdlag-agn.git
synced 2025-04-04 13:05:45 +00:00
3612 lines
120 KiB
C++
3612 lines
120 KiB
C++
/*************************************************************************
|
|
Copyright (c) Sergey Bochkanov (ALGLIB project).
|
|
|
|
>>> SOURCE LICENSE >>>
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation (www.fsf.org); either version 2 of the
|
|
License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
A copy of the GNU General Public License is available at
|
|
http://www.fsf.org/licensing/licenses
|
|
>>> END OF LICENSE >>>
|
|
*************************************************************************/
|
|
#include "stdafx.h"
|
|
#include "alglibmisc.h"
|
|
|
|
// disable some irrelevant warnings
|
|
#if (AE_COMPILER==AE_MSVC)
|
|
#pragma warning(disable:4100)
|
|
#pragma warning(disable:4127)
|
|
#pragma warning(disable:4702)
|
|
#pragma warning(disable:4996)
|
|
#endif
|
|
using namespace std;
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// THIS SECTION CONTAINS IMPLEMENTATION OF C++ INTERFACE
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////
|
|
namespace alglib
|
|
{
|
|
|
|
|
|
/*************************************************************************
|
|
Portable high quality random number generator state.
|
|
Initialized with HQRNDRandomize() or HQRNDSeed().
|
|
|
|
Fields:
|
|
S1, S2 - seed values
|
|
V - precomputed value
|
|
MagicV - 'magic' value used to determine whether State structure
|
|
was correctly initialized.
|
|
*************************************************************************/
|
|
_hqrndstate_owner::_hqrndstate_owner()
|
|
{
|
|
p_struct = (alglib_impl::hqrndstate*)alglib_impl::ae_malloc(sizeof(alglib_impl::hqrndstate), NULL);
|
|
if( p_struct==NULL )
|
|
throw ap_error("ALGLIB: malloc error");
|
|
if( !alglib_impl::_hqrndstate_init(p_struct, NULL, ae_false) )
|
|
throw ap_error("ALGLIB: malloc error");
|
|
}
|
|
|
|
_hqrndstate_owner::_hqrndstate_owner(const _hqrndstate_owner &rhs)
|
|
{
|
|
p_struct = (alglib_impl::hqrndstate*)alglib_impl::ae_malloc(sizeof(alglib_impl::hqrndstate), NULL);
|
|
if( p_struct==NULL )
|
|
throw ap_error("ALGLIB: malloc error");
|
|
if( !alglib_impl::_hqrndstate_init_copy(p_struct, const_cast<alglib_impl::hqrndstate*>(rhs.p_struct), NULL, ae_false) )
|
|
throw ap_error("ALGLIB: malloc error");
|
|
}
|
|
|
|
_hqrndstate_owner& _hqrndstate_owner::operator=(const _hqrndstate_owner &rhs)
|
|
{
|
|
if( this==&rhs )
|
|
return *this;
|
|
alglib_impl::_hqrndstate_clear(p_struct);
|
|
if( !alglib_impl::_hqrndstate_init_copy(p_struct, const_cast<alglib_impl::hqrndstate*>(rhs.p_struct), NULL, ae_false) )
|
|
throw ap_error("ALGLIB: malloc error");
|
|
return *this;
|
|
}
|
|
|
|
_hqrndstate_owner::~_hqrndstate_owner()
|
|
{
|
|
alglib_impl::_hqrndstate_clear(p_struct);
|
|
ae_free(p_struct);
|
|
}
|
|
|
|
alglib_impl::hqrndstate* _hqrndstate_owner::c_ptr()
|
|
{
|
|
return p_struct;
|
|
}
|
|
|
|
alglib_impl::hqrndstate* _hqrndstate_owner::c_ptr() const
|
|
{
|
|
return const_cast<alglib_impl::hqrndstate*>(p_struct);
|
|
}
|
|
hqrndstate::hqrndstate() : _hqrndstate_owner()
|
|
{
|
|
}
|
|
|
|
hqrndstate::hqrndstate(const hqrndstate &rhs):_hqrndstate_owner(rhs)
|
|
{
|
|
}
|
|
|
|
hqrndstate& hqrndstate::operator=(const hqrndstate &rhs)
|
|
{
|
|
if( this==&rhs )
|
|
return *this;
|
|
_hqrndstate_owner::operator=(rhs);
|
|
return *this;
|
|
}
|
|
|
|
hqrndstate::~hqrndstate()
|
|
{
|
|
}
|
|
|
|
/*************************************************************************
|
|
HQRNDState initialization with random values which come from standard
|
|
RNG.
|
|
|
|
-- ALGLIB --
|
|
Copyright 02.12.2009 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void hqrndrandomize(hqrndstate &state)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
alglib_impl::hqrndrandomize(const_cast<alglib_impl::hqrndstate*>(state.c_ptr()), &_alglib_env_state);
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return;
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
HQRNDState initialization with seed values
|
|
|
|
-- ALGLIB --
|
|
Copyright 02.12.2009 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void hqrndseed(const ae_int_t s1, const ae_int_t s2, hqrndstate &state)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
alglib_impl::hqrndseed(s1, s2, const_cast<alglib_impl::hqrndstate*>(state.c_ptr()), &_alglib_env_state);
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return;
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
This function generates random real number in (0,1),
|
|
not including interval boundaries
|
|
|
|
State structure must be initialized with HQRNDRandomize() or HQRNDSeed().
|
|
|
|
-- ALGLIB --
|
|
Copyright 02.12.2009 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
double hqrnduniformr(const hqrndstate &state)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
double result = alglib_impl::hqrnduniformr(const_cast<alglib_impl::hqrndstate*>(state.c_ptr()), &_alglib_env_state);
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return *(reinterpret_cast<double*>(&result));
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
This function generates random integer number in [0, N)
|
|
|
|
1. State structure must be initialized with HQRNDRandomize() or HQRNDSeed()
|
|
2. N can be any positive number except for very large numbers:
|
|
* close to 2^31 on 32-bit systems
|
|
* close to 2^62 on 64-bit systems
|
|
An exception will be generated if N is too large.
|
|
|
|
-- ALGLIB --
|
|
Copyright 02.12.2009 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
ae_int_t hqrnduniformi(const hqrndstate &state, const ae_int_t n)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
alglib_impl::ae_int_t result = alglib_impl::hqrnduniformi(const_cast<alglib_impl::hqrndstate*>(state.c_ptr()), n, &_alglib_env_state);
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return *(reinterpret_cast<ae_int_t*>(&result));
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
Random number generator: normal numbers
|
|
|
|
This function generates one random number from normal distribution.
|
|
Its performance is equal to that of HQRNDNormal2()
|
|
|
|
State structure must be initialized with HQRNDRandomize() or HQRNDSeed().
|
|
|
|
-- ALGLIB --
|
|
Copyright 02.12.2009 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
double hqrndnormal(const hqrndstate &state)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
double result = alglib_impl::hqrndnormal(const_cast<alglib_impl::hqrndstate*>(state.c_ptr()), &_alglib_env_state);
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return *(reinterpret_cast<double*>(&result));
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
Random number generator: random X and Y such that X^2+Y^2=1
|
|
|
|
State structure must be initialized with HQRNDRandomize() or HQRNDSeed().
|
|
|
|
-- ALGLIB --
|
|
Copyright 02.12.2009 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void hqrndunit2(const hqrndstate &state, double &x, double &y)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
alglib_impl::hqrndunit2(const_cast<alglib_impl::hqrndstate*>(state.c_ptr()), &x, &y, &_alglib_env_state);
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return;
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
Random number generator: normal numbers
|
|
|
|
This function generates two independent random numbers from normal
|
|
distribution. Its performance is equal to that of HQRNDNormal()
|
|
|
|
State structure must be initialized with HQRNDRandomize() or HQRNDSeed().
|
|
|
|
-- ALGLIB --
|
|
Copyright 02.12.2009 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void hqrndnormal2(const hqrndstate &state, double &x1, double &x2)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
alglib_impl::hqrndnormal2(const_cast<alglib_impl::hqrndstate*>(state.c_ptr()), &x1, &x2, &_alglib_env_state);
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return;
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
Random number generator: exponential distribution
|
|
|
|
State structure must be initialized with HQRNDRandomize() or HQRNDSeed().
|
|
|
|
-- ALGLIB --
|
|
Copyright 11.08.2007 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
double hqrndexponential(const hqrndstate &state, const double lambdav)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
double result = alglib_impl::hqrndexponential(const_cast<alglib_impl::hqrndstate*>(state.c_ptr()), lambdav, &_alglib_env_state);
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return *(reinterpret_cast<double*>(&result));
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
This function generates random number from discrete distribution given by
|
|
finite sample X.
|
|
|
|
INPUT PARAMETERS
|
|
State - high quality random number generator, must be
|
|
initialized with HQRNDRandomize() or HQRNDSeed().
|
|
X - finite sample
|
|
N - number of elements to use, N>=1
|
|
|
|
RESULT
|
|
this function returns one of the X[i] for random i=0..N-1
|
|
|
|
-- ALGLIB --
|
|
Copyright 08.11.2011 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
double hqrnddiscrete(const hqrndstate &state, const real_1d_array &x, const ae_int_t n)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
double result = alglib_impl::hqrnddiscrete(const_cast<alglib_impl::hqrndstate*>(state.c_ptr()), const_cast<alglib_impl::ae_vector*>(x.c_ptr()), n, &_alglib_env_state);
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return *(reinterpret_cast<double*>(&result));
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
This function generates random number from continuous distribution given
|
|
by finite sample X.
|
|
|
|
INPUT PARAMETERS
|
|
State - high quality random number generator, must be
|
|
initialized with HQRNDRandomize() or HQRNDSeed().
|
|
X - finite sample, array[N] (can be larger, in this case only
|
|
leading N elements are used). THIS ARRAY MUST BE SORTED BY
|
|
ASCENDING.
|
|
N - number of elements to use, N>=1
|
|
|
|
RESULT
|
|
this function returns random number from continuous distribution which
|
|
tries to approximate X as mush as possible. min(X)<=Result<=max(X).
|
|
|
|
-- ALGLIB --
|
|
Copyright 08.11.2011 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
double hqrndcontinuous(const hqrndstate &state, const real_1d_array &x, const ae_int_t n)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
double result = alglib_impl::hqrndcontinuous(const_cast<alglib_impl::hqrndstate*>(state.c_ptr()), const_cast<alglib_impl::ae_vector*>(x.c_ptr()), n, &_alglib_env_state);
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return *(reinterpret_cast<double*>(&result));
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
|
|
*************************************************************************/
|
|
_kdtree_owner::_kdtree_owner()
|
|
{
|
|
p_struct = (alglib_impl::kdtree*)alglib_impl::ae_malloc(sizeof(alglib_impl::kdtree), NULL);
|
|
if( p_struct==NULL )
|
|
throw ap_error("ALGLIB: malloc error");
|
|
if( !alglib_impl::_kdtree_init(p_struct, NULL, ae_false) )
|
|
throw ap_error("ALGLIB: malloc error");
|
|
}
|
|
|
|
_kdtree_owner::_kdtree_owner(const _kdtree_owner &rhs)
|
|
{
|
|
p_struct = (alglib_impl::kdtree*)alglib_impl::ae_malloc(sizeof(alglib_impl::kdtree), NULL);
|
|
if( p_struct==NULL )
|
|
throw ap_error("ALGLIB: malloc error");
|
|
if( !alglib_impl::_kdtree_init_copy(p_struct, const_cast<alglib_impl::kdtree*>(rhs.p_struct), NULL, ae_false) )
|
|
throw ap_error("ALGLIB: malloc error");
|
|
}
|
|
|
|
_kdtree_owner& _kdtree_owner::operator=(const _kdtree_owner &rhs)
|
|
{
|
|
if( this==&rhs )
|
|
return *this;
|
|
alglib_impl::_kdtree_clear(p_struct);
|
|
if( !alglib_impl::_kdtree_init_copy(p_struct, const_cast<alglib_impl::kdtree*>(rhs.p_struct), NULL, ae_false) )
|
|
throw ap_error("ALGLIB: malloc error");
|
|
return *this;
|
|
}
|
|
|
|
_kdtree_owner::~_kdtree_owner()
|
|
{
|
|
alglib_impl::_kdtree_clear(p_struct);
|
|
ae_free(p_struct);
|
|
}
|
|
|
|
alglib_impl::kdtree* _kdtree_owner::c_ptr()
|
|
{
|
|
return p_struct;
|
|
}
|
|
|
|
alglib_impl::kdtree* _kdtree_owner::c_ptr() const
|
|
{
|
|
return const_cast<alglib_impl::kdtree*>(p_struct);
|
|
}
|
|
kdtree::kdtree() : _kdtree_owner()
|
|
{
|
|
}
|
|
|
|
kdtree::kdtree(const kdtree &rhs):_kdtree_owner(rhs)
|
|
{
|
|
}
|
|
|
|
kdtree& kdtree::operator=(const kdtree &rhs)
|
|
{
|
|
if( this==&rhs )
|
|
return *this;
|
|
_kdtree_owner::operator=(rhs);
|
|
return *this;
|
|
}
|
|
|
|
kdtree::~kdtree()
|
|
{
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
This function serializes data structure to string.
|
|
|
|
Important properties of s_out:
|
|
* it contains alphanumeric characters, dots, underscores, minus signs
|
|
* these symbols are grouped into words, which are separated by spaces
|
|
and Windows-style (CR+LF) newlines
|
|
* although serializer uses spaces and CR+LF as separators, you can
|
|
replace any separator character by arbitrary combination of spaces,
|
|
tabs, Windows or Unix newlines. It allows flexible reformatting of
|
|
the string in case you want to include it into text or XML file.
|
|
But you should not insert separators into the middle of the "words"
|
|
nor you should change case of letters.
|
|
* s_out can be freely moved between 32-bit and 64-bit systems, little
|
|
and big endian machines, and so on. You can serialize structure on
|
|
32-bit machine and unserialize it on 64-bit one (or vice versa), or
|
|
serialize it on SPARC and unserialize on x86. You can also
|
|
serialize it in C++ version of ALGLIB and unserialize in C# one,
|
|
and vice versa.
|
|
*************************************************************************/
|
|
void kdtreeserialize(kdtree &obj, std::string &s_out)
|
|
{
|
|
alglib_impl::ae_state state;
|
|
alglib_impl::ae_serializer serializer;
|
|
alglib_impl::ae_int_t ssize;
|
|
|
|
alglib_impl::ae_state_init(&state);
|
|
try
|
|
{
|
|
alglib_impl::ae_serializer_init(&serializer);
|
|
alglib_impl::ae_serializer_alloc_start(&serializer);
|
|
alglib_impl::kdtreealloc(&serializer, obj.c_ptr(), &state);
|
|
ssize = alglib_impl::ae_serializer_get_alloc_size(&serializer);
|
|
s_out.clear();
|
|
s_out.reserve((size_t)(ssize+1));
|
|
alglib_impl::ae_serializer_sstart_str(&serializer, &s_out);
|
|
alglib_impl::kdtreeserialize(&serializer, obj.c_ptr(), &state);
|
|
alglib_impl::ae_serializer_stop(&serializer);
|
|
if( s_out.length()>(size_t)ssize )
|
|
throw ap_error("ALGLIB: serialization integrity error");
|
|
alglib_impl::ae_serializer_clear(&serializer);
|
|
alglib_impl::ae_state_clear(&state);
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(state.error_msg);
|
|
}
|
|
}
|
|
/*************************************************************************
|
|
This function unserializes data structure from string.
|
|
*************************************************************************/
|
|
void kdtreeunserialize(std::string &s_in, kdtree &obj)
|
|
{
|
|
alglib_impl::ae_state state;
|
|
alglib_impl::ae_serializer serializer;
|
|
|
|
alglib_impl::ae_state_init(&state);
|
|
try
|
|
{
|
|
alglib_impl::ae_serializer_init(&serializer);
|
|
alglib_impl::ae_serializer_ustart_str(&serializer, &s_in);
|
|
alglib_impl::kdtreeunserialize(&serializer, obj.c_ptr(), &state);
|
|
alglib_impl::ae_serializer_stop(&serializer);
|
|
alglib_impl::ae_serializer_clear(&serializer);
|
|
alglib_impl::ae_state_clear(&state);
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
KD-tree creation
|
|
|
|
This subroutine creates KD-tree from set of X-values and optional Y-values
|
|
|
|
INPUT PARAMETERS
|
|
XY - dataset, array[0..N-1,0..NX+NY-1].
|
|
one row corresponds to one point.
|
|
first NX columns contain X-values, next NY (NY may be zero)
|
|
columns may contain associated Y-values
|
|
N - number of points, N>=0.
|
|
NX - space dimension, NX>=1.
|
|
NY - number of optional Y-values, NY>=0.
|
|
NormType- norm type:
|
|
* 0 denotes infinity-norm
|
|
* 1 denotes 1-norm
|
|
* 2 denotes 2-norm (Euclidean norm)
|
|
|
|
OUTPUT PARAMETERS
|
|
KDT - KD-tree
|
|
|
|
|
|
NOTES
|
|
|
|
1. KD-tree creation have O(N*logN) complexity and O(N*(2*NX+NY)) memory
|
|
requirements.
|
|
2. Although KD-trees may be used with any combination of N and NX, they
|
|
are more efficient than brute-force search only when N >> 4^NX. So they
|
|
are most useful in low-dimensional tasks (NX=2, NX=3). NX=1 is another
|
|
inefficient case, because simple binary search (without additional
|
|
structures) is much more efficient in such tasks than KD-trees.
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreebuild(const real_2d_array &xy, const ae_int_t n, const ae_int_t nx, const ae_int_t ny, const ae_int_t normtype, kdtree &kdt)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
alglib_impl::kdtreebuild(const_cast<alglib_impl::ae_matrix*>(xy.c_ptr()), n, nx, ny, normtype, const_cast<alglib_impl::kdtree*>(kdt.c_ptr()), &_alglib_env_state);
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return;
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
KD-tree creation
|
|
|
|
This subroutine creates KD-tree from set of X-values and optional Y-values
|
|
|
|
INPUT PARAMETERS
|
|
XY - dataset, array[0..N-1,0..NX+NY-1].
|
|
one row corresponds to one point.
|
|
first NX columns contain X-values, next NY (NY may be zero)
|
|
columns may contain associated Y-values
|
|
N - number of points, N>=0.
|
|
NX - space dimension, NX>=1.
|
|
NY - number of optional Y-values, NY>=0.
|
|
NormType- norm type:
|
|
* 0 denotes infinity-norm
|
|
* 1 denotes 1-norm
|
|
* 2 denotes 2-norm (Euclidean norm)
|
|
|
|
OUTPUT PARAMETERS
|
|
KDT - KD-tree
|
|
|
|
|
|
NOTES
|
|
|
|
1. KD-tree creation have O(N*logN) complexity and O(N*(2*NX+NY)) memory
|
|
requirements.
|
|
2. Although KD-trees may be used with any combination of N and NX, they
|
|
are more efficient than brute-force search only when N >> 4^NX. So they
|
|
are most useful in low-dimensional tasks (NX=2, NX=3). NX=1 is another
|
|
inefficient case, because simple binary search (without additional
|
|
structures) is much more efficient in such tasks than KD-trees.
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreebuild(const real_2d_array &xy, const ae_int_t nx, const ae_int_t ny, const ae_int_t normtype, kdtree &kdt)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
ae_int_t n;
|
|
|
|
n = xy.rows();
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
alglib_impl::kdtreebuild(const_cast<alglib_impl::ae_matrix*>(xy.c_ptr()), n, nx, ny, normtype, const_cast<alglib_impl::kdtree*>(kdt.c_ptr()), &_alglib_env_state);
|
|
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return;
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
KD-tree creation
|
|
|
|
This subroutine creates KD-tree from set of X-values, integer tags and
|
|
optional Y-values
|
|
|
|
INPUT PARAMETERS
|
|
XY - dataset, array[0..N-1,0..NX+NY-1].
|
|
one row corresponds to one point.
|
|
first NX columns contain X-values, next NY (NY may be zero)
|
|
columns may contain associated Y-values
|
|
Tags - tags, array[0..N-1], contains integer tags associated
|
|
with points.
|
|
N - number of points, N>=0
|
|
NX - space dimension, NX>=1.
|
|
NY - number of optional Y-values, NY>=0.
|
|
NormType- norm type:
|
|
* 0 denotes infinity-norm
|
|
* 1 denotes 1-norm
|
|
* 2 denotes 2-norm (Euclidean norm)
|
|
|
|
OUTPUT PARAMETERS
|
|
KDT - KD-tree
|
|
|
|
NOTES
|
|
|
|
1. KD-tree creation have O(N*logN) complexity and O(N*(2*NX+NY)) memory
|
|
requirements.
|
|
2. Although KD-trees may be used with any combination of N and NX, they
|
|
are more efficient than brute-force search only when N >> 4^NX. So they
|
|
are most useful in low-dimensional tasks (NX=2, NX=3). NX=1 is another
|
|
inefficient case, because simple binary search (without additional
|
|
structures) is much more efficient in such tasks than KD-trees.
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreebuildtagged(const real_2d_array &xy, const integer_1d_array &tags, const ae_int_t n, const ae_int_t nx, const ae_int_t ny, const ae_int_t normtype, kdtree &kdt)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
alglib_impl::kdtreebuildtagged(const_cast<alglib_impl::ae_matrix*>(xy.c_ptr()), const_cast<alglib_impl::ae_vector*>(tags.c_ptr()), n, nx, ny, normtype, const_cast<alglib_impl::kdtree*>(kdt.c_ptr()), &_alglib_env_state);
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return;
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
KD-tree creation
|
|
|
|
This subroutine creates KD-tree from set of X-values, integer tags and
|
|
optional Y-values
|
|
|
|
INPUT PARAMETERS
|
|
XY - dataset, array[0..N-1,0..NX+NY-1].
|
|
one row corresponds to one point.
|
|
first NX columns contain X-values, next NY (NY may be zero)
|
|
columns may contain associated Y-values
|
|
Tags - tags, array[0..N-1], contains integer tags associated
|
|
with points.
|
|
N - number of points, N>=0
|
|
NX - space dimension, NX>=1.
|
|
NY - number of optional Y-values, NY>=0.
|
|
NormType- norm type:
|
|
* 0 denotes infinity-norm
|
|
* 1 denotes 1-norm
|
|
* 2 denotes 2-norm (Euclidean norm)
|
|
|
|
OUTPUT PARAMETERS
|
|
KDT - KD-tree
|
|
|
|
NOTES
|
|
|
|
1. KD-tree creation have O(N*logN) complexity and O(N*(2*NX+NY)) memory
|
|
requirements.
|
|
2. Although KD-trees may be used with any combination of N and NX, they
|
|
are more efficient than brute-force search only when N >> 4^NX. So they
|
|
are most useful in low-dimensional tasks (NX=2, NX=3). NX=1 is another
|
|
inefficient case, because simple binary search (without additional
|
|
structures) is much more efficient in such tasks than KD-trees.
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreebuildtagged(const real_2d_array &xy, const integer_1d_array &tags, const ae_int_t nx, const ae_int_t ny, const ae_int_t normtype, kdtree &kdt)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
ae_int_t n;
|
|
if( (xy.rows()!=tags.length()))
|
|
throw ap_error("Error while calling 'kdtreebuildtagged': looks like one of arguments has wrong size");
|
|
n = xy.rows();
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
alglib_impl::kdtreebuildtagged(const_cast<alglib_impl::ae_matrix*>(xy.c_ptr()), const_cast<alglib_impl::ae_vector*>(tags.c_ptr()), n, nx, ny, normtype, const_cast<alglib_impl::kdtree*>(kdt.c_ptr()), &_alglib_env_state);
|
|
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return;
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
K-NN query: K nearest neighbors
|
|
|
|
INPUT PARAMETERS
|
|
KDT - KD-tree
|
|
X - point, array[0..NX-1].
|
|
K - number of neighbors to return, K>=1
|
|
SelfMatch - whether self-matches are allowed:
|
|
* if True, nearest neighbor may be the point itself
|
|
(if it exists in original dataset)
|
|
* if False, then only points with non-zero distance
|
|
are returned
|
|
* if not given, considered True
|
|
|
|
RESULT
|
|
number of actual neighbors found (either K or N, if K>N).
|
|
|
|
This subroutine performs query and stores its result in the internal
|
|
structures of the KD-tree. You can use following subroutines to obtain
|
|
these results:
|
|
* KDTreeQueryResultsX() to get X-values
|
|
* KDTreeQueryResultsXY() to get X- and Y-values
|
|
* KDTreeQueryResultsTags() to get tag values
|
|
* KDTreeQueryResultsDistances() to get distances
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
ae_int_t kdtreequeryknn(const kdtree &kdt, const real_1d_array &x, const ae_int_t k, const bool selfmatch)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
alglib_impl::ae_int_t result = alglib_impl::kdtreequeryknn(const_cast<alglib_impl::kdtree*>(kdt.c_ptr()), const_cast<alglib_impl::ae_vector*>(x.c_ptr()), k, selfmatch, &_alglib_env_state);
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return *(reinterpret_cast<ae_int_t*>(&result));
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
K-NN query: K nearest neighbors
|
|
|
|
INPUT PARAMETERS
|
|
KDT - KD-tree
|
|
X - point, array[0..NX-1].
|
|
K - number of neighbors to return, K>=1
|
|
SelfMatch - whether self-matches are allowed:
|
|
* if True, nearest neighbor may be the point itself
|
|
(if it exists in original dataset)
|
|
* if False, then only points with non-zero distance
|
|
are returned
|
|
* if not given, considered True
|
|
|
|
RESULT
|
|
number of actual neighbors found (either K or N, if K>N).
|
|
|
|
This subroutine performs query and stores its result in the internal
|
|
structures of the KD-tree. You can use following subroutines to obtain
|
|
these results:
|
|
* KDTreeQueryResultsX() to get X-values
|
|
* KDTreeQueryResultsXY() to get X- and Y-values
|
|
* KDTreeQueryResultsTags() to get tag values
|
|
* KDTreeQueryResultsDistances() to get distances
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
ae_int_t kdtreequeryknn(const kdtree &kdt, const real_1d_array &x, const ae_int_t k)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
bool selfmatch;
|
|
|
|
selfmatch = true;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
alglib_impl::ae_int_t result = alglib_impl::kdtreequeryknn(const_cast<alglib_impl::kdtree*>(kdt.c_ptr()), const_cast<alglib_impl::ae_vector*>(x.c_ptr()), k, selfmatch, &_alglib_env_state);
|
|
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return *(reinterpret_cast<ae_int_t*>(&result));
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
R-NN query: all points within R-sphere centered at X
|
|
|
|
INPUT PARAMETERS
|
|
KDT - KD-tree
|
|
X - point, array[0..NX-1].
|
|
R - radius of sphere (in corresponding norm), R>0
|
|
SelfMatch - whether self-matches are allowed:
|
|
* if True, nearest neighbor may be the point itself
|
|
(if it exists in original dataset)
|
|
* if False, then only points with non-zero distance
|
|
are returned
|
|
* if not given, considered True
|
|
|
|
RESULT
|
|
number of neighbors found, >=0
|
|
|
|
This subroutine performs query and stores its result in the internal
|
|
structures of the KD-tree. You can use following subroutines to obtain
|
|
actual results:
|
|
* KDTreeQueryResultsX() to get X-values
|
|
* KDTreeQueryResultsXY() to get X- and Y-values
|
|
* KDTreeQueryResultsTags() to get tag values
|
|
* KDTreeQueryResultsDistances() to get distances
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
ae_int_t kdtreequeryrnn(const kdtree &kdt, const real_1d_array &x, const double r, const bool selfmatch)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
alglib_impl::ae_int_t result = alglib_impl::kdtreequeryrnn(const_cast<alglib_impl::kdtree*>(kdt.c_ptr()), const_cast<alglib_impl::ae_vector*>(x.c_ptr()), r, selfmatch, &_alglib_env_state);
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return *(reinterpret_cast<ae_int_t*>(&result));
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
R-NN query: all points within R-sphere centered at X
|
|
|
|
INPUT PARAMETERS
|
|
KDT - KD-tree
|
|
X - point, array[0..NX-1].
|
|
R - radius of sphere (in corresponding norm), R>0
|
|
SelfMatch - whether self-matches are allowed:
|
|
* if True, nearest neighbor may be the point itself
|
|
(if it exists in original dataset)
|
|
* if False, then only points with non-zero distance
|
|
are returned
|
|
* if not given, considered True
|
|
|
|
RESULT
|
|
number of neighbors found, >=0
|
|
|
|
This subroutine performs query and stores its result in the internal
|
|
structures of the KD-tree. You can use following subroutines to obtain
|
|
actual results:
|
|
* KDTreeQueryResultsX() to get X-values
|
|
* KDTreeQueryResultsXY() to get X- and Y-values
|
|
* KDTreeQueryResultsTags() to get tag values
|
|
* KDTreeQueryResultsDistances() to get distances
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
ae_int_t kdtreequeryrnn(const kdtree &kdt, const real_1d_array &x, const double r)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
bool selfmatch;
|
|
|
|
selfmatch = true;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
alglib_impl::ae_int_t result = alglib_impl::kdtreequeryrnn(const_cast<alglib_impl::kdtree*>(kdt.c_ptr()), const_cast<alglib_impl::ae_vector*>(x.c_ptr()), r, selfmatch, &_alglib_env_state);
|
|
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return *(reinterpret_cast<ae_int_t*>(&result));
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
K-NN query: approximate K nearest neighbors
|
|
|
|
INPUT PARAMETERS
|
|
KDT - KD-tree
|
|
X - point, array[0..NX-1].
|
|
K - number of neighbors to return, K>=1
|
|
SelfMatch - whether self-matches are allowed:
|
|
* if True, nearest neighbor may be the point itself
|
|
(if it exists in original dataset)
|
|
* if False, then only points with non-zero distance
|
|
are returned
|
|
* if not given, considered True
|
|
Eps - approximation factor, Eps>=0. eps-approximate nearest
|
|
neighbor is a neighbor whose distance from X is at
|
|
most (1+eps) times distance of true nearest neighbor.
|
|
|
|
RESULT
|
|
number of actual neighbors found (either K or N, if K>N).
|
|
|
|
NOTES
|
|
significant performance gain may be achieved only when Eps is is on
|
|
the order of magnitude of 1 or larger.
|
|
|
|
This subroutine performs query and stores its result in the internal
|
|
structures of the KD-tree. You can use following subroutines to obtain
|
|
these results:
|
|
* KDTreeQueryResultsX() to get X-values
|
|
* KDTreeQueryResultsXY() to get X- and Y-values
|
|
* KDTreeQueryResultsTags() to get tag values
|
|
* KDTreeQueryResultsDistances() to get distances
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
ae_int_t kdtreequeryaknn(const kdtree &kdt, const real_1d_array &x, const ae_int_t k, const bool selfmatch, const double eps)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
alglib_impl::ae_int_t result = alglib_impl::kdtreequeryaknn(const_cast<alglib_impl::kdtree*>(kdt.c_ptr()), const_cast<alglib_impl::ae_vector*>(x.c_ptr()), k, selfmatch, eps, &_alglib_env_state);
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return *(reinterpret_cast<ae_int_t*>(&result));
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
K-NN query: approximate K nearest neighbors
|
|
|
|
INPUT PARAMETERS
|
|
KDT - KD-tree
|
|
X - point, array[0..NX-1].
|
|
K - number of neighbors to return, K>=1
|
|
SelfMatch - whether self-matches are allowed:
|
|
* if True, nearest neighbor may be the point itself
|
|
(if it exists in original dataset)
|
|
* if False, then only points with non-zero distance
|
|
are returned
|
|
* if not given, considered True
|
|
Eps - approximation factor, Eps>=0. eps-approximate nearest
|
|
neighbor is a neighbor whose distance from X is at
|
|
most (1+eps) times distance of true nearest neighbor.
|
|
|
|
RESULT
|
|
number of actual neighbors found (either K or N, if K>N).
|
|
|
|
NOTES
|
|
significant performance gain may be achieved only when Eps is is on
|
|
the order of magnitude of 1 or larger.
|
|
|
|
This subroutine performs query and stores its result in the internal
|
|
structures of the KD-tree. You can use following subroutines to obtain
|
|
these results:
|
|
* KDTreeQueryResultsX() to get X-values
|
|
* KDTreeQueryResultsXY() to get X- and Y-values
|
|
* KDTreeQueryResultsTags() to get tag values
|
|
* KDTreeQueryResultsDistances() to get distances
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
ae_int_t kdtreequeryaknn(const kdtree &kdt, const real_1d_array &x, const ae_int_t k, const double eps)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
bool selfmatch;
|
|
|
|
selfmatch = true;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
alglib_impl::ae_int_t result = alglib_impl::kdtreequeryaknn(const_cast<alglib_impl::kdtree*>(kdt.c_ptr()), const_cast<alglib_impl::ae_vector*>(x.c_ptr()), k, selfmatch, eps, &_alglib_env_state);
|
|
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return *(reinterpret_cast<ae_int_t*>(&result));
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
X-values from last query
|
|
|
|
INPUT PARAMETERS
|
|
KDT - KD-tree
|
|
X - possibly pre-allocated buffer. If X is too small to store
|
|
result, it is resized. If size(X) is enough to store
|
|
result, it is left unchanged.
|
|
|
|
OUTPUT PARAMETERS
|
|
X - rows are filled with X-values
|
|
|
|
NOTES
|
|
1. points are ordered by distance from the query point (first = closest)
|
|
2. if XY is larger than required to store result, only leading part will
|
|
be overwritten; trailing part will be left unchanged. So if on input
|
|
XY = [[A,B],[C,D]], and result is [1,2], then on exit we will get
|
|
XY = [[1,2],[C,D]]. This is done purposely to increase performance; if
|
|
you want function to resize array according to result size, use
|
|
function with same name and suffix 'I'.
|
|
|
|
SEE ALSO
|
|
* KDTreeQueryResultsXY() X- and Y-values
|
|
* KDTreeQueryResultsTags() tag values
|
|
* KDTreeQueryResultsDistances() distances
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreequeryresultsx(const kdtree &kdt, real_2d_array &x)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
alglib_impl::kdtreequeryresultsx(const_cast<alglib_impl::kdtree*>(kdt.c_ptr()), const_cast<alglib_impl::ae_matrix*>(x.c_ptr()), &_alglib_env_state);
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return;
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
X- and Y-values from last query
|
|
|
|
INPUT PARAMETERS
|
|
KDT - KD-tree
|
|
XY - possibly pre-allocated buffer. If XY is too small to store
|
|
result, it is resized. If size(XY) is enough to store
|
|
result, it is left unchanged.
|
|
|
|
OUTPUT PARAMETERS
|
|
XY - rows are filled with points: first NX columns with
|
|
X-values, next NY columns - with Y-values.
|
|
|
|
NOTES
|
|
1. points are ordered by distance from the query point (first = closest)
|
|
2. if XY is larger than required to store result, only leading part will
|
|
be overwritten; trailing part will be left unchanged. So if on input
|
|
XY = [[A,B],[C,D]], and result is [1,2], then on exit we will get
|
|
XY = [[1,2],[C,D]]. This is done purposely to increase performance; if
|
|
you want function to resize array according to result size, use
|
|
function with same name and suffix 'I'.
|
|
|
|
SEE ALSO
|
|
* KDTreeQueryResultsX() X-values
|
|
* KDTreeQueryResultsTags() tag values
|
|
* KDTreeQueryResultsDistances() distances
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreequeryresultsxy(const kdtree &kdt, real_2d_array &xy)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
alglib_impl::kdtreequeryresultsxy(const_cast<alglib_impl::kdtree*>(kdt.c_ptr()), const_cast<alglib_impl::ae_matrix*>(xy.c_ptr()), &_alglib_env_state);
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return;
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
Tags from last query
|
|
|
|
INPUT PARAMETERS
|
|
KDT - KD-tree
|
|
Tags - possibly pre-allocated buffer. If X is too small to store
|
|
result, it is resized. If size(X) is enough to store
|
|
result, it is left unchanged.
|
|
|
|
OUTPUT PARAMETERS
|
|
Tags - filled with tags associated with points,
|
|
or, when no tags were supplied, with zeros
|
|
|
|
NOTES
|
|
1. points are ordered by distance from the query point (first = closest)
|
|
2. if XY is larger than required to store result, only leading part will
|
|
be overwritten; trailing part will be left unchanged. So if on input
|
|
XY = [[A,B],[C,D]], and result is [1,2], then on exit we will get
|
|
XY = [[1,2],[C,D]]. This is done purposely to increase performance; if
|
|
you want function to resize array according to result size, use
|
|
function with same name and suffix 'I'.
|
|
|
|
SEE ALSO
|
|
* KDTreeQueryResultsX() X-values
|
|
* KDTreeQueryResultsXY() X- and Y-values
|
|
* KDTreeQueryResultsDistances() distances
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreequeryresultstags(const kdtree &kdt, integer_1d_array &tags)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
alglib_impl::kdtreequeryresultstags(const_cast<alglib_impl::kdtree*>(kdt.c_ptr()), const_cast<alglib_impl::ae_vector*>(tags.c_ptr()), &_alglib_env_state);
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return;
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
Distances from last query
|
|
|
|
INPUT PARAMETERS
|
|
KDT - KD-tree
|
|
R - possibly pre-allocated buffer. If X is too small to store
|
|
result, it is resized. If size(X) is enough to store
|
|
result, it is left unchanged.
|
|
|
|
OUTPUT PARAMETERS
|
|
R - filled with distances (in corresponding norm)
|
|
|
|
NOTES
|
|
1. points are ordered by distance from the query point (first = closest)
|
|
2. if XY is larger than required to store result, only leading part will
|
|
be overwritten; trailing part will be left unchanged. So if on input
|
|
XY = [[A,B],[C,D]], and result is [1,2], then on exit we will get
|
|
XY = [[1,2],[C,D]]. This is done purposely to increase performance; if
|
|
you want function to resize array according to result size, use
|
|
function with same name and suffix 'I'.
|
|
|
|
SEE ALSO
|
|
* KDTreeQueryResultsX() X-values
|
|
* KDTreeQueryResultsXY() X- and Y-values
|
|
* KDTreeQueryResultsTags() tag values
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreequeryresultsdistances(const kdtree &kdt, real_1d_array &r)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
alglib_impl::kdtreequeryresultsdistances(const_cast<alglib_impl::kdtree*>(kdt.c_ptr()), const_cast<alglib_impl::ae_vector*>(r.c_ptr()), &_alglib_env_state);
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return;
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
X-values from last query; 'interactive' variant for languages like Python
|
|
which support constructs like "X = KDTreeQueryResultsXI(KDT)" and
|
|
interactive mode of interpreter.
|
|
|
|
This function allocates new array on each call, so it is significantly
|
|
slower than its 'non-interactive' counterpart, but it is more convenient
|
|
when you call it from command line.
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreequeryresultsxi(const kdtree &kdt, real_2d_array &x)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
alglib_impl::kdtreequeryresultsxi(const_cast<alglib_impl::kdtree*>(kdt.c_ptr()), const_cast<alglib_impl::ae_matrix*>(x.c_ptr()), &_alglib_env_state);
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return;
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
XY-values from last query; 'interactive' variant for languages like Python
|
|
which support constructs like "XY = KDTreeQueryResultsXYI(KDT)" and
|
|
interactive mode of interpreter.
|
|
|
|
This function allocates new array on each call, so it is significantly
|
|
slower than its 'non-interactive' counterpart, but it is more convenient
|
|
when you call it from command line.
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreequeryresultsxyi(const kdtree &kdt, real_2d_array &xy)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
alglib_impl::kdtreequeryresultsxyi(const_cast<alglib_impl::kdtree*>(kdt.c_ptr()), const_cast<alglib_impl::ae_matrix*>(xy.c_ptr()), &_alglib_env_state);
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return;
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
Tags from last query; 'interactive' variant for languages like Python
|
|
which support constructs like "Tags = KDTreeQueryResultsTagsI(KDT)" and
|
|
interactive mode of interpreter.
|
|
|
|
This function allocates new array on each call, so it is significantly
|
|
slower than its 'non-interactive' counterpart, but it is more convenient
|
|
when you call it from command line.
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreequeryresultstagsi(const kdtree &kdt, integer_1d_array &tags)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
alglib_impl::kdtreequeryresultstagsi(const_cast<alglib_impl::kdtree*>(kdt.c_ptr()), const_cast<alglib_impl::ae_vector*>(tags.c_ptr()), &_alglib_env_state);
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return;
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
|
|
/*************************************************************************
|
|
Distances from last query; 'interactive' variant for languages like Python
|
|
which support constructs like "R = KDTreeQueryResultsDistancesI(KDT)"
|
|
and interactive mode of interpreter.
|
|
|
|
This function allocates new array on each call, so it is significantly
|
|
slower than its 'non-interactive' counterpart, but it is more convenient
|
|
when you call it from command line.
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreequeryresultsdistancesi(const kdtree &kdt, real_1d_array &r)
|
|
{
|
|
alglib_impl::ae_state _alglib_env_state;
|
|
alglib_impl::ae_state_init(&_alglib_env_state);
|
|
try
|
|
{
|
|
alglib_impl::kdtreequeryresultsdistancesi(const_cast<alglib_impl::kdtree*>(kdt.c_ptr()), const_cast<alglib_impl::ae_vector*>(r.c_ptr()), &_alglib_env_state);
|
|
alglib_impl::ae_state_clear(&_alglib_env_state);
|
|
return;
|
|
}
|
|
catch(alglib_impl::ae_error_type)
|
|
{
|
|
throw ap_error(_alglib_env_state.error_msg);
|
|
}
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// THIS SECTION CONTAINS IMPLEMENTATION OF COMPUTATIONAL CORE
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////
|
|
namespace alglib_impl
|
|
{
|
|
static ae_int_t hqrnd_hqrndmax = 2147483561;
|
|
static ae_int_t hqrnd_hqrndm1 = 2147483563;
|
|
static ae_int_t hqrnd_hqrndm2 = 2147483399;
|
|
static ae_int_t hqrnd_hqrndmagic = 1634357784;
|
|
static ae_int_t hqrnd_hqrndintegerbase(hqrndstate* state,
|
|
ae_state *_state);
|
|
|
|
|
|
static ae_int_t nearestneighbor_splitnodesize = 6;
|
|
static ae_int_t nearestneighbor_kdtreefirstversion = 0;
|
|
static void nearestneighbor_kdtreesplit(kdtree* kdt,
|
|
ae_int_t i1,
|
|
ae_int_t i2,
|
|
ae_int_t d,
|
|
double s,
|
|
ae_int_t* i3,
|
|
ae_state *_state);
|
|
static void nearestneighbor_kdtreegeneratetreerec(kdtree* kdt,
|
|
ae_int_t* nodesoffs,
|
|
ae_int_t* splitsoffs,
|
|
ae_int_t i1,
|
|
ae_int_t i2,
|
|
ae_int_t maxleafsize,
|
|
ae_state *_state);
|
|
static void nearestneighbor_kdtreequerynnrec(kdtree* kdt,
|
|
ae_int_t offs,
|
|
ae_state *_state);
|
|
static void nearestneighbor_kdtreeinitbox(kdtree* kdt,
|
|
/* Real */ ae_vector* x,
|
|
ae_state *_state);
|
|
static void nearestneighbor_kdtreeallocdatasetindependent(kdtree* kdt,
|
|
ae_int_t nx,
|
|
ae_int_t ny,
|
|
ae_state *_state);
|
|
static void nearestneighbor_kdtreeallocdatasetdependent(kdtree* kdt,
|
|
ae_int_t n,
|
|
ae_int_t nx,
|
|
ae_int_t ny,
|
|
ae_state *_state);
|
|
static void nearestneighbor_kdtreealloctemporaries(kdtree* kdt,
|
|
ae_int_t n,
|
|
ae_int_t nx,
|
|
ae_int_t ny,
|
|
ae_state *_state);
|
|
|
|
|
|
|
|
|
|
|
|
/*************************************************************************
|
|
HQRNDState initialization with random values which come from standard
|
|
RNG.
|
|
|
|
-- ALGLIB --
|
|
Copyright 02.12.2009 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void hqrndrandomize(hqrndstate* state, ae_state *_state)
|
|
{
|
|
ae_int_t s0;
|
|
ae_int_t s1;
|
|
|
|
_hqrndstate_clear(state);
|
|
|
|
s0 = ae_randominteger(hqrnd_hqrndm1, _state);
|
|
s1 = ae_randominteger(hqrnd_hqrndm2, _state);
|
|
hqrndseed(s0, s1, state, _state);
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
HQRNDState initialization with seed values
|
|
|
|
-- ALGLIB --
|
|
Copyright 02.12.2009 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void hqrndseed(ae_int_t s1,
|
|
ae_int_t s2,
|
|
hqrndstate* state,
|
|
ae_state *_state)
|
|
{
|
|
|
|
_hqrndstate_clear(state);
|
|
|
|
|
|
/*
|
|
* Protection against negative seeds:
|
|
*
|
|
* SEED := -(SEED+1)
|
|
*
|
|
* We can use just "-SEED" because there exists such integer number N
|
|
* that N<0, -N=N<0 too. (This number is equal to 0x800...000). Need
|
|
* to handle such seed correctly forces us to use a bit complicated
|
|
* formula.
|
|
*/
|
|
if( s1<0 )
|
|
{
|
|
s1 = -(s1+1);
|
|
}
|
|
if( s2<0 )
|
|
{
|
|
s2 = -(s2+1);
|
|
}
|
|
state->s1 = s1%(hqrnd_hqrndm1-1)+1;
|
|
state->s2 = s2%(hqrnd_hqrndm2-1)+1;
|
|
state->magicv = hqrnd_hqrndmagic;
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
This function generates random real number in (0,1),
|
|
not including interval boundaries
|
|
|
|
State structure must be initialized with HQRNDRandomize() or HQRNDSeed().
|
|
|
|
-- ALGLIB --
|
|
Copyright 02.12.2009 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
double hqrnduniformr(hqrndstate* state, ae_state *_state)
|
|
{
|
|
double result;
|
|
|
|
|
|
result = (double)(hqrnd_hqrndintegerbase(state, _state)+1)/(double)(hqrnd_hqrndmax+2);
|
|
return result;
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
This function generates random integer number in [0, N)
|
|
|
|
1. State structure must be initialized with HQRNDRandomize() or HQRNDSeed()
|
|
2. N can be any positive number except for very large numbers:
|
|
* close to 2^31 on 32-bit systems
|
|
* close to 2^62 on 64-bit systems
|
|
An exception will be generated if N is too large.
|
|
|
|
-- ALGLIB --
|
|
Copyright 02.12.2009 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
ae_int_t hqrnduniformi(hqrndstate* state, ae_int_t n, ae_state *_state)
|
|
{
|
|
ae_int_t maxcnt;
|
|
ae_int_t mx;
|
|
ae_int_t a;
|
|
ae_int_t b;
|
|
ae_int_t result;
|
|
|
|
|
|
ae_assert(n>0, "HQRNDUniformI: N<=0!", _state);
|
|
maxcnt = hqrnd_hqrndmax+1;
|
|
|
|
/*
|
|
* Two branches: one for N<=MaxCnt, another for N>MaxCnt.
|
|
*/
|
|
if( n>maxcnt )
|
|
{
|
|
|
|
/*
|
|
* N>=MaxCnt.
|
|
*
|
|
* We have two options here:
|
|
* a) N is exactly divisible by MaxCnt
|
|
* b) N is not divisible by MaxCnt
|
|
*
|
|
* In both cases we reduce problem on interval spanning [0,N)
|
|
* to several subproblems on intervals spanning [0,MaxCnt).
|
|
*/
|
|
if( n%maxcnt==0 )
|
|
{
|
|
|
|
/*
|
|
* N is exactly divisible by MaxCnt.
|
|
*
|
|
* [0,N) range is dividided into N/MaxCnt bins,
|
|
* each of them having length equal to MaxCnt.
|
|
*
|
|
* We generate:
|
|
* * random bin number B
|
|
* * random offset within bin A
|
|
* Both random numbers are generated by recursively
|
|
* calling HQRNDUniformI().
|
|
*
|
|
* Result is equal to A+MaxCnt*B.
|
|
*/
|
|
ae_assert(n/maxcnt<=maxcnt, "HQRNDUniformI: N is too large", _state);
|
|
a = hqrnduniformi(state, maxcnt, _state);
|
|
b = hqrnduniformi(state, n/maxcnt, _state);
|
|
result = a+maxcnt*b;
|
|
}
|
|
else
|
|
{
|
|
|
|
/*
|
|
* N is NOT exactly divisible by MaxCnt.
|
|
*
|
|
* [0,N) range is dividided into Ceil(N/MaxCnt) bins,
|
|
* each of them having length equal to MaxCnt.
|
|
*
|
|
* We generate:
|
|
* * random bin number B in [0, Ceil(N/MaxCnt)-1]
|
|
* * random offset within bin A
|
|
* * if both of what is below is true
|
|
* 1) bin number B is that of the last bin
|
|
* 2) A >= N mod MaxCnt
|
|
* then we repeat generation of A/B.
|
|
* This stage is essential in order to avoid bias in the result.
|
|
* * otherwise, we return A*MaxCnt+N
|
|
*/
|
|
ae_assert(n/maxcnt+1<=maxcnt, "HQRNDUniformI: N is too large", _state);
|
|
result = -1;
|
|
do
|
|
{
|
|
a = hqrnduniformi(state, maxcnt, _state);
|
|
b = hqrnduniformi(state, n/maxcnt+1, _state);
|
|
if( b==n/maxcnt&&a>=n%maxcnt )
|
|
{
|
|
continue;
|
|
}
|
|
result = a+maxcnt*b;
|
|
}
|
|
while(result<0);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
|
|
/*
|
|
* N<=MaxCnt
|
|
*
|
|
* Code below is a bit complicated because we can not simply
|
|
* return "HQRNDIntegerBase() mod N" - it will be skewed for
|
|
* large N's in [0.1*HQRNDMax...HQRNDMax].
|
|
*/
|
|
mx = maxcnt-maxcnt%n;
|
|
do
|
|
{
|
|
result = hqrnd_hqrndintegerbase(state, _state);
|
|
}
|
|
while(result>=mx);
|
|
result = result%n;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
Random number generator: normal numbers
|
|
|
|
This function generates one random number from normal distribution.
|
|
Its performance is equal to that of HQRNDNormal2()
|
|
|
|
State structure must be initialized with HQRNDRandomize() or HQRNDSeed().
|
|
|
|
-- ALGLIB --
|
|
Copyright 02.12.2009 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
double hqrndnormal(hqrndstate* state, ae_state *_state)
|
|
{
|
|
double v1;
|
|
double v2;
|
|
double result;
|
|
|
|
|
|
hqrndnormal2(state, &v1, &v2, _state);
|
|
result = v1;
|
|
return result;
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
Random number generator: random X and Y such that X^2+Y^2=1
|
|
|
|
State structure must be initialized with HQRNDRandomize() or HQRNDSeed().
|
|
|
|
-- ALGLIB --
|
|
Copyright 02.12.2009 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void hqrndunit2(hqrndstate* state, double* x, double* y, ae_state *_state)
|
|
{
|
|
double v;
|
|
double mx;
|
|
double mn;
|
|
|
|
*x = 0;
|
|
*y = 0;
|
|
|
|
do
|
|
{
|
|
hqrndnormal2(state, x, y, _state);
|
|
}
|
|
while(!(ae_fp_neq(*x,0)||ae_fp_neq(*y,0)));
|
|
mx = ae_maxreal(ae_fabs(*x, _state), ae_fabs(*y, _state), _state);
|
|
mn = ae_minreal(ae_fabs(*x, _state), ae_fabs(*y, _state), _state);
|
|
v = mx*ae_sqrt(1+ae_sqr(mn/mx, _state), _state);
|
|
*x = *x/v;
|
|
*y = *y/v;
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
Random number generator: normal numbers
|
|
|
|
This function generates two independent random numbers from normal
|
|
distribution. Its performance is equal to that of HQRNDNormal()
|
|
|
|
State structure must be initialized with HQRNDRandomize() or HQRNDSeed().
|
|
|
|
-- ALGLIB --
|
|
Copyright 02.12.2009 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void hqrndnormal2(hqrndstate* state,
|
|
double* x1,
|
|
double* x2,
|
|
ae_state *_state)
|
|
{
|
|
double u;
|
|
double v;
|
|
double s;
|
|
|
|
*x1 = 0;
|
|
*x2 = 0;
|
|
|
|
for(;;)
|
|
{
|
|
u = 2*hqrnduniformr(state, _state)-1;
|
|
v = 2*hqrnduniformr(state, _state)-1;
|
|
s = ae_sqr(u, _state)+ae_sqr(v, _state);
|
|
if( ae_fp_greater(s,0)&&ae_fp_less(s,1) )
|
|
{
|
|
|
|
/*
|
|
* two Sqrt's instead of one to
|
|
* avoid overflow when S is too small
|
|
*/
|
|
s = ae_sqrt(-2*ae_log(s, _state), _state)/ae_sqrt(s, _state);
|
|
*x1 = u*s;
|
|
*x2 = v*s;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
Random number generator: exponential distribution
|
|
|
|
State structure must be initialized with HQRNDRandomize() or HQRNDSeed().
|
|
|
|
-- ALGLIB --
|
|
Copyright 11.08.2007 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
double hqrndexponential(hqrndstate* state,
|
|
double lambdav,
|
|
ae_state *_state)
|
|
{
|
|
double result;
|
|
|
|
|
|
ae_assert(ae_fp_greater(lambdav,0), "HQRNDExponential: LambdaV<=0!", _state);
|
|
result = -ae_log(hqrnduniformr(state, _state), _state)/lambdav;
|
|
return result;
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
This function generates random number from discrete distribution given by
|
|
finite sample X.
|
|
|
|
INPUT PARAMETERS
|
|
State - high quality random number generator, must be
|
|
initialized with HQRNDRandomize() or HQRNDSeed().
|
|
X - finite sample
|
|
N - number of elements to use, N>=1
|
|
|
|
RESULT
|
|
this function returns one of the X[i] for random i=0..N-1
|
|
|
|
-- ALGLIB --
|
|
Copyright 08.11.2011 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
double hqrnddiscrete(hqrndstate* state,
|
|
/* Real */ ae_vector* x,
|
|
ae_int_t n,
|
|
ae_state *_state)
|
|
{
|
|
double result;
|
|
|
|
|
|
ae_assert(n>0, "HQRNDDiscrete: N<=0", _state);
|
|
ae_assert(n<=x->cnt, "HQRNDDiscrete: Length(X)<N", _state);
|
|
result = x->ptr.p_double[hqrnduniformi(state, n, _state)];
|
|
return result;
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
This function generates random number from continuous distribution given
|
|
by finite sample X.
|
|
|
|
INPUT PARAMETERS
|
|
State - high quality random number generator, must be
|
|
initialized with HQRNDRandomize() or HQRNDSeed().
|
|
X - finite sample, array[N] (can be larger, in this case only
|
|
leading N elements are used). THIS ARRAY MUST BE SORTED BY
|
|
ASCENDING.
|
|
N - number of elements to use, N>=1
|
|
|
|
RESULT
|
|
this function returns random number from continuous distribution which
|
|
tries to approximate X as mush as possible. min(X)<=Result<=max(X).
|
|
|
|
-- ALGLIB --
|
|
Copyright 08.11.2011 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
double hqrndcontinuous(hqrndstate* state,
|
|
/* Real */ ae_vector* x,
|
|
ae_int_t n,
|
|
ae_state *_state)
|
|
{
|
|
double mx;
|
|
double mn;
|
|
ae_int_t i;
|
|
double result;
|
|
|
|
|
|
ae_assert(n>0, "HQRNDContinuous: N<=0", _state);
|
|
ae_assert(n<=x->cnt, "HQRNDContinuous: Length(X)<N", _state);
|
|
if( n==1 )
|
|
{
|
|
result = x->ptr.p_double[0];
|
|
return result;
|
|
}
|
|
i = hqrnduniformi(state, n-1, _state);
|
|
mn = x->ptr.p_double[i];
|
|
mx = x->ptr.p_double[i+1];
|
|
ae_assert(ae_fp_greater_eq(mx,mn), "HQRNDDiscrete: X is not sorted by ascending", _state);
|
|
if( ae_fp_neq(mx,mn) )
|
|
{
|
|
result = (mx-mn)*hqrnduniformr(state, _state)+mn;
|
|
}
|
|
else
|
|
{
|
|
result = mn;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
This function returns random integer in [0,HQRNDMax]
|
|
|
|
L'Ecuyer, Efficient and portable combined random number generators
|
|
*************************************************************************/
|
|
static ae_int_t hqrnd_hqrndintegerbase(hqrndstate* state,
|
|
ae_state *_state)
|
|
{
|
|
ae_int_t k;
|
|
ae_int_t result;
|
|
|
|
|
|
ae_assert(state->magicv==hqrnd_hqrndmagic, "HQRNDIntegerBase: State is not correctly initialized!", _state);
|
|
k = state->s1/53668;
|
|
state->s1 = 40014*(state->s1-k*53668)-k*12211;
|
|
if( state->s1<0 )
|
|
{
|
|
state->s1 = state->s1+2147483563;
|
|
}
|
|
k = state->s2/52774;
|
|
state->s2 = 40692*(state->s2-k*52774)-k*3791;
|
|
if( state->s2<0 )
|
|
{
|
|
state->s2 = state->s2+2147483399;
|
|
}
|
|
|
|
/*
|
|
* Result
|
|
*/
|
|
result = state->s1-state->s2;
|
|
if( result<1 )
|
|
{
|
|
result = result+2147483562;
|
|
}
|
|
result = result-1;
|
|
return result;
|
|
}
|
|
|
|
|
|
ae_bool _hqrndstate_init(void* _p, ae_state *_state, ae_bool make_automatic)
|
|
{
|
|
hqrndstate *p = (hqrndstate*)_p;
|
|
ae_touch_ptr((void*)p);
|
|
return ae_true;
|
|
}
|
|
|
|
|
|
ae_bool _hqrndstate_init_copy(void* _dst, void* _src, ae_state *_state, ae_bool make_automatic)
|
|
{
|
|
hqrndstate *dst = (hqrndstate*)_dst;
|
|
hqrndstate *src = (hqrndstate*)_src;
|
|
dst->s1 = src->s1;
|
|
dst->s2 = src->s2;
|
|
dst->magicv = src->magicv;
|
|
return ae_true;
|
|
}
|
|
|
|
|
|
void _hqrndstate_clear(void* _p)
|
|
{
|
|
hqrndstate *p = (hqrndstate*)_p;
|
|
ae_touch_ptr((void*)p);
|
|
}
|
|
|
|
|
|
void _hqrndstate_destroy(void* _p)
|
|
{
|
|
hqrndstate *p = (hqrndstate*)_p;
|
|
ae_touch_ptr((void*)p);
|
|
}
|
|
|
|
|
|
|
|
|
|
/*************************************************************************
|
|
KD-tree creation
|
|
|
|
This subroutine creates KD-tree from set of X-values and optional Y-values
|
|
|
|
INPUT PARAMETERS
|
|
XY - dataset, array[0..N-1,0..NX+NY-1].
|
|
one row corresponds to one point.
|
|
first NX columns contain X-values, next NY (NY may be zero)
|
|
columns may contain associated Y-values
|
|
N - number of points, N>=0.
|
|
NX - space dimension, NX>=1.
|
|
NY - number of optional Y-values, NY>=0.
|
|
NormType- norm type:
|
|
* 0 denotes infinity-norm
|
|
* 1 denotes 1-norm
|
|
* 2 denotes 2-norm (Euclidean norm)
|
|
|
|
OUTPUT PARAMETERS
|
|
KDT - KD-tree
|
|
|
|
|
|
NOTES
|
|
|
|
1. KD-tree creation have O(N*logN) complexity and O(N*(2*NX+NY)) memory
|
|
requirements.
|
|
2. Although KD-trees may be used with any combination of N and NX, they
|
|
are more efficient than brute-force search only when N >> 4^NX. So they
|
|
are most useful in low-dimensional tasks (NX=2, NX=3). NX=1 is another
|
|
inefficient case, because simple binary search (without additional
|
|
structures) is much more efficient in such tasks than KD-trees.
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreebuild(/* Real */ ae_matrix* xy,
|
|
ae_int_t n,
|
|
ae_int_t nx,
|
|
ae_int_t ny,
|
|
ae_int_t normtype,
|
|
kdtree* kdt,
|
|
ae_state *_state)
|
|
{
|
|
ae_frame _frame_block;
|
|
ae_vector tags;
|
|
ae_int_t i;
|
|
|
|
ae_frame_make(_state, &_frame_block);
|
|
_kdtree_clear(kdt);
|
|
ae_vector_init(&tags, 0, DT_INT, _state, ae_true);
|
|
|
|
ae_assert(n>=0, "KDTreeBuild: N<0", _state);
|
|
ae_assert(nx>=1, "KDTreeBuild: NX<1", _state);
|
|
ae_assert(ny>=0, "KDTreeBuild: NY<0", _state);
|
|
ae_assert(normtype>=0&&normtype<=2, "KDTreeBuild: incorrect NormType", _state);
|
|
ae_assert(xy->rows>=n, "KDTreeBuild: rows(X)<N", _state);
|
|
ae_assert(xy->cols>=nx+ny||n==0, "KDTreeBuild: cols(X)<NX+NY", _state);
|
|
ae_assert(apservisfinitematrix(xy, n, nx+ny, _state), "KDTreeBuild: XY contains infinite or NaN values", _state);
|
|
if( n>0 )
|
|
{
|
|
ae_vector_set_length(&tags, n, _state);
|
|
for(i=0; i<=n-1; i++)
|
|
{
|
|
tags.ptr.p_int[i] = 0;
|
|
}
|
|
}
|
|
kdtreebuildtagged(xy, &tags, n, nx, ny, normtype, kdt, _state);
|
|
ae_frame_leave(_state);
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
KD-tree creation
|
|
|
|
This subroutine creates KD-tree from set of X-values, integer tags and
|
|
optional Y-values
|
|
|
|
INPUT PARAMETERS
|
|
XY - dataset, array[0..N-1,0..NX+NY-1].
|
|
one row corresponds to one point.
|
|
first NX columns contain X-values, next NY (NY may be zero)
|
|
columns may contain associated Y-values
|
|
Tags - tags, array[0..N-1], contains integer tags associated
|
|
with points.
|
|
N - number of points, N>=0
|
|
NX - space dimension, NX>=1.
|
|
NY - number of optional Y-values, NY>=0.
|
|
NormType- norm type:
|
|
* 0 denotes infinity-norm
|
|
* 1 denotes 1-norm
|
|
* 2 denotes 2-norm (Euclidean norm)
|
|
|
|
OUTPUT PARAMETERS
|
|
KDT - KD-tree
|
|
|
|
NOTES
|
|
|
|
1. KD-tree creation have O(N*logN) complexity and O(N*(2*NX+NY)) memory
|
|
requirements.
|
|
2. Although KD-trees may be used with any combination of N and NX, they
|
|
are more efficient than brute-force search only when N >> 4^NX. So they
|
|
are most useful in low-dimensional tasks (NX=2, NX=3). NX=1 is another
|
|
inefficient case, because simple binary search (without additional
|
|
structures) is much more efficient in such tasks than KD-trees.
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreebuildtagged(/* Real */ ae_matrix* xy,
|
|
/* Integer */ ae_vector* tags,
|
|
ae_int_t n,
|
|
ae_int_t nx,
|
|
ae_int_t ny,
|
|
ae_int_t normtype,
|
|
kdtree* kdt,
|
|
ae_state *_state)
|
|
{
|
|
ae_int_t i;
|
|
ae_int_t j;
|
|
ae_int_t maxnodes;
|
|
ae_int_t nodesoffs;
|
|
ae_int_t splitsoffs;
|
|
|
|
_kdtree_clear(kdt);
|
|
|
|
ae_assert(n>=0, "KDTreeBuildTagged: N<0", _state);
|
|
ae_assert(nx>=1, "KDTreeBuildTagged: NX<1", _state);
|
|
ae_assert(ny>=0, "KDTreeBuildTagged: NY<0", _state);
|
|
ae_assert(normtype>=0&&normtype<=2, "KDTreeBuildTagged: incorrect NormType", _state);
|
|
ae_assert(xy->rows>=n, "KDTreeBuildTagged: rows(X)<N", _state);
|
|
ae_assert(xy->cols>=nx+ny||n==0, "KDTreeBuildTagged: cols(X)<NX+NY", _state);
|
|
ae_assert(apservisfinitematrix(xy, n, nx+ny, _state), "KDTreeBuildTagged: XY contains infinite or NaN values", _state);
|
|
|
|
/*
|
|
* initialize
|
|
*/
|
|
kdt->n = n;
|
|
kdt->nx = nx;
|
|
kdt->ny = ny;
|
|
kdt->normtype = normtype;
|
|
kdt->kcur = 0;
|
|
|
|
/*
|
|
* N=0 => quick exit
|
|
*/
|
|
if( n==0 )
|
|
{
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Allocate
|
|
*/
|
|
nearestneighbor_kdtreeallocdatasetindependent(kdt, nx, ny, _state);
|
|
nearestneighbor_kdtreeallocdatasetdependent(kdt, n, nx, ny, _state);
|
|
|
|
/*
|
|
* Initial fill
|
|
*/
|
|
for(i=0; i<=n-1; i++)
|
|
{
|
|
ae_v_move(&kdt->xy.ptr.pp_double[i][0], 1, &xy->ptr.pp_double[i][0], 1, ae_v_len(0,nx-1));
|
|
ae_v_move(&kdt->xy.ptr.pp_double[i][nx], 1, &xy->ptr.pp_double[i][0], 1, ae_v_len(nx,2*nx+ny-1));
|
|
kdt->tags.ptr.p_int[i] = tags->ptr.p_int[i];
|
|
}
|
|
|
|
/*
|
|
* Determine bounding box
|
|
*/
|
|
ae_v_move(&kdt->boxmin.ptr.p_double[0], 1, &kdt->xy.ptr.pp_double[0][0], 1, ae_v_len(0,nx-1));
|
|
ae_v_move(&kdt->boxmax.ptr.p_double[0], 1, &kdt->xy.ptr.pp_double[0][0], 1, ae_v_len(0,nx-1));
|
|
for(i=1; i<=n-1; i++)
|
|
{
|
|
for(j=0; j<=nx-1; j++)
|
|
{
|
|
kdt->boxmin.ptr.p_double[j] = ae_minreal(kdt->boxmin.ptr.p_double[j], kdt->xy.ptr.pp_double[i][j], _state);
|
|
kdt->boxmax.ptr.p_double[j] = ae_maxreal(kdt->boxmax.ptr.p_double[j], kdt->xy.ptr.pp_double[i][j], _state);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* prepare tree structure
|
|
* * MaxNodes=N because we guarantee no trivial splits, i.e.
|
|
* every split will generate two non-empty boxes
|
|
*/
|
|
maxnodes = n;
|
|
ae_vector_set_length(&kdt->nodes, nearestneighbor_splitnodesize*2*maxnodes, _state);
|
|
ae_vector_set_length(&kdt->splits, 2*maxnodes, _state);
|
|
nodesoffs = 0;
|
|
splitsoffs = 0;
|
|
ae_v_move(&kdt->curboxmin.ptr.p_double[0], 1, &kdt->boxmin.ptr.p_double[0], 1, ae_v_len(0,nx-1));
|
|
ae_v_move(&kdt->curboxmax.ptr.p_double[0], 1, &kdt->boxmax.ptr.p_double[0], 1, ae_v_len(0,nx-1));
|
|
nearestneighbor_kdtreegeneratetreerec(kdt, &nodesoffs, &splitsoffs, 0, n, 8, _state);
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
K-NN query: K nearest neighbors
|
|
|
|
INPUT PARAMETERS
|
|
KDT - KD-tree
|
|
X - point, array[0..NX-1].
|
|
K - number of neighbors to return, K>=1
|
|
SelfMatch - whether self-matches are allowed:
|
|
* if True, nearest neighbor may be the point itself
|
|
(if it exists in original dataset)
|
|
* if False, then only points with non-zero distance
|
|
are returned
|
|
* if not given, considered True
|
|
|
|
RESULT
|
|
number of actual neighbors found (either K or N, if K>N).
|
|
|
|
This subroutine performs query and stores its result in the internal
|
|
structures of the KD-tree. You can use following subroutines to obtain
|
|
these results:
|
|
* KDTreeQueryResultsX() to get X-values
|
|
* KDTreeQueryResultsXY() to get X- and Y-values
|
|
* KDTreeQueryResultsTags() to get tag values
|
|
* KDTreeQueryResultsDistances() to get distances
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
ae_int_t kdtreequeryknn(kdtree* kdt,
|
|
/* Real */ ae_vector* x,
|
|
ae_int_t k,
|
|
ae_bool selfmatch,
|
|
ae_state *_state)
|
|
{
|
|
ae_int_t result;
|
|
|
|
|
|
ae_assert(k>=1, "KDTreeQueryKNN: K<1!", _state);
|
|
ae_assert(x->cnt>=kdt->nx, "KDTreeQueryKNN: Length(X)<NX!", _state);
|
|
ae_assert(isfinitevector(x, kdt->nx, _state), "KDTreeQueryKNN: X contains infinite or NaN values!", _state);
|
|
result = kdtreequeryaknn(kdt, x, k, selfmatch, 0.0, _state);
|
|
return result;
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
R-NN query: all points within R-sphere centered at X
|
|
|
|
INPUT PARAMETERS
|
|
KDT - KD-tree
|
|
X - point, array[0..NX-1].
|
|
R - radius of sphere (in corresponding norm), R>0
|
|
SelfMatch - whether self-matches are allowed:
|
|
* if True, nearest neighbor may be the point itself
|
|
(if it exists in original dataset)
|
|
* if False, then only points with non-zero distance
|
|
are returned
|
|
* if not given, considered True
|
|
|
|
RESULT
|
|
number of neighbors found, >=0
|
|
|
|
This subroutine performs query and stores its result in the internal
|
|
structures of the KD-tree. You can use following subroutines to obtain
|
|
actual results:
|
|
* KDTreeQueryResultsX() to get X-values
|
|
* KDTreeQueryResultsXY() to get X- and Y-values
|
|
* KDTreeQueryResultsTags() to get tag values
|
|
* KDTreeQueryResultsDistances() to get distances
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
ae_int_t kdtreequeryrnn(kdtree* kdt,
|
|
/* Real */ ae_vector* x,
|
|
double r,
|
|
ae_bool selfmatch,
|
|
ae_state *_state)
|
|
{
|
|
ae_int_t i;
|
|
ae_int_t j;
|
|
ae_int_t result;
|
|
|
|
|
|
ae_assert(ae_fp_greater(r,0), "KDTreeQueryRNN: incorrect R!", _state);
|
|
ae_assert(x->cnt>=kdt->nx, "KDTreeQueryRNN: Length(X)<NX!", _state);
|
|
ae_assert(isfinitevector(x, kdt->nx, _state), "KDTreeQueryRNN: X contains infinite or NaN values!", _state);
|
|
|
|
/*
|
|
* Handle special case: KDT.N=0
|
|
*/
|
|
if( kdt->n==0 )
|
|
{
|
|
kdt->kcur = 0;
|
|
result = 0;
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Prepare parameters
|
|
*/
|
|
kdt->kneeded = 0;
|
|
if( kdt->normtype!=2 )
|
|
{
|
|
kdt->rneeded = r;
|
|
}
|
|
else
|
|
{
|
|
kdt->rneeded = ae_sqr(r, _state);
|
|
}
|
|
kdt->selfmatch = selfmatch;
|
|
kdt->approxf = 1;
|
|
kdt->kcur = 0;
|
|
|
|
/*
|
|
* calculate distance from point to current bounding box
|
|
*/
|
|
nearestneighbor_kdtreeinitbox(kdt, x, _state);
|
|
|
|
/*
|
|
* call recursive search
|
|
* results are returned as heap
|
|
*/
|
|
nearestneighbor_kdtreequerynnrec(kdt, 0, _state);
|
|
|
|
/*
|
|
* pop from heap to generate ordered representation
|
|
*
|
|
* last element is not pop'ed because it is already in
|
|
* its place
|
|
*/
|
|
result = kdt->kcur;
|
|
j = kdt->kcur;
|
|
for(i=kdt->kcur; i>=2; i--)
|
|
{
|
|
tagheappopi(&kdt->r, &kdt->idx, &j, _state);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
K-NN query: approximate K nearest neighbors
|
|
|
|
INPUT PARAMETERS
|
|
KDT - KD-tree
|
|
X - point, array[0..NX-1].
|
|
K - number of neighbors to return, K>=1
|
|
SelfMatch - whether self-matches are allowed:
|
|
* if True, nearest neighbor may be the point itself
|
|
(if it exists in original dataset)
|
|
* if False, then only points with non-zero distance
|
|
are returned
|
|
* if not given, considered True
|
|
Eps - approximation factor, Eps>=0. eps-approximate nearest
|
|
neighbor is a neighbor whose distance from X is at
|
|
most (1+eps) times distance of true nearest neighbor.
|
|
|
|
RESULT
|
|
number of actual neighbors found (either K or N, if K>N).
|
|
|
|
NOTES
|
|
significant performance gain may be achieved only when Eps is is on
|
|
the order of magnitude of 1 or larger.
|
|
|
|
This subroutine performs query and stores its result in the internal
|
|
structures of the KD-tree. You can use following subroutines to obtain
|
|
these results:
|
|
* KDTreeQueryResultsX() to get X-values
|
|
* KDTreeQueryResultsXY() to get X- and Y-values
|
|
* KDTreeQueryResultsTags() to get tag values
|
|
* KDTreeQueryResultsDistances() to get distances
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
ae_int_t kdtreequeryaknn(kdtree* kdt,
|
|
/* Real */ ae_vector* x,
|
|
ae_int_t k,
|
|
ae_bool selfmatch,
|
|
double eps,
|
|
ae_state *_state)
|
|
{
|
|
ae_int_t i;
|
|
ae_int_t j;
|
|
ae_int_t result;
|
|
|
|
|
|
ae_assert(k>0, "KDTreeQueryAKNN: incorrect K!", _state);
|
|
ae_assert(ae_fp_greater_eq(eps,0), "KDTreeQueryAKNN: incorrect Eps!", _state);
|
|
ae_assert(x->cnt>=kdt->nx, "KDTreeQueryAKNN: Length(X)<NX!", _state);
|
|
ae_assert(isfinitevector(x, kdt->nx, _state), "KDTreeQueryAKNN: X contains infinite or NaN values!", _state);
|
|
|
|
/*
|
|
* Handle special case: KDT.N=0
|
|
*/
|
|
if( kdt->n==0 )
|
|
{
|
|
kdt->kcur = 0;
|
|
result = 0;
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Prepare parameters
|
|
*/
|
|
k = ae_minint(k, kdt->n, _state);
|
|
kdt->kneeded = k;
|
|
kdt->rneeded = 0;
|
|
kdt->selfmatch = selfmatch;
|
|
if( kdt->normtype==2 )
|
|
{
|
|
kdt->approxf = 1/ae_sqr(1+eps, _state);
|
|
}
|
|
else
|
|
{
|
|
kdt->approxf = 1/(1+eps);
|
|
}
|
|
kdt->kcur = 0;
|
|
|
|
/*
|
|
* calculate distance from point to current bounding box
|
|
*/
|
|
nearestneighbor_kdtreeinitbox(kdt, x, _state);
|
|
|
|
/*
|
|
* call recursive search
|
|
* results are returned as heap
|
|
*/
|
|
nearestneighbor_kdtreequerynnrec(kdt, 0, _state);
|
|
|
|
/*
|
|
* pop from heap to generate ordered representation
|
|
*
|
|
* last element is non pop'ed because it is already in
|
|
* its place
|
|
*/
|
|
result = kdt->kcur;
|
|
j = kdt->kcur;
|
|
for(i=kdt->kcur; i>=2; i--)
|
|
{
|
|
tagheappopi(&kdt->r, &kdt->idx, &j, _state);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
X-values from last query
|
|
|
|
INPUT PARAMETERS
|
|
KDT - KD-tree
|
|
X - possibly pre-allocated buffer. If X is too small to store
|
|
result, it is resized. If size(X) is enough to store
|
|
result, it is left unchanged.
|
|
|
|
OUTPUT PARAMETERS
|
|
X - rows are filled with X-values
|
|
|
|
NOTES
|
|
1. points are ordered by distance from the query point (first = closest)
|
|
2. if XY is larger than required to store result, only leading part will
|
|
be overwritten; trailing part will be left unchanged. So if on input
|
|
XY = [[A,B],[C,D]], and result is [1,2], then on exit we will get
|
|
XY = [[1,2],[C,D]]. This is done purposely to increase performance; if
|
|
you want function to resize array according to result size, use
|
|
function with same name and suffix 'I'.
|
|
|
|
SEE ALSO
|
|
* KDTreeQueryResultsXY() X- and Y-values
|
|
* KDTreeQueryResultsTags() tag values
|
|
* KDTreeQueryResultsDistances() distances
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreequeryresultsx(kdtree* kdt,
|
|
/* Real */ ae_matrix* x,
|
|
ae_state *_state)
|
|
{
|
|
ae_int_t i;
|
|
ae_int_t k;
|
|
|
|
|
|
if( kdt->kcur==0 )
|
|
{
|
|
return;
|
|
}
|
|
if( x->rows<kdt->kcur||x->cols<kdt->nx )
|
|
{
|
|
ae_matrix_set_length(x, kdt->kcur, kdt->nx, _state);
|
|
}
|
|
k = kdt->kcur;
|
|
for(i=0; i<=k-1; i++)
|
|
{
|
|
ae_v_move(&x->ptr.pp_double[i][0], 1, &kdt->xy.ptr.pp_double[kdt->idx.ptr.p_int[i]][kdt->nx], 1, ae_v_len(0,kdt->nx-1));
|
|
}
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
X- and Y-values from last query
|
|
|
|
INPUT PARAMETERS
|
|
KDT - KD-tree
|
|
XY - possibly pre-allocated buffer. If XY is too small to store
|
|
result, it is resized. If size(XY) is enough to store
|
|
result, it is left unchanged.
|
|
|
|
OUTPUT PARAMETERS
|
|
XY - rows are filled with points: first NX columns with
|
|
X-values, next NY columns - with Y-values.
|
|
|
|
NOTES
|
|
1. points are ordered by distance from the query point (first = closest)
|
|
2. if XY is larger than required to store result, only leading part will
|
|
be overwritten; trailing part will be left unchanged. So if on input
|
|
XY = [[A,B],[C,D]], and result is [1,2], then on exit we will get
|
|
XY = [[1,2],[C,D]]. This is done purposely to increase performance; if
|
|
you want function to resize array according to result size, use
|
|
function with same name and suffix 'I'.
|
|
|
|
SEE ALSO
|
|
* KDTreeQueryResultsX() X-values
|
|
* KDTreeQueryResultsTags() tag values
|
|
* KDTreeQueryResultsDistances() distances
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreequeryresultsxy(kdtree* kdt,
|
|
/* Real */ ae_matrix* xy,
|
|
ae_state *_state)
|
|
{
|
|
ae_int_t i;
|
|
ae_int_t k;
|
|
|
|
|
|
if( kdt->kcur==0 )
|
|
{
|
|
return;
|
|
}
|
|
if( xy->rows<kdt->kcur||xy->cols<kdt->nx+kdt->ny )
|
|
{
|
|
ae_matrix_set_length(xy, kdt->kcur, kdt->nx+kdt->ny, _state);
|
|
}
|
|
k = kdt->kcur;
|
|
for(i=0; i<=k-1; i++)
|
|
{
|
|
ae_v_move(&xy->ptr.pp_double[i][0], 1, &kdt->xy.ptr.pp_double[kdt->idx.ptr.p_int[i]][kdt->nx], 1, ae_v_len(0,kdt->nx+kdt->ny-1));
|
|
}
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
Tags from last query
|
|
|
|
INPUT PARAMETERS
|
|
KDT - KD-tree
|
|
Tags - possibly pre-allocated buffer. If X is too small to store
|
|
result, it is resized. If size(X) is enough to store
|
|
result, it is left unchanged.
|
|
|
|
OUTPUT PARAMETERS
|
|
Tags - filled with tags associated with points,
|
|
or, when no tags were supplied, with zeros
|
|
|
|
NOTES
|
|
1. points are ordered by distance from the query point (first = closest)
|
|
2. if XY is larger than required to store result, only leading part will
|
|
be overwritten; trailing part will be left unchanged. So if on input
|
|
XY = [[A,B],[C,D]], and result is [1,2], then on exit we will get
|
|
XY = [[1,2],[C,D]]. This is done purposely to increase performance; if
|
|
you want function to resize array according to result size, use
|
|
function with same name and suffix 'I'.
|
|
|
|
SEE ALSO
|
|
* KDTreeQueryResultsX() X-values
|
|
* KDTreeQueryResultsXY() X- and Y-values
|
|
* KDTreeQueryResultsDistances() distances
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreequeryresultstags(kdtree* kdt,
|
|
/* Integer */ ae_vector* tags,
|
|
ae_state *_state)
|
|
{
|
|
ae_int_t i;
|
|
ae_int_t k;
|
|
|
|
|
|
if( kdt->kcur==0 )
|
|
{
|
|
return;
|
|
}
|
|
if( tags->cnt<kdt->kcur )
|
|
{
|
|
ae_vector_set_length(tags, kdt->kcur, _state);
|
|
}
|
|
k = kdt->kcur;
|
|
for(i=0; i<=k-1; i++)
|
|
{
|
|
tags->ptr.p_int[i] = kdt->tags.ptr.p_int[kdt->idx.ptr.p_int[i]];
|
|
}
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
Distances from last query
|
|
|
|
INPUT PARAMETERS
|
|
KDT - KD-tree
|
|
R - possibly pre-allocated buffer. If X is too small to store
|
|
result, it is resized. If size(X) is enough to store
|
|
result, it is left unchanged.
|
|
|
|
OUTPUT PARAMETERS
|
|
R - filled with distances (in corresponding norm)
|
|
|
|
NOTES
|
|
1. points are ordered by distance from the query point (first = closest)
|
|
2. if XY is larger than required to store result, only leading part will
|
|
be overwritten; trailing part will be left unchanged. So if on input
|
|
XY = [[A,B],[C,D]], and result is [1,2], then on exit we will get
|
|
XY = [[1,2],[C,D]]. This is done purposely to increase performance; if
|
|
you want function to resize array according to result size, use
|
|
function with same name and suffix 'I'.
|
|
|
|
SEE ALSO
|
|
* KDTreeQueryResultsX() X-values
|
|
* KDTreeQueryResultsXY() X- and Y-values
|
|
* KDTreeQueryResultsTags() tag values
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreequeryresultsdistances(kdtree* kdt,
|
|
/* Real */ ae_vector* r,
|
|
ae_state *_state)
|
|
{
|
|
ae_int_t i;
|
|
ae_int_t k;
|
|
|
|
|
|
if( kdt->kcur==0 )
|
|
{
|
|
return;
|
|
}
|
|
if( r->cnt<kdt->kcur )
|
|
{
|
|
ae_vector_set_length(r, kdt->kcur, _state);
|
|
}
|
|
k = kdt->kcur;
|
|
|
|
/*
|
|
* unload norms
|
|
*
|
|
* Abs() call is used to handle cases with negative norms
|
|
* (generated during KFN requests)
|
|
*/
|
|
if( kdt->normtype==0 )
|
|
{
|
|
for(i=0; i<=k-1; i++)
|
|
{
|
|
r->ptr.p_double[i] = ae_fabs(kdt->r.ptr.p_double[i], _state);
|
|
}
|
|
}
|
|
if( kdt->normtype==1 )
|
|
{
|
|
for(i=0; i<=k-1; i++)
|
|
{
|
|
r->ptr.p_double[i] = ae_fabs(kdt->r.ptr.p_double[i], _state);
|
|
}
|
|
}
|
|
if( kdt->normtype==2 )
|
|
{
|
|
for(i=0; i<=k-1; i++)
|
|
{
|
|
r->ptr.p_double[i] = ae_sqrt(ae_fabs(kdt->r.ptr.p_double[i], _state), _state);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
X-values from last query; 'interactive' variant for languages like Python
|
|
which support constructs like "X = KDTreeQueryResultsXI(KDT)" and
|
|
interactive mode of interpreter.
|
|
|
|
This function allocates new array on each call, so it is significantly
|
|
slower than its 'non-interactive' counterpart, but it is more convenient
|
|
when you call it from command line.
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreequeryresultsxi(kdtree* kdt,
|
|
/* Real */ ae_matrix* x,
|
|
ae_state *_state)
|
|
{
|
|
|
|
ae_matrix_clear(x);
|
|
|
|
kdtreequeryresultsx(kdt, x, _state);
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
XY-values from last query; 'interactive' variant for languages like Python
|
|
which support constructs like "XY = KDTreeQueryResultsXYI(KDT)" and
|
|
interactive mode of interpreter.
|
|
|
|
This function allocates new array on each call, so it is significantly
|
|
slower than its 'non-interactive' counterpart, but it is more convenient
|
|
when you call it from command line.
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreequeryresultsxyi(kdtree* kdt,
|
|
/* Real */ ae_matrix* xy,
|
|
ae_state *_state)
|
|
{
|
|
|
|
ae_matrix_clear(xy);
|
|
|
|
kdtreequeryresultsxy(kdt, xy, _state);
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
Tags from last query; 'interactive' variant for languages like Python
|
|
which support constructs like "Tags = KDTreeQueryResultsTagsI(KDT)" and
|
|
interactive mode of interpreter.
|
|
|
|
This function allocates new array on each call, so it is significantly
|
|
slower than its 'non-interactive' counterpart, but it is more convenient
|
|
when you call it from command line.
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreequeryresultstagsi(kdtree* kdt,
|
|
/* Integer */ ae_vector* tags,
|
|
ae_state *_state)
|
|
{
|
|
|
|
ae_vector_clear(tags);
|
|
|
|
kdtreequeryresultstags(kdt, tags, _state);
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
Distances from last query; 'interactive' variant for languages like Python
|
|
which support constructs like "R = KDTreeQueryResultsDistancesI(KDT)"
|
|
and interactive mode of interpreter.
|
|
|
|
This function allocates new array on each call, so it is significantly
|
|
slower than its 'non-interactive' counterpart, but it is more convenient
|
|
when you call it from command line.
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreequeryresultsdistancesi(kdtree* kdt,
|
|
/* Real */ ae_vector* r,
|
|
ae_state *_state)
|
|
{
|
|
|
|
ae_vector_clear(r);
|
|
|
|
kdtreequeryresultsdistances(kdt, r, _state);
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
Serializer: allocation
|
|
|
|
-- ALGLIB --
|
|
Copyright 14.03.2011 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreealloc(ae_serializer* s, kdtree* tree, ae_state *_state)
|
|
{
|
|
|
|
|
|
|
|
/*
|
|
* Header
|
|
*/
|
|
ae_serializer_alloc_entry(s);
|
|
ae_serializer_alloc_entry(s);
|
|
|
|
/*
|
|
* Data
|
|
*/
|
|
ae_serializer_alloc_entry(s);
|
|
ae_serializer_alloc_entry(s);
|
|
ae_serializer_alloc_entry(s);
|
|
ae_serializer_alloc_entry(s);
|
|
allocrealmatrix(s, &tree->xy, -1, -1, _state);
|
|
allocintegerarray(s, &tree->tags, -1, _state);
|
|
allocrealarray(s, &tree->boxmin, -1, _state);
|
|
allocrealarray(s, &tree->boxmax, -1, _state);
|
|
allocintegerarray(s, &tree->nodes, -1, _state);
|
|
allocrealarray(s, &tree->splits, -1, _state);
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
Serializer: serialization
|
|
|
|
-- ALGLIB --
|
|
Copyright 14.03.2011 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreeserialize(ae_serializer* s, kdtree* tree, ae_state *_state)
|
|
{
|
|
|
|
|
|
|
|
/*
|
|
* Header
|
|
*/
|
|
ae_serializer_serialize_int(s, getkdtreeserializationcode(_state), _state);
|
|
ae_serializer_serialize_int(s, nearestneighbor_kdtreefirstversion, _state);
|
|
|
|
/*
|
|
* Data
|
|
*/
|
|
ae_serializer_serialize_int(s, tree->n, _state);
|
|
ae_serializer_serialize_int(s, tree->nx, _state);
|
|
ae_serializer_serialize_int(s, tree->ny, _state);
|
|
ae_serializer_serialize_int(s, tree->normtype, _state);
|
|
serializerealmatrix(s, &tree->xy, -1, -1, _state);
|
|
serializeintegerarray(s, &tree->tags, -1, _state);
|
|
serializerealarray(s, &tree->boxmin, -1, _state);
|
|
serializerealarray(s, &tree->boxmax, -1, _state);
|
|
serializeintegerarray(s, &tree->nodes, -1, _state);
|
|
serializerealarray(s, &tree->splits, -1, _state);
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
Serializer: unserialization
|
|
|
|
-- ALGLIB --
|
|
Copyright 14.03.2011 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
void kdtreeunserialize(ae_serializer* s, kdtree* tree, ae_state *_state)
|
|
{
|
|
ae_int_t i0;
|
|
ae_int_t i1;
|
|
|
|
_kdtree_clear(tree);
|
|
|
|
|
|
/*
|
|
* check correctness of header
|
|
*/
|
|
ae_serializer_unserialize_int(s, &i0, _state);
|
|
ae_assert(i0==getkdtreeserializationcode(_state), "KDTreeUnserialize: stream header corrupted", _state);
|
|
ae_serializer_unserialize_int(s, &i1, _state);
|
|
ae_assert(i1==nearestneighbor_kdtreefirstversion, "KDTreeUnserialize: stream header corrupted", _state);
|
|
|
|
/*
|
|
* Unserialize data
|
|
*/
|
|
ae_serializer_unserialize_int(s, &tree->n, _state);
|
|
ae_serializer_unserialize_int(s, &tree->nx, _state);
|
|
ae_serializer_unserialize_int(s, &tree->ny, _state);
|
|
ae_serializer_unserialize_int(s, &tree->normtype, _state);
|
|
unserializerealmatrix(s, &tree->xy, _state);
|
|
unserializeintegerarray(s, &tree->tags, _state);
|
|
unserializerealarray(s, &tree->boxmin, _state);
|
|
unserializerealarray(s, &tree->boxmax, _state);
|
|
unserializeintegerarray(s, &tree->nodes, _state);
|
|
unserializerealarray(s, &tree->splits, _state);
|
|
nearestneighbor_kdtreealloctemporaries(tree, tree->n, tree->nx, tree->ny, _state);
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
Rearranges nodes [I1,I2) using partition in D-th dimension with S as threshold.
|
|
Returns split position I3: [I1,I3) and [I3,I2) are created as result.
|
|
|
|
This subroutine doesn't create tree structures, just rearranges nodes.
|
|
*************************************************************************/
|
|
static void nearestneighbor_kdtreesplit(kdtree* kdt,
|
|
ae_int_t i1,
|
|
ae_int_t i2,
|
|
ae_int_t d,
|
|
double s,
|
|
ae_int_t* i3,
|
|
ae_state *_state)
|
|
{
|
|
ae_int_t i;
|
|
ae_int_t j;
|
|
ae_int_t ileft;
|
|
ae_int_t iright;
|
|
double v;
|
|
|
|
*i3 = 0;
|
|
|
|
ae_assert(kdt->n>0, "KDTreeSplit: internal error", _state);
|
|
|
|
/*
|
|
* split XY/Tags in two parts:
|
|
* * [ILeft,IRight] is non-processed part of XY/Tags
|
|
*
|
|
* After cycle is done, we have Ileft=IRight. We deal with
|
|
* this element separately.
|
|
*
|
|
* After this, [I1,ILeft) contains left part, and [ILeft,I2)
|
|
* contains right part.
|
|
*/
|
|
ileft = i1;
|
|
iright = i2-1;
|
|
while(ileft<iright)
|
|
{
|
|
if( ae_fp_less_eq(kdt->xy.ptr.pp_double[ileft][d],s) )
|
|
{
|
|
|
|
/*
|
|
* XY[ILeft] is on its place.
|
|
* Advance ILeft.
|
|
*/
|
|
ileft = ileft+1;
|
|
}
|
|
else
|
|
{
|
|
|
|
/*
|
|
* XY[ILeft,..] must be at IRight.
|
|
* Swap and advance IRight.
|
|
*/
|
|
for(i=0; i<=2*kdt->nx+kdt->ny-1; i++)
|
|
{
|
|
v = kdt->xy.ptr.pp_double[ileft][i];
|
|
kdt->xy.ptr.pp_double[ileft][i] = kdt->xy.ptr.pp_double[iright][i];
|
|
kdt->xy.ptr.pp_double[iright][i] = v;
|
|
}
|
|
j = kdt->tags.ptr.p_int[ileft];
|
|
kdt->tags.ptr.p_int[ileft] = kdt->tags.ptr.p_int[iright];
|
|
kdt->tags.ptr.p_int[iright] = j;
|
|
iright = iright-1;
|
|
}
|
|
}
|
|
if( ae_fp_less_eq(kdt->xy.ptr.pp_double[ileft][d],s) )
|
|
{
|
|
ileft = ileft+1;
|
|
}
|
|
else
|
|
{
|
|
iright = iright-1;
|
|
}
|
|
*i3 = ileft;
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
Recursive kd-tree generation subroutine.
|
|
|
|
PARAMETERS
|
|
KDT tree
|
|
NodesOffs unused part of Nodes[] which must be filled by tree
|
|
SplitsOffs unused part of Splits[]
|
|
I1, I2 points from [I1,I2) are processed
|
|
|
|
NodesOffs[] and SplitsOffs[] must be large enough.
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
static void nearestneighbor_kdtreegeneratetreerec(kdtree* kdt,
|
|
ae_int_t* nodesoffs,
|
|
ae_int_t* splitsoffs,
|
|
ae_int_t i1,
|
|
ae_int_t i2,
|
|
ae_int_t maxleafsize,
|
|
ae_state *_state)
|
|
{
|
|
ae_int_t n;
|
|
ae_int_t nx;
|
|
ae_int_t ny;
|
|
ae_int_t i;
|
|
ae_int_t j;
|
|
ae_int_t oldoffs;
|
|
ae_int_t i3;
|
|
ae_int_t cntless;
|
|
ae_int_t cntgreater;
|
|
double minv;
|
|
double maxv;
|
|
ae_int_t minidx;
|
|
ae_int_t maxidx;
|
|
ae_int_t d;
|
|
double ds;
|
|
double s;
|
|
double v;
|
|
double v0;
|
|
double v1;
|
|
|
|
|
|
ae_assert(kdt->n>0, "KDTreeGenerateTreeRec: internal error", _state);
|
|
ae_assert(i2>i1, "KDTreeGenerateTreeRec: internal error", _state);
|
|
|
|
/*
|
|
* Generate leaf if needed
|
|
*/
|
|
if( i2-i1<=maxleafsize )
|
|
{
|
|
kdt->nodes.ptr.p_int[*nodesoffs+0] = i2-i1;
|
|
kdt->nodes.ptr.p_int[*nodesoffs+1] = i1;
|
|
*nodesoffs = *nodesoffs+2;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Load values for easier access
|
|
*/
|
|
nx = kdt->nx;
|
|
ny = kdt->ny;
|
|
|
|
/*
|
|
* Select dimension to split:
|
|
* * D is a dimension number
|
|
* In case bounding box has zero size, we enforce creation of the leaf node.
|
|
*/
|
|
d = 0;
|
|
ds = kdt->curboxmax.ptr.p_double[0]-kdt->curboxmin.ptr.p_double[0];
|
|
for(i=1; i<=nx-1; i++)
|
|
{
|
|
v = kdt->curboxmax.ptr.p_double[i]-kdt->curboxmin.ptr.p_double[i];
|
|
if( ae_fp_greater(v,ds) )
|
|
{
|
|
ds = v;
|
|
d = i;
|
|
}
|
|
}
|
|
if( ae_fp_eq(ds,0) )
|
|
{
|
|
kdt->nodes.ptr.p_int[*nodesoffs+0] = i2-i1;
|
|
kdt->nodes.ptr.p_int[*nodesoffs+1] = i1;
|
|
*nodesoffs = *nodesoffs+2;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Select split position S using sliding midpoint rule,
|
|
* rearrange points into [I1,I3) and [I3,I2).
|
|
*
|
|
* In case all points has same value of D-th component
|
|
* (MinV=MaxV) we enforce D-th dimension of bounding
|
|
* box to become exactly zero and repeat tree construction.
|
|
*/
|
|
s = kdt->curboxmin.ptr.p_double[d]+0.5*ds;
|
|
ae_v_move(&kdt->buf.ptr.p_double[0], 1, &kdt->xy.ptr.pp_double[i1][d], kdt->xy.stride, ae_v_len(0,i2-i1-1));
|
|
n = i2-i1;
|
|
cntless = 0;
|
|
cntgreater = 0;
|
|
minv = kdt->buf.ptr.p_double[0];
|
|
maxv = kdt->buf.ptr.p_double[0];
|
|
minidx = i1;
|
|
maxidx = i1;
|
|
for(i=0; i<=n-1; i++)
|
|
{
|
|
v = kdt->buf.ptr.p_double[i];
|
|
if( ae_fp_less(v,minv) )
|
|
{
|
|
minv = v;
|
|
minidx = i1+i;
|
|
}
|
|
if( ae_fp_greater(v,maxv) )
|
|
{
|
|
maxv = v;
|
|
maxidx = i1+i;
|
|
}
|
|
if( ae_fp_less(v,s) )
|
|
{
|
|
cntless = cntless+1;
|
|
}
|
|
if( ae_fp_greater(v,s) )
|
|
{
|
|
cntgreater = cntgreater+1;
|
|
}
|
|
}
|
|
if( ae_fp_eq(minv,maxv) )
|
|
{
|
|
|
|
/*
|
|
* In case all points has same value of D-th component
|
|
* (MinV=MaxV) we enforce D-th dimension of bounding
|
|
* box to become exactly zero and repeat tree construction.
|
|
*/
|
|
v0 = kdt->curboxmin.ptr.p_double[d];
|
|
v1 = kdt->curboxmax.ptr.p_double[d];
|
|
kdt->curboxmin.ptr.p_double[d] = minv;
|
|
kdt->curboxmax.ptr.p_double[d] = maxv;
|
|
nearestneighbor_kdtreegeneratetreerec(kdt, nodesoffs, splitsoffs, i1, i2, maxleafsize, _state);
|
|
kdt->curboxmin.ptr.p_double[d] = v0;
|
|
kdt->curboxmax.ptr.p_double[d] = v1;
|
|
return;
|
|
}
|
|
if( cntless>0&&cntgreater>0 )
|
|
{
|
|
|
|
/*
|
|
* normal midpoint split
|
|
*/
|
|
nearestneighbor_kdtreesplit(kdt, i1, i2, d, s, &i3, _state);
|
|
}
|
|
else
|
|
{
|
|
|
|
/*
|
|
* sliding midpoint
|
|
*/
|
|
if( cntless==0 )
|
|
{
|
|
|
|
/*
|
|
* 1. move split to MinV,
|
|
* 2. place one point to the left bin (move to I1),
|
|
* others - to the right bin
|
|
*/
|
|
s = minv;
|
|
if( minidx!=i1 )
|
|
{
|
|
for(i=0; i<=2*nx+ny-1; i++)
|
|
{
|
|
v = kdt->xy.ptr.pp_double[minidx][i];
|
|
kdt->xy.ptr.pp_double[minidx][i] = kdt->xy.ptr.pp_double[i1][i];
|
|
kdt->xy.ptr.pp_double[i1][i] = v;
|
|
}
|
|
j = kdt->tags.ptr.p_int[minidx];
|
|
kdt->tags.ptr.p_int[minidx] = kdt->tags.ptr.p_int[i1];
|
|
kdt->tags.ptr.p_int[i1] = j;
|
|
}
|
|
i3 = i1+1;
|
|
}
|
|
else
|
|
{
|
|
|
|
/*
|
|
* 1. move split to MaxV,
|
|
* 2. place one point to the right bin (move to I2-1),
|
|
* others - to the left bin
|
|
*/
|
|
s = maxv;
|
|
if( maxidx!=i2-1 )
|
|
{
|
|
for(i=0; i<=2*nx+ny-1; i++)
|
|
{
|
|
v = kdt->xy.ptr.pp_double[maxidx][i];
|
|
kdt->xy.ptr.pp_double[maxidx][i] = kdt->xy.ptr.pp_double[i2-1][i];
|
|
kdt->xy.ptr.pp_double[i2-1][i] = v;
|
|
}
|
|
j = kdt->tags.ptr.p_int[maxidx];
|
|
kdt->tags.ptr.p_int[maxidx] = kdt->tags.ptr.p_int[i2-1];
|
|
kdt->tags.ptr.p_int[i2-1] = j;
|
|
}
|
|
i3 = i2-1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Generate 'split' node
|
|
*/
|
|
kdt->nodes.ptr.p_int[*nodesoffs+0] = 0;
|
|
kdt->nodes.ptr.p_int[*nodesoffs+1] = d;
|
|
kdt->nodes.ptr.p_int[*nodesoffs+2] = *splitsoffs;
|
|
kdt->splits.ptr.p_double[*splitsoffs+0] = s;
|
|
oldoffs = *nodesoffs;
|
|
*nodesoffs = *nodesoffs+nearestneighbor_splitnodesize;
|
|
*splitsoffs = *splitsoffs+1;
|
|
|
|
/*
|
|
* Recirsive generation:
|
|
* * update CurBox
|
|
* * call subroutine
|
|
* * restore CurBox
|
|
*/
|
|
kdt->nodes.ptr.p_int[oldoffs+3] = *nodesoffs;
|
|
v = kdt->curboxmax.ptr.p_double[d];
|
|
kdt->curboxmax.ptr.p_double[d] = s;
|
|
nearestneighbor_kdtreegeneratetreerec(kdt, nodesoffs, splitsoffs, i1, i3, maxleafsize, _state);
|
|
kdt->curboxmax.ptr.p_double[d] = v;
|
|
kdt->nodes.ptr.p_int[oldoffs+4] = *nodesoffs;
|
|
v = kdt->curboxmin.ptr.p_double[d];
|
|
kdt->curboxmin.ptr.p_double[d] = s;
|
|
nearestneighbor_kdtreegeneratetreerec(kdt, nodesoffs, splitsoffs, i3, i2, maxleafsize, _state);
|
|
kdt->curboxmin.ptr.p_double[d] = v;
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
Recursive subroutine for NN queries.
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
static void nearestneighbor_kdtreequerynnrec(kdtree* kdt,
|
|
ae_int_t offs,
|
|
ae_state *_state)
|
|
{
|
|
double ptdist;
|
|
ae_int_t i;
|
|
ae_int_t j;
|
|
ae_int_t nx;
|
|
ae_int_t i1;
|
|
ae_int_t i2;
|
|
ae_int_t d;
|
|
double s;
|
|
double v;
|
|
double t1;
|
|
ae_int_t childbestoffs;
|
|
ae_int_t childworstoffs;
|
|
ae_int_t childoffs;
|
|
double prevdist;
|
|
ae_bool todive;
|
|
ae_bool bestisleft;
|
|
ae_bool updatemin;
|
|
|
|
|
|
ae_assert(kdt->n>0, "KDTreeQueryNNRec: internal error", _state);
|
|
|
|
/*
|
|
* Leaf node.
|
|
* Process points.
|
|
*/
|
|
if( kdt->nodes.ptr.p_int[offs]>0 )
|
|
{
|
|
i1 = kdt->nodes.ptr.p_int[offs+1];
|
|
i2 = i1+kdt->nodes.ptr.p_int[offs];
|
|
for(i=i1; i<=i2-1; i++)
|
|
{
|
|
|
|
/*
|
|
* Calculate distance
|
|
*/
|
|
ptdist = 0;
|
|
nx = kdt->nx;
|
|
if( kdt->normtype==0 )
|
|
{
|
|
for(j=0; j<=nx-1; j++)
|
|
{
|
|
ptdist = ae_maxreal(ptdist, ae_fabs(kdt->xy.ptr.pp_double[i][j]-kdt->x.ptr.p_double[j], _state), _state);
|
|
}
|
|
}
|
|
if( kdt->normtype==1 )
|
|
{
|
|
for(j=0; j<=nx-1; j++)
|
|
{
|
|
ptdist = ptdist+ae_fabs(kdt->xy.ptr.pp_double[i][j]-kdt->x.ptr.p_double[j], _state);
|
|
}
|
|
}
|
|
if( kdt->normtype==2 )
|
|
{
|
|
for(j=0; j<=nx-1; j++)
|
|
{
|
|
ptdist = ptdist+ae_sqr(kdt->xy.ptr.pp_double[i][j]-kdt->x.ptr.p_double[j], _state);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Skip points with zero distance if self-matches are turned off
|
|
*/
|
|
if( ae_fp_eq(ptdist,0)&&!kdt->selfmatch )
|
|
{
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We CAN'T process point if R-criterion isn't satisfied,
|
|
* i.e. (RNeeded<>0) AND (PtDist>R).
|
|
*/
|
|
if( ae_fp_eq(kdt->rneeded,0)||ae_fp_less_eq(ptdist,kdt->rneeded) )
|
|
{
|
|
|
|
/*
|
|
* R-criterion is satisfied, we must either:
|
|
* * replace worst point, if (KNeeded<>0) AND (KCur=KNeeded)
|
|
* (or skip, if worst point is better)
|
|
* * add point without replacement otherwise
|
|
*/
|
|
if( kdt->kcur<kdt->kneeded||kdt->kneeded==0 )
|
|
{
|
|
|
|
/*
|
|
* add current point to heap without replacement
|
|
*/
|
|
tagheappushi(&kdt->r, &kdt->idx, &kdt->kcur, ptdist, i, _state);
|
|
}
|
|
else
|
|
{
|
|
|
|
/*
|
|
* New points are added or not, depending on their distance.
|
|
* If added, they replace element at the top of the heap
|
|
*/
|
|
if( ae_fp_less(ptdist,kdt->r.ptr.p_double[0]) )
|
|
{
|
|
if( kdt->kneeded==1 )
|
|
{
|
|
kdt->idx.ptr.p_int[0] = i;
|
|
kdt->r.ptr.p_double[0] = ptdist;
|
|
}
|
|
else
|
|
{
|
|
tagheapreplacetopi(&kdt->r, &kdt->idx, kdt->kneeded, ptdist, i, _state);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Simple split
|
|
*/
|
|
if( kdt->nodes.ptr.p_int[offs]==0 )
|
|
{
|
|
|
|
/*
|
|
* Load:
|
|
* * D dimension to split
|
|
* * S split position
|
|
*/
|
|
d = kdt->nodes.ptr.p_int[offs+1];
|
|
s = kdt->splits.ptr.p_double[kdt->nodes.ptr.p_int[offs+2]];
|
|
|
|
/*
|
|
* Calculate:
|
|
* * ChildBestOffs child box with best chances
|
|
* * ChildWorstOffs child box with worst chances
|
|
*/
|
|
if( ae_fp_less_eq(kdt->x.ptr.p_double[d],s) )
|
|
{
|
|
childbestoffs = kdt->nodes.ptr.p_int[offs+3];
|
|
childworstoffs = kdt->nodes.ptr.p_int[offs+4];
|
|
bestisleft = ae_true;
|
|
}
|
|
else
|
|
{
|
|
childbestoffs = kdt->nodes.ptr.p_int[offs+4];
|
|
childworstoffs = kdt->nodes.ptr.p_int[offs+3];
|
|
bestisleft = ae_false;
|
|
}
|
|
|
|
/*
|
|
* Navigate through childs
|
|
*/
|
|
for(i=0; i<=1; i++)
|
|
{
|
|
|
|
/*
|
|
* Select child to process:
|
|
* * ChildOffs current child offset in Nodes[]
|
|
* * UpdateMin whether minimum or maximum value
|
|
* of bounding box is changed on update
|
|
*/
|
|
if( i==0 )
|
|
{
|
|
childoffs = childbestoffs;
|
|
updatemin = !bestisleft;
|
|
}
|
|
else
|
|
{
|
|
updatemin = bestisleft;
|
|
childoffs = childworstoffs;
|
|
}
|
|
|
|
/*
|
|
* Update bounding box and current distance
|
|
*/
|
|
if( updatemin )
|
|
{
|
|
prevdist = kdt->curdist;
|
|
t1 = kdt->x.ptr.p_double[d];
|
|
v = kdt->curboxmin.ptr.p_double[d];
|
|
if( ae_fp_less_eq(t1,s) )
|
|
{
|
|
if( kdt->normtype==0 )
|
|
{
|
|
kdt->curdist = ae_maxreal(kdt->curdist, s-t1, _state);
|
|
}
|
|
if( kdt->normtype==1 )
|
|
{
|
|
kdt->curdist = kdt->curdist-ae_maxreal(v-t1, 0, _state)+s-t1;
|
|
}
|
|
if( kdt->normtype==2 )
|
|
{
|
|
kdt->curdist = kdt->curdist-ae_sqr(ae_maxreal(v-t1, 0, _state), _state)+ae_sqr(s-t1, _state);
|
|
}
|
|
}
|
|
kdt->curboxmin.ptr.p_double[d] = s;
|
|
}
|
|
else
|
|
{
|
|
prevdist = kdt->curdist;
|
|
t1 = kdt->x.ptr.p_double[d];
|
|
v = kdt->curboxmax.ptr.p_double[d];
|
|
if( ae_fp_greater_eq(t1,s) )
|
|
{
|
|
if( kdt->normtype==0 )
|
|
{
|
|
kdt->curdist = ae_maxreal(kdt->curdist, t1-s, _state);
|
|
}
|
|
if( kdt->normtype==1 )
|
|
{
|
|
kdt->curdist = kdt->curdist-ae_maxreal(t1-v, 0, _state)+t1-s;
|
|
}
|
|
if( kdt->normtype==2 )
|
|
{
|
|
kdt->curdist = kdt->curdist-ae_sqr(ae_maxreal(t1-v, 0, _state), _state)+ae_sqr(t1-s, _state);
|
|
}
|
|
}
|
|
kdt->curboxmax.ptr.p_double[d] = s;
|
|
}
|
|
|
|
/*
|
|
* Decide: to dive into cell or not to dive
|
|
*/
|
|
if( ae_fp_neq(kdt->rneeded,0)&&ae_fp_greater(kdt->curdist,kdt->rneeded) )
|
|
{
|
|
todive = ae_false;
|
|
}
|
|
else
|
|
{
|
|
if( kdt->kcur<kdt->kneeded||kdt->kneeded==0 )
|
|
{
|
|
|
|
/*
|
|
* KCur<KNeeded (i.e. not all points are found)
|
|
*/
|
|
todive = ae_true;
|
|
}
|
|
else
|
|
{
|
|
|
|
/*
|
|
* KCur=KNeeded, decide to dive or not to dive
|
|
* using point position relative to bounding box.
|
|
*/
|
|
todive = ae_fp_less_eq(kdt->curdist,kdt->r.ptr.p_double[0]*kdt->approxf);
|
|
}
|
|
}
|
|
if( todive )
|
|
{
|
|
nearestneighbor_kdtreequerynnrec(kdt, childoffs, _state);
|
|
}
|
|
|
|
/*
|
|
* Restore bounding box and distance
|
|
*/
|
|
if( updatemin )
|
|
{
|
|
kdt->curboxmin.ptr.p_double[d] = v;
|
|
}
|
|
else
|
|
{
|
|
kdt->curboxmax.ptr.p_double[d] = v;
|
|
}
|
|
kdt->curdist = prevdist;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
Copies X[] to KDT.X[]
|
|
Loads distance from X[] to bounding box.
|
|
Initializes CurBox[].
|
|
|
|
-- ALGLIB --
|
|
Copyright 28.02.2010 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
static void nearestneighbor_kdtreeinitbox(kdtree* kdt,
|
|
/* Real */ ae_vector* x,
|
|
ae_state *_state)
|
|
{
|
|
ae_int_t i;
|
|
double vx;
|
|
double vmin;
|
|
double vmax;
|
|
|
|
|
|
ae_assert(kdt->n>0, "KDTreeInitBox: internal error", _state);
|
|
|
|
/*
|
|
* calculate distance from point to current bounding box
|
|
*/
|
|
kdt->curdist = 0;
|
|
if( kdt->normtype==0 )
|
|
{
|
|
for(i=0; i<=kdt->nx-1; i++)
|
|
{
|
|
vx = x->ptr.p_double[i];
|
|
vmin = kdt->boxmin.ptr.p_double[i];
|
|
vmax = kdt->boxmax.ptr.p_double[i];
|
|
kdt->x.ptr.p_double[i] = vx;
|
|
kdt->curboxmin.ptr.p_double[i] = vmin;
|
|
kdt->curboxmax.ptr.p_double[i] = vmax;
|
|
if( ae_fp_less(vx,vmin) )
|
|
{
|
|
kdt->curdist = ae_maxreal(kdt->curdist, vmin-vx, _state);
|
|
}
|
|
else
|
|
{
|
|
if( ae_fp_greater(vx,vmax) )
|
|
{
|
|
kdt->curdist = ae_maxreal(kdt->curdist, vx-vmax, _state);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if( kdt->normtype==1 )
|
|
{
|
|
for(i=0; i<=kdt->nx-1; i++)
|
|
{
|
|
vx = x->ptr.p_double[i];
|
|
vmin = kdt->boxmin.ptr.p_double[i];
|
|
vmax = kdt->boxmax.ptr.p_double[i];
|
|
kdt->x.ptr.p_double[i] = vx;
|
|
kdt->curboxmin.ptr.p_double[i] = vmin;
|
|
kdt->curboxmax.ptr.p_double[i] = vmax;
|
|
if( ae_fp_less(vx,vmin) )
|
|
{
|
|
kdt->curdist = kdt->curdist+vmin-vx;
|
|
}
|
|
else
|
|
{
|
|
if( ae_fp_greater(vx,vmax) )
|
|
{
|
|
kdt->curdist = kdt->curdist+vx-vmax;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if( kdt->normtype==2 )
|
|
{
|
|
for(i=0; i<=kdt->nx-1; i++)
|
|
{
|
|
vx = x->ptr.p_double[i];
|
|
vmin = kdt->boxmin.ptr.p_double[i];
|
|
vmax = kdt->boxmax.ptr.p_double[i];
|
|
kdt->x.ptr.p_double[i] = vx;
|
|
kdt->curboxmin.ptr.p_double[i] = vmin;
|
|
kdt->curboxmax.ptr.p_double[i] = vmax;
|
|
if( ae_fp_less(vx,vmin) )
|
|
{
|
|
kdt->curdist = kdt->curdist+ae_sqr(vmin-vx, _state);
|
|
}
|
|
else
|
|
{
|
|
if( ae_fp_greater(vx,vmax) )
|
|
{
|
|
kdt->curdist = kdt->curdist+ae_sqr(vx-vmax, _state);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
This function allocates all dataset-independent array fields of KDTree,
|
|
i.e. such array fields that their dimensions do not depend on dataset
|
|
size.
|
|
|
|
This function do not sets KDT.NX or KDT.NY - it just allocates arrays
|
|
|
|
-- ALGLIB --
|
|
Copyright 14.03.2011 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
static void nearestneighbor_kdtreeallocdatasetindependent(kdtree* kdt,
|
|
ae_int_t nx,
|
|
ae_int_t ny,
|
|
ae_state *_state)
|
|
{
|
|
|
|
|
|
ae_assert(kdt->n>0, "KDTreeAllocDatasetIndependent: internal error", _state);
|
|
ae_vector_set_length(&kdt->x, nx, _state);
|
|
ae_vector_set_length(&kdt->boxmin, nx, _state);
|
|
ae_vector_set_length(&kdt->boxmax, nx, _state);
|
|
ae_vector_set_length(&kdt->curboxmin, nx, _state);
|
|
ae_vector_set_length(&kdt->curboxmax, nx, _state);
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
This function allocates all dataset-dependent array fields of KDTree, i.e.
|
|
such array fields that their dimensions depend on dataset size.
|
|
|
|
This function do not sets KDT.N, KDT.NX or KDT.NY -
|
|
it just allocates arrays.
|
|
|
|
-- ALGLIB --
|
|
Copyright 14.03.2011 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
static void nearestneighbor_kdtreeallocdatasetdependent(kdtree* kdt,
|
|
ae_int_t n,
|
|
ae_int_t nx,
|
|
ae_int_t ny,
|
|
ae_state *_state)
|
|
{
|
|
|
|
|
|
ae_assert(n>0, "KDTreeAllocDatasetDependent: internal error", _state);
|
|
ae_matrix_set_length(&kdt->xy, n, 2*nx+ny, _state);
|
|
ae_vector_set_length(&kdt->tags, n, _state);
|
|
ae_vector_set_length(&kdt->idx, n, _state);
|
|
ae_vector_set_length(&kdt->r, n, _state);
|
|
ae_vector_set_length(&kdt->x, nx, _state);
|
|
ae_vector_set_length(&kdt->buf, ae_maxint(n, nx, _state), _state);
|
|
ae_vector_set_length(&kdt->nodes, nearestneighbor_splitnodesize*2*n, _state);
|
|
ae_vector_set_length(&kdt->splits, 2*n, _state);
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
This function allocates temporaries.
|
|
|
|
This function do not sets KDT.N, KDT.NX or KDT.NY -
|
|
it just allocates arrays.
|
|
|
|
-- ALGLIB --
|
|
Copyright 14.03.2011 by Bochkanov Sergey
|
|
*************************************************************************/
|
|
static void nearestneighbor_kdtreealloctemporaries(kdtree* kdt,
|
|
ae_int_t n,
|
|
ae_int_t nx,
|
|
ae_int_t ny,
|
|
ae_state *_state)
|
|
{
|
|
|
|
|
|
ae_assert(n>0, "KDTreeAllocTemporaries: internal error", _state);
|
|
ae_vector_set_length(&kdt->x, nx, _state);
|
|
ae_vector_set_length(&kdt->idx, n, _state);
|
|
ae_vector_set_length(&kdt->r, n, _state);
|
|
ae_vector_set_length(&kdt->buf, ae_maxint(n, nx, _state), _state);
|
|
ae_vector_set_length(&kdt->curboxmin, nx, _state);
|
|
ae_vector_set_length(&kdt->curboxmax, nx, _state);
|
|
}
|
|
|
|
|
|
ae_bool _kdtree_init(void* _p, ae_state *_state, ae_bool make_automatic)
|
|
{
|
|
kdtree *p = (kdtree*)_p;
|
|
ae_touch_ptr((void*)p);
|
|
if( !ae_matrix_init(&p->xy, 0, 0, DT_REAL, _state, make_automatic) )
|
|
return ae_false;
|
|
if( !ae_vector_init(&p->tags, 0, DT_INT, _state, make_automatic) )
|
|
return ae_false;
|
|
if( !ae_vector_init(&p->boxmin, 0, DT_REAL, _state, make_automatic) )
|
|
return ae_false;
|
|
if( !ae_vector_init(&p->boxmax, 0, DT_REAL, _state, make_automatic) )
|
|
return ae_false;
|
|
if( !ae_vector_init(&p->nodes, 0, DT_INT, _state, make_automatic) )
|
|
return ae_false;
|
|
if( !ae_vector_init(&p->splits, 0, DT_REAL, _state, make_automatic) )
|
|
return ae_false;
|
|
if( !ae_vector_init(&p->x, 0, DT_REAL, _state, make_automatic) )
|
|
return ae_false;
|
|
if( !ae_vector_init(&p->idx, 0, DT_INT, _state, make_automatic) )
|
|
return ae_false;
|
|
if( !ae_vector_init(&p->r, 0, DT_REAL, _state, make_automatic) )
|
|
return ae_false;
|
|
if( !ae_vector_init(&p->buf, 0, DT_REAL, _state, make_automatic) )
|
|
return ae_false;
|
|
if( !ae_vector_init(&p->curboxmin, 0, DT_REAL, _state, make_automatic) )
|
|
return ae_false;
|
|
if( !ae_vector_init(&p->curboxmax, 0, DT_REAL, _state, make_automatic) )
|
|
return ae_false;
|
|
return ae_true;
|
|
}
|
|
|
|
|
|
ae_bool _kdtree_init_copy(void* _dst, void* _src, ae_state *_state, ae_bool make_automatic)
|
|
{
|
|
kdtree *dst = (kdtree*)_dst;
|
|
kdtree *src = (kdtree*)_src;
|
|
dst->n = src->n;
|
|
dst->nx = src->nx;
|
|
dst->ny = src->ny;
|
|
dst->normtype = src->normtype;
|
|
if( !ae_matrix_init_copy(&dst->xy, &src->xy, _state, make_automatic) )
|
|
return ae_false;
|
|
if( !ae_vector_init_copy(&dst->tags, &src->tags, _state, make_automatic) )
|
|
return ae_false;
|
|
if( !ae_vector_init_copy(&dst->boxmin, &src->boxmin, _state, make_automatic) )
|
|
return ae_false;
|
|
if( !ae_vector_init_copy(&dst->boxmax, &src->boxmax, _state, make_automatic) )
|
|
return ae_false;
|
|
if( !ae_vector_init_copy(&dst->nodes, &src->nodes, _state, make_automatic) )
|
|
return ae_false;
|
|
if( !ae_vector_init_copy(&dst->splits, &src->splits, _state, make_automatic) )
|
|
return ae_false;
|
|
if( !ae_vector_init_copy(&dst->x, &src->x, _state, make_automatic) )
|
|
return ae_false;
|
|
dst->kneeded = src->kneeded;
|
|
dst->rneeded = src->rneeded;
|
|
dst->selfmatch = src->selfmatch;
|
|
dst->approxf = src->approxf;
|
|
dst->kcur = src->kcur;
|
|
if( !ae_vector_init_copy(&dst->idx, &src->idx, _state, make_automatic) )
|
|
return ae_false;
|
|
if( !ae_vector_init_copy(&dst->r, &src->r, _state, make_automatic) )
|
|
return ae_false;
|
|
if( !ae_vector_init_copy(&dst->buf, &src->buf, _state, make_automatic) )
|
|
return ae_false;
|
|
if( !ae_vector_init_copy(&dst->curboxmin, &src->curboxmin, _state, make_automatic) )
|
|
return ae_false;
|
|
if( !ae_vector_init_copy(&dst->curboxmax, &src->curboxmax, _state, make_automatic) )
|
|
return ae_false;
|
|
dst->curdist = src->curdist;
|
|
dst->debugcounter = src->debugcounter;
|
|
return ae_true;
|
|
}
|
|
|
|
|
|
void _kdtree_clear(void* _p)
|
|
{
|
|
kdtree *p = (kdtree*)_p;
|
|
ae_touch_ptr((void*)p);
|
|
ae_matrix_clear(&p->xy);
|
|
ae_vector_clear(&p->tags);
|
|
ae_vector_clear(&p->boxmin);
|
|
ae_vector_clear(&p->boxmax);
|
|
ae_vector_clear(&p->nodes);
|
|
ae_vector_clear(&p->splits);
|
|
ae_vector_clear(&p->x);
|
|
ae_vector_clear(&p->idx);
|
|
ae_vector_clear(&p->r);
|
|
ae_vector_clear(&p->buf);
|
|
ae_vector_clear(&p->curboxmin);
|
|
ae_vector_clear(&p->curboxmax);
|
|
}
|
|
|
|
|
|
void _kdtree_destroy(void* _p)
|
|
{
|
|
kdtree *p = (kdtree*)_p;
|
|
ae_touch_ptr((void*)p);
|
|
ae_matrix_destroy(&p->xy);
|
|
ae_vector_destroy(&p->tags);
|
|
ae_vector_destroy(&p->boxmin);
|
|
ae_vector_destroy(&p->boxmax);
|
|
ae_vector_destroy(&p->nodes);
|
|
ae_vector_destroy(&p->splits);
|
|
ae_vector_destroy(&p->x);
|
|
ae_vector_destroy(&p->idx);
|
|
ae_vector_destroy(&p->r);
|
|
ae_vector_destroy(&p->buf);
|
|
ae_vector_destroy(&p->curboxmin);
|
|
ae_vector_destroy(&p->curboxmax);
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|