# -*- coding: utf-8 -*- from __future__ import unicode_literals import numpy as np import clag import sys # For jupyter notebook # %pylab inline try: opts,args = getopt.getopt(args, "") except getopt.GetoptError: print 'analyze_lightcure.py ' sys.exit(2) ## load the first light curve lc1 = np.loadtxt(args[0]) # works if first two entries represent minimum spacing, from example # dt = lc1[1,0] - lc1[0, 0] # Time resolution determined from inspection and testing. This script # does not expect evenly spaced data in time. dt = 0.1 _ = plot(lc1[:,0], lc1[:,1]) _ = plot(lc1[:,0], lc1[:,3]) # Split the light curve into segments # seg_length = 256 index = np.arange(len(lc1)).reshape((-1, seg_length)) lc1_time = [lc1[i, 0] for i in index] lc1_strength = [lc1[i, 1] for i in index] lc1_strength_err = [lc1[i, 2] for i in index] # This would work if both curves are in same file # lc2 = [lc1[i, 3] for i in index] #Lc2e = [lc1[i, 4] for i in index] # Load second light curve lc2 = np.loadtxt(args[1]) #### Get the psd for the first light curve #### # These bin values determined summer 2015 for STORM III optical/UV lightcurves fqL = [0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029, 0.25819945, 0.40020915, 0.62032418] # using utilities to set up frequency bins # # fqL = np.logspace(np.log10(1.1/seg_length),np.log10(.5/dt),7) # fqL = np.concatenate(([0.5/seg_length], fqL)) nfq = len(fqL) - 1 ## initialize the psd class for multiple light curves ## P1 = clag.clag('psd', lc1_time, lc1_strength, lc1_strength_err, dt, fqL) ## initial parameters, start with ones inpars = np.ones(nfq) ## print the loglikelihood for the input values ## print P1.logLikelihood(inpars) ## Now do the fitting and find the best fit psd values at the given frequency bins ## psd1, psd1e = clag.optimize(P1, inpars) ## plot ## fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.) loglog(fqd, 0.1*fqd**(-1.5), label='input psd') errorbar(fqd[1:-1], psd1[1:-1], yerr=psd1e[1:-1], fmt='o', ms=10, label='fit') ## Now do the second light curve P2 = clag.clag('psd', lc1_time, lc2, Lc2e, dt, fqL) psd2, psd2e = clag.optimize(P2, inpars) ### Now the cross spectrum ### ### We also give it the calculated psd values as input ### Cx = clag.clag('cxd', [list(i) for i in zip(lc1_time,lc1_time)], [list(i) for i in zip(lc1_strength,lc2)], [list(i) for i in zip(lc1_strength_err,Lc2e)], dt, fqL, psd1, psd2) inpars = np.concatenate( (0.3*(psd1*psd2)**0.5, psd1*0+1.) ) p, pe = clag.optimize(Cx, inpars) phi, phie = p[nfq:], pe[nfq:] lag, lage = phi/(2*np.pi*fqd), phie/(2*np.pi*fqd) cx, cxe = p[:nfq], pe[:nfq] ## plot ## semilogx(fqd, fqd*0+1.0, label='input phase lag') ylim([0.8, 1.2]) errorbar(fqd[1:-1], phi[1:-1], yerr=phie[1:-1], fmt='o', ms=10, label='fit')