# -*- coding: utf-8 -*- from __future__ import unicode_literals import sys import numpy as np import getopt sys.path.insert(1, "/home/caes/science/clag/") import clag # For jupyter notebook # %pylab inline try: opts, args = getopt.getopt(sys.argv[1:], "") except getopt.GetoptError: print 'analyze_lightcure.py ' sys.exit(2) # Time resolution determined from inspection and testing. This script # does not expect evenly spaced data in time. dt = 0.1 ### Get the psd for the #fqL = np.hstack((np.array(0.5*f1),np.logspace(np.log10(0.9*f1), # first light curve ### # These bin values determined summer 2016 for STORM III optical/UV lightcurves fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029, 0.25819945, 0.40020915, 0.62032418]) #A general rules for fqL is as follows: # # define f1, f2 as the two extreme frequencies allowed by the data. i.e. # f1=1/T with T being the length of observation in time units, and # f2=0.5/Δt # # The frequency limits where the psd/lag can be constrained are about # ~0.9f1−0.5f2. The 0.9 factor doesn't depend on the data much, but # values in the range ~[0.9-1.1] are ok. The factor in front of f2 # depends on the quality of the data, for low qualily data, use ~0.1-- # 0.2, and for high quality data, increase it up to 0.9−−1. # # Always include two dummy bins at the low and high frequencies and # ignore them. The first and last bins are generally biased, So I suggest # using the first bin as 0.5f1−0.9f1 (or whatever value you use instead # of 0.9f1, see second point above), and the last bin should be # 0.5f2−2∗f2 (or whatever value instead of 0.5f2, see second point # above). So the frequency bins should be something like: # [0.5f1,0.9f1,...,0.5f2,2f2], the bins in between can be devided as # desired. # #fqd is the bin center # # If lightcurves need to be split: # seg_length = 256; # fqL = np.logspace(np.log10(1.1/seg_length),np.log10(.5/dt),7) # fqL = np.concatenate(([0.5/seg_length], fqL)) # #f1 = 1/175. #f2 = 0.5/dt #fqL = np.hstack((np.array(0.5*f1),np.logspace(np.log10(0.9*f1), # np.log10(0.3*f2),9),np.array(2*f2))) fqL = np.logspace(np.log10(0.0049999999),np.log10(0.62032418),9) nfq = len(fqL) - 1 fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.) ## load the first light curve lc1_time, lc1_strength, lc1_strength_err = np.loadtxt(args[0], skiprows=1).T # for pylab: errorbar(t1,l1,yerr=l1e,fmt='o') # Used throughout ## initialize the psd class for multiple light curves ## P1 = clag.clag('psd10r', [lc1_time], [lc1_strength], [lc1_strength_err], dt, fqL) ref_psd = np.ones(nfq) ref_psd, ref_psd_err = clag.optimize(P1, ref_psd) ref_psd, ref_psd_err = clag.errors(P1, ref_psd, ref_psd_err) ## plot ## #xscale('log'); ylim(-4,2) #errorbar(fqd, ref_psd, yerr=ref_psd_err, fmt='o', ms=10) # Load second light curve lc2_time, lc2_strength, lc2_strength_err = np.loadtxt(args[1],skiprows=1).T P2 = clag.clag('psd10r', [lc2_time], [lc2_strength], [lc2_strength_err], dt, fqL) echo_psd = np.ones(nfq) echo_psd, echo_psd_err = clag.optimize(P2, echo_psd) echo_psd, echo_psd_err = clag.errors(P2, echo_psd, echo_psd_err) ### Now the cross spectrum ### ### We also give it the calculated psd values as input ### Cx = clag.clag('cxd10r', [[lc1_time,lc2_time]], [[lc1_strength,lc2_strength]], [[lc1_strength_err,lc2_strength_err]], dt, fqL, ref_psd, echo_psd) #Cx_vals = np.concatenate( (0.3*(ref_psd*echo_psd)**0.5, ref_psd*0+1.) ) Cx_vals = np.concatenate( ((ref_psd+echo_psd)*0.5-0.3,ref_psd*0+0.1) ) Cx_vals, Cx_err = clag.optimize(Cx, Cx_vals) #?????? %autoreload Cx_vals, Cx_err = clag.errors(Cx,Cx_vals,Cx_err) phi, phie = Cx_vals[nfq:], Cx_err[nfq:] lag, lage = phi/(2*np.pi*fqd), phie/(2*np.pi*fqd) cross_spectrm, cross_spectrm_err = Cx_vals[:nfq], Cx_err[:nfq] np.savetxt("freq.out",fqL.reshape((-1,len(fqL)))) np.savetxt("ref_psd.out",[ref_psd,ref_psd_err]) np.savetxt("echo_psd.out",[echo_psd,echo_psd_err]) np.savetxt("crsspctrm.out",[cross_spectrm,cross_spectrm_err]) np.savetxt("timelag.out",[lag,lage])