fixing up python script for clag

This commit is contained in:
caes 2017-01-29 22:24:33 -05:00
parent cac059a5f7
commit 541c0bed42

View File

@ -16,122 +16,97 @@ except getopt.GetoptError:
print 'analyze_lightcure.py <reference curve> <compared curve>' print 'analyze_lightcure.py <reference curve> <compared curve>'
sys.exit(2) sys.exit(2)
## load the first light curve
lc1_table = np.loadtxt(args[0],skiprows=1)
# works if first two entries represent minimum spacing, from example
# dt = lc1_table[1,0] - lc1_table[0, 0]
# Time resolution determined from inspection and testing. This script # Time resolution determined from inspection and testing. This script
# does not expect evenly spaced data in time. # does not expect evenly spaced data in time.
dt = 0.1 dt = 0.01
# _ = plot(lc1_table[:,0], lc1_table[:,1])
# _ = plot(lc1_table[:,0], lc1_table[:,3])
# Split the light curve into segments #
#seg_length = 256
#index = np.arange(len(data)).reshape((-1, seg_length))
# For now, instead of splitting up the curves, the program will assume
# that the data list is shorter than 256 elemements. so,
index = np.arange(len(lc1_table)).reshape(-1,len(lc1_table))
lc1_time = [lc1_table[i, 0] for i in index]
lc1_strength = [lc1_table[i, 1] for i in index]
lc1_strength_err = [lc1_table[i, 2] for i in index]
#### Get the psd for the first light curve #### #### Get the psd for the first light curve ####
# These bin values determined summer 2016 for STORM III optical/UV lightcurves # These bin values determined summer 2016 for STORM III optical/UV lightcurves
# fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029, 0.25819945, 0.40020915, 0.62032418]) fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029, 0.25819945, 0.40020915, 0.62032418])
# using utilities to set up frequency bins # #A general rules for fqL is as follows:
seg_length = 256; #
fqL = np.logspace(np.log10(1.1/seg_length),np.log10(.5/dt),7) # define f1, f2 as the two extreme frequencies allowed by the data. i.e.
fqL = np.concatenate(([0.5/seg_length], fqL)) # f1=1/T with T being the length of observation in time units, and
# f2=0.5/Δt
#
# The frequency limits where the psd/lag can be constrained are about
# ~0.9f10.5f2. The 0.9 factor doesn't depend on the data much, but
# values in the range ~[0.9-1.1] are ok. The factor in front of f2
# depends on the quality of the data, for low qualily data, use ~0.1--
# 0.2, and for high quality data, increase it up to 0.91.
#
# Always include two dummy bins at the low and high frequencies and
# ignore them. The first and last bins are generally biased, So I suggest
# using the first bin as 0.5f10.9f1 (or whatever value you use instead
# of 0.9f1, see second point above), and the last bin should be
# 0.5f22f2 (or whatever value instead of 0.5f2, see second point
# above). So the frequency bins should be something like:
# [0.5f1,0.9f1,...,0.5f2,2f2], the bins in between can be devided as
# desired.
#
#fqd is the bin center
#
# If lightcurves need to be split:
# seg_length = 256;
# fqL = np.logspace(np.log10(1.1/seg_length),np.log10(.5/dt),7)
# fqL = np.concatenate(([0.5/seg_length], fqL))
#
nfq = len(fqL) - 1 nfq = len(fqL) - 1
fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.)
## load the first light curve
lc1_time, lc1_strength , lc1_strength_err = np.loadtxt(args[0],skiprows=1)
# for pylab: errorbar(t1,l1,yerr=l1e,fmt='o')
# Used throughout
initial_args = np.ones(nfq)
## initialize the psd class for multiple light curves ## ## initialize the psd class for multiple light curves ##
P1 = clag.clag('psd', lc1_time, lc1_strength, lc1_strength_err, dt, fqL) P1 = clag.clag('psd10r', [lc1_time], [lc1_strength], [lc1_strength_err], dt, fqL)
ref_psd, ref_psd_err = clag.optimize(P1, initial_args)
ref_psd, ref_psd_err = clag.errors(P1, ref_psd, ref_psd_err)
## initial parameters, start with ones
inpars = np.ones(nfq)
## print the loglikelihood for the input values ##
P1.logLikelihood(inpars)
## Now do the fitting and find the best fit psd values at the given frequency bins ##
ref_psd, ref_psd_err = clag.optimize(P1, inpars)
## plot ## ## plot ##
fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.) #xscale('log'); ylim(-4,2)
#errorbar(fqd, ref_psd, yerr=ref_psd_err, fmt='o', ms=10)
#loglog(fqd, 0.1*fqd**(-1.5), label='input psd')
#errorbar(fqd[1:-1], ref_psd[1:-1], yerr=ref_psd_err[1:-1], fmt='o', ms=10, label='fit')
# load second lightcurve
# This would work if both curves are in same file
# lc2_strength = [lc1_table[i, 3] for i in index]
# lc2_strength_err = [lc1_table[i, 4] for i in index]
# But, they aren't, so,
# Load second light curve # Load second light curve
lc2_table = np.loadtxt(args[1],skiprows=1) lc2_time, lc2_strength, lc2_strength_err = np.loadtxt(args[1],skiprows=1)
P2 = clag.clag('psd10r', [lc2_time], [lc2_strength], [lc2_strength_err], dt, fqL)
index = np.arange(len(lc2_table)).reshape(-1,len(lc2_table)) echo_psd, echo_psd_err = clag.optimize(P2, initial_args)
echo_psd, echo_psd_err = clag.errors(P2, echo_psd, echo_psd_err)
lc2_time = [lc2_table[i, 0] for i in index]
lc2_strength = [lc2_table[i, 1] for i in index]
lc2_strength_err = [lc2_table[i, 2] for i in index]
## Now do the second light curve
P2 = clag.clag('psd', lc2_time, lc2_strength, lc2_strength_err, dt, fqL)
echo_psd, echo_psd_err = clag.optimize(P2, inpars)
### Now the cross spectrum ### ### Now the cross spectrum ###
### We also give it the calculated psd values as input ### ### We also give it the calculated psd values as input ###
Cx = clag.clag('cxd', Cx = clag.clag('cxd10r',
[list(i) for i in zip(lc1_time,lc1_time)], [[lc1_time,lc1_time]],
[list(i) for i in zip(lc1_strength,lc2_strength)], [[lc1_strength,lc2_strengt]],
[list(i) for i in zip(lc1_strength_err,lc2_strength_err)], [[lc1_strength_err,lc2_strength_err]],
dt, fqL, ref_psd, echo_psd) dt, fqL, ref_psd, echo_psd)
inpars = np.concatenate( (0.3*(ref_psd*echo_psd)**0.5, ref_psd*0+1.) ) #Cx_vals = np.concatenate( (0.3*(ref_psd*echo_psd)**0.5, ref_psd*0+1.) )
p, pe = clag.optimize(Cx, inpars) Cx_vals = np.concatenate( ((ref_psd+echo_psd)*0.5-0.3,ref_psd*0+0.1) )
phi, phie = p[nfq:], pe[nfq:] Cx_vals, Cx_err = clag.optimize(Cx, Cx_vals)
#?????? %autoreload
Cx_vals, Cx_err = clas.errors(Cx,Cx_vals,Cx_err)
phi, phie = Cx_vals[nfq:], Cx_err[nfq:]
lag, lage = phi/(2*np.pi*fqd), phie/(2*np.pi*fqd) lag, lage = phi/(2*np.pi*fqd), phie/(2*np.pi*fqd)
cx, cxe = p[:nfq], pe[:nfq] cross_spectrm, cross_spectrm_err = Cx_vals[:nfq], Cx_err[:nfq]
np.savetxt("freq.out",fqL.reshape((-1,len(fqL)))) np.savetxt("freq.out",fqL.reshape((-1,len(fqL))))
np.savetxt("ref_psd.out",[ref_psd,ref_psd_err]) np.savetxt("ref_psd.out",[ref_psd,ref_psd_err])
np.savetxt("echo_psd.out",[echo_psd,echo_psd_err]) np.savetxt("echo_psd.out",[echo_psd,echo_psd_err])
np.savetxt("crsspctrm.out",[cx,cxe]) np.savetxt("crsspctrm.out",[cross_spectrm,cross_spectrm_err])
np.savetxt("timelag.out",[lag,lage]) np.savetxt("timelag.out",[lag,lage])