mirror of
https://asciireactor.com/otho/psdlag-agn.git
synced 2024-11-22 09:35:08 +00:00
fixing up python script for clag
This commit is contained in:
parent
cac059a5f7
commit
541c0bed42
@ -16,122 +16,97 @@ except getopt.GetoptError:
|
|||||||
print 'analyze_lightcure.py <reference curve> <compared curve>'
|
print 'analyze_lightcure.py <reference curve> <compared curve>'
|
||||||
sys.exit(2)
|
sys.exit(2)
|
||||||
|
|
||||||
## load the first light curve
|
|
||||||
lc1_table = np.loadtxt(args[0],skiprows=1)
|
|
||||||
|
|
||||||
# works if first two entries represent minimum spacing, from example
|
|
||||||
# dt = lc1_table[1,0] - lc1_table[0, 0]
|
|
||||||
|
|
||||||
# Time resolution determined from inspection and testing. This script
|
# Time resolution determined from inspection and testing. This script
|
||||||
# does not expect evenly spaced data in time.
|
# does not expect evenly spaced data in time.
|
||||||
dt = 0.1
|
dt = 0.01
|
||||||
|
|
||||||
|
|
||||||
# _ = plot(lc1_table[:,0], lc1_table[:,1])
|
|
||||||
# _ = plot(lc1_table[:,0], lc1_table[:,3])
|
|
||||||
|
|
||||||
|
|
||||||
# Split the light curve into segments #
|
|
||||||
#seg_length = 256
|
|
||||||
#index = np.arange(len(data)).reshape((-1, seg_length))
|
|
||||||
|
|
||||||
# For now, instead of splitting up the curves, the program will assume
|
|
||||||
# that the data list is shorter than 256 elemements. so,
|
|
||||||
|
|
||||||
index = np.arange(len(lc1_table)).reshape(-1,len(lc1_table))
|
|
||||||
|
|
||||||
lc1_time = [lc1_table[i, 0] for i in index]
|
|
||||||
lc1_strength = [lc1_table[i, 1] for i in index]
|
|
||||||
lc1_strength_err = [lc1_table[i, 2] for i in index]
|
|
||||||
|
|
||||||
#### Get the psd for the first light curve ####
|
#### Get the psd for the first light curve ####
|
||||||
|
|
||||||
# These bin values determined summer 2016 for STORM III optical/UV lightcurves
|
# These bin values determined summer 2016 for STORM III optical/UV lightcurves
|
||||||
# fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029, 0.25819945, 0.40020915, 0.62032418])
|
fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029, 0.25819945, 0.40020915, 0.62032418])
|
||||||
|
|
||||||
# using utilities to set up frequency bins #
|
#A general rules for fqL is as follows:
|
||||||
seg_length = 256;
|
#
|
||||||
fqL = np.logspace(np.log10(1.1/seg_length),np.log10(.5/dt),7)
|
# define f1, f2 as the two extreme frequencies allowed by the data. i.e.
|
||||||
fqL = np.concatenate(([0.5/seg_length], fqL))
|
# f1=1/T with T being the length of observation in time units, and
|
||||||
|
# f2=0.5/Δt
|
||||||
|
#
|
||||||
|
# The frequency limits where the psd/lag can be constrained are about
|
||||||
|
# ~0.9f1−0.5f2. The 0.9 factor doesn't depend on the data much, but
|
||||||
|
# values in the range ~[0.9-1.1] are ok. The factor in front of f2
|
||||||
|
# depends on the quality of the data, for low qualily data, use ~0.1--
|
||||||
|
# 0.2, and for high quality data, increase it up to 0.9−−1.
|
||||||
|
#
|
||||||
|
# Always include two dummy bins at the low and high frequencies and
|
||||||
|
# ignore them. The first and last bins are generally biased, So I suggest
|
||||||
|
# using the first bin as 0.5f1−0.9f1 (or whatever value you use instead
|
||||||
|
# of 0.9f1, see second point above), and the last bin should be
|
||||||
|
# 0.5f2−2∗f2 (or whatever value instead of 0.5f2, see second point
|
||||||
|
# above). So the frequency bins should be something like:
|
||||||
|
# [0.5f1,0.9f1,...,0.5f2,2f2], the bins in between can be devided as
|
||||||
|
# desired.
|
||||||
|
#
|
||||||
|
#fqd is the bin center
|
||||||
|
#
|
||||||
|
# If lightcurves need to be split:
|
||||||
|
# seg_length = 256;
|
||||||
|
# fqL = np.logspace(np.log10(1.1/seg_length),np.log10(.5/dt),7)
|
||||||
|
# fqL = np.concatenate(([0.5/seg_length], fqL))
|
||||||
|
#
|
||||||
|
|
||||||
nfq = len(fqL) - 1
|
nfq = len(fqL) - 1
|
||||||
|
fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.)
|
||||||
|
|
||||||
|
|
||||||
|
## load the first light curve
|
||||||
|
lc1_time, lc1_strength , lc1_strength_err = np.loadtxt(args[0],skiprows=1)
|
||||||
|
|
||||||
|
# for pylab: errorbar(t1,l1,yerr=l1e,fmt='o')
|
||||||
|
|
||||||
|
# Used throughout
|
||||||
|
initial_args = np.ones(nfq)
|
||||||
|
|
||||||
|
|
||||||
## initialize the psd class for multiple light curves ##
|
## initialize the psd class for multiple light curves ##
|
||||||
P1 = clag.clag('psd', lc1_time, lc1_strength, lc1_strength_err, dt, fqL)
|
P1 = clag.clag('psd10r', [lc1_time], [lc1_strength], [lc1_strength_err], dt, fqL)
|
||||||
|
ref_psd, ref_psd_err = clag.optimize(P1, initial_args)
|
||||||
|
ref_psd, ref_psd_err = clag.errors(P1, ref_psd, ref_psd_err)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## initial parameters, start with ones
|
|
||||||
inpars = np.ones(nfq)
|
|
||||||
|
|
||||||
## print the loglikelihood for the input values ##
|
|
||||||
P1.logLikelihood(inpars)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## Now do the fitting and find the best fit psd values at the given frequency bins ##
|
|
||||||
ref_psd, ref_psd_err = clag.optimize(P1, inpars)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## plot ##
|
## plot ##
|
||||||
fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.)
|
#xscale('log'); ylim(-4,2)
|
||||||
|
#errorbar(fqd, ref_psd, yerr=ref_psd_err, fmt='o', ms=10)
|
||||||
#loglog(fqd, 0.1*fqd**(-1.5), label='input psd')
|
|
||||||
#errorbar(fqd[1:-1], ref_psd[1:-1], yerr=ref_psd_err[1:-1], fmt='o', ms=10, label='fit')
|
|
||||||
|
|
||||||
# load second lightcurve
|
|
||||||
|
|
||||||
# This would work if both curves are in same file
|
|
||||||
# lc2_strength = [lc1_table[i, 3] for i in index]
|
|
||||||
# lc2_strength_err = [lc1_table[i, 4] for i in index]
|
|
||||||
|
|
||||||
# But, they aren't, so,
|
|
||||||
|
|
||||||
# Load second light curve
|
# Load second light curve
|
||||||
lc2_table = np.loadtxt(args[1],skiprows=1)
|
lc2_time, lc2_strength, lc2_strength_err = np.loadtxt(args[1],skiprows=1)
|
||||||
|
P2 = clag.clag('psd10r', [lc2_time], [lc2_strength], [lc2_strength_err], dt, fqL)
|
||||||
index = np.arange(len(lc2_table)).reshape(-1,len(lc2_table))
|
echo_psd, echo_psd_err = clag.optimize(P2, initial_args)
|
||||||
|
echo_psd, echo_psd_err = clag.errors(P2, echo_psd, echo_psd_err)
|
||||||
lc2_time = [lc2_table[i, 0] for i in index]
|
|
||||||
lc2_strength = [lc2_table[i, 1] for i in index]
|
|
||||||
lc2_strength_err = [lc2_table[i, 2] for i in index]
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## Now do the second light curve
|
|
||||||
|
|
||||||
P2 = clag.clag('psd', lc2_time, lc2_strength, lc2_strength_err, dt, fqL)
|
|
||||||
|
|
||||||
echo_psd, echo_psd_err = clag.optimize(P2, inpars)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
### Now the cross spectrum ###
|
### Now the cross spectrum ###
|
||||||
### We also give it the calculated psd values as input ###
|
### We also give it the calculated psd values as input ###
|
||||||
Cx = clag.clag('cxd',
|
Cx = clag.clag('cxd10r',
|
||||||
[list(i) for i in zip(lc1_time,lc1_time)],
|
[[lc1_time,lc1_time]],
|
||||||
[list(i) for i in zip(lc1_strength,lc2_strength)],
|
[[lc1_strength,lc2_strengt]],
|
||||||
[list(i) for i in zip(lc1_strength_err,lc2_strength_err)],
|
[[lc1_strength_err,lc2_strength_err]],
|
||||||
dt, fqL, ref_psd, echo_psd)
|
dt, fqL, ref_psd, echo_psd)
|
||||||
|
|
||||||
inpars = np.concatenate( (0.3*(ref_psd*echo_psd)**0.5, ref_psd*0+1.) )
|
#Cx_vals = np.concatenate( (0.3*(ref_psd*echo_psd)**0.5, ref_psd*0+1.) )
|
||||||
p, pe = clag.optimize(Cx, inpars)
|
Cx_vals = np.concatenate( ((ref_psd+echo_psd)*0.5-0.3,ref_psd*0+0.1) )
|
||||||
phi, phie = p[nfq:], pe[nfq:]
|
Cx_vals, Cx_err = clag.optimize(Cx, Cx_vals)
|
||||||
|
|
||||||
|
#?????? %autoreload
|
||||||
|
Cx_vals, Cx_err = clas.errors(Cx,Cx_vals,Cx_err)
|
||||||
|
|
||||||
|
phi, phie = Cx_vals[nfq:], Cx_err[nfq:]
|
||||||
lag, lage = phi/(2*np.pi*fqd), phie/(2*np.pi*fqd)
|
lag, lage = phi/(2*np.pi*fqd), phie/(2*np.pi*fqd)
|
||||||
cx, cxe = p[:nfq], pe[:nfq]
|
cross_spectrm, cross_spectrm_err = Cx_vals[:nfq], Cx_err[:nfq]
|
||||||
|
|
||||||
np.savetxt("freq.out",fqL.reshape((-1,len(fqL))))
|
np.savetxt("freq.out",fqL.reshape((-1,len(fqL))))
|
||||||
np.savetxt("ref_psd.out",[ref_psd,ref_psd_err])
|
np.savetxt("ref_psd.out",[ref_psd,ref_psd_err])
|
||||||
np.savetxt("echo_psd.out",[echo_psd,echo_psd_err])
|
np.savetxt("echo_psd.out",[echo_psd,echo_psd_err])
|
||||||
np.savetxt("crsspctrm.out",[cx,cxe])
|
np.savetxt("crsspctrm.out",[cross_spectrm,cross_spectrm_err])
|
||||||
np.savetxt("timelag.out",[lag,lage])
|
np.savetxt("timelag.out",[lag,lage])
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user