mirror of
https://asciireactor.com/otho/psdlag-agn.git
synced 2024-11-22 23:55:07 +00:00
5688 lines
189 KiB
Python
5688 lines
189 KiB
Python
|
"""
|
||
|
Suite to reduce spectroscopic data.
|
||
|
|
||
|
subfunctions:
|
||
|
calibrate
|
||
|
setheaders -- exptime, gain, readnoise, etc.
|
||
|
makeflat -- make median flat and noisy pixel map
|
||
|
makedark -- make median dark, and estimate noise in each pixel.
|
||
|
clean -- clean and replace bad pixels
|
||
|
extract
|
||
|
trace -- trace spectral orders
|
||
|
makeprofile -- compute mean spectral PSF (a spline) for an order
|
||
|
fitprofile -- fit given spline-PSF to a spectral cross-section
|
||
|
|
||
|
Utilities:
|
||
|
pickloc
|
||
|
fitPSF
|
||
|
"""
|
||
|
# 2010-07-02 10:56 IJC: Began the great endeavor.
|
||
|
|
||
|
|
||
|
|
||
|
try:
|
||
|
from astropy.io import fits as pyfits
|
||
|
except:
|
||
|
import pyfits
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
from scipy import optimize, interpolate
|
||
|
import pdb
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
class baseObject:
|
||
|
"""Empty object container.
|
||
|
"""
|
||
|
def __init__(self):
|
||
|
return
|
||
|
|
||
|
|
||
|
########
|
||
|
# Utilities to add in a separate cohesive package at a later date:
|
||
|
|
||
|
from analysis import polyfitr, stdr, binarray, gaussian, egaussian
|
||
|
import analysis as an
|
||
|
from nsdata import bfixpix
|
||
|
|
||
|
########
|
||
|
# Parameters to put in a GUI:
|
||
|
gain = 5 # e-/ADU
|
||
|
readnoise = 25 # e-
|
||
|
|
||
|
|
||
|
#########
|
||
|
|
||
|
[docs]
|
||
|
def message(text):
|
||
|
"""Display a message; for now, with text."""
|
||
|
from sys import stdout
|
||
|
|
||
|
print text
|
||
|
stdout.flush()
|
||
|
|
||
|
[docs]
|
||
|
def pickloc(ax=None, zoom=10):
|
||
|
"""
|
||
|
:INPUTS:
|
||
|
ax : (axes instance) -- axes in which to pick a location
|
||
|
|
||
|
zoom : int -- zoom radius for target confirmation
|
||
|
: 2-tuple -- (x,y) radii for zoom confirmation.
|
||
|
"""
|
||
|
# 2011-04-29 19:26 IJC:
|
||
|
# 2011-09-03 20:59 IJMC: Zoom can now be a tuple; x,y not cast as int.
|
||
|
|
||
|
pickedloc = False
|
||
|
if ax is None:
|
||
|
ax = plt.gca()
|
||
|
|
||
|
axlimits = ax.axis()
|
||
|
|
||
|
if hasattr(zoom, '__iter__') and len(zoom)>1:
|
||
|
xzoom, yzoom = zoom
|
||
|
else:
|
||
|
xzoom = zoom
|
||
|
yzoom = zoom
|
||
|
|
||
|
while not pickedloc:
|
||
|
ax.set_title("click to select location")
|
||
|
ax.axis(axlimits)
|
||
|
|
||
|
x = None
|
||
|
while x is None:
|
||
|
selectevent = plt.ginput(n=1,show_clicks=False)
|
||
|
if len(selectevent)>0: # Prevent user from cancelling out.
|
||
|
x,y = selectevent[0]
|
||
|
|
||
|
#x = x.astype(int)
|
||
|
#y = y.astype(int)
|
||
|
|
||
|
|
||
|
if zoom is not None:
|
||
|
ax.axis([x-xzoom,x+xzoom,y-yzoom,y+yzoom])
|
||
|
|
||
|
ax.set_title("you selected xy=(%i,%i)\nclick again to confirm, or press Enter/Return to try again" %(x,y) )
|
||
|
plt.draw()
|
||
|
|
||
|
confirmevent = plt.ginput(n=1,show_clicks=False)
|
||
|
if len(confirmevent)>0:
|
||
|
pickedloc = True
|
||
|
loc = confirmevent[0]
|
||
|
|
||
|
return loc
|
||
|
|
||
|
[docs]
|
||
|
def fitTophat(vec, err=None, verbose=False, guess=None):
|
||
|
"""Fit a 1D tophat function to an input data vector.
|
||
|
|
||
|
Return the fit, and uncertainty estimates on that fit.
|
||
|
|
||
|
SEE ALSO: :func:`analysis.gaussian`"""
|
||
|
xtemp = np.arange(1.0*len(vec))
|
||
|
|
||
|
if guess is None: # Make some educated guesses as to the parameters:
|
||
|
pedestal = 0.5 * (0.8*np.median(vec) + 0.2*(vec[0]+vec[1]))
|
||
|
area = (vec-pedestal).sum()
|
||
|
centroid = (vec*xtemp).sum()/vec.sum()
|
||
|
if centroid<0:
|
||
|
centroid = 1.
|
||
|
elif centroid>len(vec):
|
||
|
centroid = len(vec)-2.
|
||
|
|
||
|
sigma = area/vec[int(centroid)]/np.sqrt(2*np.pi)
|
||
|
if sigma<=0:
|
||
|
sigma = 0.01
|
||
|
|
||
|
guess = [area,sigma,centroid,pedestal]
|
||
|
|
||
|
if verbose:
|
||
|
print 'Gaussian guess parameters>>', guess
|
||
|
if err is None:
|
||
|
fit, fitcov = optimize.leastsq(egaussian, guess, args=(xtemp, vec), full_output=True)[0:2]
|
||
|
pc.resfunc
|
||
|
|
||
|
|
||
|
fit, fitcov = optimize.leastsq(egaussian, guess, args=(xtemp, vec), full_output=True)[0:2]
|
||
|
else:
|
||
|
fit, fitcov = optimize.leastsq(egaussian, guess, args=(xtemp, vec, err), full_output=True)[0:2]
|
||
|
|
||
|
if fitcov is None: # The fitting was really bad!
|
||
|
fiterr = np.abs(fit)
|
||
|
else:
|
||
|
fiterr = np.sqrt(np.diag(fitcov))
|
||
|
|
||
|
if verbose:
|
||
|
print 'Best-fit parameters>>', fit
|
||
|
f = plt.figure()
|
||
|
ax = plt.axes()
|
||
|
plt.plot(xtemp, vec, 'o', \
|
||
|
xtemp, gaussian(fit, xtemp), '-', \
|
||
|
xtemp, gaussian(guess, xtemp), '--')
|
||
|
|
||
|
return fit, fiterr
|
||
|
|
||
|
[docs]
|
||
|
def fitGaussian(vec, err=None, verbose=False, guess=None):
|
||
|
"""Fit a Gaussian function to an input data vector.
|
||
|
|
||
|
Return the fit, and uncertainty estimates on that fit.
|
||
|
|
||
|
SEE ALSO: :func:`analysis.gaussian`"""
|
||
|
# 2012-12-20 13:28 IJMC: Make a more robust guess for the centroid.
|
||
|
xtemp = np.arange(1.0*len(vec))
|
||
|
|
||
|
if guess is None: # Make some educated guesses as to the parameters:
|
||
|
pedestal = (0.8*np.median(vec) + 0.2*(vec[0]+vec[1]))
|
||
|
area = (vec-pedestal).sum()
|
||
|
centroid = ((vec-pedestal)**2*xtemp).sum()/((vec-pedestal)**2).sum()
|
||
|
if centroid<0:
|
||
|
centroid = 1.
|
||
|
elif centroid>len(vec):
|
||
|
centroid = len(vec)-2.
|
||
|
#pdb.set_trace()
|
||
|
sigma = area/vec[int(centroid)]/np.sqrt(2*np.pi)
|
||
|
if sigma<=0:
|
||
|
sigma = .01
|
||
|
|
||
|
guess = [area,sigma,centroid,pedestal]
|
||
|
|
||
|
if err is None:
|
||
|
err = np.ones(vec.shape, dtype=float)
|
||
|
|
||
|
badvals = True - (np.isfinite(xtemp) * np.isfinite(err) * np.isfinite(vec))
|
||
|
vec[badvals] = np.median(vec[True - badvals])
|
||
|
err[badvals] = vec[True - badvals].max() * 1e9
|
||
|
|
||
|
if verbose:
|
||
|
print 'Gaussian guess parameters>>', guess
|
||
|
|
||
|
if not np.isfinite(xtemp).all():
|
||
|
pdb.set_trace()
|
||
|
if not np.isfinite(vec).all():
|
||
|
pdb.set_trace()
|
||
|
if not np.isfinite(err).all():
|
||
|
pdb.set_trace()
|
||
|
|
||
|
try:
|
||
|
fit, fitcov = optimize.leastsq(egaussian, guess, args=(xtemp, vec, err), full_output=True)[0:2]
|
||
|
except:
|
||
|
pdb.set_trace()
|
||
|
|
||
|
if fitcov is None: # The fitting was really bad!
|
||
|
fiterr = np.abs(fit)
|
||
|
else:
|
||
|
fiterr = np.sqrt(np.diag(fitcov))
|
||
|
|
||
|
#pdb.set_trace()
|
||
|
if verbose:
|
||
|
print 'Best-fit parameters>>', fit
|
||
|
f = plt.figure()
|
||
|
ax = plt.axes()
|
||
|
plt.plot(xtemp, vec, 'o', \
|
||
|
xtemp, gaussian(fit, xtemp), '-', \
|
||
|
xtemp, gaussian(guess, xtemp), '--')
|
||
|
|
||
|
return fit, fiterr
|
||
|
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def fitGaussiann(vec, err=None, verbose=False, guess=None, holdfixed=None):
|
||
|
"""Fit a Gaussian function to an input data vector.
|
||
|
|
||
|
Return the fit, and uncertainty estimates on that fit.
|
||
|
|
||
|
SEE ALSO: :func:`analysis.gaussian`"""
|
||
|
from phasecurves import errfunc
|
||
|
from analysis import fmin
|
||
|
|
||
|
xtemp = np.arange(1.0*len(vec))
|
||
|
|
||
|
if guess is None: # Make some educated guesses as to the parameters:
|
||
|
holdfixed = None
|
||
|
|
||
|
pedestal = 0.5 * (0.8*np.median(vec) + 0.2*(vec[0]+vec[1]))
|
||
|
area = (vec-pedestal).sum()
|
||
|
centroid = (vec*xtemp).sum()/vec.sum()
|
||
|
if centroid<0:
|
||
|
centroid = 1.
|
||
|
elif centroid>len(vec):
|
||
|
centroid = len(vec)-2.
|
||
|
|
||
|
sigma = area/vec[int(centroid)]/np.sqrt(2*np.pi)
|
||
|
if sigma<=0:
|
||
|
sigma = 0.01
|
||
|
|
||
|
guess = [area,sigma,centroid,pedestal]
|
||
|
|
||
|
if err is None:
|
||
|
err = np.ones(vec.shape, dtype=float)
|
||
|
|
||
|
badvals = True - (np.isfinite(xtemp) * np.isfinite(err) * np.isfinite(vec))
|
||
|
vec[badvals] = np.median(vec[True - badvals])
|
||
|
err[badvals] = vec[True - badvals].max() * 1e9
|
||
|
|
||
|
if verbose:
|
||
|
print 'Gaussian guess parameters>>', guess
|
||
|
|
||
|
if not np.isfinite(xtemp).all():
|
||
|
pdb.set_trace()
|
||
|
if not np.isfinite(vec).all():
|
||
|
pdb.set_trace()
|
||
|
if not np.isfinite(err).all():
|
||
|
pdb.set_trace()
|
||
|
|
||
|
try:
|
||
|
#fit, fitcov = optimize.leastsq(egaussian, guess, args=(xtemp, vec, err), full_output=True)[0:2]
|
||
|
fitargs = (gaussian, xtemp, vec, 1./err**2)
|
||
|
fit = fmin(errfunc, guess, args=fitargs, full_output=True, disp=False, holdfixed=holdfixed)[0]
|
||
|
fitcov = None
|
||
|
except:
|
||
|
pdb.set_trace()
|
||
|
|
||
|
if fitcov is None: # The fitting was really bad!
|
||
|
fiterr = np.abs(fit)
|
||
|
else:
|
||
|
fiterr = np.sqrt(np.diag(fitcov))
|
||
|
|
||
|
if verbose:
|
||
|
print 'Best-fit parameters>>', fit
|
||
|
f = plt.figure()
|
||
|
ax = plt.axes()
|
||
|
plt.plot(xtemp, vec, 'o', \
|
||
|
xtemp, gaussian(fit, xtemp), '-', \
|
||
|
xtemp, gaussian(guess, xtemp), '--')
|
||
|
|
||
|
return fit, fiterr
|
||
|
|
||
|
[docs]
|
||
|
def fit2Gaussian(vec, err=None, verbose=False, guess=None, holdfixed=None):
|
||
|
"""Fit two Gaussians simultaneously to an input data vector.
|
||
|
|
||
|
:INPUTS:
|
||
|
vec : sequence
|
||
|
1D array or list of values to fit to
|
||
|
|
||
|
err : sequence
|
||
|
uncertainties on vec
|
||
|
|
||
|
guess : sequence
|
||
|
guess parameters: [area1, sigma1, cen1, area2, sig2, cen2, constant].
|
||
|
Note that parameters are in pixel units.
|
||
|
|
||
|
holdfixed : sequence
|
||
|
parameters to hold fixed in analysis, _IF_ guess is passed in.
|
||
|
|
||
|
|
||
|
SEE ALSO: :func:`analysis.gaussian`, :func:`fitGaussian`"""
|
||
|
|
||
|
# 2012-03-14 14:33 IJMC: Created
|
||
|
|
||
|
from tools import sumfunc
|
||
|
from phasecurves import errfunc
|
||
|
from analysis import fmin # Don't use SciPy, because I want keywords!
|
||
|
|
||
|
|
||
|
xtemp = np.arange(1.0*len(vec))
|
||
|
if err is None:
|
||
|
err = np.ones(xtemp.shape)
|
||
|
else:
|
||
|
err = np.array(err, copy=False)
|
||
|
|
||
|
if guess is None: # Make some semi-educated guesses as to the parameters:
|
||
|
holdfixed = None
|
||
|
|
||
|
pedestal = 0.5 * (0.8*np.median(vec) + 0.2*(vec[0]+vec[1]))
|
||
|
area = (vec-pedestal).sum()
|
||
|
centroid = (vec*xtemp).sum()/vec.sum()
|
||
|
if centroid<0:
|
||
|
centroid = 1.
|
||
|
elif centroid>len(vec):
|
||
|
centroid = len(vec)-2.
|
||
|
|
||
|
sigma = area/vec[int(centroid)]/np.sqrt(2*np.pi)
|
||
|
if sigma<=0:
|
||
|
sigma = 0.01
|
||
|
|
||
|
guess1 = [area/2.,sigma/1.4,centroid+xtemp.size/5.]
|
||
|
guess2 = [area/2.,sigma/1.4,centroid-xtemp.size/5.]
|
||
|
guess = guess1 + guess2 + [pedestal]
|
||
|
|
||
|
|
||
|
## Testing:
|
||
|
#mod = sumfunc(guess, gaussian, gaussian, 3, 4, args1=(xtemp,), args2=(xtemp,))
|
||
|
#fitargs = (sumfunc, gaussian, gaussian, 3, 4, (xtemp,), (xtemp,), None, vec, 1./err**2)
|
||
|
#fitkw = dict(useindepvar=False, testfinite=False)
|
||
|
#chisq = errfunc(guess, *fitargs, **fitkw)
|
||
|
#thisfit = fmin(errfunc, guess, args=fitargs, kw=fitkw, full_output=True)
|
||
|
#mod2 = sumfunc(thisfit[0], gaussian, gaussian, 3, 4, args1=(xtemp,), args2=(xtemp,))
|
||
|
|
||
|
if verbose:
|
||
|
print '2-Gaussian guess parameters>>', guess
|
||
|
|
||
|
fitargs = (sumfunc, gaussian, gaussian, 3, 4, (xtemp,), (xtemp,), vec, 1./err**2)
|
||
|
fitkw = dict(useindepvar=False, testfinite=False)
|
||
|
fit = fmin(errfunc, guess, args=fitargs, kw=fitkw, full_output=True, disp=False, holdfixed=holdfixed)
|
||
|
|
||
|
if verbose:
|
||
|
model = sumfunc(fit[0], gaussian, gaussian, 3, 4, args1=(xtemp,), args2=(xtemp,))
|
||
|
model1 = gaussian(fit[0][0:3], xtemp)
|
||
|
model2 = gaussian(fit[0][3:6], xtemp)
|
||
|
print 'Best-fit parameters>>', fit[0]
|
||
|
f = plt.figure()
|
||
|
ax = plt.axes()
|
||
|
plt.plot(xtemp, vec, 'o', \
|
||
|
xtemp, model, '--')
|
||
|
plt.plot(xtemp, model1+fit[0][6], ':')
|
||
|
plt.plot(xtemp, model2+fit[0][6], ':')
|
||
|
|
||
|
return fit[0]
|
||
|
|
||
|
[docs]
|
||
|
def fitPSF(ec, guessLoc, fitwidth=20, verbose=False, sigma=5, medwidth=6, err_ec=None):
|
||
|
"""
|
||
|
Helper function to fit 1D PSF near a given region. Assumes
|
||
|
spectrum runs horizontally across the frame!
|
||
|
|
||
|
ec : 2D numpy array
|
||
|
echellogram array, with horizontal dispersion direction
|
||
|
guessLoc : 2-tuple
|
||
|
A slight misnomer for this (x,y) tuple: y is a guess and will
|
||
|
be fit, but x is the coordinate at which the fitting takes
|
||
|
place.
|
||
|
fitwidth : int
|
||
|
width of cross-dispersion direction to use in fitting
|
||
|
medwidth : int
|
||
|
number of columns to average over when fitting a profile
|
||
|
verbose : bool
|
||
|
verbosity/debugging printout flag
|
||
|
|
||
|
sigma : scalar
|
||
|
sigma scale for clipping bad values
|
||
|
"""
|
||
|
# 2010-08-24 22:00 IJC: Added sigma option
|
||
|
# 2010-11-29 20:54 IJC: Added medwidth option
|
||
|
# 2011-11-26 23:17 IJMC: Fixed bug in computing "badval"
|
||
|
# 2012-04-27 05:15 IJMC: Now allow error estimates to be passed in.
|
||
|
# 2012-04-28 08:48 IJMC: Added better guessing for initial case.
|
||
|
|
||
|
if verbose<0:
|
||
|
verbose = False
|
||
|
|
||
|
ny, nx = ec.shape
|
||
|
|
||
|
x = guessLoc[0].astype(int)
|
||
|
y = guessLoc[1].astype(int)
|
||
|
|
||
|
# Fit the PSF profile at the initial, selected location:
|
||
|
ymin = max(y-fitwidth/2, 0)
|
||
|
ymax = min(y+fitwidth/2, ny)
|
||
|
xmin = max(x-medwidth/2, 0)
|
||
|
xmax = min(x+medwidth/2, nx)
|
||
|
if verbose:
|
||
|
message("Sampling: ec[%i:%i,%i:%i]"%(ymin,ymax,xmin,xmax))
|
||
|
|
||
|
firstSeg = np.median(ec[ymin:ymax,xmin:xmax],1)
|
||
|
if verbose:
|
||
|
print firstSeg
|
||
|
|
||
|
if err_ec is None:
|
||
|
ey = stdr(firstSeg, sigma)
|
||
|
badval = abs((firstSeg-np.median(firstSeg))/ey) > sigma
|
||
|
err = np.ones(firstSeg.shape, float)
|
||
|
err[badval] = 1e9
|
||
|
else:
|
||
|
err = np.sqrt((err_ec[ymin:ymax,xmin:xmax]**2).mean(1))
|
||
|
err[True - np.isfinite(err)] = err[np.isfinite(err)].max() * 1e9
|
||
|
|
||
|
guessAmp = (an.wmean(firstSeg, 1./err**2) - np.median(firstSeg)) * fitwidth
|
||
|
if not np.isfinite(guessAmp):
|
||
|
pdb.set_trace()
|
||
|
|
||
|
#fit, efit = fitGaussian(firstSeg, verbose=verbose, err=err, guess=[guessAmp[0], 5, fitwidth/2., np.median(firstSeg)])
|
||
|
fit, efit = fitGaussian(firstSeg, verbose=verbose, err=err, guess=None)
|
||
|
newY = ymin+fit[2]
|
||
|
err_newY = efit[2]
|
||
|
if verbose:
|
||
|
message("Initial position: (%3.2f,%3.2f)"%(x,newY))
|
||
|
|
||
|
return x, newY, err_newY
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def traceorders(filename, pord=5, dispaxis=0, nord=1, verbose=False, ordlocs=None, stepsize=20, fitwidth=20, plotalot=False, medwidth=6, xylims=None, uncertainties=None, g=gain, rn=readnoise, badpixelmask=None, retsnr=False, retfits=False):
|
||
|
"""
|
||
|
Trace spectral orders for a specified filename.
|
||
|
|
||
|
filename : str OR 2D array
|
||
|
full path and filename to a 2D echelleogram FITS file, _OR_
|
||
|
a 2D numpy array representing such a file.
|
||
|
|
||
|
OPTIONAL INPUTS:
|
||
|
pord : int
|
||
|
polynomial order of spectral order fit
|
||
|
|
||
|
dispaxis : int
|
||
|
set dispersion axis: 0 = horizontal and = vertical
|
||
|
|
||
|
nord : int
|
||
|
number of spectral orders to trace.
|
||
|
|
||
|
ordlocs : (nord x 2) numpy array
|
||
|
Location to "auto-click" and
|
||
|
|
||
|
verbose: int
|
||
|
0,1,2; whether (and how much) to print various verbose debugging text
|
||
|
|
||
|
stepsize : int
|
||
|
number of pixels to step along the spectrum while tracing
|
||
|
|
||
|
fitwidth : int
|
||
|
number of pixels to use when fitting a spectrum's cross-section
|
||
|
|
||
|
medwidth : int
|
||
|
number of columns to average when fitting profiles to echelleograms
|
||
|
|
||
|
plotalot : bool
|
||
|
Show pretty plot? If running in batch mode (using ordlocs)
|
||
|
default is False; if running in interactive mode (ordlocs is
|
||
|
None) default is True.
|
||
|
|
||
|
xylims : 4-sequence
|
||
|
Extract the given subset of the data array: [xmin, xmax, ymin, ymax]
|
||
|
|
||
|
uncertainties : str OR 2D array
|
||
|
full path and filename to a 2D uncertainties FITS file, _OR_
|
||
|
a 2D numpy array representing such a file.
|
||
|
|
||
|
If this is set, 'g' and 'rn' below are ignored. This is
|
||
|
useful if, e.g., you are analyzing data which have already
|
||
|
been sky-subtracted, nodded on slit, or otherwise altered.
|
||
|
But note that this must be the same size as the input data!
|
||
|
|
||
|
g : scalar > 0
|
||
|
Detector gain, electrons per ADU (for setting uncertainties)
|
||
|
|
||
|
rn : scalar > 0
|
||
|
Detector read noise, electrons (for setting uncertainties)
|
||
|
|
||
|
retsnr : bool
|
||
|
If true, also return the computed S/N of the position fit at
|
||
|
each stepped location.
|
||
|
|
||
|
retfits : bool
|
||
|
If true, also return the X,Y positions at each stepped location.
|
||
|
|
||
|
|
||
|
:RETURNS:
|
||
|
(nord, pord) shaped numpy array representing the polynomial
|
||
|
coefficients for each order (suitable for use with np.polyval)
|
||
|
|
||
|
:NOTES:
|
||
|
|
||
|
If tracing fails, a common reason can be that fitwidth is too
|
||
|
small. Try increasing it!
|
||
|
"""
|
||
|
# 2010-08-31 17:00 IJC: If best-fit PSF location goes outside of
|
||
|
# the 'fitwidth' region, nan values are returned that don't
|
||
|
# cause the routine to bomb out quite so often.
|
||
|
# 2010-09-08 13:54 IJC: Updated so that going outside the
|
||
|
# 'fitwidth' region is determined only in the local
|
||
|
# neighborhood, not in relation to the (possibly distant)
|
||
|
# initial guess position.
|
||
|
# 2010-11-29 20:56 IJC: Added medwidth option
|
||
|
# 2010-12-17 09:32 IJC: Changed color scaling options; added xylims option.
|
||
|
|
||
|
# 2012-04-27 04:43 IJMC: Now perform _weighted_ fits to the measured traces!
|
||
|
|
||
|
global gain
|
||
|
global readnoise
|
||
|
|
||
|
if verbose < 0:
|
||
|
verbose = 0
|
||
|
|
||
|
if not g==gain:
|
||
|
message("Setting gain to " + str(g))
|
||
|
gain = g
|
||
|
|
||
|
if not rn==readnoise:
|
||
|
message("Setting readnoise to " + str(rn))
|
||
|
readnoise = rn
|
||
|
|
||
|
if ordlocs is not None:
|
||
|
ordlocs = np.array(ordlocs, copy=False)
|
||
|
if ordlocs.ndim==1:
|
||
|
ordlocs = ordlocs.reshape(1, ordlocs.size)
|
||
|
autopick = True
|
||
|
else:
|
||
|
autopick = False
|
||
|
|
||
|
|
||
|
plotalot = (not autopick) or plotalot
|
||
|
if isinstance(filename, np.ndarray):
|
||
|
ec = filename.copy()
|
||
|
else:
|
||
|
try:
|
||
|
ec = pyfits.getdata(filename)
|
||
|
except:
|
||
|
message("Could not open filename %s" % filename)
|
||
|
return -1
|
||
|
|
||
|
|
||
|
if isinstance(uncertainties, np.ndarray):
|
||
|
err_ec = uncertainties.copy()
|
||
|
else:
|
||
|
try:
|
||
|
err_ec = pyfits.getdata(uncertainties)
|
||
|
except:
|
||
|
err_ec = np.sqrt(ec * gain + readnoise**2)
|
||
|
|
||
|
if dispaxis<>0:
|
||
|
ec = ec.transpose()
|
||
|
err_ec = err_ec.transpose()
|
||
|
if verbose: message("Took transpose of echelleogram to rotate dispersion axis")
|
||
|
else:
|
||
|
pass
|
||
|
|
||
|
if xylims is not None:
|
||
|
try:
|
||
|
ec = ec[xylims[0]:xylims[1], xylims[2]:xylims[3]]
|
||
|
err_ec = err_ec[xylims[0]:xylims[1], xylims[2]:xylims[3]]
|
||
|
except:
|
||
|
message("Could not extract subset: ", xylims)
|
||
|
return -1
|
||
|
|
||
|
if badpixelmask is None:
|
||
|
badpixelmask = np.zeros(ec.shape, dtype=bool)
|
||
|
else:
|
||
|
if not hasattr(badpixelmask, 'shape'):
|
||
|
badpixelmask = pyfits.getdata(badpixelmask)
|
||
|
if xylims is not None:
|
||
|
badpixelmask = badpixelmask[xylims[0]:xylims[1], xylims[2]:xylims[3]]
|
||
|
|
||
|
|
||
|
err_ec[badpixelmask.nonzero()] = err_ec[np.isfinite(err_ec)].max() * 1e9
|
||
|
|
||
|
try:
|
||
|
ny, nx = ec.shape
|
||
|
except:
|
||
|
message("Echellogram file %s does not appear to be 2D: exiting." % filename)
|
||
|
return -1
|
||
|
|
||
|
if plotalot:
|
||
|
f = plt.figure()
|
||
|
ax = plt.axes()
|
||
|
plt.imshow(ec, interpolation='nearest',aspect='auto')
|
||
|
sortedvals = np.sort(ec.ravel())
|
||
|
plt.clim([sortedvals[nx*ny*.01], sortedvals[nx*ny*.99]])
|
||
|
#plt.imshow(np.log10(ec-ec.min()+np.median(ec)),interpolation='nearest',aspect='auto')
|
||
|
ax.axis([0, nx, 0, ny])
|
||
|
|
||
|
orderCoefs = np.zeros((nord, pord+1), float)
|
||
|
position_SNRs = []
|
||
|
xyfits = []
|
||
|
if not autopick:
|
||
|
|
||
|
ordlocs = np.zeros((nord, 2),float)
|
||
|
for ordernumber in range(nord):
|
||
|
message('Selecting %i orders; please click on order %i now.' % (nord, 1+ordernumber))
|
||
|
plt.figure(f.number)
|
||
|
guessLoc = pickloc(ax, zoom=fitwidth)
|
||
|
ordlocs[ordernumber,:] = guessLoc
|
||
|
ax.plot([guessLoc[0]],[guessLoc[1]], '*k')
|
||
|
ax.axis([0, nx, 0, ny])
|
||
|
plt.figure(f.number)
|
||
|
plt.draw()
|
||
|
if verbose:
|
||
|
message("you picked the location: ")
|
||
|
message(guessLoc)
|
||
|
|
||
|
for ordernumber in range(nord):
|
||
|
guessLoc = ordlocs[ordernumber,:]
|
||
|
xInit, yInit, err_yInit = fitPSF(ec, guessLoc, fitwidth=fitwidth,verbose=verbose, medwidth=medwidth, err_ec=err_ec)
|
||
|
if plotalot:
|
||
|
ax.plot([xInit],[yInit], '*k')
|
||
|
ax.axis([0, nx, 0, ny])
|
||
|
plt.figure(f.number)
|
||
|
plt.draw()
|
||
|
|
||
|
if verbose:
|
||
|
message("Initial (fit) position: (%3.2f,%3.2f)"%(xInit,yInit))
|
||
|
|
||
|
# Prepare to fit PSFs at multiple wavelengths.
|
||
|
|
||
|
# Determine the other positions at which to fit:
|
||
|
xAbove = np.arange(1, np.ceil(1.0*(nx-xInit)/stepsize))*stepsize + xInit
|
||
|
xBelow = np.arange(-1,-np.ceil((1.+xInit)/stepsize),-1)*stepsize + xInit
|
||
|
nAbove = len(xAbove)
|
||
|
nBelow = len(xBelow)
|
||
|
nToMeasure = nAbove + nBelow + 1
|
||
|
iInit = nBelow
|
||
|
|
||
|
if verbose:
|
||
|
message("Going to measure PSF at the following %i locations:"%nToMeasure )
|
||
|
message(xAbove)
|
||
|
message(xBelow)
|
||
|
|
||
|
# Measure all positions "above" the initial selection:
|
||
|
yAbove = np.zeros(nAbove,float)
|
||
|
err_yAbove = np.zeros(nAbove,float)
|
||
|
lastY = yInit
|
||
|
for i_meas in range(nAbove):
|
||
|
guessLoc = xAbove[i_meas], lastY
|
||
|
|
||
|
thisx, thisy, err_thisy = fitPSF(ec, guessLoc, fitwidth=fitwidth, verbose=verbose-1, medwidth=medwidth, err_ec=err_ec)
|
||
|
if abs(thisy - yInit)>fitwidth/2:
|
||
|
thisy = yInit
|
||
|
err_thisy = yInit
|
||
|
lastY = yInit
|
||
|
else:
|
||
|
lastY = thisy.astype(int)
|
||
|
yAbove[i_meas] = thisy
|
||
|
err_yAbove[i_meas] = err_thisy
|
||
|
if verbose:
|
||
|
print thisx, thisy
|
||
|
if plotalot and not np.isnan(thisy):
|
||
|
#ax.plot([thisx], [thisy], 'xk')
|
||
|
ax.errorbar([thisx], [thisy], [err_thisy], fmt='xk')
|
||
|
|
||
|
# Measure all positions "below" the initial selection:
|
||
|
yBelow = np.zeros(nBelow,float)
|
||
|
err_yBelow = np.zeros(nBelow,float)
|
||
|
lastY = yInit
|
||
|
for i_meas in range(nBelow):
|
||
|
guessLoc = xBelow[i_meas], lastY
|
||
|
thisx, thisy, err_thisy = fitPSF(ec, guessLoc, fitwidth=fitwidth, verbose=verbose-1, medwidth=medwidth, err_ec=err_ec)
|
||
|
if abs(thisy-lastY)>fitwidth/2:
|
||
|
thisy = np.nan
|
||
|
else:
|
||
|
lastY = thisy.astype(int)
|
||
|
yBelow[i_meas] = thisy
|
||
|
err_yBelow[i_meas] = err_thisy
|
||
|
if verbose:
|
||
|
print thisx, thisy
|
||
|
if plotalot and not np.isnan(thisy):
|
||
|
ax.errorbar([thisx], [thisy], [err_thisy], fmt='xk')
|
||
|
|
||
|
# Stick all the fit positions together:
|
||
|
yPositions = np.concatenate((yBelow[::-1], [yInit], yAbove))
|
||
|
err_yPositions = np.concatenate((err_yBelow[::-1], [err_yInit], err_yAbove))
|
||
|
xPositions = np.concatenate((xBelow[::-1], [xInit], xAbove))
|
||
|
|
||
|
if verbose:
|
||
|
message("Measured the following y-positions:")
|
||
|
message(yPositions)
|
||
|
|
||
|
theseTraceCoefs = polyfitr(xPositions, yPositions, pord, 3, \
|
||
|
w=1./err_yPositions**2, verbose=verbose)
|
||
|
orderCoefs[ordernumber,:] = theseTraceCoefs
|
||
|
# Plot the traces
|
||
|
if plotalot:
|
||
|
ax.plot(np.arange(nx), np.polyval(theseTraceCoefs,np.arange(nx)), '-k')
|
||
|
ax.plot(np.arange(nx), np.polyval(theseTraceCoefs,np.arange(nx))+fitwidth/2, '--k')
|
||
|
ax.plot(np.arange(nx), np.polyval(theseTraceCoefs,np.arange(nx))-fitwidth/2, '--k')
|
||
|
ax.axis([0, nx, 0, ny])
|
||
|
plt.figure(f.number)
|
||
|
plt.draw()
|
||
|
|
||
|
if retsnr:
|
||
|
position_SNRs.append(yPositions / err_yPositions)
|
||
|
if retfits:
|
||
|
xyfits.append((xPositions, yPositions))
|
||
|
|
||
|
# Prepare for exit and return:
|
||
|
ret = (orderCoefs,)
|
||
|
if retsnr:
|
||
|
ret = ret + (position_SNRs,)
|
||
|
if retfits:
|
||
|
ret = ret + (xyfits,)
|
||
|
if len(ret)==1:
|
||
|
ret = ret[0]
|
||
|
return ret
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def makeprofile(filename, trace, **kw): #dispaxis=0, fitwidth=20, verbose=False, oversamp=4, nsigma=20, retall=False, neg=False, xylims=None, rn=readnoise, g=gain, extract_radius=10, bkg_radii=[15, 20], bkg_order=0, badpixelmask=None, interp=False):
|
||
|
"""
|
||
|
Make a spatial profile from a spectrum, given its traced location.
|
||
|
We interpolate the PSF at each pixel to a common reference frame,
|
||
|
and then average them.
|
||
|
|
||
|
filename : str _OR_ 2D numy array
|
||
|
2D echellogram
|
||
|
|
||
|
trace : 1D numpy array
|
||
|
set of polynomial coeficients of order (P-1)
|
||
|
|
||
|
dispaxis : int
|
||
|
set dispersion axis: 0 = horizontal and = vertical
|
||
|
|
||
|
fitwidth : int
|
||
|
Total width of extracted spectral sub-block. WIll always be
|
||
|
increased to at least twice the largest value of bkg_radii.
|
||
|
|
||
|
neg : bool scalar
|
||
|
set True for a negative spectral trace
|
||
|
|
||
|
nsigma : scalar
|
||
|
Sigma-clipping cut for bad pixels (beyond read+photon
|
||
|
noise). Set it rather high, and feel free to experiment with
|
||
|
this parameter!
|
||
|
|
||
|
xylims : 4-sequence
|
||
|
Extract the given subset of the data array: [xmin, xmax, ymin, ymax]
|
||
|
|
||
|
retall : bool
|
||
|
Set True to output several additional parameters (see below)
|
||
|
|
||
|
rn : scalar
|
||
|
Read noise (electrons)
|
||
|
|
||
|
g : scalar
|
||
|
Detector gain (electrons per data unit)
|
||
|
|
||
|
bkg_radii : 2-sequence
|
||
|
Inner and outer radius for background computation and removal;
|
||
|
measured in pixels from the center of the profile.
|
||
|
|
||
|
bkg_order : int > 0
|
||
|
Polynomial order of background trend computed in master spectral profile
|
||
|
|
||
|
interp : bool
|
||
|
Whether to (bi-linearly) interpolate each slice to produce a
|
||
|
precisely-centered spectral profile (according to the input
|
||
|
'trace'). If False, slices will only be aligned to the
|
||
|
nearest pixel.
|
||
|
|
||
|
|
||
|
OUTPUT:
|
||
|
if retall:
|
||
|
a spline-function that interpolates pixel locations onto the mean profile
|
||
|
|
||
|
a stack of data slices
|
||
|
|
||
|
estimates of the uncertainties
|
||
|
|
||
|
good pixel flag
|
||
|
|
||
|
list of splines
|
||
|
|
||
|
else:
|
||
|
a spline-function that interpolates pixel locations onto the mean profile
|
||
|
"""
|
||
|
from scipy import signal
|
||
|
#import numpy as np
|
||
|
# 2010-12-17 10:22 IJC: Added xylims option
|
||
|
# 2012-03-15 06:34 IJMC: Updated documentation.
|
||
|
# 2012-04-24 16:43 IJMC: Now properly update gain and readnoise,
|
||
|
# as neccessary. Much better flagging of
|
||
|
# bad pixels. Fixed interpolation on RHS.
|
||
|
# 2012-08-19 17:53 IJMC: Added dispaxis option.
|
||
|
# 2012-09-05 10:17 IJMC: Made keyword options into a dict.
|
||
|
|
||
|
global gain
|
||
|
global readnoise
|
||
|
|
||
|
|
||
|
# Parse inputs:
|
||
|
names = ['dispaxis', 'fitwidth', 'verbose', 'oversamp', 'nsigma', 'retall', 'neg', 'xylims', 'rn', 'g', 'extract_radius', 'bkg_radii', 'bkg_order', 'badpixelmask', 'interp']
|
||
|
defaults = [0, 20, False, 4, 20, False, False, None, readnoise, gain, 10, [15, 20], 0, None, False]
|
||
|
for n,d in zip(names, defaults):
|
||
|
#exec('%s = [d, kw["%s"]][kw.has_key("%s")]' % (n, n, n))
|
||
|
exec('%s = kw["%s"] if kw.has_key("%s") else d' % (n, n, n))
|
||
|
|
||
|
if fitwidth < (bkg_radii[1]*2):
|
||
|
fitwidth = bkg_radii[1]*2
|
||
|
|
||
|
|
||
|
if not g==gain:
|
||
|
message("Setting gain to " + str(g))
|
||
|
gain = g
|
||
|
|
||
|
if not rn==readnoise:
|
||
|
message("Setting readnoise to " + str(rn))
|
||
|
readnoise = rn
|
||
|
|
||
|
|
||
|
if verbose:
|
||
|
f = plt.figure()
|
||
|
ax = plt.axes()
|
||
|
|
||
|
# Check whether we have a filename, or an array:
|
||
|
if isinstance(filename, np.ndarray):
|
||
|
ec = filename.copy()
|
||
|
else:
|
||
|
try:
|
||
|
ec = pyfits.getdata(filename)
|
||
|
except:
|
||
|
message("Could not open filename %s" % filename)
|
||
|
return -1
|
||
|
|
||
|
if neg:
|
||
|
ec *= -1
|
||
|
|
||
|
if xylims is not None:
|
||
|
try:
|
||
|
ec = ec[xylims[0]:xylims[1], xylims[2]:xylims[3]]
|
||
|
if verbose:
|
||
|
message("Extracted subset: " + str(xylims))
|
||
|
except:
|
||
|
message("Could not extract subset: " + str(xylims))
|
||
|
return -1
|
||
|
|
||
|
if badpixelmask is None:
|
||
|
badpixelmask = np.zeros(ec.shape, dtype=bool)
|
||
|
else:
|
||
|
if not hasattr(badpixelmask, 'shape'):
|
||
|
badpixelmask = pyfits.getdata(badpixelmask)
|
||
|
if xylims is not None:
|
||
|
badpixelmask = badpixelmask[xylims[0]:xylims[1], xylims[2]:xylims[3]]
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
trace = np.array(trace,copy=True)
|
||
|
if len(trace.shape)>1:
|
||
|
if verbose:
|
||
|
message("Multi-order spectrum input...")
|
||
|
#rets = []
|
||
|
rets = [makeprofile(filename, thistrace, dispaxis=dispaxis, fitwidth=fitwidth,verbose=verbose,oversamp=oversamp,nsigma=nsigma,retall=retall, neg=neg, xylims=xylims, rn=rn, g=g, extract_radius=extract_radius, bkg_radii=bkg_radii, bkg_order=bkg_order,interp=interp, badpixelmask=badpixelmask) for thistrace in trace]
|
||
|
|
||
|
return rets
|
||
|
|
||
|
if dispaxis==1:
|
||
|
if verbose: message("Transposing spectra and bad pixel mask...")
|
||
|
ec = ec.transpose()
|
||
|
badpixelmask = badpixelmask.transpose()
|
||
|
|
||
|
if verbose:
|
||
|
message("Making a spatial profile...")
|
||
|
|
||
|
ny, nx = ec.shape
|
||
|
pord = len(trace) - 1
|
||
|
if verbose:
|
||
|
message("Echellogram of size (%i,%i)" % (nx,ny))
|
||
|
message("Polynomial of order %i (i.e., %i coefficients)" % (pord, pord+1))
|
||
|
|
||
|
xPositions = np.arange(nx)
|
||
|
yPositions = np.polyval(trace, xPositions)
|
||
|
yPixels = yPositions.astype(int)
|
||
|
|
||
|
# Placeholder for a more comprehensive workaround:
|
||
|
if (yPixels.max()+fitwidth/2)>=ny:
|
||
|
message("Spectrum may be too close to the upper boundary; try decreasing fitwidth")
|
||
|
if (yPixels.min()-fitwidth/2)<0:
|
||
|
message("Spectrum may be too close to the lower boundary; try decreasing fitwidth")
|
||
|
|
||
|
yProfile = np.linspace(-fitwidth/2, fitwidth/2-1,fitwidth*oversamp)
|
||
|
#yProfile2 = np.linspace(-fitwidth/2, fitwidth/2-1,(fitwidth+1)*oversamp)
|
||
|
profileStack = np.zeros((nx,fitwidth),float)
|
||
|
badpixStack = np.zeros((nx,fitwidth),bool)
|
||
|
profileSplineStack = np.zeros((nx,(fitwidth)*oversamp),float)
|
||
|
xProf = np.arange(fitwidth, dtype=float) - fitwidth/2.
|
||
|
xProf2 = np.arange(ny, dtype=float)
|
||
|
|
||
|
|
||
|
# Loop through to extract the spectral cross-sections at each pixel:
|
||
|
for i_pix in range(nx):
|
||
|
xi = xPositions[i_pix]
|
||
|
yi = yPixels[i_pix]
|
||
|
|
||
|
ymin = max(yi-fitwidth/2, 0)
|
||
|
ymax = min(yi+fitwidth/2, ny)
|
||
|
# Ensure that profile will always be "fitwidth" wide:
|
||
|
if (ymax-ymin)<fitwidth and ymin==0:
|
||
|
ymax = fitwidth
|
||
|
elif (ymax-ymin)<fitwidth and ymax==ny:
|
||
|
ymin = ymax - fitwidth
|
||
|
|
||
|
profile = ec[ymin:ymax,xi]
|
||
|
if interp:
|
||
|
profile = np.interp(xProf + yPositions[i_pix], xProf2[ymin:ymax], profile)
|
||
|
|
||
|
if verbose:
|
||
|
print 'i_pix, xi, yi, y0, ymin, ymax', i_pix, xi, yi, yPositions[i_pix], ymin, ymax
|
||
|
|
||
|
try:
|
||
|
profileStack[i_pix] = profile.copy() * gain
|
||
|
badpixStack[i_pix] = badpixelmask[ymin:ymax, xi]
|
||
|
except:
|
||
|
print "Busted!!!!"
|
||
|
print "profileStack[i_pix].shape, profile.shape, gain", \
|
||
|
profileStack[i_pix].shape, profile.shape, gain
|
||
|
stop
|
||
|
|
||
|
# Use the profile stack to flag bad pixels in the interpolation process:
|
||
|
medianProfile = np.median(profileStack,0)
|
||
|
scaledProfileStack = 0*profileStack
|
||
|
myMatrix = np.linalg.pinv(np.vstack((medianProfile, np.ones(profileStack.shape[1]))).transpose())
|
||
|
for ii in range(profileStack.shape[0]):
|
||
|
these_coefs = np.dot(myMatrix, profileStack[ii])
|
||
|
scaledProfileStack[ii] = (profileStack[ii] - these_coefs[1]) / these_coefs[0]
|
||
|
|
||
|
#import pylab as py
|
||
|
#pdb.set_trace()
|
||
|
|
||
|
|
||
|
#########
|
||
|
# Flag all the bad pixels:
|
||
|
#########
|
||
|
|
||
|
# Hot Pixels should be 1-pixel wide:
|
||
|
nFilt = 3
|
||
|
filteredProfileStack = signal.medfilt2d(profileStack, nFilt)
|
||
|
errorFiltStack = np.sqrt(filteredProfileStack + readnoise**2)
|
||
|
errorFiltStack[badpixStack] = errorFiltStack.max() * 1e9
|
||
|
|
||
|
goodPixels = (True - badpixStack) * np.abs((profileStack - filteredProfileStack) / errorFiltStack) < nsigma
|
||
|
badPixels = True - goodPixels
|
||
|
#cleaned_profileStack = ns.bfixpix(profStack, badpix, retdat=True)
|
||
|
|
||
|
if False: # Another (possibly worse?) way to do it:
|
||
|
stdProfile = stdr(scaledProfileStack, nsigma=nsigma, axis=0) #profileStack.std(0)
|
||
|
goodPixels = (scaledProfileStack-medianProfile.reshape(1,fitwidth)) / \
|
||
|
stdProfile.reshape(1,fitwidth)<=nsigma
|
||
|
goodPixels *= profileStack>=0
|
||
|
|
||
|
goodColumns = np.ones(goodPixels.shape[0],bool)
|
||
|
errorStack = np.sqrt(profileStack + readnoise**2)
|
||
|
errorStack[badPixels] = profileStack[goodPixels].max() * 1e9
|
||
|
|
||
|
# Loop through and fit weighted splines to each cross-section
|
||
|
for i_pix in range(nx):
|
||
|
xi = xPositions[i_pix]
|
||
|
yi = yPixels[i_pix]
|
||
|
ymin = max(yi-fitwidth/2, 0)
|
||
|
ymax = min(yi+fitwidth/2, ny)
|
||
|
# Ensure that profile will always be "fitwidth" wide:
|
||
|
if (ymax-ymin)<fitwidth and ymin==0:
|
||
|
ymax = fitwidth
|
||
|
elif (ymax-ymin)<fitwidth and ymax==ny:
|
||
|
ymin = ymax - fitwidth
|
||
|
|
||
|
profile = profileStack[i_pix]
|
||
|
index = goodPixels[i_pix]
|
||
|
|
||
|
ytemp = np.arange(ymin,ymax)-yPositions[i_pix]
|
||
|
if verbose>1:
|
||
|
print "ii, index.sum()>>",i_pix,index.sum()
|
||
|
print "xi, yi>>",xi,yi
|
||
|
if verbose:
|
||
|
print "ymin, ymax>>",ymin,ymax
|
||
|
print "ytemp.shape, profile.shape, index.shape>>",ytemp.shape, profile.shape, index.shape
|
||
|
if index.sum()>fitwidth/2:
|
||
|
ydata_temp = np.concatenate((ytemp[index], ytemp[index][-1] + np.arange(1,6)))
|
||
|
pdata_temp = np.concatenate((profile[index], [profile[index][-1]]*5))
|
||
|
profileSpline = interpolate.UnivariateSpline(ydata_temp, pdata_temp, k=3.0,s=0.0)
|
||
|
profileSplineStack[i_pix,:] = profileSpline(yProfile)
|
||
|
else:
|
||
|
if verbose: message("not enough good pixels in segment %i" % i_pix)
|
||
|
profileSplineStack[i_pix,:] = 0.0
|
||
|
goodColumns[i_pix] = False
|
||
|
|
||
|
finalYProfile = np.arange(fitwidth)-fitwidth/2
|
||
|
finalSplineProfile = np.median(profileSplineStack[goodColumns,:],0)
|
||
|
## Normalize the absolute scaling of the final Profile
|
||
|
#xProfile = np.arange(-50.*fitwidth, 50*fitwidth)/100.
|
||
|
#profileParam = fitGaussian(finalSplineProfile, verbose=True)
|
||
|
#profileScaling = profileParam[0]*.01
|
||
|
#print 'profileScaling>>', profileScaling
|
||
|
|
||
|
backgroundAperture = (np.abs(yProfile) > bkg_radii[0]) * (np.abs(yProfile) < bkg_radii[1])
|
||
|
#pdb.set_trace()
|
||
|
backgroundFit = np.polyfit(yProfile[backgroundAperture], finalSplineProfile[backgroundAperture], bkg_order)
|
||
|
|
||
|
extractionAperture = (np.abs(yProfile) < extract_radius)
|
||
|
normalizedProfile = finalSplineProfile - np.polyval(backgroundFit, yProfile)
|
||
|
normalizedProfile *= oversamp / normalizedProfile[extractionAperture].sum()
|
||
|
|
||
|
finalSpline = interpolate.UnivariateSpline(yProfile,
|
||
|
normalizedProfile, k=3.0, s=0.0)
|
||
|
|
||
|
|
||
|
|
||
|
if verbose:
|
||
|
ax.plot(yProfile, finalSplineProfile, '--',linewidth=2)
|
||
|
plt.draw()
|
||
|
|
||
|
if retall==True:
|
||
|
ret = finalSpline, profileStack, errorStack, goodPixels,profileSplineStack
|
||
|
else:
|
||
|
ret = finalSpline
|
||
|
|
||
|
return ret
|
||
|
|
||
|
def makeFitModel(param, spc,profile, xtemp=None):
|
||
|
scale, background, shift = param[0:3]
|
||
|
npix = len(spc)
|
||
|
if xtemp is None:
|
||
|
xtemp = np.arange(-npix/2,npix/2,dtype=float)
|
||
|
model = scale*profile(xtemp-shift)+background
|
||
|
return model
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def profileError(param, spc, profile, w, xaxis=None, retresidual=False):
|
||
|
"Compute the chi-squared error on a spectrum vs. a profile "
|
||
|
# 2012-04-25 12:59 IJMC: Slightly optimised (if retresidual is False)
|
||
|
|
||
|
#scale, background, shift = param[0:3]
|
||
|
#npix = len(spc)
|
||
|
#xtemp = np.arange(-npix/2,npix/2,dtype=float)
|
||
|
interpolatedProfile = makeFitModel(param,spc,profile, xtemp=xaxis) #scale*profile(xtemp-shift)+background
|
||
|
#wresiduals =
|
||
|
#wresiduals = (w*((spc-interpolatedProfile))**2).sum()
|
||
|
if retresidual:
|
||
|
ret = (w**0.5) * (spc - interpolatedProfile)
|
||
|
else:
|
||
|
ret = (w * (spc - interpolatedProfile)**2).sum()
|
||
|
|
||
|
return ret
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def fitprofile(spc, profile, w=None,verbose=False, guess=None, retall=False):
|
||
|
"""Fit a spline-class spatial profile to a spectrum cross-section
|
||
|
"""
|
||
|
# 2010-11-29 14:14 IJC: Added poor attempt at catching bad pixels
|
||
|
|
||
|
import analysis as an
|
||
|
import numpy as np
|
||
|
|
||
|
spc = np.array(spc)
|
||
|
try:
|
||
|
npix = len(spc)
|
||
|
except:
|
||
|
npix = 0
|
||
|
|
||
|
if w is None:
|
||
|
w = np.ones(spc.shape)
|
||
|
else:
|
||
|
w[True - np.isfinite(w)] = 0.
|
||
|
|
||
|
if guess is None:
|
||
|
guessParam = [1., 0., 0.]
|
||
|
else:
|
||
|
guessParam = guess
|
||
|
|
||
|
if verbose>1:
|
||
|
#message("profileError>>"+str(profileError))
|
||
|
#message("guessParam>>"+str(guessParam))
|
||
|
#message("spc>>"+str(spc))
|
||
|
message("w>>"+str(w))
|
||
|
|
||
|
good_index = w<>0.0
|
||
|
xaxis = np.arange(-npix/2,npix/2,dtype=float) # take outside of fitting loop
|
||
|
bestFit = optimize.fmin_powell(profileError, guessParam, args=(spc,profile,w * good_index, xaxis),disp=verbose, full_output=True)
|
||
|
best_bic = bestFit[1] + len(bestFit[0]) * np.log(good_index.sum())
|
||
|
keepCleaning = True
|
||
|
|
||
|
if False:
|
||
|
while keepCleaning is True:
|
||
|
if verbose: print "best bic is: ", best_bic
|
||
|
#w_residuals = profileError(bestFit[0], spc, profile, w, retresidual=True)
|
||
|
#good_values = (abs(w_residuals)<>abs(w_residuals).max())
|
||
|
diffs = np.hstack(([0], np.diff(spc)))
|
||
|
d2 = diffs * (-np.ones(len(spc)))**np.arange(len(spc))
|
||
|
d3 = np.hstack((np.vstack((d2[1::], d2[0:len(spc)-1])).mean(0), [0]))
|
||
|
good_values = abs(d3)<>abs(d3).max()
|
||
|
good_index *= good_values
|
||
|
xaxis = np.arange(-npix/2,npix/2,dtype=float) # take outside of fitting loop
|
||
|
latestFit = optimize.fmin_powell(profileError, guessParam, args=(spc,profile,w * good_index, xaxis),disp=verbose, full_output=True)
|
||
|
latest_bic = latestFit[1] + len(latestFit[0]) * np.log(good_index.sum())
|
||
|
if latest_bic < best_bic:
|
||
|
best_bic = latest_bic
|
||
|
bestFit = latestFit
|
||
|
keepCleaning = True
|
||
|
else:
|
||
|
keepCleaning = False
|
||
|
|
||
|
if good_index.any() is False:
|
||
|
keepCleaning = False
|
||
|
#good_index = good_index * an.removeoutliers(w_residuals, 5, retind=True)[1]
|
||
|
|
||
|
if verbose:
|
||
|
message("initial guess chisq>>%3.2f" % profileError(guessParam, spc, profile,w,xaxis))
|
||
|
message("final fit chisq>>%3.2f" % profileError(bestFit[0], spc, profile,w, xaxis))
|
||
|
|
||
|
if retall:
|
||
|
ret = bestFit
|
||
|
else:
|
||
|
ret = bestFit[0]
|
||
|
|
||
|
return ret
|
||
|
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def fitProfileSlices(splineProfile, profileStack, stdProfile, goodPixels,verbose=False, bkg_radii=None, extract_radius=None):
|
||
|
"""Fit a given spatial profile to a spectrum
|
||
|
|
||
|
Helper function for :func:`extractSpectralProfiles`
|
||
|
|
||
|
"""
|
||
|
|
||
|
npix, fitwidth = profileStack.shape
|
||
|
stdProfile = stdProfile.copy()
|
||
|
goodPixels[np.isnan(stdProfile) + stdProfile==0] = False
|
||
|
stdProfile[True - goodPixels] = 1e9
|
||
|
#varPData = stdProfile**2
|
||
|
|
||
|
if extract_radius is None:
|
||
|
extract_radius = fitwidth
|
||
|
|
||
|
x2 = np.arange(npix)
|
||
|
x = np.arange(-fitwidth/2, fitwidth/2)
|
||
|
extractionAperture = np.abs(x) < extract_radius
|
||
|
nextract = extractionAperture.sum()
|
||
|
|
||
|
fitparam = np.zeros((npix, 3),float)
|
||
|
fitprofiles = np.zeros((npix,nextract),float)
|
||
|
tempx = np.arange(-fitwidth/2,fitwidth/2,dtype=float)
|
||
|
|
||
|
# Start out by getting a rough estimate of any additional bad
|
||
|
# pixels (to flag):
|
||
|
|
||
|
#backgroundAperture = (np.abs(x) > bkg_radii[0]) * (np.abs(x) < bkg_radii[1])
|
||
|
#background = an.wmean(profileStack[:, backgroundAperture], (goodPixels/varPData)[:, backgroundAperture], axis=1)
|
||
|
#badBackground = True - np.isfinite(background)
|
||
|
#background[badBackground] = 0.
|
||
|
|
||
|
#subPData = profileStack - background
|
||
|
#standardSpectrum = an.wmean(subPData[:, extractionAperture], (goodPixels/varPData)[:,extractionAperture], axis=1) * extractionAperture.sum()
|
||
|
|
||
|
if False:
|
||
|
varStandardSpectrum = an.wmean(varPData[:, extractionAperture], goodPixels[:, extractionAperture], axis=1) * extractionAperture.sum()
|
||
|
|
||
|
badSpectrum = True - np.isfinite(standardSpectrum)
|
||
|
standardSpectrum[badSpectrum] = 1.
|
||
|
varStandardSpectrum[badSpectrum] = varStandardSpectrum[True - badSpectrum].max() * 1e9
|
||
|
|
||
|
mod = background + standardSpectrum * splineProfile(x) * (splineProfile(x).sum() / splineProfile(x[extractionAperture]).sum())
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
anyNewBadPixels = True
|
||
|
nbp0 = goodPixels.size - goodPixels.sum()
|
||
|
gp0 = goodPixels.copy()
|
||
|
|
||
|
while anyNewBadPixels is True:
|
||
|
for ii in range(npix):
|
||
|
if verbose>1:
|
||
|
print "*****In fitProfileSlices, pixel %i/%i" % (ii+1, npix)
|
||
|
if ii>0: # take the median of the last several guesses
|
||
|
gindex = [max(0,ii-2), min(npix, ii+2)]
|
||
|
guess = np.median(fitparam[gindex[0]:gindex[1]], 0)
|
||
|
else:
|
||
|
guess = None
|
||
|
|
||
|
if verbose>1:
|
||
|
message("ii>>%i"%ii)
|
||
|
message("goodPixels>>"+str(goodPixels.astype(float)[ii,:]))
|
||
|
message("stdProfile>>"+str(stdProfile[ii,:]))
|
||
|
|
||
|
thisfit = fitprofile(profileStack[ii,extractionAperture], splineProfile, (goodPixels.astype(float)/stdProfile**2)[ii,extractionAperture],verbose=verbose, guess=guess, retall=True)
|
||
|
bestfit = thisfit[0]
|
||
|
bestchi = thisfit[1]
|
||
|
|
||
|
if verbose>1:
|
||
|
print "this fit: ",bestfit
|
||
|
fitparam[ii,:] = bestfit
|
||
|
fitprofiles[ii,:] = makeFitModel(bestfit, profileStack[ii,extractionAperture],splineProfile)
|
||
|
if verbose>1:
|
||
|
print "finished pixel %i/%i" % (ii+1,npix)
|
||
|
|
||
|
|
||
|
deviations = (fitprofiles - profileStack[:, extractionAperture])/stdProfile[:, extractionAperture]
|
||
|
for kk in range(nextract):
|
||
|
kk0 = extractionAperture.nonzero()[0][kk]
|
||
|
thisdevfit = an.polyfitr(x2, deviations[:, kk], 1, 3)
|
||
|
theseoutliers = np.abs((deviations[:, kk] - np.polyval(thisdevfit, x2))/an.stdr(deviations, 3)) > 5
|
||
|
goodPixels[theseoutliers, kk0] = False
|
||
|
|
||
|
nbp = goodPixels.size - goodPixels.sum()
|
||
|
if nbp <= nbp0:
|
||
|
anyNewBadPixels = False
|
||
|
else:
|
||
|
nbp0 = nbp
|
||
|
|
||
|
for ii in range(fitparam.shape[1]):
|
||
|
fitparam[:,ii] = bfixpix(fitparam[:,ii], goodPixels[:,extractionAperture].sum(1) <= (nextract/2.), retdat=True)
|
||
|
|
||
|
return fitparam, fitprofiles
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def extractSpectralProfiles(args, **kw):
|
||
|
"""
|
||
|
Extract spectrum
|
||
|
|
||
|
:INPUTS:
|
||
|
args : tuple or list
|
||
|
either a tuple of (splineProfile, profileStack, errorStack,
|
||
|
profileMask), or a list of such tuples (from makeprofile).
|
||
|
|
||
|
:OPTIONS:
|
||
|
bkg_radii : 2-sequence
|
||
|
inner and outer radii to use in computing background
|
||
|
|
||
|
extract_radius : int
|
||
|
radius to use for both flux normalization and extraction
|
||
|
|
||
|
:RETURNS:
|
||
|
3-tuple:
|
||
|
[0] -- spectrum flux (in electrons)
|
||
|
|
||
|
[1] -- background flux
|
||
|
|
||
|
[2] -- best-fit pixel shift
|
||
|
|
||
|
:EXAMPLE:
|
||
|
::
|
||
|
out = spec.traceorders('aug16s0399.fits',nord=7)
|
||
|
|
||
|
out2 = spec.makeprofile('aug16s0399.fits',out,retall=True)
|
||
|
|
||
|
out3 = spec.extractSpectralProfiles(out2)
|
||
|
|
||
|
:SEE_ALSO:
|
||
|
:func:`optimalExtract`
|
||
|
|
||
|
:NOTES:
|
||
|
Note that this is non-optimal with highly tilted or curved
|
||
|
spectra, for the reasons described by Marsh (1989) and Mukai
|
||
|
(1990).
|
||
|
"""
|
||
|
# 2010-08-24 21:24 IJC: Updated comments
|
||
|
|
||
|
if kw.has_key('verbose'):
|
||
|
verbose = kw['verbose']
|
||
|
else:
|
||
|
verbose = False
|
||
|
|
||
|
if kw.has_key('bkg_radii'):
|
||
|
bkg_radii = kw['bkg_radii']
|
||
|
else:
|
||
|
bkg_radii = [15, 20]
|
||
|
if verbose: message("Setting option 'bkg_radii' to: " + str(bkg_radii))
|
||
|
|
||
|
if kw.has_key('extract_radius'):
|
||
|
extract_radius = kw['extract_radius']
|
||
|
else:
|
||
|
extract_radius = 10
|
||
|
|
||
|
|
||
|
#print 'starting...', args[0].__class__, isinstance(args[0],tuple)#, len(*arg)
|
||
|
fitprofiles = []
|
||
|
if isinstance(args,list): # recurse with each individual set of arguments
|
||
|
#nord = len(arg[0])
|
||
|
spectrum = []
|
||
|
background = []
|
||
|
pixshift = []
|
||
|
for ii, thesearg in enumerate(args):
|
||
|
if verbose: print "----------- Iteration %i/%i" % (ii+1, len(args))
|
||
|
#print 'recursion loop', thesearg.__class__, verbose, kw
|
||
|
tempout = extractSpectralProfiles(thesearg, **kw)
|
||
|
spectrum.append(tempout[0])
|
||
|
background.append(tempout[1])
|
||
|
pixshift.append(tempout[2])
|
||
|
fitprofiles.append(tempout[3])
|
||
|
spectrum = np.array(spectrum)
|
||
|
background = np.array(background)
|
||
|
pixshift = np.array(pixshift)
|
||
|
else:
|
||
|
#print 'actual computation', args.__class__, verbose, kw
|
||
|
splineProfile = args[0]
|
||
|
profileStack = args[1]
|
||
|
errorStack = args[2]
|
||
|
profileMask = args[3]
|
||
|
|
||
|
|
||
|
#print splineProfile.__class__, profileStack.__class__, errorStack.__class__, profileMask.__class__
|
||
|
#print profileStack.shape, errorStack.shape, profileMask.shape
|
||
|
fps = dict()
|
||
|
if kw.has_key('verbose'): fps['verbose'] = kw['verbose']
|
||
|
if kw.has_key('bkg_radii'): fps['bkg_radii'] = kw['bkg_radii']
|
||
|
if kw.has_key('extract_radius'): fps['extract_radius'] = kw['extract_radius']
|
||
|
fitparam, fitprofile = fitProfileSlices(splineProfile, profileStack, errorStack, profileMask, **fps)
|
||
|
spectrum = fitparam[:,0]
|
||
|
background = fitparam[:,1]
|
||
|
pixshift = fitparam[:,2]
|
||
|
fitprofiles.append(fitprofile)
|
||
|
|
||
|
ret = (spectrum, background, pixshift, fitprofiles)
|
||
|
|
||
|
return ret
|
||
|
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def gaussint(x):
|
||
|
"""
|
||
|
:PURPOSE:
|
||
|
Compute the integral from -inf to x of the normalized Gaussian
|
||
|
|
||
|
:INPUTS:
|
||
|
x : scalar
|
||
|
upper limit of integration
|
||
|
|
||
|
:NOTES:
|
||
|
Designed to copy the IDL function of the same name.
|
||
|
"""
|
||
|
# 2011-10-07 15:41 IJMC: Created
|
||
|
|
||
|
from scipy.special import erf
|
||
|
|
||
|
scalefactor = 1./np.sqrt(2)
|
||
|
return 0.5 + 0.5 * erf(x * scalefactor)
|
||
|
|
||
|
[docs]
|
||
|
def slittrans(*varargin):
|
||
|
"""+
|
||
|
:NAME:
|
||
|
slittrans
|
||
|
|
||
|
:PURPOSE:
|
||
|
Compute flux passing through a slit assuming a gaussian PSF.
|
||
|
|
||
|
:CATEGORY:
|
||
|
Spectroscopy
|
||
|
|
||
|
:CALLING SEQUENCE:
|
||
|
result = slittrans(width,height,fwhm,xoffset,yoffset,CANCEL=cancel)
|
||
|
|
||
|
:INPUTS:
|
||
|
width - Width of slit.
|
||
|
height - Height of slit.
|
||
|
fwhm - Full-width at half-maximum of the gaussian image.
|
||
|
xoffset - Offset in x of the image from the center of the slit.
|
||
|
yoffset - Offset in y of the image from the center of the slit.
|
||
|
|
||
|
Note: the units are arbitrary but they must be the same across
|
||
|
all of the input quantities.
|
||
|
|
||
|
KEYWORD PARAMETERS:
|
||
|
CANCEL - Set on return if there is a problem
|
||
|
|
||
|
OUTPUTS:
|
||
|
Returned is the fraction of the total gaussian included in the slit.
|
||
|
|
||
|
EXAMPLE:
|
||
|
result = slittrans(0.3,15,0.6,0,0)
|
||
|
|
||
|
Computes the fraction of the flux transmitted through a slit
|
||
|
0.3x15 arcseconds with a PSF of 0.6 arcseconds FWHM. The PSF is
|
||
|
centered on the slit.
|
||
|
|
||
|
MODIFICATION HISTORY:
|
||
|
Based on M Buie program, 1991 Mar., Marc W. Buie, Lowell Observatory
|
||
|
Modified 2000 Apr., M. Cushing to include y offsets.
|
||
|
2011-10-07 15:45 IJMC: Converted to Python
|
||
|
2011-11-14 16:29 IJMC: Rewrote to use :func:`erf` rather than
|
||
|
:func:`gaussint`
|
||
|
"""
|
||
|
#function slittrans,width,height,fwhm,xoffset,yoffset,CANCEL=cancel
|
||
|
|
||
|
from scipy.special import erf
|
||
|
|
||
|
cancel = 0
|
||
|
n_params = len(varargin)
|
||
|
|
||
|
if n_params <> 5:
|
||
|
print 'Syntax - result = slittrans(width,height,fwhm,xoffset,yoffset,',
|
||
|
print ' CANCEL=cancel)'
|
||
|
cancel = 1
|
||
|
return cancel
|
||
|
|
||
|
width, height, fwhm, xoffset, yoffset = varargin[0:5]
|
||
|
|
||
|
#cancel = cpar('slittrans',width,1,'Width',[2,3,4,5],0)
|
||
|
#if cancel then return,-1
|
||
|
#cancel = cpar('slittrans',height,2,'Height',[2,3,4,5],0)
|
||
|
#if cancel then return,-1
|
||
|
#cancel = cpar('slittrans',fwhm,3,'FWHM',[2,3,4,5],0)
|
||
|
#if cancel then return,-1
|
||
|
#cancel = cpar('slittrans',xoffset,4,'Xoffset',[2,3,4,5],0)
|
||
|
#if cancel then return,-1
|
||
|
#cancel = cpar('slittrans',yoffset,5,'Yoffset',[2,3,4,5],0)
|
||
|
#if cancel then return,-1
|
||
|
|
||
|
# Go ahead
|
||
|
|
||
|
a = 0.5 * width
|
||
|
b = 0.5 * height
|
||
|
|
||
|
#s = fwhm/(np.sqrt(8.0*np.log(2.0)))
|
||
|
#slit = ( 1.0 - gaussint( -(a+xoffset)/s ) - gaussint( -(a-xoffset)/s ) ) * \
|
||
|
# ( 1.0 - gaussint( -(b+yoffset)/s ) - gaussint( -(b-yoffset)/s ) )
|
||
|
|
||
|
invs2 = (np.sqrt(4.0*np.log(2.0)))/fwhm # sigma * sqrt(2)
|
||
|
|
||
|
slit4 = 0.25 * ( (erf( -(a+xoffset)*invs2) + erf( -(a-xoffset)*invs2) ) ) * \
|
||
|
( (erf( -(b+yoffset)*invs2) + erf( -(b-yoffset)*invs2) ) )
|
||
|
|
||
|
|
||
|
#print 'smin/max,',slit.min(), slit5.max()
|
||
|
#print 'smin/max,',slit4.min(), slit4.max()
|
||
|
|
||
|
|
||
|
return slit4
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def atmosdisp(wave, wave_0, za, pressure, temp, water=2., fco2=0.0004, obsalt=0.):
|
||
|
""":NAME:
|
||
|
atmosdisp
|
||
|
|
||
|
PURPOSE:
|
||
|
Compute the atmosperic dispersion relative to lambda_0.
|
||
|
|
||
|
CATEGORY:
|
||
|
Spectroscopy
|
||
|
|
||
|
CALLING SEQUENCE:
|
||
|
result = atmosdisp(wave,wave_0,za,pressure,temp,[water],[obsalt],$
|
||
|
CANCEL=cancel)
|
||
|
|
||
|
INPUTS:
|
||
|
wave - wavelength in microns
|
||
|
wave_0 - reference wavelength in microns
|
||
|
za - zenith angle of object [in degrees]
|
||
|
pressure - atmospheric pressure in mm of Hg
|
||
|
temp - atmospheric temperature in degrees C
|
||
|
|
||
|
OPTIONAL INPUTS:
|
||
|
water - water vapor pressure in mm of Hg.
|
||
|
fco2 - relative concentration of CO2 (by pressure)
|
||
|
obsalt - The observatory altitude in km.
|
||
|
|
||
|
KEYWORD PARAMETERS:
|
||
|
CANCEL - Set on return if there is a problem
|
||
|
|
||
|
OUTPUTS:
|
||
|
Returns the atmospheric disperion in arcseconds.
|
||
|
|
||
|
PROCEDURE:
|
||
|
Computes the difference between the dispersion at two
|
||
|
wavelengths. The dispersion for each wavelength is derived from
|
||
|
Section 4.3 of Green's "Spherical Astronomy" (1985).
|
||
|
|
||
|
EXAMPLE:
|
||
|
|
||
|
|
||
|
|
||
|
MODIFICATION HISTORY:
|
||
|
2000-04-05 - written by M. Cushing, Institute for Astronomy, UH
|
||
|
2002-07-26 - cleaned up a bit.
|
||
|
2003-10-20 - modified formula - WDV
|
||
|
2011-10-07 15:51 IJMC: Converted to Python, with some unit conversions
|
||
|
-"""
|
||
|
|
||
|
#function atmosdisp,wave,wave_0,za,pressure,temp,water,obsalt,CANCEL=cancel
|
||
|
from nsdata import nAir
|
||
|
|
||
|
# Constants
|
||
|
|
||
|
mmHg2pa = 101325./760. # Pascals per Torr (i.e., per mm Hg)
|
||
|
rearth = 6378.136e6 #6371.03 # mean radius of earth in km [Allen's]
|
||
|
hconst = 2.926554e-2 # R/(mu*g) in km/deg K, R=gas const=8.3143e7
|
||
|
# mu=mean mol wght. of atm=28.970, g=980.665
|
||
|
tempk = temp + 273.15
|
||
|
pressure_pa = pressure * mmHg2pa
|
||
|
water_pp = water/pressure # Partial pressure
|
||
|
hratio = (hconst * tempk)/(rearth + obsalt)
|
||
|
|
||
|
# Compute index of refraction
|
||
|
|
||
|
nindx = nAir(wave,P=pressure_pa,T=tempk,pph2o=water_pp, fco2=fco2)
|
||
|
nindx0 = nAir(wave_0,P=pressure_pa,T=tempk,pph2o=water_pp, fco2=fco2)
|
||
|
|
||
|
# Compute dispersion
|
||
|
|
||
|
acoef = (1. - hratio)*(nindx - nindx0)
|
||
|
bcoef = 0.5*(nindx*nindx - nindx0*nindx0) - (1. + hratio)*(nindx - nindx0)
|
||
|
|
||
|
tanz = np.tan(np.deg2rad(za))
|
||
|
disp = 206265.*tanz*(acoef + bcoef*tanz*tanz)
|
||
|
|
||
|
#print nindx
|
||
|
#print nindx0
|
||
|
#print acoef
|
||
|
#print bcoef
|
||
|
#print tanz
|
||
|
#print disp
|
||
|
return disp
|
||
|
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def parangle(HA, DEC, lat):
|
||
|
"""
|
||
|
+
|
||
|
NAME:
|
||
|
parangle
|
||
|
|
||
|
PURPOSE:
|
||
|
To compute the parallactic angle at a given position on the sky.
|
||
|
|
||
|
CATEGORY:
|
||
|
Spectroscopy
|
||
|
|
||
|
CALLING SEQUENCE:
|
||
|
eta, za = parangle(HA, DEC, lat)
|
||
|
|
||
|
INPUTS:
|
||
|
HA - Hour angle of the object, in decimal hours (0,24)
|
||
|
DEC - Declination of the object, in degrees
|
||
|
lat - The latitude of the observer, in degrees
|
||
|
|
||
|
KEYWORD PARAMETERS:
|
||
|
CANCEL - Set on return if there is a problem
|
||
|
|
||
|
OUTPUTS:
|
||
|
eta - The parallactic angle
|
||
|
za - The zenith angle
|
||
|
|
||
|
PROCEDURE:
|
||
|
Given an objects HA and DEC and the observers latitude, the
|
||
|
zenith angle and azimuth are computed. The law of cosines
|
||
|
then gives the parallactic angle.
|
||
|
|
||
|
EXAMPLE:
|
||
|
NA
|
||
|
|
||
|
|
||
|
MODIFICATION HISTORY:
|
||
|
2000-04-05 - written by M. Cushing, Institute for Astronomy,UH
|
||
|
2002-08-15 - cleaned up a bit.
|
||
|
2003-10-21 - changed to pro; outputs zenith angle as well - WDV
|
||
|
2011-10-07 17:58 IJMC: Converted to Python
|
||
|
-"""
|
||
|
|
||
|
#pro parangle, HA, DEC, lat, eta, za, CANCEL=cancel
|
||
|
|
||
|
cancel = 0
|
||
|
d2r = np.deg2rad(1.)
|
||
|
r2d = np.rad2deg(1.)
|
||
|
|
||
|
# If HA equals zero then it is easy.
|
||
|
HA = HA % 24
|
||
|
# Check to see if HA is greater than 12.
|
||
|
if hasattr(HA, '__iter__'):
|
||
|
HA = np.array(HA, copy=False)
|
||
|
HAind = HA > 12
|
||
|
if HAind.any():
|
||
|
HA[HAind] = 24. - HA[HAind]
|
||
|
else:
|
||
|
if HA>12.:
|
||
|
HA = 24. - HA
|
||
|
|
||
|
HA = HA*15.
|
||
|
|
||
|
# Determine Zenith angle and Azimuth
|
||
|
cos_za = np.sin(lat*d2r) * np.sin(DEC*d2r) + \
|
||
|
np.cos(lat*d2r) * np.cos(DEC*d2r) * np.cos(HA*d2r)
|
||
|
za = np.arccos(cos_za) * r2d
|
||
|
cos_az = (np.sin(DEC*d2r) - np.sin(lat*d2r)*np.cos(za*d2r)) / \
|
||
|
(np.cos(lat*d2r) * np.sin(za*d2r))
|
||
|
az = np.arccos(cos_az)*r2d
|
||
|
|
||
|
if hasattr(az, '__iter__'):
|
||
|
azind = az==0
|
||
|
if azind.any() and DEC<lat:
|
||
|
az[azind] = 180.
|
||
|
else:
|
||
|
if az==0. and DEC<lat:
|
||
|
az = 180.
|
||
|
|
||
|
tan_eta = np.sin(HA*d2r)*np.cos(lat*d2r) / \
|
||
|
(np.cos(DEC*d2r)*np.sin(lat*d2r) - \
|
||
|
np.sin(DEC*d2r)*np.cos(lat*d2r)*np.cos(HA*d2r))
|
||
|
eta = np.arctan(tan_eta)*r2d
|
||
|
|
||
|
if hasattr(eta, '__iter__'):
|
||
|
etaind = eta < 0
|
||
|
ezind = (eta==0) * (az==0)
|
||
|
zaind = za > 90
|
||
|
if etaind.any():
|
||
|
eta[etaind] += 180.
|
||
|
elif ezind.any():
|
||
|
eta[ezind] = 180.
|
||
|
if zaind.any():
|
||
|
eta[zaind] = np.nan
|
||
|
else:
|
||
|
if eta < 0:
|
||
|
eta += 180.
|
||
|
elif eta==0 and az==0:
|
||
|
eta = 180.
|
||
|
if za>90:
|
||
|
eta = np.nan
|
||
|
|
||
|
HA = HA/15.0
|
||
|
|
||
|
return eta, za
|
||
|
|
||
|
[docs]
|
||
|
def lightloss(objfile, wguide, seeing, press=None, water=None, temp=None, fco2=None, wobj=None, dx=0, dy=0, retall=False):
|
||
|
""" +
|
||
|
NAME:
|
||
|
lightloss
|
||
|
|
||
|
PURPOSE:
|
||
|
To determine the slit losses from a spectrum.
|
||
|
|
||
|
CATEGORY:
|
||
|
Spectroscopy
|
||
|
|
||
|
CALLING SEQUENCE:
|
||
|
### TBD lightloss, obj, std, wguide, seeing, out, CANCEL=cancel
|
||
|
|
||
|
INPUTS:
|
||
|
obj - FITS file of the object spectrum
|
||
|
wguide - wavelength at which guiding was done
|
||
|
seeing - seeing FWHM at the guiding wavelength
|
||
|
|
||
|
OPTIONAL INPUTS:
|
||
|
press - mm Hg typical value (615 for IRTF, unless set)
|
||
|
water - mm Hg typical value (2 for IRTF, unless set)
|
||
|
temp - deg C typical value (0 for IRTF, unless set)
|
||
|
fco2 - relative concentration of CO2 (0.004, unless set)
|
||
|
wobj - wavelength scale for data
|
||
|
dx - horizontal offset of star from slit center
|
||
|
dy - vertical offset of star from slit center
|
||
|
retall- whether to return much diagnostic info, or just lightloss.
|
||
|
|
||
|
NOTES:
|
||
|
'seeing', 'dx', and 'dy' should all be in the same units, and
|
||
|
also the same units used to define the slit dimensions in the
|
||
|
obj FITS file header
|
||
|
|
||
|
KEYWORD PARAMETERS:
|
||
|
CANCEL - Set on return if there is a problem
|
||
|
|
||
|
OUTPUTS:
|
||
|
array : fractional slit loss at each wavelength value
|
||
|
OR:
|
||
|
tuple of arrays: (slitloss, disp_obj, diff, fwhm, dx_obj, dy_obj)
|
||
|
|
||
|
|
||
|
PROCEDURE:
|
||
|
Reads a Spextool FITS file.
|
||
|
|
||
|
EXAMPLE:
|
||
|
None
|
||
|
|
||
|
REQUIREMENTS:
|
||
|
:doc:`phot`
|
||
|
:doc:`pyfits`
|
||
|
|
||
|
MODIFICATION HISTORY:
|
||
|
2003-10-21 - Written by W D Vacca
|
||
|
2011-10-07 20:19 IJMC: Converted to Python, adapted for single objects
|
||
|
2011-10-14 14:01 IJMC: Added check for Prism mode (has
|
||
|
different slit dimension keywords) and different
|
||
|
pyfits header read mode.
|
||
|
2011-11-07 15:53 IJMC: Added 'retall' keyword
|
||
|
|
||
|
-
|
||
|
"""
|
||
|
#pro lightloss, objfile, stdfile, wguide, seeing, outfile,CANCEL=cancel
|
||
|
|
||
|
|
||
|
try:
|
||
|
from astropy.io import fits as pyfits
|
||
|
except:
|
||
|
import pyfits
|
||
|
|
||
|
from phot import hms, dms
|
||
|
|
||
|
r2d = np.rad2deg(1)
|
||
|
|
||
|
# --- Open input files
|
||
|
|
||
|
obj = pyfits.getdata(objfile)
|
||
|
objhdu = pyfits.open(objfile)
|
||
|
#objhdr = pyfits.getheader(objfile)
|
||
|
objhdu.verify('silentfix')
|
||
|
objhdr = objhdu[0].header
|
||
|
if wobj is None:
|
||
|
try:
|
||
|
wobj = obj[:,0,:]
|
||
|
#fobj = obj[:,1,:]
|
||
|
#eobj = obj[:,2,:]
|
||
|
except:
|
||
|
wobj = obj[0,:]
|
||
|
#fobj = obj[1,:]
|
||
|
#eobj = obj[2,:]
|
||
|
|
||
|
# --- Read header keywords
|
||
|
|
||
|
tele = objhdr['TELESCOP']
|
||
|
|
||
|
try:
|
||
|
slitwd = objhdr['SLTW_ARC']
|
||
|
slitht = objhdr['SLTH_ARC']
|
||
|
except: # for SpeX prism mode:
|
||
|
slitwd, slitht = map(float, objhdr['SLIT'].split('x'))
|
||
|
|
||
|
#xaxis = objhdr['XAXIS']
|
||
|
#xunits = objhdr['XUNITS']
|
||
|
#yaxis = objhdr['YAXIS']
|
||
|
#yunits = objhdr['YUNITS']
|
||
|
|
||
|
posang_obj = objhdr['POSANGLE']
|
||
|
HA_objstr = objhdr['HA']
|
||
|
DEC_objstr = objhdr['DEC']
|
||
|
|
||
|
# --- Process keywords
|
||
|
|
||
|
#coord_str = HA_objstr + ' ' + DEC_objstr
|
||
|
#get_coords, coords, InString=coord_str
|
||
|
HA_obj, DEC_obj = dms(HA_objstr), dms(DEC_objstr)
|
||
|
|
||
|
if posang_obj<0.0:
|
||
|
posang_obj += 180.
|
||
|
if posang_obj >= 180.0:
|
||
|
posang_obj -= 180.0
|
||
|
|
||
|
if tele=='NASA IRTF':
|
||
|
obsdeg = 19.0
|
||
|
obsmin = 49.0
|
||
|
obssec = 34.39
|
||
|
obsalt = 4.16807 # observatory altitude in km
|
||
|
teldiam = 3.0 # diameter of primary in meters
|
||
|
if press is None:
|
||
|
press = 615.0 # mm Hg typical value
|
||
|
if water is None:
|
||
|
water = 2.0 # mm Hg typical value
|
||
|
if temp is None:
|
||
|
temp = 0.0 # deg C typical value
|
||
|
else:
|
||
|
print 'Unknown Telescope - stopping!'
|
||
|
return
|
||
|
|
||
|
if fco2 is None:
|
||
|
fco2 = 0.0004
|
||
|
|
||
|
obslat = dms('%+02i:%02i:%02i' % (obsdeg, obsmin, obssec))
|
||
|
|
||
|
# --- Compute Parallactic Angle
|
||
|
pa_obj, za_obj = parangle(HA_obj, DEC_obj, obslat)
|
||
|
dtheta_obj = posang_obj - pa_obj
|
||
|
#print posang_obj, pa_obj, dtheta_obj, za_obj
|
||
|
|
||
|
#print posang_obj, pa_obj, dtheta_obj, HA_obj
|
||
|
|
||
|
# --- Compute Differential Atmospheric Dispersion
|
||
|
disp_obj = atmosdisp(wobj, wguide, za_obj, press, temp, \
|
||
|
water=water, obsalt=obsalt, fco2=fco2)
|
||
|
|
||
|
# --- Compute FWHM at each input wavelength
|
||
|
diff = 2.0*1.22e-6*3600.0*r2d*(wobj/teldiam) # arcsec
|
||
|
fwhm = (seeing*(wobj/wguide)**(-0.2))
|
||
|
fwhm[fwhm < diff] = diff[fwhm < diff]
|
||
|
|
||
|
# --- Compute Relative Fraction of Light contained within the slit
|
||
|
dx_obj = (disp_obj*np.sin(dtheta_obj/r2d)) + dx
|
||
|
dy_obj = (disp_obj*np.cos(dtheta_obj/r2d)) + dy
|
||
|
|
||
|
slitloss = slittrans(slitwd,slitht,fwhm,dx_obj,dy_obj)
|
||
|
|
||
|
#debug_check = lightloss2(wobj, slitwd, slitht, posang_obj/57.3, pa_obj/57.3, za_obj/57.3, wguide, seeing, retall=retall)
|
||
|
|
||
|
if retall:
|
||
|
return (slitloss, disp_obj, diff, fwhm, dx_obj, dy_obj)
|
||
|
else:
|
||
|
return slitloss
|
||
|
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def lightloss2(wobj, slitwd, slitht, slitPA, targetPA, zenith_angle, wguide, seeing, press=615., water=2., temp=0., fco2=0.004, obsalt=4.16807, teldiam=3., dx=0, dy=0, retall=False, ydisp=None, xdisp=None, fwhm=None):
|
||
|
""" +
|
||
|
NAME:
|
||
|
lightloss2
|
||
|
|
||
|
PURPOSE:
|
||
|
To determine the slit losses from an observation (no FITS file involved)
|
||
|
|
||
|
CATEGORY:
|
||
|
Spectroscopy
|
||
|
|
||
|
CALLING SEQUENCE:
|
||
|
### TBD lightloss, obj, std, wguide, seeing, out, CANCEL=cancel
|
||
|
|
||
|
INPUTS:
|
||
|
wobj - wavelength scale for data
|
||
|
slitwd - width of slit, in arcsec
|
||
|
slitht - height of slit, in arcsec
|
||
|
slitPA - slit Position Angle, in radians
|
||
|
targetPA - Parallactic Angle at target, in radians
|
||
|
zenith_angle - Zenith Angle, in radians
|
||
|
wguide - wavelength at which guiding was done
|
||
|
seeing - seeing FWHM at the guiding wavelength
|
||
|
|
||
|
OPTIONAL INPUTS:
|
||
|
press - mm Hg typical value (615, unless set)
|
||
|
water - mm Hg typical value (2 , unless set)
|
||
|
temp - deg C typical value (0 , unless set)
|
||
|
fco2 - relative concentration of CO2 (0.004, unless set)
|
||
|
obsalt- observatory altitude, in km
|
||
|
teldiam- observatory limiting aperture diameter, in m
|
||
|
dx - horizontal offset of star from slit center
|
||
|
dy - vertical offset of star from slit center
|
||
|
retall- whether to return much diagnostic info, or just lightloss.
|
||
|
|
||
|
ydisp - The position of the spectrum in the slit at all
|
||
|
values of wobj. This should be an array of the same
|
||
|
size as wobj, with zero corresponding to the vertical
|
||
|
middle of the slit and positive values tending toward
|
||
|
zenith. In this case xdisp will be computed as XXXX
|
||
|
rather than from the calculated atmospheric
|
||
|
dispersion; dx and dy will also be ignored.
|
||
|
|
||
|
fwhm - Full-width at half-maximum of the spectral trace, at
|
||
|
all values of wobj. This should be an array of the
|
||
|
same size as wobj, measured in arc seconds.
|
||
|
|
||
|
|
||
|
NOTES:
|
||
|
'slitwidth', 'slitheight', 'seeing', 'dx', 'dy', and 'fwhm'
|
||
|
(if used) should all be in the same units: arc seconds.
|
||
|
|
||
|
OUTPUTS:
|
||
|
array : fractional slit loss at each wavelength value
|
||
|
OR:
|
||
|
tuple of arrays: (slitloss, disp_obj, diff, fwhm, dx_obj, dy_obj)
|
||
|
|
||
|
|
||
|
PROCEDURE:
|
||
|
All input-driven. For the SpeXTool-version analogue, see
|
||
|
:func:`lightloss`
|
||
|
|
||
|
EXAMPLE:
|
||
|
import numpy as np
|
||
|
import spec
|
||
|
w = np.linspace(.5, 2.5, 100) # Wavelength, in microns
|
||
|
d2r = np.deg2rad(1.)
|
||
|
#targetPA, za = spec.parangle(1.827, 29.67*d2r, lat=20.*d2r)
|
||
|
targetPA, za = 105.3, 27.4
|
||
|
slitPA = 90. * d2r
|
||
|
|
||
|
spec.lightloss2(w, 3., 15., slitPA, targetPA*d2r, za*d2r, 2.2, 1.0)
|
||
|
|
||
|
REQUIREMENTS:
|
||
|
:doc:`phot`
|
||
|
|
||
|
MODIFICATION HISTORY:
|
||
|
2003-10-21 - Written by W D Vacca
|
||
|
2011-10-07 20:19 IJMC: Converted to Python, adapted for single objects
|
||
|
2011-10-14 14:01 IJMC: Added check for Prism mode (has
|
||
|
different slit dimension keywords) and different
|
||
|
pyfits header read mode.
|
||
|
2011-11-07 15:53 IJMC: Added 'retall' keyword
|
||
|
2011-11-07 21:17 IJMC: Cannibalized from SpeXTool version
|
||
|
2011-11-25 15:06 IJMC: Added ydisp and fwhm options.
|
||
|
-
|
||
|
"""
|
||
|
#pro lightloss, objfile, stdfile, wguide, seeing, outfile,CANCEL=cancel
|
||
|
|
||
|
|
||
|
try:
|
||
|
from astropy.io import fits as pyfits
|
||
|
except:
|
||
|
import pyfits
|
||
|
|
||
|
from phot import hms, dms
|
||
|
|
||
|
r2d = np.rad2deg(1)
|
||
|
d2r = np.deg2rad(1.)
|
||
|
|
||
|
if slitPA<0.0:
|
||
|
slitPA += np.pi
|
||
|
if slitPA >= np.pi:
|
||
|
slitPA -= np.pi
|
||
|
|
||
|
# --- Compute Parallactic Angle
|
||
|
dtheta_obj = slitPA - targetPA
|
||
|
#print slitPA, targetPA, dtheta_obj, zenith_angle
|
||
|
|
||
|
# --- Compute FWHM at each input wavelength
|
||
|
diff = 2.0*1.22e-6*3600.0*r2d*(wobj/teldiam) # arcsec
|
||
|
if fwhm is None:
|
||
|
fwhm = (seeing*(wobj/wguide)**(-0.2))
|
||
|
|
||
|
fwhm[fwhm < diff] = diff[fwhm < diff]
|
||
|
|
||
|
if ydisp is None or xdisp is None:
|
||
|
# --- Compute Differential Atmospheric Dispersion
|
||
|
disp_obj = atmosdisp(wobj, wguide, zenith_angle*r2d, press, temp, \
|
||
|
water=water, obsalt=obsalt, fco2=fco2)
|
||
|
|
||
|
|
||
|
if ydisp is None:
|
||
|
dy_obj = (disp_obj*np.cos(dtheta_obj)) + dy
|
||
|
else:
|
||
|
dy_obj = ydisp
|
||
|
|
||
|
if xdisp is None:
|
||
|
dx_obj = (disp_obj*np.sin(dtheta_obj)) + dx
|
||
|
else:
|
||
|
dx_obj = xdisp
|
||
|
|
||
|
else:
|
||
|
dx_obj = np.array(xdisp, copy=False)
|
||
|
dy_obj = np.array(ydisp, copy=False)
|
||
|
if retall:
|
||
|
disp_obj = (dy_obj - dy) / np.cos(dtheta_obj)
|
||
|
|
||
|
# if xdisp is None and ydisp is None:
|
||
|
# guide_index = np.abs(wobj - wguide).min() == np.abs(wobj-wguide)
|
||
|
# dy = ydisp[guide_index].mean()
|
||
|
# dy_obj = ydisp
|
||
|
# dx_obj = (dy_obj - dy) * np.tan(dtheta_obj)
|
||
|
|
||
|
# --- Compute Relative Fraction of Light contained within the slit
|
||
|
slitloss = slittrans(slitwd, slitht, fwhm, dx_obj, dy_obj)
|
||
|
|
||
|
if retall:
|
||
|
return slitloss, disp_obj, diff, fwhm, dx_obj, dy_obj
|
||
|
else:
|
||
|
return slitloss
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def humidpressure(RH, T):
|
||
|
""" +
|
||
|
NAME:
|
||
|
humidpressure
|
||
|
|
||
|
PURPOSE:
|
||
|
To convert relative humidity into a H2O vapor partial pressure
|
||
|
|
||
|
CATEGORY:
|
||
|
Spectroscopy
|
||
|
|
||
|
CALLING SEQUENCE:
|
||
|
humidpressure(RH, 273.15)
|
||
|
|
||
|
INPUTS:
|
||
|
RH - relative humidity, in percent
|
||
|
T - temperature, in Kelvin
|
||
|
|
||
|
OUTPUTS:
|
||
|
h2o_pp : water vapor partial pressure, in Pascals
|
||
|
|
||
|
PROCEDURE:
|
||
|
As outlined in Butler (1998): "Precipitable Water at KP", MMA
|
||
|
Memo 238 (which refers in turn to Liebe 1989, "MPM - An
|
||
|
Atmospheric Millimeter-Wave Propagation Model"). Liebe
|
||
|
claims that this relation has an error of <0.2% from -40 C to
|
||
|
+40 C.
|
||
|
|
||
|
EXAMPLE:
|
||
|
None
|
||
|
|
||
|
MODIFICATION HISTORY:
|
||
|
2011-10-08 17:08 IJMC: Created.
|
||
|
-
|
||
|
"""
|
||
|
|
||
|
# units of Pa
|
||
|
#theta = 300./T
|
||
|
#return 2.408e11 * RH * np.exp(-22.64*theta) * (theta*theta*theta*theta)
|
||
|
|
||
|
theta_mod = 6792./T # theta * 22.64
|
||
|
return 9.1638 * RH * np.exp(-theta_mod) * \
|
||
|
(theta_mod*theta_mod*theta_mod*theta_mod)
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def runlblrtm(lamrange, pwv=2., zang=0., alt=4.2, co2=390, res=200, dotrans=True, dorad=False,
|
||
|
pwv_offset=4.,
|
||
|
verbose=False, _save='/Users/ianc/temp/testatmo.mat',
|
||
|
_wd='/Users/ianc/proj/atmo/aerlbl_v12.0_package/caltech_wrapper_v02/',
|
||
|
scriptname='runtelluric.m',
|
||
|
command = '/Applications/Octave.app/Contents/Resources/bin/octave'):
|
||
|
"""
|
||
|
Run LBLRTM to compute atmospheric transmittance and/or radiance.
|
||
|
|
||
|
:INPUTS:
|
||
|
lamrange : 2-sequence
|
||
|
approximate minimum and maximum wavelengths
|
||
|
|
||
|
:OPTIONS:
|
||
|
pwv : float
|
||
|
mm of Precipitable Water Vapor above observation site. If
|
||
|
negative, then the value abs(pwv_offset-pwv) will be used instead.
|
||
|
|
||
|
pwv_offset : float
|
||
|
Only used if (pwv < 0); see above for description.
|
||
|
|
||
|
zang : float
|
||
|
observation angle from zenith, in degrees
|
||
|
|
||
|
alt : float
|
||
|
Observation elevation, in km.
|
||
|
|
||
|
co2 : float
|
||
|
CO2 concentration in ppm by volume. Concentration is assumed
|
||
|
to be uniform throughout the atmosphere.
|
||
|
|
||
|
res : float
|
||
|
approximate spectral resolution desired
|
||
|
|
||
|
dotrans : bool
|
||
|
compute atmospheric transmittance
|
||
|
|
||
|
dorad : bool
|
||
|
compute atmospheric radiance. NOT CURRENTLY WORKING
|
||
|
|
||
|
_save : str
|
||
|
path where temporary MAT save file will be stored
|
||
|
|
||
|
_wd : str
|
||
|
path where MATLAB wrapper scripts for LBLRTM are located
|
||
|
|
||
|
scriptname : str
|
||
|
filename for temporary MATLAB/OCTAVE script (saved after exit)
|
||
|
|
||
|
command : str
|
||
|
path to MATLAB/OCTAVE executable
|
||
|
|
||
|
:OUTPUTS:
|
||
|
A 2- or 3-tuple: First element is wavelength in microns, second
|
||
|
element is transmittance (if requested). Radiance will (if
|
||
|
requested) always be the last element, and in f_nu units: W/cm2/sr/(cm^-1)
|
||
|
|
||
|
:REQUIREMENTS:
|
||
|
SciPy
|
||
|
|
||
|
OCTAVE or MATLAB
|
||
|
|
||
|
`LBLRTM <http://rtweb.aer.com/lblrtm_code.html>`_
|
||
|
|
||
|
D. Feldman's set of MATLAB `wrapper scripts
|
||
|
<http://www.mathworks.com/matlabcentral/fileexchange/6461-lblrtm-wrapper-version-0-2/>`_
|
||
|
"""
|
||
|
# 2011-10-13 13:59 IJMC: Created.
|
||
|
# 2011-10-19 23:35 IJMC: Added scipy.__version__ check for MAT IO
|
||
|
# 2011-10-25 17:00 IJMC: Added pwv_offset option.
|
||
|
# 2011-11-07 08:47 IJMC: Now path(path..) uses _wd input option; call --wd option.
|
||
|
# 2012-07-20 21:25 IJMC: Added 'alt' option for altitude.
|
||
|
# 2012-09-16 15:13 IJMC: Fixed for 'dotrans' and 'dorad'
|
||
|
# 2014-02-17 18:48 IJMC: Specified approximate units of radiance output.
|
||
|
|
||
|
import os
|
||
|
from scipy.io import loadmat
|
||
|
from scipy import __version__
|
||
|
|
||
|
# Define variables:
|
||
|
|
||
|
def beforev8(ver):
|
||
|
v1, v2, v3 = ver.split('.')
|
||
|
if v1==0 and v2<8:
|
||
|
before = True
|
||
|
else:
|
||
|
before = False
|
||
|
return before
|
||
|
|
||
|
if pwv<0:
|
||
|
pwv = np.abs(pwv_offset - pwv)
|
||
|
#lamrange = [1.12, 2.55] # microns
|
||
|
#res = 200; # lambda/dlambda
|
||
|
|
||
|
|
||
|
# Try to delete old files, if possible.
|
||
|
if os.path.isfile(_save):
|
||
|
#try:
|
||
|
# os.remove(_save)
|
||
|
#except:
|
||
|
while os.path.isfile(_save):
|
||
|
_save = _save.replace('.mat', '0.mat')
|
||
|
|
||
|
if os.path.isfile(scriptname):
|
||
|
#try:
|
||
|
# os.remove(scriptname)
|
||
|
#except:
|
||
|
while os.path.isfile(scriptname):
|
||
|
scriptname = scriptname.replace('.m', '0.m')
|
||
|
|
||
|
aerlbl_dir = '/'.join(_wd.split('/')[0:-2]) + '/'
|
||
|
|
||
|
# Make the matlab script:
|
||
|
matlines = []
|
||
|
matlines.append("_path = '%s';\n" % _wd )
|
||
|
matlines.append("_save = '%s';\n" % _save )
|
||
|
matlines.append("_dir0 = pwd;\n")
|
||
|
matlines.append("path(path, '%s')\n" % _wd )
|
||
|
matlines.append("lamrange = [%1.5f, %1.5f];\n" % (lamrange[0], lamrange[1]))
|
||
|
if verbose:
|
||
|
matlines.append("pwd\n")
|
||
|
matlines.append("wt = which('telluric_simulator')\n")
|
||
|
matlines.append("strfind(path, 'caltech')\n")
|
||
|
matlines.append("tran_out = telluric_simulator(lamrange, '--dotran %i', '--dorad %i', '--R %s', '--alt %1.4f', '--pwv %1.4f', '--co2 %1.1f', '--zang %1.3f', '--verbose %i', '--wd %s');\n" % (int(dotrans), int(dorad), res, alt, pwv, co2, zang, verbose, aerlbl_dir) )
|
||
|
matlines.append("save('-v6', _save, 'tran_out');\n")
|
||
|
|
||
|
# Write script to disk, and execute it:
|
||
|
f = open(scriptname, 'w')
|
||
|
f.writelines(matlines)
|
||
|
f.close()
|
||
|
os.system('%s %s' % (command, scriptname))
|
||
|
|
||
|
# Open the MAT file and extract the desired output:
|
||
|
# try:
|
||
|
if os.path.isfile(_save):
|
||
|
mat = loadmat(_save)
|
||
|
else:
|
||
|
trycount = 1
|
||
|
print "Saved file '%s' could not be loaded..." % _save
|
||
|
while trycount < 5:
|
||
|
os.system('%s %s' % (command, scriptname))
|
||
|
try:
|
||
|
mat = loadmat(_save)
|
||
|
trycount = 10
|
||
|
except:
|
||
|
trycount += 1
|
||
|
if trycount < 10: # never successfully loaded the file.
|
||
|
pdb.set_trace()
|
||
|
|
||
|
if beforev8(__version__):
|
||
|
w = mat['tran_out'][0][0].wavelength.ravel()
|
||
|
else:
|
||
|
w = mat['tran_out']['wavelength'][0][0].ravel()
|
||
|
if dotrans:
|
||
|
if beforev8(__version__):
|
||
|
t = mat['tran_out'][0][0].transmittance.ravel()
|
||
|
else:
|
||
|
t = mat['tran_out']['transmittance'][0][0].ravel()
|
||
|
if dorad:
|
||
|
if beforev8(__version__):
|
||
|
r = mat['tran_out'][0][0].radiance.ravel()
|
||
|
else:
|
||
|
r = mat['tran_out']['radiance'][0][0].ravel()
|
||
|
|
||
|
os.remove(scriptname)
|
||
|
os.remove(_save)
|
||
|
|
||
|
if dotrans:
|
||
|
ret = (w, t)
|
||
|
else:
|
||
|
ret = (w,)
|
||
|
if dorad:
|
||
|
ret = ret + (r,)
|
||
|
|
||
|
return ret
|
||
|
|
||
|
[docs]
|
||
|
def zenith(ra, dec, ha, obs):
|
||
|
""" Compute zenith angle (in degrees) for an observation.
|
||
|
|
||
|
:INPUTS:
|
||
|
ra : str
|
||
|
Right Ascension of target, in format: HH:MM:SS.SS
|
||
|
|
||
|
dec : str
|
||
|
Declination of target, in format: +ddd:mm:ss
|
||
|
|
||
|
ha : str
|
||
|
Hour Angle of target, in format: +HH:MM:SS.SS
|
||
|
|
||
|
obs : str
|
||
|
Name of observatory site (keck, irtf, lick, lapalma, ctio,
|
||
|
andersonmesa, mtgraham, kpno) or a 3-tuple containing
|
||
|
(longitude_string, latitude_string, elevation_in_meters)
|
||
|
|
||
|
|
||
|
:OUTPUTS:
|
||
|
Zenith angle, in degrees, for the specified observation
|
||
|
|
||
|
:REQUIREMENTS:
|
||
|
:doc:`phot`
|
||
|
|
||
|
Numpy
|
||
|
"""
|
||
|
# 2011-10-14 09:43 IJMC: Created
|
||
|
|
||
|
import phot
|
||
|
|
||
|
#observer = ephem.Observer()
|
||
|
if obs=='lick':
|
||
|
obs_long, obs_lat = '-121:38.2','37:20.6'
|
||
|
obs_elev = 1290
|
||
|
elif obs=='keck':
|
||
|
obs_long, obs_lat = '-155:28.7','19:49.7'
|
||
|
obs_elev = 4160
|
||
|
elif obs=='irtf':
|
||
|
obs_long, obs_lat = '-155:28:21.3', '19:49:34.8'
|
||
|
obs_elev = 4205
|
||
|
elif obs=='lapalma':
|
||
|
obs_long, obs_lat = '17:53.6','28:45.5'
|
||
|
obs_elev = 4160
|
||
|
elif obs=='ctio':
|
||
|
obs_long, obs_lat = '-70:48:54','-30:9.92'
|
||
|
obs_elev = 2215
|
||
|
elif obs=='andersonmesa': #
|
||
|
obs_long, obs_lat = '-111:32:09', '30:05:49'
|
||
|
obs_elev = 2163
|
||
|
elif obs=='mtgraham':
|
||
|
obs_long, obs_lat = '-109:53:23', '32:42:05'
|
||
|
obs_elev = 3221
|
||
|
elif obs=='kpno':
|
||
|
obs_long, obs_lat = '-111:25:48', '31:57:30'
|
||
|
obs_elev = 2096
|
||
|
elif len(obs)==3:
|
||
|
obs_long, obs_lat, obs_elev = obs
|
||
|
else:
|
||
|
print "Unknown or imparseable observatory site."
|
||
|
return -1
|
||
|
|
||
|
lat = phot.dms(obs_lat) * np.pi/180.
|
||
|
long = phot.dms(obs_long) * np.pi/180.
|
||
|
ra = (phot.hms(ra)) * np.pi/180.
|
||
|
dec= (phot.dms(dec)) * np.pi/180.
|
||
|
|
||
|
# Compute terms for coordinate conversion
|
||
|
if hasattr(ha, '__iter__'):
|
||
|
zang = []
|
||
|
for ha0 in ha:
|
||
|
har = (phot.hms(ha0)) * np.pi/180.
|
||
|
term1 = np.sin(lat)*np.sin(dec)+np.cos(lat)*np.cos(dec)*np.cos(har)
|
||
|
term2 = np.cos(lat)*np.sin(dec)-np.sin(lat)*np.cos(dec)*np.cos(har)
|
||
|
term3 = -np.cos(dec)*np.sin(har)
|
||
|
rad = np.abs(term3 +1j*term2)
|
||
|
az = np.arctan2(term3,term2)
|
||
|
alt = np.arctan2(term1, rad)
|
||
|
zang.append(90. - (alt*180./np.pi))
|
||
|
else:
|
||
|
har = (phot.hms(ha0)) * np.pi/180.
|
||
|
term1 = np.sin(lat)*np.sin(dec)+np.cos(lat)*np.cos(dec)*np.cos(har)
|
||
|
term2 = np.cos(lat)*np.sin(dec)-np.sin(lat)*np.cos(dec)*np.cos(har)
|
||
|
term3 = -np.cos(dec)*np.sin(har)
|
||
|
rad = np.abs(term3 +1j*term2)
|
||
|
az = np.arctan2(term3,term2)
|
||
|
alt = np.arctan2(term1, rad)
|
||
|
zang = 90. - (alt*180./np.pi)
|
||
|
|
||
|
## Compute airmass
|
||
|
#z = pi/2. - alt
|
||
|
#airmass = 1./(np.cos(z) + 0.50572*(96.07995-z*180./pi)**(-1.6364))
|
||
|
|
||
|
return zang
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def spexsxd_scatter_model(dat, halfwid=48, xlims=[470, 1024], ylims=[800, 1024], full_output=False, itime=None):
|
||
|
"""Model the scattered light seen in SpeX/SXD K-band frames.
|
||
|
|
||
|
:INPUTS:
|
||
|
dat : str or numpy array
|
||
|
filename of raw SXD frame to be corrected, or a Numpy array
|
||
|
containing its data.
|
||
|
|
||
|
:OPTIONS:
|
||
|
halfwid : int
|
||
|
half-width of the spectral orders. Experience shows this is
|
||
|
approximately 48 pixels. This value is not fit!
|
||
|
|
||
|
xlims : list of length 2
|
||
|
minimum and maximum x-pixel values to use in the fitting
|
||
|
|
||
|
ylims : list of length 2
|
||
|
minimum and maximum y-pixel values to use in the fitting
|
||
|
|
||
|
full_output : bool
|
||
|
whether to output only model, or the tuple (model, fits, chisq, nbad)
|
||
|
|
||
|
itime : float
|
||
|
integration time, in seconds, with which to scale the initial
|
||
|
guesses
|
||
|
|
||
|
:OUTPUT:
|
||
|
scatter_model : numpy array
|
||
|
Model of the scattered light component, for subtraction or saving.
|
||
|
|
||
|
OR:
|
||
|
|
||
|
scatter_model, fits, chis, nbad
|
||
|
|
||
|
:REQUIREMENTS:
|
||
|
:doc:`pyfits`, :doc:`numpy`, :doc:`fit_atmo`, :doc:`analysis`, :doc:`phasecurves`
|
||
|
|
||
|
:TO_DO_LIST:
|
||
|
I could stand to be more clever in modeling the scattered light
|
||
|
components -- perhaps fitting for the width, or at least
|
||
|
allowing the width to be non-integer.
|
||
|
"""
|
||
|
# 2011-11-10 11:10 IJMC: Created
|
||
|
|
||
|
import analysis as an
|
||
|
import phasecurves as pc
|
||
|
|
||
|
try:
|
||
|
from astropy.io import fits as pyfits
|
||
|
except:
|
||
|
import pyfits
|
||
|
|
||
|
|
||
|
############################################################
|
||
|
# Define some helper functions:
|
||
|
############################################################
|
||
|
|
||
|
|
||
|
|
||
|
def tophat(param, x):
|
||
|
"""Grey-pixel tophat function with set width
|
||
|
param: [cen_pix, amplitude, background]
|
||
|
x : must be array of ints, arange(0, size-1)
|
||
|
returns the model."""
|
||
|
# 2011-11-09 21:37 IJMC: Created
|
||
|
intpix, fracpix = int(param[0]), param[0] % 1
|
||
|
th = param[1] * ((-halfwid <= (x - intpix)) * ((x - intpix) < halfwid))
|
||
|
# th = * th.astype(float)
|
||
|
if (intpix >= halfwid) and ((intpix - halfwid) < x.size):
|
||
|
th[intpix - halfwid] = param[1]*(1. - fracpix)
|
||
|
if (intpix < (x.size - halfwid)) and ((intpix + halfwid) >= 0):
|
||
|
th[intpix + halfwid] = param[1]*fracpix
|
||
|
return th + param[2]
|
||
|
|
||
|
def tophat2g(param, x, p0prior=None):
|
||
|
"""Grey-pixel double-tophat plus gaussian
|
||
|
param: [cen_pix1, amplitude1, cen_pix2, amplitude2, g_area, g_sigma, g_center, background]
|
||
|
x : must be ints, arange(0, size-1)
|
||
|
returns the model.""" # 2011-11-09 21:37 IJMC: Created
|
||
|
#th12 =
|
||
|
#th2 =
|
||
|
#gauss =
|
||
|
# if p0prior is not None:
|
||
|
# penalty =
|
||
|
return tophat([param[0], param[1], 0], x) + \
|
||
|
tophat([param[2], param[3], 0], x) + \
|
||
|
gaussian(param[4:7], x) + param[7]
|
||
|
|
||
|
############################################################
|
||
|
# Parse inputs
|
||
|
############################################################
|
||
|
halfwid = int(halfwid)
|
||
|
if isinstance(dat, np.ndarray):
|
||
|
if itime is None:
|
||
|
itime = 1.
|
||
|
else:
|
||
|
if itime is None:
|
||
|
try:
|
||
|
itime = pyfits.getval(dat, 'ITIME')
|
||
|
except:
|
||
|
itime = 1.
|
||
|
dat = pyfits.getdata(dat)
|
||
|
|
||
|
nx, ny = dat.shape
|
||
|
|
||
|
scatter_model = np.zeros((nx, ny), dtype=float)
|
||
|
chis, fits, nbad = [], [], []
|
||
|
iivals = np.arange(xlims[1]-1, xlims[0], -1, dtype=int)
|
||
|
|
||
|
position_offset = 850 - ylims[0]
|
||
|
est_coefs = np.array([ -5.02509772e-05, 2.97212397e-01, -7.65702234e+01])
|
||
|
estimated_position = np.polyval(est_coefs, iivals) + position_offset
|
||
|
estimated_error = 0.5
|
||
|
|
||
|
# to hold scattered light position fixed, rather than fitting for
|
||
|
# that position, uncomment the following line:
|
||
|
#holdfixed = [0]
|
||
|
holdfixed = None
|
||
|
|
||
|
############################################################
|
||
|
# Start fitting
|
||
|
############################################################
|
||
|
for jj, ii in enumerate(iivals):
|
||
|
col = dat[ylims[0]:ylims[1], ii]
|
||
|
ecol = np.ones(col.size, dtype=float)
|
||
|
x = np.arange(col.size, dtype=float)
|
||
|
if len(fits)==0:
|
||
|
all_guess = [175 + position_offset, 7*itime, \
|
||
|
70 + position_offset, 7*itime, \
|
||
|
250*itime, 5, 89 + position_offset, 50]
|
||
|
else:
|
||
|
all_guess = fits[-1]
|
||
|
all_guess[0] = estimated_position[jj]
|
||
|
model_all = tophat2g(all_guess, x)
|
||
|
res = (model_all - col)
|
||
|
badpix = np.abs(res) > (4*an.stdr(res, nsigma=4))
|
||
|
ecol[badpix] += 1e9
|
||
|
|
||
|
fit = an.fmin(pc.errfunc, all_guess, args=(tophat2g, x, col, 1./ecol**2), full_output=True, maxiter=1e4, maxfun=1e4, disp=False, kw=dict(testfinite=False), holdfixed=holdfixed)
|
||
|
best_params = fit[0].copy()
|
||
|
res = tophat2g(best_params, x) - col
|
||
|
badpix = np.abs(res) > (4*an.stdr(res, nsigma=4))
|
||
|
badpix[((np.abs(np.abs(x - best_params[0]) - 48.)) < 2) + \
|
||
|
((np.abs(np.abs(x - best_params[2]) - 48.)) < 2)] = False
|
||
|
badpix += (np.abs(res) > (20*an.stdr(res, nsigma=4)))
|
||
|
ecol = np.ones(col.size, dtype=float)
|
||
|
ecol[badpix] += 1e9
|
||
|
best_chisq = pc.errfunc(best_params, tophat2g, x, col, 1./ecol**2)
|
||
|
|
||
|
# Make sure you didn't converge on the wrong model:
|
||
|
for this_offset in ([-2, 0, 2]):
|
||
|
this_guess = fit[0].copy()
|
||
|
this_guess[2] += this_offset
|
||
|
this_guess[0] = estimated_position[jj]
|
||
|
#pc.errfunc(this_guess, tophat2g, x, col, 1./ecol**2)
|
||
|
this_fit = an.fmin(pc.errfunc, this_guess, args=(tophat2g, x, col, 1./ecol**2), full_output=True, maxiter=1e4, maxfun=1e4, disp=False, kw=dict(testfinite=False), holdfixed=holdfixed)
|
||
|
#print this_offset1, this_offset2, this_fit[1]
|
||
|
if this_fit[1] < best_chisq:
|
||
|
best_chisq = this_fit[1]
|
||
|
best_params = this_fit[0].copy()
|
||
|
|
||
|
fits.append(best_params)
|
||
|
chis.append(best_chisq)
|
||
|
nbad.append(badpix.sum())
|
||
|
mod2 = tophat2g(best_params, x)
|
||
|
scatter_model[ylims[0]:ylims[1], ii] = tophat(list(best_params[0:2])+[0], x)
|
||
|
|
||
|
if full_output:
|
||
|
return scatter_model, fits, chis, nbad
|
||
|
else:
|
||
|
return scatter_model
|
||
|
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def spexsxd_scatter_fix(fn1, fn2, **kw):
|
||
|
""" Fix scattered light in SpeX/SXD K-band and write a new file.
|
||
|
|
||
|
:INPUTS:
|
||
|
fn1 : str
|
||
|
file to be fixed
|
||
|
|
||
|
fn2 : str
|
||
|
new filename of fixed file.
|
||
|
|
||
|
:OPTIONS:
|
||
|
clobber : bool
|
||
|
whether to overwrite existing FITS files
|
||
|
|
||
|
Other options will be passed to :func:`spexsxd_scatter_model`
|
||
|
|
||
|
:OUTPUTS:
|
||
|
status : int
|
||
|
0 if a problem, 1 if everything is Okay
|
||
|
"""
|
||
|
# 2011-11-10 13:34 IJMC: Created
|
||
|
|
||
|
|
||
|
try:
|
||
|
from astropy.io import fits as pyfits
|
||
|
except:
|
||
|
import pyfits
|
||
|
|
||
|
|
||
|
if kw.has_key('clobber'):
|
||
|
clobber = kw.pop('clobber')
|
||
|
else:
|
||
|
clobber = False
|
||
|
|
||
|
try:
|
||
|
dat0 = pyfits.getdata(fn1)
|
||
|
hdr0 = pyfits.getheader(fn1)
|
||
|
except:
|
||
|
print "Could not read one of data or header from %s" % fn1
|
||
|
return 0
|
||
|
|
||
|
try:
|
||
|
hdr0.update('SCAT_FIX', 1, 'SXD Scattered light fixed by spexsxd_scatter_fix()')
|
||
|
except:
|
||
|
print "Could not update header properly."
|
||
|
return 0
|
||
|
|
||
|
try:
|
||
|
if hdr0.has_key('ITIME') and not kw.has_key('itime'):
|
||
|
kw['itime'] = hdr0['ITIME']
|
||
|
mod = spexsxd_scatter_model(dat0, **kw)
|
||
|
except:
|
||
|
print "Could not not model scattered light with spexsxd_scatter_model()"
|
||
|
return 0
|
||
|
|
||
|
try:
|
||
|
if not isinstance(mod, np.ndarray):
|
||
|
mod = mod[0]
|
||
|
pyfits.writeto(fn2, dat0 - mod, header=hdr0, clobber=clobber, output_verify='ignore')
|
||
|
except:
|
||
|
print "Could not write updated file to %s; clobber is %s" % (fn2, clobber)
|
||
|
return 0
|
||
|
|
||
|
return 1
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def tophat2(param, x):
|
||
|
"""Grey-pixel tophat function with set width
|
||
|
param: [cen_pix, amplitude, background]
|
||
|
newparam: [amplitude, full width, cen_pix, background]
|
||
|
x : must be array of ints, arange(0, size-1)
|
||
|
returns the model."""
|
||
|
# 2011-11-09 21:37 IJMC: Created
|
||
|
import analysis as an
|
||
|
|
||
|
oversamp = 100.
|
||
|
|
||
|
x2 = np.linspace(x[0], x[-1], (x.size - 1)*oversamp + 1)
|
||
|
halfwid = np.round(param[1] / 2.).astype(int)
|
||
|
halfwid = param[1] / 2.
|
||
|
intpix, fracpix = int(param[2]), param[2] % 1
|
||
|
intwid, fracwid = int(halfwid), halfwid % 1
|
||
|
th2 = 0.0 + param[0] * ((-halfwid <= (x2 - param[2])) * ((x2 - param[2]) < halfwid))
|
||
|
|
||
|
th = an.binarray(np.concatenate((th2, np.zeros(oversamp-1))), oversamp)
|
||
|
|
||
|
return th + param[3]
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def tophat_alt(param, x):
|
||
|
"""Standard tophat function (alternative version).
|
||
|
|
||
|
:INPUTS:
|
||
|
p : sequence
|
||
|
p[0] -- Amplitude
|
||
|
p[1] -- full width dispersion
|
||
|
p[2] -- central offset (mean location)
|
||
|
p[3] -- vertical offset (OPTIONAL)
|
||
|
|
||
|
x : scalar or sequence
|
||
|
values at which to evaluate function
|
||
|
|
||
|
:OUTPUTS:
|
||
|
y : scalar or sequence
|
||
|
1.0 where |x| < 0.5, 0.5 where |x| = 0.5, 0.0 otherwise.
|
||
|
"""
|
||
|
# 2012-04-11 12:50 IJMC: Created
|
||
|
if len(param)==3:
|
||
|
vertical_offset = 0.
|
||
|
elif len(param)>3:
|
||
|
vertical_offset = param[3]
|
||
|
else:
|
||
|
print "Input `param` to function `tophat` requires length > 3."
|
||
|
return -1
|
||
|
|
||
|
amplitude, width, center = param[0:3]
|
||
|
|
||
|
absx = np.abs((x - center) )
|
||
|
if hasattr(x, '__iter__'):
|
||
|
ret = np.zeros(x.shape, float)
|
||
|
|
||
|
#ind1 = absx < (0.5*width)
|
||
|
#ret[ind1] = 1.0
|
||
|
|
||
|
i0 = np.searchsorted(x, center-width/2)
|
||
|
i1 = np.searchsorted(x, center+width/2)
|
||
|
ret[i0:i1] = 1.
|
||
|
|
||
|
#ind2 = absx ==(0.5*width)
|
||
|
#ret[ind2] = 0.5
|
||
|
|
||
|
else:
|
||
|
if absx < 0.5:
|
||
|
ret = 1.0
|
||
|
elif absx==0.5:
|
||
|
ret = 0.5
|
||
|
else:
|
||
|
ret = 0.
|
||
|
|
||
|
return amplitude * ret + vertical_offset
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def model_resel(param, x):
|
||
|
"""Model a spectral resolution element.
|
||
|
|
||
|
:INPUTS:
|
||
|
param : sequence
|
||
|
|
||
|
param[0, 1, 2] - amplitude, sigma, and central location of
|
||
|
Gaussian line profile (cf. :func:`analysis.gaussian`).
|
||
|
|
||
|
param[3, 4, 5] - amplitude, width, and central location of
|
||
|
top-hat-like background (cf. :func:`tophat`).
|
||
|
|
||
|
param[6::] - additional (constant or polynomial) background
|
||
|
components, for evaluation with :func:`numpy.polyval`
|
||
|
|
||
|
x : sequence
|
||
|
Values at which to evaluate model function (i.e., pixels).
|
||
|
Typically 1D.
|
||
|
|
||
|
:OUTPUTS:
|
||
|
line : NumPy array
|
||
|
model of the resolution element, of same shape as `x`.
|
||
|
|
||
|
:DESCRIPTION:
|
||
|
|
||
|
Model a spectral resolution element along the spatial
|
||
|
direction. This consists of a (presumably Gaussian) line
|
||
|
profile superimposed on the spectral trace's top-hat-like
|
||
|
background, with an additional constant (or polynomial)
|
||
|
out-of-echelle-order background component.
|
||
|
"""
|
||
|
# 2012-04-11 12:57 IJMC: Created
|
||
|
# 2012-04-12 13:29 IJMC: Try to be more clever and save time in
|
||
|
# the back2 polyval call.
|
||
|
|
||
|
lineprofile = gaussian(param[0:3], x)
|
||
|
back1 = tophat(param[3:6], x)
|
||
|
|
||
|
if hasattr(param[6::], '__iter__') and len(param[6::])>1:
|
||
|
back2 = np.polyval(param[6::], x)
|
||
|
else:
|
||
|
back2 = param[6::]
|
||
|
|
||
|
return lineprofile + back1 + back2
|
||
|
|
||
|
[docs]
|
||
|
def add_partial_pixel(x0, y0, z0, z):
|
||
|
"""
|
||
|
:INPUTS:
|
||
|
x0 : int or sequence of ints
|
||
|
first index of z at which data will be added
|
||
|
|
||
|
y0 : int or sequence of ints
|
||
|
second index of z at which data will be added
|
||
|
|
||
|
z0 : scalar or sequence
|
||
|
values which will be added to z
|
||
|
|
||
|
z : 2D NumPy array
|
||
|
initial data, to which partial-pixels will be added
|
||
|
"""
|
||
|
# 2012-04-11 14:24 IJMC: Created
|
||
|
nx, ny = z.shape[0:2]
|
||
|
x = np.arange(nx)
|
||
|
y = np.arange(ny)
|
||
|
dx, dy = 1, 1
|
||
|
ret = np.array(z, copy=True)
|
||
|
|
||
|
if hasattr(x0, '__iter__'):
|
||
|
if len(x0)==len(y0) and len(x0)==len(z0):
|
||
|
for x00, y00, z00 in zip(x0, y0, z0):
|
||
|
ret = add_partial_pixel(x00, y00, z00, ret)
|
||
|
else:
|
||
|
print "Inputs x0, y0, and z0 must have the same length!"
|
||
|
ret = -1
|
||
|
|
||
|
if False:
|
||
|
if hasattr(x0, '__iter__'):
|
||
|
x0 = np.array(x0, copy=False)
|
||
|
y0 = np.array(y0, copy=False)
|
||
|
z0 = np.array(z0, copy=False)
|
||
|
else:
|
||
|
x0 = np.array([x0])
|
||
|
y0 = np.array([y0])
|
||
|
z0 = np.array([z0])
|
||
|
|
||
|
ix0 = np.tile(np.vstack((np.floor(x0), np.floor(x0)+1)).astype(int), (2,1))
|
||
|
iy0 = np.tile(np.vstack((np.floor(y0), np.floor(y0)+1)).astype(int), (2,1))
|
||
|
|
||
|
xfrac = x0 % 1
|
||
|
yfrac = y0 % 1
|
||
|
|
||
|
weights0 = np.vstack([(1. - xfrac) * (1. - yfrac), \
|
||
|
xfrac * (1. - yfrac), \
|
||
|
(1. - xfrac) * yfrac, \
|
||
|
xfrac * yfrac])
|
||
|
|
||
|
for ii in range(ix0.shape[1]):
|
||
|
print ii, weights0[:,ii]*z0[ii]
|
||
|
ret[ix0[:,ii], iy0[:,ii]] = ret[ix0[:,ii], iy0[:,ii]] + weights0[:,ii]*z0[ii]
|
||
|
|
||
|
else:
|
||
|
ix0 = map(int, [np.floor(x0), np.floor(x0)+1]*2)
|
||
|
iy0 = map(int, [np.floor(y0)]*2 + [np.floor(y0)+1]*2)
|
||
|
|
||
|
xfrac = x0 % 1
|
||
|
yfrac = y0 % 1
|
||
|
weights0 = [(1. - xfrac) * (1. - yfrac), \
|
||
|
xfrac * (1. - yfrac), \
|
||
|
(1. - xfrac) * yfrac, \
|
||
|
xfrac * yfrac]
|
||
|
ix = []
|
||
|
iy = []
|
||
|
weights = []
|
||
|
for ii in range(4):
|
||
|
#print ix0[ii], iy0[ii], weights0[ii]
|
||
|
if ix0[ii]>=0 and ix0[ii]<nx and iy0[ii]>=0 and iy0[ii]<ny:
|
||
|
ix.append(ix0[ii]), iy.append(iy0[ii])
|
||
|
weights.append(weights0[ii])
|
||
|
|
||
|
npix = len(ix)
|
||
|
if npix>0:
|
||
|
sumweights = sum(weights)
|
||
|
for ii in range(npix):
|
||
|
#print ix[ii], iy[ii], weights[ii]
|
||
|
ret[ix[ii], iy[ii]] += weights[ii] * z0
|
||
|
|
||
|
|
||
|
return ret
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def modelSpectralTrace(param, shape=None, nscat=None, npw=None, npy=None, noy=None, now=None, ndist=None, x=None, y=None, transpose=False):
|
||
|
"""Model a raw spectral trace!
|
||
|
|
||
|
:INPUTS:
|
||
|
|
||
|
NOTE that most inputs should be in the _rectified_ frame.
|
||
|
|
||
|
Trace background pedestal level : 1D array
|
||
|
|
||
|
Width of background pedestarl level : scalar (for now)
|
||
|
|
||
|
Center of trace : 1D array
|
||
|
|
||
|
Offset of object spectrum, relative to center : scalar
|
||
|
|
||
|
width of 1D PSF : scalar
|
||
|
|
||
|
Area of 1D psf : 1D array
|
||
|
|
||
|
Distortion (x and y, somehow???)
|
||
|
|
||
|
Scattered light background : scalar (for now)
|
||
|
"""
|
||
|
# 2012-04-11 17:50 IJMC: Created
|
||
|
|
||
|
########################################
|
||
|
# Parse various inputs:
|
||
|
########################################
|
||
|
param = np.array(param, copy=False)
|
||
|
nx, ny = shape
|
||
|
|
||
|
# Construct pixel vectors:
|
||
|
if x is None:
|
||
|
x = np.arange(nx)
|
||
|
if y is None:
|
||
|
y = np.arange(ny)
|
||
|
|
||
|
def makevec(input):
|
||
|
if not hasattr(input, '__iter__'):
|
||
|
ret = [input]*ny
|
||
|
#ret = np.polyval([input], y)
|
||
|
elif len(input)==1:
|
||
|
ret = [input[0]]*ny
|
||
|
#ret = np.polyval(input, y)
|
||
|
else:
|
||
|
ret = np.polyval(input, y)
|
||
|
return ret
|
||
|
|
||
|
# Define all the parameters:
|
||
|
pedestal_level = param[0:ny]
|
||
|
obj_flux = param[ny:ny*2]
|
||
|
pedestal_width = param[ny*2:ny*2+npw]
|
||
|
obj_fwhm = param[ny*2+npw:ny*2+npw+now]
|
||
|
spectrum_yparam = param[ny*2+npw+now : ny*2+npw+now+npy]
|
||
|
obj_yparam = param[ny*2+npw+now+npy : ny*2+npw+now+npy+noy]
|
||
|
disp_distort = param[ny*2+npw+now+npy+noy : ny*2+npw+now+npy+noy+ndist]
|
||
|
scat_param = list(param[-ndist:])
|
||
|
|
||
|
|
||
|
pedestal_width = makevec(pedestal_width)
|
||
|
obj_fwhm = makevec(obj_fwhm)
|
||
|
obj_yloc = makevec(obj_yparam) #, mode='cheby')
|
||
|
spectrum_yloc = makevec(spectrum_yparam) #, mode='cheby')
|
||
|
|
||
|
########################################
|
||
|
# Generate spectral model
|
||
|
########################################
|
||
|
|
||
|
rectified_model = np.zeros((nx, ny), float)
|
||
|
|
||
|
for ii in range(ny):
|
||
|
obj_param = [obj_flux[ii], obj_fwhm[ii], obj_yloc[ii]]
|
||
|
bkg_param = [pedestal_level[ii], pedestal_width[ii], spectrum_yloc[ii]]
|
||
|
oneDparam = obj_param + bkg_param + scat_param
|
||
|
rectified_model[:, ii] = model_resel(oneDparam, x)
|
||
|
|
||
|
#ypts = x
|
||
|
#xpts = ii + np.polyval(disp_distort, x-obj_yloc[ii])
|
||
|
#distorted_model = spec.add_partial_pixel(ypts, xpts, oneD, model)
|
||
|
|
||
|
interp_model = 0*rectified_model
|
||
|
|
||
|
if False:
|
||
|
# One way to do it:
|
||
|
newxcoords = (y - np.polyval(disp_distort, (x.reshape(nx,1)-obj_yloc.reshape(1,ny))))
|
||
|
|
||
|
meshmod = interpolate.RectBivariateSpline(x, y, rectified_model, kx=1, ky=1, s=0.)
|
||
|
for ii in range(nx):
|
||
|
interp_model[ii,:] = meshmod(x[ii], newxcoords[ii,:])
|
||
|
|
||
|
else:
|
||
|
# An alternate (not entirely equivalanet) approach, about equally fast:
|
||
|
shifts = np.polyval(disp_distort, x)
|
||
|
intshifts = np.floor(shifts)
|
||
|
minshift = intshifts.min()
|
||
|
shifts -= minshift
|
||
|
intshifts -= minshift
|
||
|
|
||
|
for ii in range(nx):
|
||
|
kern = np.zeros(intshifts.max() - intshifts.min()+2, float)
|
||
|
kern[intshifts[ii]] += 1. - (shifts[ii] - intshifts[ii])
|
||
|
kern[intshifts[ii]+1] += (shifts[ii] - intshifts[ii])
|
||
|
interp_model[ii] = np.convolve(rectified_model[ii], kern, 'same')
|
||
|
|
||
|
|
||
|
return interp_model
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def makeSpexSlitlessSky(skyfns, scatcen=[980, 150], scatdim=[60, 300]):
|
||
|
"""
|
||
|
Generate a normalized Sky frame from SpeX slitless spectroscopy data.
|
||
|
|
||
|
:INPUTS:
|
||
|
skyfns : list of strs
|
||
|
Filenames of slitless-spectroscopy sky frames
|
||
|
|
||
|
scatcen : 2-sequence
|
||
|
center of region to use in median-normalizing the frame.
|
||
|
|
||
|
scatdim : 2-sequence
|
||
|
full width of region to use in median-normalizing the frame.
|
||
|
|
||
|
:OUTPUTS:
|
||
|
(sky, skyHeader)
|
||
|
"""
|
||
|
# 2012-04-19 09:38 IJMC: Created
|
||
|
import phot
|
||
|
|
||
|
nsky = len(skyfns)
|
||
|
|
||
|
skyscat = phot.subreg2(skyfns, center=scatcen, dim=scatdim)
|
||
|
normfact = np.median(skyscat.reshape(nsky, np.prod(scatdim)), 1)
|
||
|
|
||
|
hdr = pyfits.getheader(skyfns[0])
|
||
|
|
||
|
skyframe = np.zeros((hdr['naxis1'], hdr['naxis2']), float)
|
||
|
for skyfn, factor in zip(skyfns, normfact):
|
||
|
skyframe += (pyfits.getdata(skyfn) / factor / nsky)
|
||
|
|
||
|
hdr.update('SKYRGCEN', str(scatcen))
|
||
|
hdr.update('SKYRGDIM', str(scatdim))
|
||
|
hdr.update('SKYNOTE', 'sky frame, median=1 in SKYRG')
|
||
|
|
||
|
return skyframe, hdr
|
||
|
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def resamplespec(w1, w0, spec0, oversamp=100):
|
||
|
"""
|
||
|
Resample a spectrum while conserving flux density.
|
||
|
|
||
|
:INPUTS:
|
||
|
w1 : sequence
|
||
|
new wavelength grid (i.e., center wavelength of each pixel)
|
||
|
|
||
|
w0 : sequence
|
||
|
old wavelength grid (i.e., center wavelength of each pixel)
|
||
|
|
||
|
spec0 : sequence
|
||
|
old spectrum (e.g., flux density or photon counts)
|
||
|
|
||
|
oversamp : int
|
||
|
factor by which to oversample input spectrum prior to
|
||
|
rebinning. The worst fractional precision you achieve is
|
||
|
roughly 1./oversamp.
|
||
|
|
||
|
:NOTE:
|
||
|
Format is the same as :func:`numpy.interp`
|
||
|
|
||
|
:REQUIREMENTS:
|
||
|
:doc:`tools`
|
||
|
|
||
|
"""
|
||
|
from tools import errxy
|
||
|
|
||
|
# 2012-04-25 18:40 IJMC: Created
|
||
|
nlam = len(w0)
|
||
|
x0 = np.arange(nlam, dtype=float)
|
||
|
x0int = np.arange((nlam-1.)*oversamp + 1., dtype=float)/oversamp
|
||
|
w0int = np.interp(x0int, x0, w0)
|
||
|
spec0int = np.interp(w0int, w0, spec0)/oversamp
|
||
|
|
||
|
# Set up the bin edges for down-binning
|
||
|
maxdiffw1 = np.diff(w1).max()
|
||
|
w1bins = np.concatenate(([w1[0] - maxdiffw1],
|
||
|
.5*(w1[1::] + w1[0:-1]), \
|
||
|
[w1[-1] + maxdiffw1]))
|
||
|
# Bin down the interpolated spectrum:
|
||
|
junk, spec1, junk2, junk3 = errxy(w0int, spec0int, w1bins, xmode=None, ymode='sum', xerr=None, yerr=None)
|
||
|
|
||
|
return spec1
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
#wcoords = spec.wavelengthMatch(mastersky0, wsky, thissky, ethissky, guess=wcoef1, order=None)
|
||
|
|
||
|
[docs]
|
||
|
def wavelengthMatch(spectrum, wtemplate, template, etemplate, guess=None, nthread=1):
|
||
|
"""
|
||
|
Determine dispersion solution for a spectrum, from a template.
|
||
|
|
||
|
:INPUTS:
|
||
|
spectrum : 1D sequence
|
||
|
Spectrum for which a wavelength solution is desired.
|
||
|
|
||
|
wtemplate : 1D sequence
|
||
|
Known wavelength grid of a template spectrum.
|
||
|
|
||
|
template : 1D sequence
|
||
|
Flux (e.g.) levels of the template spectrum with known
|
||
|
wavelength solution.
|
||
|
|
||
|
etemplate : 1D sequence
|
||
|
Uncertainties on the template values. This can be important
|
||
|
in a weighted fit!
|
||
|
|
||
|
:OPTIONS:
|
||
|
guess : sequence
|
||
|
Initial guess for the wavelength solution. This is very
|
||
|
helpful, if you have it! The guess should be a sequence
|
||
|
containing the set of Chebychev polynomial coefficients,
|
||
|
followed by a scale factor and DC offset (to help in scaling
|
||
|
the template).
|
||
|
|
||
|
If guess is None, attempt to fit a simple linear dispersion relation.
|
||
|
|
||
|
order : int > 0
|
||
|
NOT YET IMPLEMENTED! BUT EVENTUALLY: if guess is None, this
|
||
|
sets the polynomial order of the wavelength solution.
|
||
|
|
||
|
FOR THE MOMENT: if guess is None, return a simple linear
|
||
|
solution. This is likely to fail entirely for strongly
|
||
|
nonlinear dispersion solutions or poorly mismatched template
|
||
|
and spectrum.
|
||
|
|
||
|
nthread : int > 0
|
||
|
Number of processors to use for MCMC searching.
|
||
|
|
||
|
:RETURNS:
|
||
|
(wavelength, wavelength_polynomial_coefficients, full_parameter_set)
|
||
|
|
||
|
:NOTES:
|
||
|
This implementation uses a rather crude MCMC sampling approach
|
||
|
to sample parameters space and 'home in' on better solutions.
|
||
|
There is probably a way to do this that is both faster and more
|
||
|
optimal...
|
||
|
|
||
|
Note that if 'spectrum' and 'template' are of different lengths,
|
||
|
the longer one will be trimmed at the end to make the lengths match.
|
||
|
|
||
|
:REQUIREMENTS:
|
||
|
`emcee <http://TBD>`_
|
||
|
|
||
|
"""
|
||
|
#2012-04-25 20:53 IJMC: Created
|
||
|
# 2012-09-23 20:17 IJMC: Now spectrum & template can be different length.
|
||
|
# 2013-03-09 17:23 IJMC: Added nthread option
|
||
|
|
||
|
import emcee
|
||
|
import phasecurves as pc
|
||
|
|
||
|
nlam_s = len(spectrum)
|
||
|
nlam_t = len(template)
|
||
|
|
||
|
if nlam_s <= nlam_t:
|
||
|
template = np.array(template, copy=True)[0:nlam_s]
|
||
|
etemplate = np.array(etemplate, copy=True)[0:nlam_s]
|
||
|
nlam = nlam_s
|
||
|
spectrum_trimmed = False
|
||
|
else: # nlam_s > nlam_t:
|
||
|
spectrum0 = np.array(spectrum, copy=True)
|
||
|
spectrum = spectrum0[0:nlam_t]
|
||
|
wtemplate = np.array(wtemplate, copy=True)[0:nlam_t]
|
||
|
nlam = nlam_t
|
||
|
spectrum_trimmed = True
|
||
|
|
||
|
# Create a normalized vector of coordinates for computing
|
||
|
# normalized polynomials:
|
||
|
dx0 = 1. / (nlam - 1.)
|
||
|
x0n = dx0 * np.arange(nlam) - 1.
|
||
|
#x0n = 2*np.arange(nlam, dtype=float) / (nlam - 1.) - 1
|
||
|
|
||
|
|
||
|
|
||
|
if guess is None:
|
||
|
# Start with a simple linear wavelength solution.
|
||
|
guess = [np.diff(wtemplate).mean() * len(template)/2, np.mean(wtemplate), np.median(template)/np.median(spectrum), 1.]
|
||
|
|
||
|
# Define arguments for use by fitting routines:
|
||
|
fitting_args = (makemodel, x0n, spectrum, wtemplate, template, 1./etemplate**2)
|
||
|
|
||
|
# Try to find an initial best fit:
|
||
|
bestparams = an.fmin(pc.errfunc, guess, args=fitting_args, disp=False)
|
||
|
|
||
|
# Initial fit is likely a local minimum, so explore parameter
|
||
|
# space using an MCMC approach.
|
||
|
ndim = len(guess)
|
||
|
nwalkers = ndim * 50
|
||
|
sampler = emcee.EnsembleSampler(nwalkers, ndim, pc.lnprobfunc, args=fitting_args, threads=nthread)
|
||
|
|
||
|
# Initialize the sampler with various starting positions:
|
||
|
e_params1 = np.vstack((np.array(guess)/10., np.zeros(ndim) + .01)).max(0)
|
||
|
e_params2 = np.vstack((bestparams/10., np.zeros(ndim) + .01)).max(0)
|
||
|
p0 = np.vstack(([guess, bestparams], \
|
||
|
[np.random.normal(guess, e_params1) for ii in xrange(nwalkers/2-1)], \
|
||
|
[np.random.normal(bestparams, e_params2) for ii in xrange(nwalkers/2-1)]))
|
||
|
|
||
|
# Run the sampler for a while:
|
||
|
pos, prob, state = sampler.run_mcmc(p0, 300) # Burn-in
|
||
|
|
||
|
bestparams = sampler.flatchain[np.nonzero(sampler.lnprobability.ravel()==sampler.lnprobability.ravel().max())[0][0]]
|
||
|
|
||
|
# Optimize the latest set of best parameters.
|
||
|
bestparams = an.fmin(pc.errfunc, bestparams, args=fitting_args, disp=False)
|
||
|
|
||
|
dispersionSolution = bestparams[0:-2]
|
||
|
if spectrum_trimmed:
|
||
|
x0n_original = dx0 * np.arange(nlam_s) - 1.
|
||
|
wavelengths = np.polyval(dispersionSolution, x0n_original)
|
||
|
else:
|
||
|
wavelengths = np.polyval(dispersionSolution, x0n)
|
||
|
|
||
|
return dispersionSolution, wavelengths, bestparams
|
||
|
|
||
|
[docs]
|
||
|
def makemodel(params, xvec, specvec, wtemplate):
|
||
|
"""Helper function for :func:`wavelengthMatch`: generate a scaled,
|
||
|
interpolative model of the template."""
|
||
|
wcoef = params[0:-2]
|
||
|
scale, offset = params[-2::]
|
||
|
neww = np.polyval(wcoef, xvec)
|
||
|
return offset + scale * np.interp(wtemplate, neww, specvec, left=0, right=0)
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def normalizeSpecFlat(flatdat, nspec=1, minsep=50, median_width=51, readnoise=40, badpixelmask=None, traces=None):
|
||
|
"""Trace and normalize a spectroscopic flat field frame.
|
||
|
|
||
|
:INPUTS:
|
||
|
flatdat : 2D NumPy array
|
||
|
Master, unnormalized flat frame: assumed to be measured in
|
||
|
photoelectrons (for computing uncertainties).
|
||
|
|
||
|
nspec : int
|
||
|
Number of spectral orders to find and normalize
|
||
|
|
||
|
minsep : int
|
||
|
Minimum separation, in pixels, between spectral orders that
|
||
|
will be found.
|
||
|
|
||
|
median_width : int
|
||
|
Width of median-filter kernel used to compute the low-
|
||
|
|
||
|
readnoise : scalar
|
||
|
Detector read noise, in electrons. For computing uncertainties.
|
||
|
|
||
|
badpixelmask : 2D NumPy array
|
||
|
bad pixel mask: 1 at bad pixel locations, 0 elsewhere.
|
||
|
|
||
|
traces : 2D NumPy Array
|
||
|
(nord, pord) shaped numpy array representing the polynomial
|
||
|
coefficients for each order (suitable for use with
|
||
|
np.polyval), as produced by :func:`traceorders`
|
||
|
"""
|
||
|
# 2012-04-28 06:22 IJMC: Created
|
||
|
# 2012-07-24 21:04 IJMC: Now, as a final step, all bad indices are set to unity.
|
||
|
# 2014-12-17 20:07 IJMC: Added 'traces' option
|
||
|
|
||
|
import analysis as an
|
||
|
from scipy import signal
|
||
|
|
||
|
if badpixelmask is None:
|
||
|
badpixelmask = np.zeros(flatdat.shape, bool)
|
||
|
|
||
|
# Enforce positivity and de-weight negative flux values:
|
||
|
e_flatdat = np.sqrt(flatdat + readnoise**2)
|
||
|
badindices = ((flatdat<=0) + badpixelmask).nonzero()
|
||
|
e_flatdat[badindices] = flatdat[badindices] * 1e9
|
||
|
flatdat[badindices] = 1.
|
||
|
|
||
|
# Find spectral orders, using derivatives (will probably fail if
|
||
|
# spec. overlaps the edge!):
|
||
|
ordvec = an.meanr(flatdat, axis=1, nsigma=3)
|
||
|
|
||
|
filtvec = signal.medfilt(ordvec, 9)
|
||
|
dvec1 = np.diff(filtvec)
|
||
|
dvec2 = -np.diff(filtvec)
|
||
|
dvec1[dvec1<0] = 0.
|
||
|
dvec2[dvec2<0] = 0.
|
||
|
|
||
|
x1 = np.arange(dvec1.size)
|
||
|
available1 = np.ones(dvec1.size, dtype=bool)
|
||
|
available2 = np.ones(dvec1.size, dtype=bool)
|
||
|
|
||
|
pos1 = []
|
||
|
pos2 = []
|
||
|
for ii in range(nspec):
|
||
|
thisx1 = x1[dvec1==dvec1[available1].max()][0]
|
||
|
available1[np.abs(x1 - thisx1) < minsep] = False
|
||
|
pos1.append(thisx1)
|
||
|
thisx2 = x1[dvec2==dvec2[available2].max()][0]
|
||
|
available2[np.abs(x1 - thisx2) < minsep] = False
|
||
|
pos2.append(thisx2)
|
||
|
|
||
|
limits = np.array(zip(np.sort(pos1), np.sort(pos2)))
|
||
|
# Generate and normalize the spectral traces:
|
||
|
masterflat = np.ones(flatdat.shape, dtype=float)
|
||
|
|
||
|
if traces is not None:
|
||
|
nx = flatdat.shape[1]
|
||
|
xvec = np.arange(nx)
|
||
|
ymat = np.tile(np.arange(flatdat.shape[0]), (nx, 1)).T
|
||
|
|
||
|
for ii in range(nspec):
|
||
|
if traces is None:
|
||
|
profvec = np.median(flatdat[limits[ii,0]:limits[ii,1], :], axis=0)
|
||
|
e_profvec = np.sqrt(an.wmean(flatdat[limits[ii,0]:limits[ii,1], :], 1./e_flatdat[limits[ii,0]:limits[ii,1], :]**2, axis=0) / np.diff(limits[ii]))[0]
|
||
|
e_profvec[e_profvec <= 0] = profvec.max()*1e9
|
||
|
smooth_prof = signal.medfilt(profvec, median_width)
|
||
|
masterflat[limits[ii,0]:limits[ii,1], :] = flatdat[limits[ii,0]:limits[ii,1], :] / smooth_prof
|
||
|
else:
|
||
|
traceloc = np.polyval(traces[ii], xvec)
|
||
|
limind = (limits[:,1] > traceloc.mean()).nonzero()[0][0]
|
||
|
order_ind_2d = ((ymat - traceloc) > (limits[limind,0] - traceloc.mean())) * ((ymat - traceloc) < (limits[limind,1] - traceloc.mean()))
|
||
|
profvec = np.array([np.median(flatdat[order_ind_2d[:,jj], jj]) for jj in xrange(nx)])
|
||
|
smooth_prof = signal.medfilt(profvec, median_width)
|
||
|
for jj in xrange(nx):
|
||
|
masterflat[order_ind_2d[:,jj],jj] = flatdat[order_ind_2d[:,jj],jj] / smooth_prof[jj]
|
||
|
|
||
|
|
||
|
# Ideally, we would do some sort of weighted fitting here. Instead,
|
||
|
# for now, just take a running median:
|
||
|
|
||
|
masterflat[badindices] = 1.
|
||
|
|
||
|
return masterflat
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def optspecextr_idl(frame, gain, readnoise, x1, x2, idlexec, clobber=True, tempframefn='tempframe.fits', specfn='tempspec.fits', scriptfn='temp_specextract.pro', IDLoptions="adjfunc='adjgauss', adjoptions={center:1,centerfit:1,centerdeg:3}, bgdeg=3", inmask=None):
|
||
|
"""Run optimal spectral extraction in IDL; pass results to Python.
|
||
|
|
||
|
:INPUTS:
|
||
|
frame : str
|
||
|
filename, or 2D Numpy Array, or list of filenames containing
|
||
|
frames from which spectra will be extracted. This should be
|
||
|
in units of ADU (not electrons) for the noise properties to
|
||
|
come out properly.
|
||
|
|
||
|
Also, the spectral trace must run vertically across the frame.
|
||
|
|
||
|
gain : scalar
|
||
|
Detector gain, in electrons / ADU
|
||
|
|
||
|
readnoise : scalar
|
||
|
Detector read noise, in electrons
|
||
|
|
||
|
x1, x2 : ints, or lists of ints
|
||
|
Start and stop indices of the spectral trace across the frame.
|
||
|
If multiple frames are input and a single x1/x2 is input, the
|
||
|
same value will be used for each frame. Note however that
|
||
|
multiple x1/x2 can also be input (one for each frame).
|
||
|
|
||
|
idlexec : str
|
||
|
Path to the IDL executable. OPTSPECEXTR.PRO and its
|
||
|
associated files must be in your IDL path. If set to None,
|
||
|
then it will be set to: os.popen('which idl').read().strip()
|
||
|
|
||
|
:OPTIONS:
|
||
|
clobber : bool
|
||
|
Whether to overwrite files when writing input data to TEMPFRAMFN.
|
||
|
|
||
|
tempframefn : str
|
||
|
If input 'frame' is an array, it will be written to this
|
||
|
filename in order to pass it to IDL.
|
||
|
|
||
|
specfn : str
|
||
|
IDL will write the spectral data to this filename in order to
|
||
|
pass it back to Python.
|
||
|
|
||
|
scriptfn : str
|
||
|
Filename in which the short IDL script will be written.
|
||
|
|
||
|
IDLoptions : str
|
||
|
Options to pass to OPTSPECEXTR.PRO. For example:
|
||
|
"adjfunc='adjgauss', adjoptions={center:1,centerfit:1,centerdeg:3}, bgdeg=3"
|
||
|
|
||
|
Note that this Python code will break if you _don't_ trace
|
||
|
the spectrum (adjoptions, etc.); this is an area for future
|
||
|
work if I ever use a spectrograph with straight traces.
|
||
|
|
||
|
inmask : None or str
|
||
|
Name of the good pixel mask for OPTSPECEXTR.PRO. Equal to 1
|
||
|
for good pixels, and 0 for bad pixels.
|
||
|
|
||
|
:OUTPUTS:
|
||
|
For each input frame, a list of four items:
|
||
|
[0] -- Extracted spectrum, ADU per pixel
|
||
|
[1] -- Uncertainty (1 sigma) of extracted spectrum
|
||
|
[2] -- Location of trace (in pixels) across the frame
|
||
|
[3] -- Width of trace across the frame
|
||
|
|
||
|
:NOTES:
|
||
|
Note that this more closely follows Horne et al. than does
|
||
|
:func:`optimalExtract`, and is faster than both that function
|
||
|
and (especially!) :func:`extractSpectralProfiles`. The only
|
||
|
downside (if it is one) is that this function requires IDL.
|
||
|
|
||
|
:TO-DO:
|
||
|
Add options for user input of a variance frame, or of sky variance.
|
||
|
|
||
|
Allow more flexibility (tracing, input/output options, etc.)
|
||
|
|
||
|
:REQUIREMENTS:
|
||
|
IDL
|
||
|
|
||
|
`OPTSPECEXTR <http://physics.ucf.edu/~jh/ast/software.html>`_
|
||
|
|
||
|
"""
|
||
|
# 2012-08-18 16:36 IJMC: created
|
||
|
# 2012-08-19 09:39 IJMC: Added 'inmask' option.
|
||
|
|
||
|
import os
|
||
|
|
||
|
try:
|
||
|
from astropy.io import fits as pyfits
|
||
|
except:
|
||
|
import pyfits
|
||
|
|
||
|
|
||
|
# Put the input frames in the proper format:
|
||
|
if isinstance(frame, np.ndarray):
|
||
|
frameisfilename = False
|
||
|
if frame.ndim==2:
|
||
|
frames = [frame]
|
||
|
elif frame.ndim==1:
|
||
|
print "Input array should be 2D or 3D -- no telling what will happen next!"
|
||
|
else:
|
||
|
frames = frame
|
||
|
else:
|
||
|
frameisfilename = True
|
||
|
if isinstance(frame, str):
|
||
|
frames = [frame]
|
||
|
else:
|
||
|
frames = frame
|
||
|
|
||
|
if not hasattr(x1, '__iter__'):
|
||
|
x1 = [x1] * len(frames)
|
||
|
if not hasattr(x2, '__iter__'):
|
||
|
x2 = [x2] * len(frames)
|
||
|
|
||
|
if idlexec is None:
|
||
|
idlexec = os.popen('which idl').read().strip()
|
||
|
|
||
|
|
||
|
# Loop through all files:
|
||
|
specs = []
|
||
|
ii = 0
|
||
|
for frame in frames:
|
||
|
if frameisfilename:
|
||
|
tempframefn = frame
|
||
|
else:
|
||
|
pyfits.writeto(tempframefn, frame, clobber=clobber)
|
||
|
|
||
|
# Prepare the temporary IDL script:
|
||
|
idlcmds = []
|
||
|
idlcmds.append("frame = readfits('%s')\n" % tempframefn)
|
||
|
idlcmds.append("gain = %1.3f\n" % gain)
|
||
|
idlcmds.append("readnoise = %i\n" % readnoise)
|
||
|
idlcmds.append("varim = abs(frame) / gain + readnoise^2\n")
|
||
|
idlcmds.append("x1 = %i & x2 = %i\n" % (x1[ii],x2[ii]))
|
||
|
if inmask is not None:
|
||
|
idlcmds.append("inmask = readfits('%s')\n" % inmask)
|
||
|
IDLoptions += ', inmask=inmask'
|
||
|
idlcmds.append("spec = optspecextr(frame, varim, readnoise, gain, x1, x2, adjparms=adjparm, opvar=opvar, %s)\n" % IDLoptions)
|
||
|
idlcmds.append("spec_err_loc_width = [[spec], [sqrt(opvar)], [adjparm.traceest], [adjparm.widthest]]\n")
|
||
|
idlcmds.append("writefits,'%s', spec_err_loc_width\n" % (specfn))
|
||
|
idlcmds.append("exit\n")
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
# Write it to disk, and execute it.
|
||
|
f = open(scriptfn, 'w')
|
||
|
f.writelines(idlcmds)
|
||
|
f.close()
|
||
|
os.system('%s %s' % (idlexec, scriptfn))
|
||
|
|
||
|
# Read the spectrum into Python, and iterate.
|
||
|
spec = pyfits.getdata(specfn)
|
||
|
specs.append(spec)
|
||
|
ii += 1
|
||
|
|
||
|
# Clean up after ourselves:
|
||
|
if not frameisfilename and os.path.isfile(tempframefn):
|
||
|
os.remove(tempframefn)
|
||
|
if os.path.isfile(specfn):
|
||
|
os.remove(specfn)
|
||
|
if os.path.isfile(scriptfn):
|
||
|
os.remove(scriptfn)
|
||
|
|
||
|
# If only one file was run, we don't need to return a list.
|
||
|
if ii==1:
|
||
|
specs = specs[0]
|
||
|
|
||
|
return specs
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def optimalExtract(*args, **kw):
|
||
|
"""
|
||
|
Extract spectrum, following Horne 1986.
|
||
|
|
||
|
:INPUTS:
|
||
|
data : 2D Numpy array
|
||
|
Appropriately calibrated frame from which to extract
|
||
|
spectrum. Should be in units of ADU, not electrons!
|
||
|
|
||
|
variance : 2D Numpy array
|
||
|
Variances of pixel values in 'data'.
|
||
|
|
||
|
gain : scalar
|
||
|
Detector gain, in electrons per ADU
|
||
|
|
||
|
readnoise : scalar
|
||
|
Detector readnoise, in electrons.
|
||
|
|
||
|
:OPTIONS:
|
||
|
goodpixelmask : 2D numpy array
|
||
|
Equals 0 for bad pixels, 1 for good pixels
|
||
|
|
||
|
bkg_radii : 2- or 4-sequence
|
||
|
If length 2: inner and outer radii to use in computing
|
||
|
background. Note that for this to be effective, the spectral
|
||
|
trace should be positions in the center of 'data.'
|
||
|
|
||
|
If length 4: start and end indices of both apertures for
|
||
|
background fitting, of the form [b1_start, b1_end, b2_start,
|
||
|
b2_end] where b1 and b2 are the two background apertures, and
|
||
|
the elements are arranged in strictly ascending order.
|
||
|
|
||
|
extract_radius : int or 2-sequence
|
||
|
radius to use for both flux normalization and extraction. If
|
||
|
a sequence, the first and last indices of the array to use
|
||
|
for spectral normalization and extraction.
|
||
|
|
||
|
|
||
|
dispaxis : bool
|
||
|
0 for horizontal spectrum, 1 for vertical spectrum
|
||
|
|
||
|
bord : int >= 0
|
||
|
Degree of polynomial background fit.
|
||
|
|
||
|
bsigma : int >= 0
|
||
|
Sigma-clipping threshold for computing background.
|
||
|
|
||
|
pord : int >= 0
|
||
|
Degree of polynomial fit to construct profile.
|
||
|
|
||
|
psigma : int >= 0
|
||
|
Sigma-clipping threshold for computing profile.
|
||
|
|
||
|
csigma : int >= 0
|
||
|
Sigma-clipping threshold for cleaning & cosmic-ray rejection.
|
||
|
|
||
|
finite : bool
|
||
|
If true, mask all non-finite values as bad pixels.
|
||
|
|
||
|
nreject : int > 0
|
||
|
Number of pixels to reject in each iteration.
|
||
|
|
||
|
:RETURNS:
|
||
|
3-tuple:
|
||
|
[0] -- spectrum flux (in electrons)
|
||
|
|
||
|
[1] -- uncertainty on spectrum flux
|
||
|
|
||
|
[1] -- background flux
|
||
|
|
||
|
|
||
|
:EXAMPLE:
|
||
|
::
|
||
|
|
||
|
|
||
|
:SEE_ALSO:
|
||
|
:func:`superExtract`.
|
||
|
|
||
|
:NOTES:
|
||
|
Horne's classic optimal extraction algorithm is optimal only so
|
||
|
long as the spectral traces are very nearly aligned with
|
||
|
detector rows or columns. It is *not* well-suited for
|
||
|
extracting substantially tilted or curved traces, for the
|
||
|
reasons described by Marsh 1989, Mukai 1990. For extracting
|
||
|
such spectra, see :func:`superExtract`.
|
||
|
"""
|
||
|
|
||
|
# 2012-08-20 08:24 IJMC: Created from previous, low-quality version.
|
||
|
# 2012-09-03 11:37 IJMC: Renamed to replace previous, low-quality
|
||
|
# version. Now bkg_radii and extract_radius
|
||
|
# can refer to either a trace-centered
|
||
|
# coordinate system, or the specific
|
||
|
# indices of all aperture edges. Added nreject.
|
||
|
|
||
|
|
||
|
from scipy import signal
|
||
|
|
||
|
# Parse inputs:
|
||
|
frame, variance, gain, readnoise = args[0:4]
|
||
|
|
||
|
# Parse options:
|
||
|
if kw.has_key('goodpixelmask'):
|
||
|
goodpixelmask = np.array(kw['goodpixelmask'], copy=True).astype(bool)
|
||
|
else:
|
||
|
goodpixelmask = np.ones(frame.shape, dtype=bool)
|
||
|
|
||
|
if kw.has_key('dispaxis'):
|
||
|
if kw['dispaxis']==1:
|
||
|
frame = frame.transpose()
|
||
|
variance = variance.transpose()
|
||
|
goodpixelmask = goodpixelmask.transpose()
|
||
|
|
||
|
if kw.has_key('verbose'):
|
||
|
verbose = kw['verbose']
|
||
|
else:
|
||
|
verbose = False
|
||
|
|
||
|
if kw.has_key('bkg_radii'):
|
||
|
bkg_radii = kw['bkg_radii']
|
||
|
else:
|
||
|
bkg_radii = [15, 20]
|
||
|
if verbose: message("Setting option 'bkg_radii' to: " + str(bkg_radii))
|
||
|
|
||
|
if kw.has_key('extract_radius'):
|
||
|
extract_radius = kw['extract_radius']
|
||
|
else:
|
||
|
extract_radius = 10
|
||
|
if verbose: message("Setting option 'extract_radius' to: " + str(extract_radius))
|
||
|
|
||
|
if kw.has_key('bord'):
|
||
|
bord = kw['bord']
|
||
|
else:
|
||
|
bord = 1
|
||
|
if verbose: message("Setting option 'bord' to: " + str(bord))
|
||
|
|
||
|
if kw.has_key('bsigma'):
|
||
|
bsigma = kw['bsigma']
|
||
|
else:
|
||
|
bsigma = 3
|
||
|
if verbose: message("Setting option 'bsigma' to: " + str(bsigma))
|
||
|
|
||
|
if kw.has_key('pord'):
|
||
|
pord = kw['pord']
|
||
|
else:
|
||
|
pord = 2
|
||
|
if verbose: message("Setting option 'pord' to: " + str(pord))
|
||
|
|
||
|
if kw.has_key('psigma'):
|
||
|
psigma = kw['psigma']
|
||
|
else:
|
||
|
psigma = 4
|
||
|
if verbose: message("Setting option 'psigma' to: " + str(psigma))
|
||
|
|
||
|
if kw.has_key('csigma'):
|
||
|
csigma = kw['csigma']
|
||
|
else:
|
||
|
csigma = 5
|
||
|
if verbose: message("Setting option 'csigma' to: " + str(csigma))
|
||
|
|
||
|
if kw.has_key('finite'):
|
||
|
finite = kw['finite']
|
||
|
else:
|
||
|
finite = True
|
||
|
if verbose: message("Setting option 'finite' to: " + str(finite))
|
||
|
|
||
|
if kw.has_key('nreject'):
|
||
|
nreject = kw['nreject']
|
||
|
else:
|
||
|
nreject = 100
|
||
|
if verbose: message("Setting option 'nreject' to: " + str(nreject))
|
||
|
|
||
|
if finite:
|
||
|
goodpixelmask *= (np.isfinite(frame) * np.isfinite(variance))
|
||
|
|
||
|
|
||
|
variance[True-goodpixelmask] = frame[goodpixelmask].max() * 1e9
|
||
|
nlam, fitwidth = frame.shape
|
||
|
|
||
|
xxx = np.arange(-fitwidth/2, fitwidth/2)
|
||
|
xxx0 = np.arange(fitwidth)
|
||
|
if len(bkg_radii)==4: # Set all borders of background aperture:
|
||
|
backgroundAperture = ((xxx0 > bkg_radii[0]) * (xxx0 <= bkg_radii[1])) + \
|
||
|
((xxx0 > bkg_radii[2]) * (xxx0 <= bkg_radii[3]))
|
||
|
else: # Assume trace is centered, and use only radii.
|
||
|
backgroundAperture = (np.abs(xxx) > bkg_radii[0]) * (np.abs(xxx) <= bkg_radii[1])
|
||
|
|
||
|
if hasattr(extract_radius, '__iter__'):
|
||
|
extractionAperture = (xxx0 > extract_radius[0]) * (xxx0 <= extract_radius[1])
|
||
|
else:
|
||
|
extractionAperture = np.abs(xxx) < extract_radius
|
||
|
|
||
|
nextract = extractionAperture.sum()
|
||
|
xb = xxx[backgroundAperture]
|
||
|
|
||
|
#Step3: Sky Subtraction
|
||
|
if bord==0: # faster to take weighted mean:
|
||
|
background = an.wmean(frame[:, backgroundAperture], (goodpixelmask/variance)[:, backgroundAperture], axis=1)
|
||
|
else:
|
||
|
background = 0. * frame
|
||
|
for ii in range(nlam):
|
||
|
fit = an.polyfitr(xb, frame[ii, backgroundAperture], bord, bsigma, w=(goodpixelmask/variance)[ii, backgroundAperture], verbose=verbose-1)
|
||
|
background[ii, :] = np.polyval(fit, xxx)
|
||
|
|
||
|
# (my 3a: mask any bad values)
|
||
|
badBackground = True - np.isfinite(background)
|
||
|
background[badBackground] = 0.
|
||
|
if verbose and badBackground.any():
|
||
|
print "Found bad background values at: ", badBackground.nonzero()
|
||
|
|
||
|
skysubFrame = frame - background
|
||
|
|
||
|
|
||
|
#Step4: Extract 'standard' spectrum and its variance
|
||
|
standardSpectrum = nextract * an.wmean(skysubFrame[:, extractionAperture], goodpixelmask[:, extractionAperture], axis=1)
|
||
|
varStandardSpectrum = nextract * an.wmean(variance[:, extractionAperture], goodpixelmask[:, extractionAperture], axis=1)
|
||
|
|
||
|
# (my 4a: mask any bad values)
|
||
|
badSpectrum = True - (np.isfinite(standardSpectrum))
|
||
|
standardSpectrum[badSpectrum] = 1.
|
||
|
varStandardSpectrum[badSpectrum] = varStandardSpectrum[True - badSpectrum].max() * 1e9
|
||
|
|
||
|
|
||
|
#Step5: Construct spatial profile; enforce positivity & normalization
|
||
|
normData = skysubFrame / standardSpectrum
|
||
|
varNormData = variance / standardSpectrum**2
|
||
|
|
||
|
|
||
|
# Iteratively clip outliers
|
||
|
newBadPixels = True
|
||
|
iter = -1
|
||
|
if verbose: print "Looking for bad pixel outliers in profile construction."
|
||
|
xl = np.linspace(-1., 1., nlam)
|
||
|
|
||
|
while newBadPixels:
|
||
|
iter += 1
|
||
|
|
||
|
|
||
|
if pord==0: # faster to take weighted mean:
|
||
|
profile = np.tile(an.wmean(normData, (goodpixelmask/varNormData), axis=0), (nlam,1))
|
||
|
else:
|
||
|
profile = 0. * frame
|
||
|
for ii in range(fitwidth):
|
||
|
fit = an.polyfitr(xl, normData[:, ii], pord, np.inf, w=(goodpixelmask/varNormData)[:, ii], verbose=verbose-1)
|
||
|
profile[:, ii] = np.polyval(fit, xl)
|
||
|
|
||
|
if profile.min() < 0:
|
||
|
profile[profile < 0] = 0.
|
||
|
profile /= profile.sum(1).reshape(nlam, 1)
|
||
|
|
||
|
#Step6: Revise variance estimates
|
||
|
modelData = standardSpectrum * profile + background
|
||
|
variance = (np.abs(modelData)/gain + (readnoise/gain)**2) / \
|
||
|
(goodpixelmask + 1e-9) # Avoid infinite variance
|
||
|
|
||
|
outlierSigmas = (frame - modelData)**2/variance
|
||
|
if outlierSigmas.max() > psigma**2:
|
||
|
maxRejectedValue = max(psigma**2, np.sort(outlierSigmas[:, extractionAperture].ravel())[-nreject])
|
||
|
worstOutliers = (outlierSigmas>=maxRejectedValue).nonzero()
|
||
|
goodpixelmask[worstOutliers] = False
|
||
|
newBadPixels = True
|
||
|
numberRejected = len(worstOutliers[0])
|
||
|
else:
|
||
|
newBadPixels = False
|
||
|
numberRejected = 0
|
||
|
|
||
|
if verbose: print "Rejected %i pixels on this iteration " % numberRejected
|
||
|
|
||
|
#Step5: Construct spatial profile; enforce positivity & normalization
|
||
|
varNormData = variance / standardSpectrum**2
|
||
|
|
||
|
if verbose: print "%i bad pixels found" % iter
|
||
|
|
||
|
|
||
|
# Iteratively clip Cosmic Rays
|
||
|
newBadPixels = True
|
||
|
iter = -1
|
||
|
if verbose: print "Looking for bad pixel outliers in optimal extraction."
|
||
|
while newBadPixels:
|
||
|
iter += 1
|
||
|
|
||
|
#Step 8: Extract optimal spectrum and its variance
|
||
|
gp = goodpixelmask * profile
|
||
|
denom = (gp * profile / variance)[:, extractionAperture].sum(1)
|
||
|
spectrum = ((gp * skysubFrame / variance)[:, extractionAperture].sum(1) / denom).reshape(nlam, 1)
|
||
|
varSpectrum = (gp[:, extractionAperture].sum(1) / denom).reshape(nlam, 1)
|
||
|
|
||
|
|
||
|
#Step6: Revise variance estimates
|
||
|
modelData = spectrum * profile + background
|
||
|
variance = (np.abs(modelData)/gain + (readnoise/gain)**2) / \
|
||
|
(goodpixelmask + 1e-9) # Avoid infinite variance
|
||
|
|
||
|
|
||
|
#Iterate until worse outliers are all identified:
|
||
|
outlierSigmas = (frame - modelData)**2/variance
|
||
|
if outlierSigmas.max() > csigma**2:
|
||
|
maxRejectedValue = max(csigma**2, np.sort(outlierSigmas[:, extractionAperture].ravel())[-nreject])
|
||
|
worstOutliers = (outlierSigmas>=maxRejectedValues).nonzero()
|
||
|
goodpixelmask[worstOutliers] = False
|
||
|
newBadPixels = True
|
||
|
numberRejected = len(worstOutliers[0])
|
||
|
else:
|
||
|
newBadPixels = False
|
||
|
numberRejected = 0
|
||
|
|
||
|
if verbose: print "Rejected %i pixels on this iteration " % numberRejected
|
||
|
|
||
|
|
||
|
if verbose: print "%i bad pixels found" % iter
|
||
|
|
||
|
ret = (spectrum, varSpectrum, profile, background, goodpixelmask)
|
||
|
|
||
|
return ret
|
||
|
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def superExtract(*args, **kw):
|
||
|
"""
|
||
|
Optimally extract curved spectra, following Marsh 1989.
|
||
|
|
||
|
:INPUTS:
|
||
|
data : 2D Numpy array
|
||
|
Appropriately calibrated frame from which to extract
|
||
|
spectrum. Should be in units of ADU, not electrons!
|
||
|
|
||
|
variance : 2D Numpy array
|
||
|
Variances of pixel values in 'data'.
|
||
|
|
||
|
gain : scalar
|
||
|
Detector gain, in electrons per ADU
|
||
|
|
||
|
readnoise : scalar
|
||
|
Detector readnoise, in electrons.
|
||
|
|
||
|
:OPTIONS:
|
||
|
trace : 1D numpy array
|
||
|
location of spectral trace. If None, :func:`traceorders` is
|
||
|
invoked.
|
||
|
|
||
|
goodpixelmask : 2D numpy array
|
||
|
Equals 0 for bad pixels, 1 for good pixels
|
||
|
|
||
|
npoly : int
|
||
|
Number of profile polynomials to evaluate (Marsh's
|
||
|
"K"). Ideally you should not need to set this -- instead,
|
||
|
play with 'polyspacing' and 'extract_radius.' For symmetry,
|
||
|
this should be odd.
|
||
|
|
||
|
polyspacing : scalar
|
||
|
Spacing between profile polynomials, in pixels. (Marsh's
|
||
|
"S"). A few cursory tests suggests that the extraction
|
||
|
precision (in the high S/N case) scales as S^-2 -- but the
|
||
|
code slows down as S^2.
|
||
|
|
||
|
pord : int
|
||
|
Order of profile polynomials; 1 = linear, etc.
|
||
|
|
||
|
bkg_radii : 2-sequence
|
||
|
inner and outer radii to use in computing background
|
||
|
|
||
|
extract_radius : int
|
||
|
radius to use for both flux normalization and extraction
|
||
|
|
||
|
dispaxis : bool
|
||
|
0 for horizontal spectrum, 1 for vertical spectrum
|
||
|
|
||
|
bord : int >= 0
|
||
|
Degree of polynomial background fit.
|
||
|
|
||
|
bsigma : int >= 0
|
||
|
Sigma-clipping threshold for computing background.
|
||
|
|
||
|
tord : int >= 0
|
||
|
Degree of spectral-trace polynomial (for trace across frame
|
||
|
-- not used if 'trace' is input)
|
||
|
|
||
|
csigma : int >= 0
|
||
|
Sigma-clipping threshold for cleaning & cosmic-ray rejection.
|
||
|
|
||
|
finite : bool
|
||
|
If true, mask all non-finite values as bad pixels.
|
||
|
|
||
|
qmode : str ('fast' or 'slow')
|
||
|
How to compute Marsh's Q-matrix. Valid inputs are
|
||
|
'fast-linear', 'slow-linear', 'fast-nearest,' 'slow-nearest,'
|
||
|
and 'brute'. These select between various methods of
|
||
|
integrating the nearest-neighbor or linear interpolation
|
||
|
schemes as described by Marsh; the 'linear' methods are
|
||
|
preferred for accuracy. Use 'slow' if you are running out of
|
||
|
memory when using the 'fast' array-based methods. 'Brute' is
|
||
|
both slow and inaccurate, and should not be used.
|
||
|
|
||
|
nreject : int
|
||
|
Number of outlier-pixels to reject at each iteration.
|
||
|
|
||
|
retall : bool
|
||
|
If true, also return the 2D profile, background, variance
|
||
|
map, and bad pixel mask.
|
||
|
|
||
|
:RETURNS:
|
||
|
object with fields for:
|
||
|
spectrum
|
||
|
|
||
|
varSpectrum
|
||
|
|
||
|
trace
|
||
|
|
||
|
|
||
|
:EXAMPLE:
|
||
|
::
|
||
|
|
||
|
import spec
|
||
|
import numpy as np
|
||
|
import pylab as py
|
||
|
|
||
|
def gaussian(p, x):
|
||
|
if len(p)==3:
|
||
|
p = concatenate((p, [0]))
|
||
|
return (p[3] + p[0]/(p[1]*sqrt(2*pi)) * exp(-(x-p[2])**2 / (2*p[1]**2)))
|
||
|
|
||
|
# Model some strongly tilted spectral data:
|
||
|
nx, nlam = 80, 500
|
||
|
x0 = np.arange(nx)
|
||
|
gain, readnoise = 3.0, 30.
|
||
|
background = np.ones(nlam)*10
|
||
|
flux = np.ones(nlam)*1e4
|
||
|
center = nx/2. + np.linspace(0,10,nlam)
|
||
|
FWHM = 3.
|
||
|
model = np.array([gaussian([flux[ii]/gain, FWHM/2.35, center[ii], background[ii]], x0) for ii in range(nlam)])
|
||
|
varmodel = np.abs(model) / gain + (readnoise/gain)**2
|
||
|
observation = np.random.normal(model, np.sqrt(varmodel))
|
||
|
fitwidth = 60
|
||
|
xr = 15
|
||
|
|
||
|
output_spec = spec.superExtract(observation, varmodel, gain, readnoise, polyspacing=0.5, pord=1, bkg_radii=[10,30], extract_radius=5, dispaxis=1)
|
||
|
|
||
|
py.figure()
|
||
|
py.plot(output_spec.spectrum.squeeze() / flux)
|
||
|
py.ylabel('(Measured flux) / (True flux)')
|
||
|
py.xlabel('Photoelectrons')
|
||
|
|
||
|
|
||
|
|
||
|
:TO_DO:
|
||
|
Iterate background fitting and reject outliers; maybe first time
|
||
|
would be unweighted for robustness.
|
||
|
|
||
|
Introduce even more array-based, rather than loop-based,
|
||
|
calculations. For large spectra computing the C-matrix takes
|
||
|
the most time; this should be optimized somehow.
|
||
|
|
||
|
:SEE_ALSO:
|
||
|
|
||
|
"""
|
||
|
|
||
|
# 2012-08-25 20:14 IJMC: Created.
|
||
|
# 2012-09-21 14:32 IJMC: Added error-trapping if no good pixels
|
||
|
# are in a row. Do a better job of extracting
|
||
|
# the initial 'standard' spectrum.
|
||
|
|
||
|
from scipy import signal
|
||
|
from pylab import *
|
||
|
from nsdata import imshow, bfixpix
|
||
|
|
||
|
|
||
|
|
||
|
# Parse inputs:
|
||
|
frame, variance, gain, readnoise = args[0:4]
|
||
|
|
||
|
frame = gain * np.array(frame, copy=False)
|
||
|
variance = gain**2 * np.array(variance, copy=False)
|
||
|
variance[variance<=0.] = readnoise**2
|
||
|
|
||
|
# Parse options:
|
||
|
if kw.has_key('verbose'):
|
||
|
verbose = kw['verbose']
|
||
|
else:
|
||
|
verbose = False
|
||
|
if verbose: from time import time
|
||
|
|
||
|
|
||
|
if kw.has_key('goodpixelmask'):
|
||
|
goodpixelmask = kw['goodpixelmask']
|
||
|
if isinstance(goodpixelmask, str):
|
||
|
goodpixelmask = pyfits.getdata(goodpixelmask).astype(bool)
|
||
|
else:
|
||
|
goodpixelmask = np.array(goodpixelmask, copy=True).astype(bool)
|
||
|
else:
|
||
|
goodpixelmask = np.ones(frame.shape, dtype=bool)
|
||
|
|
||
|
|
||
|
if kw.has_key('dispaxis'):
|
||
|
dispaxis = kw['dispaxis']
|
||
|
else:
|
||
|
dispaxis = 0
|
||
|
|
||
|
if dispaxis==0:
|
||
|
frame = frame.transpose()
|
||
|
variance = variance.transpose()
|
||
|
goodpixelmask = goodpixelmask.transpose()
|
||
|
|
||
|
|
||
|
if kw.has_key('pord'):
|
||
|
pord = kw['pord']
|
||
|
else:
|
||
|
pord = 2
|
||
|
|
||
|
if kw.has_key('polyspacing'):
|
||
|
polyspacing = kw['polyspacing']
|
||
|
else:
|
||
|
polyspacing = 1
|
||
|
|
||
|
if kw.has_key('bkg_radii'):
|
||
|
bkg_radii = kw['bkg_radii']
|
||
|
else:
|
||
|
bkg_radii = [15, 20]
|
||
|
if verbose: message("Setting option 'bkg_radii' to: " + str(bkg_radii))
|
||
|
|
||
|
if kw.has_key('extract_radius'):
|
||
|
extract_radius = kw['extract_radius']
|
||
|
else:
|
||
|
extract_radius = 10
|
||
|
if verbose: message("Setting option 'extract_radius' to: " + str(extract_radius))
|
||
|
|
||
|
if kw.has_key('npoly'):
|
||
|
npoly = kw['npoly']
|
||
|
else:
|
||
|
npoly = 2 * int((2.0 * extract_radius) / polyspacing / 2.) + 1
|
||
|
|
||
|
if kw.has_key('bord'):
|
||
|
bord = kw['bord']
|
||
|
else:
|
||
|
bord = 1
|
||
|
if verbose: message("Setting option 'bord' to: " + str(bord))
|
||
|
|
||
|
if kw.has_key('tord'):
|
||
|
tord = kw['tord']
|
||
|
else:
|
||
|
tord = 3
|
||
|
if verbose: message("Setting option 'tord' to: " + str(tord))
|
||
|
|
||
|
if kw.has_key('bsigma'):
|
||
|
bsigma = kw['bsigma']
|
||
|
else:
|
||
|
bsigma = 3
|
||
|
if verbose: message("Setting option 'bsigma' to: " + str(bsigma))
|
||
|
|
||
|
if kw.has_key('csigma'):
|
||
|
csigma = kw['csigma']
|
||
|
else:
|
||
|
csigma = 5
|
||
|
if verbose: message("Setting option 'csigma' to: " + str(csigma))
|
||
|
|
||
|
if kw.has_key('qmode'):
|
||
|
qmode = kw['qmode']
|
||
|
else:
|
||
|
qmode = 'fast'
|
||
|
if verbose: message("Setting option 'qmode' to: " + str(qmode))
|
||
|
|
||
|
if kw.has_key('nreject'):
|
||
|
nreject = kw['nreject']
|
||
|
else:
|
||
|
nreject = 100
|
||
|
if verbose: message("Setting option 'nreject' to: " + str(nreject))
|
||
|
|
||
|
if kw.has_key('finite'):
|
||
|
finite = kw['finite']
|
||
|
else:
|
||
|
finite = True
|
||
|
if verbose: message("Setting option 'finite' to: " + str(finite))
|
||
|
|
||
|
|
||
|
if kw.has_key('retall'):
|
||
|
retall = kw['retall']
|
||
|
else:
|
||
|
retall = False
|
||
|
|
||
|
|
||
|
if finite:
|
||
|
goodpixelmask *= (np.isfinite(frame) * np.isfinite(variance))
|
||
|
|
||
|
variance[True-goodpixelmask] = frame[goodpixelmask].max() * 1e9
|
||
|
nlam, fitwidth = frame.shape
|
||
|
|
||
|
# Define trace (Marsh's "X_j" in Eq. 9)
|
||
|
if kw.has_key('trace'):
|
||
|
trace = kw['trace']
|
||
|
else:
|
||
|
trace = None
|
||
|
|
||
|
if trace is None:
|
||
|
trace = 5
|
||
|
if not hasattr(trace, '__iter__'):
|
||
|
if verbose: print "Tracing not fully tested; dispaxis may need adjustment."
|
||
|
#pdb.set_trace()
|
||
|
tracecoef = traceorders(frame, pord=trace, nord=1, verbose=verbose-1, plotalot=verbose-1, g=gain, rn=readnoise, badpixelmask=True-goodpixelmask, dispaxis=dispaxis, fitwidth=min(fitwidth, 80))
|
||
|
trace = np.polyval(tracecoef.ravel(), np.arange(nlam))
|
||
|
|
||
|
|
||
|
#xxx = np.arange(-fitwidth/2, fitwidth/2)
|
||
|
#backgroundAperture = (np.abs(xxx) > bkg_radii[0]) * (np.abs(xxx) < bkg_radii[1])
|
||
|
#extractionAperture = np.abs(xxx) < extract_radius
|
||
|
#nextract = extractionAperture.sum()
|
||
|
#xb = xxx[backgroundAperture]
|
||
|
|
||
|
xxx = np.arange(fitwidth) - trace.reshape(nlam,1)
|
||
|
backgroundApertures = (np.abs(xxx) > bkg_radii[0]) * (np.abs(xxx) <= bkg_radii[1])
|
||
|
extractionApertures = np.abs(xxx) <= extract_radius
|
||
|
|
||
|
nextracts = extractionApertures.sum(1)
|
||
|
|
||
|
#Step3: Sky Subtraction
|
||
|
background = 0. * frame
|
||
|
for ii in range(nlam):
|
||
|
if goodpixelmask[ii, backgroundApertures[ii]].any():
|
||
|
fit = an.polyfitr(xxx[ii,backgroundApertures[ii]], frame[ii, backgroundApertures[ii]], bord, bsigma, w=(goodpixelmask/variance)[ii, backgroundApertures[ii]], verbose=verbose-1)
|
||
|
background[ii, :] = np.polyval(fit, xxx[ii])
|
||
|
else:
|
||
|
background[ii] = 0.
|
||
|
|
||
|
background_at_trace = np.array([np.interp(0, xxx[j], background[j]) for j in range(nlam)])
|
||
|
|
||
|
# (my 3a: mask any bad values)
|
||
|
badBackground = True - np.isfinite(background)
|
||
|
background[badBackground] = 0.
|
||
|
if verbose and badBackground.any():
|
||
|
print "Found bad background values at: ", badBackground.nonzero()
|
||
|
|
||
|
skysubFrame = frame - background
|
||
|
|
||
|
|
||
|
# Interpolate and fix bad pixels for extraction of standard
|
||
|
# spectrum -- otherwise there can be 'holes' in the spectrum from
|
||
|
# ill-placed bad pixels.
|
||
|
fixSkysubFrame = bfixpix(skysubFrame, True-goodpixelmask, n=8, retdat=True)
|
||
|
|
||
|
#Step4: Extract 'standard' spectrum and its variance
|
||
|
standardSpectrum = np.zeros((nlam, 1), dtype=float)
|
||
|
varStandardSpectrum = np.zeros((nlam, 1), dtype=float)
|
||
|
for ii in range(nlam):
|
||
|
thisrow_good = extractionApertures[ii] #* goodpixelmask[ii] *
|
||
|
standardSpectrum[ii] = fixSkysubFrame[ii, thisrow_good].sum()
|
||
|
varStandardSpectrum[ii] = variance[ii, thisrow_good].sum()
|
||
|
|
||
|
|
||
|
spectrum = standardSpectrum.copy()
|
||
|
varSpectrum = varStandardSpectrum
|
||
|
|
||
|
# Define new indices (in Marsh's appendix):
|
||
|
N = pord + 1
|
||
|
mm = np.tile(np.arange(N).reshape(N,1), (npoly)).ravel()
|
||
|
nn = mm.copy()
|
||
|
ll = np.tile(np.arange(npoly), N)
|
||
|
kk = ll.copy()
|
||
|
pp = N * ll + mm
|
||
|
qq = N * kk + nn
|
||
|
|
||
|
jj = np.arange(nlam) # row (i.e., wavelength direction)
|
||
|
ii = np.arange(fitwidth) # column (i.e., spatial direction)
|
||
|
jjnorm = np.linspace(-1, 1, nlam) # normalized X-coordinate
|
||
|
jjnorm_pow = jjnorm.reshape(1,1,nlam) ** (np.arange(2*N-1).reshape(2*N-1,1,1))
|
||
|
|
||
|
# Marsh eq. 9, defining centers of each polynomial:
|
||
|
constant = 0. # What is it for???
|
||
|
poly_centers = trace.reshape(nlam, 1) + polyspacing * np.arange(-npoly/2+1, npoly/2+1) + constant
|
||
|
|
||
|
|
||
|
# Marsh eq. 11, defining Q_kij (via nearest-neighbor interpolation)
|
||
|
# Q_kij = max(0, min(S, (S+1)/2 - abs(x_kj - i)))
|
||
|
if verbose: tic = time()
|
||
|
if qmode=='fast-nearest': # Array-based nearest-neighbor mode.
|
||
|
if verbose: tic = time()
|
||
|
Q = np.array([np.zeros((npoly, fitwidth, nlam)), np.array([polyspacing * np.ones((npoly, fitwidth, nlam)), 0.5 * (polyspacing+1) - np.abs((poly_centers - ii.reshape(fitwidth, 1, 1)).transpose(2, 0, 1))]).min(0)]).max(0)
|
||
|
|
||
|
elif qmode=='slow-linear': # Code is a mess, but it works.
|
||
|
invs = 1./polyspacing
|
||
|
poly_centers_over_s = poly_centers / polyspacing
|
||
|
xps_mat = poly_centers + polyspacing
|
||
|
xms_mat = poly_centers - polyspacing
|
||
|
Q = np.zeros((npoly, fitwidth, nlam), dtype=float)
|
||
|
for i in range(fitwidth):
|
||
|
ip05 = i + 0.5
|
||
|
im05 = i - 0.5
|
||
|
for j in range(nlam):
|
||
|
for k in range(npoly):
|
||
|
xkj = poly_centers[j,k]
|
||
|
xkjs = poly_centers_over_s[j,k]
|
||
|
xps = xps_mat[j,k] #xkj + polyspacing
|
||
|
xms = xms_mat[j,k] # xkj - polyspacing
|
||
|
|
||
|
if (ip05 <= xms) or (im05 >= xps):
|
||
|
qval = 0.
|
||
|
elif (im05) > xkj:
|
||
|
lim1 = im05
|
||
|
lim2 = min(ip05, xps)
|
||
|
qval = (lim2 - lim1) * \
|
||
|
(1. + xkjs - 0.5*invs*(lim1+lim2))
|
||
|
elif (ip05) < xkj:
|
||
|
lim1 = max(im05, xms)
|
||
|
lim2 = ip05
|
||
|
qval = (lim2 - lim1) * \
|
||
|
(1. - xkjs + 0.5*invs*(lim1+lim2))
|
||
|
else:
|
||
|
lim1 = max(im05, xms)
|
||
|
lim2 = min(ip05, xps)
|
||
|
qval = lim2 - lim1 + \
|
||
|
invs * (xkj*(-xkj + lim1 + lim2) - \
|
||
|
0.5*(lim1*lim1 + lim2*lim2))
|
||
|
Q[k,i,j] = max(0, qval)
|
||
|
|
||
|
|
||
|
elif qmode=='fast-linear': # Code is a mess, but it's faster than 'slow' mode
|
||
|
invs = 1./polyspacing
|
||
|
xps_mat = poly_centers + polyspacing
|
||
|
Q = np.zeros((npoly, fitwidth, nlam), dtype=float)
|
||
|
for j in range(nlam):
|
||
|
xkj_vec = np.tile(poly_centers[j,:].reshape(npoly, 1), (1, fitwidth))
|
||
|
xps_vec = np.tile(xps_mat[j,:].reshape(npoly, 1), (1, fitwidth))
|
||
|
xms_vec = xps_vec - 2*polyspacing
|
||
|
|
||
|
ip05_vec = np.tile(np.arange(fitwidth) + 0.5, (npoly, 1))
|
||
|
im05_vec = ip05_vec - 1
|
||
|
ind00 = ((ip05_vec <= xms_vec) + (im05_vec >= xps_vec))
|
||
|
ind11 = ((im05_vec > xkj_vec) * (True - ind00))
|
||
|
ind22 = ((ip05_vec < xkj_vec) * (True - ind00))
|
||
|
ind33 = (True - (ind00 + ind11 + ind22)).nonzero()
|
||
|
ind11 = ind11.nonzero()
|
||
|
ind22 = ind22.nonzero()
|
||
|
|
||
|
n_ind11 = len(ind11[0])
|
||
|
n_ind22 = len(ind22[0])
|
||
|
n_ind33 = len(ind33[0])
|
||
|
|
||
|
if n_ind11 > 0:
|
||
|
ind11_3d = ind11 + (np.ones(n_ind11, dtype=int)*j,)
|
||
|
lim2_ind11 = np.array((ip05_vec[ind11], xps_vec[ind11])).min(0)
|
||
|
Q[ind11_3d] = ((lim2_ind11 - im05_vec[ind11]) * invs * \
|
||
|
(polyspacing + xkj_vec[ind11] - 0.5*(im05_vec[ind11] + lim2_ind11)))
|
||
|
|
||
|
if n_ind22 > 0:
|
||
|
ind22_3d = ind22 + (np.ones(n_ind22, dtype=int)*j,)
|
||
|
lim1_ind22 = np.array((im05_vec[ind22], xms_vec[ind22])).max(0)
|
||
|
Q[ind22_3d] = ((ip05_vec[ind22] - lim1_ind22) * invs * \
|
||
|
(polyspacing - xkj_vec[ind22] + 0.5*(ip05_vec[ind22] + lim1_ind22)))
|
||
|
|
||
|
if n_ind33 > 0:
|
||
|
ind33_3d = ind33 + (np.ones(n_ind33, dtype=int)*j,)
|
||
|
lim1_ind33 = np.array((im05_vec[ind33], xms_vec[ind33])).max(0)
|
||
|
lim2_ind33 = np.array((ip05_vec[ind33], xps_vec[ind33])).min(0)
|
||
|
Q[ind33_3d] = ((lim2_ind33 - lim1_ind33) + invs * \
|
||
|
(xkj_vec[ind33] * (-xkj_vec[ind33] + lim1_ind33 + lim2_ind33) - 0.5*(lim1_ind33*lim1_ind33 + lim2_ind33*lim2_ind33)))
|
||
|
|
||
|
|
||
|
elif qmode=='brute': # Neither accurate, nor memory-frugal.
|
||
|
oversamp = 4.
|
||
|
jj2 = np.arange(nlam*oversamp, dtype=float) / oversamp
|
||
|
trace2 = np.interp(jj2, jj, trace)
|
||
|
poly_centers2 = trace2.reshape(nlam*oversamp, 1) + polyspacing * np.arange(-npoly/2+1, npoly/2+1, dtype=float) + constant
|
||
|
x2 = np.arange(fitwidth*oversamp, dtype=float)/oversamp
|
||
|
Q = np.zeros((npoly, fitwidth, nlam), dtype=float)
|
||
|
for k in range(npoly):
|
||
|
Q[k,:,:] = an.binarray((np.abs(x2.reshape(fitwidth*oversamp,1) - poly_centers2[:,k]) <= polyspacing), oversamp)
|
||
|
|
||
|
Q /= oversamp*oversamp*2
|
||
|
|
||
|
else: # 'slow' Loop-based nearest-neighbor mode: requires less memory
|
||
|
if verbose: tic = time()
|
||
|
Q = np.zeros((npoly, fitwidth, nlam), dtype=float)
|
||
|
for k in range(npoly):
|
||
|
for i in range(fitwidth):
|
||
|
for j in range(nlam):
|
||
|
Q[k,i,j] = max(0, min(polyspacing, 0.5*(polyspacing+1) - np.abs(poly_centers[j,k] - i)))
|
||
|
|
||
|
if verbose: print '%1.2f s to compute Q matrix (%s mode)' % (time() - tic, qmode)
|
||
|
|
||
|
|
||
|
# Some quick math to find out which dat columns are important, and
|
||
|
# which contain no useful spectral information:
|
||
|
Qmask = Q.sum(0).transpose() > 0
|
||
|
Qind = Qmask.transpose().nonzero()
|
||
|
Q_cols = [Qind[0].min(), Qind[0].max()]
|
||
|
nQ = len(Qind[0])
|
||
|
Qsm = Q[:,Q_cols[0]:Q_cols[1]+1,:]
|
||
|
|
||
|
# Prepar to iteratively clip outliers
|
||
|
newBadPixels = True
|
||
|
iter = -1
|
||
|
if verbose: print "Looking for bad pixel outliers."
|
||
|
while newBadPixels:
|
||
|
iter += 1
|
||
|
if verbose: print "Beginning iteration %i" % iter
|
||
|
|
||
|
|
||
|
# Compute pixel fractions (Marsh Eq. 5):
|
||
|
# (Note that values outside the desired polynomial region
|
||
|
# have Q=0, and so do not contribute to the fit)
|
||
|
#E = (skysubFrame / spectrum).transpose()
|
||
|
invEvariance = (spectrum**2 / variance).transpose()
|
||
|
weightedE = (skysubFrame * spectrum / variance).transpose() # E / var_E
|
||
|
invEvariance_subset = invEvariance[Q_cols[0]:Q_cols[1]+1,:]
|
||
|
|
||
|
# Define X vector (Marsh Eq. A3):
|
||
|
if verbose: tic = time()
|
||
|
X = np.zeros(N * npoly, dtype=float)
|
||
|
X0 = np.zeros(N * npoly, dtype=float)
|
||
|
for q in qq:
|
||
|
X[q] = (weightedE[Q_cols[0]:Q_cols[1]+1,:] * Qsm[kk[q],:,:] * jjnorm_pow[nn[q]]).sum()
|
||
|
if verbose: print '%1.2f s to compute X matrix' % (time() - tic)
|
||
|
|
||
|
# Define C matrix (Marsh Eq. A3)
|
||
|
if verbose: tic = time()
|
||
|
C = np.zeros((N * npoly, N*npoly), dtype=float)
|
||
|
|
||
|
buffer = 1.1 # C-matrix computation buffer (to be sure we don't miss any pixels)
|
||
|
for p in pp:
|
||
|
qp = Qsm[ll[p],:,:]
|
||
|
for q in qq:
|
||
|
# Check that we need to compute C:
|
||
|
if np.abs(kk[q] - ll[p]) <= (1./polyspacing + buffer):
|
||
|
if q>=p:
|
||
|
# Only compute over non-zero columns:
|
||
|
C[q, p] = (Qsm[kk[q],:,:] * qp * jjnorm_pow[nn[q]+mm[p]] * invEvariance_subset).sum()
|
||
|
if q>p:
|
||
|
C[p, q] = C[q, p]
|
||
|
|
||
|
|
||
|
if verbose: print '%1.2f s to compute C matrix' % (time() - tic)
|
||
|
|
||
|
##################################################
|
||
|
##################################################
|
||
|
# Just for reference; the following is easier to read, perhaps, than the optimized code:
|
||
|
if False: # The SLOW way to compute the X vector:
|
||
|
X2 = np.zeros(N * npoly, dtype=float)
|
||
|
for n in nn:
|
||
|
for k in kk:
|
||
|
q = N * k + n
|
||
|
xtot = 0.
|
||
|
for i in ii:
|
||
|
for j in jj:
|
||
|
xtot += E[i,j] * Q[k,i,j] * (jjnorm[j]**n) / Evariance[i,j]
|
||
|
X2[q] = xtot
|
||
|
|
||
|
# Compute *every* element of C (though most equal zero!)
|
||
|
C = np.zeros((N * npoly, N*npoly), dtype=float)
|
||
|
for p in pp:
|
||
|
for q in qq:
|
||
|
if q>=p:
|
||
|
C[q, p] = (Q[kk[q],:,:] * Q[ll[p],:,:] * (jjnorm.reshape(1,1,nlam)**(nn[q]+mm[p])) / Evariance).sum()
|
||
|
if q>p:
|
||
|
C[p, q] = C[q, p]
|
||
|
##################################################
|
||
|
##################################################
|
||
|
|
||
|
# Solve for the profile-polynomial coefficients (Marsh Eq. A)4:
|
||
|
if np.abs(np.linalg.det(C)) < 1e-10:
|
||
|
Bsoln = np.dot(np.linalg.pinv(C), X)
|
||
|
else:
|
||
|
Bsoln = np.linalg.solve(C, X)
|
||
|
|
||
|
Asoln = Bsoln.reshape(N, npoly).transpose()
|
||
|
|
||
|
# Define G_kj, the profile-defining polynomial profiles (Marsh Eq. 8)
|
||
|
Gsoln = np.zeros((npoly, nlam), dtype=float)
|
||
|
for n in range(npoly):
|
||
|
Gsoln[n] = np.polyval(Asoln[n,::-1], jjnorm) # reorder polynomial coef.
|
||
|
|
||
|
|
||
|
# Compute the profile (Marsh eq. 6) and normalize it:
|
||
|
if verbose: tic = time()
|
||
|
profile = np.zeros((fitwidth, nlam), dtype=float)
|
||
|
for i in range(fitwidth):
|
||
|
profile[i,:] = (Q[:,i,:] * Gsoln).sum(0)
|
||
|
|
||
|
#P = profile.copy() # for debugging
|
||
|
if profile.min() < 0:
|
||
|
profile[profile < 0] = 0.
|
||
|
profile /= profile.sum(0).reshape(1, nlam)
|
||
|
profile[True - np.isfinite(profile)] = 0.
|
||
|
if verbose: print '%1.2f s to compute profile' % (time() - tic)
|
||
|
|
||
|
#Step6: Revise variance estimates
|
||
|
modelSpectrum = spectrum * profile.transpose()
|
||
|
modelData = modelSpectrum + background
|
||
|
variance0 = np.abs(modelData) + readnoise**2
|
||
|
variance = variance0 / (goodpixelmask + 1e-9) # De-weight bad pixels, avoiding infinite variance
|
||
|
|
||
|
outlierVariances = (frame - modelData)**2/variance
|
||
|
|
||
|
if outlierVariances.max() > csigma**2:
|
||
|
newBadPixels = True
|
||
|
# Base our nreject-counting only on pixels within the spectral trace:
|
||
|
maxRejectedValue = max(csigma**2, np.sort(outlierVariances[Qmask])[-nreject])
|
||
|
worstOutliers = (outlierVariances>=maxRejectedValue).nonzero()
|
||
|
goodpixelmask[worstOutliers] = False
|
||
|
numberRejected = len(worstOutliers[0])
|
||
|
#pdb.set_trace()
|
||
|
else:
|
||
|
newBadPixels = False
|
||
|
numberRejected = 0
|
||
|
|
||
|
if verbose: print "Rejected %i pixels on this iteration " % numberRejected
|
||
|
|
||
|
|
||
|
# Optimal Spectral Extraction: (Horne, Step 8)
|
||
|
fixSkysubFrame = bfixpix(skysubFrame, True-goodpixelmask, n=8, retdat=True)
|
||
|
spectrum = np.zeros((nlam, 1), dtype=float)
|
||
|
#spectrum1 = np.zeros((nlam, 1), dtype=float)
|
||
|
varSpectrum = np.zeros((nlam, 1), dtype=float)
|
||
|
goodprof = profile.transpose() #* goodpixelmask
|
||
|
for ii in range(nlam):
|
||
|
thisrow_good = extractionApertures[ii] #* goodpixelmask[ii]
|
||
|
denom = (goodprof[ii, thisrow_good] * profile.transpose()[ii, thisrow_good] / variance0[ii, thisrow_good]).sum()
|
||
|
if denom==0:
|
||
|
spectrum[ii] = 0.
|
||
|
varSpectrum[ii] = 9e9
|
||
|
else:
|
||
|
spectrum[ii] = (goodprof[ii, thisrow_good] * skysubFrame[ii, thisrow_good] / variance0[ii, thisrow_good]).sum() / denom
|
||
|
#spectrum1[ii] = (goodprof[ii, thisrow_good] * modelSpectrum[ii, thisrow_good] / variance0[ii, thisrow_good]).sum() / denom
|
||
|
varSpectrum[ii] = goodprof[ii, thisrow_good].sum() / denom
|
||
|
#if spectrum.size==1218 and ii>610:
|
||
|
# pdb.set_trace()
|
||
|
|
||
|
#if spectrum.size==1218: pdb.set_trace()
|
||
|
|
||
|
ret = baseObject()
|
||
|
ret.spectrum = spectrum
|
||
|
ret.raw = standardSpectrum
|
||
|
ret.varSpectrum = varSpectrum
|
||
|
ret.trace = trace
|
||
|
ret.units = 'electrons'
|
||
|
ret.background = background_at_trace
|
||
|
|
||
|
ret.function_name = 'spec.superExtract'
|
||
|
|
||
|
if retall:
|
||
|
ret.profile_map = profile
|
||
|
ret.extractionApertures = extractionApertures
|
||
|
ret.background_map = background
|
||
|
ret.variance_map = variance0
|
||
|
ret.goodpixelmask = goodpixelmask
|
||
|
ret.function_args = args
|
||
|
ret.function_kw = kw
|
||
|
|
||
|
return ret
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def spextractor(frame, gain, readnoise, framevar=None, badpixelmask=None, mode='superExtract', trace=None, options=None, trace_options=None, verbose=False):
|
||
|
"""Extract a spectrum from a frame using one of several methods.
|
||
|
|
||
|
:INPUTS:
|
||
|
frame : 2D Numpy array or filename
|
||
|
Contains a single spectral trace.
|
||
|
|
||
|
gain : None or scalar
|
||
|
Gain of data contained in 'frame;' i.e., number of collected
|
||
|
photoelectrons equals frame * gain.
|
||
|
|
||
|
readnoise : None or scalar
|
||
|
Read noise of detector, in electrons.
|
||
|
|
||
|
framevar : None, 2D Numpy array, or filename
|
||
|
Variance of values in 'frame.'
|
||
|
|
||
|
If and only if framevar is None, use gain and readnoise to
|
||
|
compute variance.
|
||
|
|
||
|
badpixelmask : None, 2D Numpy array, or filename
|
||
|
Mask of bad pixels in 'frame.' Bad pixels are set to 1, good
|
||
|
pixels are set to 0.
|
||
|
|
||
|
mode : str
|
||
|
Which spectral extraction mode to use. Options are:
|
||
|
|
||
|
superExtract -- see :func:`superExtract`
|
||
|
|
||
|
optimalExtract -- see :func:`optimalExtract`
|
||
|
|
||
|
spline -- see :func:`extractSpectralProfiles`
|
||
|
Must also input trace_options.
|
||
|
|
||
|
trace : None, or 1D Numpy Array
|
||
|
Spectral trace location: fractional pixel index along the
|
||
|
entire spectral trace. If None, :func:`traceorders` will be
|
||
|
called using the options in 'trace_options.'
|
||
|
|
||
|
options : None or dict
|
||
|
Keyword options to be passed to the appropriate spectral
|
||
|
extraction algorithm. Note that you should be able to pass the
|
||
|
same sets of parameters to :func:`superExtract` and
|
||
|
:func:`optimalExtract` (the necessary parameter sets overlap,
|
||
|
but are not identical).
|
||
|
|
||
|
trace_options : None or dict
|
||
|
Keyword options to be passed to :func:`traceorders` (if no
|
||
|
trace is input, or if mode='spline')
|
||
|
|
||
|
|
||
|
:RETURNS:
|
||
|
spectrum, error or variance of spectrum, sky background, ...
|
||
|
|
||
|
:NOTES:
|
||
|
When 'optimalextract' is used: if len(bkg_radii)==2 then the
|
||
|
background apertures will be reset based on the median location
|
||
|
of the trace. If extract_radius is a singleton, it will be
|
||
|
similarly redefined.
|
||
|
|
||
|
:EXAMPLE:
|
||
|
::
|
||
|
|
||
|
frame = pyfits.getdata('spectral_filename.fits')
|
||
|
gain, readnoise = 3.3, 30
|
||
|
output = spec.spextractor(frame, gain, readnoise, mode='superExtract', \
|
||
|
options=dict(bord=2, bkg_radii=[20, 30], extract_radius=15, \
|
||
|
polyspacing=1./3, pord=5, verbose=True, trace=trace, \
|
||
|
qmode='slow-linear'))
|
||
|
|
||
|
output2 = spec.spextractor(frame, gain, readnoise, mode='optimalExtract', \
|
||
|
options=dict(bkg_radii=[20,30], extract_radius=15, bord=2, \
|
||
|
bsigma=3, pord=3, psigma=8, csigma=5, verbose=1))
|
||
|
|
||
|
|
||
|
"""
|
||
|
# 2012-09-03 11:12 IJMC: Created
|
||
|
from tools import array_or_filename
|
||
|
|
||
|
# Parse inputs:
|
||
|
frame = array_or_filename(frame)
|
||
|
framevar = array_or_filename(framevar, noneoutput=np.abs(frame) / gain + (readnoise / gain)**2)
|
||
|
|
||
|
if options is None:
|
||
|
options = dict(dispaxis=0)
|
||
|
|
||
|
|
||
|
if verbose and not options.has_key('verbose'):
|
||
|
options['verbose'] = verbose
|
||
|
|
||
|
if trace is None:
|
||
|
if trace_options is None:
|
||
|
trace_options = dict(pord=2)
|
||
|
if not trace_options.has_key('dispaxis'):
|
||
|
if options.has_key('dispaxis'): trace_options['dispaxis'] = options['dispaxis']
|
||
|
|
||
|
trace_coef = traceorders(frame, **trace_options)
|
||
|
trace = np.polyval(trace_coef.ravel(), np.arange(frame.shape[1-options['dispaxis']]))
|
||
|
|
||
|
options['trace'] = trace
|
||
|
|
||
|
##################################################
|
||
|
# Extract spectrum in one of several ways:
|
||
|
##################################################
|
||
|
if mode.lower()=='superextract':
|
||
|
ret = superExtract(frame, framevar, gain, readnoise, **options)
|
||
|
|
||
|
elif mode.lower()=='spline':
|
||
|
# First, set things up:
|
||
|
try:
|
||
|
trace_coef += 0.0
|
||
|
except:
|
||
|
trace_coef = np.polyfit(np.arange(trace.size), trace, trace_options['pord']).reshape(1, trace_options['pord']+1)
|
||
|
trace_options['retall'] = True
|
||
|
|
||
|
if not trace_options.has_key('bkg_radii'):
|
||
|
if options.has_key('bkg_radii') and len(options['bkg_radii'])==2:
|
||
|
trace_options['bkg_radii'] = options['bkg_radii']
|
||
|
if not trace_options.has_key('extract_radius'):
|
||
|
if options.has_key('extract_radius') and not hasattr(options['extract_radius'], '__iter__'):
|
||
|
trace_options['extract_radius'] = options['extract_radius']
|
||
|
|
||
|
prof = makeprofile(frame, trace_coef, **trace_options)
|
||
|
|
||
|
ret = extractSpectralProfiles(prof, **trace_options)
|
||
|
|
||
|
|
||
|
elif mode.lower()=='optimalextract':
|
||
|
# First, re-define bkg_radii and extract_radius (if necessary):
|
||
|
options = dict().update(options) # prevents alterations of options
|
||
|
if options.has_key('bkg_radii') and len(options['bkg_radii'])==2:
|
||
|
t0 = np.median(trace)
|
||
|
bkg_radii = [t0-options['bkg_radii'][1], t0-options['bkg_radii'][0],
|
||
|
t0+options['bkg_radii'][0], t0+options['bkg_radii'][1]]
|
||
|
options['bkg_radii'] = bkg_radii
|
||
|
if verbose: print "Re-defining background apertures: ", bkg_radii
|
||
|
|
||
|
if options.has_key('extract_radius') and \
|
||
|
(not hasattr(options['extract_radius'], '__iter__') or \
|
||
|
(len(options['extract_radius'])==1)):
|
||
|
extract_radius = [t0 - options['extract_radius'], \
|
||
|
t0 + options['extract_radius']]
|
||
|
options['extract_radius'] = extract_radius
|
||
|
if verbose: print "Re-defining extraction aperture: ", extract_radius
|
||
|
|
||
|
ret = optimalExtract(frame, framevar, gain, readnoise, **options)
|
||
|
|
||
|
else:
|
||
|
print "No valid spectral extraction mode specified!"
|
||
|
ret = -1
|
||
|
|
||
|
|
||
|
return ret
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def scaleSpectralSky_pca(frame, skyframes, variance=None, mask=None, badpixelmask=None, npca=3, gain=3.3, readnoise=30):
|
||
|
"""
|
||
|
Use PCA and blank sky frames to subtract
|
||
|
|
||
|
frame : str or NumPy array
|
||
|
data frame to subtract sky from. Assumed to be in ADU, not
|
||
|
electrons (see gain and readnoise)
|
||
|
|
||
|
npca : int
|
||
|
number of PCA components to remove
|
||
|
|
||
|
f0 = pyfits.getdata(odome.procsci[0])
|
||
|
mask = pyfits.getdata(odome._proc + 'skyframes_samplemask.fits').astype(bool)
|
||
|
badpixelmask = pyfits.getdata( odome.badpixelmask).astype(bool)
|
||
|
|
||
|
|
||
|
The simplest way to fit sky to a 'frame' containing bright
|
||
|
spectral is to include the spectral-trace regions in 'mask' but
|
||
|
set the 'variance' of those regions extremely high (to de-weight
|
||
|
them in the least-squares fit).
|
||
|
|
||
|
To use for multi-object data, consider running multiple times
|
||
|
(once per order)
|
||
|
|
||
|
Returns the best-fit sky frame as determined from the first 'npca'
|
||
|
PCA components.
|
||
|
"""
|
||
|
# 2012-09-17 16:41 IJMC: Created
|
||
|
|
||
|
from scipy import sparse
|
||
|
from pcsa import pca
|
||
|
|
||
|
# Parse inputs
|
||
|
if not isinstance(frame, np.ndarray):
|
||
|
frame = pyfits.getdata(frame)
|
||
|
|
||
|
if variance is None:
|
||
|
variance = np.abs(frame)/gain + (readnoise/gain)**2
|
||
|
else:
|
||
|
variance = np.array(variance, copy=False)
|
||
|
weights = 1./variance
|
||
|
|
||
|
nx, ny = frame.shape
|
||
|
n_tot = nx*ny
|
||
|
|
||
|
if badpixelmask is None:
|
||
|
badpixelmask = np.zeros((nx, ny), dtype=bool)
|
||
|
elif isinstance(badpixelmask, str):
|
||
|
badpixelmask = pyfits.getdata(badpixelmask).astype(bool)
|
||
|
else:
|
||
|
badpixelmask = np.array(badpixelmask).astype(bool)
|
||
|
weights[badpixelmask] = 0.
|
||
|
|
||
|
|
||
|
if mask is None:
|
||
|
mask = np.ones(frame.shape, dtype=bool)
|
||
|
n_elem = n_tot
|
||
|
else:
|
||
|
n_elem = mask.astype(bool).sum()
|
||
|
maskind = mask.nonzero()
|
||
|
|
||
|
if isinstance(skyframes, np.ndarray) and skyframes.ndim==3:
|
||
|
pass
|
||
|
else:
|
||
|
skyframes = np.array([pyfits.getdata(fn) for fn in skyframes])
|
||
|
|
||
|
skyframes_ind = np.array([sf[maskind] for sf in skyframes])
|
||
|
|
||
|
frame_ind = frame[maskind]
|
||
|
pcaframes = np.zeros((npca, n_elem), dtype=np.float32)
|
||
|
iter = 0
|
||
|
|
||
|
pcas = []
|
||
|
for jj in range(npca):
|
||
|
pcas.append(pca(skyframes_ind, None, ord=jj+1))
|
||
|
pcaframes[0] = pcas[0][0][0]
|
||
|
for jj in range(1, npca):
|
||
|
pcaframes[jj] = (pcas[jj][0] - pcas[jj-1][0])[0]
|
||
|
|
||
|
# del pcas
|
||
|
|
||
|
svecs = sparse.csr_matrix(pcaframes).transpose()
|
||
|
fitcoef, efitcoef = an.lsqsp(svecs, frame_ind, weights[maskind])
|
||
|
skyvalues = (fitcoef.reshape(npca, 1) * pcaframes).sum(0)
|
||
|
#eskyvalues = (np.diag(efitcoef).reshape(npca, 1) * pcaframes).sum(0)
|
||
|
|
||
|
skyframe = np.zeros((nx, ny), dtype=float)
|
||
|
skyframe[maskind] = skyvalues
|
||
|
return skyframe
|
||
|
|
||
|
[docs]
|
||
|
def scaleSpectralSky_dsa(subframe, variance=None, badpixelmask=None, nk=31, pord=1, nmed=3, gain=3.3, readnoise=30, dispaxis=0, spatial_index=None):
|
||
|
"""
|
||
|
Use difference-imaging techniques to subtract moderately tilted
|
||
|
sky background. Doesn't work so well!
|
||
|
|
||
|
subframe : NumPy array
|
||
|
data subframe containing sky data to be subtracted (and,
|
||
|
perhaps, an object's spectral trace). Assumed to be in ADU, not
|
||
|
electrons (see gain and readnoise)
|
||
|
|
||
|
variance : None or NumPy array
|
||
|
variance of each pixel in 'subframe'
|
||
|
|
||
|
nmed : int
|
||
|
size of 2D median filter
|
||
|
|
||
|
pord : int
|
||
|
degree of spectral tilt. Keep this number low!
|
||
|
|
||
|
nk : int
|
||
|
Number of kernel pixels in :func:`dia.dsa`
|
||
|
|
||
|
nmed : int
|
||
|
Size of window for 2D median filter (to reject bad pixels, etc.)
|
||
|
|
||
|
dispaxis : int
|
||
|
set dispersion axis: 0 = horizontal and 1 = vertical
|
||
|
|
||
|
gain, readnoise : ints
|
||
|
If 'variance' is None, these are used to estimate the uncertainties.
|
||
|
|
||
|
spatial_index : None, or 1D NumPy array of type bool
|
||
|
Which spatial rows (if dispaxis=0) to use when fitting the tilt
|
||
|
of sky lines across the spectrum. If you want to use all, set
|
||
|
to None. If you want to ignore some (e.g., because there's a
|
||
|
bright object's spectrum there) then set those rows' elements
|
||
|
of spatial_index to 'False'.
|
||
|
|
||
|
:NOTES:
|
||
|
Note that (in my experience!) this approach works better when
|
||
|
you set all weights to unity, rather than using the suggested
|
||
|
(photon + read noise) variances.
|
||
|
|
||
|
|
||
|
Returns the best-fit sky frame.
|
||
|
"""
|
||
|
# 2012-09-17 16:41 IJMC: Created
|
||
|
|
||
|
from scipy import signal
|
||
|
import dia
|
||
|
|
||
|
# Parse inputs
|
||
|
if not isinstance(subframe, np.ndarray):
|
||
|
subframe = pyfits.getdata(subframe)
|
||
|
|
||
|
if variance is None:
|
||
|
variance = np.abs(subframe)/gain + (readnoise/gain)**2
|
||
|
else:
|
||
|
variance = np.array(variance, copy=False)
|
||
|
weights = 1./variance
|
||
|
|
||
|
if badpixelmask is None:
|
||
|
badpixelmask = np.zeros(subframe.shape, dtype=bool)
|
||
|
elif isinstance(badpixelmask, str):
|
||
|
badpixelmask = pyfits.getdata(badpixelmask).astype(bool)
|
||
|
else:
|
||
|
badpixelmask = np.array(badpixelmask).astype(bool)
|
||
|
weights[badpixelmask] = 0.
|
||
|
|
||
|
if dispaxis==1:
|
||
|
subframe = subframe.transpose()
|
||
|
variance = variance.transpose()
|
||
|
weights = weights.transpose()
|
||
|
badpixelmask = badpixelmask.transpose()
|
||
|
|
||
|
sub = subframe
|
||
|
if nmed > 1:
|
||
|
ss = signal.medfilt2d(sub, nmed)
|
||
|
else:
|
||
|
ss = sub.copy()
|
||
|
ref = np.median(ss, axis=0)
|
||
|
|
||
|
n, nlam = ss.shape
|
||
|
if spatial_index is None:
|
||
|
spatial_index = np.arange(n)
|
||
|
else:
|
||
|
spatial_index = np.array(spatial_index, copy=False).nonzero()
|
||
|
|
||
|
|
||
|
gaussianpar = np.zeros((n, 4))
|
||
|
for ii in range(n):
|
||
|
test = dia.dsa(ref, ss[ii], nk, w=weights[ii], noback=True)
|
||
|
gaussianpar[ii] = fitGaussian(test[1])[0]
|
||
|
|
||
|
position_fit = an.polyfitr(np.arange(n)[spatial_index], gaussianpar[:,2][spatial_index], pord, 3)
|
||
|
positions = np.polyval(position_fit, np.arange(n))
|
||
|
width_fit = np.median(gaussianpar[:,1])
|
||
|
|
||
|
skyframe = 0*ss
|
||
|
testDC_spec = np.ones(nlam)
|
||
|
testx = np.arange(nk, dtype=float)
|
||
|
lsqfits = np.zeros((n,2))
|
||
|
for ii in range(n):
|
||
|
testgaussian = gaussian([1, width_fit, positions[ii], 0.], testx)
|
||
|
testgaussian /= testgaussian.sum()
|
||
|
testspectrum = dia.rconvolve1d(ref, testgaussian)
|
||
|
skyframe[ii] = testspectrum
|
||
|
|
||
|
if dispaxis==1:
|
||
|
skyframe = skyframe.transpose()
|
||
|
|
||
|
return skyframe
|
||
|
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def scaleSpectralSky_cor(subframe, badpixelmask=None, maxshift=20, fitwidth=2, pord=1, nmed=3, dispaxis=0, spatial_index=None, refpix=None, tord=2):
|
||
|
"""
|
||
|
Use cross-correlation to subtract tilted sky backgrounds.
|
||
|
|
||
|
subframe : NumPy array
|
||
|
data subframe containing sky data to be subtracted (and,
|
||
|
perhaps, an object's spectral trace).
|
||
|
|
||
|
badpixelmask : None or NumPy array
|
||
|
A boolean array, equal to zero for good pixels and unity for bad
|
||
|
pixels. If this is set, the first step will be a call to
|
||
|
:func:`nsdata.bfixpix` to interpolate over these values.
|
||
|
|
||
|
nmed : int
|
||
|
size of 2D median filter for pre-smoothing.
|
||
|
|
||
|
pord : int
|
||
|
degree of spectral tilt. Keep this number low!
|
||
|
|
||
|
maxshift : int
|
||
|
Maximum acceptable shift. NOT YET IMPLEMENTED!
|
||
|
|
||
|
fitwidth : int
|
||
|
Maximum radius (in pixels) for fitting to the peak of the
|
||
|
cross-correlation.
|
||
|
|
||
|
nmed : int
|
||
|
Size of window for 2D median filter (to reject bad pixels, etc.)
|
||
|
|
||
|
dispaxis : int
|
||
|
set dispersion axis: 0 = horizontal and 1 = vertical
|
||
|
|
||
|
spatial_index : None, or 1D NumPy array of type *bool*
|
||
|
Which spatial rows (if dispaxis=0) to use when fitting the tilt
|
||
|
of sky lines across the spectrum. If you want to use all, set
|
||
|
to None. If you want to ignore some (e.g., because there's a
|
||
|
bright object's spectrum there) then set those rows' elements
|
||
|
of spatial_index to 'False'.
|
||
|
|
||
|
refpix : scalar
|
||
|
Pixel along spatial axis to which spectral fits should be
|
||
|
aligned; if a spectral trace is present, one should set
|
||
|
"refpix" to the location of the trace.
|
||
|
|
||
|
tord : int
|
||
|
Order of polynomial fits along spatial direction in aligned
|
||
|
2D-spectral frame, to account for misalignments or
|
||
|
irregularities of tilt direction.
|
||
|
|
||
|
:RETURNS:
|
||
|
a model of the sky background, of the same shape as 'subframe.'
|
||
|
"""
|
||
|
# 2012-09-22 17:04 IJMC: Created
|
||
|
# 2012-12-27 09:53 IJMC: Edited to better account for sharp edges
|
||
|
# in backgrounds.
|
||
|
|
||
|
from scipy import signal
|
||
|
from nsdata import bfixpix
|
||
|
|
||
|
# Parse inputs
|
||
|
if not isinstance(subframe, np.ndarray):
|
||
|
subframe = pyfits.getdata(subframe)
|
||
|
|
||
|
if badpixelmask is None:
|
||
|
pass
|
||
|
else:
|
||
|
badpixelmask = np.array(badpixelmask).astype(bool)
|
||
|
subframe = bfixpix(subframe, badpixelmask, retdat=True)
|
||
|
|
||
|
if dispaxis==1:
|
||
|
subframe = subframe.transpose()
|
||
|
|
||
|
# Define necessary variables and vectors:
|
||
|
npix, nlam = subframe.shape
|
||
|
if spatial_index is None:
|
||
|
spatial_index = np.ones(npix, dtype=bool)
|
||
|
else:
|
||
|
spatial_index = np.array(spatial_index, copy=False)
|
||
|
if refpix is None:
|
||
|
refpix = npix/2.
|
||
|
|
||
|
lampix = np.arange(nlam)
|
||
|
tpix = np.arange(npix)
|
||
|
alllags = np.arange(nlam-maxshift*2) - np.floor(nlam/2 - maxshift)
|
||
|
|
||
|
# Median-filter the input data:
|
||
|
if nmed > 1:
|
||
|
ssub = signal.medfilt2d(subframe, nmed)
|
||
|
else:
|
||
|
ssub = subframe.copy()
|
||
|
ref = np.median(ssub, axis=0)
|
||
|
|
||
|
|
||
|
#allcor = np.zeros((npix, nlam-maxshift*2))
|
||
|
shift = np.zeros(npix, dtype=float)
|
||
|
for ii in tpix:
|
||
|
# Cross-correlate to measure alignment at each row:
|
||
|
cor = np.correlate(ref[maxshift:-maxshift], signal.medfilt(ssub[ii], nmed)[maxshift:-maxshift], mode='same')
|
||
|
# Measure offset of each row:
|
||
|
maxind = alllags[(cor==cor.max())].mean()
|
||
|
fitind = np.abs(alllags - maxind) <= fitwidth
|
||
|
quadfit = np.polyfit(alllags[fitind], cor[fitind], 2)
|
||
|
shift[ii] = -0.5 * quadfit[1] / quadfit[0]
|
||
|
|
||
|
shift_polyfit = an.polyfitr(tpix[spatial_index], shift[spatial_index], pord, 3) #, w=weights)
|
||
|
refpos = np.polyval(shift_polyfit, refpix)
|
||
|
#pdb.set_trace()
|
||
|
fitshift = np.polyval(shift_polyfit, tpix) - refpos
|
||
|
|
||
|
# Interpolate each row to a common frame to create an improved reference:
|
||
|
newssub = np.zeros((npix, nlam))
|
||
|
for ii in tpix:
|
||
|
newssub[ii] = np.interp(lampix, lampix+fitshift[ii], ssub[ii])
|
||
|
|
||
|
#pdb.set_trace()
|
||
|
newref = np.median(newssub[spatial_index,:], axis=0)
|
||
|
|
||
|
tfits = np.zeros((nlam, tord+1), dtype=float)
|
||
|
newssub2 = np.zeros((npix, nlam))
|
||
|
for jj in range(nlam):
|
||
|
tfits[jj] = an.polyfitr(tpix, newssub[:,jj], tord, 3)
|
||
|
newssub2[:, jj] = np.polyval(tfits[jj], tpix)
|
||
|
|
||
|
|
||
|
# Create the final model of the sky background:
|
||
|
skymodel = np.zeros((npix, nlam), dtype=float)
|
||
|
shiftmodel = np.zeros((npix, nlam), dtype=float)
|
||
|
for ii in tpix:
|
||
|
#skymodel[ii] = np.interp(lampix, lampix-fitshift[ii], newref)
|
||
|
skymodel[ii] = np.interp(lampix, lampix-fitshift[ii], newssub2[ii])
|
||
|
shiftmodel[ii] = np.interp(lampix, lampix+fitshift[ii], ssub[ii])
|
||
|
|
||
|
#pdb.set_trace()
|
||
|
|
||
|
if dispaxis==1:
|
||
|
skymodel = skymodel.transpose()
|
||
|
|
||
|
return skymodel, shiftmodel, newssub, newssub2
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def defringe_sinusoid(subframe, badpixelmask=None, nmed=5, dispaxis=0, spatial_index=None, period_limits=[20, 100], retall=False, gain=None, readnoise=None, bictest=False, sinonly=False):
|
||
|
"""
|
||
|
Use simple fitting to subtract fringes and sky background.
|
||
|
|
||
|
subframe : NumPy array
|
||
|
data subframe containing sky data to be subtracted (and,
|
||
|
perhaps, an object's spectral trace). Assumed to be in ADU, not
|
||
|
electrons (see gain and readnoise)
|
||
|
|
||
|
nmed : int
|
||
|
Size of window for 2D median filter (to reject bad pixels, etc.)
|
||
|
|
||
|
dispaxis : int
|
||
|
set dispersion axis: 0 = horizontal and 1 = vertical
|
||
|
|
||
|
spatial_index : None, or 1D NumPy array of type bool
|
||
|
Which spatial rows (if dispaxis=0) to use when fitting the tilt
|
||
|
of sky lines across the spectrum. If you want to use all, set
|
||
|
to None. If you want to ignore some (e.g., because there's a
|
||
|
bright object's spectrum there) then set those rows' elements
|
||
|
of spatial_index to 'False'.
|
||
|
|
||
|
period_limits : 2-sequence
|
||
|
Minimum and maximum periods (in pixels) of fringe signals to
|
||
|
accept as 'valid.' Resolution elements with best-fit periods
|
||
|
outside this range will only be fit by a linear trend.
|
||
|
|
||
|
gain : scalar
|
||
|
Gain of detector, in electrons per ADU (where 'subframe' is in
|
||
|
units of ADUs).
|
||
|
|
||
|
readnoise : scalar
|
||
|
Readnoise of detector, in electrons (where 'subframe' is in
|
||
|
units of ADUs).
|
||
|
|
||
|
bictest : bool
|
||
|
If True, use 'gain' and 'readnoise' to compute the Bayesian
|
||
|
Information Criterion (BIC) for each fit; a sinusoid is only
|
||
|
removed if BIC(sinusoid fit) is lower than BIC(constant fit).
|
||
|
|
||
|
sinonly : bool
|
||
|
If True, the output "model 2D spectrum" will only contain the
|
||
|
sinusoidal component. Otherwise, it will contain DC and
|
||
|
linear-trend terms.
|
||
|
|
||
|
:NOTES:
|
||
|
Note that (in my experience!) this approach works better when
|
||
|
you set all weights to unity, rather than using the suggested
|
||
|
(photon + read noise) variances.
|
||
|
|
||
|
:REQUIREMENTS:
|
||
|
:doc:`analysis` (for :func:`analysis.fmin`)
|
||
|
|
||
|
:doc:`phasecurves` (for :func:`phasecurves.errfunc`)
|
||
|
|
||
|
:doc:`lomb` (for Lomb-Scargle periodograms)
|
||
|
|
||
|
SciPy 'signal' module (for median-filtering)
|
||
|
|
||
|
|
||
|
Returns the best-fit sky frame.
|
||
|
"""
|
||
|
# 2012-09-19 16:22 IJMC: Created
|
||
|
# 2012-12-16 15:11 IJMC: Made some edits to fix bugs, based on outlier indexing.
|
||
|
|
||
|
from scipy import signal
|
||
|
import lomb
|
||
|
from analysis import fmin # scipy.optimize.fmin would also be O.K.
|
||
|
from phasecurves import errfunc
|
||
|
|
||
|
twopi = np.pi*2
|
||
|
|
||
|
fudgefactor = 1.5
|
||
|
|
||
|
def ripple(params, x): # Sinusoid + constant offset
|
||
|
if params[1]==0:
|
||
|
ret = 0.0
|
||
|
else:
|
||
|
ret = params[0] * np.cos(twopi*x/params[1] - params[2]) + params[3]
|
||
|
return ret
|
||
|
|
||
|
def linripple(params, x): # Sinusoid + linear trend
|
||
|
if params[1]==0:
|
||
|
ret = 0.0
|
||
|
else:
|
||
|
ret = params[0] * np.cos(twopi*x/params[1] - params[2]) + params[3] + params[4]*x
|
||
|
return ret
|
||
|
|
||
|
# Parse inputs
|
||
|
if not isinstance(subframe, np.ndarray):
|
||
|
subframe = pyfits.getdata(subframe)
|
||
|
|
||
|
if gain is None: gain = 1
|
||
|
if readnoise is None: readnoise = 1
|
||
|
|
||
|
if badpixelmask is None:
|
||
|
badpixelmask = np.zeros(subframe.shape, dtype=bool)
|
||
|
elif isinstance(badpixelmask, str):
|
||
|
badpixelmask = pyfits.getdata(badpixelmask).astype(bool)
|
||
|
else:
|
||
|
badpixelmask = np.array(badpixelmask).astype(bool)
|
||
|
|
||
|
if dispaxis==1:
|
||
|
subframe = subframe.transpose()
|
||
|
badpixelmask = badpixelmask.transpose()
|
||
|
|
||
|
sub = subframe
|
||
|
if nmed > 1:
|
||
|
sdat = signal.medfilt2d(sub, nmed)
|
||
|
else:
|
||
|
sdat = sub.copy()
|
||
|
|
||
|
if bictest:
|
||
|
var_sdat = np.abs(sdat)/gain + (readnoise/gain)**2
|
||
|
|
||
|
npix, nlam = sdat.shape
|
||
|
if spatial_index is None:
|
||
|
spatial_index = np.ones(npix, dtype=bool)
|
||
|
else:
|
||
|
spatial_index = np.array(spatial_index, copy=False).astype(bool)
|
||
|
|
||
|
##############################
|
||
|
|
||
|
periods = np.logspace(0.5, np.log10(npix), npix*2)
|
||
|
|
||
|
x = np.arange(npix)
|
||
|
allfits = np.zeros((nlam, 5))
|
||
|
|
||
|
for jj in range(nlam):
|
||
|
vec = sdat[:, jj].copy()
|
||
|
this_index = spatial_index * (True - badpixelmask[:, jj])
|
||
|
|
||
|
#if jj==402: pdb.set_trace()
|
||
|
if this_index.sum() > 1:
|
||
|
# LinFit the data; exclude values inconsistent with a sinusoid:
|
||
|
linfit = an.polyfitr(x[this_index], vec[this_index], 1, 3)
|
||
|
linmodel = (x) * linfit[0] + linfit[1]
|
||
|
vec2 = vec - (linmodel - linfit[1])
|
||
|
maxexcursion = an.dumbconf(vec2[this_index], .683)[0] * (fudgefactor / .88)
|
||
|
index = this_index * (np.abs(vec2 - np.median(vec2[this_index])) <= (6*maxexcursion))
|
||
|
|
||
|
# Use Lomb-Scargle to find strongest period:
|
||
|
#lsp = lomb.lomb(vec2[index], x[index], twopi/periods)
|
||
|
freqs, lsp = lomb.fasper(x[index], vec2[index], 12., 0.5)
|
||
|
guess_period = (1./freqs[lsp==lsp.max()]).mean()
|
||
|
# If the best-fit period is within our limits, fit it:
|
||
|
if (guess_period <= period_limits[1]) and (guess_period >= period_limits[0]):
|
||
|
#periods2 = np.arange(guess_period-1, guess_period+1, 0.02)
|
||
|
#lsp2 = lomb.lomb(vec2[index], x[index], twopi/periods2)
|
||
|
#guess_period = periods2[lsp2==lsp2.max()].mean()
|
||
|
guess_dc = np.median(vec2[index])
|
||
|
guess_amp = an.dumbconf(vec2[index], .683, mid=guess_dc)[0] / 0.88
|
||
|
guess = [guess_amp, guess_period, np.pi, guess_dc]
|
||
|
if bictest:
|
||
|
w = 1./var_sdat[:,jj][index]
|
||
|
else:
|
||
|
w = np.ones(index.sum())
|
||
|
|
||
|
fit = fmin(errfunc, guess, args=(ripple, x[index], vec2[index], w), full_output=True, disp=False)
|
||
|
guess2 = np.concatenate((fit[0], [linfit[0]]))
|
||
|
fit2 = fmin(errfunc, guess2, args=(linripple, x[index], vec[index], w), full_output=True, disp=False)
|
||
|
if bictest:
|
||
|
ripple_model = linripple(fit2[0], x)
|
||
|
bic_ripple = (w*(vec - ripple_model)[index]**2).sum() + 6*np.log(index.sum())
|
||
|
bic_linfit = (w*(vec - linmodel)[index]**2).sum() + 2*np.log(index.sum())
|
||
|
#if jj==546:
|
||
|
# pdb.set_trace()
|
||
|
if bic_ripple >= bic_linfit:
|
||
|
fit2 = [[0, 1e9, 0, linfit[1], linfit[0]], 0]
|
||
|
|
||
|
|
||
|
|
||
|
else: # Clearly not a valid ripple -- just use the linear fit.
|
||
|
fit2 = [[0, 1e11, 0, linfit[1], linfit[0]], 0]
|
||
|
|
||
|
else: # *NO* good pixels!
|
||
|
#linfit = an.polyfitr(x[spatial_index], vec[spatial_index], 1, 3)
|
||
|
|
||
|
fit2 = [[0, 1e11, 0, np.median(vec[spatial_index]), 0], 0]
|
||
|
|
||
|
allfits[jj] = fit2[0]
|
||
|
|
||
|
|
||
|
# Median filter the resulting coefficients
|
||
|
if nmed > 1: # No median-filtering
|
||
|
newfits = np.array([signal.medfilt(fits, nmed) for fits in allfits.transpose()]).transpose()
|
||
|
newfits[:, 2] = allfits[:,2] # Don't smooth phase
|
||
|
else:
|
||
|
newfits = allfits
|
||
|
|
||
|
# Generate the model sky pattern
|
||
|
skymodel = np.zeros((npix, nlam))
|
||
|
for jj in range(nlam):
|
||
|
if sinonly:
|
||
|
coef = newfits[jj].copy()
|
||
|
coef[3:] = 0.
|
||
|
else:
|
||
|
coef = newfits[jj]
|
||
|
skymodel[:, jj] = linripple(coef, x)
|
||
|
|
||
|
|
||
|
if dispaxis==1:
|
||
|
skymodel = skymodel.transpose()
|
||
|
|
||
|
|
||
|
if retall:
|
||
|
ret = skymodel, allfits
|
||
|
else:
|
||
|
ret = skymodel
|
||
|
|
||
|
return ret
|
||
|
|
||
|
|
||
|
|
||
|
#
|
||
|
|
||
|
[docs]
|
||
|
def makexflat(subreg, xord, nsigma=3, minsnr=10, minfrac=0.5, niter=1):
|
||
|
"""Helper function for XXXX.
|
||
|
|
||
|
:INPUTS:
|
||
|
subreg : 2D NumPy array
|
||
|
spectral subregion, containing spectral background, sky,
|
||
|
and/or target flux measurements.
|
||
|
|
||
|
xord : scalar or sequence
|
||
|
Order of polynomial by which each ROW will be normalized. If
|
||
|
niter>0, xord can be a sequence of length (niter+1). A good
|
||
|
approach for, e.g., spectral dome flats is to set niter=1 and
|
||
|
xord=[15,2].
|
||
|
|
||
|
nsigma : scalar
|
||
|
Sigma-clipping level for calculation of column-by-column S/N
|
||
|
|
||
|
minsnr : scalar
|
||
|
Minimum S/N value to use when selecting 'good' columns for
|
||
|
normalization.
|
||
|
|
||
|
minfrac : scalar, 0 < minfrac < 1
|
||
|
Fraction of columns to use, selected by highest S/N, when
|
||
|
selecting 'good' columns for normalization.
|
||
|
|
||
|
niter : int
|
||
|
Number of iterations. If set to zero, do not iterate (i.e.,
|
||
|
run precisely once through.)
|
||
|
|
||
|
:NOTES:
|
||
|
Helper function for functions XXXX
|
||
|
"""
|
||
|
# 2013-01-20 14:20 IJMC: Created
|
||
|
|
||
|
ny, nx = subreg.shape
|
||
|
xall = np.arange(2048.)
|
||
|
subreg_new = subreg.copy()
|
||
|
|
||
|
iter = 0
|
||
|
if not hasattr(xord, '__iter__'): xord = [xord]*(niter+1)
|
||
|
while iter <= niter:
|
||
|
snr = an.snr(subreg_new, axis=0, nsigma=nsigma)
|
||
|
ind = (snr > np.sort(snr)[-int(minfrac*snr.size)]) * (snr > minsnr)
|
||
|
xxx = ind.nonzero()[0]
|
||
|
norm_subreg = subreg[:,ind] / np.median(subreg[:,ind], 0)
|
||
|
coefs = np.array([an.polyfitr(xxx, row, xord[iter], 3) for row in norm_subreg])
|
||
|
xflat = np.array([np.polyval(coef0, xall) for coef0 in coefs])
|
||
|
iter += 1
|
||
|
subreg_new = subreg / xflat
|
||
|
return xflat
|
||
|
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def make_spectral_flats(sky, domeflat, subreg_corners, badpixelmask=None, xord_pix=[15,2], xord_sky=[2,1], yord=2, minsnr=5, minfrac_pix=0.7, minfrac_sky=0.5, locs=None, nsigma=3):
|
||
|
"""
|
||
|
Construct appropriate corrective frames for multi-object
|
||
|
spectrograph data. Specifically: corrections for irregular slit
|
||
|
widths, and pixel-by-pixel detector sensitivity variations.
|
||
|
|
||
|
sky : 2D NumPy array
|
||
|
Master spectral sky frame, e.g. from median-stacking many sky
|
||
|
frames or masking-and-stacking dithered science spectra frames.
|
||
|
This frame is used to construct a map to correct science frames
|
||
|
(taken with the identical slit mask!) for irregular sky
|
||
|
backgrounds resulting from non-uniform slit widths (e.g.,
|
||
|
Keck/MOSFIRE).
|
||
|
|
||
|
Note that the dispersion direction should be 'horizontal'
|
||
|
(i.e., parallel to rows) in this frames.
|
||
|
|
||
|
domeflat : 2D NumPy array
|
||
|
Master dome spectral flat, e.g. from median-stacking many dome
|
||
|
spectra. This need not be normalized in the dispersion or
|
||
|
spatial directions. This frame is used to construct a flat map
|
||
|
of the pixel-to-pixel variations in detector sensitivity.
|
||
|
|
||
|
Note that the dispersion direction should be 'horizontal'
|
||
|
(i.e., parallel to rows) in this frames.
|
||
|
|
||
|
subreg_corners : sequence of 2- or 4-sequences
|
||
|
Indices (or merely starting- and ending-rows) for each
|
||
|
subregion of interest in 'sky' and 'domeflat' frames. Syntax
|
||
|
should be that of :func:`tools.extractSubregion`, or such that
|
||
|
subreg=sky[subreg_corners[0]:subreg_corners[1]]
|
||
|
|
||
|
badpixelmask : 2D NumPy array, or str
|
||
|
Nonzero for any bad pixels; these will be interpolated over
|
||
|
using :func:`nsdata.bfixpix`.
|
||
|
|
||
|
xord_pix : sequence
|
||
|
Polynomial orders for normalization in dispersion direction of
|
||
|
pixel-based flat (dome flat) on successive iterations; see
|
||
|
:func:`makexflat`.
|
||
|
|
||
|
xord_sky : sequence
|
||
|
Polynomial orders for normalization in dispersion direction of
|
||
|
slit-based correction (sky frame) on successive iterations;
|
||
|
see :func:`makexflat`.
|
||
|
|
||
|
yord : scalar
|
||
|
Polynomial order for normalization of pixel-based (dome) flat
|
||
|
in spatial direction.
|
||
|
|
||
|
locs : None, or sequence
|
||
|
Row-index in each subregion of the location of the
|
||
|
spectral-trace-of-interest. Only used for rectifying of sky
|
||
|
frame; leaving this at None will have at most a mild
|
||
|
effect. If not None, should be the same length as
|
||
|
subreg_corners. If subreg_corners[0] = [800, 950] then
|
||
|
locs[0] might be set to, e.g., 75 if the trace lies in the
|
||
|
middle of the subregion.
|
||
|
|
||
|
|
||
|
:RETURNS:
|
||
|
wideslit_skyflat, narrowslit_domeflat
|
||
|
|
||
|
:EXAMPLE:
|
||
|
::
|
||
|
|
||
|
|
||
|
try:
|
||
|
from astropy.io import fits as pyfits
|
||
|
except:
|
||
|
import pyfits
|
||
|
|
||
|
import spec
|
||
|
import ir
|
||
|
|
||
|
obs = ir.initobs('20121010')
|
||
|
sky = pyfits.getdata(obs._raw + 'masktersky.fits')
|
||
|
domeflat = pyfits.getdata(obs._raw + 'mudflat.fits')
|
||
|
allinds = [[7, 294], [310, 518], [532, 694], [710, 960], [976, 1360], [1378, 1673], [1689, 2022]]
|
||
|
locs = [221, 77, 53, 88, 201, 96, 194]
|
||
|
|
||
|
skycorrect, pixcorrect = spec.make_spectral_flats(sky, domeflat, allinds, obs.badpixelmask, locs=locs)
|
||
|
"""
|
||
|
# 2013-01-20 14:40 IJMC: Created
|
||
|
from tools import extractSubregion
|
||
|
from nsdata import bfixpix
|
||
|
|
||
|
# Check inputs:
|
||
|
if not isinstance(sky, np.ndarray):
|
||
|
sky = pyfits.getdata(sky)
|
||
|
if not isinstance(domeflat, np.ndarray):
|
||
|
domeflat = pyfits.getdata(domeflat)
|
||
|
|
||
|
ny0, nx0 = sky.shape
|
||
|
|
||
|
if badpixelmask is None:
|
||
|
badpixelmask = np.zeros((ny0, nx0), dtype=bool)
|
||
|
if not isinstance(badpixelmask, np.ndarray):
|
||
|
badpixelmask = pyfits.getdata(badpixelmask)
|
||
|
|
||
|
# Correct any bad pixels:
|
||
|
if badpixelmask.any():
|
||
|
bfixpix(sky, badpixelmask)
|
||
|
bfixpix(domeflat, badpixelmask)
|
||
|
|
||
|
wideslit_skyflat = np.ones((ny0, nx0), dtype=float)
|
||
|
narrowslit_domeflat = np.ones((ny0, nx0), dtype=float)
|
||
|
|
||
|
# Loop through all subregions specified:
|
||
|
for jj in range(len(subreg_corners)):
|
||
|
# Define extraction & alignment indices:
|
||
|
specinds = np.array(subreg_corners[jj]).ravel().copy()
|
||
|
if len(specinds)==2:
|
||
|
specinds = np.concatenate(([0, nx0], specinds))
|
||
|
if locs is None:
|
||
|
loc = np.mean(specinds[2:4])
|
||
|
else:
|
||
|
loc = locs[jj]
|
||
|
|
||
|
skysub = extractSubregion(sky, specinds, retall=False)
|
||
|
domeflatsub = extractSubregion(domeflat, specinds, retall=False)
|
||
|
badsub = extractSubregion(badpixelmask, specinds, retall=False)
|
||
|
ny, nx = skysub.shape
|
||
|
yall = np.arange(ny)
|
||
|
|
||
|
# Normalize Dome Spectral Flat in X-direction (rows):
|
||
|
xflat_dome = makexflat(domeflatsub, xord_pix, minsnr=minsnr, minfrac=minfrac_pix, niter=len(xord_pix)-1, nsigma=nsigma)
|
||
|
ymap = domeflatsub*0.0
|
||
|
xsubflat = domeflatsub / np.median(domeflatsub, 0) / xflat_dome
|
||
|
|
||
|
# Normalize Dome Spectral Flat in Y-direction (columns):
|
||
|
ycoefs = [an.polyfitr(yall, xsubflat[:,ii], yord, nsigma) for ii in range(nx)]
|
||
|
yflat = np.array([np.polyval(ycoef0, yall) for ycoef0 in ycoefs]).transpose()
|
||
|
pixflat = domeflatsub / (xflat_dome * yflat * np.median(domeflatsub, 0))
|
||
|
bogus = (pixflat< 0.02) + (pixflat > 50)
|
||
|
pixflat[bogus] = 1.
|
||
|
|
||
|
# Normalize Sky spectral Flat in X-direction (rows):
|
||
|
askysub = scaleSpectralSky_cor(skysub/pixflat, badsub, pord=2, refpix=loc, nmed=1)
|
||
|
xflat_sky = makexflat(askysub[1], xord_sky, minsnr=minsnr, minfrac=minfrac_sky, niter=len(xord_sky)-1, nsigma=nsigma)
|
||
|
|
||
|
wideslit_skyflat[specinds[2]:specinds[3], specinds[0]:specinds[1]] = xflat_sky
|
||
|
narrowslit_domeflat[specinds[2]:specinds[3], specinds[0]:specinds[1]] = pixflat
|
||
|
|
||
|
print "Done with subregion %i" % (jj+1)
|
||
|
|
||
|
return wideslit_skyflat, narrowslit_domeflat
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def calibrate_stared_mosfire_spectra(scifn, outfn, skycorrect, pixcorrect, subreg_corners, **kw):
|
||
|
"""Correct non-dithered WIDE-slit MOSFIRE spectral frames for:
|
||
|
pixel-to-pixel nonuniformities (i.e., traditional flat-fielding)
|
||
|
|
||
|
detector nonlinearities
|
||
|
|
||
|
tilted spectral lines
|
||
|
|
||
|
non-uniform slit widths (which cause non-smooth backgrounds)
|
||
|
|
||
|
Note that the dispersion direction should be 'horizontal'
|
||
|
(i.e., parallel to rows) in this frame.
|
||
|
|
||
|
:INPUTS:
|
||
|
scifn : str
|
||
|
Filename of raw, uncalibrated science frame (in ADUs, not electrons)
|
||
|
|
||
|
outfn : str
|
||
|
Name into which final, calibrated file should be written.
|
||
|
|
||
|
skycorrect : str or 2D NumPy array
|
||
|
Slitloss correction map (i.e., for slits of nonuniform width),
|
||
|
such as generated by :func:`make_spectral_flats`.
|
||
|
|
||
|
pixcorrect : str or 2D NumPy array
|
||
|
Pixel-by-pixel sensitivity correction map (i.e., flat field),
|
||
|
such as generated by :func:`make_spectral_flats`.
|
||
|
|
||
|
subreg_corners : sequence of 2- or 4-sequences
|
||
|
Indices (or merely starting- and ending-rows) for each
|
||
|
subregion of interest in 'sky' and 'domeflat' frames. Syntax
|
||
|
should be that of :func:`tools.extractSubregion`, or such that
|
||
|
subreg=sky[subreg_corners[0]:subreg_corners[1]]
|
||
|
|
||
|
linearize : bool
|
||
|
Whether to linearity-correct the data.
|
||
|
|
||
|
If linearizing: linearity correction is computed & applied
|
||
|
AFTER applying the pixel-by-pixel (flatfield) correction, but
|
||
|
BEFORE the slitloss (sky) correction.
|
||
|
|
||
|
|
||
|
|
||
|
bkg_radii : 2-sequence
|
||
|
Inner and outer radius for background computation and removal;
|
||
|
measured in pixels from the center of the profile. The values
|
||
|
[11,52] seems to work well for MOSFIRE K-band spectra.
|
||
|
|
||
|
locs : None, or sequence
|
||
|
Row-index in each subregion of the location of the
|
||
|
spectral-trace-of-interest. Only used for rectifying of sky
|
||
|
frame; leaving this at None will have at most a mild
|
||
|
effect. If not None, should be the same length as
|
||
|
subreg_corners. If subreg_corners[0] = [800, 950] then
|
||
|
locs[0] might be set to, e.g., 75 if the trace lies in the
|
||
|
middle of the subregion.
|
||
|
|
||
|
gain: scalar
|
||
|
Detector gain, in electrons per ADU
|
||
|
|
||
|
readnoise: scalar
|
||
|
Detector readnoise, in electrons
|
||
|
|
||
|
polycoef : str, None, or sequence
|
||
|
Polynomial coefficients for detector linearization: see
|
||
|
:func:`ir.linearity_correct` and :func:`ir.linearity_mosfire`.
|
||
|
|
||
|
unnormalized_flat : str or 2D NumPy array
|
||
|
If not 'None', this is used to define the subregion header
|
||
|
keywords ('subreg0', 'subreg1', etc.) for each slit's
|
||
|
two-dimensional spectrum. These keywords are required by much
|
||
|
of my extraction machinery!
|
||
|
|
||
|
|
||
|
:EXAMPLE:
|
||
|
::
|
||
|
|
||
|
|
||
|
try:
|
||
|
from astropy.io import fits as pyfits
|
||
|
except:
|
||
|
import pyfits
|
||
|
|
||
|
import spec
|
||
|
import ir
|
||
|
|
||
|
obs = ir.initobs('20121010')
|
||
|
allinds = [[7, 294], [310, 518], [532, 694], [710, 960], [976, 1360], [1378, 1673], [1689, 2022]]
|
||
|
locs = [221, 77, 53, 88, 201, 96, 194]
|
||
|
unnorm_flat_fn = obs._raw + 'mudflat.fits'
|
||
|
if False:
|
||
|
sky = pyfits.getdata(obs._raw + 'masktersky.fits')
|
||
|
unnorm_domeflat = pyfits.getdata(unnorm_flat_fn)
|
||
|
skycorrect, pixcorrect = spec.make_spectral_flats(sky, unnorm_domeflat, allinds, badpixelmask=obs.badpixelmask, locs=locs)
|
||
|
else:
|
||
|
skycorrect = obs._raw + 'skycorrect.fits'
|
||
|
pixcorrect = obs._raw + 'pixcorrect.fits'
|
||
|
|
||
|
linearcoef='/Users/ianc/proj/transit/data/mosfire_linearity/linearity/mosfire_linearity_cnl_coefficients_bic-optimized.fits'
|
||
|
rawfn = obs.rawsci
|
||
|
outfn = obs.procsci
|
||
|
spec.calibrate_stared_mosfire_spectra(rawfn, outfn, skycorrect, pixcorrect, allinds, linearize=True, badpixelmask=obs.badpixelmask, locs=locs, polycoef=linearcoef, verbose=True, clobber=True, unnormalized_flat=unnorm_flat_fn)
|
||
|
|
||
|
:NOTES:
|
||
|
This routine is *slow*, mostly because of the call to
|
||
|
:func:`defringe_sinusoid`. Consider running multiple processes
|
||
|
in parallel, to speed things up!
|
||
|
|
||
|
:SEE_ALSO:
|
||
|
:func:`ir.mosfire_speccal`, :func:`defringe_sinusoid`
|
||
|
"""
|
||
|
# 2013-01-20 16:17 IJMC: Created.
|
||
|
# 2013-01-25 15:59 IJMC: Fixed various bugs relating to
|
||
|
# determinations of subregion boundaries.
|
||
|
|
||
|
|
||
|
try:
|
||
|
from astropy.io import fits as pyfits
|
||
|
except:
|
||
|
import pyfits
|
||
|
|
||
|
from nsdata import bfixpix
|
||
|
import ir
|
||
|
import os
|
||
|
from tools import extractSubregion, findRectangles
|
||
|
import sys
|
||
|
|
||
|
#pdb.set_trace()
|
||
|
|
||
|
if not isinstance(scifn, str) and hasattr(scifn, '__iter__'):
|
||
|
for scifn0, outfn0 in zip(scifn, outfn):
|
||
|
calibrate_stared_mosfire_spectra(scifn0, outfn0, skycorrect, pixcorrect, subreg_corners, **kw)
|
||
|
|
||
|
else:
|
||
|
# Set defaults:
|
||
|
names = ['linearize', 'bkg_radii', 'gain', 'readnoise', 'polycoef', 'verbose', 'badpixelmask', 'locs', 'clobber', 'unnormalized_flat']
|
||
|
defaults = [False, [11, 52], 2.15, 21.1, None, False, None, None, False, None]
|
||
|
for n,d in zip(names, defaults):
|
||
|
exec('%s = kw["%s"] if kw.has_key("%s") else d' % (n, n, n))
|
||
|
|
||
|
|
||
|
# Check inputs:
|
||
|
scihdr = pyfits.getheader(scifn)
|
||
|
sci = pyfits.getdata(scifn)
|
||
|
exptime = scihdr['TRUITIME']
|
||
|
ncoadd = scihdr['COADDONE']
|
||
|
nread = scihdr['READDONE']
|
||
|
|
||
|
if not isinstance(pixcorrect, np.ndarray):
|
||
|
scihdr.update('SLITFLAT', pixcorrect)
|
||
|
pixcorrect = pyfits.getdata(pixcorrect)
|
||
|
else:
|
||
|
scihdr.update('PIXFLAT', 'User-specified data array')
|
||
|
|
||
|
if not isinstance(skycorrect, np.ndarray):
|
||
|
scihdr.update('SLITFLAT', skycorrect)
|
||
|
skycorrect = pyfits.getdata(skycorrect)
|
||
|
else:
|
||
|
scihdr.update('SLITFLAT', 'User-specified data array')
|
||
|
|
||
|
if unnormalized_flat is not None:
|
||
|
if not isinstance(unnormalized_flat, np.ndarray):
|
||
|
scihdr.update('MUDFLAT', unnormalized_flat)
|
||
|
unnormalized_flat = pyfits.getdata(unnormalized_flat)
|
||
|
else:
|
||
|
scihdr.update('MUDFLAT', 'User-specified data array')
|
||
|
|
||
|
ny0, nx0 = sci.shape
|
||
|
|
||
|
if badpixelmask is None:
|
||
|
badpixelmask = np.zeros((ny0, nx0), dtype=bool)
|
||
|
if not isinstance(badpixelmask, np.ndarray):
|
||
|
badpixelmask = pyfits.getdata(badpixelmask)
|
||
|
|
||
|
# Correct any bad pixels:
|
||
|
if badpixelmask.any():
|
||
|
bfixpix(sci, badpixelmask)
|
||
|
|
||
|
if linearize:
|
||
|
# If you edit this section, be sure to update the same
|
||
|
# section in ir.mosfire_speccal!
|
||
|
fmap = ir.makefmap_mosfire()
|
||
|
sci_lin, liniter = ir.linearity_correct(sci/pixcorrect, nread-1, ncoadd, 1.45, exptime, fmap, ir.linearity_mosfire, verbose=verbose, linfuncargs=dict(polycoef=polycoef), retall=True)
|
||
|
ir.hdradd(scihdr, 'COMMENT', 'Linearity-corrected by calibrate_stared_mosfire_spectra.')
|
||
|
ir.hdradd(scihdr, 'LIN_ITER', liniter)
|
||
|
if isinstance(polycoef, str):
|
||
|
ir.hdradd(scihdr, 'LINPOLY', os.path.split(polycoef)[1])
|
||
|
else:
|
||
|
if isinstance(polycoef, np.ndarray) and polycoef.ndim==3:
|
||
|
ir.hdradd(scihdr, 'LINPOLY', 'user-input array used for linearity correction.')
|
||
|
else:
|
||
|
ir.hdradd(scihdr, 'LINPOLY', str(polycoef))
|
||
|
|
||
|
else:
|
||
|
sci_lin = sci/pixcorrect
|
||
|
ir.hdradd(scihdr, 'COMMENT', 'NOT linearity-corrected.')
|
||
|
|
||
|
|
||
|
newframe = np.zeros((ny0, nx0), dtype=float)
|
||
|
|
||
|
|
||
|
# Loop through all subregions specified:
|
||
|
for jj in range(len(subreg_corners)):
|
||
|
# Define extraction & alignment indices:
|
||
|
specinds = np.array(subreg_corners[jj]).ravel().copy()
|
||
|
if len(specinds)==2:
|
||
|
specinds = np.concatenate(([0, nx0], specinds))
|
||
|
if locs is None:
|
||
|
loc = np.mean(specinds[2:4])
|
||
|
else:
|
||
|
loc = locs[jj]
|
||
|
|
||
|
# Prepare various necessities:
|
||
|
scisub = extractSubregion(sci, specinds, retall=False)
|
||
|
badsub = extractSubregion(badpixelmask, specinds, retall=False)
|
||
|
slitflat = extractSubregion(skycorrect, specinds, retall=False)
|
||
|
ny, nx = scisub.shape
|
||
|
yall = np.arange(ny)
|
||
|
|
||
|
|
||
|
# Define subregion boundaries from the flat-field frame.
|
||
|
# Ideally, this should go *outside* the loop (no need to
|
||
|
# re-calculate this for every file...)
|
||
|
if unnormalized_flat is not None:
|
||
|
samplemask, boundaries = ir.spectral_subregion_mask(unnormalized_flat)
|
||
|
samplemask *= (unnormalized_flat > 500)
|
||
|
samplemask_corners = findRectangles(samplemask, minsepy=42, minsepx=150)
|
||
|
nspec = samplemask_corners.shape[0]
|
||
|
for kk in range(nspec):
|
||
|
ir.hdradd(scihdr, 'SUBREG%i' % kk, str(samplemask_corners[kk]))
|
||
|
ir.hdradd(scihdr, 'NSUBREG', nspec)
|
||
|
|
||
|
|
||
|
|
||
|
# Align the subregion, so that sky lines run along detector columns:
|
||
|
aligned_scisub = scaleSpectralSky_cor(scisub/slitflat, badsub, pord=2, refpix=loc, nmed=1)
|
||
|
|
||
|
# Model the sky background, using linear trends plus a sinusoid:
|
||
|
if locs is None:
|
||
|
spatind = np.ones(ny, dtype=bool)
|
||
|
else:
|
||
|
spatind = (np.abs(np.arange(ny) - loc) > bkg_radii[0]) * (np.abs(np.arange(ny) - loc) < bkg_radii[1])
|
||
|
|
||
|
sscisub = defringe_sinusoid(aligned_scisub[1], badpixelmask=badsub, period_limits=[9,30], gain=gain, readnoise=readnoise, bictest=False, spatial_index=spatind, nmed=1)
|
||
|
|
||
|
# Compute the corrected subregion:
|
||
|
aligned_flattened_skycorrected_subregion = \
|
||
|
(aligned_scisub[1] - sscisub) * slitflat + aligned_scisub[3]
|
||
|
|
||
|
#try2 = (aligned_scisub[1] - sscisub) * slitflat + aligned_scisub
|
||
|
|
||
|
newframe[specinds[2]:specinds[3],specinds[0]:specinds[1]] = aligned_flattened_skycorrected_subregion
|
||
|
|
||
|
print "Done with subregion %i" % (jj+1)
|
||
|
|
||
|
scihdr.update('MOSCAL', 'Calibrated by calibrate_stared_mosfire_spectra')
|
||
|
|
||
|
pyfits.writeto(outfn, newframe.astype(float), scihdr, clobber=clobber)
|
||
|
|
||
|
return
|
||
|
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def reconstitute_gmos_roi(infile, outfile, **kw):
|
||
|
"""Convert GMOS frames taken with custom ROIs into standard FITS frames.
|
||
|
|
||
|
:INPUTS:
|
||
|
in : string or sequence of strings
|
||
|
Input filename or filenames.
|
||
|
|
||
|
out : string or sequence of strings
|
||
|
Output filename or filenames.
|
||
|
|
||
|
:OPTIONS:
|
||
|
clobber : bool
|
||
|
Passed to PyFITS; whether to overwrite existing files.
|
||
|
"""
|
||
|
# 2013-03-28 21:37 IJMC: Created at the summit of Mauna Kea
|
||
|
|
||
|
import ir
|
||
|
|
||
|
def trimlims(instr):
|
||
|
trimchars = '[]:,'
|
||
|
for trimchar in trimchars:
|
||
|
instr = instr.replace(trimchar, ' ')
|
||
|
return map(float, instr.strip().split())
|
||
|
|
||
|
|
||
|
# Handle recursive case:
|
||
|
if not isinstance(infile, str):
|
||
|
for thisin, thisout in zip(infile, outfile):
|
||
|
reconstitute_gmos_roi(thisin, thisout, **kw)
|
||
|
return
|
||
|
|
||
|
|
||
|
# Handle non-recursive (single-file) case:
|
||
|
file = pyfits.open(infile)
|
||
|
hdr = file[0].header
|
||
|
nroi = hdr['detnroi']
|
||
|
biny, binx = map(int, file[1].header['ccdsum'].split())
|
||
|
|
||
|
detsize = trimlims(hdr['detsize'])
|
||
|
binning = 2
|
||
|
frame = np.zeros(((detsize[3]-detsize[2]+1)/binx, (detsize[1]-detsize[0]+1)/biny), dtype=int)
|
||
|
print frame.shape
|
||
|
|
||
|
# Read in the coordinates for each ROI:
|
||
|
roi_xys = np.zeros((nroi, 4), dtype=int)
|
||
|
for ii in range(1, nroi+1):
|
||
|
roi_xys[ii-1, 0] = (hdr['detro%ix' % ii] - 1)
|
||
|
roi_xys[ii-1, 1] = (hdr['detro%ix' % ii] + hdr['detro%ixs' % ii] - 1)
|
||
|
roi_xys[ii-1, 2] = (hdr['detro%iy' % ii] - 1) /binx
|
||
|
roi_xys[ii-1, 3] = (hdr['detro%iy' % ii] - 1)/binx + hdr['detro%iys' % ii] - 1
|
||
|
|
||
|
# Read in the C
|
||
|
nhdus = len(file) - 1
|
||
|
detsecs = np.zeros((nhdus, 4), dtype=int)
|
||
|
datasecs = np.zeros((nhdus, 4), dtype=int)
|
||
|
biassecs = np.zeros((nhdus, 4), dtype=int)
|
||
|
for ii in range(nhdus):
|
||
|
detsecs[ii] = trimlims(file[ii+1].header['detsec'])
|
||
|
datasecs[ii] = trimlims(file[ii+1].header['datasec'])
|
||
|
biassecs[ii] = trimlims(file[ii+1].header['biassec'])
|
||
|
di2 = (detsecs[ii,0]-1)/biny, detsecs[ii,1]/biny, (detsecs[ii,2]-1)/binx, detsecs[ii,3]/binx
|
||
|
thisdat = file[ii+1].data
|
||
|
#pdb.set_trace()
|
||
|
if biassecs[ii,0]==1025:
|
||
|
frame[di2[2]:di2[3], di2[0]:di2[1]] = thisdat[:, :-32]
|
||
|
elif biassecs[ii,0]==1:
|
||
|
frame[di2[2]:di2[3], di2[0]:di2[1]] = thisdat[:, 32:]
|
||
|
else:
|
||
|
print 'bombed. bummer! I should have written a better function'
|
||
|
|
||
|
file.close()
|
||
|
|
||
|
hdr = pyfits.getheader(infile)
|
||
|
for ii in range(nroi):
|
||
|
ir.hdradd(hdr, 'SUBREG%i' % ii, '[%i %i %i %i]' % tuple(roi_xys[ii]))
|
||
|
|
||
|
pyfits.writeto(outfile, frame, hdr, **kw)
|
||
|
|
||
|
return #detsecs, datasecs, biassecs
|
||
|
|
||
|
[docs]
|
||
|
def rotationalProfile(delta_epsilon, delta_lam):
|
||
|
"""Compute the rotational profile of a star, assuming solid-body
|
||
|
rotation and linear limb darkening.
|
||
|
|
||
|
This uses Eq. 18.14 of Gray's Photospheres, 2005, 3rd Edition.
|
||
|
|
||
|
:INPUTS:
|
||
|
|
||
|
delta_epsilon : 2-sequence
|
||
|
|
||
|
[0] : delta_Lambda_L = lambda * V * sin(i)/c; the rotational
|
||
|
displacement at the stellar limb.
|
||
|
|
||
|
[1] : epsilon, the linear limb darkening coefficient, used in
|
||
|
the relation I(theta) = I0 + epsilon * (cos(theta) - 1).
|
||
|
|
||
|
[2] : OPTIONAL! The central location of the profile (otherwise
|
||
|
assumed to be located at delta_lam=0).
|
||
|
|
||
|
delta_lam : scalar or sequence
|
||
|
Wavelength minus offset: Lambda minus lambda_0. Grid upon
|
||
|
which computations will be done.
|
||
|
|
||
|
:EXAMPLE:
|
||
|
::
|
||
|
|
||
|
import pylab as py
|
||
|
import spec
|
||
|
|
||
|
dlam = py.np.linspace(-2, 2, 200) # Create wavelength grid
|
||
|
profile = spec.rotationalProfile([1, 0.6], dlam)
|
||
|
|
||
|
py.figure()
|
||
|
py.plot(dlam, profile)
|
||
|
"""
|
||
|
# 2013-05-26 10:37 IJMC: Created.
|
||
|
|
||
|
delta_lambda_L, epsilon = delta_epsilon[0:2]
|
||
|
if len(delta_epsilon)>2: # optional lambda_offset
|
||
|
lamdel2 = 1. - ((delta_lam - delta_epsilon[2])/delta_lambda_L)**2
|
||
|
else:
|
||
|
lamdel2 = 1. - (delta_lam/delta_lambda_L)**2
|
||
|
|
||
|
if not hasattr(delta_lam, '__iter__'):
|
||
|
delta_lam = np.array([delta_lam])
|
||
|
|
||
|
ret = (4*(1.-epsilon) * np.sqrt(lamdel2) + np.pi*epsilon*lamdel2) / \
|
||
|
(2*np.pi * delta_lambda_L * (1. - epsilon/3.))
|
||
|
|
||
|
ret[lamdel2<0] = 0.
|
||
|
|
||
|
return ret
|
||
|
|
||
|
|
||
|
[docs]
|
||
|
def modelline(param, prof2, dv):
|
||
|
"""Generate a rotational profile, convolve it with a second input
|
||
|
profile, normalize it (simply), and return.
|
||
|
|
||
|
:INPUTS:
|
||
|
param : 1D sequence
|
||
|
param[0:3] -- see :func:`rotationalProfile`
|
||
|
param[4] -- multiplicative scaling factor
|
||
|
|
||
|
dv : velocity grid
|
||
|
|
||
|
prof2 : second input profile
|
||
|
"""
|
||
|
# 2013-08-07 09:55 IJMC: Created
|
||
|
nk = dv.size
|
||
|
rot_model = rotationalProfile(param[0:3], dv)
|
||
|
conv_rot_model = np.convolve(rot_model, prof2, 'same')
|
||
|
norm_conv_rot_model = conv_rot_model - (conv_rot_model[0] + (conv_rot_model[-1] - conv_rot_model[0])/(nk - 1.) * np.arange(nk))
|
||
|
return norm_conv_rot_model * param[3]
|