psdlag-agn/zoghbi_jupyter.html

1861 lines
291 KiB
HTML
Raw Permalink Normal View History

2017-01-25 06:20:48 +00:00
<!DOCTYPE html>
<html>
<head><meta charset="utf-8" />
<title>example</title>
<script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js"></script>
<style type="text/css">
/*!
*
* Twitter Bootstrap
*
*//*! normalize.css v3.0.2 | MIT License | git.io/normalize */html{font-family:sans-serif;-ms-text-size-adjust:100%;-webkit-text-size-adjust:100%;font-size:10px;-webkit-tap-highlight-color:transparent}article,aside,details,figcaption,figure,footer,header,hgroup,main,menu,nav,section,summary{display:block}audio,canvas,progress,video{display:inline-block;vertical-align:baseline}audio:not([controls]){display:none;height:0}[hidden],template{display:none}a{background-color:transparent}a:active,a:hover{outline:0}abbr[title]{border-bottom:1px dotted}b,optgroup,strong{font-weight:700}dfn{font-style:italic}h1{font-size:2em;margin:.67em 0}mark{background:#ff0;color:#000}small{font-size:80%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sup{top:-.5em}sub{bottom:-.25em}img{border:0;vertical-align:middle}svg:not(:root){overflow:hidden}hr{-moz-box-sizing:content-box;box-sizing:content-box;height:0}pre,textarea{overflow:auto}code,kbd,pre,samp{font-size:1em}button,input,optgroup,select,textarea{color:inherit;font:inherit;margin:0}button{overflow:visible}button,select{text-transform:none}button,html input[type=button],input[type=reset],input[type=submit]{-webkit-appearance:button;cursor:pointer}button[disabled],html input[disabled]{cursor:default}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}input{line-height:normal}input[type=checkbox],input[type=radio]{box-sizing:border-box;padding:0}input[type=number]::-webkit-inner-spin-button,input[type=number]::-webkit-outer-spin-button{height:auto}input[type=search]::-webkit-search-cancel-button,input[type=search]::-webkit-search-decoration{-webkit-appearance:none}table{border-collapse:collapse;border-spacing:0}td,th{padding:0}/*! Source: https://github.com/h5bp/html5-boilerplate/blob/master/src/css/main.css */@media print{*,:after,:before{background:0 0!important;color:#000!important;box-shadow:none!important;text-shadow:none!important}a,a:visited{text-decoration:underline}a[href]:after{content:" (" attr(href)")"}abbr[title]:after{content:" (" attr(title)")"}a[href^="javascript:"]:after,a[href^="#"]:after{content:""}blockquote,pre{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}img{max-width:100%!important}h2,h3,p{orphans:3;widows:3}h2,h3{page-break-after:avoid}select{background:#fff!important}.navbar{display:none}.btn>.caret,.dropup>.btn>.caret{border-top-color:#000!important}.label{border:1px solid #000}.table{border-collapse:collapse!important}.table td,.table th{background-color:#fff!important}.table-bordered td,.table-bordered th{border:1px solid #ddd!important}}@font-face{font-family:'Glyphicons Halflings';src:url(../components/bootstrap/fonts/glyphicons-halflings-regular.eot);src:url(../components/bootstrap/fonts/glyphicons-halflings-regular.eot?#iefix)format('embedded-opentype'),url(../components/bootstrap/fonts/glyphicons-halflings-regular.woff2)format('woff2'),url(../components/bootstrap/fonts/glyphicons-halflings-regular.woff)format('woff'),url(../components/bootstrap/fonts/glyphicons-halflings-regular.ttf)format('truetype'),url(../components/bootstrap/fonts/glyphicons-halflings-regular.svg#glyphicons_halflingsregular)format('svg')}.glyphicon{position:relative;top:1px;display:inline-block;font-family:'Glyphicons Halflings';font-style:normal;font-weight:400;line-height:1;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.glyphicon-asterisk:before{content:"\2a"}.glyphicon-plus:before{content:"\2b"}.glyphicon-eur:before,.glyphicon-euro:before{content:"\20ac"}.glyphicon-minus:before{content:"\2212"}.glyphicon-cloud:before{content:"\2601"}.glyphicon-envelope:before{content:"\2709"}.glyphicon-pencil:before{content:"\270f"}.glyphicon-glass:before{content:"\e001"}.glyphicon-music:before{content:"\e002"}.glyphicon-search:before{content:"\e003"}.glyphicon-heart:before{content:"\e005"}.glyphicon-star:before{content:"\e006"}.glyphicon-star-empty:before{content:"\e007"}.glyphicon-user:before{content:"\e008"}.glyphicon-film:before{content:"\e009"}.glyphicon-th-large:
*
* Font Awesome
*
*//*!
* Font Awesome 4.2.0 by @davegandy - http://fontawesome.io - @fontawesome
* License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License)
*/@font-face{font-family:'FontAwesome';src:url(../components/font-awesome/fonts/fontawesome-webfont.eot?v=4.2.0);src:url(../components/font-awesome/fonts/fontawesome-webfont.eot?#iefix&v=4.2.0)format('embedded-opentype'),url(../components/font-awesome/fonts/fontawesome-webfont.woff?v=4.2.0)format('woff'),url(../components/font-awesome/fonts/fontawesome-webfont.ttf?v=4.2.0)format('truetype'),url(../components/font-awesome/fonts/fontawesome-webfont.svg?v=4.2.0#fontawesomeregular)format('svg');font-weight:400;font-style:normal}.fa{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.33333333em;line-height:.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.28571429em;text-align:center}.fa-ul{padding-left:0;margin-left:2.14285714em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.14285714em;width:2.14285714em;top:.14285714em;text-align:center}.fa-li.fa-lg{left:-1.85714286em}.fa-border{padding:.2em .25em .15em;border:.08em solid #eee;border-radius:.1em}.fa.pull-left{margin-right:.3em}.fa.pull-right{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s infinite linear;animation:fa-spin 2s infinite linear}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0);transform:rotate(0)}100%{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0);transform:rotate(0)}100%{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{filter:progid:DXImageTransform.Microsoft.BasicImage(rotation=1);-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{filter:progid:DXImageTransform.Microsoft.BasicImage(rotation=2);-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{filter:progid:DXImageTransform.Microsoft.BasicImage(rotation=3);-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{filter:progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1);-webkit-transform:scale(-1,1);-ms-transform:scale(-1,1);transform:scale(-1,1)}.fa-flip-vertical{filter:progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1);-webkit-transform:scale(1,-1);-ms-transform:scale(1,-1);transform:scale(1,-1)}:root .fa-flip-horizontal,:root .fa-flip-vertical,:root .fa-rotate-180,:root .fa-rotate-270,:root .fa-rotate-90{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:"\f000"}.fa-music:before{content:"\f001"}.fa-search:before{content:"\f002"}.fa-envelope-o:before{content:"\f003"}.fa-heart:before{content:"\f004"}.fa-star:before{content:"\f005"}.fa-star-o:before{content:"\f006"}.fa-user:before{content:"\f007"}.fa-film:before{content:"\f008"}.fa-th-large:before{content:"\f009"}.fa-th:before{content:"\f00a"}.fa-th-list:before{content:"\f00b"}.fa-check:before{content:"\f00c"}.fa-close:before,.fa-remove:before,.fa-times:before{content:"\f00d"}.fa-search-plus:before{content:"\f00e"}.fa-search-minus:before{content:"\f010"}.fa-power-off:before{content:"\f011"}.fa-signal:before{content:"\f012"}.fa-cog:before,.fa-gear:before{content:"\f013"}.fa-trash-o:before{content:"\f014"}.fa-home:before{content:"\f015"}.fa-file-o:before{content:"\f016"}.fa-clock-o:before{content:"\f017"}.fa-road:before{content:"\f018"}.fa-download:before{content:"\f019"}.fa-arrow-circle-o-down:before{content:"\f01a"}.fa-arrow-circle-o-up:before{content:"\f01b"}.fa-inbox:before{content:"\f01c"}.fa-play-circle-o:before{content:"\f01d"}.fa-repeat:before,.fa-rotate-right:before{content:"\f01e"}.fa-refresh:before{content:"\f021"}.fa-list-alt:before{content:"\f022"}.fa-lock:before{content:"\
*
* IPython base
*
*/.modal.fade .modal-dialog{-webkit-transform:translate(0,0);-ms-transform:translate(0,0);-o-transform:translate(0,0);transform:translate(0,0)}code{color:#000}pre{font-size:inherit;line-height:inherit}label{font-weight:400}.border-box-sizing{box-sizing:border-box;-moz-box-sizing:border-box;-webkit-box-sizing:border-box}.corner-all{border-radius:2px}.no-padding{padding:0}.hbox{display:-webkit-box;-webkit-box-orient:horizontal;display:-moz-box;-moz-box-orient:horizontal;display:box;box-orient:horizontal;box-align:stretch;display:flex;flex-direction:row;align-items:stretch}.hbox>*{-webkit-box-flex:0;-moz-box-flex:0;box-flex:0;flex:none}.vbox{display:-webkit-box;-webkit-box-orient:vertical;display:-moz-box;-moz-box-orient:vertical;display:box;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch}.vbox>*{-webkit-box-flex:0;-moz-box-flex:0;box-flex:0;flex:none}.hbox.reverse,.reverse,.vbox.reverse{-webkit-box-direction:reverse;-moz-box-direction:reverse;box-direction:reverse;flex-direction:row-reverse}.box-flex0,.hbox.box-flex0,.vbox.box-flex0{-webkit-box-flex:0;-moz-box-flex:0;box-flex:0;flex:none;width:auto}.box-flex1,.hbox.box-flex1,.vbox.box-flex1{-webkit-box-flex:1;-moz-box-flex:1;box-flex:1;flex:1}.box-flex,.hbox.box-flex,.vbox.box-flex{-webkit-box-flex:1;-moz-box-flex:1;box-flex:1;flex:1}.box-flex2,.hbox.box-flex2,.vbox.box-flex2{-webkit-box-flex:2;-moz-box-flex:2;box-flex:2;flex:2}.box-group1{-webkit-box-flex-group:1;-moz-box-flex-group:1;box-flex-group:1}.box-group2{-webkit-box-flex-group:2;-moz-box-flex-group:2;box-flex-group:2}.hbox.start,.start,.vbox.start{-webkit-box-pack:start;-moz-box-pack:start;box-pack:start;justify-content:flex-start}.end,.hbox.end,.vbox.end{-webkit-box-pack:end;-moz-box-pack:end;box-pack:end;justify-content:flex-end}.center,.hbox.center,.vbox.center{-webkit-box-pack:center;-moz-box-pack:center;box-pack:center;justify-content:center}.baseline,.hbox.baseline,.vbox.baseline{-webkit-box-pack:baseline;-moz-box-pack:baseline;box-pack:baseline;justify-content:baseline}.hbox.stretch,.stretch,.vbox.stretch{-webkit-box-pack:stretch;-moz-box-pack:stretch;box-pack:stretch;justify-content:stretch}.align-start,.hbox.align-start,.vbox.align-start{-webkit-box-align:start;-moz-box-align:start;box-align:start;align-items:flex-start}.align-end,.hbox.align-end,.vbox.align-end{-webkit-box-align:end;-moz-box-align:end;box-align:end;align-items:flex-end}.align-center,.hbox.align-center,.vbox.align-center{-webkit-box-align:center;-moz-box-align:center;box-align:center;align-items:center}.align-baseline,.hbox.align-baseline,.vbox.align-baseline{-webkit-box-align:baseline;-moz-box-align:baseline;box-align:baseline;align-items:baseline}.align-stretch,.hbox.align-stretch,.vbox.align-stretch{-webkit-box-align:stretch;-moz-box-align:stretch;box-align:stretch;align-items:stretch}div.error{margin:2em;text-align:center}div.error>h1{font-size:500%;line-height:normal}div.error>p{font-size:200%;line-height:normal}div.traceback-wrapper{text-align:left;max-width:800px;margin:auto}body{position:absolute;left:0;right:0;top:0;bottom:0;overflow:visible}#header{display:none;background-color:#fff;position:relative;z-index:100}#header #header-container{padding-bottom:5px;padding-top:5px;box-sizing:border-box;-moz-box-sizing:border-box;-webkit-box-sizing:border-box}#header .header-bar{width:100%;height:1px;background:#e7e7e7;margin-bottom:-1px}#header-spacer{width:100%;visibility:hidden}@media print{#header{display:none!important}#header-spacer{display:none}}#ipython_notebook{padding-left:0;padding-top:1px;padding-bottom:1px}@media (max-width:991px){#ipython_notebook{margin-left:10px}}#noscript{width:auto;padding-top:16px;padding-bottom:16px;text-align:center;font-size:22px;color:red;font-weight:700}#ipython_notebook img{height:28px}#site{width:100%;display:none;box-sizing:border-box;-moz-box-sizing:border-box;-webkit-box-sizing:border-box;overflow:auto}@media print{#site{height:auto!important}}.ui-button .ui-button-text{padding:.2em .8em;font-size:77%}input.ui-button{padding:.3em .9em}span#login_w
*
* IPython auth
*
*/.center-nav{display:inline-block;margin-bottom:-4px}/*!
*
* IPython tree view
*
*/.alternate_upload{background-color:none;display:inline}.alternate_upload.form{padding:0;margin:0}.alternate_upload input.fileinput{text-align:center;vertical-align:middle;display:inline;opacity:0;z-index:2;width:12ex;margin-right:-12ex}.alternate_upload .btn-upload{height:22px}ul#tabs{margin-bottom:4px}ul#tabs a{padding-top:6px;padding-bottom:4px}ul.breadcrumb a:focus,ul.breadcrumb a:hover{text-decoration:none}ul.breadcrumb i.icon-home{font-size:16px;margin-right:4px}ul.breadcrumb span{color:#5e5e5e}.list_toolbar{padding:4px 0;vertical-align:middle}.list_toolbar .tree-buttons{padding-top:1px}.dynamic-buttons{padding-top:3px;display:inline-block}.list_toolbar [class*=span]{min-height:24px}.list_header{font-weight:700;background-color:#eee}.list_placeholder{font-weight:700;padding:4px 7px}.list_container{margin-top:4px;margin-bottom:20px;border:1px solid #ddd;border-radius:2px}.list_container>div{border-bottom:1px solid #ddd}.list_container>div:hover .list-item{background-color:red}.list_container>div:last-child{border:none}.list_item:hover .list_item{background-color:#ddd}.list_item a{text-decoration:none}.list_item:hover{background-color:#fafafa}.action_col{text-align:right}.list_header>div,.list_item>div{line-height:22px;padding:4px 7px}.list_header>div input,.list_item>div input{margin-right:7px;margin-left:14px;vertical-align:baseline;line-height:22px;position:relative;top:-1px}.list_header>div .item_link,.list_item>div .item_link{margin-left:-1px;vertical-align:baseline;line-height:22px}.new-file input[type=checkbox]{visibility:hidden}.item_name{line-height:22px;height:24px}.item_icon{font-size:14px;color:#5e5e5e;margin-right:7px;margin-left:7px;line-height:22px;vertical-align:baseline}.item_buttons{line-height:1em;margin-left:-5px}.item_buttons .btn-group,.item_buttons .input-group{float:left}.item_buttons>.btn,.item_buttons>.btn-group,.item_buttons>.input-group{margin-left:5px}.item_buttons .btn{min-width:13ex}.item_buttons .running-indicator{padding-top:4px;color:#5cb85c}.toolbar_info{height:24px;line-height:24px}input.engine_num_input,input.nbname_input{padding-top:3px;padding-bottom:3px;height:22px;line-height:14px;margin:0}input.engine_num_input{width:60px}.highlight_text{color:#00f}#project_name{display:inline-block;padding-left:7px;margin-left:-2px}#project_name>.breadcrumb{padding:0;margin-bottom:0;background-color:transparent;font-weight:700}#tree-selector{padding-right:0}#button-select-all{min-width:50px}#select-all{margin-left:7px;margin-right:2px}.menu_icon{margin-right:2px}.tab-content .row{margin-left:0;margin-right:0}.folder_icon:before{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale;content:"\f114"}.folder_icon:before.pull-left{margin-right:.3em}.folder_icon:before.pull-right{margin-left:.3em}.notebook_icon:before{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale;content:"\f02d";position:relative;top:-1px}.notebook_icon:before.pull-left{margin-right:.3em}.notebook_icon:before.pull-right{margin-left:.3em}.running_notebook_icon:before{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale;content:"\f02d";position:relative;top:-1px;color:#5cb85c}.running_notebook_icon:before.pull-left{margin-right:.3em}.running_notebook_icon:before.pull-right{margin-left:.3em}.file_icon:before{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale;content:"\f016";position:relative;top:-2px}.file_icon:before.pull-left{margin-right:.3em}.file_icon:before.pull-right{margin-left:.3em}#notebook_toolbar .pull-right{padding-top:0;margin-right:-1px}ul#new-menu{left:auto;right:0}.kernel-menu-icon{padding-right:12px;width:24px;content:"\f096"}.kernel-m
*
* IPython text editor webapp
*
*/.selected-keymap i.fa{padding:0 5px}.selected-keymap i.fa:before{content:"\f00c"}#mode-menu{overflow:auto;max-height:20em}.edit_app #header{-webkit-box-shadow:0 0 12px 1px rgba(87,87,87,.2);box-shadow:0 0 12px 1px rgba(87,87,87,.2)}.edit_app #menubar .navbar{margin-bottom:-1px}.dirty-indicator{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale;width:20px}.dirty-indicator.pull-left{margin-right:.3em}.dirty-indicator.pull-right{margin-left:.3em}.dirty-indicator-dirty{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale;width:20px}.dirty-indicator-dirty.pull-left{margin-right:.3em}.dirty-indicator-dirty.pull-right{margin-left:.3em}.dirty-indicator-clean{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale;width:20px}.dirty-indicator-clean.pull-left{margin-right:.3em}.dirty-indicator-clean.pull-right{margin-left:.3em}.dirty-indicator-clean:before{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale;content:"\f00c"}.dirty-indicator-clean:before.pull-left{margin-right:.3em}.dirty-indicator-clean:before.pull-right{margin-left:.3em}#filename{font-size:16pt;display:table;padding:0 5px}#current-mode{padding-left:5px;padding-right:5px}#texteditor-backdrop{padding-top:20px;padding-bottom:20px}@media not print{#texteditor-backdrop{background-color:#eee}}@media print{#texteditor-backdrop #texteditor-container .CodeMirror-gutter,#texteditor-backdrop #texteditor-container .CodeMirror-gutters{background-color:#fff}}@media not print{#texteditor-backdrop #texteditor-container .CodeMirror-gutter,#texteditor-backdrop #texteditor-container .CodeMirror-gutters{background-color:#fff}#texteditor-backdrop #texteditor-container{padding:0;background-color:#fff;-webkit-box-shadow:0 0 12px 1px rgba(87,87,87,.2);box-shadow:0 0 12px 1px rgba(87,87,87,.2)}}/*!
*
* IPython notebook
*
*/.ansibold{font-weight:700}.ansiblack{color:#000}.ansired{color:#8b0000}.ansigreen{color:#006400}.ansiyellow{color:#c4a000}.ansiblue{color:#00008b}.ansipurple{color:#9400d3}.ansicyan{color:#4682b4}.ansigray{color:gray}.ansibgblack{background-color:#000}.ansibgred{background-color:red}.ansibggreen{background-color:green}.ansibgyellow{background-color:#ff0}.ansibgblue{background-color:#00f}.ansibgpurple{background-color:#ff00ff}.ansibgcyan{background-color:#0ff}.ansibggray{background-color:gray}div.cell{border:1px solid transparent;display:-webkit-box;-webkit-box-orient:vertical;display:-moz-box;-moz-box-orient:vertical;display:box;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch;border-radius:2px;box-sizing:border-box;-moz-box-sizing:border-box;border-width:thin;border-style:solid;width:100%;padding:5px;margin:0;outline:0}div.cell.selected{border-color:#ababab}@media print{div.cell.selected{border-color:transparent}}.edit_mode div.cell.selected{border-color:green}.prompt{min-width:14ex;padding:.4em;margin:0;font-family:monospace;text-align:right;line-height:1.21429em}div.inner_cell{display:-webkit-box;-webkit-box-orient:vertical;display:-moz-box;-moz-box-orient:vertical;display:box;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch;-webkit-box-flex:1;-moz-box-flex:1;box-flex:1;flex:1}@-moz-document url-prefix(){div.inner_cell{overflow-x:hidden}}div.input_area{border:1px solid #cfcfcf;border-radius:2px;background:#f7f7f7;line-height:1.21429em}div.prompt:empty{padding-top:0;padding-bottom:0}div.unrecognized_cell{padding:5px 5px 5px 0;display:-webkit-box;-webkit-box-orient:horizontal;display:-moz-box;-moz-box-orient:horizontal;display:box;box-orient:horizontal;box-align:stretch;display:flex;flex-direction:row;align-items:stretch}div.unrecognized_cell .inner_cell{border-radius:2px;padding:5px;font-weight:700;color:red;border:1px solid #cfcfcf;background:#eaeaea}div.unrecognized_cell .inner_cell a,div.unrecognized_cell .inner_cell a:hover{color:inherit;text-decoration:none}@media (max-width:540px){.prompt{text-align:left}div.unrecognized_cell>div.prompt{display:none}}div.code_cell{}div.input{page-break-inside:avoid;display:-webkit-box;-webkit-box-orient:horizontal;display:-moz-box;-moz-box-orient:horizontal;display:box;box-orient:horizontal;box-align:stretch;display:flex;flex-direction:row;align-items:stretch}@media (max-width:540px){div.input{-webkit-box-orient:vertical;-moz-box-orient:vertical;box-orient:vertical;box-align:stretch;display:flex;flex-direction:column;align-items:stretch}}div.input_prompt{color:navy;border-top:1px solid transparent}div.input_area>div.highlight{margin:.4em;border:none;padding:0;background-color:transparent}div.input_area>div.highlight>pre{margin:0;border:none;padding:0;background-color:transparent}.CodeMirror{line-height:1.21429em;font-size:14px;height:auto;background:0 0}.CodeMirror-scroll{overflow-y:hidden;overflow-x:auto}.CodeMirror-lines{padding:.4em}.CodeMirror-linenumber{padding:0 8px 0 4px}.CodeMirror-gutters{border-bottom-left-radius:2px;border-top-left-radius:2px}.CodeMirror pre{padding:0;border:0;border-radius:0}.highlight-base,.highlight-variable{color:#000}.highlight-variable-2{color:#1a1a1a}.highlight-variable-3{color:#333}.highlight-string{color:#BA2121}.highlight-comment{color:#408080;font-style:italic}.highlight-number{color:#080}.highlight-atom{color:#88F}.highlight-keyword{color:green;font-weight:700}.highlight-builtin{color:green}.highlight-error{color:red}.highlight-operator{color:#A2F;font-weight:700}.highlight-meta{color:#A2F}.highlight-def{color:#00f}.highlight-string-2{color:#f50}.highlight-qualifier{color:#555}.highlight-bracket{color:#997}.highlight-tag{color:#170}.highlight-attribute{color:#00c}.highlight-header{color:#00f}.highlight-quote{color:#090}.highlight-link{color:#00c}.cm-s-ipython span.cm-keyword{color:green;font-weight:700}.cm-s-ipython span.cm-atom{color:#88F}.cm-s-ipython span.cm-number{color:#080}.cm-s-ipython span.cm-def{color:#00f}.cm-s-ipython span.cm-variable{color
*
* IPython notebook webapp
*
*/@media (max-width:767px){.notebook_app{padding-left:0;padding-right:0}}#ipython-main-app{box-sizing:border-box;-moz-box-sizing:border-box;-webkit-box-sizing:border-box;height:100%}div#notebook_panel{margin:0;padding:0;box-sizing:border-box;-moz-box-sizing:border-box;-webkit-box-sizing:border-box;height:100%}#notebook{font-size:14px;line-height:20px;overflow-y:hidden;overflow-x:auto;width:100%;padding-top:20px;margin:0;outline:0;box-sizing:border-box;-moz-box-sizing:border-box;-webkit-box-sizing:border-box;min-height:100%}@media not print{#notebook-container{padding:15px;background-color:#fff;min-height:0;-webkit-box-shadow:0 0 12px 1px rgba(87,87,87,.2);box-shadow:0 0 12px 1px rgba(87,87,87,.2)}}div.ui-widget-content{border:1px solid #ababab;outline:0}pre.dialog{background-color:#f7f7f7;border:1px solid #ddd;border-radius:2px;padding:.4em .4em .4em 2em}p.dialog{padding:.2em}code,kbd,pre,samp{white-space:pre-wrap}#fonttest{font-family:monospace}p{margin-bottom:0}.end_space{min-height:100px;transition:height .2s ease}.notebook_app #header{-webkit-box-shadow:0 0 12px 1px rgba(87,87,87,.2);box-shadow:0 0 12px 1px rgba(87,87,87,.2)}@media not print{.notebook_app{background-color:#eee}}.celltoolbar{border:thin solid #CFCFCF;border-bottom:none;background:#EEE;border-radius:2px 2px 0 0;width:100%;height:29px;padding-right:4px;-webkit-box-orient:horizontal;-moz-box-orient:horizontal;box-orient:horizontal;box-align:stretch;display:flex;flex-direction:row;align-items:stretch;-webkit-box-pack:end;-moz-box-pack:end;box-pack:end;justify-content:flex-end;font-size:87%;padding-top:3px}@media print{.edit_mode div.cell.selected{border-color:transparent}div.code_cell{page-break-inside:avoid}#notebook-container{width:100%}.celltoolbar{display:none}}.ctb_hideshow{display:none;vertical-align:bottom}.ctb_global_show .ctb_show.ctb_hideshow{display:block}.ctb_global_show .ctb_show+.input_area,.ctb_global_show .ctb_show+div.text_cell_input,.ctb_global_show .ctb_show~div.text_cell_render{border-top-right-radius:0;border-top-left-radius:0}.ctb_global_show .ctb_show~div.text_cell_render{border:1px solid #cfcfcf}.celltoolbar select{color:#555;background-color:#fff;background-image:none;border:1px solid #ccc;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075);box-shadow:inset 0 1px 1px rgba(0,0,0,.075);-webkit-transition:border-color ease-in-out .15s,box-shadow ease-in-out .15s;-o-transition:border-color ease-in-out .15s,box-shadow ease-in-out .15s;transition:border-color ease-in-out .15s,box-shadow ease-in-out .15s;line-height:1.5;border-radius:1px;width:inherit;font-size:inherit;height:22px;padding:0;display:inline-block}.celltoolbar select:focus{border-color:#66afe9;outline:0;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 8px rgba(102,175,233,.6);box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 8px rgba(102,175,233,.6)}.celltoolbar select::-moz-placeholder{color:#999;opacity:1}.celltoolbar select:-ms-input-placeholder{color:#999}.celltoolbar select::-webkit-input-placeholder{color:#999}.celltoolbar select[disabled],.celltoolbar select[readonly],fieldset[disabled] .celltoolbar select{background-color:#eee;opacity:1}.celltoolbar select[disabled],fieldset[disabled] .celltoolbar select{cursor:not-allowed}textarea.celltoolbar select{height:auto}select.celltoolbar select{height:30px;line-height:30px}select[multiple].celltoolbar select,textarea.celltoolbar select{height:auto}.celltoolbar label{margin-left:5px;margin-right:5px}.completions{position:absolute;z-index:10;overflow:hidden;border:1px solid #ababab;border-radius:2px;-webkit-box-shadow:0 6px 10px -1px #adadad;box-shadow:0 6px 10px -1px #adadad;line-height:1}.completions select{background:#fff;outline:0;border:none;padding:0;margin:0;overflow:auto;font-family:monospace;font-size:110%;color:#000;width:auto}.completions select option.context{color:#286090}#kernel_logo_widget{float:right!important;float:right}#kernel_logo_widget .current_kernel_logo{display:none;margin-top:-1px;margin-bottom:-1px;width:32px;height:32px}#menubar{box-sizing:border-box;-moz-box-sizing:border-box;-webkit-box-si
/*# sourceMappingURL=style.min.css.map */
</style>
<style type="text/css">
.highlight .hll { background-color: #ffffcc }
.highlight { background: #f8f8f8; }
.highlight .c { color: #408080; font-style: italic } /* Comment */
.highlight .err { border: 1px solid #FF0000 } /* Error */
.highlight .k { color: #008000; font-weight: bold } /* Keyword */
.highlight .o { color: #666666 } /* Operator */
.highlight .ch { color: #408080; font-style: italic } /* Comment.Hashbang */
.highlight .cm { color: #408080; font-style: italic } /* Comment.Multiline */
.highlight .cp { color: #BC7A00 } /* Comment.Preproc */
.highlight .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */
.highlight .c1 { color: #408080; font-style: italic } /* Comment.Single */
.highlight .cs { color: #408080; font-style: italic } /* Comment.Special */
.highlight .gd { color: #A00000 } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #FF0000 } /* Generic.Error */
.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
.highlight .gi { color: #00A000 } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
.highlight .gt { color: #0044DD } /* Generic.Traceback */
.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008000 } /* Keyword.Pseudo */
.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #B00040 } /* Keyword.Type */
.highlight .m { color: #666666 } /* Literal.Number */
.highlight .s { color: #BA2121 } /* Literal.String */
.highlight .na { color: #7D9029 } /* Name.Attribute */
.highlight .nb { color: #008000 } /* Name.Builtin */
.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */
.highlight .no { color: #880000 } /* Name.Constant */
.highlight .nd { color: #AA22FF } /* Name.Decorator */
.highlight .ni { color: #999999; font-weight: bold } /* Name.Entity */
.highlight .ne { color: #D2413A; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0000FF } /* Name.Function */
.highlight .nl { color: #A0A000 } /* Name.Label */
.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */
.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #19177C } /* Name.Variable */
.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #666666 } /* Literal.Number.Bin */
.highlight .mf { color: #666666 } /* Literal.Number.Float */
.highlight .mh { color: #666666 } /* Literal.Number.Hex */
.highlight .mi { color: #666666 } /* Literal.Number.Integer */
.highlight .mo { color: #666666 } /* Literal.Number.Oct */
.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */
.highlight .sc { color: #BA2121 } /* Literal.String.Char */
.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */
.highlight .s2 { color: #BA2121 } /* Literal.String.Double */
.highlight .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */
.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */
.highlight .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */
.highlight .sx { color: #008000 } /* Literal.String.Other */
.highlight .sr { color: #BB6688 } /* Literal.String.Regex */
.highlight .s1 { color: #BA2121 } /* Literal.String.Single */
.highlight .ss { color: #19177C } /* Literal.String.Symbol */
.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */
.highlight .vc { color: #19177C } /* Name.Variable.Class */
.highlight .vg { color: #19177C } /* Name.Variable.Global */
.highlight .vi { color: #19177C } /* Name.Variable.Instance */
.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */
</style>
<style type="text/css">
/* Overrides of notebook CSS for static HTML export */
body {
overflow: visible;
padding: 8px;
}
div#notebook {
overflow: visible;
border-top: none;
}
@media print {
div.cell {
display: block;
page-break-inside: avoid;
}
div.output_wrapper {
display: block;
page-break-inside: avoid;
}
div.output {
display: block;
page-break-inside: avoid;
}
}
</style>
<!-- Custom stylesheet, it must be in the same directory as the html file -->
<link rel="stylesheet" href="custom.css">
<!-- Loading mathjax macro -->
<!-- Load mathjax -->
<script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML"></script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'], ["\\(","\\)"] ],
displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": {
styles: {'.MathJax_Display': {"margin": 0}},
linebreaks: { automatic: true }
}
});
</script>
<!-- End of mathjax configuration --></head>
<body>
<div tabindex="-1" id="notebook" class="border-box-sizing">
<div class="container" id="notebook-container">
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<ul>
<li>First, we load numpy as the clag package. pylab is for plotting</li>
</ul>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[10]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">clag</span>
<span class="o">%</span><span class="k">pylab</span> inline
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre>Populating the interactive namespace from numpy and matplotlib
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<ul>
<li>Now, we read the first light curve. e.g. 1367A.dat, and plot it</li>
</ul>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[2]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">dt</span> <span class="o">=</span> <span class="mf">0.01</span>
<span class="n">t1</span><span class="p">,</span> <span class="n">l1</span><span class="p">,</span> <span class="n">l1e</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">loadtxt</span><span class="p">(</span><span class="s1">&#39;1367A.dat&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">T</span>
<span class="n">errorbar</span><span class="p">(</span><span class="n">t1</span><span class="p">,</span> <span class="n">l1</span><span class="p">,</span> <span class="n">yerr</span><span class="o">=</span><span class="n">l1e</span><span class="p">,</span> <span class="n">fmt</span><span class="o">=</span><span class="s1">&#39;o&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">Out[2]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>&lt;Container object of 3 artists&gt;</pre>
</div>
</div>
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzt3X98XHWd7/HXN236K23TUMS1pZ2EYkHXFqsu4q0u04vo
ciuwrS5eaDURZK9eCQ0I4gJhko3rw93tY4Et3vUhdDfgFrjqinJvgUvRTLnFxZXLjwYL5UcyQ6EI
tsZiU5C2+d4/zkxnJpkk8+OcmTPnvJ+PRx5NJ8nJyZkznznn8/18P19jrUVERMKhrto7ICIilaOg
LyISIgr6IiIhoqAvIhIiCvoiIiGioC8iEiKeB31jzGZjzGvGmJ0ube9+Y8yQMebecb7+j8aY37vx
u0REgqYSV/r/AnzSxe39HbA+3xeMMR8E5gGafCAikofnQd9auwMYyn7MGHNS6or9l8aY7caYpUVs
rw84OPpxY0wd8PfA1eXus4hIUE2t0u/9LvDfrLUvGmNOB/4JOKvMbV4G/Nha+5oxxpS9hyIiAVTx
oG+MaQD+E/CDrOBcn/raGuCvyU3PGOBla+05E2zzXcBfAGd6stMiIgFRjSv9OmDIWvuB0V+w1t4D
3FPCNlcAS4AXUm8ks4wxz1lrC04biYiEQck5fWPMUmPME8aYx1P/HjDGXD7et6c+sNb+Hhg0xnwm
a1vLi/316e2ltnmftXaBtfYka20LcEgBX0RkLONGl83UIOrLwIettXtGfe1OIArMB14DYsDPgO8A
78K527jbWvuNAn/Xw8ApwGxgP3CJtXbbqO95w1o7t5y/SUQkiNwK+p8AOq21Hyt/l0RExCtulWx+
FrjLpW2JiIhHyr7SN8bUA3uB91prf+PKXomIiCfcqN45B/h/+QK+MUYzY0VESmCt9WS+kRvpnQuZ
ILVjrdWHtcRisarvg18+dCx0LHQsJv7wUllB3xgzC/g48CN3dkdERLxUVnrHWnsIeIdL+yIiIh5T
P/0KiUaj1d4F39CxyNCxyNCxqAxX6vTH3bgx1uv8lIhI0BhjsD4eyBURkRqhoC8iEiIK+iIiIaKg
LyISIgr6IiIhoqAvIhIiCvoiIiGioC8iEiIK+iIiIaKgLyISIgr6IiIhoqAvIhIiCvoiIiHixnKJ
IuIz8Tj09kIi4XwANDc7H21toC7G4aXWyiIBNTiYpLOzly1bRoA6BgbaaGmJVHu3pABqrSwiRRkc
THL22ZvYsuUCnJf5YZYvb+fhhx+p9q5JlSm9IxJAnZ29vPjiJcBmoBto4ODBYVavbmfnzhN1xR9i
utIXCaBXXhkBvk864DsaOHhwE52dvVXbL6k+BX2RAFq40EnpZAJ+WgN7945UYY/ELxT0RQKop6eN
2bN3AsOjvjLMggV62YeZnn2RAGppibB16zXMnt1OJvAPs2RJjJ6eturtmFSdSjZFAmxwMMlJJ/UC
I6xbV0dPj8o2a4GXJZsK+iIBpMlZtU1BX0QkRDQ5S0REXKHJWSIBF487H+nP06mdaFRpnjBS0BcJ
mHxBfmgoya9+1cv27SOceKIGdMNMOX2RAMputnb++W/wxBMjvPTSN3Emazmlm9u2tSvw+5QGckWk
YOlmay++mG7B0Al8ndzZucOsW7eRf/3XWFX2USamgVwRKZjTbC27504dascgaQr6IgHjNFvLDvJ1
qB2DpOlZFwkYp9ladpBvw0nxqB2DKKcvEjhjc/rDLFp0BStWNHLvvbPUjqEGaCBXRIqSXb1z1ll1
/PEft9HUFFGdfo3wbdA3xjQCtwHvA0aAi621v8j6uoK+SIVpMlbt83PQ7wW2W2v/xRgzFZhlrX0j
6+sK+iIiRfJl0DfGzAWesNYumeB7FPRFRIrk1zr9FmCfMeZfjDGPG2O+a4yZ6daOiYiI+8rpvTMV
+ADwFWvtY8aYm3Cm/eVM8evq6jr2eTQaJaqkoohIjng8Tjw9EOOxctI77wT+3Vp7Uur/HwWusdae
m/U9Su+I+IAGd2uLl+mdkq/0rbWvGWP2GGOWWmufA84Cdrm3ayLilmgUIhGnjFOdNsOt3Oqd03BK
NuuBAeAL1toDWV/Xlb6ID+SbsKVOm/7ly+qdgjauoC/iC+vXd7Nly1Wo02Zt8Gv1jojUiLFN2ECd
NsNJQV8kBMY2YQN12gwnPeMiIdDT08aSJTHUaVOU0xcJicHBJJde2stPfzrCsmV1zJzZxjnnOIO4
Kt30Fw3kikhZsuv0778/yZtv9tLf73TgvPVWlW76jYK+iLhCpZu1QUFfao5mgPqTSjdrgy9n5IpM
RDNA/Umlm6KgL54YnUbYsmWYRx9VGqHaMqWbuVf6Kt0MDz3T4onOzt6svDFAAy++2E1nZ28V90pU
uim60hdPKI1QHZONpbS0RNi2rZ3Ozo1s2TKSWiRdd19hoqAvnlAaoTomG0uJx6G3N8LLL8eIRGDH
DvjCF6C5GdraNMgeBqreEU+oNLA6Cj3ug4POG0Pmal+D7H7iZfUO1lrPPpzNS1gNDCTsunVdFm6w
69Z12YGBRLV3KfCc433Qgs36OGjXres69j0DAwm7ZMlXs77voF2y5Kt6fnwkFTs9ictK74gnnNxy
hKlTnTTCyy/DqlVO+qC5WfX6XojH4ZFHJh9LGX+QXbX6YaCgL66Kx+Gee5L09fXy0ksjLF5cRzT6
cV5++SGSyRGOHKmjtVWpBC9Eo7B8+SESiYnHUjTIHm4K+uKadMD/3vc2MTTkXEn29z/Drl1/y9Gj
30b1+t4aHEzyxBMHgE6gh3ROf/Hia+npufLY92mQPdz0LItrolFIJG45FvAd3z8W8B2q1/dKZ2cv
e/bcCGwANgIx4FusWFGX8wbb09PGggW5tfpNTTHmz287Vu4pwaWgL64ZHEzy4IN7yb2CVCqhUjJp
mwhOwO8Genjqqbk5wbylJcKOHe2cf/71wFrgy3zsY4aODo2zhIGCvrims7OXt946idwVmrRiU6WM
tzrWypV1OcE8HoebboKHH54CfA+4g3vv7eKjH93E4GCyUrsrVaJXnrjGudL8Is5VZjr4XAB8mVqf
9h+PQ1eX8xGNZj73Uzqk0BYL0Sjs3987Kg3XwN69SruFgQZyxTXOlebxQDtOTnkEGKG5eRpz5mw8
Vs2zalU7yWSElpaq7m5RaqFraDEtFlTBE14K+uKanp42+vpi7N3bTfpqv6kpxnnndbJmTaSm88V+
7hqa7reTSDhzI5qbnbkRU6fC7bfnnxOhCp4Q82rWl9WM3FAK6izcQma6VlOxx12zcv0NzciVWpCe
hXvyyTHOPBNOPtm50pw3z7lSzp6wtWpVW01d/fs5HVLKXUgyGWH16nb6+mo77SbFU9AX16TTCNmD
m/E4nHba6Albwxw6FKOjox2nvND//JwOKaWtgvNcpUs7JUyqf8ZK4ESj0Nqa5IUXutm+Pca99145
plKk1iZo+XnxET/fhYj/KOiL69LpBmcB7m4SifdQ60EpXRmzbp0z03Xduo2+GMSF8evz/XAXIv6j
s0JcNzbdUE+tB6V4HG6/PT1e0c3JJ8e4/faIL+r0/XwXIv6jnL64bmy6oY1MWwCnCZjT66U9Z0k/
P/NzK2gNykoxFPTFdWMHPSPAJSxc+BleeWUmMJuPfeyddHSgoOSCUgdlJ1tPV4JJyyWK6/It2Td3
7hXATN5445vHHluwIMaOHf7Ii08kyMFRyyb6k5fLJSroi+vyLaTy9tsH2b27i9Elj+vWVWa1pnz7
VMxcgSAGR61j7F9aI1dqXjR6w6jZrM7HqlU3VOT3lzMDNaizV/0+yzjM8HBGbu2UT0hNq2ZZYTwO
55xzyzgTmHon/fnxJj+df36v7zptFkP1/eFU1ivOGJMwxjxljHnCGPMfbu2UBE81ywojkSTJ5OjF
XQAaeOSRkUkDd25wTOJUIf0dr7/+FK2tyZrN66u+P5zKrd4ZAaLW2iE3dkaCq5plhbmLuzTgBO5e
4DBDQ89wyinJVPVLfpnguA/YRLr09LXXhjn77OrmwMsZZO7paePRR2Njcvo9Pe2e7Kv4RDm5IWAQ
mD/B1z3Jd4lMpq/P2ljM+WhsvMFCwsJXLWyz8IWi8vOZnP71vsyBl9PZNKhdUWsdHub0y6reMcYM
AL8DjgLftdbeOurrtpzti5RjcDDJpZf28tOfPgbcDTwJ9AD/RjFVROnKn82bOxkevmPM11etivGz
n3W7vfsFKacCJ8ilqLXOy+qdctM7K621rxpj3gFsM8Y8Y63d4caOSTBVKtBkguElwCtAJ05Q/BDF
Dl6mJz/t37+ELVvGdtrct69uwpnF8Tj09sIzzyT51a96OXJkhMbGOj760Tba28trL11Kh83cv6v0
3y21qaygb619NfXvb4wx9wCnAzlBv6ur69jn0WiUqM6yUKvUsoOZYLgRuBEnH98JLKHUFsmZHPgl
wPeBw8yevZNbbrmGP/3T8X8uGoW6ukdYvXozw8ObgAZef32Yp56KEYmU115aFTjBEI/HiVeqDKzU
vBAwC5id+rwBeAT4xKjvcTvVJTWuUjXvmXkB2fMDuizsSuX2M79/9uwvFPz7t2/fYWfPLn5MYPbs
cz0ZD1CtfTDh0zr9dwI7jDFPAI8C/8ta+2A5b0ASfOOnI3pd/T2ZipvsssQ2YDNwCc4dwPVMm3Yh
n/70JSSTk19tx+Nw2WUPcfDgJpw7B6d088UXZ/Jnf3bTuGWfnZ29HDy4HC+uyNVhU4pVcnrHWjsI
vN/FfZEQqEQ6Ih6H+fPbaGqKMTR0CZkOn07jt2nTrmH69FNpbm5g1apNBbdiiEZh/vwRRpduwjB7
9rQTiSTJl6px/uZ0e2l3V95Sh00plrpseqDcPi9BVollB6NRePVVeOCBowwNXceUKYZZsy7i978/
hbPOauDWWzeVPIbg7P9tZAI+QANvvrlp3MFT52cuYHR76dmz2+npKa/vkJY9lGKp4ZoH1MhqfJU4
Nvl+R1NTjHe/u51zznF+R6mVK4ODSd773mt5660tY742XulmbiWRMwA8c+ZOzjmnleeff7qkCwNd
WASbGq7VGA2uja+vz9rLL0/YZcu6bGPjDXbZsi57+eUJ29fn3u/w8vj39Vl7yilXFbX9vj5r165N
2BNO6LLTp99gGxq67PLlO+ycOdkDyrvstGnn2jlzvlbQMQlqEzhx4OFAroK+B8brKHn88RtyXvin
n56wra3W1YAn3nf0dCPg5r4xpWcLF769Sl9YVOLNWjK8DPrqrOSB/I2sHmL//t/w+usX8Ic/1DE8
fJj+/nYuvvgR3Y67zOtGYhMtkh6Pw4YNSZYv72bevBjLl3ezYUNyTGVP7oB2L6PHCCaraKp0fX4k
kmTr1k3091/FgQMX099/hE2bruVLX7o6798n/qWBXA+MbWT1DMb8PdbehFMy6Dz+5pvDrF7dzs6d
J4Y+1+8mrxuJObOK04ukw8knw+23Zyaebd2aGU/o7x/m0KEYHR25k7ByB7QnDuCjZzE3N0N//yG8
HhDPlim1zVQuWdvA7t3DHDky9u+rJrWXmIRXtxA2xOkda3MbWTU3r7VwXWpykHL9XqtmKmKytEu6
EdzllyfsjBnplM7k50X2+XT++R32Xe/6goUrclJCixdf7llOP5Myq41zuNYbyeFhekdX+h4YfSWY
TMZwJgkdJt8V3a5dTk/39M8G/crE6yuxapYxTpZ2yW5D8dZbR2hu/jyJxDuYPbs9Nelr7J3J6Gqk
n/ykE/gGzlX3Rpw7hRFWrKjz7I4xc2fi/7YPo4/Xli3DPPqoqueO8erdxIb8Sj+bc8Wxy8L4U/Fr
/cqkWEH9eye70s83CDxjxldta+sOu2xZ/uMxdpv5B6qbm2/w7G7G7+2lswWheg5V79S2zAsmfy/3
7dt3hKr8zi/lhl6kgQYGEnbBgq+m3uS7LFxnp00717a27rB9feMFpF12ypS1tr4+f1XX2Gqk6gS1
gYGEPf/8jrznsJ/O1Wqvx+wGBf0alb2Qx6mnJuy8eV0WNti6urV22rSr7QkndNm1axP2rLNq/8qk
GH64EksH/Kam3DefBQsKD2DjvWncdNP4TdkyASmRCt4bJg2iY49Xwo7O53sdeLPP5dNPTxy7Kznr
LP/dpfnh/CqXgn4Nyh6wc4L9DfaEE7rsqacmbCxmbWur85FZ2am2r0yK4ZcrsfPOK26S1Wj57lgW
LPjqhJO3Mqm+4gZxR/+eRYsuTe1/+emxYu54soP/mWdmPvdTvb5f7iTL4WXQ10CuR7J7qKcH6F5/
fZg5c2K0tjoDSoODzoDegQP9VLL8rtoq0X9nMoODSR58cPzF0rMHlccbYM7XMXTv3m5OOOHLebe7
d+8ImzdfzE9+0s7Bg3dRSLkmOE3VTjutnaGh6/nd75JYO5t9+97Jc89dxmmnRXJKRksZCC+0zHSi
Y+EnakI3Ca/eTWzIr/Qn66GeezVS+dv1cpSbC/fySqzQK1Hnivv6rOPv3I1Bu50z51PHUheXX54Y
d1v571gSdsqUVeM+73191i5c+LWsxwtLRXh5zIKQDgkadKVfG7KbYD377FMcPjx+D/Xcq8QGYAPw
Lerrk5x66hJfX5lEIkl++MNN7N3rNBDr7z/M7t3tHDhwDbBy0itBL6/ECl2Zyymt/CJwBTAbZ+3c
fcDN/P73dwMN/PSnwzz33BWsWNHI9u2zxmxr7B1LEriZo0e/zeiOmukSzJYWiEZnZS272Dbu92Yr
Z1nEybg1u9frJnCadOUSr95NbAiv9HOvxm6Y8CrOL3ntUozNSzt/VzErUHml0CvizNVtdv69uAHT
sb8ru5wxffdwnW1sXJtzJzT253al7gqvHjc/7+X54taVfiVy6UEt9R0NDeTWhtwXz8SBcbwX2rJl
Xb4aFMvHCUD+TAkUGsAypZXXZX1f8aWR2UHohBM+V1Bgzk6PNTQ4A/ynn56wp53mDO6feWbuv6ef
nrANDWvHPV/KHUh1K1iPd+xPOKHLlQHfIAzQFsrLoK/0jotyb5PbcHqUpJfmO8y0aTv59KevIZmM
lLzIth84aY38s4urPTOz0FRFMhnhM59p5/bbr+TAgXSqZXS6ppCeOJmZ17/9bTevvz75APVkM4bT
A/zbt48wb94b/PrXIwwPf4NMGmgfzkIuA7S0LKC1NVnWTNN0A7nOzo1s2TLCunV1qVRU/m1mp3EG
BkaYPv0NjhyZyhtvvDLqb08Cvbz++ou88EJ33jRbMbxMcYWKV+8mNmRX+vn7rCcsXG/r6z83ZrCz
r8/a1tYdtr4+t0a7mDrxavFyoe9yFZuqyJ1M1WGhbZx0TWHbylfCOdFg8OTbGJ0yGr2P5V/tFluG
mXvMLrFwkc2dcZ7eT3cncdVySrRYKL3jfwMDCbto0aW2mCZYtVw1sX37+BOQqqnYFMDYN1/njdqY
i2xLy1/auXMvL2pb+aqa7ryz8Dz05C0Xqn/OZMZ0Ls0K9NmPXVH0G2bhv7c2Xy/F8jLoK73jks7O
XvbsuZHRTbBmzKgbtyql0j3R3eKkNVZy8cUncvfdG3n99RGWLavjr/6q+g2tiq0Mikbhttse4vDh
dLOzBqAHa4c56aSNnHtuW1HbGp22Kbb519hzoriUUznyVd+8+91tzJkTobk5UzHzyCMjOCnJdwIn
kJlv8B6gEegC/s71/ezpaaOvL3asaiydMp069Zqcah6ZmIK+SzIv1gayX/QLF8bGPRn9MEmpFOm/
Jx6P8OUvx4694HbvpuovvlI6bI735jsyMsLNNxe3rWzxOHzpS7cUlYcee060AZ04JaXp4Or+OROP
Q2/vI9x55+Zjb4D9/cPs3x/jrrvW8N3vPnSsBHb58kMkEtOBKWTelNL/ziL/+Ej5+5lMRjj77DXc
eeffH9vHt98eZtu2GLHYifiln7/veXULYUOW3inl1jNM1Qh+lr+3Tf6xmNEmmqg2MJCwM2ZcVFQe
emzDtsssfMTCp6wxn7ONjX9pGxoKTzkVavxxml1j0niLFl1qZ836VCqFk65QS/+bPeHNvXM7Pe7g
9PyZfL0CP7eJKATK6ftfKQF8dOneccd12Pnzr7INDVqDtJLKmR090fOeO+u3sIuB3DGGsSW/CxZk
2jC7uUCMs6/X2bFvUPmDbHPzJXbKlAtSxyrzBmXMGRY+n3UsnfGRU065ypUOpoWUxQahll9Bv0aU
c7Lpqr+6Ms/dmqKC9ETzLd7//hvyXvHOnDnxJLbMNis3cDn+3It8bwROkB0YSNiPfKQjdcw+Z2fO
vMqeemrCzp7tNBmcPv0G29LizptSof38g/I68jLoK6fvkonWTS0kx60a5OrJfu4aG2McOFD4AGRm
PMCpSXdy7nU0NAyxZEkTTz55PNBO9uD+okWNE7acyGyzcgP9zljCBYxuCTF16mMcOTI2N19XV0d3
d4Rp024kEnEebW52Pv7pnyAadfeczV2jN3cfs9tW6HU0OQV9l5Tb/6NWKnm87q9SDdnP3Qsv1GX1
xUkbfwDSCZbPkL3gPQzz9NPt/O3f/kXWAu0x0gHqgQc6JuwxlBnMrdxAv1MZk+6nlJlM+KlPXcqj
j8bYuzc3yN56a3tF+0LlFkpk3kQbGvpZvfrGY2+itfI6qiqvbiFsCNM75aiVGuSg3D6Pp9i/r5Bu
qsWm/DL7MDan79WxHm9A+sYbS++o6ubKZIW+PmrldTQZlNMPvloJpkF5UY2nlEB1xhlfG3U8nI8V
K24oqZIkvQ8tLV22vn6DnT7dWWnNrfz4ZNyqgHHznC50W7XyOpqMgn5I1ELVQZimwheir2/yMsJa
5Ma56OYFQqFvxl6se1wNXgZ95fR9otyB4Eqp1QllXolG4Sc/aePss2NZA4j5e+LXitxZxPvYsuU2
7rzzWpYuXcAnP3lZweM3bubXC510V8rkvLBR0PeJ9IvonnuS/Pa3vdx0kzNIOjTUBvhnkDTTHdRf
Ac7NAeZitxW05flyK2U2Ad1Y28Du3cMcOZJ/GcV8dIHgU17dQlild4pWK/lIP6ahqpE/DqpMCq+8
9Ey+4zhjRqbraK2lXCoJpXf8za1l3GqhxtitNJTbS9+5eexq4XnwUuYK/RDlpGdy+/QP0dy8h0Ti
ZPbv76Wjo7ze+vkEsZzYCwr6Lih0XdbJ1EKNsVtjDG4dM0i/gZQXoLLVwvPgpZ6eNh5++Ar27Pk1
5aRnnCZuEfr7P44xm0kk7iDdabSvL8aOHaV1ZR0vuJ9xBmzdmulo2t8/zKFDhaejQsOrWwgbovSO
18vN1XIVyHjcTse4uahLmJ6HfDILApW/DrIXC+6Md+6cd97oRYxq93nDryWbOFMGHwfuHefrHh0S
f6mlhaX9opxjNrosr7FxrSsBKi1Mz8N4Mnn99ALvTm+ehQs3FJWLH9vILbO9hoY1JZVT5p47mQXo
p0xZM+p8cj5qsZzYy6BfbnpnA7ALmFvmdmqaW+mAoFWBTKScYxaJJHNu4+F6nAU8snvc1NHYOLek
Yxem52E8mbx+dvnjMNHoxqLSe87zXJ/aVqYaCBoYHh5m69bi0y+5/Y4y2zt6tBNVCxWg1HcL4ERg
GxBFV/qBua2cSDWm1Rf2s+E4/pXkbspydK/98p6nsV1I01f7G6zb6wdXC35M7wA/AN4PnBn2oB+W
dIBfyiLHzgp2d8EOce8NPndRmMl74Re6TefcuS7Pc7/LGvNJO2fO1TU7G9daH6Z3jDGrgdestU8a
Y6KAKeduo9aFJR3gZiljOccsd9JPuqXxH6irO4+pUz/IwoUNrF4dvONfSW7NbE0mI3zmM+309fXy
7LMHOXy4/PRL+ty5/fYrOXDgNjLdTQHeg7X/xnnnhaO8thSl5vRXAucZY/4LMBOYY4y5w1r7+dHf
2NXVdezzaDRKNIAFs2GZ+l2NafVp6br+RAIefPDj1NW1MzJyNdktjUdGhlm0KMa2be7XgEtpsp9n
p71D+bO509vs6PgH3vvea3nrrdovr43H48TTE1e8Vu6tAkrvhEa1xi7SqYalSzvslCl/ZmF9Kl2w
Vrn8GtLXZ+3atQl73HEdtq5uja2r+5ydP/8qu3ZtaSmYTGlp8M4BPEzvaFhbCtbT08aSJTGc1Apk
rtTaPP29kUiSe+75G557znD06IeA7+BU67yPME+iqjXRKGzcCE1NUxgZ+R4jI3ewf38XTz21iUgk
WdL27r//sqqck7Ws7KBvrd1urT3PjZ0Rf0vnUpct20hjY4xlyzYey517qbOzlz173gn04Jyy6UCf
zu1nU4men40/LtRb0vaqdU7WMrVhkIJVa+zCGUtIB/vsQdyP49TmbyKdI16woPodP2V8bre4CMt4
mpsU9Euk5k6V41TrHMEJ9m04L/BLgHuAq8le0/Xss69R1Y6PZSqv9pFZSH6EV145mNN4L02vMw94
NVhgAz6QG5ba/LRqrkg0MJCwixZdauGKrMk4fx7IAbygG/tcOs/b4sWX533thO11loYfJ2cVtPGA
Bn2vqwb8uORbtV98d97pVO/AGltf/zk7c+ZFrkz0kcorpjFaWGa7j+Zl0NeIVwkikSTJ5F68qhxJ
95bp77+KAwe66e+/iq1bS6twcIvbA3DFiMdh9+4IF154I2ee+SOuvfYOTj55KRrErT3xOOzcOYtC
XzuFjAHE47BhQ5Lly7uZNy/G8uXdbNiQpFJl77VGOf0SdHb28tZbJ+FVcyc/LuJRqR7zheZwW1uD
tS5tWESjsHJlHYnE6BnVh3n88WfYsCGZ81wXsuTi6AZ86qM/Ca9uIWyA0ztO75ex/V5mziytlW/+
7fsrdVGp2+xC00h+TIFJYTLP8dh22KOf60LOhyCmgPBb752wc64+jie3le8IixY1ulI54scFpSu1
IHqhdzkq1atdub1znNW0HGOf60J6NIV9pbNiKeiXIDcAOrMBlyyJ8cADHa6UClYqwBajUk3l9AIO
vvQb9s6d7yMen/i5LuTN3Y8XSX6moF8CrwOgH7t2enVlPTjorJP7yisjLFxYx9y5h9ALOBzcCtZ+
vEjyM+OkjzzauDHWy+1LbbvrriRf+comhoYyL9a5c69g5syZvPbaN8l+AW/bVtoi2uJfTtfNTWOC
dbHPdRBB2BdgAAAOLElEQVQncBljsNZ60rJeQV8m5OULav36brZsuYrRV3pLl17P4cPzePnlIerq
9mDtySxcOItzz63tF7LkCmKwdouCvlSNW1dj+axaFSMe7877+ObNF2f93n3AbRgzwNKlC/jkJy9T
YJBA8zLoK6dfpLBdnXg5Z2BsTjcJ3MaOHUlWrEhXdmQW07a2gd27hzlyRDXYQRG215MveFULagNa
p1+pdgTZdegNDTfY447rsPPnX2UbGipbk+7lnIHcY5kY1Y/lOqtFz4Ov2u09/Aq1YfCPSrUjyG7F
MDx8Mb/9rWH//i6GhyvbliFzNZ7NnWqa7F7o9fVX4PTLTx/X+tTvVQlnkFWzvUdYKegXqVJ15JkX
wz7gSnIDYuVeGF6ulhWNws03R9i5M8bKlcvIPa5tOOWhI6jHTnBpXkblKadfpEpNBHFeDOl89nvI
7VPiLCoSjw/l7UHupkrMGYjH4dVXR9fnR4BLmD37SoaH27E2s1CKarCDY6LXk/L93lDQL0I8DlOn
fpz6+nYOH/Z2tSbnxXAb0I3T6uEZYHPq/87vPXCgPZXi8W5AsxLtDiKRJIcOHQA6ydzRDLN48Xf4
1re+w6OP4quJauKenp42+vpi7N17CfB94DBTp/6Cn//8FB5/vIM9e97g4EHntaZGai7xarDABnAg
d2AgYRcsSDeK6rJwnZ027Vzb2rrD9UHVgYGEnTEj3TM+YeHcwA5oZhpmJVLH9QYL19ulSzvUQC3g
+vqsbW3dYevrv5BnQD+8g/hoINcfOjt72bu3GyfdEgO+wdtv38WRIw+5fruZTEaIRBbg3PpGyKR4
sgUj95nJ66bvKLqBHhYunKvb+ICLRuHIkYey7pxvIXO3p3y/FxT0i1DJQadoFO6//7KsQdRZBHVA
08sKIfG/zOsqCWQvTqTzwgs6ekWodHDKLmmcPXuI+vp2vKiiqTYvK4TE/zKvq14gvTgRZCq4dF64
SW0YiuBlS4LJBLmSIch/m0wu87qaAVyKU7GWHtjdB+xk6tT3s2jRcaHpv6TeOz6h4CTivvTrKrOo
ypM4lWq5FXI7doSn06qCvogEXuaKfybwdUbX7q9bV701oivNy6CvnL5MaHAwyfr13axaFWP9+m4G
B71v/SDhlB7DamhIoqod72hylowr3yIn990X49vfbufCC8Nxmy2Vk54IuH//ErZs0eppXtFRlHFt
3dqbFfABGhga6mbr1t4q7pUEnaq5vKUrfRmXmmFJNfhxjeggUdCvMaMXEu/pafOsoqFSzeVEslWi
31OYqXqnhuTLsTc1eZdjr+a8BJEwU/WOAJXPsWfPCG5sjLFs2UZWr3Zus0WkNim9U0MqnWPXbbZI
8Cjo15BMjn0fmcVURpg792A1d0tEaohy+jVkcDDJhz/8N/zmN7PJXmxk7txr+c53rlTtvEhA+C6n
b4yZboz5hTHmCWNMvzFG9/8VkExGOO64Rkavl/vGG99U7byIFKSkoG+t/QOwylq7Ang/cI4x5nRX
90zGiEbhXe+ahWrnRaRUJVfvWGsPpT6djjM2oDxOBWjBEREpR8mRwhhTZ4x5Avg1sM1a+0v3dkvG
kztFPQl0Ysxf8thjB9mwIUk8XtXdExGfK7l6x1o7AqwwxswFfmyMea+1dtfo7+vq6jr2eTQaJarG
82VJ184/8MD1PP/8AazdhLUN7N49zJEjMTo62nHWmhWRWhGPx4lX6IrNleodY0wnMGyt/YdRj6t6
xyPr13ezZctVhLnnuEhQ+bF653hjTGPq85nA2cCzbu6YTEzN0ESkFKWmd94F3G6MqcN54/if1tr7
3NstmYyaoYlIKTQ5q0apGZpIcHmZ3lEbhhqlnuMiUgpd6YuI+IzvBnJFRKQ2Kb0jecXjcM89Sfr6
erPSR22sWRNBUy1EapfSO5KXBopFqkfpHam4zs7erIAP0MCLL3bT2dlbxb0SkXIpvRMAXiyWrslf
IsGkoF/j8i2Wft995S+WrslfIsGkV3CN82qx9NWr22hqSnfzBBimqSnG6tVtZW1XRKpLV/o1zqs0
zIUXRjjjjHY6Ozeyd+8ICxbU0dOjQVyRWqegX+Ny0zBJnAXTDzM4+AyDg8mygnRLS0QdO0UCRiWb
NS5TWnkJsBnI5PabmsrP7YtI5alkU8aV7sHT2Hg9mYAPbuX2RSRYFPRrXDQKN98cYcWK96ESSxGZ
jIJ+QGjBdBEphCJCQLhZYjk4mGT9+m5WrYqxfn03g4NJN3dVRKpIA7kBkp6ZmymxLHxmbrrB2o9+
dBMvv3wA2IQGhEWqw8uBXAX9EMvupDk4OMQf/vAGhw/PA3rQgusi1aPqHfFEJJJk69ZN9PdfwMGD
ezh8+GrgNTQgLBJcCvoh1tFxS1Z9/3uA7wMnoQFhkeDSKzlA4nHYsCHJ8uXdzJsXY/nybjZsSBKP
j/3eu+5KsnXrXpxA3w3UA4eBLwK5A8JTp7ar545IQKgNQ4Ck0zXpPvj9/cMcOhSjo6MdyB2E3bq1
l6NHT8IJ9A1AG9AOHJ/6dyMwAoywenWjBnFFAkJX+gFSzMInTqO2LwI7ca7qI8A1ZAJ/DPgaS5a8
yY03dlRg70WkEnSlHyCTddxMl3S+8MIQTz/dD3yNTKDfBKwEjqOu7kKmTz+Vk09uYNWqdpLJCC0t
FfxDRMQzCvoBMtHCJ5nFVtIDt7fgXM13p/79FjNmDPCJTyzgpps2qYWySEAp6AfI6tVt3HdfLGcV
LWdWbnvWYitdZBqzpXP3h2lsfIbW1n9gzRpd1YsEmSZnBcx4s3JXrYoRj18MXAtsGfNzq1bF+NnP
uiu9uyKSh5eTs3SlHzAtLRG++MXYsZm2K1b8M4sX1/H224eA28jU4WvtW5Ew0is9gLJn2h44UEd/
/2FeeulJpk17AdXhi4SbrvQDyCndzF1J6803h4HzUR2+SLjpSj+AnNLN9EzbTM0+bKK+PrcOv6np
TT77WdXhi4SFrvQDyCndTM+0zfYePvjBuSxZsjFroLdd5ZkiIaKgH0CrV7fxgx+08/bbYwdslyxp
UotkkRBTyWZAPfzwI6xevZmDBzOLoSxZEmPbNl3Zi/idSjalaCMjK7n44hPp69vISy+NsHhxnVoq
iEjpV/rGmBOBO4B34pSB3Gqt/cdR36MrfRGRIvl15awjwJXW2j8GPgJ8xRhzqju7FTzxfE3tQ0rH
IkPHIkPHojJKDvrW2l9ba59MfX4QeAZY6NaOBY1O6Awdiwwdiwwdi8pwpU7fGNMMvB/4hRvbExER
b5Qd9I0xs4EfAhtSV/wiIuJTZZVsGmOmAv8buN9ae3Oer2sUV0SkBF4N5JYb9O8A9llrr3Rvl0RE
xCvllGyuBB4G+gGb+rjWWvuAe7snIiJu8nRGroiI+EtBA7nGmIQx5iljzBPGmP/IerzdGPOMMabf
GPOtrMeXG2N+box5OvVz01KP9xljnk1t53FjzPGpx6cZY+42xjxvjPl3Y8xit/9QtxRzLIwxF2X9
rU8YY44aY5anvvZBY8xOY8xzxpibsrYTxmMRD9l5MdUY05t6/n9ljPl61vd/IGTnxUTHImzxot4Y
88+pY/GEMebMrO9377yw1k76AQwATaMeiwIPAlNT/z8+9e8U4Cngfan/N5G5o+gDVuTZ/peB/5H6
/LPA3YXsVzU+ijkWo77nfcDzWf//BfAnqc/vAz4Z4mMRqvMCuBC4M/X5TGAQWBzG82KSYxG28+K/
A5tTn78DeCzrZ1w7Lwot2TSMvSv4MvAta+0RAGvtvtTjnwCestY+nXp8yKb2KCXf7zwfuD31+Q+B
swrcr2oo5lhkuxC4G8AY80fAHGvtL1NfuwP489TnoToWWcJ0XligwRgzBZgF/AF4I6TnRd5jkfVz
YTov3gv8LPXYb4DfGWM+5PZ5UWjQt8A2Y8wvjTFfTD22FPhTY8yjqduwD2U9jjHmAWPMY8aYq0dt
qzd1q3Z91mMLgT2pP/Zo6o89rsB9q7RijkW2zwJ3pT5fCLyc9bWXycxmDtuxSAvTefFD4BDwKpAA
Nlprf0c4z4vxjkVamM6Lp4DzjDFTjDEtwAeBRbh8XhTaZXOltfZVY8w7gAeNMbtTP9tkrT3DGPMn
OEs1nZR6fCXwIeAt4KfGmMestX3ARantNAA/Msast9b+a57f50l9qkuKORYAGGNOB4attbtK+H1h
OBZhOy8+jNO76o+A+cD/NcY8VOTvC/SxsNYmCN958c/Ae4BfAkngEeBokb9v0mNR0JW+tfbV1L+/
AX4MnI7z7vKj1OO/BEaMMfNx3oUeTqV13sTJP31g1HaGgTtT2wF4BecdjdRt3lxr7W8L+xsrq8hj
kfZfyb2yPfb3ppyYeiznayE5FmE6L46mjsWFwAPW2pHU9z+Cc5EUpvNismMRpvNixBgz31p71Fp7
pbX2A9baNTjjoc/h8nkxadA3xswyTqsFUu+4n8Cpzf8x8J9Tjy8F6q21+4H/AywzxswwzozdM4Fd
xpi69IvfGFMPfAp4OvVr7gVaU5//Bam8lt+UcCwwxhjgArJy2NbaXwMHjDGnp77+eeAnqS+H6lik
bmXDcl5MSx2Ll7IebwDOAJ4J2Xkx0bF4NmTnRb21dr8xZqYxZlbq8bOBw9baZ10/LwoYfW4BngSe
SO3w11OP1wPfSz32GHBm1s9chPME7cQZsABnkOax1Lb6gRvJVPVMx7nFeR54FGiebL+q8VHisTgT
+HmebX0w9f3PAzdnPR6qYxHG8wJnKbPvp14jT+O0KA/leTHesQjpeREBngV+hVPds8iL80KTs0RE
QsSV1soiIlIbFPRFREJEQV9EJEQU9EVEQkRBX0QkRBT0RURCREFfRCREFPRFRELk/wNQMRtZQ4fy
xAAAAABJRU5ErkJggg==
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<ul>
<li>Here, we define the frequency bins in fqL. Here, I use the ones that Ed sent. </li>
<li><p>A general rules for fqL is as follows:</p>
<ul>
<li>define $f_1$, $f_2$ as the two extreme frequencies allowed by the data. i.e. $f_{1} = 1/T$ with $T$ being the length of observation in time units, and $f_{2} = 0.5/\Delta t$</li>
<li>The frequency limits where the psd/lag can be constrained are about ~$0.9f_1 - 0.5f_2$. The 0.9 factor doesn't depend on the data much, but values in the range ~[0.9-1.1] are ok. The factor in front of $f_2$ depends on the quality of the data, for low qualily data, use ~0.1--0.2, and for high quality data, increase it up to $0.9--1$.</li>
<li>Always include two dummy bins at the low and high frequencies and ignore them. The first and last bins are generally biased, So I suggest using the first bin as $0.5f_1 - 0.9 f_1$ (or whatever value you use instead of $0.9 f_1$, see second point above), and the last bin should be $0.5f_2-2*f_2$ (or whatever value instead of $0.5f_2$, see second point above). So the frequency bins should be something like: $[0.5f_1, 0.9f_1, ..., 0.5f_2, 2f_2]$, the bins in between can be devided as desired.</li>
</ul>
</li>
<li><p>fqd is the bin center</p>
</li>
</ul>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[5]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">fqL</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mf">0.0049999999</span><span class="p">,</span> <span class="mf">0.018619375</span><span class="p">,</span> <span class="mf">0.044733049</span><span class="p">,</span> <span class="mf">0.069336227</span><span class="p">,</span> <span class="mf">0.10747115</span><span class="p">,</span> <span class="mf">0.16658029</span><span class="p">,</span>
<span class="mf">0.25819945</span><span class="p">,</span> <span class="mf">0.40020915</span><span class="p">,</span> <span class="mf">0.62032418</span><span class="p">])</span>
<span class="n">nfq</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">fqL</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span>
<span class="n">fqd</span> <span class="o">=</span> <span class="mi">10</span><span class="o">**</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">log10</span><span class="p">(</span> <span class="p">(</span><span class="n">fqL</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="n">fqL</span><span class="p">[</span><span class="mi">1</span><span class="p">:])</span> <span class="p">)</span><span class="o">/</span><span class="mf">2.</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<ul>
<li>We create a psd class of type psd10r (i.e. psd in log10 units using the rms normalization, see tutorial of clag for more). Other paramters are given as a list of: time, light curve, error. If you want to fit more than one light curve together, give them as elements of that list.</li>
<li>p1 is an array of the starting parameters</li>
<li>We then call clag.optimize to find the best fit. It takes as parameters, the class of psd or lag, the starting paramters, plus some other parameters whose default values work in most cases. The function returns a tuple of two arrays: the best fit values, and the estimated errors from the Fisher matrix (i.e. approximate errors).</li>
<li>As the fit starts, progress is printed, where for every line, we print: num_of_iteration, max change in parameter values, maximum gradient, change in loglikelihood -- loglikelihood -- list of parameters.</li>
<li>The fit stops when either of the three numbers after iter_number is close to zero.</li>
<li>At the end, the function prints the best fit values, their estimated error and the gradient of the loglikelihood at the those values. For the fit to be valid, the gradient values need to be all close to zero</li>
</ul>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[6]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">P1</span> <span class="o">=</span> <span class="n">clag</span><span class="o">.</span><span class="n">clag</span><span class="p">(</span><span class="s1">&#39;psd10r&#39;</span><span class="p">,</span> <span class="p">[</span><span class="n">t1</span><span class="p">],</span> <span class="p">[</span><span class="n">l1</span><span class="p">],</span> <span class="p">[</span><span class="n">l1e</span><span class="p">],</span> <span class="n">dt</span><span class="p">,</span> <span class="n">fqL</span><span class="p">)</span>
<span class="n">p1</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="n">nfq</span><span class="p">)</span>
<span class="n">p1</span><span class="p">,</span> <span class="n">p1e</span> <span class="o">=</span> <span class="n">clag</span><span class="o">.</span><span class="n">optimize</span><span class="p">(</span><span class="n">P1</span><span class="p">,</span> <span class="n">p1</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre> 1 4.342e-01 5.106e+01 inf -- 4.956e+03 -- 1 1 1 1 1 1 1 1
2 7.673e-01 5.094e+01 8.346e+01 -- 5.040e+03 -- 0.652988 0.587584 0.568433 0.567574 0.566292 0.566106 0.565781 0.566166
3 3.298e+00 5.072e+01 8.117e+01 -- 5.121e+03 -- 0.414769 0.211226 0.141674 0.138242 0.133442 0.132793 0.131633 0.132768
4 1.606e+00 5.040e+01 7.791e+01 -- 5.199e+03 -- 0.322796 -0.0775344 -0.271946 -0.283286 -0.297439 -0.299306 -0.302453 -0.300418
5 5.910e-01 4.995e+01 7.424e+01 -- 5.273e+03 -- 0.303931 -0.202072 -0.653233 -0.686827 -0.723408 -0.72915 -0.736445 -0.733984
6 3.715e-01 4.907e+01 6.996e+01 -- 5.343e+03 -- 0.288563 -0.184901 -0.963027 -1.05215 -1.1374 -1.1547 -1.17045 -1.16777
7 2.711e-01 4.699e+01 6.310e+01 -- 5.406e+03 -- 0.283941 -0.171583 -1.13016 -1.33783 -1.52092 -1.56818 -1.60449 -1.60156
8 2.136e-01 4.393e+01 5.315e+01 -- 5.459e+03 -- 0.284478 -0.172961 -1.16497 -1.49243 -1.8324 -1.94693 -2.03753 -2.03567
9 1.766e-01 3.793e+01 4.044e+01 -- 5.500e+03 -- 0.290936 -0.172461 -1.18193 -1.52814 -2.02019 -2.2443 -2.46546 -2.47059
10 1.511e-01 2.754e+01 2.660e+01 -- 5.526e+03 -- 0.299556 -0.170594 -1.19171 -1.52653 -2.09181 -2.40938 -2.87374 -2.90691
11 1.353e-01 1.473e+01 1.395e+01 -- 5.540e+03 -- 0.304466 -0.168829 -1.1936 -1.52541 -2.11411 -2.46428 -3.22352 -3.34602
12 1.365e-01 5.346e+00 5.391e+00 -- 5.546e+03 -- 0.306641 -0.168375 -1.1943 -1.52526 -2.12385 -2.4831 -3.45563 -3.7987
13 1.885e-01 1.315e+00 1.631e+00 -- 5.547e+03 -- 0.308259 -0.168765 -1.19466 -1.52395 -2.12898 -2.49063 -3.54795 -4.31734
14 6.419e-01 2.826e-01 4.459e-01 -- 5.548e+03 -- 0.309635 -0.169217 -1.19466 -1.52209 -2.1316 -2.49271 -3.56156 -5.13117
15 3.621e+02 2.692e-01 6.760e-02 -- 5.548e+03 -- 0.310493 -0.16946 -1.19426 -1.52073 -2.13283 -2.49296 -3.55956 -8.13117
16 6.745e-03 2.804e-01 2.200e-04 -- 5.548e+03 -- 0.310716 -0.169438 -1.1942 -1.52027 -2.1332 -2.49291 -3.55848 -11.1312
17 9.379e-04 3.668e-02 3.808e-03 -- 5.548e+03 -- 0.310697 -0.169463 -1.19426 -1.52034 -2.13364 -2.49379 -3.58248 -11.1312
18 1.196e-04 4.629e-03 7.714e-05 -- 5.548e+03 -- 0.310559 -0.169401 -1.1944 -1.52053 -2.13373 -2.49422 -3.58584 -11.1312
********************
0.310559 -0.169401 -1.1944 -1.52053 -2.13373 -2.49422 -3.58584 -11.1312
0.23823 0.201724 0.232207 0.17655 10 0.132676 0.306008 10
-0.000242823 -0.000294102 -0.000203858 -0.0012519 -1.17839e-06 -0.00320256 -0.00462885 -1.49854e-07
********************
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<ul>
<li>We then call clag.errors to obtain the errors on the parameters. This steps over the parameters, allowing others to change, until the loglikelihood function changes by 1. This gives the 1-sigma error.</li>
<li>The errors can also be obtained using mcmc, though not directly implemeted in clag code, one can use other mcmc packages like emcee, and call the p1.loglikelihood function directly.</li>
</ul>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[14]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">p1</span><span class="p">,</span> <span class="n">p1e</span> <span class="o">=</span> <span class="n">clag</span><span class="o">.</span><span class="n">errors</span><span class="p">(</span><span class="n">P1</span><span class="p">,</span> <span class="n">p1</span><span class="p">,</span> <span class="n">p1e</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre> ### errors for param 0 ###
+++ 5.548e+03 5.547e+03 3.105e-01 5.488e-01 0.876 +++
+++ 5.548e+03 5.547e+03 3.105e-01 6.679e-01 1.84 +++
+++ 5.548e+03 5.547e+03 3.105e-01 6.083e-01 1.32 +++
+++ 5.548e+03 5.547e+03 3.105e-01 5.786e-01 1.09 +++
+++ 5.548e+03 5.547e+03 3.105e-01 5.637e-01 0.981 +++
+++ 5.548e+03 5.547e+03 3.105e-01 5.711e-01 1.03 +++
+++ 5.548e+03 5.547e+03 3.105e-01 5.674e-01 1.01 +++
### errors for param 1 ###
+++ 5.548e+03 5.547e+03 -1.694e-01 3.231e-02 0.969 +++
+++ 5.548e+03 5.547e+03 -1.694e-01 1.332e-01 2.06 +++
+++ 5.548e+03 5.547e+03 -1.694e-01 8.274e-02 1.47 +++
+++ 5.548e+03 5.547e+03 -1.694e-01 5.753e-02 1.21 +++
+++ 5.548e+03 5.547e+03 -1.694e-01 4.492e-02 1.09 +++
+++ 5.548e+03 5.547e+03 -1.694e-01 3.862e-02 1.03 +++
+++ 5.548e+03 5.547e+03 -1.694e-01 3.546e-02 0.998 +++
### errors for param 2 ###
+++ 5.548e+03 5.547e+03 -1.194e+00 -9.622e-01 1.03 +++
+++ 5.548e+03 5.548e+03 -1.194e+00 -1.078e+00 0.277 +++
+++ 5.548e+03 5.548e+03 -1.194e+00 -1.020e+00 0.602 +++
+++ 5.548e+03 5.547e+03 -1.194e+00 -9.912e-01 0.805 +++
+++ 5.548e+03 5.547e+03 -1.194e+00 -9.767e-01 0.917 +++
+++ 5.548e+03 5.547e+03 -1.194e+00 -9.695e-01 0.975 +++
+++ 5.548e+03 5.547e+03 -1.194e+00 -9.658e-01 1 +++
### errors for param 3 ###
+++ 5.548e+03 5.547e+03 -1.521e+00 -1.344e+00 0.862 +++
+++ 5.548e+03 5.547e+03 -1.521e+00 -1.256e+00 1.85 +++
+++ 5.548e+03 5.547e+03 -1.521e+00 -1.300e+00 1.32 +++
+++ 5.548e+03 5.547e+03 -1.521e+00 -1.322e+00 1.08 +++
+++ 5.548e+03 5.547e+03 -1.521e+00 -1.333e+00 0.967 +++
+++ 5.548e+03 5.547e+03 -1.521e+00 -1.327e+00 1.02 +++
+++ 5.548e+03 5.547e+03 -1.521e+00 -1.330e+00 0.994 +++
### errors for param 4 ###
+++ 5.548e+03 5.547e+03 -2.134e+00 -1.981e+00 0.868 +++
+++ 5.548e+03 5.547e+03 -2.134e+00 -1.905e+00 1.9 +++
+++ 5.548e+03 5.547e+03 -2.134e+00 -1.943e+00 1.34 +++
+++ 5.548e+03 5.547e+03 -2.134e+00 -1.962e+00 1.09 +++
+++ 5.548e+03 5.547e+03 -2.134e+00 -1.971e+00 0.977 +++
+++ 5.548e+03 5.547e+03 -2.134e+00 -1.967e+00 1.03 +++
+++ 5.548e+03 5.547e+03 -2.134e+00 -1.969e+00 1.01 +++
### errors for param 5 ###
+++ 5.548e+03 5.547e+03 -2.494e+00 -2.362e+00 0.994 +++
### errors for param 6 ###
+++ 5.548e+03 5.547e+03 -3.586e+00 -3.280e+00 1.33 +++
+++ 5.548e+03 5.548e+03 -3.586e+00 -3.433e+00 0.275 +++
+++ 5.548e+03 5.547e+03 -3.586e+00 -3.357e+00 0.683 +++
+++ 5.548e+03 5.547e+03 -3.586e+00 -3.318e+00 0.974 +++
+++ 5.548e+03 5.547e+03 -3.586e+00 -3.299e+00 1.14 +++
+++ 5.548e+03 5.547e+03 -3.586e+00 -3.309e+00 1.06 +++
+++ 5.548e+03 5.547e+03 -3.586e+00 -3.314e+00 1.01 +++
+++ 5.548e+03 5.547e+03 -3.586e+00 -3.316e+00 0.994 +++
### errors for param 7 ###
+++ 5.548e+03 5.548e+03 -1.113e+01 -7.131e+00 0.0013 +++
+++ 5.548e+03 5.548e+03 -1.113e+01 -5.131e+00 0.134 +++
+++ 5.548e+03 5.547e+03 -1.113e+01 -4.131e+00 1.63 +++
+++ 5.548e+03 5.548e+03 -1.113e+01 -4.631e+00 0.451 +++
+++ 5.548e+03 5.547e+03 -1.113e+01 -4.381e+00 0.847 +++
+++ 5.548e+03 5.547e+03 -1.113e+01 -4.256e+00 1.17 +++
+++ 5.548e+03 5.547e+03 -1.113e+01 -4.319e+00 0.995 +++
********************
0.310547 -0.169411 -1.19441 -1.52057 -2.13373 -2.49427 -3.58627 -11.1312
0.256842 0.204876 0.228579 0.190434 0.164654 0.132714 0.270338 6.8125
********************
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<ul>
<li>Next we plot the results</li>
</ul>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[76]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">xscale</span><span class="p">(</span><span class="s1">&#39;log&#39;</span><span class="p">);</span> <span class="n">ylim</span><span class="p">(</span><span class="o">-</span><span class="mi">4</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span>
<span class="n">errorbar</span><span class="p">(</span><span class="n">fqd</span><span class="p">,</span> <span class="n">p1</span><span class="p">,</span> <span class="n">yerr</span><span class="o">=</span><span class="n">p1e</span><span class="p">,</span> <span class="n">fmt</span><span class="o">=</span><span class="s1">&#39;o&#39;</span><span class="p">,</span> <span class="n">ms</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">Out[76]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>&lt;Container object of 3 artists&gt;</pre>
</div>
</div>
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAEUtJREFUeJzt3X9s3Pddx/HX27XQV3GZkJjcwgIFaVSIsV1XoR4KSXfp
tDgsIjWOhTqpnbClbQwpm8SEC2slu4g/SidAVdjoP42DplYVcp1wId2cTO431I0IEyO3Mtq1f6Bu
DJinrZOYLXeL780fd3bS1Hf2+fu5H9/PPR+SpfPd5z73Vj72Kx9/vt/v52vuLgBAnAa6XQAAoH0I
eQCIGCEPABEj5AEgYoQ8AESMkAeAiGUOeTPba2aLZvYNM3vJzD4VojAAQHaW9Tx5M7tV0q3ufsXM
bpb0r5LudfdXQhQIANi9zDN5d/9fd79Sf/wjSS9LelfWfgEA2QVdkzezX5J0h6TLIfsFAOzOYKiO
6ks1c5I+XZ/R3/g6+ycAwC64u+32vUFm8mY2qFrAf9Hd/6FRO3fv+tf09HTX+2rlfTtp26xNq681
ah/y360Xxq5Xxm+3r7fyfC+MXeg6emHstmuzm9e2ej6rUMs1JyX9h7s/Hqi/timVSl3vq5X37aRt
szatvhby3ye00LX1wvjt9vVWn+8F/O5t/1o7xi/E2TW/JemfJL0kyetfn3X3L9/QzkP8r4TumJmZ
0czMTLfLwC4wdvlmZvIMyzWZ1+Td/UVJN2XtB72tl2eIaI6x62+ZZ/I7/iBm8gDQsqwzebY1AICI
EfIAEDFCHgAiRsgDQMQIeQCIGCEPABEj5AEgYoQ8AESMkAeAiBHyABAxQh4AIkbIA0DECHkAiBgh
DwARI+QBIGKEPABEjJAHgIgR8gAQMUIeACJGyANAxAh5AIgYIQ8AESPkASBihDwARIyQB4CIEfIA
EDFCHgAiFiTkzexJM/uumX09RH8AgDBCzeRnJY0E6gsAEEiQkHf3JUlvhOgLABAOa/IAELHBTn7Y
zMzM5uNSqaRSqdTJjweAnpemqdI0DdafuXuYjsxuk3TW3d/X4HUP9VkA0C/MTO5uu31/yOUaq38B
AHpEqFMon5Z0SdLtZvYtM5sI0S8AIJtgyzXbfhDLNQDQsl5argEA9BhCHgAiRsgDQMQIeQCIGCEP
ABEj5AEgYoQ8AESMkAeAiBHyABAxQh4AIkbIA0DECHkAiFhHbxqCfEjT2tfG4417u5RK1x4DyAd2
oURTZhLDBnQPu1ACABoi5AEgYqzJ423W19c1P7+gU6delDSoI0euamJiv8bGRjQwwLwAyBPW5PEW
y8vLOnr0EVUq41pbK6l2215XkqQqFOZULk9reHi4y1UC/SPrmjwhj03ValX79h3X5cuPSRraosWK
isUpXbp0ghk90CEceEUw8/MLqlTGtXXAS9KQKpVjOnPmfCfLApABIY9Ns7NL9SWaxtbWDurkyRc6
UxCAzAh5bFpdHVRtDb4Zq7cDkAeEPDbt2XNV0nbHTbzeDkAeEPLYNDGxX0mSNm2TJM9rcvJAZwoC
kBkhj01jYyMqFOYkrTRosaJC4VmNjh7qZFkAMiDksWlgYEDl8rSKxSklyaKuLd24kmRRxeKUyuVp
Tp8EcoTz5PE21WpVp08vaHZ2SefO1a54nZw8oNHRQwQ80GFcDIW2YhdKoLu4GAoA0FCQkDezw2b2
ipm9amYPhugTAJBd5uUaMxuQ9KqkD0r6b0lflXSfu79yQzuWa3KI5Rqgu7Iu14S4dPEuSa+5++v1
gp6RdK+kV5q+Cz3r+tv/feAD0sxM7XGeb//HLQ3Rr0LM5I9JGnH3j9e/v1/SXe7+qRvaMZNHT+Cv
E+RJL8zkd2xmY0ooqVQqqcQUCgDeIk1TpRt/dgYQYib/m5Jm3P1w/fs/keTu/hc3tGMmj665/m5X
zz03qA9/mLtdIR+6fp68md0k6ZuqHXj9H0n/Iukj7v7yDe0IeXQFd7tCnnU95OtFHJb0uGqnZD7p
7o9u0YaQR8dxtyvkXU+E/I4+iJBHF8zNfUkPPJBobe1gwzZJsqinnvqxxsYOd7AyYGe44hVogrtd
od8R8ogad7tCvyPkETXudoV+R8gjatztCv2OkEfUuNsV+h0hj6hxtyv0O06hRF/gblfIK86TB1rE
BmXIE86TBwA0xEwefYH95JFXLNcAQMRYrgEANETIA0DECHkAiBghDwARI+QBIGKEPABEjJAHgIgR
8gAQMUIeACJGyANAxAh5AIgYIQ8AESPkASBihDwARIyQB4CIEfIAEDFCHgAilinkzWzczP7dzNbN
7M5QRQEAwsg6k39J0u9KuhigFgBAYINZ3uzu35QkM9v1/QcBAO2TKeQB7Eya1r42HpdKtcel0rXH
QDtsG/JmdkHSLdc/JcklPeTuZ1v5sJmZmc3HpVJJJX660SeuD3Oza4EP3ChNU6UBf0DM3bN3Yva8
pM+4+9eatPEQnwXknZnErwJ2yszk7rteEg+5XMO6PNDA+vq65ucXdOrUi5IGdeTIVU1M7NfY2IgG
BjiTGe2TaSZvZqOSTkh6p6QfSrri7r/doC0zefSl5eVlHT36iCqVca2tlbSx4pkkqQqFOZXL0xoe
Hu5ylehVWWfyQZZrdvRBhDz6ULVa1b59x3X58mOShrZosaJicUqXLp1gRo8tZQ15fqqANpqfX1Cl
Mq6tA16ShlSpHNOZM+c7WRb6CCEPtNHs7FJ9iaaxtbWDOnnyhc4UhL5DyANttLo6qO3PSbB6OyA8
Qh5ooz17rqp2WUkzXm8HhEfIA200MbFfSZI2bZMkz2ty8kBnCkLfIeSBNhobG1GhMCdppUGLFRUK
z2p09FAny0IfIeSBNhoYGFC5PK1icUpJsqhrSzeuJFlUsTilcnma0yfRNpwnD3RAtVrV6dMLmp1d
0rlztSteJycPaHT00K4Dnk3P+gMXQwE50469a9gPJ169tHcNgA5iPxzsBDN5oMNCzLrZD6d/sFwD
5EDI9XP2w+kvhDzQZ+bmvqQHHki0tnawYZskWdRTT/1YY2OHO1gZ2oENyoA+w344aAUhD+QM++Gg
FYQ8kDPsh4NWEPJAzrAfDlpByAM5w344aAUhD+QM++GgFZxCCeRUO/bDQe/hPHkA7F0TMUIe6FPs
QtkfCHkAiBhXvAIAGiLkASBihDwARIyQB4CIEfIAELFMIW9mj5nZy2Z2xcyeNbN3hCoMAJBd1pn8
eUnvcfc7JL0m6U+zlwQACCVTyLv7V9y9Wv/2nyXtzV4SACCUkHcVmJT0TMD+AHQYV9HGZ9uQN7ML
km65/inVtr17yN3P1ts8JOkn7v50s75mZmY2H5dKJZX4qQF6yoED6/re9xZ06tSLunhxUENDVzUx
sV933z0iztPojDRNlW78TxtA5m0NzOz3JX1M0j3u/maTdmxrAPSw5eVlHT36iCqV8fo9ZGvzuSRJ
VSjMqVye1vDwcJer7D9d3bvGzA5L+ktJd7v797dpS8gDPaparWrfvuO6fPkxSUNbtFhRsTilS5dO
sI1xh3V775oTkm6WdMHMvmZmX8jYH4AumJ9fUKUyrq0DXpKGVKkc05kz5ztZFgLIenbNr7j7be5+
Z/3rD0MVBqBzZmeX6ks0ja2tHdTJky90piAEw99dALS6OqjaGnwzVm+HPCHkAWjPnqu6dq/YRrze
DnlCyAPQxMR+JUnatE2SPK/JyQOdKQjBEPIANDY2okJhTtJKgxYrKhSe1ejooU6WhQAIeQAaGBhQ
uTytYnFKSbKoa0s3riRZVLE4pXJ5mtMnc4h7vALYVK1Wdfr0gmZnl3Tu3KCOHLmqyckDGh09RMB3
CTfyBhAMe9f0HkIeACKWNeQ56RVA262vr2t+vrbx2erqoPbsqW18NjY2wjJQmzGTB9BWy8vLKpUe
0auvjmt9vaSNjc9uuinV7bfPKU3Z+KwZlmsA9Cw2Psuu2xuUAUBDbHzWfYQ8gLZh47PuI+QBtA0b
n3UfIQ+gbdj4rPsIeQBtw8Zn3UfIA2gbNj7rPkIeQNuw8Vn3cZ48gLZbXKzqiScWdOXKkpaXBzU8
fFXvf/8BfeITh3TPPQR8M1wMBQAR42IoAEBDhDwARIyQB4CIEfIAEDFCHgAiRsgDQMQIeQCIGCEP
ABHLFPJm9mdmVjGzfzOzL5vZraEKAwBkl+mKVzO72d1/VH98XNKvufsnG7TlilcAaFFXr3jdCPi6
IUnVLP0BAMLKfDsWM/tzSR+V9ENJBzNXBAAIZtuQN7MLkm65/inV9gt9yN3PuvvDkh42swclHZc0
06ivmZlrL5VKJZVKpV0VDQCxStNUaZoG6y/YLpRm9guSnnP39zZ4nTV5AGhRV9fkzezd1307Kunl
LP0BAMLKuib/qJndrtoB19cl/UH2kgAAoXDTEADoYdw0BADQECEPABEj5AEgYoQ8AESMkAeAiBHy
ABAxQh4AIpZ5gzIA6IY0rX1tPN7YCqtUuvYYXAwFIAJmUqzxwsVQAICGCHkAiBghDwAR48ArgFxa
X1/X/PyCTp16UdKgjhy5qomJ/RobG9HAAPPXDRx4BZA7y8vLOnr0EVUq41pbK2njhnVJkqpQmFO5
PK3h4eEuVxlG1gOvhDyAXKlWq9q377guX35M0tAWLVZULE7p0qUTUczoObsGQF+Zn19QpTKurQNe
koZUqRzTmTPnO1lWzyLkAeTK7OxSfYmmsbW1gzp58oXOFNTjCHkAubK6OqjaGnwzVm8HQh5AruzZ
c1XSdsf3vN4OhDyAXJmY2K8kSZu2SZLnNTl5oDMF9ThCHkCujI2NqFCYk7TSoMWKCoVnNTp6qJNl
9SxCHkCuDAwMqFyeVrE4pSRZ1LWlG1eSLKpYnFK5PB3F6ZMhcJ48gFyqVqs6fXpBs7NLOneudsXr
5OQBjY4eiirguRgKQN9jq+HG4vnvDgDwNoQ8AESMkAeAiLEmDyCX+uUerz1x4NXMPiPpc5Le6e4/
aNCGkM+xNE1Viuk3p48wdvnW9QOvZrZX0ockvZ61L/SudGPKhNxh7PpbiDX5v5b0xwH66YiQP/C7
7auV9+2kbbM2rb7Wy4EQurZeGL/dvt7q872A373tX2vH+GUKeTM7Kunb7v5SoHrajh+05q/1S0hk
6Y+Q3x1+97Z/rR3jt+2avJldkHTL9U+pdh3xw5I+K+lD7v5/Zvafkn7D3b/foB8W5AFgF7py4NXM
fl3SVyStqhb8eyV9R9Jd7r6824IAAOEEO4WyPpO/093fCNIhACCzkBdDuba/XQsAoIM6djEUAKDz
2NYAACJGyANAxLp6O3Mz+1VJn5b0s5IW3f2JbtaD1pjZvZKOSPppSSfd/UKXS8IOmdkvS3pI0jvc
/fe6XQ92zsz2SPqCpDclXXT3p5u274U1eTMzSX/n7h/tdi1onZn9jKTPufvHul0LWmNmf0/I54uZ
3S/pDXc/Z2bPuPt9zdoHWa4xsyfN7Ltm9vUbnj9sZq+Y2atm9mCD9/6OpH+U9FyIWtC6LONX97Ck
z7e3SmwlwNihy3Yxhnslfbv+eH27/kOtyc9KGrmhwAFJf1N//j2SPlJfnpGZPWBmf2VmP+fuZ939
iKT7A9WC1u12/H7ezB6V9Jy7X+l00ZCU4Xdvo3kni8WWWhpD1QJ+70bT7ToPEvLuviTpxoug7pL0
mru/7u4/kfSMpHvr7b/o7n8k6XYze9zMnpB0LkQtaF2G8Tsm6YOSxs3s452sGTUZxu5NM/tbSXcw
0++uVsdQ0mnVfuc+L+nsdv2388Dru3TtTwpJ+i/VCt/k7hclXWxjDdi9nYzfCUknOlkUdmQnY/cD
SZ/sZFFoScMxdPdVSZM77YhTKAEgYu0M+e9I+sXrvt/YwAz5wPjlF2OXf8HGMGTIm956EOCrkt5t
ZreZ2U9Juk9SOeDnISzGL78Yu/xr2xiGOoXyaUmXVDuQ+i0zm3D3dUnHJZ2X9A1Jz7j7yyE+D2Ex
fvnF2OVfu8ewJy6GAgC0BwdeASBihDwARIyQB4CIEfIAEDFCHgAiRsgDQMQIeQCIGCEPABH7fyma
f4Q4JLQEAAAAAElFTkSuQmCC
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<ul>
<li>Now, we load the second light curve and repeat the process for the second psd</li>
</ul>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[15]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">t2</span><span class="p">,</span> <span class="n">l2</span><span class="p">,</span> <span class="n">l2e</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">loadtxt</span><span class="p">(</span><span class="s1">&#39;3465A.dat&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">T</span>
<span class="n">errorbar</span><span class="p">(</span><span class="n">t1</span><span class="p">,</span> <span class="n">l1</span><span class="p">,</span> <span class="n">yerr</span><span class="o">=</span><span class="n">l1e</span><span class="p">,</span> <span class="n">fmt</span><span class="o">=</span><span class="s1">&#39;o&#39;</span><span class="p">)</span>
<span class="n">errorbar</span><span class="p">(</span><span class="n">t2</span><span class="p">,</span> <span class="n">l2</span><span class="p">,</span> <span class="n">yerr</span><span class="o">=</span><span class="n">l2e</span><span class="p">,</span> <span class="n">fmt</span><span class="o">=</span><span class="s1">&#39;o&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">Out[15]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>&lt;Container object of 3 artists&gt;</pre>
</div>
</div>
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJztvXt8VNXV8P/duXFJSIiAyEWGEItVxAt4oejzmKiU2lQp
1GrTYI3S9rWPBNBS9WdJE95Ynz6W10uxv7dvq21shfhYX++hVhQGRMQiIqBUq5AMAiIXkwAJEEj2
+8c+J2cmmSSTycxkLuv7+cwnk5kz++yzzzlrr7PW2msprTWCIAhCYpDU1x0QBEEQIocIfUEQhARC
hL4gCEICIUJfEAQhgRChLwiCkECI0BcEQUggwi70lVJPKKW+UEptDVF7f1NK1SmlXurk+98opY6E
Yl+CIAjxRiQ0/T8B00PY3oPAbH9fKKUmA4MBWXwgCILgh7ALfa31OqDO+zOl1DhLY9+olFqjlBrf
g/ZWA0fbf66USgJ+Dfyst30WBEGIV1L6aL+/B/6H1nqHUupS4H8DV/eyzbnAC1rrL5RSqtc9FARB
iEMiLvSVUunAVOCvXsI51fpuJvA/8TXPKGC31vraLtocAXwXuDIsnRYEQYgT+kLTTwLqtNaT2n+h
tX4eeD6INi8CcoFPrYlkoFLqX1rrgM1GgiAIiUDQNn2l1Hil1Gal1HvW3wal1LzONrdeaK2PADVK
qRu82jq/p7u327PaXKG1Hqm1Hqe1zgGaROALgiB0RIUiy6blRN0NXKa1/qzdd8uBPGAI8AVQBqwC
fgeMwDxtPK21vj/Afa0FzgYygEPAHK31ynbbHNZaZ/bmmARBEOKRUAn9rwOlWut/632XBEEQhHAR
qpDNm4CqELUlCIIghIlea/pKqVRgL3Cu1vpASHolCIIghIVQRO9cC2zyJ/CVUrIyVhAEIQi01mFZ
bxQK804hXZh2tNby0pqysrI+70O0vGQsZCxkLLp+hZNeCX2l1EDgGuC50HRHEARBCCe9Mu9orZuA
YSHqiyAIghBmJJ9+hMjLy+vrLkQNMhYOMhYOMhaRISRx+p02rpQOt31KEAQh3lBKoaPYkSsIgiDE
CCL0BUEQEggR+oIgCAmECH1BEIQEQoS+IAhCAiFCXxAEIYEQoS8IgpBAiNAXBEFIIEToC4IgJBAi
9AVBEBKIUOTTFwQhynC7YelSD+vWVdLQ0EpKShITJhRzzjkuiotB0twkLqLpC0Ic4nJ52LJlKfv3
38iJE0k0Np5k+/YSbrvtLRH4CY5o+oIQh5SWVrJjxxzgCWAxkM7Ro40UFJSwdetocnJcfdxDoa8Q
TV8Q4pA9e1qBZ7AFviGdo0eXUlpa2Wf9EvoeEfqCEIeMGpUEnMQR+Dbp7N3b2gc9EqIFEfqCEIdU
VBSTkbEVaGz3TSMjR8ptn8jI2ReEOCQnx0V19T1kZJTgCP5GcnPLqKgo7ruOCX2OOHIFIQ5xu6Gy
8nLOPXc0H364hFOnWsnKSuKCC0rweFzk5PR1D4W+QsolCoIgRBnhLJcomr4gxDlut3nZ7+04/bw8
WaSViIjQF4Q4w5+Qr6vz8OGHlaxZ08ro0UlUVBRLrH6CIuYdQYhDamo8lJZWsmxZKzNmHGbz5lZ2
7XoAE8JpHLorV5aI4I9SwmneEaEvCHFGTY2HadOWsmOHvTCrFLgX35j9RoqKlvDUU2V90keha8Ip
9CVkUxDiDJOCwXslbhKySEuwEaEvCHGGScHgLeSTkEVago2cdUGIM0wKBm8hX4wx8cgiLaGXNn2l
VBbwOHAe0ArcprV+x+t7sekLQoTpaNNvJDPzTkaMyGLfvoGMGZNEfn4xM2e6JGQzSolaR65SqhJY
o7X+k1IqBRiotT7s9b0IfUGIMG43PP+8h9WrK9m1q1WEfAwSlUJfKZUJbNZa53axjQh9QRCEHhKt
0Ts5wEGl1J+UUu8ppX6vlBoQqo4JgiAIoac3Qj8FmAT8Vms9CWjCBAMLgiAIUUpv0jDsBj7TWr9r
/f8scE/7jcrLy9ve5+XlkSdGRUEQBB/cbjduO3dGmOmtI3cN8COt9b+UUmUYR+49Xt+LTV8QogBx
7sYWUenIBVBKXYAJ2UwFdgK3aq0bvL4XoS8IUYC/ME7JvxO9RK3Q77ZxEfqCEBXMnr2YZcsWIvl3
YoNojd4RBCFG6JiaAST/TmIiQl8QEoCOqRlA8u8kJnLGBSEBqKgoJje3DCP4PUApSv2Yd989yvz5
HiIUOCJEAWLTF4QEwI7eefXVR/jkkwa0Xoo4dKMXsekLgtAr8vLg0UddXHLJYC+BD5DOjh2LKS2t
7LvOCRFFauQKYUHiwqMTcegKIvSFsOByeaiuduLCt21rpKmpjAULSgAxI/QVjkPXN3RTHLqJg5xp
ISx0LNknZoRowNehC1JQJfEQTV8IC2JG6Bu6M6vl5LhYubKE0tIlLFvWSlFREhUV4sRNJEToC2FB
zAh9Q3dmNbcbKitd7N5dhssF69bBrbfC2LFQXIz4WxIBrXXYXqZ5IRHZubNW5+b+VMNRDVrDUZ2b
+1O9c2dtX3ctrikqKvcac9029kVF5T7b7dxZa237C11UVC7nJcqwZGdY5LKoXUJYsM0IV1+9BFhA
VtYP2L8/mRkzKmUxUBgJxKxmJ18zuXhMTp5p05ZSU+OJZFeFPkKEvhBS3G6YP9/DuHGLOeecP7J5
cz3JyZqGhj9z5Mh/sW3bQqqrl+JyiYAJNW43fP55E92lWxAne2IjQl8IGbYT8S9/WUpNzUJOnFjM
l19m0NLyACJgwo/L5aGpqQEoxTs6Z8yY+3yic8TJntiII1cIGXl58PDDj1FX561FJiECJjKUllby
2WcPAweBJUAr0MpFFyX5ROc4TvaDQGXbdnv2HMXtFmduvCNCXwgZNTUeXnttL75CXqJ4IoWjwacD
To78LVvKfIR5RUUxa9feyWefZQAV2Dl4jh+/zzK7SfhmPCNCXwgZpaWVHD8+Dl8hX4wxNzjCxSwG
KumbTgaJ202b89lbgOblRY9m3FmY7OWXJ/n00eNxMXBgFlCOt9lt164HKC2VoirxjqhbQsgwmuYP
MVqmbVMeSr9+e7j++nKgjKKiJTGZ0TEvD265xcOnny5mzZoyPv10Mbfc4okagQ+Br7bNy4MRIwYi
ZrfERDR9IWQYTXMoUIK3TTk9fSTZ2b/myivhrLPgySejS0MOhPY1Zpcta2TDhuhISWw70F9+uZLd
u0/Rr98P0DqXUaPSKSgoweNxkZPj+xtZPJfAhGsBgJbFWQlHZwuyli+v1WVlWpeVaX3llbrt/erV
fdnbnhHooqe+IJiFcLJ4LrohjIuzRNMXQobH46KgoITVq5d45X0pYcQIF1OmeCgtrWTNmlZGj06i
oqK4zzXknhDNYY6dx913bp/v7Fz5eyoQ4gsR+kLIMCYbF253WVvSryef/COvvnqYfftaOXzYxOtH
k2kkUKLZHBLMhGSfK+8oHyEx6PsrVog77KRf27YtpKFhMf/6V0abwDfE3gKtaE5JLEXPhZ4gV4UQ
cjqaG2J/gZZtDpk4cQlZWWVMnLikzUna10TzhCREH2LeEUJOR3ND7K8AjWZziNjnhZ4gQl8IOR3t
38XAAmAQsbgCNNoXZgU7IUkd48REmeigMDWulA5n+0J00j6mHRpJSbmBU6eepb0jtKgoMitAeyvg
ampM9JFTbSq2oo/84e885ebGloM9XlFKobVWYWk8XLGgWuL0E5bVq7WeN69WT5xYrrOyfqEnTizX
o0bd3S7G3bzy838RkT71Ji49XmPao3ntQaKDFFERYom8PHj0URdbt5ZRX7+YrVvLyMsbSF9FmLjd
cO21jwWdQ76zOPgZMyopLydmC8JE89oDIXz06o5TStUqpbYopTYrpf4Rqk4J8UdfRpi4XB48Hu/s
nx5gMfAgL7ywpdtKXr7C0fnt/v1boi7/Tk+QUM/EpLeO3FYgT2tdF4rOCPFLX0aY+Gb/fB94AlgK
pNPY2MizzzqFw/3hm39+KUbop/PFF41Mm9a3NvDe+CoqKorZsKGsg00/1jKgCj2jV45cpVQNcLHW
+lAn3+vetC8IweKdhKym5mPgP4FfAvuAKnriUHYcngOAe3v023DTG2esRO9EL+F05PZW09fASqVU
C/B7rfUfQtAnIY6JlKCxVwXX1MwB7sFk/8wCTqendmz7KeWJJ0ppbEzHmHgqMQ+6SbjddV2uN3C7
YelSD273I9TXe4AMsrOHc+WVcykp6d1xB5N3xyaa1x4I4aO3Qv9yrfXnSqlhGOH/T631Ou8NysvL
297n5eWRJypEQmMLY1tQbdvWSFNT1+aVYHCE4RLgvzCCrT+QSk9z6NjC8dChXJYt+yfGPORo1g0N
JV2uN3C5PGzc+Eu+/DID+AuQzqFDjbz77n24XHd1+rtAEGdsfOB2u3FHKiIgVGFAmLvqrnafhTSM
SYh9IhUmmJf3C6tt+2+thlkatmvwDb/MyLg14NDNjIzrrN/Waii32l+kx49f0GmqaHPMi8Jy3BJ2
GZ8QjSGbSqmBSqkM63068HXgg95PQ0I8EynN1HG+2n9dwEMYLX0O5glgEWlphXznO3MCyqHj8bjI
yjoHx6G7EKPx38tnnzVY2n5HzDGHJ/+Q5N0RekpvYrOGA+uUUpuBDcDLWuvXQtOt2MbthvnzPZx/
/mIGDy7j/PMXdxsWmChEIkzQ7YaUlGtITS0BbsQp3+gC5pCWdg+DBjUycWIqt9++lOLiywOyqxsz
z0DgcRzzDkA6x44t7TTm3xxzK+E47mhOBCdEKeF6hNAJbN6J1xWcoSASY7NzZ60eOfKnlimnXMNc
DXk6JWWezskp1/Pm1QZdtWvnzlrdv//3e7S6eOfOWn3mmT/ScKfPcaen36rPPnth26rlnvTL36rn
3hyXEF0QRvOOCP0wIHbWzomEsArn+K9erfXZZy/sUfurV2s9a1atPu20BTopaaZOSrpZZ2X9WKen
z/NqZ7tOS7tODxp0d0BjIopFfCNCP8ZwnIjer1qt1Dc0fEPDNA3f15mZC/WsWaKdhRr/4x+6PD+h
ELi+E1NtB+dyd+1FWrGQJ4vIEk6hL6mVw0DH1MIe4H60Ho13euHDh0MTtif4Eu7Shl2tLvZ4AluH
4OvQrqS9j6C7WPsdO5qIZKimb6jtQbZte5wPPriPv/99JNOnz5UFXbFEuGYTncCafkdNcJHXS8w+
4aYvTR+B7ttXU+/6yaS9lj169AKdlPStiF5LTn97/lQSaeLhqYRoDNkUOqd9REV6ugcTKOU/bG/7
9taEivYJd3RTX0a0dL5CthJwjn3jxnqUKsE3rNQb58mkfc3h3bszaG19ECcqyWyfkVEStlBN58mk
Ev9PJZVh2W8wtB+vbdsWUl29tNOQ2oQjXLOJTmBNvz3O4hz/mv6MGQsSyikXz05Ix5/gvXirXE+Z
Ml9r3f7Ya61rYoZOTb2l0/HoaL/3v49Ro+aHTZt1+hBef0koiIdACkTTj20qKooZNuwLTLKvUry1
s+HD70PrlKBzvcci3WnDkSIcTxzGn/BPfBdvLWTTpsNUVXm8jt2uF5wEjOHkyd0odTNJST9gyJBy
LrjAeTLpvOawC6Ptm33k5WWHza5eUFBMdnYZ4VpvEEokNUXXiCM3jHhneqyvH0hy8se0tLSg1Exg
GKNHj2TmzLtYu/aPJNJFGg03pdsNlZVvsXz5E5w8adIsb9vWyKFDgecB8pc8btKkaxgw4B6OHfPO
5JnOyZNLqa5eYh27d4rmg8CjwItonY7WjQweXMaSJbSlnPZfc7gU73rDvUmJHEgSvMJCF1OmlHDn
nY/w2mslHDu2NCT7DgfhduTHPOF6hNAJbt5ZvVrrW25Zp1NTb/V5bB850jy2ezubUlNnxvzjaE+I
hsdv3zw63v3YrseOnaXz8n6hi4rKuzQ5+TNTjRz5Uz18+LxOTSAd8/B0PxYdF5v9XMM1evDgO3R6
eu8dlT0xt8WCkzQezIdInH7ssHNnrS4qKteXXTZfp6RM7/SG7mjbvTNmLtLe3vjhvintc9CV4DbC
9+ftbOPzNfhO0pmZP9JTpy7025b/yWu7Tk29qtPzvnx5rU5O9l7R272NvDsFordEwyQcSmJhYuoO
EfoxwvLltTo72xZm3kKlM43P+0YzTr3U1Juj/iL1p3mmpV2nb7llXUB9DudN6XsOjPDKzv6pXr7c
Vzgah2u59s266e+c3NlpWx0XgdnhjB0zeXpPatdf772iNzCBG07BHKrFbOEWtvEgzANFhH6M0DH2
uvMbNdyrRsOJOc7gUxSHv2+BCtHtGq5rd868f9d1Wx331X6VrZkQs7Jm+Qinnj7l7dxZq08//eaw
XS+hmlAi8QQX62abQAmn0BfPRgjxdVAm4ZvhEbxjqR1nk11ouwwoZc+ew1Efn2+O8xnax2sfPdp5
pslIEaiTuKKimJEjnwDG43vOvCNTum7LiWixf3PSa3sX5pzez6RJ5/Hoo45T1HsdQXr6HzntNM2Q
IeWkp5eRk7OE9PSZXH11JYMHl3HmmXdyzjkPsX+/y2s/9jWziPfe+6DXEUc9Tc/cPurp7LPv5Ktf
/RkXXji3XVTWQXbsGMDZZ5eGJDIqWqK+Yh2J3gkRbjd8/nkTTtRAMSZCw87dfpKkpK1cfvk91k1f
zMsv38nhwxl4R2E0NNzXZRWmaMBMWN4CzqbvI44CjdzweFzccEMJTz55Fw0NdtHzeqAEu2i6E57o
vy07oqW0dAl797ZSU/NPamu733dXZQrtmrc1NUa4NTSUYuryHrS2n4N35a6Ghkaqq3tXeaynRetd
Lg/PPruUvXvnAP+LhoZjwCLgfuvYPcAjQAOwlJMnQ1MhLRqivuKCcD1C6AQz7/hPn7tdDxz4LT1l
ys/8OhR9bbvBP1ZHms4jX/q+7z01AXQ8b8a3otT3dE7Oj3Vm5rweteUvmueWW9YFbIfufCGWbTKa
1efj7pjGfuRlHrOjkmyzX+hTjsSbw7krCKN5RzT9EFFaWslnnz2M0ciWYLTEVkaPPov//M8H/S6a
OXx4ILGouXg8Lr7znXtYvrykLcbdaLR9H6/dU63V43ExcGAWUI45jnSgAq0bGTduCdddV9yjttrv
e9Kkmaxc+Tx79wZWE7jzhVjp1vbnEa5rpqrKQ3n5I+zZ46G5OYNx44YzYcJcAD75xInh//LLJox5
bzhOoflW4IeYJ6Uq4MGQ97OiopjVq8usJ4xngJOkpW0lJeWeLgvTC76I0A8Rzs2ajvdj+6hRZZ1e
jLG6iMQcz+VkZY0OWCBGsm+dmU46237EiIF8/LH3OfAAlbjdO9i/v9JvlsxA9u12w+23/6xN4Bu6
zqDpXBP2it1dwI+B3xOIySlYqqo83H77Ly1zoyne/vHHjRw8WEJ6+iB27XoAe9LKyCgEzgeScSal
JGAocI7Vt9Bf2x6Pi2nTZrJ8+a/blI3m5kZWriyjrGw00WwSjSrC9QihE8y8E8yjZ0dzwHadkXGd
njLl7m4XBgmhoze57bsKI+x9lS3bVOKExqakXKMHDfqPkEewdF683d9n2601KIva9dHbrBPabJz2
OGdldW3eipewTiRkM/oJJpzM+wLt33++TkryXXzjL75cCD2+565nk7fzW0cwZ2Rcp9esWdeFIO26
ypZTmct/X8aPXxByoWZCiP2FEfsPLT799Nt0cvKNXpOTXZZyioYfeAn+RVqp7+uzz14YolXDna99
8d0utsM6wyn0xbwTInpqSwZfc8Ds2YtZtuyXeJsB6uoWU129hMLCwEwVQnB4n7vt23fQ0hK4LdqE
EfpG1Bw92sg115Twla8MA/4DJyma8X2kpJRQUOD/nPqam/xHq4walcmqVaG9JoxZ6RQdTTL+zUkT
J44hK6sYt/sR6ut/DmSQnT2cc899mmHD4JNP7Psghfz8B3pdZMUJ11zitz+22ajzsM7OC9IkGiL0
Q0RPbcntiZVwtECSc8UaHSffwG3Rna1ZOHlyKU1NP8DYuUvwdu4XFGRRWOjqtD+OXT9yPp+KimJe
e+2XHDjgm8gtPX0PGRn38cUXD7R9lptbxh/+UEJOjgt4uJMWQytgnfujmPaTaHZ2GQUFJe228yb6
7qO+RIR+lBArTl3fsnmhib+OJioqitmwocxLW+w6i2RXaxbOOONMkpPttsra2nr44QUB9mEO7QVc
uDJaejwuCgt/zquvPkJNzc2kpWUwevRwbrihjCNHCMphH0oFwbk/XDiT6EnGjv0nq1Y9ZE1AsXMf
9SnhshvpBLPp95ZYsUXGe6x0Tx2By5fX6rQ0/2sWrr66PCinot2HnJxynZo6X/frN0unpf1M5+RE
xikZKmdoKK/pQNuKlfuoOxBHbvwTK1EHsZwzKFysWbNOZ2TcGvOCxsZfda9gnLGhVBACvT9i5T7q
jnAKfTHvRAnmcdcFFLc9Dq9eXYmxYUaPvTxaH59DaUroaVutrZdz223Rt2YhWHyre5liL1qbuP1T
pwI35YXSvh6oz6y3vrWEIFyziRZNv8fEwqNptPaxL0wJ8YrzNNe7NCEd1z/4zzoaSgKppRALIOad
6CZUj5SxYC8P1bGG+jE8lHmMYuE8hBMnt07PFpa1x6ltsFK3L07T20nUn3APtJZCLCBCP8oJlWaY
SPbyUGrTHatR9W7sEuk8+MNxTvc+adojj6zTSnVeQS7Y/vkT7lOnxmYCQ3+EU+j3yhCrlEpSSr2n
lHqpl1ammCZUeb4de7k3fW8vDwe9GbP2+dx/8pO7aGkZR6jGLpHOgz8KC11MmnQOJoFaGd559gcM
KOk0z74/Nm58Ha0vxjnPdi2AB3nhhS1B5divrq6krs6+djzAEurq+vPOOzuQGP3u6e1VPB/YHoqO
xDKhclj1tJhFLNObMbPXCmzbtpCGhsU0NIRGQNkk0nnojNzcgfguLCsDfsWZZ2bh8XTvxLUx5zkV
p2DQUmAhsJjGxr9QXb3Uqh8ROM61493e/bS0TCCRJ+tACXo0lFKjgW8Cj4euO7FJqDRD74pKWVll
TJy4hIKCkh7dZOGkvYbdm2pIvRmzjk8JqYRCQNlE+3mIBM7ENxQznneTm3uMV19d0KNoKHOe7Qpy
j9N+5XLvnogrrfYOWn+PAHNJ5Mk6IIK1CwF/BS4ErgRe6mSbcJm8oop4ciB1Rajt8MGOma/NvVbD
gpA7ChOdUC7QGjnSTkgXmjq/vsnX2mfz3K6Vmq4HDfpZzMboax1em35QcfpKqQLgC631+0qpPEB1
tm15eXnb+7y8PPKiJeA8hLQvmzdyZBIVFSVtS8PjhVAmswp2zHzLUtpx5Pdb73+FUjsZP34k06fH
bpx8NBCqeHe7LOXq1ZV89NFRTp7s/RoP+0nMlLps//RwDlr/X66/PrYSrLndbtyRKo4dzEwBPICp
7rAT+Bw4CvzZz3ZhmwmFyNOXUS3Ll9fq8eMX6P79v6FhpjYpfUNfkk8IH12loQ6GUEdtRRNEW/SO
1vo+rfUYrfU44HvAKq31D0IxCQnRS19FtdhVnf71L8Xx4xdjKjvNxzjyJFojVvB4XJx11kySkn6N
7Xw9erSKb33reaqqeubMBfO0WFAwEnHe9gwZGSFgCgqKyc72jWoxaW2Lw7rf6upKDh8ejkn5m4RT
LzYXueFjh7w8GDr0dVpb7brKAOkcObKY6urKoNr83vfm9sk1Gcv0OveO1noNsCYEfYk5amo8lJZW
smdPK6NGJVFRURx3dnxv+sp3YUL0bGHvnfvnGkzETnQVZxc6J9T57hPFnxZKJOFakFRVebjjjqVe
i0QaWbGijN/+tqTLAhmxir8kZBMnFkfEWepb1akY41ycAzwP/Aw7t3pa2lamTbtHHLhRTMfC76aw
zJ49R3G76RAOGkjyu5wcV0w5bfuccDkLdBw7cn3rmIbeiRiN6WH7MgnZzp21etgwu1i4ne732+LE
jUF8C78719KYMfP8XkuJmvyOaHPkJjoulwePZy/hciK2X3G6bdvCoFYuhpJQpZoIhJoaD7NnLyY/
35Qv3LABCgt/zvjxmtTUm0lPL2XAgIGIEzf28HhcDByYhVOSESCdXbse8HstBXLdhXLRYCIgQj8I
SksrOX48dLle/LUfKQEbKJGqPVpV5WHy5KUsW7YQt3sxy5Yt5I47ljJlCnz88cM0Nz/H0aN/Ztas
8YgTN/awC78HmosnkOsuGpWkaEbukCAwF2Locr34bz+6tNhIhWv6JtMCSKeurmN0R19FEgm9x7mW
us/FE8h1F41KUjQjQj8IzIUYulwv/tuPLi02UknIAp3wCgtdbNpUQlHREvLzyygqWsKmTfHpRI83
nAm7+1w8gUzu0agkRTMSvRMEBQXFrFhRZmmk5oLMzi6jvLxnyagCaz8d50Lvu1BEe+l7qEsCtg97
zcy0Uyx0v1RfojZiEzvMcsqUUvbv71pYBxKSGa0lPKOWcHmIdRxH72jtVO7Jzw9PWbZwtx8N+Eu6
lpn5Iz18+DyvKJ1Fun//7+vrr18Yl2OQyISqQlk8JjwkjNE7yrQfHpRSOpztC+EnlAXH2zN7tnHU
ttfQxo9fRFMT7N7dgLH5HgQeJzl5J5ddNpKnnpori2/iAH9rXbKzg1vrYj8xOk8Dsb1QUimF1rrT
RJa9Qcw7QZBIK3HtyAjbUbZtWyNNTWUsWFCCSYUQPB1tsR6gkv37DzF4cCPwZ5xMmotpaUln/fpG
Jk+O30VwiYQ5fyWUly9izx4Pzc0ZnH76cDZsgBEjOi7U6gox9fWAcD1C6Dg170TyUdK7+POMGQv0
9dcv9CkEHQnCWSTct+32edF/bv1N7CLl8U6iLr7qDqQwevQQTiHoje/kUtthBWOkbJbhTKfse8O3
H1f7/8QuUh7vROp+ijXCKfTFvd1DIhUe5sSrHwTuov0KRn+x6+EgnOGj3mUJk5PbF7UuxkRGtYZt
/0Lf09391H51dk2NLLjqLXLn9BAnpNCb0AshczPY9uxzcApB22GiS3C768K+1Dyci6Dy8uDRR138
5jdlnHXWcHzH1QXMISPjXZQqIdzrA4S+wXehln1tl5KZedjv6uzJk5cGlXtfcBBHbg+oqvLw+usN
QCmO5t1lZtKUAAAgAElEQVRIevp9FBTcFdJ9mZvBXryyBPgn8ATOYpZGGhpKrNWL4XNoRiJ1rcvl
4csvO45rZubvKCn5HUeOEPL1AUJ0UFBQzPPP30lTUwbOuf8nL710N6+8Mo+WluV0fMJdQmGhOG2D
Jlx2Ix2HNn3H/lhr2Zx/oWGRnjFjQcj35VsKrlbDdXFr+4zkuArRx/XXe2esXaedIveJ688h2gqj
JyqO/TEd74LRhw+HXusoLHTx9NMjeemlRowmb5t4vImPpeaRHFch+jh82E7A5gH+C6iiY8EcG/Hn
9BYZvR4Q6Zw4vqXgBkZ035EkGnMNCZHDOf+VwPk4E0A9Jr+V+HNCidxVPSBSScdsvJOKnXtuHamp
vjdAvGSVlIyZiY1zX50EUjH+q6XA/djJDOFGzjyznIKCkpAkNUxkJA1DDwhnSoJAiLel5t7E87EJ
XWPfV08+eRcNDfcD9+CYeGwaKSpakjCrbsOZhkGEvtAliZRyQuhbamo8TJu2lB07wESs+ZKfX8aq
VYsj3q++IJxCX8w7QqdInLQQSezFellZNYiPJ3zIKAqdEmgVK0EIBfZivc2bH4qo7yzRkJBNoVOk
IpHQF4SrYI9gEKEfY0TSxi4ViYS+IC8P8vJceK/ZEEKHOHJjiFAWnQgEx7Hm7C83t4yVK0ObhkEQ
BF/EkSsAkbexe2fBzMoqY+LEJRInLQgxjph3YgjHxm4qTJm0w0ns2FEXlv3JY7YgxB9BafpKqX5K
qXeUUpuVUtuUUiIVIoCxsdurFRdiMm4uZNOmwxJGKQhCQAQl9LXWJ4B8rfVFwIXAtUqpS0PaM6ED
BQXFpKXdg5NeGSCdkyeXShilIAgBEbRNX2vdZL3thzETicc2zBQWupg0KX6zbQqCEH6CFvpKqSSl
1GZgH7BSa70xdN0SOiM31zvbpl1taBE1NR9IKTlBELolaEeu1roVuEgplQm8oJQ6V2u9vf125eXl
be/z8vLIi0RmsjimoKCYFSvKqKubg3clrdraRiZPDl/4piAI4cPtduMOd+1Ti5DE6SulSoFGrfVD
7T6XOP0wUFPj4aqr7qK29s8kciZCQYhXoi5OXyk1VCmVZb0fAEwDPgplx4TOyclxMXbseYhtXxCE
nhKseWcE8KRSKgkzcfy31npF6LoldIekSBAEIRiCDdncprWepLW+UGt9vtb6l6HumNA1Um1KEIRg
kNw7MYxUmxKE+EQqZwl9glTNEoS+QYS+EHEindFTEASHqIveEeIfqZolCPGJZNmMA8JhhpGqWYIQ
n4jQj3H8mWFWrOi9GUZCQmObRzY8wp9e/BMfV3/MiaQT9Gvtx9kFZ3PrjFuZccYMSh8qZc/hPYzK
HEXFXRXkjJU6hImC3MExTrjMMBISGttMOjWJ7a9t58R1JyAfTgw+wdaXtnLvj+5l3MxxLBu0DHeO
m2WDlnHBrRdQta6qr7ssRAhx5MY4+flluN2Lrf+c4irDh2/j7bcf7pWZR0JCY5ecqTnU5teadIjv
Ad8EmoAVwA1AmtfGzVB0pIinfvNU5Dsq+CWcjlwx78Q4jhnmIKa4itH6v/ii9wnYcnJckscnRqlr
qTNCfh1GyO8D3gDG4CvwMf/vPbw3wj0U+gox78Q4jhnmcdoXV5Fom8QlOzkbNgHDMQL/bWAQkAwc
ANzAauvvAUhKFlGQKMiZjnEKC11s2lTC6ad7kGgbAYwTV+UqOIQR8uuBoUA2cCZG+58KXAS0AH+H
De9sYPS1o7lmzjXU1Nb0VdeFCCBCPw7IyXExbVoujtPVJrhom5oaD7NnLyY/v4zZsxdLcZYYoqa2
huol1dRsq4EBwARAYe70ycA7QAHG9PMOZjIYAI0zGtkzZQ9vnPEGE26ZII7dOEaEfpwQimibmhoP
U6feyfjxi1m2bCFut/k7efLSgAuv19TWcM2caxhyyRCSXEmoryjUKIUaoVBjlPl/jCL50mTGf2e8
aJUhpGpdFZPnTOb1D183gv3fME7cY0ArMBAj5NOA94GzgK3AdTh2/jQ4dsUxqp+pjnj/hcgg0Ttx
RDDRNvZv3nuvjk8/PczJk4OBCoIpzlK1roo7yu6gLqsOdmCEztvAEYzWaQuhScCHQAskHUhi2uxp
3Ft0L3lj84I7cAF3rZvb593OxxM/hleAqzCC/RjGpj8QyAJSMefhLWA/ZhK4umN7+TX5rKpcFZnO
Cx2Q6B0hIHoabeMs7JoDLALut17B+Qaqn6mmbkodLAOKMLbkNOAk8F3r/7MwAscKIWzd1Mrfq/5O
7Tu1TC+czsyvzRThHwQuXHh2e4wJpwnYgBH8aZionbGYCfgEUA8MxkwAyUCz9Rt7kmgAd5qbcTPH
cd2N18k5iTPEvBNn9MQe//TTj3nV2j0HeAYYR7C+gT2H9zhaZRpw2GrK/v8Yxo5sx4y/g9E6vwsf
T/yY6mXVuJB1AP6oqa1h9rzZ5BfnM3vebB+zmLvWzbXzruV4xnEjwLNxBD6YieAT4EZgDvDvMGD/
AGjA2PxfxETxTMBIhFmgZ2lqzq2RcxKHiNCPI6qqPEyevDQge3xVlYfq6r0YQb8Yo/adBH4I+PoG
UlJKAvINjMocZbT5Y5iwwC8xGmUTRhgdxoQQ2jblfHxsyTsu2EHpQ6XBHXyAdCU8oxXbVu+9inby
nMltzlYXLnZ4dhjhvhroj28s/mBgCqS/kk7W21lMPDCRa++8lvOuO888BTRjJuLNGNPbequd9bBj
bPjPiRBZxLwTR3SekmEJhYVlHbZtaRmHEfTpQDFQgjHylgBLMN6/VgoKsrpc4OWudVP5YiUvrnrR
RIpcCvwNU1RzMkb7fwUjfGxzgm1SWA9ozO8uhO37t/d6HDqjal0VP7rvRzSe3wgfA/WwbOUyRowY
wf/6n/+LwisKuzzG599+ntUvrGbnlzvp19IPlaQ4ro4z7rRx5H87P2xmkDazWZrpM++bxVc/mfcT
NvxsAx++/iGnmk+ZJ6rLgL9jxtdb8A+Eb1/5bZ9Vt+5aN7d9fBs1x2vMOdoPvAtcTJvPhZVQPaQa
d61bTDxxgmj6cUR3mTFt08+UKQt49tktGK1+K0ardwH34Aj+MuBusrOPcdNNC7rc75aNW/hL5V84
mnfUCPKzgNOAfhhBVIARIJ9hTAivAp9j7M5nYoTNl8ALsH/Xfty17l6NQ2c89tvHjMB/2/rgauAM
+PzU58z+4Wy+8ctvdLpvFy6ql1Wzbdg2Go828uWXX3LoskM0XtHItrO28ULlCz5mkM6eKKrWVXH2
t84m44IM0ial8dXrv8r8qvldHvOew3scgb8WM5ZJ0JDSwOMVj7Ph/Q1mnFdj/k4HVmEEP+Zv7pZc
Ku6q8Gk3b2werpEuM++vwUy8F2Oc7RMwE/RwqP+inqTdIiriBdH044iuMmPW1HiYNm0pO3bYNvwJ
GOFuC/qlwOXAaaSlFXLWWV/loovSqago6TYC6JGHH6H1m61Ga/93oBrItHaxGmPG+S7G5PMmRjAN
B76CmXNmYoRaM+x5ZQ9bNm4Ji1b56a5PjUabDpyPEW6Wiam1uZW3Xn4LV5H/Yy19qJQdY3eY35zE
iXW3nlR2te7ihnk3sOmlTU4U05Q6GGKOa8WcFXz/u9+n8k+VNCY1wrfMfj9u/pj6x+tZ8DXfidV+
snj5mZep3V4LozCTZBrGKbsW6AdNSU1mXAcAX3P6A8AqSD6ezLnjzyW/KB8PHnLwzaY5KnOUeZNu
/e5DjInHO8pqFFx565VML54uUVZxgIRsRpCa2pqwprTtqtrVE09U8sYbC4Fy6+Wdq+cg8DjJyTu5
7LKRPPXU3B4lVht82WAavtngCPhdGKE0EOOotUwFaQfTuPuOu/n98t+zP3W/0fBn4kSOaKAVRjWO
Yvem3b0ej7Xr1nLL3bdQ11JHdnI2DY0NJpy0BSM8p+JEutSbz5IakkhJT6GZZlJPpDJg2ACa65s5
oU6gh2szkb0BfAPjiM632njLDGPmkEwGqUHsmbbH17xyANL+lkbzqGYzJu2Oeca4GbxQ+ULb5jW1
NeT9jzx2fWWXabs/5mnoMowJ5rg1vsdps9l7T2I0w8CVA/ngmQ+6vMaq1lVx89ybaTnRYj4YhtHw
J3RsL+ONDLY+vVXSMEcAKZcYB/hof9ZNlL0hm98u/m2XtuSeYsfd79hRx759n3HGGWeRmzuQHTua
2LDhP4D7MDGVEIqsnGvXrSW/KJ/W2ZamPxVH2NUDm2Bw82AKLi1om+Rmz5vNsveXmegR25zwTdrG
hedg6oVTSeuX1uPJ0Z5YV21Zxef1n7dp1DQDT2GEZxJGuE3GTE5p1ns3RuDZ6wnOALZjomHACXHc
Y333b5gnhw2YJ5urMMJ8FTDLq1O7rPZarbYuwpkwrL4lvZjElIlTSOuXRhZZuDe6afh2A6wEpln7
ecvq+1CMdt+Kib0/DnyHNnu/7SMZqoby1z/+tVvNfMacGby07SUz96dinsKS8T2XINk4I4jE6ccw
thBa+fZK6r5e5xOtUjeljupnqkMq9HNyXBQUFFsa/5+prU1nw4ZG0tIKMUnZ7JDMdIwd30TqXHPN
kh4L/Lm/m8tv/89vjaZZDVyBo+2nAQMhNzOXlY+t9BHaBTcW8PzG52n6ssnkgZmGY5Y4AWTC+nHr
2wTiijkrApocfSbWAzhmI6y/12H8Ca3AF5iEZLap523gKM76grOsv/bk8DZG0x5u9bMOJ4vlcBzt
fS2+juo1mMnte8Bz1vFtwjdyaR+06lbW71lvfnfE6mOT9T4N+AgzYTRhBL/C3L1HMZNAM+Y85Flt
NsP0I9MDMsU8UvoIa4rW0DCwwfRvLzASX4FvjaFk44x9xDsTBty1buZXzefM6We2FazYn76/05vI
Tl0w+uujybggg+RLk0kan4T6qiLpwiSGXjOU7/yf7wTs4HSieA5izDcP0tw8FhOyEnxIZof9/Lna
aOgDMIJxFUYYVgF/g+y/ZXcQ+ACFVxTyQdUHDB081Giq72G0ynyMpnkNRrP9b+AVqNtbx32/uM/n
+P05StuiXJowQrH9eA+D1P6pDBowyJhJDmFMPR9a22ZZfzXGhHKaNUwfYsw5V2AE4jCMZm9nsUyy
fmfb3C8BnscI/EacMNXB1u+/tP7fhXn6WGm1d741fkOs/m6y/h7ACP8pmLDXVqvfrVabdqiml+O2
39/7dXDcdoYHD7fMvYXRo0abD44Bu73as2mGkZkjA2pTiF5E0w8DdqTH7mO7HbOFomMYXTMcP3ac
yXMmU3dOndHa7NQF2cA1oNM0h5oPseGZDSyZviSg/ZsoHt/8+kb6zMBfSOYll3QdktkeO0Sztr7W
COeDGHPHTb7H9s0j3+zULJMzNofBXxnMwY8OOhp5PUbo7cMI3ato8wfUemq54Z4bOOY5RtOeJjM+
12HMEJvg6W8/TXpquhHM71iH5me8R2WOYtXyVUybO40d/XaYvg/HCLrj1m/aa9G2D2AMRsC+C1yL
0eqHeP2uHmPWWY+T8iDDGp9mjND+G3AKk6ZiKyas9QDO00QaZhIZbI3FYMykMBxjw7/U+l0qZuJa
gxOqaT8ttcKwIcP8Om79kTc2j7yxeTxa+CgAi55bxH8u/k9aV7T6mN36r+lPwa8Kum1PiG5E0w8D
pQ+VsuOCHY4GCHAhHbSx7A3ZqCRltNMPMZqurXVegs8imb3n7GX2/zc7oP2bKJ6O+fVhKRkZviGZ
ubnHWLas65DM9mzZuIUnf/+kEZTrMVpwu2NTrygKbuxaQFw2+jIj1NIwtvPXMQLxTRy7+lRMaOW1
cGjTIZqON0EORuDbq3rPh5bsFg4fPeyYTqZiTE7efVqhWHDnAjx4KCgqYNCpQca09AXGrJGOeVo5
E2OSsbXoL7za2Y8JcnrL6re97Srrf/tJoR/m/CdjBL8dTglGq38TEwGUZG37obX/bMyENRkzmUzG
CHhbmz/LOrYjmIl2MvCy1Xae6dsANYAHSx8MOsqm1l1L67daTXv2NfgmTD9rekhNkULfIEI/DLTF
VdvaPRgBchnwJgx/bThFR4rY9MQm0vqlOYLC/tuAr8ljKvA2/GPjPwJaSVpQUExy8k46xuyfw3nn
ZVJUtIT8/DKKipawcmX3IZk2ttnqp/f81Gi4F1nHOAxH07QmqQyV0a2AKLixgLT6NKP1bgSux2jI
STihg3abqzDCz475b8IIOzu8cAJmjA9hxjETM4E857ySW5M5kHygTavNPTfX9P0Kq72TGG38XeBK
jIAfaH2/AnMuNZCLEYgNmElnpvW7RpwnhVbrNcHazj6WU9b/g3CukQG0xd4z2WpnEyYE8y1rW29t
fgcwHFJeTTGTwNXAm9D/xf5cv+96Pnzyw14J57br1/YR5Jt9HOZw0G0K0YOYd8LAqMxR5ua3tXsv
x2Z2ajYPP/Bw203Ztq09QSiMBu1t8tgAtMKpm07hTnN369wsLHTx2GMjWb++Y8x+enp20CUQXbio
+t9VtPRvMX3dhxGUfpyIQ1YP6aQVr35eUcj+xftZsHCBo/EPwJg7GvGNFU/FCNwmzMKulTga8hkY
U8t1mAicZkwUywx8zDunmk9R665ti6yZcPoE3m9+35htrsHRxk/HCPYTmInlOuvY3sRE7tjHO8o6
/jSrX4MwTyuXYEw1GiO8L8MnyRwrMYLfvkbWYiarM6z9/zvmnG+0On4QM+l80+pHMwxaP4ip10xl
79a97GrYxZgRY9pWBfc2pLLtmmxnGhN7fnwQtKavlBqtlFqllPpQKbVNKTUvlB2LZQpuLCB7Q7aj
nb0Jyc8nM3XnVDY9sclHULdtay9kmoARZrajz40ReN+kg3Pzj4/8sdM+PPXUXHJzfR22ubll/OEP
xUEfV+lDpRzgQFsmRvJxFmN5mVGSViSx4M7ATEbzvzuflMwUJ+LlQozWewBfLf6I9bKdpy2Yp40v
8c0JfylmHG07vDftok/axr4ZI/ivwAh52x9wLkaLXm/2m3U0i+m3TWfQ+kHOBG2nlfgH5hxNxZmk
DkPyvmT6/6M/WWQxauUopnw+hRkXz2DE6SNMagpbyA/AmJFWWZ99A5gFmadnsrxqOTuf30nRkSLy
a/IpOlLElj9t4dWfv8rW/95K/av1bP3vrTxa+GhIFk5V3FVB7pbcblf0CrFJ0HH6SqkzgDO01u8r
pTIwt+MMrfVHXtskbJy+Haq59/BeRmaO7DLW3N52x94d7Nu7j/11+2m6uslohDdgtMRczAgX4MSd
vwJ3/OQOHrv9Mf/tBpFfvyvyi/Nxf+Q2GvAJHMftLoxmmwrJR5OZPW82xTOKAxZA/cf358TgE0aA
XoUTkz4CI/DfxkwyUzGml2yMk/Uq4P9iVqh654Svx+Sf8Q7ZBL9x5u3P049v/DH3Lr2XjZ9u5NQ3
TvldU+F9vjZ/spkTA08YDd47Nt9i+GvD2ffWPr/HbS8eq2+pp5/ux+XfuJwP3vuAmtoa0gakMXrE
aMruLou4Hd07z9Cuhl2MyRoT1txCQkdiYnGWUuoFYKnW+g2vzxJW6PeGqnVVzL5tNq1ntBph5sYI
wlk4Ra5TgWY4Pfl0vvjgi4j0a+pNU3n7H28b52UTJsdLO6F69b6ref2J13vU7lemfYVP93xqFk5l
YJ4/92LMHckYrR3MWFTiRLjMAl7C+KXbLyQ6AKkbUjk5/WRQi+ECmbRt4fjqslf51/Z/QWHH8Rj+
2nD2bfQv9AWhM6Je6CulxmJE03la66Nen8eV0A93GgVvhk4ZyqEBh5xUAa9hnIU91PZDycUzLmbT
55uMELYjVOy87c2Q/mY6f3jgDz3WTKvWVfGj+T+isaHRcWg3QfKAZFpOa3EcnlOBZzERN26MR+oE
ZjJolzJAvaJ4eNHDbHxzY0BPW71l6k1TeXvX2z7jwSr42pivsf6/14dln0L8EtVC3zLtuIEKrfWL
7b6LG6EfqTQKNsMvGc7+y/Y7wuyvGK13FmHLVdMVVeuquPmOm40QnoCZfA5YfRgIo/uPZu1f1wYt
VP1p1mVPlfGXP/3FOEztBGmNmDGox8Sof45xvHrl+GEvLLpzERV3RM4GXbWuitvvvp3DKYfNU0gr
ZJ7K5HcP/k7CHIUeE7VpGJRSKRjd6y/tBb5NeXl52/u8vDzy8vJ6s8s+wyenOYQtjYLN1yZ8jRc3
veisdLVzztux6V5a7Z5X9lC1riqswuWx3z5GS1aLk4jLS6PNeCODtU8HL/DBLNZqn9OldX+rWQT1
NmaSmYzxc9jRMzOsDXdA8t+SIdOEin675NtcXeCn8GsYKbyikCnLpwTsxxEEb9xuN263OyL76pWm
r5T6M3BQa31XJ9/HjaafX5yPO8fd8fMwFZBe9Nwifv2rX9Pcv9lo1LMw2r6d6MsO53wfaIGxp8ay
avmqsAmZ4ZcPZ/+l+82E41XYnD0w/bbwpNxtG3M7bLXe+iIFE9NvTTqZ6zL53S9Foxbih3Bq+r0J
2bwck57qKqXUZqXUe0qpb4Sua9FFW+yyN2GMXb5/1v189MxHFF1YxODMwUbA/RvO4qN6jAC2VqzW
5tf6lNALNS3HWpwQ1A9py9k+JH0Ir/781bBEdbSN+WBMCOP3gFkwY/IMn/DF9598XwS+IARI0EJf
a/2W1jpZa32h1voirfUkrfWroexcNOET0w1tNv3uUg30BtvkUXBZgRNLno6z+KhdjVnb3BRqHv3r
oxw6eMiJIc/DpCI4CePPGR/y/dl0NuY3/fAmnvrNU6yqXMVTv3lKTCiC0AMkn34P6EnsfSjxcSLb
RT9S8Y1NB6iH4euGc86Ec0IWXVS1roqi4iJ0pnUe7ZDKVlBfKpb9bllYtey+GnNB6EuiOnqny8bj
TOj3Jd7CL5NM3t3+rlOdyY5kOYWzMtVaRekvtXGgrF23lmm3TKM5rdlv1NCQ+iEc3HowJMcnCIKD
CH2hA23a/zl1JmD2OGaFbAgWS4FXgZRWTNTQzI7bdLXaVBCE4IlKR67QtxReUcimJzYx5M0hJumX
XemoHngRs3L1BXhzzZusXbe2x+23FUhpxuSF8ePEzh2T25tDEAShD5AsmzFMztgcktOSTTriZExo
pxtzVr8PpEFzczNXzr2SO27vetVu+9XGB08cdNLrnsBkj7yGNtNR8opk5i6dG94DFAQh5IjQj3XS
MAL/TEz912R8UwqnAQXwwh9eoH57vd8UEm2rSU8dNpkswdjv7UyTGzBXynOmvZTjKSy5f4mESQpC
DCI2/Rjn8sLLWT9kvVmpmoGx7d+Is3DrGCa2vz+mMMiHmHTEdZCWmUbqyVROnjxJc2azyaVzNuZp
4WLgnzjVo6zFWElfJPHQ/Q8x/7vzI3qcgpBIiE1f6JS5d8wlc1umyS1/DON4PYBZuDUBc4bTMQL/
PUxaYoDroTmzmcYJjTS3Nhu7/dmYlAf9MNk80zHpFoZhYvOvhtYbWtn45kYEQYhNROjHOIVXFPL+
k+8zlrFGK5+KMfPkA5sx5fSO45QffA/4lvWd/f8AzITxLsaMk2T9PoNuC5EIghBbiNCPA3LG5vDA
gw+YerNnYPLLN2EKj7yLCblswSm+3YRThWogJu7+BGbBV5rXy7vGr00zJCXLZSMIsYrcvXFC4RWF
PLj4QVL/nmoE9lsYDT8FI9j34hQU34R5KqjHCPxMjNA/jBHyp/Ct8duubN4fSv8QseMSBCG0iCM3
zqipraHoniLe3vi20fj3YbT/LzDO3P4Yof51jBloKsaOn4QpQZiCE/d/Fc4kUQdDU4fyj+f+IWkQ
BCHMyIpcoccMnTKUQ/0PwUGMNj8Y+Com/PIYprTfSkwVqn3AWoy2f9J6nYaZLKw8O2emnMmaP64R
gS8IEUCid4Qec3bO2SaS5zSMozYZI8S/jpkAXgYuBd6wPp8N3AyZ4zNZ/sJydr62k6ILi8gfm0/R
hUUi8AUhThBNP06pWlfFbXfdxvFTx50PvWvaHoDkN5LJGZPDqSOnOGPMGeSenitZLAUhChDzjhAU
NbU13Fl+J+veW8eRxiO06laSUpMYlD2IyydcziOlj4iAF4QoRIS+IAhCAiE2fUEQBCEkiNAXBEFI
IEToC4IgJBAi9AVBEBIIEfqCIAgJhAh9QRCEBEKEviAIQgIhQl8QBCGBEKEvCIKQQIjQFwRBSCBE
6AuCICQQQQt9pdQTSqkvlFJbQ9khQRAEIXz0RtP/EzA9VB2Jd9xud193IWqQsXCQsXCQsYgMQQt9
rfU6oC6EfYlr5IJ2kLFwkLFwkLGIDGLTFwRBSCBE6AuCICQQvSqiopRyAS9rrc/v5HupoCIIghAE
4SqiktLL3yvr5ZdwdVoQBEEIjt6EbC4H1gPjlVK7lFK3hq5bgiAIQjgIa41cQRAEIboISNNXStUq
pbYopTYrpf7h9XmJUuqfSqltSqlfeX1+vlJqvVLqA+t3adbnq5VSH1ntvKeUGmp9nqaUelop9YlS
6m2l1JhQH2io6MlYKKW+73Wsm5VSLUqp863vJiultiql/qWUesSrnUQcC3eCXRcpSqlK6/x/qJS6
12v7SQl2XXQ1FokmL1KVUn+0xmKzUupKr+1Dd11orbt9ATuB7Haf5QGvASnW/0Otv8nAFuA86/9s
nCeK1cBFftr/CfD/W+9vAp4OpF998erJWLTb5jzgE6//3wEusd6vAKYn8Fgk1HUBFALLrfcDgBpg
TCJeF92MRaJdF/8BPGG9Hwa86/WbkF0Xgdr0FR2fCn4C/EprfQpAa33Q+vzrwBat9QfW53Xa6pGF
v33OAJ603j8LXB1gv/qCnoyFN4XA0wBKqTOAQVrrjdZ3fwa+bb1PqLHwIpGuCw2kK6WSgYHACeBw
gl4XfsfC63eJdF2cC6yyPjsA1CulLg71dRGo0NfASqXURqXUD63PxgP/rpTaYD2GXez1OUqpV5VS
7yqlftaurUrrUW2R12ejgM+sg22xDva0APsWaXoyFt7cBFRZ70cBu72+2219Zn+XSGNhk0jXxbNA
E7CNvzcAAAJnSURBVPA5UAss0VrXk5jXRWdjYZNI18UW4HqlVLJSKgeYDJxJiK+LQEM2L9daf66U
Gga8ppT62PptttZ6ilLqEuAZYJz1+eXAxcBx4A2l1Lta69XA96120oHnlFKztdZP+dlfNId69mQs
AFBKXQo0aq23B7G/RBiLRLsuLgNOAWcAQ4A3lVKv93B/cT0WWutaEu+6+CNwDrAR8ABvAS093F+3
YxGQpq+1/tz6ewB4AbgUM7s8Z32+EWhVSg3BzEJrLbPOMYz9aVK7dhqB5VY7AHswMxrWY16m1vrL
wI4xsvRwLGy+h69m23a8FqOtz3y+S5CxSKTrosUai0LgVa11q7X9WxglKZGui+7GIpGui1al1BCt
dYvW+i6t9SSt9UyMP/RfhPi66FboK6UGKqUyrPfpGJv9NusArrI+Hw+kaq0PAX8HJiql+iulUoAr
ge1KqST75ldKpQLfAj6wdvMScIv1/rtYdq1oI4ixQCmlgBvxsmFrrfcBDUqpS63vfwC8aH2dUGNh
PcomynWRZo3FLq/P04EpwD8T7Lroaiw+SrDrIlVrfUgpNUApNdD6fBpwUmv9UciviwC8zznA+8Bm
q8P3Wp+nAn+xPnsXuNLrN9/HnKCtGIcFGCfNu1Zb24CHcaJ6+mEecT4BNgBju+tXX7yCHIsrgfV+
2ppsbf8J8KjX5wk1Fol4XQDp1nF9YL3uStTrorOxSNDrwgV8BHyIie45MxzXhSzOEgRBSCAky6Yg
CEICIUJfEAQhgRChLwiCkECI0BcEQUggROgLgiAkECL0BUEQEggR+oIgCAmECH1BEIQE4v8BSzS5
QdjFJKMAAAAASUVORK5CYII=
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[16]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">P2</span> <span class="o">=</span> <span class="n">clag</span><span class="o">.</span><span class="n">clag</span><span class="p">(</span><span class="s1">&#39;psd10r&#39;</span><span class="p">,</span> <span class="p">[</span><span class="n">t2</span><span class="p">],</span> <span class="p">[</span><span class="n">l2</span><span class="p">],</span> <span class="p">[</span><span class="n">l2e</span><span class="p">],</span> <span class="n">dt</span><span class="p">,</span> <span class="n">fqL</span><span class="p">)</span>
<span class="n">p2</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="n">nfq</span><span class="p">)</span>
<span class="n">p2</span><span class="p">,</span> <span class="n">p2e</span> <span class="o">=</span> <span class="n">clag</span><span class="o">.</span><span class="n">optimize</span><span class="p">(</span><span class="n">P2</span><span class="p">,</span> <span class="n">p2</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre> 1 4.365e-01 6.884e+01 inf -- 8.449e+03 -- 1 1 1 1 1 1 1 1
2 7.732e-01 6.807e+01 7.998e+01 -- 8.529e+03 -- 0.596599 0.573944 0.565249 0.565 0.564474 0.564973 0.565061 0.563513
3 3.405e+00 6.725e+01 7.864e+01 -- 8.607e+03 -- 0.244013 0.162113 0.130209 0.130066 0.128738 0.12957 0.129649 0.12783
4 3.360e+01 6.630e+01 7.669e+01 -- 8.684e+03 -- -0.00316365 -0.215478 -0.306172 -0.305067 -0.307606 -0.306662 -0.306644 -0.307445
5 5.927e-01 6.489e+01 7.427e+01 -- 8.758e+03 -- -0.109447 -0.516884 -0.745492 -0.740106 -0.744696 -0.743873 -0.743899 -0.742873
6 3.725e-01 6.264e+01 7.143e+01 -- 8.830e+03 -- -0.143959 -0.685712 -1.18731 -1.17268 -1.18226 -1.18223 -1.18216 -1.17875
7 2.746e-01 5.898e+01 6.767e+01 -- 8.897e+03 -- -0.172747 -0.736257 -1.61838 -1.59549 -1.61983 -1.6226 -1.62219 -1.61642
8 2.229e-01 5.247e+01 6.144e+01 -- 8.959e+03 -- -0.196816 -0.752482 -1.99672 -1.9902 -2.05709 -2.06672 -2.06649 -2.06028
9 1.956e-01 4.085e+01 5.100e+01 -- 9.010e+03 -- -0.215738 -0.754987 -2.24985 -2.31629 -2.49299 -2.51725 -2.52319 -2.51952
10 1.984e-01 2.411e+01 3.583e+01 -- 9.046e+03 -- -0.227795 -0.74941 -2.34289 -2.51344 -2.9179 -2.97306 -3.0163 -3.01235
11 2.720e-01 8.629e+00 1.877e+01 -- 9.064e+03 -- -0.232745 -0.745804 -2.36419 -2.5762 -3.29011 -3.40817 -3.61486 -3.58767
12 1.101e+00 1.216e+00 6.309e+00 -- 9.071e+03 -- -0.23497 -0.744449 -2.37685 -2.59225 -3.51955 -3.73121 -4.59808 -4.44993
13 5.958e+02 2.028e-01 8.420e-01 -- 9.072e+03 -- -0.236431 -0.743626 -2.38453 -2.60022 -3.56793 -3.8266 -7.59808 -7.44993
14 3.292e-02 2.270e-01 1.932e-03 -- 9.072e+03 -- -0.236741 -0.743691 -2.38524 -2.60077 -3.56246 -3.81667 -10.5981 -10.4499
15 2.277e-03 2.223e-02 1.569e-02 -- 9.072e+03 -- -0.237254 -0.744315 -2.3903 -2.60854 -3.6113 -3.94232 -10.5981 -10.4499
16 6.863e-04 3.008e-03 1.056e-04 -- 9.072e+03 -- -0.237548 -0.744546 -2.38911 -2.60708 -3.60308 -3.93728 -10.5981 -10.4499
17 1.050e-04 8.493e-04 4.548e-06 -- 9.072e+03 -- -0.237471 -0.744501 -2.3894 -2.60727 -3.60273 -3.93998 -10.5981 -10.4499
********************
-0.237471 -0.744501 -2.3894 -2.60727 -3.60273 -3.93998 -10.5981 -10.4499
0.264343 0.221316 0.350826 0.274708 0.679297 0.951247 10 10
-0.000202502 2.37574e-05 0.000349669 0.000703071 0.000849318 0.000211385 -6.22057e-07 -1.19394e-06
********************
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[79]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">xscale</span><span class="p">(</span><span class="s1">&#39;log&#39;</span><span class="p">);</span> <span class="n">ylim</span><span class="p">(</span><span class="o">-</span><span class="mi">6</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span>
<span class="n">errorbar</span><span class="p">(</span><span class="n">fqd</span><span class="p">,</span> <span class="n">p1</span><span class="p">,</span> <span class="n">yerr</span><span class="o">=</span><span class="n">p1e</span><span class="p">,</span> <span class="n">fmt</span><span class="o">=</span><span class="s1">&#39;o&#39;</span><span class="p">,</span> <span class="n">ms</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
<span class="n">errorbar</span><span class="p">(</span><span class="n">fqd</span><span class="p">,</span> <span class="n">p2</span><span class="p">,</span> <span class="n">yerr</span><span class="o">=</span><span class="n">p2e</span><span class="p">,</span> <span class="n">fmt</span><span class="o">=</span><span class="s1">&#39;o&#39;</span><span class="p">,</span> <span class="n">ms</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">Out[79]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>&lt;Container object of 3 artists&gt;</pre>
</div>
</div>
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAF9hJREFUeJzt3X2MXFd5x/Hfs3Gji01pFRcHil3CS60qFCatUgY5cRgH
EacaeTNdWxWVcJrdiAaqGlBpTYst7RoFiYY2BaXQRGp2UxGjtFmvN+MX6gTsG5KsWEWgDAGbktIG
27SwaUKRYmtiPPP0j5l9wezM7uy983bn+5FWmp05c+Z4r/e3d84851xzdwEAkqmv3QMAADQPIQ8A
CUbIA0CCEfIAkGCEPAAkGCEPAAkWOeTNbL2ZHTez75jZs2b24TgGBgCIzqLWyZvZ6yS9zt2fMbNX
S/qGpFvc/btxDBAAsHKRz+Td/Ufu/kz19suSTkl6Q9R+AQDRxTonb2ZXSbpG0nSc/QIAVmZVXB1V
p2rGJX2kekZ/6ePsnwAAK+DuttLnxnImb2arVAn4L7r7I7XauXvbv4aHh9veVyPPW07bem0afaxW
+zh/bp1w7Drl+K308Ubu74RjF/c4OuHYLdVmJY8tdn9UcU3XjEo66e6fi6m/pslkMm3vq5HnLadt
vTaNPhbnzyducY+tE47fSh9v9P5OwO/e0o814/jFUV1znaSvSXpWkle/PuHu/3ZJO4/jrxLaY2Rk
RCMjI+0eBlaAY9fdzEweYbom8py8uz8l6bKo/aCzdfIZIurj2PW2yGfyy34hzuQBoGFRz+TZ1gAA
EoyQB4AEI+QBIMEIeQBIMEIeABKMkAeABCPkASDBCHkASDBCHgASjJAHgAQj5AEgwQh5AEgwQh4A
EoyQB4AEI+QBIMEIeQBIMEIeABKMkAeABIsl5M3sfjP7sZl9K47+AADxiOtMfkzS1pj6AgDEJJaQ
d/cnJf0kjr4AAPFhTh4AEmxVK19sZGRk7nYmk1Emk2nlywNAxwvDUGEYxtafuXs8HZm9UdIhd39H
jcc9rtcCgF5hZnJ3W+nz45yuseoXAKBDxFVC+SVJU5I2mtlpMxuMo18AQDSxTdcs+UJM1wBAwzpp
ugYA0GEIeQBIMEIeABKMkAeABCPkASDBCHkASDBCHgASrKV716A7hGHla/b27BZDmcz8bQDdgcVQ
qMtM4rAB7RN1MRRn8vgFpVJJExPH9MADT0lapWz2ogYHr9fAwFb19THDB3QTzuTxc2ZmZtTfv0+F
wg4VixlV9pxzBUGoVGpc+fyw1q1b1+ZRAr0j6pk8IY855XJZmzbt0vT0XZLWLNLinNLp3Zqauocz
eqBF2LsGsZmYOKZCYYcWD3hJWqNCYbsmJx9t5bAAREDIY87Y2JPVKZraisUtGh19ojUDAhAZIY85
58+v0tLXfbFqOwDdgJDHnNWrL0pa6nMTr7YD0A0IecwZHLxeQRDWbRMEJzQ0tLk1AwIQGSGPOQMD
W5VKjUs6V6PFOaVSB5TL3dTKYQGIgJDHnL6+PuXzw0qndysIjmt+6sYVBMeVTu9WPj9M+STQRWKp
kzezmyV9VpU/Gve7+98s0oY6+S5RLpd18OAxjY09qSNHKiteh4Y2K5e7iYAHWqzti6HMrE/S9yS9
R9J/S3pa0vvc/buXtCPkuxB71wDt1QmLod4p6Tl3/4G7/0zSQ5JuiaFfAEBEcRQ8v0HSmQXfn1Ul
+NGlPjsZavKZUJL0K3/8vDIjV0mSctdk9NFcpm3jioLtk9GrWrqqZWRkZO52JpNRht+ujvTR3HyY
2z5TONz98zWbN5f0wguVnTUff3yV1qyp7Kx5ww1bRf0BOkkYhgpnz0hiEMec/Lskjbj7zdXv/0qS
X/rhK3Py3cn2mbzLQ56dNdHNOmFO/mlJbzWzN5rZ5ZLeJykfQ79ok1KppIcnH1b29qx0QsrentX4
I+Mql8vtHlrDyuWy+vv3aXr6LhWLWzS/bYOpWNyi6em71N+/ryv/bcByxFlC+TnNl1B+epE2nMl3
gZmZGfXf0a/C2oKK64uzJ70KzgZKvZhS/r58V531jo9/WTt3BtWAX1wQHNf+/Rc0MHBzC0cGLE/b
SyiX/UKEfMcrl8vatH2Tpq+eli5fpMEFKX0yrakDU11TL5/N7tHRo3eq/sZrrmx2rw4f/lSrhgUs
WydM1yAhJg5NqLC2sHjAS9LlUuGKgiaPTLZ0XFGwsyZ6HSGPOWP5scoUTR3FDUWNTo62aETRsbMm
eh0hjznnS+eXc9Jbadcl2FkTvY6Qx5zVl61ezklvpV2XYGdN9DpCHnMG+wcVnA3qtgnOBBrKDbVo
RNGxsyZ6HdU1mJPE6ppZ7KyJbkUJJWI1Vyd/RUHFDQvq5M8ESr3UfXXys9i7Bt2KkEfsyuWyDh4+
qLFHxnTk+0eUfUtWQ7kh5bI5znqBFiPk0VRJ2LsG6GaEPGIXPh8qfD6cu525KiNJylyVmbvdbZL4
b0JvIOSBBvHuBN2EbQ2AZUjSzppAIziTR+IlbWdN9Bama4A6klz7j97AdA1QRxJ31gQaQcgj0ZK4
sybQCEIeiZbEnTWBRhDySLQk7qwJNIKQR6IlcWdNoBGRQt7MdpjZt82sZGa/G9eggLgMbBtQ6sWU
dKFGgwtS6qWUctlcS8cFtErUM/lnJf2BpMdjGAsQu76+PuXvyyt9Mq3gdLBwO3kFpwOlT6aVvy9P
+SQSK9L/bHf/d3d/Tkt/tAW0zbp16zR1YEoP3vKgsmeqK17PZLU/t19TB6ZYCIVE4xL16AlfO/01
PfuaZ3Xtzmv18vMv69qrrtW39C1dcfqKlmxQxn72aJclQ97MHpN05cK7VHnTu8fdDzXyYiMjI3O3
M5mMMvzvRou0e7fJzZtLeuGFY3rggaf0+OOrtGbNRQ0OXq8bbtgq6h+wUBiGCmfPCGIQy7YGZnZC
0sfc/Zt12rCtAXrSzMyM+vv3qVDYoWIxo9nzpCAIlUqNK58fZsoINXXE3jXVkP8Ld/9GnTaEPHpO
uVzWpk27ND19l6Q1i7Q4p3R6t6am7uHDXyyqrXvXmFnOzM5Iepekw2b25Sj9AUkzMXFMhcIOLR7w
krRGhcJ2TU4+2sphoYdEra6ZdPcN7v4qd3+9u/9+XAMDkmBs7MnqFE1txeIWjY4+0ZoBoefw/hBo
ovPnV2k5m+dU2gHxI+SBJlq9+qKWs3lOpR0QP0IeaKLBwesVBGHdNkFwQkNDm1szIPQcQh5oooGB
rUqlxiWdq9HinFKpA8rlbmrlsNBDuPwf0GTzdfLbVSxu0Xyd/AmlUgdWXCf/1a+WdO+9x/TMM0/p
hRdW6bWvvahrrrleH/rQVt14I+dvSdERdfLLeiFCHj2sXC7r4MFjGht7UkeOrFI2e1FDQ5uVy920
ovp4Flj1DkIe6DJmUpRfBRZY9RZCHugCcW5QNj7+Ze3cGVSnfhYXBMe1f/8FDQzc3PBY0VkIeaDH
ZLN7dPTonapff+/KZvfq8OFPtWpYaJK2bmsAoPVYYIVGEPJAl2GBFRpByANdhgVWaAQhD3QZFlih
EYQ80GX6+vqUzw8rnd6tIDiuhVcnD4LjSqd3K58fpnwSkqiuAbpW3Aus0JkooQR6FBcH7w2EPAAk
GHXyAICaCHkASLCoF/K+y8xOmdkzZnbAzF4T18AAANFFPZN/VNLb3P0aSc9J+uvoQwIAxCVSyLv7
V9y9XP3265LWRx8SACAuce5gNCTpoRj7A9BiXG0qeZYMeTN7TNKVC+9SZYndHnc/VG2zR9LP3P1L
9foaGRmZu53JZJShmBfoGDMzM9qzZ/ZqU5WtjH/6U9fZs6HOnNnF1aZaJAxDhbMLIGIQuU7ezG6T
9AFJN7r7K3XaUScPdCiuNtW52roYysxulvR3km5w9xeXaEvIo2eFz4cKnw/nbmeuykiSMldl5m63
E1eb6lztDvnnJF0uaTbgv+7uf1qjLSEPSLJ9Jh/urN8FrjbVuaKGfKQPXt39N6M8H0Bn4GpTycXk
GgCuNpVghDzQAqVSSQ9PPqzs7VnphJS9PavxR8ZVLpeXfnILcLWp5GIXSqDJZmZm1H9HvwprCyqu
L84VIQdnA6VeTCl/X77tpYlU13QuthoGOli5XNam7Zs0ffV0pUThUhek9Mm0pg5MtT08Z2ZmlMns
0/e+t12l0hbN/jW67LIT2rjxgMKQOvl2IOSBDjb+yLh2Htqp4oZizTbB6UD7c/s1sG2ghSNb3MKr
TZ0/v0qrV8dztalSqaSJiWN64IGn5vodHLxeAwNb2/7HrdMR8kAHy96e1dENR5eqTFT2TFaH7z/c
UN+dXns/a/4dwg6VShnNv0MItXHjOO8QltDWEkoA9Z0vnV9OZWKlXYMWhrntM4W3hQ330Wzlcln9
/ft06tSlc/2mUmmLTp16p/r7metvJn6qQBOtvmz1cioTK+0a1OkVO5I0MXFMhcIOLf5hriStUaGw
XZOTj7ZyWD2FkAeaaLB/UMHZoG6b4EygodxQQ/3OzMzouh3X6dbDt1amg7ZIRzcc1c5DO7Vp+ybN
zMxEGXZsxsaeVLGYqdumWNyi0dEnWjOgHkTIA000sG1AqRdT0oUaDS5IqZdSymVzy+6zXC6r/45+
TV89XflAd3Y6yKTihqKmr55W/x39HXFGz0ra9iPkgSbq6+tT/r680ifTCk4H81M3XqmqSZ9MK39f
vqH56IlDEyqsLSxekilJl0uFKwqaPDIZefxRsZK2/Qh5oMnWrVunqQNTevCWB5U9U50/P5PV/tx+
TR2YariyZCw/VllUVUdxQ1Gjk6NRhh0LVtK2HyEPtEBfX5+292+vlElukQ7ff1gD2wZWVFHSzIqd
uA0MbFUqNS7pXI0W55RKHVAud1Mrh9VTCHmgyzSzYidufX19yueHlU7vVhAc18L5qiA4rnR6t/L5
Yconm4hPO4AuM9g/qOOHjtdfRbuCip1mWbdunaam7qmupN17yUpa6uObjRWvQAvEuTq1m/bDQXRs
awD0oLmdLa8ozJdReuUMPvVSZ+xsiXgQ8kCPKpfLOnj4oMYeGdOR7x9R9i1ZDeWGlMvmOINPEEIe
QEdeNxbxaPeFvD8p6RZJZUk/lnSbu/+oRltCHohRt+xCiWjaHfKvdveXq7d3Sbra3T9Uoy0hDwAN
ihrykSbuZgO+ao0qZ/QAgA4RuU7ezO6UdKuk/5O0JfKIAACxWTLkzewxSVcuvEuVZWt73P2Qu++V
tNfMPi5pl6SRWn2NjMw/lMlklMlkVjRoAEiqMAwVhmFs/cVWXWNmGyQddfe313icOXkAaFBbL/9n
Zm919/+ofpuTdCpKfwDai4qd5IlaXTMuaaMqH7j+QNIH3f1/arTlTB7oItTed4a2nsm7+44ozwcA
NBdrnwEgwQh5AEgwQh4AEoyQB4AE48pQALpSGFa+Zm/Prq3MZOZvg62GAdQQZwlls+vvzaSkxktb
SygBYDkWhrntM4W3hZH7LJVKmpg4pgceeErSKmWzFzU4eL0GBrZy0ZQF+EkAmFMqlfTw5MPK3p6V
TkjZ27Maf2Rc5XJnbTA7MzOj6677sG699VU6evROSft09Oid2rkz0KZNuzQzM9PuIXYMpmsASFpw
3di1BRXXL7hu7NlAqRfju25s1GmgcrmsTZt2aXr6LlV2OL/UOaXTuzU1dU8izujbup88gGQol8vq
v6Nf01dPz18YXJJMKm4oavrqafXf0d8RZ/QTE8dUKOzQ4gEvSWtUKGzX5OSjrRxWxyLkAWji0IQK
awvS5TUaXC4Vriho8shkS8e1mLGxJ1UsZuq2KRa3aHT0idYMqMMR8gA0lh+rTNHUUdxQ1OjkaItG
VNv586s0/1ajFqu2AyEPQOdL55eTm5V2bbZ69UVVrltUj1fbgZAHoNWXrV5Oblbatdng4PUKgrBu
myA4oaGhza0ZUIcj5AFosH9QwdmgbpvgTKCh3FCLRlTbwMBWpVLjks7VaHFOqdQB5XI3tXJYHYuQ
B6CBbQNKvZiSLtRocEFKvZRSLptr6bgW09fXp3x+WOn0bgXBcc2/BXEFwXGl07uVzw8nonwyDvwU
AFSC87680ifTCk4HC3NTwelA6ZNp5e/Lrzg4415ktW7dOk1N3aMHH3xF2exeScPKZvdq//4Lmpq6
J5Z6/qRgMRSAOeVyWQcPH9TYI2M68v0jyr4lq6HckHLZ3IoDvhWLrNi7ps7zCXkAi4ljg7JyuaxN
2zdp+urpxWvwL0jpk2lNHZiKNL1CyNcWSyGpmX1M0mck/Zq7vxRHnwC6XyOLrAa2DTTU98Ktht/9
bmlkpHKbrYZ/XuSQN7P1kt4r6QfRhwMgScbyY5VtEuqYXWTVaMgT5ssTxwevfy/pL2PoB0DCdNMi
q6SKFPJm1i/pjLs/G9N4ACRINy2ySqolp2vM7DFJVy68S5XDtlfSJ1SZqln4WE0js5NmkjKZjDK8
1wISbbB/UMcPHa87ZdMpi6w6RRiGCmc/bIjBiqtrzOy3JX1F0nlVwn29pB9Keqe7/8KO/VTXAN2l
m6prkqxt+8m7+7fd/XXu/mZ3f5Oks5J+Z7GAB9Cbmr3ICkuLrU7ezP5T0rW1Sig5kwc6X7MuuN2M
RVa9gsVQALpKHNNAvYTL/wEAaiLkASDBCHkASDBCHgASjCvdAkDVwk3PwnB+b5xu3ieH6hoALdUt
1TWdsn0x1TUAgJoIeQBIMObkAaBq4Ypf3RZqJMxIir7it52YkwfQdM3aLqGZOuWzA7Y1AIAmSErI
MycPAAlGyANAghHyAJBghDwAJBghDwAJRsgDQIIR8gCQYIQ8ACRYpJA3s2EzO2tm36x+3RzXwAAA
0cWxd83d7n53DP0AAGIWx3TNipfbAgCaK46Q/zMze8bM/snMfiWG/gAAMVlyusbMHpN05cK7JLmk
PZK+IOmT7u5mdqekuyXdXquvkZGRuduZTEaZbr2eFgA0SRiGCmevQRiD2HahNLM3Sjrk7u+o8Ti7
UALoGuxCWXnx1y34dkDSt6P0BwCIV9TqmrvM7BpJZUnPS7oj8ogAALGJFPLufmtcAwEAxI8VrwCQ
YIQ8ACQYIQ8ACUbIA0CCEfIAkGCEPAAkGCEPAAlGyANAghHyAJBghDwAJBghDwAJRsgDQIIR8gCQ
YIQ8ACQYIQ8ACUbIA0CCEfIAkGCEPAAkWOSQN7NdZnbKzJ41s0/HMSh0njAM2z0ErBDHrrdFCnkz
y0jaJunt7v52SX8bx6DQeQiK7sWx621Rz+Q/JOnT7n5Rktz9f6MPqbni/A+/0r4aed5y2tZr0+hj
nRwIcY+tE47fSh9v9P5O0G2/e/qvaP2t5LFmHL+oIb9R0g1m9nUzO2Fm18YxqGbqtv9ohPw8Qn7l
93eCbvvd0/PR+uuUkDd3r9/A7DFJVy68S5JL2ivpU5KOu/tHzOz3JP2Lu7+5Rj/1XwgAsCh3t5U+
d9UyOn9vrcfM7IOSJqrtnjazspmtdfcX4xwkAGBlok7XTEq6UZLMbKOkX1os4AEA7bHkmfwSxiSN
mtmzkl6RdGv0IQEA4rLknDwAoHux4hUAEoyQB4AEizonH4mZ/Zakj0haq0op5r3tHA8aY2a3SMpK
+mVJo+7+WJuHhGUyszdJ2iPpNe7+h+0eD5bPzFZL+oIqn4M+7u5fqtu+E+bkzcwk/bO788FtFzKz
X5X0GXf/QLvHgsaY2b8S8t3FzN4v6SfufsTMHnL399VrH8t0jZndb2Y/NrNvXXL/zWb2XTP7npl9
vMZzt0k6LOloHGNB46Icv6q9kj7f3FFiMTEcO7TZCo7heklnqrdLS/Uf15z8mKStlwywT9I/VO9/
m6Q/qk7PyMx2mtndZvZ6dz/k7llJ749pLGjcSo/fr1d3Hj3q7s+0etCQFOF3b7Z5KweLRTV0DFUJ
+PWzTZfqPJaQd/cnJf3kkrvfKek5d/+Bu/9M0kOSbqm2/6K7/7mkjWb2OTO7V9KROMaCxkU4ftsl
vUfSDjP7k1aOGRURjt0rZvaPkq7hTL+9Gj2Gkg6q8jv3eUmHluq/mR+8vkHzbykk6awqA5/j7o9L
eryJY8DKLef43SPpnlYOCsuynGP3kiq7yKIz1TyG7n5e0tByO6KEEgASrJkh/0NJv7Hg+/XV+9Ad
OH7di2PX/WI7hnGGvOnnPwR4WtJbzeyNZna5pPdJysf4eogXx697cey6X9OOYVwllF+SNKXKB6mn
zWzQ3UuSdkl6VNJ3JD3k7qfieD3Ei+PXvTh23a/Zx7AjFkMBAJqDD14BIMEIeQBIMEIeABKMkAeA
BCPkASDBCHkASDBCHgASjJAHgAT7f9o3MXBssae1AAAAAElFTkSuQmCC
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[17]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">p2</span><span class="p">,</span> <span class="n">p2e</span> <span class="o">=</span> <span class="n">clag</span><span class="o">.</span><span class="n">errors</span><span class="p">(</span><span class="n">P2</span><span class="p">,</span> <span class="n">p2</span><span class="p">,</span> <span class="n">p2e</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre> ### errors for param 0 ###
+++ 9.072e+03 9.071e+03 -2.375e-01 2.686e-02 0.913 +++
+++ 9.072e+03 9.071e+03 -2.375e-01 1.590e-01 1.9 +++
+++ 9.072e+03 9.071e+03 -2.375e-01 9.294e-02 1.37 +++
+++ 9.072e+03 9.071e+03 -2.375e-01 5.990e-02 1.13 +++
+++ 9.072e+03 9.071e+03 -2.375e-01 4.338e-02 1.02 +++
+++ 9.072e+03 9.071e+03 -2.375e-01 3.512e-02 0.966 +++
+++ 9.072e+03 9.071e+03 -2.375e-01 3.925e-02 0.993 +++
### errors for param 1 ###
+++ 9.072e+03 9.071e+03 -7.445e-01 -5.232e-01 0.914 +++
+++ 9.072e+03 9.071e+03 -7.445e-01 -4.125e-01 1.94 +++
+++ 9.072e+03 9.071e+03 -7.445e-01 -4.679e-01 1.39 +++
+++ 9.072e+03 9.071e+03 -7.445e-01 -4.955e-01 1.14 +++
+++ 9.072e+03 9.071e+03 -7.445e-01 -5.094e-01 1.02 +++
+++ 9.072e+03 9.071e+03 -7.445e-01 -5.163e-01 0.969 +++
+++ 9.072e+03 9.071e+03 -7.445e-01 -5.128e-01 0.997 +++
### errors for param 2 ###
+++ 9.072e+03 9.071e+03 -2.389e+00 -2.039e+00 1.13 +++
+++ 9.072e+03 9.071e+03 -2.389e+00 -2.214e+00 0.291 +++
+++ 9.072e+03 9.071e+03 -2.389e+00 -2.126e+00 0.647 +++
+++ 9.072e+03 9.071e+03 -2.389e+00 -2.082e+00 0.875 +++
+++ 9.072e+03 9.071e+03 -2.389e+00 -2.060e+00 1 +++
### errors for param 3 ###
+++ 9.072e+03 9.071e+03 -2.607e+00 -2.333e+00 1.17 +++
+++ 9.072e+03 9.071e+03 -2.607e+00 -2.470e+00 0.296 +++
+++ 9.072e+03 9.071e+03 -2.607e+00 -2.401e+00 0.664 +++
+++ 9.072e+03 9.071e+03 -2.607e+00 -2.367e+00 0.901 +++
+++ 9.072e+03 9.071e+03 -2.607e+00 -2.350e+00 1.03 +++
+++ 9.072e+03 9.071e+03 -2.607e+00 -2.358e+00 0.966 +++
+++ 9.072e+03 9.071e+03 -2.607e+00 -2.354e+00 0.999 +++
### errors for param 4 ###
+++ 9.072e+03 9.071e+03 -3.602e+00 -2.923e+00 2.16 +++
+++ 9.072e+03 9.071e+03 -3.602e+00 -3.263e+00 0.353 +++
+++ 9.072e+03 9.071e+03 -3.602e+00 -3.093e+00 0.996 +++
### errors for param 5 ###
+++ 9.072e+03 9.069e+03 -3.940e+00 -2.989e+00 4.49 +++
+++ 9.072e+03 9.071e+03 -3.940e+00 -3.464e+00 0.589 +++
+++ 9.072e+03 9.071e+03 -3.940e+00 -3.227e+00 1.88 +++
+++ 9.072e+03 9.071e+03 -3.940e+00 -3.345e+00 1.1 +++
+++ 9.072e+03 9.071e+03 -3.940e+00 -3.405e+00 0.818 +++
+++ 9.072e+03 9.071e+03 -3.940e+00 -3.375e+00 0.953 +++
+++ 9.072e+03 9.071e+03 -3.940e+00 -3.360e+00 1.03 +++
+++ 9.072e+03 9.071e+03 -3.940e+00 -3.368e+00 0.99 +++
+++ 9.072e+03 9.071e+03 -3.940e+00 -3.364e+00 1.01 +++
### errors for param 6 ###
+++ 9.072e+03 9.072e+03 -1.060e+01 -6.598e+00 0.0054 +++
+++ 9.072e+03 9.071e+03 -1.060e+01 -4.598e+00 0.542 +++
+++ 9.072e+03 9.069e+03 -1.060e+01 -3.598e+00 5.36 +++
+++ 9.072e+03 9.071e+03 -1.060e+01 -4.098e+00 1.72 +++
+++ 9.072e+03 9.071e+03 -1.060e+01 -4.348e+00 0.966 +++
+++ 9.072e+03 9.071e+03 -1.060e+01 -4.223e+00 1.29 +++
+++ 9.072e+03 9.071e+03 -1.060e+01 -4.286e+00 1.12 +++
+++ 9.072e+03 9.071e+03 -1.060e+01 -4.317e+00 1.04 +++
+++ 9.072e+03 9.071e+03 -1.060e+01 -4.332e+00 1 +++
### errors for param 7 ###
+++ 9.072e+03 9.072e+03 -1.045e+01 -7.450e+00 0.00104 +++
+++ 9.072e+03 9.072e+03 -1.045e+01 -5.950e+00 0.0328 +++
+++ 9.072e+03 9.071e+03 -1.045e+01 -5.200e+00 0.185 +++
+++ 9.072e+03 9.071e+03 -1.045e+01 -4.825e+00 0.439 +++
+++ 9.072e+03 9.071e+03 -1.045e+01 -4.637e+00 0.678 +++
+++ 9.072e+03 9.071e+03 -1.045e+01 -4.544e+00 0.842 +++
+++ 9.072e+03 9.071e+03 -1.045e+01 -4.497e+00 0.939 +++
+++ 9.072e+03 9.071e+03 -1.045e+01 -4.473e+00 0.992 +++
********************
-0.237486 -0.744501 -2.38936 -2.60722 -3.60235 -3.93982 -10.5981 -10.4499
0.276735 0.231691 0.328894 0.253241 0.509151 0.575777 2 5.97656
********************
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<ul>
<li>Next we creat a lag object similar to the psd case. Now we use both light curves and the psd values obtained earlier.</li>
<li>We use cxd10r, becasue we used psd10r above, if that changes, this should change too. Though generally, there is no need to change these.</li>
<li>The light curves, time and error are passed as lists of lists. The outer list contains how many light curve sets we want to fit together, and the inner list contrain the first and second light curves whose lag is to be calculated</li>
<li>p is an array of starting parameters. A start like that should using works fine. Sometimes this need to be tweaked to make sure the fit converges.</li>
</ul>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[52]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">Cx</span> <span class="o">=</span> <span class="n">clag</span><span class="o">.</span><span class="n">clag</span><span class="p">(</span><span class="s1">&#39;cxd10r&#39;</span><span class="p">,</span> <span class="p">[[</span><span class="n">t1</span><span class="p">,</span><span class="n">t2</span><span class="p">]],</span> <span class="p">[[</span><span class="n">l1</span><span class="p">,</span><span class="n">l2</span><span class="p">]],</span> <span class="p">[[</span><span class="n">l1e</span><span class="p">,</span><span class="n">l2e</span><span class="p">]],</span> <span class="n">dt</span><span class="p">,</span> <span class="n">fqL</span><span class="p">,</span> <span class="n">p1</span><span class="p">,</span> <span class="n">p2</span><span class="p">)</span>
<span class="n">p</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">(</span> <span class="p">((</span><span class="n">p1</span><span class="o">+</span><span class="n">p2</span><span class="p">)</span><span class="o">*</span><span class="mf">0.5</span><span class="o">-</span><span class="mf">0.3</span><span class="p">,</span><span class="n">p1</span><span class="o">*</span><span class="mi">0</span><span class="o">+</span><span class="mf">0.1</span><span class="p">)</span> <span class="p">)</span> <span class="c1"># a good starting point generally</span>
<span class="n">p</span><span class="p">,</span> <span class="n">pe</span> <span class="o">=</span> <span class="n">clag</span><span class="o">.</span><span class="n">optimize</span><span class="p">(</span><span class="n">Cx</span><span class="p">,</span> <span class="n">p</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre> 1 1.507e+04 9.353e+00 inf -- 1.463e+04 -- -0.263469 -0.756956 -2.09189 -2.3639 -3.16804 -3.51705 -7.39217 -11.0905 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
3 1.162e+04 1.111e+01 2.207e+00 -- 1.464e+04 -- -0.222515 -0.71868 -2.05195 -2.3255 -3.13814 -3.44569 -7.69217 -11.0905 0.0540223 0.146385 0.211107 0.120928 0.22451 0.352806 0.225787 0.1
5 2.572e+03 1.301e+01 1.993e+00 -- 1.464e+04 -- -0.188623 -0.686392 -2.01542 -2.29378 -3.10648 -3.3727 -7.99217 -11.0905 0.0208945 0.18077 0.291002 0.136385 0.324159 0.504178 1.71174 0.1
7 5.499e+03 1.506e+01 1.809e+00 -- 1.464e+04 -- -0.160312 -0.658983 -1.98347 -2.26721 -3.07548 -3.31147 -8.29217 -11.0905 -0.0038816 0.207073 0.349667 0.148222 0.403652 0.596551 2.11801 0.1
9 1.265e+03 1.727e+01 1.655e+00 -- 1.464e+04 -- -0.136444 -0.63555 -1.95597 -2.2447 -3.04632 -3.26203 -8.59217 -11.0905 -0.0229558 0.227707 0.393817 0.157539 0.467517 0.657355 -1.76354 0.1
11 6.386e+02 1.966e+01 1.525e+00 -- 1.464e+04 -- -0.116154 -0.615387 -1.9324 -2.22548 -3.01944 -3.22204 -8.29217 -11.0905 -0.0379751 0.244228 0.427807 0.165034 0.519417 0.700307 -1.76354 0.1
13 3.235e+02 2.224e+01 1.412e+00 -- 1.464e+04 -- -0.0987795 -0.597934 -1.91218 -2.20896 -2.99492 -3.18933 -7.99217 -11.0905 -0.0500122 0.25768 0.454482 0.171164 0.562133 0.732293 -1.76354 0.1
15 1.644e+02 2.500e+01 1.312e+00 -- 1.464e+04 -- -0.0838109 -0.58275 -1.89479 -2.19468 -2.97268 -3.16229 -7.69217 -11.0905 -0.0597936 0.268786 0.475751 0.176246 0.597724 0.757149 -1.76354 0.1
17 8.384e+01 2.795e+01 1.223e+00 -- 1.465e+04 -- -0.0708471 -0.569482 -1.87979 -2.18229 -2.95253 -3.13972 -7.39217 -11.0905 -0.0678276 0.278065 0.492929 0.180509 0.627711 0.777132 -1.76354 0.1
19 4.288e+01 3.109e+01 1.141e+00 -- 1.465e+04 -- -0.059569 -0.557845 -1.86681 -2.17151 -2.93431 -3.12075 -7.09217 -11.0905 -0.0744802 0.285897 0.506948 0.184119 0.653232 0.793647 -1.76354 0.1
21 2.200e+01 3.443e+01 1.066e+00 -- 1.465e+04 -- -0.0497196 -0.547603 -1.85555 -2.1621 -2.91781 -3.1047 -6.79217 -11.0905 -0.0800213 0.292565 0.518486 0.187201 0.675142 0.807615 -1.76354 0.1
23 1.132e+01 3.796e+01 9.959e-01 -- 1.465e+04 -- -0.0410891 -0.538564 -1.84575 -2.15388 -2.90286 -3.09105 -6.49217 -11.0905 -0.084654 0.298288 0.528046 0.189851 0.694098 0.819659 -1.76354 0.1
24 5.898e-01 3.584e+03 1.376e+00 -- 1.465e+04 -- 0.034754 -0.4586 -1.76026 -2.08192 -2.76728 -2.97456 -3.49217 -11.0905 -0.123455 0.34774 0.60772 0.212743 0.859212 0.925291 -2.01201 0.1
25 8.154e-01 5.087e+01 1.095e+01 -- 1.466e+04 -- 0.0315381 -0.463316 -1.78861 -2.14119 -2.7032 -3.06487 -3.50786 -11.0905 -0.080452 0.354068 0.642389 0.0872582 0.929788 0.925607 -1.87766 0.1
26 8.474e-02 4.125e+01 1.295e+00 -- 1.466e+04 -- 0.0313567 -0.462364 -1.77246 -2.09785 -2.72914 -3.01339 -3.63657 -11.0905 -0.0903589 0.346492 0.695621 0.158407 0.937946 1.04186 -1.81 0.1
27 1.402e-01 8.842e+00 5.049e-01 -- 1.466e+04 -- 0.0307976 -0.462048 -1.78087 -2.11005 -2.73093 -3.02079 -3.77705 -11.0905 -0.0859431 0.34971 0.6455 0.156108 0.93052 1.00707 -1.65662 0.1
28 1.151e-01 7.210e+00 1.569e-01 -- 1.466e+04 -- 0.0307692 -0.462203 -1.77706 -2.10191 -2.73633 -3.01355 -3.90775 -11.0905 -0.085448 0.345468 0.669565 0.177991 0.929605 0.996167 -1.50215 0.1
29 8.198e-02 5.268e+00 4.450e-02 -- 1.466e+04 -- 0.0307085 -0.462133 -1.77941 -2.10487 -2.7354 -3.01527 -3.97788 -11.0905 -0.0852619 0.347439 0.650051 0.180002 0.931237 0.991797 -1.32927 0.1
30 4.907e-02 1.673e+00 1.011e-02 -- 1.466e+04 -- 0.0307433 -0.46222 -1.77843 -2.10279 -2.73529 -3.01313 -4.0139 -11.0905 -0.0848026 0.3465 0.657076 0.186301 0.932779 0.989877 -1.2203 0.1
31 2.218e-02 1.737e+00 2.283e-03 -- 1.466e+04 -- 0.0307595 -0.462214 -1.77904 -2.10366 -2.73433 -3.01368 -4.02131 -11.0905 -0.0847916 0.347141 0.651721 0.186854 0.934547 0.990363 -1.16042 0.1
32 1.049e-02 6.278e-01 5.116e-04 -- 1.466e+04 -- 0.0307847 -0.462244 -1.77877 -2.10315 -2.73397 -3.01308 -4.02614 -11.0905 -0.0846378 0.346933 0.653892 0.188201 0.935705 0.990726 -1.13468 0.1
33 4.768e-03 5.593e-01 1.303e-04 -- 1.466e+04 -- 0.0307977 -0.462243 -1.77893 -2.10342 -2.73358 -3.01326 -4.02629 -11.0905 -0.0846303 0.347124 0.652557 0.188172 0.936534 0.991266 -1.12279 0.1
34 2.366e-03 2.813e-01 3.574e-05 -- 1.466e+04 -- 0.0308087 -0.462251 -1.77885 -2.10329 -2.73343 -3.0131 -4.02705 -11.0905 -0.0845834 0.347075 0.653209 0.188435 0.937018 0.991526 -1.11743 0.1
********************
0.0308087 -0.462251 -1.77885 -2.10329 -2.73343 -3.0131 -4.02705 -11.0905 -0.0845834 0.347075 0.653209 0.188435 0.937018 0.991526 -1.11743 0.1
0.00444687 0.00391368 0.0195472 0.0522199 0.0692273 0.0931011 0.600907 10 0.0791371 0.0681671 0.171256 0.248503 0.290782 0.317185 1.41333 10
0.281266 0.00261966 -0.113352 -0.0304571 0.0248402 -0.00516435 0.000469769 2.53754e-07 0.00150497 0.0106824 -0.0107165 -0.00105737 0.003675 0.00209301 0.00132737 2.87086e-08
********************
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<ul>
<li>We get the errors for the cross spectrum and phase lags</li>
</ul>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[96]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="o">%</span><span class="k">autoreload</span>
<span class="n">p</span><span class="p">,</span> <span class="n">pe</span> <span class="o">=</span> <span class="n">clag</span><span class="o">.</span><span class="n">errors</span><span class="p">(</span><span class="n">Cx</span><span class="p">,</span> <span class="n">p</span><span class="p">,</span> <span class="n">pe</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre> ### errors for param 0 ###
+++ 1.466e+04 1.466e+04 3.066e-02 3.294e-02 0.176 +++
+++ 1.466e+04 1.466e+04 3.066e-02 3.407e-02 0.514 +++
+++ 1.466e+04 1.466e+04 3.066e-02 3.464e-02 0.828 +++
+++ 1.466e+04 1.466e+04 3.066e-02 3.492e-02 1.05 +++
+++ 1.466e+04 1.466e+04 3.066e-02 3.478e-02 0.932 +++
+++ 1.466e+04 1.466e+04 3.066e-02 3.485e-02 0.989 +++
+++ 1.466e+04 1.466e+04 3.066e-02 3.489e-02 1.02 +++
+++ 1.466e+04 1.466e+04 3.066e-02 3.487e-02 1 +++
### errors for param 1 ###
+++ 1.466e+04 1.466e+04 -4.624e-01 -4.604e-01 0.268 +++
+++ 1.466e+04 1.466e+04 -4.624e-01 -4.594e-01 0.767 +++
+++ 1.466e+04 1.466e+04 -4.624e-01 -4.589e-01 1.2 +++
+++ 1.466e+04 1.466e+04 -4.624e-01 -4.592e-01 0.962 +++
+++ 1.466e+04 1.466e+04 -4.624e-01 -4.590e-01 1.07 +++
+++ 1.466e+04 1.466e+04 -4.624e-01 -4.591e-01 1.02 +++
+++ 1.466e+04 1.466e+04 -4.624e-01 -4.591e-01 0.989 +++
+++ 1.466e+04 1.466e+04 -4.624e-01 -4.591e-01 1 +++
### errors for param 2 ###
+++ 1.466e+04 1.466e+04 -1.780e+00 -1.770e+00 0.503 +++
+++ 1.466e+04 1.466e+04 -1.780e+00 -1.765e+00 1.74 +++
+++ 1.466e+04 1.466e+04 -1.780e+00 -1.767e+00 0.957 +++
+++ 1.466e+04 1.466e+04 -1.780e+00 -1.766e+00 1.3 +++
+++ 1.466e+04 1.466e+04 -1.780e+00 -1.767e+00 1.11 +++
+++ 1.466e+04 1.466e+04 -1.780e+00 -1.767e+00 1.03 +++
+++ 1.466e+04 1.466e+04 -1.780e+00 -1.767e+00 0.995 +++
### errors for param 3 ###
+++ 1.466e+04 1.466e+04 -2.100e+00 -2.075e+00 0.424 +++
+++ 1.466e+04 1.466e+04 -2.100e+00 -2.062e+00 1.24 +++
+++ 1.466e+04 1.466e+04 -2.100e+00 -2.068e+00 0.753 +++
+++ 1.466e+04 1.466e+04 -2.100e+00 -2.065e+00 0.975 +++
+++ 1.466e+04 1.466e+04 -2.100e+00 -2.064e+00 1.1 +++
+++ 1.466e+04 1.466e+04 -2.100e+00 -2.064e+00 1.03 +++
+++ 1.466e+04 1.466e+04 -2.100e+00 -2.065e+00 1 +++
### errors for param 4 ###
+++ 1.466e+04 1.466e+04 -2.728e+00 -2.696e+00 0.209 +++
+++ 1.466e+04 1.466e+04 -2.728e+00 -2.680e+00 0.593 +++
+++ 1.466e+04 1.466e+04 -2.728e+00 -2.672e+00 0.932 +++
+++ 1.466e+04 1.466e+04 -2.728e+00 -2.668e+00 1.17 +++
+++ 1.466e+04 1.466e+04 -2.728e+00 -2.670e+00 1.05 +++
+++ 1.466e+04 1.466e+04 -2.728e+00 -2.671e+00 0.987 +++
+++ 1.466e+04 1.466e+04 -2.728e+00 -2.670e+00 1.02 +++
+++ 1.466e+04 1.466e+04 -2.728e+00 -2.671e+00 1 +++
### errors for param 5 ###
+++ 1.466e+04 1.466e+04 -3.007e+00 -2.964e+00 0.386 +++
+++ 1.466e+04 1.466e+04 -3.007e+00 -2.942e+00 1.12 +++
+++ 1.466e+04 1.466e+04 -3.007e+00 -2.953e+00 0.68 +++
+++ 1.466e+04 1.466e+04 -3.007e+00 -2.947e+00 0.877 +++
+++ 1.466e+04 1.466e+04 -3.007e+00 -2.945e+00 0.991 +++
### errors for param 6 ###
+++ 1.466e+04 1.466e+04 -4.051e+00 -3.738e+00 0.336 +++
+++ 1.466e+04 1.466e+04 -4.051e+00 -3.582e+00 1.27 +++
+++ 1.466e+04 1.466e+04 -4.051e+00 -3.660e+00 0.674 +++
+++ 1.466e+04 1.466e+04 -4.051e+00 -3.621e+00 0.927 +++
+++ 1.466e+04 1.466e+04 -4.051e+00 -3.602e+00 1.09 +++
+++ 1.466e+04 1.466e+04 -4.051e+00 -3.611e+00 1 +++
### errors for param 7 ###
+++ 1.466e+04 1.466e+04 -3.804e+00 -3.719e+00 0.667 +++
+++ 1.466e+04 1.466e+04 -3.804e+00 -3.676e+00 2.74 +++
+++ 1.466e+04 1.466e+04 -3.804e+00 -3.697e+00 1.36 +++
+++ 1.466e+04 1.466e+04 -3.804e+00 -3.708e+00 0.962 +++
+++ 1.466e+04 1.466e+04 -3.804e+00 -3.703e+00 1.14 +++
+++ 1.466e+04 1.466e+04 -3.804e+00 -3.705e+00 1.05 +++
+++ 1.466e+04 1.466e+04 -3.804e+00 -3.707e+00 1.01 +++
### errors for param 8 ###
+++ 1.466e+04 1.466e+04 -8.599e-02 -6.017e-03 1 +++
### errors for param 9 ###
+++ 1.466e+04 1.466e+04 3.480e-01 4.170e-01 0.968 +++
+++ 1.466e+04 1.466e+04 3.480e-01 4.515e-01 1.95 +++
+++ 1.466e+04 1.466e+04 3.480e-01 4.342e-01 1.43 +++
+++ 1.466e+04 1.466e+04 3.480e-01 4.256e-01 1.19 +++
+++ 1.466e+04 1.466e+04 3.480e-01 4.213e-01 1.08 +++
+++ 1.466e+04 1.466e+04 3.480e-01 4.191e-01 1.02 +++
+++ 1.466e+04 1.466e+04 3.480e-01 4.181e-01 0.996 +++
### errors for param 10 ###
+++ 1.466e+04 1.466e+04 6.487e-01 8.233e-01 0.85 +++
+++ 1.466e+04 1.466e+04 6.487e-01 9.105e-01 1.66 +++
+++ 1.466e+04 1.466e+04 6.487e-01 8.669e-01 1.24 +++
+++ 1.466e+04 1.466e+04 6.487e-01 8.451e-01 1.04 +++
+++ 1.466e+04 1.466e+04 6.487e-01 8.342e-01 0.944 +++
+++ 1.466e+04 1.466e+04 6.487e-01 8.396e-01 0.992 +++
### errors for param 11 ###
+++ 1.466e+04 1.466e+04 1.842e-01 4.266e-01 0.925 +++
+++ 1.466e+04 1.466e+04 1.842e-01 5.478e-01 1.96 +++
+++ 1.466e+04 1.466e+04 1.842e-01 4.872e-01 1.41 +++
+++ 1.466e+04 1.466e+04 1.842e-01 4.569e-01 1.16 +++
+++ 1.466e+04 1.466e+04 1.842e-01 4.417e-01 1.04 +++
+++ 1.466e+04 1.466e+04 1.842e-01 4.342e-01 0.98 +++
+++ 1.466e+04 1.466e+04 1.842e-01 4.380e-01 1.01 +++
### errors for param 12 ###
+++ 1.466e+04 1.466e+04 9.450e-01 1.226e+00 0.62 +++
+++ 1.466e+04 1.466e+04 9.450e-01 1.367e+00 1.36 +++
+++ 1.466e+04 1.466e+04 9.450e-01 1.297e+00 0.96 +++
+++ 1.466e+04 1.466e+04 9.450e-01 1.332e+00 1.15 +++
+++ 1.466e+04 1.466e+04 9.450e-01 1.314e+00 1.06 +++
+++ 1.466e+04 1.466e+04 9.450e-01 1.305e+00 1.01 +++
### errors for param 13 ###
+++ 1.466e+04 1.466e+04 1.013e+00 1.320e+00 0.825 +++
+++ 1.466e+04 1.466e+04 1.013e+00 1.474e+00 1.81 +++
+++ 1.466e+04 1.466e+04 1.013e+00 1.397e+00 1.28 +++
+++ 1.466e+04 1.466e+04 1.013e+00 1.358e+00 1.04 +++
+++ 1.466e+04 1.466e+04 1.013e+00 1.339e+00 0.93 +++
+++ 1.466e+04 1.466e+04 1.013e+00 1.349e+00 0.984 +++
+++ 1.466e+04 1.466e+04 1.013e+00 1.354e+00 1.01 +++
+++ 1.466e+04 1.466e+04 1.013e+00 1.351e+00 0.998 +++
### errors for param 14 ###
### errors for param 15 ###
+++ 1.466e+04 1.466e+04 6.767e-01 1.187e+00 0.535 +++
+++ 1.466e+04 1.466e+04 6.767e-01 1.442e+00 1.32 +++
+++ 1.466e+04 1.466e+04 6.767e-01 1.314e+00 0.875 +++
+++ 1.466e+04 1.466e+04 6.767e-01 1.378e+00 1.08 +++
+++ 1.466e+04 1.466e+04 6.767e-01 1.346e+00 0.974 +++
+++ 1.466e+04 1.466e+04 6.767e-01 1.362e+00 1.03 +++
+++ 1.466e+04 1.466e+04 6.767e-01 1.354e+00 1 +++
********************
0.030665 -0.46243 -1.78021 -2.09957 -2.72838 -3.0075 -4.05118 -3.80382 -0.0859876 0.347974 0.648709 0.184157 0.945002 1.01285 -1.02557 0.67675
0.00420635 0.00330811 0.0128812 0.0346945 0.0578177 0.0629875 0.439838 0.0971903 0.0799706 0.0700847 0.190914 0.253798 0.360451 0.338322 2 0.677385
********************
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[99]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">phi</span><span class="p">,</span> <span class="n">phie</span> <span class="o">=</span> <span class="n">p</span><span class="p">[</span><span class="n">nfq</span><span class="p">:],</span> <span class="n">pe</span><span class="p">[</span><span class="n">nfq</span><span class="p">:]</span>
<span class="n">lag</span><span class="p">,</span> <span class="n">lage</span> <span class="o">=</span> <span class="n">phi</span><span class="o">/</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="o">*</span><span class="n">fqd</span><span class="p">),</span> <span class="n">phie</span><span class="o">/</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="o">*</span><span class="n">fqd</span><span class="p">)</span>
<span class="n">cx</span><span class="p">,</span> <span class="n">cxe</span> <span class="o">=</span> <span class="n">p</span><span class="p">[:</span><span class="n">nfq</span><span class="p">],</span> <span class="n">pe</span><span class="p">[:</span><span class="n">nfq</span><span class="p">]</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[100]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">xscale</span><span class="p">(</span><span class="s1">&#39;log&#39;</span><span class="p">);</span> <span class="n">ylim</span><span class="p">(</span><span class="o">-</span><span class="mi">10</span><span class="p">,</span><span class="mi">10</span><span class="p">)</span>
<span class="n">errorbar</span><span class="p">(</span><span class="n">fqd</span><span class="p">,</span> <span class="n">lag</span><span class="p">,</span> <span class="n">yerr</span><span class="o">=</span><span class="n">lage</span><span class="p">,</span> <span class="n">fmt</span><span class="o">=</span><span class="s1">&#39;o&#39;</span><span class="p">,</span> <span class="n">ms</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">Out[100]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>&lt;Container object of 3 artists&gt;</pre>
</div>
</div>
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAD1FJREFUeJzt3W+MXNV5x/HfY1bRyLQNVdQlbUhRpUATVYqTvvBGaRDj
pLWNVzXO2iBShbZ2laKiokqtRP7Y0i5VGqUUWYo2obwIOFVjhIIxjo0X2dTLoLquHKSITWn44zdQ
m6a7L0pRhWWCvU9fzCweb3fn7z1z753n+5FWmrlz5p6jPTu/O3vuOfeauwsAEMuavBsAABg8wh8A
AiL8ASAgwh8AAiL8ASAgwh8AAsok/M3sYTObN7OfNG37ZTM7bmavmNkxM3t/FnUBAPqX1Tf/fZI2
Ldv2FUn/5O6/KWlW0lczqgsA0CfLapGXmV0v6Yi7f7zx/GVJN7v7vJl9UFLN3T+aSWUAgL6kHPMf
dfd5SXL3/5I0mrAuAEAXRgZY14r/YpgZ15cAgB64u/X63pTf/OfN7FpJagz7LKxW0N1z/5mcnCzE
/jp9Xyfl2pVZ7fVutmf9eytC/6Xuuyz6r9vXuu3rsvZdUfpvEJ+9fmUZ/tb4WXJY0h83Hv+RpB9m
WFfmqtVqIfbX6fs6KdeuzGqvd7u9CLJsW+q+67RsqzLdvhal7/rZX5b9V4bPXiYnfM3sUUlVSR+Q
NC9pUtIhSY9L+rCk1yXd7u7/s8J7PYs2IB9TU1OamprKuxnoEf1XXmYm72PYJ5Mxf3f/g1Ve+t0s
9o/iKvI3SrRH/8WV2VTPnhvAN38A6Fq/3/y5vAMABET4A0BAhD8ABET4A0BAhD8ABET4A0BAhD8A
BET4A0BAhD8ABET4A0BAhD8ABET4A0BAhD8ABET4A0BAhD8ABET4A0BAhD8ABET4A0BAhD8ABET4
A0BAhD8ABET4A0BAhD8ABET4A0BAhD8ABET4A0BAhD8ABET4A0BAhD8ABET4A0BAhD8ABET4A0BA
hD8ABET4A0BAhD8ABET4A0BAhD8ABET4A0BAhD8ABET4A0BAhD8ABET4A0BAhD8ABET4A0BAhD8A
BET4A0BAI6krMLPXJL0laVHSu+6+PnWdAIDWkoe/6qFfdfc3B1AXAKADgxj2sQHVAwDo0CBC2SU9
Y2bPm9mXBlAfAKCNQQz7/I67/8zMfkX1g8BL7n6yucDU1NR7j6vVqqrV6gCaBQDlUavVVKvVMtuf
uXtmO2tbmdmkpP91971N23yQbQCAYWBmcnfr9f1Jh33MbK2Z/ULj8dWSNkp6MWWdAID2Ug/7XCvp
STPzRl373f144joBAG0MdNhnxQYw7AMAXSv0sA8AoJgIfwAIiPAHgIAIfwAIiPAHgIAIfwAIiPAH
gIAIfwAIiPAHgIAIfwAIiPAHgIAIfwAIiPAHgIAIfwAIiPAHgIAIfwAIiPAHgIAIfwAIiPAHgIAI
fwAIiPAHgIAIfwAIiPAHgIAIfwAIaCTvBgB5unTpkg4ePKbvfe9fdP78iNauvaidOz+jiYlNWrMm
/XejWq3+s/S4Wq0/rlYvPwZSMHfPtwFmnncbENPCwoKq1fv06qs7dOlSVZJJcl11VU033nhAtdqk
RkdHk7ah+eAzMzOiLVsGe/BBeZmZ3N16fn/ewUv4Iw+Li4v69Kfv0enT90u6eoUSb2ts7F6dOjWd
LIQXFha0det9mpvboQsXqlo6+FQqNa1bd0CHD6c/+KC8CH+gBwcOPK0776zowoUNq5apVGa1f//P
NTGxOfP6i3DwQbn1G/78VSGkfftONr5tr+7ChQ165JF/TlL/wYPHNDe3QysHvyRdrbm57Tp06HiS
+gHCHyGdPz+i+jBLK9Yol728Dz4A4Y+Q1q69KKndcKM3ymUv74MPQPgjpJ07P6NKpdayTKXyrHbt
uilJ/XkffADCHyFNTGzSunUHJL29Som3tW7dE9q2bWOS+vM++ADM9kFYl6dabm/M+lmaavms1q17
IulUyzLO9sl7QRyuxFRPoA+zs4t66KFjeuGFk1pYGNHo6EV98pM36a67Nuqzn00baHkefLpVhAVx
uBLhD5TY4uKinnzymPbtO6mjR0c0Pn5Ru3bdpG3bNhbm23QZ/0uJgPAHSqwM1/bJe0EcVkb4A0hq
fHy3Zma+rtZTU13j43v01FN/09W+OY/Qu37Dn0nEAFpKtSbhymsbLR1cXLOzNT3wwD2FOucxjDi0
AmgpxZqExcVFbd16n06fvr/pZLckmS5c2KDTp+/X1q33aXFxscdWox3CH0BLKdYkcG2j/BH+AFpK
sSCOaxvlj/AHhsyJE5d0220zuuGG3brmmkndcMNu3Xbb05qd7W0IZc2aNTp8eFJjY/eqUpnV5SEg
V6Uyq7Gxe3X48GRXJ2i5tlH++M0CQ2RhYUG7d195EvWtt1znztV09mzvJ1FHR0f1jW9MNxbE7Vm2
IG5ao6PdfY+8fB6h9QyiolzbaBhnJTHVExgSZVqMVaa1A0W94xrz/AFIKlegpjxQZblwrsgH1H7D
X+6e60+9CQD6tWXL11xadMlb/Cz6+PjX8m6qu7vPz8/72NjdXqmcaGr3olcqJ3xs7G6fn5/vu45+
4+Xxx2e8Uplt+TutVE74E0883Xdbu9XIzp6zN/mhysw2m9nLZvaqmX05dX1AVGU7iTo6OqpTp6b1
/e+/o/HxPdqwYVLj43u0f//PderUdCEWeA3zrKSkfwVmtkbStyV9TtJ/SnrezH7o7i+nrBeIqGwn
UaX6TKLt22/R9u235N2UFZXtgNqN1N/810s64+6vu/u7kh6TdGviOoGQuEFM9ob5jmupw/9Dks42
PT/X2AYgY3nfnWwYDfMBtRD/q0xNTb33uFqtqlqUa9kCJbK0GGvr1ntb3iAm72meZTIxsUkPPHCP
Tp9er9Vm+9QPqNPJ21Kr1VRbmsaUgaRTPc3sU5Km3H1z4/lXVD9D/bdNZTxlG5CdMlx7HvnenawI
mhdkzcyMaMuW/hZkFfWOa4We529mV0l6RfUTvj+T9CNJX3D3l5rKEP4lZFaf6AYUSaoFWc13XFta
4Zv3HdcKHf5SfaqnpG+pfn7hYXf/5rLXCf8SIvxRNEVekJVC4cO/bQMI/1Ii/FE0ZVrhnIV+w7/8
hz8A0HAvyEqB8AcwFIZ5QVYKhD+AoTDMC7JSIPwBDIVhXpCVAuEPYCiwwrk7hD+AoZDidpPDjKme
6FjWKyeBFJoXZB09OqLx8fwXZKXAPH8MRFFvZQe0MszrUQh/JBdt5SSGB+G/Oj6paOvgwWOam9uh
lYNfkq7W3Nx2HTp0fJDNAtAHwh9tsXISGD6EP9pi5SQwfPi0oq0y3hsWcTXfd+Lmm6Wle0Vx34kr
ccIXbUW7WiJQBpzwRXKsnASGD+GPtlg5CQwfhn3QsSgrJ4EyYJEXcjHMi2eAMmDMHwDQNcIfAAIi
/AEgIMIfAAIi/AEgIMIfAAIi/AEgIOb5o2PNF8yq1S5fJIsLZgGDxyIvAAiIRV4AgK4R/gAQEOEP
AAER/gAQEOEPAAER/gAQEOEPAAER/gAQEOEPAAER/gAQEOEPAAER/gAQEOEPAAER/gAQEOEPAAER
/gAQEOEPAAER/gAQEOEPAAER/gAQULLwN7NJMztnZj9u/GxOVRcAoDsjife/1933Jq4DANCl1MM+
lnj/AIAepA7/PzezF8zsu2b2/sR1AQA61Newj5k9I+na5k2SXNJuSQ9K+mt3dzP7uqS9kv5kpf1M
TU2997haraparfbTLAAYOrVaTbVaLbP9mbtntrNVKzG7XtIRd//4Cq/5INoAAMPEzOTuPQ+tp5zt
88GmpxOSXkxVFwCgOyln+9xvZp+QtCjpNUl3JawLANCFgQz7tGwAwz4A0LXCDvsAAIqL8AeAgAh/
AAiI8AeAgAh/AAiI8AeAgAh/AAiI8AeAgAh/AAiI8AeAgAh/AAiI8AeAgAh/AAiI8AeAgAh/AAiI
8AeAgAh/AAiI8AeAgAh/AAiI8AeAgAh/AAiI8AeAgAh/AAiI8AeAgAh/AAiI8AeAgAh/AAiI8AeA
gAh/AAiI8AeAgAh/AAiI8AeAgAh/AAiI8AeAgAh/AAiI8AeAgAh/AAiI8AeAgAh/AAiI8AeAgAh/
AAiI8AeAgAh/AAiI8AeAgAh/AAiI8AeAgPoKfzPbYWYvmtklM/vtZa991czOmNlLZraxv2aiqGq1
Wt5NQB/ov7j6/eb/b5I+L+m55o1m9jFJt0v6mKRbJD1oZtZnXSggwqPc6L+4+gp/d3/F3c9IWh7s
t0p6zN0vuvtrks5IWt9PXall/SHodX+dvq+Tcu3KrPZ6t9uLIMu2pe67Tsu2KtPta1H6rp/9Zdl/
ZfjspRrz/5Cks03P32hsK6yy/QES/lci/Fu/FqXv+tlftPA3d29dwOwZSdc2b5Lkkna7+5FGmWcl
/ZW7/7jxfFrSv7r7o43n35U04+4HV9h/6wYAAFbk7j0Pp490sPPf62G/b0j6cNPz6xrbVto/5wIA
YMCyHPZpDvHDku4ws/eZ2W9I+oikH2VYFwCgD/1O9dxmZmclfUrSU2b2tCS5+08l/UDSTyXNSLrb
240vAQAGpu2YPwBg+LDCFwACIvwBIKC2s33yYGYflfQXkj4gadbdH8q5SeiCmd0qaVzSL0p6xN2f
yblJ6EJjksZuSb/k7rfn3R50xszWSnpQ0juSnluaar9q+SKP+TcuCfEP7v6HebcF3TOzayT9nbt/
Ke+2oHtm9gPCvzzM7IuS3nT3o2b2mLvf0ap80mEfM3vYzObN7CfLtm82s5fN7FUz+/Iq7/19SU+p
PlsIOein/xr2SPpO2lZiNRn0H3LUQ/9dp8tXVrjUbv+px/z3SdrUvMHM1kj6dmP7b0n6QmOYR2Z2
p5ntNbNfdfcj7j4u6YuJ24jV9dp/v2Zm31R9VfcLg2403tPz52+p+CAbi/+nq/5TPfivWyrabudJ
w9/dT0p6c9nm9ZLOuPvr7v6upMdUvxCc3P0f3f0vJd1oZt8ys4ckHU3ZRqyuj/7bLulzknaY2Z8O
ss24rI/+e8fM/l7SJ/jPID/d9p+kJ1X/zH1H0pF2+8/jhO/yi76d07Irfrr7c1p2mWgURif9Ny1p
epCNQsc66b//lvRng2wUOrZq/7n7eUm7Ot0RUz0BIKA8wv8NSb/e9HzVi76hkOi/cqP/yi2z/htE
+JuuPPnwvKSPmNn1ZvY+SXeofiE4FBP9V270X7kl67/UUz0flXRK9RO4/2FmO939kqR7JB2X9O+q
3/HrpZTtQG/ov3Kj/8otdf8VepEXACANTvgCQECEPwAERPgDQECEPwAERPgDQECEPwAERPgDQECE
PwAE9H9r3y+QQfII/gAAAABJRU5ErkJggg==
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span>
</pre></div>
</div>
</div>
</div>
</div>
</div>
</div>
</body>
</html>