cloudy-agn/src/generate_sed.cpp
2015-10-10 20:20:17 -04:00

191 lines
5.1 KiB
C++

#include "agn.hpp"
int main(int argc, char const *argv[])
{
std::cout
<< "Setting up environment.\n";
bool debug=true;
// Create 2d table using n bins, linear values of SED. The
// agn em source class has a function for this. A
// std::map<double,double> represents the table.
int n = 1000;
agn::sed_table SED;
const char* table_filename = "agn_source_table";
const char* debug_filename = "agn_source_debug";
const char* cloudyscript_filename = "agn_source_cloudyscript";
std::ofstream table_file( table_filename,
std::ofstream::out
);
std::ofstream debug_file( debug_filename,
std::ofstream::out
);
std::ofstream cloudyscript_file(cloudyscript_filename,
std::ofstream::out
);
if(debug) std::cout
<< "Debug mode.\n";
std::cout
<< "Creating agn sed object.\n";
// agn em source spectrum arguments
double T=4e6,
alpha_ox = -1.20,
alpha_x = -0.670,
alpha_uv = -1.30,
cutoff_uv_rydberg = .25,
cutoff_xray_rydberg = .1,
log_radius_in_cm=16.7272;;
agn::sed_pow_law agnsource(
T,
alpha_ox,
alpha_x,
alpha_uv,
cutoff_uv_rydberg,
cutoff_xray_rydberg,
log_radius_in_cm
);
if(debug) debug_file
<< "cutoff_uv_eV: "
<< agnsource._cutoff_uv_eV
<< "\n"
<< "cutoff_xray_eV: "
<< agnsource._cutoff_xray_eV
<< "\n"
<< "xray coefficient: "
<< agnsource._xray_coefficient
<< "\n\n";
std::cout
<< "Evaluating relative spectral intensity for "
<< n
<< " photon energy bins.\n";
SED = agnsource.histogram_table(n);
std::cout
<< "Printing SED table to file "
<< table_filename
<< "\n";
table_file << agn::format_sed_table(SED);
std::cout
<< "Printing CLOUDY interpolate command syntax to file "
<< cloudyscript_filename
<< "\n";
cloudyscript_file << agn::cloudy_interpolate_str(SED);
std::cout
<< "Closing files. Goodbye.\n";
debug_file.close();
cloudyscript_file.close();
table_file.close();
return 0;
}
double agn::hnu_at(int i,int n) {
double relative_coord=(double)(i)/n;
double x_coord = relative_coord*CONT_WIDTH_X + CONT_MIN_X;
return pow(10,x_coord);
}
agn::sed_table agn::sed_pow_law::histogram_table(int n){
agn::sed_table output;
double max=0,min=1,hnu;
for(int i=0; i<n; i++) {
hnu = hnu_at(i,n);
output.value[hnu] = this->sed(hnu);
if (output.value[hnu] > max) max = output.value[hnu];
if (output.value[hnu] < min) min = output.value[hnu];
}
// Add a final point at 100 KeV
hnu = 1e5;
output.value[hnu] = this->sed(hnu);
return output;
}
double agn::sed_pow_law::sed(double hnu) {
double magnitude=0.0;
magnitude += this->eval_uv(hnu);
magnitude += this->eval_xray(hnu);
if (magnitude < agn::CONT_MIN_VAL) return agn::CONT_MIN_VAL;
return magnitude;
}
double agn::sed_pow_law::eval_uv(double hnu) {
double bigbump_kT = _T
* agn::BOLTZMANN_CONST;
double magnitude = pow(hnu,(1+_alpha_uv))
* exp(-(hnu)/bigbump_kT)
* exp(-(_cutoff_uv_eV/hnu))
* _scaling_factor;
if (magnitude < agn::CONT_MIN_VAL) return agn::CONT_MIN_VAL;
return magnitude;
}
double agn::sed_pow_law::eval_xray(double hnu) {
return _xray_coefficient
* pow(hnu/2000,1+_alpha_x)
* exp(-_cutoff_xray_eV/hnu)
* _scaling_factor;
}
double agn::sed_pow_law::SED_at_2KeV() {
double ELe_at_2500A_no_scale = eval_uv(IN_EV_2500A)
/ _scaling_factor;
double energy_ratio = 2000/IN_EV_2500A;
// Returns EL[e] at 2 KeV
return ELe_at_2500A_no_scale
* pow(energy_ratio,_alpha_ox + 1);
}
agn::sed_pow_law::sed_pow_law (
double T,
double alpha_ox,
double alpha_x,
double alpha_uv,
double cutoff_uv_rydberg,
double cutoff_xray_rydberg,
double log_radius_in_cm,
double scaling_factor
):
_T(T),
_alpha_ox(alpha_ox),
_alpha_x(alpha_x),
_alpha_uv(alpha_uv),
_cutoff_uv_rydberg(cutoff_uv_rydberg),
_cutoff_xray_rydberg(cutoff_xray_rydberg),
_log_radius_in_cm(log_radius_in_cm),
_scaling_factor(scaling_factor)
{
_cutoff_uv_eV = cutoff_uv_rydberg*RYDBERG_UNIT_EV;
_cutoff_xray_eV = cutoff_xray_rydberg*RYDBERG_UNIT_EV;
_radius_in_cm = pow(10,log_radius_in_cm);
_radius_in_cm_squared = _radius_in_cm*_radius_in_cm;
_xray_coefficient = agn::sed_pow_law::SED_at_2KeV();
}