spline sed generation

This commit is contained in:
caes 2017-08-08 05:15:14 -04:00
parent bb020ccda3
commit 7d2b6eba3e
5 changed files with 525 additions and 91 deletions

View File

@ -0,0 +1,76 @@
#include "agn.hpp"
int main(int argc, char const *argv[])
{
if (agn::verbose) std::cout
<< "Setting up environment.\n";
// Create 2d table using n bins, linear values of SED. The
// agn sed_spline class has a function for this. A
// std::map<double,double> represents the table.
int n = 1000;
agn::sed_table SED;
agn::sed_table samples;
agn::sed_spline agnsource;
const char* sample_filename = argv[1];
const char* output_filename = argv[2];
const char* debug_filename = "spline_sed_debug";
std::ifstream sample_table(
sample_filename,
std::ofstream::out
);
std::ofstream output_table(
output_filename,
std::ofstream::out
);
std::ofstream debug_file(
debug_filename,
std::ofstream::out
);
if (agn::verbose) std::cout
<< "Creating agn sed object.\n";
// Read in sampling table and construct a spline model.
samples = agn::read_sed_table(sample_table);
agnsource = agn::sed_spline(samples);
if(agn::debug) debug_file {
std::cout
<< "Read samples:\n"
<< format_sed_table(samples);
}
if(agn::verbose) std::cout
<< "Evaluating relative spectral intensity for "
<< n
<< " photon energy bins.\n";
SED = agnsource.histogram_table(n);
if(agn::verbose) std::cout
<< "Printing SED table to file "
<< output_filename
<< "\n";
output_table << agn::format_sed_table(SED);
if(agn::verbose) std::cout
<< "Printing CLOUDY interpolate command syntax to file "
<< cloudyscript_filename
<< "\n";
if(agn::verbose) std::cout
<< "Closing files. Goodbye.\n";
debug_file.close();
output_table.close();
return 0;
}

364
src/sed.hpp Normal file
View File

@ -0,0 +1,364 @@
#ifndef sed_hpp
#define sed_hpp
#include "agn.hpp"
#include "spline.h"
namespace agn {
// Continuum domain, step size constant in log space
const double CONT_MIN_ENERGY=1e-2; // eV
const double CONT_MAX_ENERGY=1e5; // eV
const double CONT_MIN_X=log10(CONT_MIN_ENERGY);
const double CONT_MAX_X=log10(CONT_MAX_ENERGY);
const double CONT_WIDTH_X=CONT_MAX_X - CONT_MIN_X;
const double CONT_MIN_VAL=1e-35;
// Cloudy's continuum domain, for reference
// Pulled from cloudy 17.00, first version
// rfield.emm = 1.001e-8f;
// rfield.egamry = 7.354e6f;
const double CLOUDY_EMM = 1.001e-8; // in Rydberg
const double CLOUDY_EGAMRY = 7.354e6; // in Rydberg
const double CLOUDY_MIN_EV=CLOUDY_EMM*RYDBERG_UNIT_EV;
const double CLOUDY_MAX_EV=CLOUDY_EGAMRY*RYDBERG_UNIT_EV;
const double IN_EV_2500A=12398.41929/2500;
// SEDs are represented by 2d histogram tables.
struct sed_table {
std::string header;
table_1d value;
};
class sed {
// Continuum output functions
// Returns histogram with n bins evenly space in log space
sed_table histogram_table(int n);
// Argument is photon energy in eV
virtual double sed(double hnu);
}
class sed_spline : sed {
private:
Spline _spline;
public:
sed_spline(agn::sed_table& samples);
// These parameters might still be useful for rolling off various quantities, but aren't used in the strict-spline case.
// Continuum shape arguments
double _T; //TCut
double _alpha_ox;
double _alpha_x;
double _alpha_uv;
double _cutoff_uv_rydberg;
double _cutoff_xray_rydberg;
double _log_radius_in_cm;
// Derived values
double _cutoff_uv_eV; // IRCut
double _cutoff_xray_eV; // lowend_cutoff
double _radius_in_cm;
double _radius_in_cm_squared;
double _scaling_factor;
double _xray_coefficient;
};
class sed_pow_law : sed {
public:
// Argument is photon energy in eV
double eval_uv(double hnu);
double eval_xray(double hnu);
// Determined differently to be of use as the
// xray coefficient.
double SED_at_2KeV();
// Continuum shape arguments
double _T; //TCut
double _alpha_ox;
double _alpha_x;
double _alpha_uv;
double _cutoff_uv_rydberg;
double _cutoff_xray_rydberg;
double _log_radius_in_cm;
// Derived values
double _cutoff_uv_eV; // IRCut
double _cutoff_xray_eV; // lowend_cutoff
double _radius_in_cm;
double _radius_in_cm_squared;
double _scaling_factor;
double _xray_coefficient;
sed_pow_law (
double T,
double alpha_ox,
double alpha_x,
double alpha_uv,
double cutoff_uv_rydberg,
double cutoff_xray_rydberg,
double log_radius_in_cm,
double scaling_factor = 1.0
// EL[e] model scaling factor
// double scaling_factor = 1.39666E44
);
};
// Constructors
agn::sed_spline::sed_spline(agn::sed_table& samples) {
std::vector<double> x;
std::vector<double> y;
iterator2d table_it = samples.begin();
while(table_it != samples.end()) {
x.push(table_it->first);
y.push(table_it->second);
}
Spline newspline(x,y);
_spline = newspline;
}
agn::sed_pow_law::sed_pow_law (
double T,
double alpha_ox,
double alpha_x,
double alpha_uv,
double cutoff_uv_rydberg,
double cutoff_xray_rydberg,
double log_radius_in_cm,
double scaling_factor
):
_T(T),
_alpha_ox(alpha_ox),
_alpha_x(alpha_x),
_alpha_uv(alpha_uv),
_cutoff_uv_rydberg(cutoff_uv_rydberg),
_cutoff_xray_rydberg(cutoff_xray_rydberg),
_log_radius_in_cm(log_radius_in_cm),
_scaling_factor(scaling_factor)
{
_cutoff_uv_eV = cutoff_uv_rydberg*RYDBERG_UNIT_EV;
_cutoff_xray_eV = cutoff_xray_rydberg*RYDBERG_UNIT_EV;
_radius_in_cm = pow(10,log_radius_in_cm);
_radius_in_cm_squared = _radius_in_cm*_radius_in_cm;
_xray_coefficient = agn::sed_pow_law::SED_at_2KeV();
}
// Class Functions
// writes log-space histogram with n data
agn::sed_table agn::sed::histogram_table(int n){
agn::sed_table output;
double max=0,min=1,hnu;
for(int i=0; i<n; i++) {
hnu = hnu_at(i,n);
output.value[hnu] = this->sed(hnu);
if (output.value[hnu] > max) max = output.value[hnu];
if (output.value[hnu] < min) min = output.value[hnu];
}
// Add a final point at 100 KeV
hnu = 1e5;
output.value[hnu] = this->sed(hnu);
return output;
}
// sed_spline evaluation
double agn::sed_spline::sed(double hnu) {
double magnitude=0.0;
magnitude += this->_spline[hnu];
if (magnitude < agn::CONT_MIN_VAL) return agn::CONT_MIN_VAL;
return magnitude;
}
// sed_pow_law evaluations
double agn::sed_pow_law::sed(double hnu) {
double magnitude=0.0;
magnitude += this->eval_uv(hnu);
magnitude += this->eval_xray(hnu);
return magnitude;
}
double agn::sed_pow_law::eval_uv(double hnu) {
double bigbump_kT = _T
* agn::BOLTZMANN_CONST;
double magnitude = pow(hnu,(1+_alpha_uv))
* exp(-(hnu)/bigbump_kT)
* exp(-(_cutoff_uv_eV/hnu))
* _scaling_factor;
if (magnitude < agn::CONT_MIN_VAL) return agn::CONT_MIN_VAL;
return magnitude;
}
double agn::sed_pow_law::eval_xray(double hnu) {
return _xray_coefficient
* pow(hnu/2000,1+_alpha_x)
* exp(-_cutoff_xray_eV/hnu)
* _scaling_factor;
}
double agn::sed_pow_law::SED_at_2KeV() {
double ELe_at_2500A_no_scale = eval_uv(IN_EV_2500A)
/ _scaling_factor;
double energy_ratio = 2000/IN_EV_2500A;
// Returns EL[e] at 2 KeV
return ELe_at_2500A_no_scale
* pow(energy_ratio,_alpha_ox + 1);
}
// Utilities
// Returns coord in eV for given relative coord.
double hnu_at(int i,int n);
// Takes an SED table as input and returns a string with format:
// '<h*nu>\t<flux>\n' for each energy-flux pair
std::string format_sed_table(sed_table table);
// Read continuum from file with '<h*nu>\t<flux>\n' formatting.
// Will ignore up to 1 header.
sed_table read_sed_table(std::ifstream& table_file);
// Does the same but converts hnu from rydberg to eV.
sed_table read_and_convert_sed_table(std::ifstream& table_file);
// Cloudy takes the SED density as input. This function outputs
// the corresponding SED table's SED density function in the form
// of a cloudy input script "interpolate" command.
std::string cloudy_interpolate_str(sed_table SED);
} // end namespace agn
agn::sed_table agn::read_sed_table(std::ifstream& table_file) {
sed_table resultant;
std::string scratch;
int current_line=0;
double hnu;
std::getline(table_file,scratch);
if(!isdigit(scratch[0])) {
resultant.header = scratch;
current_line++;
}
while(!table_file.eof()) {
table_file >> hnu;
table_file >> resultant.value[hnu];
}
}
agn::sed_table agn::read_and_convert_sed_table(std::ifstream& table_file) {
sed_table resultant;
std::string scratch;
int current_line=0;
double hnu_in_ryd,hnu_in_ev,value;
std::getline(table_file,scratch);
if(!isdigit(scratch[0])) {
resultant.header = scratch;
current_line++;
}
int c=0;
while(!table_file.eof()) {
//std::cout << c;
table_file >> hnu_in_ryd;
hnu_in_ev = hnu_in_ryd*agn::RYDBERG_UNIT_EV;
table_file >> resultant.value[hnu_in_ev];
getline(table_file,scratch);
}
}
std::string agn::format_sed_table(agn::sed_table table) {
std::stringstream output;
if (!table.header.empty()) output << table.header;
output << std::setprecision(5);
agn::table2d::iterator table_iterator;
table_iterator=table.value.begin();
while(table_iterator != table.value.end()) {
output
<< std::fixed
<< table_iterator->first
<< "\t"
<< std::scientific
<< table_iterator->second
<< "\n";
table_iterator++;
}
return output.str();
}
std::string agn::cloudy_interpolate_str(agn::sed_table table) {
std::stringstream output;
agn::table2d::iterator table_iterator = table.value.begin();
// Lead in to uv bump at slope=2 in log(energy [rydberg]) space
double energy_in_rydbergs = table_iterator->first
/ agn::RYDBERG_UNIT_EV;
double log_uv_bump_start = log10( energy_in_rydbergs );
double log_lowest_value = log10(table_iterator->second
/ table_iterator->first);
double log_min_energy = log10(agn::CLOUDY_EMM)
- 1;
double log_SED_density = log_lowest_value
- 2*(log_uv_bump_start
- log_min_energy);
if ( log_SED_density < 1e-36 ) log_SED_density = 1e-36;
output
<< "interpolate ("
<< pow(10,log_min_energy)
<< " "
<< log_SED_density
<< ")";
int count=0;
while(table_iterator != table.value.end()) {
energy_in_rydbergs = table_iterator->first
/ agn::RYDBERG_UNIT_EV;
double log_SED_density = log10( table_iterator->second
/ table_iterator->first);
if ((count%5)==0) output << "\n" << "continue ";
else output << " ";
output
<< "("
<< energy_in_rydbergs
<< " "
<< log_SED_density
<< ")";
count++;
table_iterator++;
}
// Trail off at slope=-2 in log(energy [rydberg]) space
while ( energy_in_rydbergs < agn::CLOUDY_EGAMRY ) {
double log_energy = log10(energy_in_rydbergs);
energy_in_rydbergs = pow(10,log_energy+1);
log_SED_density -= 2;
output
<< "("
<< energy_in_rydbergs
<< " "
<< log_SED_density
<< ")";
}
return output.str();
}
double agn::hnu_at(int i,int n) {
double relative_coord=(double)(i)/n;
double x_coord = relative_coord*CONT_WIDTH_X + CONT_MIN_X;
return pow(10,x_coord);
}
#endif

View File

@ -98,93 +98,3 @@ int main(int argc, char const *argv[])
return 0;
}
double agn::hnu_at(int i,int n) {
double relative_coord=(double)(i)/n;
double x_coord = relative_coord*CONT_WIDTH_X + CONT_MIN_X;
return pow(10,x_coord);
}
agn::sed_table agn::sed_pow_law::histogram_table(int n){
agn::sed_table output;
double max=0,min=1,hnu;
for(int i=0; i<n; i++) {
hnu = hnu_at(i,n);
output.value[hnu] = this->sed(hnu);
if (output.value[hnu] > max) max = output.value[hnu];
if (output.value[hnu] < min) min = output.value[hnu];
}
// Add a final point at 100 KeV
hnu = 1e5;
output.value[hnu] = this->sed(hnu);
return output;
}
double agn::sed_pow_law::sed(double hnu) {
double magnitude=0.0;
magnitude += this->eval_uv(hnu);
magnitude += this->eval_xray(hnu);
if (magnitude < agn::CONT_MIN_VAL) return agn::CONT_MIN_VAL;
return magnitude;
}
double agn::sed_pow_law::eval_uv(double hnu) {
double bigbump_kT = _T
* agn::BOLTZMANN_CONST;
double magnitude = pow(hnu,(1+_alpha_uv))
* exp(-(hnu)/bigbump_kT)
* exp(-(_cutoff_uv_eV/hnu))
* _scaling_factor;
if (magnitude < agn::CONT_MIN_VAL) return agn::CONT_MIN_VAL;
return magnitude;
}
double agn::sed_pow_law::eval_xray(double hnu) {
return _xray_coefficient
* pow(hnu/2000,1+_alpha_x)
* exp(-_cutoff_xray_eV/hnu)
* _scaling_factor;
}
double agn::sed_pow_law::SED_at_2KeV() {
double ELe_at_2500A_no_scale = eval_uv(IN_EV_2500A)
/ _scaling_factor;
double energy_ratio = 2000/IN_EV_2500A;
// Returns EL[e] at 2 KeV
return ELe_at_2500A_no_scale
* pow(energy_ratio,_alpha_ox + 1);
}
agn::sed_pow_law::sed_pow_law (
double T,
double alpha_ox,
double alpha_x,
double alpha_uv,
double cutoff_uv_rydberg,
double cutoff_xray_rydberg,
double log_radius_in_cm,
double scaling_factor
):
_T(T),
_alpha_ox(alpha_ox),
_alpha_x(alpha_x),
_alpha_uv(alpha_uv),
_cutoff_uv_rydberg(cutoff_uv_rydberg),
_cutoff_xray_rydberg(cutoff_xray_rydberg),
_log_radius_in_cm(log_radius_in_cm),
_scaling_factor(scaling_factor)
{
_cutoff_uv_eV = cutoff_uv_rydberg*RYDBERG_UNIT_EV;
_cutoff_xray_eV = cutoff_xray_rydberg*RYDBERG_UNIT_EV;
_radius_in_cm = pow(10,log_radius_in_cm);
_radius_in_cm_squared = _radius_in_cm*_radius_in_cm;
_xray_coefficient = agn::sed_pow_law::SED_at_2KeV();
}

View File

@ -1,4 +1,4 @@
#!/usr/local/bin/perl
#!/usr/bin/env
use strict; use warnings; use 5.010; use utf8;
use IO::Handle;

View File

@ -23,6 +23,9 @@ const double CLOUDY_MAX_EV=CLOUDY_EGAMRY*RYDBERG_UNIT_EV;
const double IN_EV_2500A=12398.41929/2500;
// Pulled from cloudy 17.00, first version
const double emm = 1.001e-8f;
const double egamry = 7.354e6f;
// SEDs are represented by 2d histogram tables.
@ -215,5 +218,86 @@ std::string agn::cloudy_interpolate_str(agn::sed_table table) {
}
double agn::hnu_at(int i,int n) {
double relative_coord=(double)(i)/n;
double x_coord = relative_coord*CONT_WIDTH_X + CONT_MIN_X;
return pow(10,x_coord);
}
agn::sed_table agn::sed_pow_law::histogram_table(int n){
agn::sed_table output;
double max=0,min=1,hnu;
for(int i=0; i<n; i++) {
hnu = hnu_at(i,n);
output.value[hnu] = this->sed(hnu);
if (output.value[hnu] > max) max = output.value[hnu];
if (output.value[hnu] < min) min = output.value[hnu];
}
// Add a final point at 100 KeV
hnu = 1e5;
output.value[hnu] = this->sed(hnu);
return output;
}
double agn::sed_pow_law::sed(double hnu) {
double magnitude=0.0;
magnitude += this->eval_uv(hnu);
magnitude += this->eval_xray(hnu);
if (magnitude < agn::CONT_MIN_VAL) return agn::CONT_MIN_VAL;
return magnitude;
}
double agn::sed_pow_law::eval_uv(double hnu) {
double bigbump_kT = _T
* agn::BOLTZMANN_CONST;
double magnitude = pow(hnu,(1+_alpha_uv))
* exp(-(hnu)/bigbump_kT)
* exp(-(_cutoff_uv_eV/hnu))
* _scaling_factor;
if (magnitude < agn::CONT_MIN_VAL) return agn::CONT_MIN_VAL;
return magnitude;
}
double agn::sed_pow_law::eval_xray(double hnu) {
return _xray_coefficient
* pow(hnu/2000,1+_alpha_x)
* exp(-_cutoff_xray_eV/hnu)
* _scaling_factor;
}
double agn::sed_pow_law::SED_at_2KeV() {
double ELe_at_2500A_no_scale = eval_uv(IN_EV_2500A)
/ _scaling_factor;
double energy_ratio = 2000/IN_EV_2500A;
// Returns EL[e] at 2 KeV
return ELe_at_2500A_no_scale
* pow(energy_ratio,_alpha_ox + 1);
}
agn::sed_pow_law::sed_pow_law (
double T,
double alpha_ox,
double alpha_x,
double alpha_uv,
double cutoff_uv_rydberg,
double cutoff_xray_rydberg,
double log_radius_in_cm,
double scaling_factor
):
_T(T),
_alpha_ox(alpha_ox),
_alpha_x(alpha_x),
_alpha_uv(alpha_uv),
_cutoff_uv_rydberg(cutoff_uv_rydberg),
_cutoff_xray_rydberg(cutoff_xray_rydberg),
_log_radius_in_cm(log_radius_in_cm),
_scaling_factor(scaling_factor)
{
_cutoff_uv_eV = cutoff_uv_rydberg*RYDBERG_UNIT_EV;
_cutoff_xray_eV = cutoff_xray_rydberg*RYDBERG_UNIT_EV;
_radius_in_cm = pow(10,log_radius_in_cm);
_radius_in_cm_squared = _radius_in_cm*_radius_in_cm;
_xray_coefficient = agn::sed_pow_law::SED_at_2KeV();
}
#endif