mirror of
https://asciireactor.com/otho/cloudy-agn.git
synced 2024-12-05 02:25:08 +00:00
update
This commit is contained in:
parent
1cd013467f
commit
45bc4d7030
@ -1,6 +1,7 @@
|
||||
#include "agn.hpp"
|
||||
#include "sed.hpp"
|
||||
|
||||
// This is old and probably doesn't work.
|
||||
|
||||
int main(int argc, char const *argv[])
|
||||
{
|
||||
|
136
src/sed.hpp
136
src/sed.hpp
@ -32,9 +32,25 @@ const double IN_EV_2500A=12398.41929/2500;
|
||||
// SEDs are represented by 2d histogram tables.
|
||||
struct sed_table {
|
||||
std::string header;
|
||||
table1d value;
|
||||
table1d table;
|
||||
};
|
||||
|
||||
class powerlaw {
|
||||
private:
|
||||
// f(x) = _normal*x^_power
|
||||
double _power;
|
||||
double _normal;
|
||||
public:
|
||||
powerlaw(): _power(0), _normal(0) {}
|
||||
powerlaw(coord2d x0,coord2d x1):
|
||||
_power((log(x1.second)-log(x0.second))/(log(x1.first)-log(x0.first))),
|
||||
_normal((log(x0.second)-(_power*log(x0.first))))
|
||||
{}
|
||||
powerlaw(coord2d x0,double slope):
|
||||
_power(slope),
|
||||
_normal((log(x0.second)-(_power*log(x0.first))))
|
||||
{}
|
||||
};
|
||||
|
||||
class sed {
|
||||
public:
|
||||
@ -43,30 +59,18 @@ public:
|
||||
sed_table histogram_table(int n);
|
||||
|
||||
// Argument is photon energy in eV
|
||||
virtual double value(double hnu) {};
|
||||
virtual double table(double hnu) {};
|
||||
|
||||
sed() {};
|
||||
};
|
||||
|
||||
class sed_powerlaw_spline : public sed {
|
||||
private:
|
||||
Spline<double,double> _spline;
|
||||
|
||||
// powerlaw parameters
|
||||
double _ir_slope = 3;
|
||||
double _ir_high_point_x;
|
||||
double _ir_high_point_y;
|
||||
double _uv_low_point_x;
|
||||
double _uv_low_point_y;
|
||||
double _uv_high_point_x;
|
||||
double _uv_high_point_y;
|
||||
double _xray_low_point_x;
|
||||
double _xray_low_point_y;
|
||||
double _xray_high_point_x;
|
||||
double _xray_high_point_y;
|
||||
double _gamma_low_point_x;
|
||||
double _gamma_low_point_y;
|
||||
double _gamma_slope = -2;
|
||||
Spline<double,double> _output_model;
|
||||
powerlaw _ir_powerlaw;
|
||||
powerlaw _uv_powerlaw;
|
||||
powerlaw _xray_powerlaw;
|
||||
powerlaw _gamma_powerlaw;
|
||||
|
||||
// These parameters might still be useful for rolling off various quantities, but aren't used in the strict-spline case.
|
||||
|
||||
@ -79,14 +83,14 @@ private:
|
||||
double _xray_coefficient;
|
||||
|
||||
public:
|
||||
double value(double hnu);
|
||||
double table(double hnu);
|
||||
sed_powerlaw_spline(agn::sed_table& samples,
|
||||
agn::sed_table& powerlaw_coords);
|
||||
};
|
||||
|
||||
class sed_pow_law : public sed {
|
||||
public:
|
||||
double value(double hnu);
|
||||
double table(double hnu);
|
||||
// Argument is photon energy in eV
|
||||
double eval_uv(double hnu);
|
||||
double eval_xray(double hnu);
|
||||
@ -154,40 +158,42 @@ std::string cloudy_interpolate_str(sed_table SED);
|
||||
agn::sed_powerlaw_spline::sed_powerlaw_spline(
|
||||
agn::sed_table& samples,
|
||||
agn::sed_table& powerlaw_coords
|
||||
) {
|
||||
std::vector<double> x;
|
||||
std::vector<double> y;
|
||||
samples
|
||||
iterator1d table_it = powerlaw_coords.value.begin();
|
||||
_ir_high_point_x = table_it->first;
|
||||
_ir_high_point_y = table_it->second;
|
||||
table_it++;
|
||||
_uv_high_point_x = table_it->first;
|
||||
_uv_high_point_y = table_it->second;
|
||||
table_it++;
|
||||
_uv_high_point_x = table_it->first;
|
||||
_uv_high_point_y = table_it->second;
|
||||
table_it++;
|
||||
_xray_high_point_x = table_it->first;
|
||||
_xray_high_point_y = table_it->second;
|
||||
table_it++;
|
||||
_xray_high_point_x = table_it->first;
|
||||
_xray_high_point_y = table_it->second;
|
||||
table_it++;
|
||||
_gamma_high_point_x = table_it->first;
|
||||
_gamma_high_point_y = table_it->second;
|
||||
)
|
||||
{
|
||||
// coordinate vectors will be used to construct spline sed model
|
||||
std::vector<double> x0;
|
||||
std::vector<double> x1;
|
||||
|
||||
// powerlaws are evaluated across four regions of the sed, first
|
||||
iterator1d table_it = powerlaw_coords.table.begin();
|
||||
double ir_power = 3;
|
||||
coord2d ir_high_point = *table_it; table_it++;
|
||||
coord2d uv_low_point = *table_it; table_it++;
|
||||
coord2d uv_high_point = *table_it; table_it++;
|
||||
coord2d xray_low_point = *table_it; table_it++;
|
||||
coord2d xray_high_point = *table_it; table_it++;
|
||||
coord2d gamma_low_point = *table_it;
|
||||
double gamma_power = -2;
|
||||
_ir_powerlaw = powerlaw(ir_high_point,ir_power);
|
||||
_uv_powerlaw = powerlaw(uv_low_point,uv_high_point);
|
||||
_xray_powerlaw = powerlaw(xray_low_point,xray_high_point);
|
||||
_gamma_powerlaw = powerlaw(gamma_low_point,gamma_power);
|
||||
|
||||
ir_bounds=
|
||||
|
||||
for (int i=0; i<10; i++) {
|
||||
_
|
||||
agn::coord2d uv_point =
|
||||
_ir_powerlaw.eval()
|
||||
}
|
||||
table_it = samples.value.begin();
|
||||
while(table_it != samples.value.end()) {
|
||||
x.push_back(table_it->first);
|
||||
y.push_back(table_it->second);
|
||||
|
||||
// load all samples into coordinate vectors
|
||||
table_it = samples.table.begin();
|
||||
while(table_it != samples.table.end()) {
|
||||
x0.push_back(table_it->first);
|
||||
x1.push_back(table_it->second);
|
||||
table_it++;
|
||||
}
|
||||
Spline<double,double> newspline(x,y);
|
||||
_spline = newspline;
|
||||
Spline<double,double> newspline(x0,x1);
|
||||
_output_model = newspline;
|
||||
}
|
||||
|
||||
agn::sed_pow_law::sed_pow_law (
|
||||
@ -225,26 +231,26 @@ agn::sed_table agn::sed::histogram_table(int n){
|
||||
double max=0,min=1,hnu;
|
||||
for(int i=0; i<n; i++) {
|
||||
hnu = hnu_at(i,n);
|
||||
output.value[hnu] = this->value(hnu);
|
||||
if (output.value[hnu] > max) max = output.value[hnu];
|
||||
if (output.value[hnu] < min) min = output.value[hnu];
|
||||
output.table[hnu] = this->table(hnu);
|
||||
if (output.table[hnu] > max) max = output.table[hnu];
|
||||
if (output.table[hnu] < min) min = output.table[hnu];
|
||||
}
|
||||
// Add a final point at 100 KeV
|
||||
hnu = 1e5;
|
||||
output.value[hnu] = this->value(hnu);
|
||||
output.table[hnu] = this->table(hnu);
|
||||
return output;
|
||||
}
|
||||
|
||||
// sed_powerlaw_spline evaluation
|
||||
double agn::sed_powerlaw_spline::value(double hnu) {
|
||||
double agn::sed_powerlaw_spline::table(double hnu) {
|
||||
double magnitude=0.0;
|
||||
magnitude += this->_spline[hnu];
|
||||
magnitude += this->_output_model[hnu];
|
||||
if (magnitude < agn::CONT_MIN_VAL) return agn::CONT_MIN_VAL;
|
||||
return magnitude;
|
||||
}
|
||||
|
||||
// sed_pow_law evaluations
|
||||
double agn::sed_pow_law::value(double hnu) {
|
||||
double agn::sed_pow_law::table(double hnu) {
|
||||
double magnitude=0.0;
|
||||
magnitude += this->eval_uv(hnu);
|
||||
magnitude += this->eval_xray(hnu);
|
||||
@ -296,7 +302,7 @@ agn::sed_table agn::read_sed_table(std::ifstream& table_file) {
|
||||
}
|
||||
while(!table_file.eof()) {
|
||||
table_file >> hnu;
|
||||
table_file >> resultant.value[hnu];
|
||||
table_file >> resultant.table[hnu];
|
||||
}
|
||||
return resultant;
|
||||
}
|
||||
@ -306,7 +312,7 @@ agn::sed_table agn::read_and_convert_sed_table(std::ifstream& table_file) {
|
||||
sed_table resultant;
|
||||
std::string scratch;
|
||||
int current_line=0;
|
||||
double hnu_in_ryd,hnu_in_ev,value;
|
||||
double hnu_in_ryd,hnu_in_ev,table;
|
||||
std::getline(table_file,scratch);
|
||||
if(!isdigit(scratch[0])) {
|
||||
resultant.header = scratch;
|
||||
@ -317,7 +323,7 @@ agn::sed_table agn::read_and_convert_sed_table(std::ifstream& table_file) {
|
||||
//std::cout << c;
|
||||
table_file >> hnu_in_ryd;
|
||||
hnu_in_ev = hnu_in_ryd*agn::RYDBERG_UNIT_EV;
|
||||
table_file >> resultant.value[hnu_in_ev];
|
||||
table_file >> resultant.table[hnu_in_ev];
|
||||
getline(table_file,scratch);
|
||||
}
|
||||
}
|
||||
@ -327,8 +333,8 @@ std::string agn::format_sed_table(agn::sed_table table) {
|
||||
if (!table.header.empty()) output << table.header;
|
||||
output << std::setprecision(5);
|
||||
agn::table1d::iterator table_iterator;
|
||||
table_iterator=table.value.begin();
|
||||
while(table_iterator != table.value.end()) {
|
||||
table_iterator=table.table.begin();
|
||||
while(table_iterator != table.table.end()) {
|
||||
output
|
||||
<< std::fixed
|
||||
<< std::scientific
|
||||
@ -344,7 +350,7 @@ std::string agn::format_sed_table(agn::sed_table table) {
|
||||
|
||||
std::string agn::cloudy_interpolate_str(agn::sed_table table) {
|
||||
std::stringstream output;
|
||||
agn::table1d::iterator table_iterator = table.value.begin();
|
||||
agn::table1d::iterator table_iterator = table.table.begin();
|
||||
// Lead in to uv bump at slope=2 in log(energy [rydberg]) space
|
||||
double energy_in_rydbergs = table_iterator->first
|
||||
/ agn::RYDBERG_UNIT_EV;
|
||||
@ -365,7 +371,7 @@ std::string agn::cloudy_interpolate_str(agn::sed_table table) {
|
||||
<< ")";
|
||||
int count=0;
|
||||
|
||||
while(table_iterator != table.value.end()) {
|
||||
while(table_iterator != table.table.end()) {
|
||||
energy_in_rydbergs = table_iterator->first
|
||||
/ agn::RYDBERG_UNIT_EV;
|
||||
double log_SED_density = log10( table_iterator->second
|
||||
|
@ -2,6 +2,9 @@
|
||||
#include "sed.hpp"
|
||||
|
||||
|
||||
// Syntax: table_powerlaw_spline <samples table> <powerlaw coordinates> <output table>
|
||||
|
||||
|
||||
int main(int argc, char const *argv[])
|
||||
{
|
||||
|
||||
@ -9,8 +12,7 @@ int main(int argc, char const *argv[])
|
||||
<< "Setting up environment.\n";
|
||||
|
||||
// Create 2d table using n bins, linear values of SED. The
|
||||
// agn sed_powerlaw_spline class has a function for this. A
|
||||
// std::map<double,double> represents the table.
|
||||
// agn sed_powerlaw_spline class has a function for this.
|
||||
int n = 1000;
|
||||
agn::sed_table SED;
|
||||
agn::sed_table samples;
|
||||
|
Loading…
Reference in New Issue
Block a user