#!/usr/bin/env python import numpy as np from scipy.stats import norm from scipy.stats import lognorm import sys import getopt sys.path.insert(1,"/usr/local/science/clag-agn/data/") import clag import matplotlib # %pylab inline #ref_file="data/lc/1367A.lc" #echo_file="data/lc/2246A.lc" ref_file = str(sys.argv[1]) echo_file = str(sys.argv[2]) dt = 0.01 t1, l1, l1e = np.loadtxt(ref_file).T # errorbar(t1, l1, yerr=l1e, fmt='o') #A fqL = np.logspace(np.log10(0.0049999999),np.log10(0.340002000),6) # not done for this bin number #B #fqL = np.array([0.0049999999, 0.018619375, 0.044733049, # 0.069336227, 0.10747115, 0.16658029, # 0.25819945, 0.40020915]) #C #fqL = np.array([0.0049999999, 0.018619375, 0.044733049, # 0.069336227, 0.10747115, 0.16658029, # 0.25819945, 0.40020915]) nfq = len(fqL) - 1 fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.) P1 = clag.clag('psd10r', [t1], [l1], [l1e], dt, fqL) p1 = np.ones(nfq) p1, p1e = clag.optimize(P1, p1) p1, p1e = clag.errors(P1, p1, p1e) # xscale('log'); ylim(-4,2) # errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color="black") ref_psd = p1 ref_psd_err = p1e t2, l2, l2e = np.loadtxt(echo_file).T # errorbar(t1, l1, yerr=l1e, fmt='o', color="green") # errorbar(t2, l2, yerr=l2e, fmt='o', color="black") P2 = clag.clag('psd10r', [t2], [l2], [l2e], dt, fqL) p2 = np.ones(nfq) p2, p2e = clag.optimize(P2, p2) p2, p2e = clag.errors(P2, p2, p2e) # xscale('log'); ylim(-6,2) # errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color="green") # errorbar(fqd, p2, yerr=p2e, fmt='o', ms=10, color="black") echo_psd = p2 echo_psd_err = p2e Cx = clag.clag('cxd10r', [[t1,t2]], [[l1,l2]], [[l1e,l2e]], dt, fqL, p1, p2) p = np.concatenate( ((p1+p2)*0.5-0.3,p1*0+0.1) ) # a good starting point generally p, pe = clag.optimize(Cx, p) p, pe = clag.errors(Cx, p, pe) phi, phie = p[nfq:], pe[nfq:] lag, lage = phi/(2*np.pi*fqd), phie/(2*np.pi*fqd) cx, cxe = p[:nfq], pe[:nfq] cross_spectrm = cx cross_spectrm_err = cxe # xscale('log'); ylim(-2,1) # errorbar(fqd, lag, yerr=lage, fmt='o', ms=10,color="black") s, loc, scale = lognorm.fit(lag,loc=.01) # xscale('log'); ylim(-4,1.5) # errorbar(fqd, lag, yerr=lage, fmt='o', ms=10,color="black") ##plot(fqd,norm.pdf(fqd,mu,sigma)) #plot(fqd,lognorm.pdf(fqd,s,loc,scale)) # mu,sigma #plot(ifft(lag)) np.savetxt("freq.out",fqL.reshape((-1,len(fqL)))) np.savetxt("ref_psd.out",[ref_psd,ref_psd_err]) np.savetxt("echo_psd.out",[echo_psd,echo_psd_err]) np.savetxt("crsspctrm.out",[cross_spectrm,cross_spectrm_err]) np.savetxt("lag.out",[lag,lage])