mirror of
https://asciireactor.com/otho/clag-agn.git
synced 2025-01-18 10:55:08 +00:00
update
This commit is contained in:
parent
c1a768dd8c
commit
9738f61d17
@ -31,10 +31,10 @@ do
|
||||
time scripts/${analysis_script} data/lc/${ref_band}.lc $lightcurve >> logs/${echo_band}
|
||||
|
||||
|
||||
# process_tables perl script reads *.out files from the python script,
|
||||
# process_output perl script reads *.out files from the python script,
|
||||
# then creates other useful tables
|
||||
|
||||
scripts/process_tables.pl $echo_band
|
||||
scripts/process_output.pl $echo_band
|
||||
|
||||
# saves the tables to data/tables/
|
||||
mv -v tmp.echopsd $echopsd_tabfile
|
||||
|
@ -22,10 +22,11 @@ case $1 in
|
||||
done
|
||||
echo "$gnuplot_input"|perl -pe 's||\n|g' > ${gnuplot_file}
|
||||
gnuplot $gnuplot_file
|
||||
rm $gnuplot_file
|
||||
;;
|
||||
|
||||
"lags"|"lag"|"delay"|"delays")
|
||||
gnuplot_file=timelag_atlas.gp
|
||||
gnuplot_file=lag_atlas.gp
|
||||
gnuplot_input=$(cat scripts/templates/${gnuplot_file}|perl -pe 's|\n||g')
|
||||
for tabfile in data/tables/lag_*.tab;
|
||||
do
|
||||
@ -41,6 +42,7 @@ case $1 in
|
||||
done
|
||||
echo "$gnuplot_input"|perl -pe 's||\n|g' > ${gnuplot_file}
|
||||
gnuplot $gnuplot_file
|
||||
rm $gnuplot_file
|
||||
;;
|
||||
|
||||
"tophat"|"th")
|
||||
|
@ -192,7 +192,11 @@ foreach ( sort {$a <=> $b} keys %function_bin ) {
|
||||
say $datafile encode($charset,
|
||||
sprintf("%e %e %e %e %e %e",
|
||||
($_ - $function_bin{$_}{"Δ"}),
|
||||
($_ + $function_bin{$_}{"Δ"})
|
||||
($_ + $function_bin{$_}{"Δ"}),
|
||||
$function_bin{$_}{"echo_PSD_μ"},
|
||||
$function_bin{$_}{"echo_PSD_σ"},
|
||||
$function_bin{$_}{"timelag_μ"},
|
||||
$function_bin{$_}{"timelag_σ"}
|
||||
));
|
||||
}
|
||||
close($datafile)
|
@ -23,12 +23,10 @@ t1, l1, l1e = np.loadtxt(ref_file).T
|
||||
|
||||
|
||||
|
||||
fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029,
|
||||
0.25819945, 0.40020915, 0.62032418])
|
||||
fqL = np.array([0.0049999999, 0.044733049, 0.10747115,
|
||||
0.25819945, 0.62032418])
|
||||
fqL = np.array([0.0049999999, 0.018619375, 0.069336227, 0.10747115, 0.62032418])
|
||||
fqL = np.logspace(np.log10(0.005),np.log10(0.6),5)
|
||||
#fqL = np.array([0.0049999999, 0.018619375, 0.069336227, 0.10747115, 0.62032418])
|
||||
#fqL = np.logspace(np.log10(0.005),np.log10(0.6),5)
|
||||
nfq = len(fqL) - 1
|
||||
fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user