University of Kentucky, Physics 521 Homework #12, Rev. A, due Wednesday, 2018-01-17

0. Griffiths [2ed] Ch. 3 $\#7$, $\#10$, $\#13$, $\#14$, $\#15$; Ch. 4 $\#18$, $\#19$.

1. Consider a two-dimensional isotropic harmonic oscillator with Hamiltonian $\mathcal{H}_{xy} = \frac{1}{2}$ $\frac{1}{2}(-\nabla^2+\rho^2),$ where $\rho^2 = x^2 + y^2$, and $\hbar = m = \omega = 1$ so that ρ plays the role of the normalized coordinate ξ of Griffiths Eq. [2.71].

a) Show that the Hamiltonian separates into two independent oscillators $\mathcal{H}_{xy} = \mathcal{H}_x + \mathcal{H}_y$ in cartesian coordinates, and thus the energy levels are $E_{n_x n_y} = n_x + n_y + 1$. Identify the degeneracy of each energy level. Write the wave functions of the lowest six levels in terms of both Hermite polynomials $H_{n_x}(x)H_{n_y}(y)$ and creation operators $a_{x,y}^{\dagger}$ acting on the ground state $|n_xn_y\rangle = |00\rangle$. The two annihilation operators $a_x = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(x+ip_x)$ and $a_y = \frac{1}{\sqrt{2}}$ $\overline{z}(y+ip_y)$ act in independent directions.

b) The eigenfunctions of part a) do not have definite angular momentum. To obtain eigenstates of definite L_z using the operator method, define annihilation operators for right and left circular quanta $a_r = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(a_x - ia_y)$ and $a_\ell = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(a_x + ia_y)$, respectively. Show that the only nonzero commutators between $a_r, a_r^{\dagger}, a_\ell, a_\ell^{\dagger}$ $\begin{bmatrix} \dagger & \mathrm{are} \ [a_r, a_r^\dagger] = [a_\ell, a_\ell^\dagger] \end{bmatrix}$ \mathcal{H}_{ℓ} = 1. Show that $\mathcal{H}_{xy} = N_x + N_y + 1 = N_r + N_{\ell} + 1$ and $L_z = i(a_x a_y^{\dagger} - a_x^{\dagger} a_y) = N_r - N_\ell$, where $N_i = a_i^{\dagger}$ $i_i^{\dagger} a_i$ as usual for $i = x, y, r, \ell$. Show also that $[{\cal H}_{xy}, a^\dagger_i$ i^{\dagger}] = a_i^{\dagger} ¹_i, so that a_x, a_y and a_r, a_ℓ both act as ladder operators for two independent sets of quanta $|n_xn_y\rangle$ and $|n_rn_\ell\rangle$. From this we infer that $E_{nm} = n + 1$, and $L_z = m$, where $n = n_r + n_\ell$ and $m = n_r - n_\ell$. Plot the energy levels E_{nm} versus m and show that the allowed values of n are $2k + |m|$ where $k = 0, 1, 2...$ and $m = 0, \pm 1, \pm 2...$ Note the checkerboard pattern with every other value of n missing.

c) Use the coordinate representation of $a_{r,\ell}^{\dagger}$ acting on the ground state $|n_r n_{\ell}\rangle = |00\rangle$ to obtain wavefunctions for the six $n \leq 2$ states and compare your results with H11 part e). Expand the a_r^{\dagger} r,l in terms of $a_{x,y}^{\dagger}$ and simplify to show that the $|n_l, n_r\rangle$ states of part b) are linear combinations of the $|n_x, n_y\rangle$ states of part a).