
RECURSION AND GENERATING FUNCTIONS

1. Recursive Sequence: Technical Aspect

1.1. General information. A recursive sequence is a sequence {an : n ≥
0} of numbers satisfying

(1.1) an = f(n, an−1, an−2, ..., an−k, ...)

for any n, i.e., the n-th entry of the sequence is uniquely determined by the
entries before it. And (1.1) is called a recursive relation.

Look at (1.1) and one realizes that it is very close to a differential equation.
Indeed, a recursive sequence is a discrete version of a differential equation.

Recursive sequences are also closely related to generating functions, as we
will see.

To study a recusive sequence {an}, one would like to have a closed formula
for an. However, a closed formula is only available in the most ideal situation,
much like differential equations. For example, we know how to find the
formula for a linear recursion.

1.2. Linear recursion. A linear recursion is a recursive sequence satisfying

(1.2) an = p1an−1 + p2an−2 + ... + pkan−k

where p1, p2, ..., pk are constants.
The most famous example is the Fibonacci sequence an = an−1 + an−2

with a0, a1 given.
The standard method to derive the closed formula for linear recursion

is via generating function. Let {an} be the Fibonacci sequence. We let
f(x) =

∑∞
n=0 anxn. Then f(x) encodes all the information about {an}.

Note that xf(x) =
∑∞

n=1 an−1x
n and x2f(x) =

∑∞
n=2 an−2x

n. So

xf(x) + x2f(x) = a0x +
∞∑

n=2

(an−2 + an−1)xn

= a0x +
∞∑

n=2

anxn = a0x + f(x)− a0 − a1x

(1.3)

In the end, we are solving the equation

(1.4) xf(x) + x2f(x) = f(x)− a0 − (a1 − a0)x

with f(x) as the unknown function. The solution is

(1.5) f(x) =
a0 + (a1 − a0)x

1− x− x2

1



2 RECURSION AND GENERATING FUNCTIONS

To get the formula for an, we have to expand the Taylor series for f(x)
obtained above. Note that f(x) is a rational function. In order to expand
f(x), we write f(x) as the sum of partial fractions:

(1.6)
a0 + (a1 − a0)x

1− x− x2
=

a0 + (a1 − a0)x
(r1 − x)(r2 − x)

=
c1

r1 − x
+

c2

r2 − x

where r1, r2 are the two roots of 1 − x − x2 = 0 and c1, c2 depend on the
values of a0, a1. And the RHS of (1.6) can be expanded into Taylor series:

c1

r1 − x
+

c2

r2 − x
= c1r

−1
1 (1− r−1

1 x)−1 + c2r
−1
2 (1− r−1

2 x)−1

= c1r
−1
1

∞∑
n=0

r−n
1 xn + c2r

−1
2

∞∑
n=0

r−n
2 xn

=
∞∑

n=0

(c1r
−n−1
1 + c2r

−n−1
2 )xn

(1.7)

So an = c1r
−n−1
1 + c2r

−n−1
2 . We may rewrite the solution as

(1.8) an = C1r
−n
1 + C2r

−n
2

where C1, C2 are constants determined by a0, a1 (think of the values a0, a1

as initial conditions).
Of course, to carry the real computation is not very fun. But I suggest

that everyone should do it at least once in their lifetime.

Exercise 1.1. Let a0 = a1 = 1 and an = an−1 + an−2 for all n ≥ 2. Find a
formula for an.

In some situations, we do not really need (1.8) and one finds that (1.5) is
more useful.

Exercise 1.2. Let a0 = a1 = 1 and an = an−1 + an−2 for all n ≥ 2. Find
a0 + a1

2 + a2
4 + a3

8 + ....

Exercise 1.3. Let a0 = a1 = 1 and an = an−1 + an−2 for all n ≥ 2. Use or
not use the formula for an to show the following: for every prime number p,
there exists an such that p|an. Try to do it in both ways.

In general, we can solve a linear recursion (1.2) in much the same way.
Let f(x) =

∑∞
n=0 anxn. Then we have the functional equation:

(1.9) p1xf(x) + p2x
2f(x) + ... + pkx

kf(x) = f(x)−G(x)

where G(x) = a0+(a1−a0)x+(a2−a1−a0)x2+...+(ak−1−ak−2−...−a0)xk−1.
So

(1.10) f(x) =
G(x)

1− p1x− p2x2 − ...− pkxk
.



RECURSION AND GENERATING FUNCTIONS 3

Next we write f(x) as a sum of partial fractions and expand their Taylor
series. At least, we know how to do it in theory. In the end, the formula
looks like

(1.11) an = C1r
−n
1 + C2r

−n
2 + ... + Ckr

−n
k

where Ci are constants determined uniquely by a0, a1, ..., ak−1 (initial con-
ditions) and ri are the roots of

(1.12) 1− p1x− p2x
2 − ...− pkx

k = 0.

Here we assume that the above equation does not have multiple roots.

Exercise 1.4. What happens if (1.12) does have multiple roots?

There are several other ways to derive the closed formula for a linear
recursion. Here is another one using a little linear algebra.

We work with the Fibonacci sequence an = an−1 + an−2. Let bn = an−1.
Then

(1.13)
{

an = an−1 + bn−1

bn = an−1

Using matrix notation, we have

(1.14)
[
an

bn

]
=
[
1 1
1 0

] [
an−1

bn−1

]
Therefore,

(1.15)
[
an

bn

]
=
[
1 1
1 0

]n [
a0

b0

]
Now the question is how to give a closed formula for An given a matrix A.
Here we need a little linear algebra: we will diagonalize A, i.e., find matrix P
such that A = P−1BP for some diagonal matrix B. Then An = P−1BnP .
Again the real computation is messy. Diagonalizing a 3 × 3 matrix is no
trivial matter by hand. But at least we know how to do it in theory. Or by
any chance that you need to find An for some large A, you can use computer
(any linear algebra package has the routine of diagonalizing a matrix).

Actually (1.13) is a system of two linear recursions involving two sequences
{an} and {bn}. The way we convert an = an−1 + an−2 into (1.13) is very
similar to the way we convert a second order differential equation into a
system of two first order differential equations. Of course, this can be carried
out in general.

1.3. Linear recursion: nonhomogeneous case. A nonhomogeneous lin-
ear recursion is a sequence satisfying

(1.16) an = p1an−1 + p2an−2 + ... + pkan−k + gn

with the nonhomogeneous term gn.

Example 1.5. Let a0 = a1 = 1 and an = an−1 + an−2 + 1 for n ≥ 2. Find a
formula for an.
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This is Fabonacci sequence with a nonhomogeneous term. The generating
function approach still works. Let f(x) =

∑∞
n=0 anxn. Then

(1.17) xf(x) + x2f(x) +
∞∑

n=2

xn = f(x)− 1

where
∑∞

n=2 xn = x2/(1− x) comes from the nonhomogeneous term 1. So

(1.18) f(x) =
1− x + x2

(1− x)(1− x− x2)
Again we can find the answer using partial fractions.

Another way to do it is the following. Without the nonhomogeneous term,
the general solution is

(1.19) an = C1

(
1 +

√
5

2

)n

+ C2

(
1−

√
5

2

)n

And an = an−1 +an−2 +1 has an obvious solution with an = c constant. Of
course, c is the solution of c = c + c + 1 and c = −1. So the general solution
for an = an−1 + an−2 + 1 is

(1.20) an = C1

(
1 +

√
5

2

)n

+ C2

(
1−

√
5

2

)n

− 1

where C1 and C2 can be determined by a0 = a1 = 1. Please note the similar-
ity between this and the way to solve a nonhomogeneous linear differential
equation.

1.4. Some other cases. Other than linear recursions, there are very few
other classes of recursions where a closed formula can be found. I will give
some other examples. These examples are quite sporadic and do not have
much pattern to them.

Example 1.6. Let a0 = 1 and an = nan−1 + 1 for n ≥ 1. Find a formula for
an.

Let an = (n!)bn. Then bn = bn−1 + 1/n!. So

(1.21) bn = 1 +
1
1!

+
1
2!

+ ... +
1
n!

So

(1.22) an = (n!)
(

1 +
1
1!

+
1
2!

+ ... +
1
n!

)
Example 1.7. Let a0 = 7 and an = 7 + 1

an−1
. Find a formula for an.

This is actually the continuous fraction:

(1.23) 7 +
1

7 +
1

7 + ...
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So naturally we write an = pn/qn. Then

(1.24)
pn

qn
=

7pn−1 + qn−1

pn−1

So

(1.25)
{

pn = 7pn−1 + qn−1

qn = pn−1

Or equivalently, pn = 7pn−1 + pn−2. I would let you work out the rest.
Of course, if we want to find the value of (1.23), which is limn→∞ an, we

do not really need the formula for an. Suppose that limn→∞ an = x exists.
Then

(1.26) lim
n→∞

an = 7 + lim
n→∞

1
an−1

⇒ x = 7 +
1
x

Solve it and we obtain x = (7 +
√

53)/2. But with a formula for an, we can
say much more about how fast an converges to x.

Exercise 1.8. Show that there exists a constant C such that

(1.27)

∣∣∣∣∣pn

qn
− 7 +

√
53

2

∣∣∣∣∣ ≤ C

q2
n

for all n. Find the best possible C.

So in some sense, continuous fraction is the best possible way to approx-
imate an irrational number by rational numbers. It is a little off topic here
but I want to mention that the approximation (1.27) is also the best we can
do if the irrational number concerned is algebraic, i.e., if x is an algebraic
number and C, ε > 0, then there are only finitely many pairs of integers p, q
such that

(1.28)
∣∣∣∣pq − x

∣∣∣∣ ≤ C

q2+ε

Of course, this is the famous Roth’s theorem. Roth’s original proof, though
technical, is actually quite elementary, which is understandable by anyone
with a decent background in analysis.

Now let us go back to our topic. In general, we can use the same method
to work out the recursion

(1.29) an =
Aan−1 + B

Can−1 + D

We let an = pn/qn. Then

(1.30)
pn

qn
=

Apn−1 + Bqn−1

Cpn−1 + Dqn−1

We may let

(1.31)
{

pn = Apn−1 + Bqn−1

qn = Cpn−1 + Dqn−1
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So

(1.32)
[
pn

qn

]
=
[
A B
C D

]n [
a0

1

]
This approach is very natural if you know something about projective ge-

ometry. The expression (Az +B)/(Cz +D) actually gives an automorphism
of the projective line P1. So it is natural to use the projective coordinates
z = p/q.

Example 1.9. Let a0 = 1/4 and an = 2a2
n−1 − 1. Find a formula for an.

This is one example that if you have seen it before, you will most likely
get it; if you have not, it takes quite a bit of luck to get it.

If we let a0 = cos θ, then a1 = 2 cos2 θ − 1 = cos(2θ), a2 = cos(4θ) and so
on. We may take θ = cos−1(1/4). So an = cos(2nθ) = cos(2n cos−1(1/4)).

2. Recursion: Applications

Example 2.1 (Putnam Problem Revisit). You have coins C1, C2, ..., Cn. For
each k, Ck is biased so that, when tossed, it has probability 1/(2k + 1) of
fallings heads. If the n coins are tossed, what is the probability that the
number of heads is odd? Express the answers as a rational function of n.

Terry worked out this problem using generating functions. I will do it
using recursion.

Let pn be the probability that the number of heads is odd with n coins
are tossed. Then 1− pn is the probability that the number of heads is even.
The recursion is

(2.1) pn =
(

1− 1
2n + 1

)
pn−1 +

1
2n + 1

(1− pn−1) =
2n− 1
2n + 1

pn−1 +
1

2n + 1

If we let an = (2n+1)pn, then an = an−1+1. So an = n and pn = n/(2n+1).

Example 2.2 (Multiply of Immortal Rabbits). Suppose that each pair of
rabbits mature in two months and gives birth to a pair of rabbits each
month from then on. Assume that rabbits never die and we start with one
pair of rabbits (new born). Find the number of pairs of rabbits after n
months.

This is the original problem where the Fabonacci sequence comes from.
Let an be the number of rabbits after n months. Then an = an−1 + an−2

with a0 = a1 = 1.

Example 2.3 (Putnam problem A-3 1999). Consider the power series

(2.2)
1

1− 2x− x2
=

∞∑
n=0

anxn

Prove that for each integer n ≥ 0, there is an integer m such that

(2.3) a2
n + a2

n+1 = am
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Although no recursive sequences are directly involved, it is worthwhile of
noting that an = 2an−1+an−2. Of course, the way to find an is using partial
fractions as mentioned. Once an is known, the rest is easy. I will let you
work out the rest.

Example 2.4 (Putnam problem A-6 1999). The sequence (an)n≥1 is defined
by a1 = 1, a2 = 2, a3 = 24, and, for n ≥ 4,

(2.4) an =
6a2

n−1an−3 − 8an−1a
2
n−2

an−2an−3

Show that, for all n, an is an integer multiple of n.

We rewrite (2.4) as

(2.5)
an

an − 1
= 6

(
an−1

an−2

)
− 8

(
an−2

an−3

)
If we let bn = an/an−1, then

(2.6) bn = 6bn−1 − 8bn−2

Of course, we know how to solve (2.6). Once bn is known, we know an =
a1(b2b3...bn). I have not thought about it carefully. But it seems that you
also need to know Fermat’s little theorem to finish the proof. Anyway, I will
leave the rest to you.

There are certainly zillions of examples concerning recursion. It is a recur-
ring theme in Putnam (they love recursion, linear recursion in particular).
If you are interested in the subject, you may pick up a standard textbook
in combinatorics where you may find many interesting examples and appli-
cations. Probably, one of Richard Stanley’s books is where to start.


