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Two-Dimensional Quantum Harmonic Oscillator
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2D Quantum Harmonic Oscillator

E in chb, Schrddinger constructed the coherent state of the 1D H.O. to
describe a classical particle with a wave packet whose center in the

time evolution follows the corresponding classical motion

e the H.O. plays a significant role in demonstrating the concept of
guantum-classical correspondence °." it can be analytically solved in

both CM & QM

E the Schrddinger coherent state of the 2D H.O. is a nonspreading wave

packet with its center moving along the classical trajectories

e we will start from the time-dep. Schrddinger coherent state for 2D H.O.
to extract the stationary coherent states that are localized on the

corresponding classical trajectories
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Eigenstates of the 2D Isotropic Harmonic Oscillator

E  the Hamiltonian for the isotropic 2D H.O. in Cartesian coordinate :
P, + Py
2m
the time-indep Schrddinger eq. is :

hZ 82 82 1
{_ - (8x2 += y2j+5ma)z(xz + yz)}w(x, y)=Ey(xy)

H=

+%m(02(x2 +y?)

e w(xy)is separable : w(x,y)=X(X)Y(y)

1 nod* 1, 1 ntod* 1,
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Eigenstates of the 2D Isotropic Harmonic Oscillator

E consequently, we have obtained 2 differential eq. for the 1D H.O. :

2 2
[_j—mdd - +%mw2x2jX(x) = E* X(x)
X

h? d* 1
(_ﬂd /2 +§mwzy2jY(Y) =E" Y(y)

where E*+EY=E

e the eigenfunction and the eigenvalue of the 2D isotropic H.O. are given

DY (&) =(27"m In 1) e P (E)H (€)

-1/2

E..=(M+n+1) 7o

where & =Jmo/ix & &, =+Mma/hy
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Eigenstates of the 2D Isotropic Harmonic Oscillator

E the eigenvalues of the 2D H.O. are the sum of the two 1D oscillator
eigenenergies & the eigenfunctions are the product of two 1D

eigenfunctions

E |t can be found that the eigenstates in
~ nm 112 (E2+82
V(& &) =20 mint-z) " e T2 H (E)H, (&)

do not reveal the characteristics of classical elliptical trajectories even in

the correspondence limit of large quantum number
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Eigenstates of the 2D Isotropic Harmonic Oscillator

0,0 (1,0 (0,1) 1,1
(2,0 (0,2) (2,2) (5,5)

Figure 7.1 Probability density patterns of eigenstates for the 2D isotropic harmonic oscillator
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Stationary Coherent States of the 2D Isotropic H.O.

E Itis clear that the center of the wave packet follows the motion of a classical 2D

iIsotropic harmonic oscillator, i.e.,

&, :\/Eax cos(w t—-9,); S, :ﬁay cos(w t—¢,)

B The Schrddinger coherent state for the 2D isotropic harmonic oscillator is a
product of two infinite series. The method of the triangular partial sums is used

to make precise sense out of the product of two infinite series.

E  Mathematically, the notion of triangular partial sums is called the Cauchy product

of the double infinite series
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Stationary Coherent States of the 2D Isotropic H.O.

With the representation of the Cauchy product, the terms can be arranged

diagonally by grouping together those terms for which has a fixed value:

e & €)' (@, €M) ey .
Y&, & ,t)= X y ] ’ g i(mntlot
CogD=2 2 CRICE Vi (€0:6,)

(05 ei¢X)K (ay ei¢y)N—K

o JK T J(N=K) !

—(ag+a})l2 Ji(N+1
e a+ay (//K’N_K(fx,é:y) e I( +)a)t

0 ig, \N
_ Z e—(ax2+a§)/2e—i(N+1)a)t (ay e”)
N=0 JN 1!
K
S JN ! R
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Stationary Coherent States of the 2D Isotropic H.O.

After some algebra,

P(Ed, 0= Y Cy O (6 6 Ag)e D™

I

®N(§x,§y:A,¢)=(ﬂ)N
+

N
K=

2.

0

N2
(Kj (Ael¢)K‘//K,N—K (éx'éjy)

. N
2 i
(@21a)12 (”1+ A a,e y)

Cy=¢ N
A= g=¢,—4,
a

The wave function above represents a type of normalized stationary coherent

State.
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Stationary Coherent States of the 2D Isotropic H.O.

I A=1, ¢=m/4 A=1l, ¢=m/3 A=l, 6=m/2

A=05 ¢==/2 A=15 ¢=n/2 A=25 ¢=m/2

Figure 7.2 Wave patterns of the stationary coherent states ‘@N (&i&yr A ¢)‘2

for N=32 with different values of the parameters A and ¢ .
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Stationary Coherent States of the 2D Isotropic H.O.

E It can be seen that the coherent states @ (£,,&,; A,¢) correspond to the

elliptic stationary states.

B The superposition of two elliptic states with a phase factor ¢ in the

opposite sign can form a standing wave pattern:

D\ (6. &, AP LD (.S, A—9)

B Next figure shows the standing wave patterns corresponding to the elliptic

states shown in figure above.
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Stationary Coherent States of the 2D Isotropic H.O.

A=l, ¢=m/4
I

A=1, ¢=m/2

mi\

A=05 ¢=m/2 A=15 ¢=m/2 A=25 ¢=m/2

Figure 7.3 Standing wave patterns corresponding to the elliptic states shown in figure 7.2.



] 2D Quantum Harmonic Oscillator

Stationary Coherent States of the 2D Isotropic H.O.

B Y6, 0= i Cy @\ (&8, A9 e "™ manifestly reveals the relationship
N=0
between the Schriodinger coherent state and the stationary coherent state.
n |CN|2 represents the probability of finding the system in the elliptic stationary

state with order N.

(o5 +a5)"

JNT

B The probability distribution is identical to the Poisson distribution with the

2, 2
—(ax+ay)

|CN |2 = €

mean value of <N >=¢; +a
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Angular Momentum in 2D Confined Systems

® angular momentum of a classical particle is a vector quantity, L =r xp

B Angular momentum is the property of a system that describes the tendency

of an object spinning about the point r = 0 to remain spinning, classically.

®E  For the motion of a classical 2D isotropic harmonic oscillator, the angular

momentum about the z-axis can be found to be independent of time:

X(®) = |2 |, [cos(wt — )
Mo

y(t) = |- V2| e, |cos(at - )

L Mo

o.M =m d;‘it) _ _Jma N2 | a, [sin(ot-4,)

p,®)=m? g(t) - Mo V2 | a, [sin(ot-¢,)

t

X(t)p, (1) - Y(t)p, () =2 1|, ||, | sin(g, - ¢,)
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Angular Momentum in 2D Confined Systems

®E In quantum mechanics, the angular momentum is associated with the

operator L ,thatis defined as L=fxp

B For 2D motion the angular momentum operator about the z-axis is

L, =Xp, - YD,
E  The expectation value of the angular momentum for the stationary coherent
state and time-dependent wave packet state which are shown below :

N N 1/2 ' _
CI)|\|(§X’§y;p\’¢):(\/]%)N Z(Kj (Ael¢)Kl/jK,N—K(§x’§y)
+ K=0

P(Ead, D= Y Cy @y (66 i Age
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Angular Momentum in 2D Confined Systems

B The position and momentum operators for the harmonic oscillator can be in

terms of the creation and annihilation operators.

L,=% p,-9 p,

—i & %[(QX?JraX) (8 -a,)-(& +a,) (& —ax)]

=i n (8a -8 a)
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Angular Momentum in 2D Confined Systems

E  The properties of the creation and annihilation operators :

= E-’:ixéyJr cI)N (éx’fy : A, ¢)

NN Y2 e
B (1+A]\-2)N/22(Kj RM(AGW) WK—l,N—K+1(§X’§y)

B 44, D (&8 AP

N-1 /N Y2 o
- (1+ A]\-Z)N/Z Z (Kj VK +1vN — K(Ae'¢) WK+1,N—K_1(§X,§y)
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Angular Momentum in 2D Confined Systems

®E  With the orthonormal property of the eignestates :

g <®N(§x’§y;A’¢) |é‘><é\‘yT |CDN(§X’§V;A’¢)>

1 N N 1/2 N 1/2 -
REyon AZ)NZ[K J (Kj VKN — K + 1A% %
+ K=1 -

1 N

_ N 2(K=1)( A Ai
oL > (KJKA (Ae)

K=1

g <®N (ézx’%gy;A’@léxTé\‘y | Dy (§X’§V;A’¢)>

1 N1 N V2N Y2 _
= > VK +17VN - K A% e
(1+A%) K+1) (K

K=0

kS e
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Angular Momentum in 2D Confined Systems

B Using the property

_(1+X) 0 N (EJXK _ N(1+X)“1=i(NJKxK-1

ox o0 1 \K
1 N (N N
¥ We can obtain KAMKD -~ and
(1+ A*)N KZ (Kj (1+ A%)

(@0 (08 AL | D (.8, A 9)
=(@4 (& & AN In(8a -8, a,)| (£,.5, A )

. v N
:(1 'ZZ)NZ (KJK A2<'<—1>(Ae'¢ Ae '¢) 2N #
+ K1

1+ A? sing
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Quantum Stationary Coherent States for Classical Lissajous Periodic Orbits™

E  The time-independent Schrodinger equation for a 2D harmonic oscillator

with commensurate frequencies can generally given by

hZ 82 62 1
{— Zm(axz + ay2j+§m(a)fxz +a)§y2)}//(><, y)=Ey(Xy)
0, =00 o,=po

(V is the common factor of the frequencies by @, and ., and p and q are relative prime integers

B The eigenfunction and the eigenvalue of the 2D harmonic oscillator with

commensurate frequencies are given by

&m’n (§x,§y) _ (2n+mm!n!.7z_)—1/2 e—(§f+§§)/2Hm(§X)Hn(§y)

Em,nz(m+%)ha)x+(n+%)ha)y E =Mma, /hX Gy = ma)y/hy
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Quantum Stationary Coherent States for Classical Lissajous Periodic Orbits™

B The eigenfunction is separable, so the corresponding Schrddinger coherent

state can be expressed as the product of two 1D coherent states:

ig, \ N , ) |
LP(./fx,.;’fy,t):[Z“ (axem ) a2 1 Hm(gx)e§xl2e|(m+1/2)qa)tJ

ig
C ye y)n —af /2 1 —£212 _ —i(n+1/2) pwt
x| ) e H,(&)e ™ %e
Jn! Jr

2"nN 1

e—(aerai)/Z l/7 (é; é: )e—i(qm+pn+q/2+p/2)a)t
mn\Sx15y
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Quantum Stationary Coherent States for Classical Lissajous Periodic Orbits™

E Itis clear that the center of the wave packet follows the motion of a classical
2D isotropic harmonic oscillator, i.e.,
& =2a, cos(qot-¢4,); & =~2a,cos(pot-4,)

®  The set of states with indices (m,n) in last page can be divided into subsets
characterized by a pair of indices (u,.u,) given by m=u, (mod p) and n=u, (mod q)

®E  Schrodinger coherent state can be rewritten as

g-1 p-1 o o (ax ei¢x)pNX+ux(0[ ei¢y)qu+uy
Y6 0= 22 > y e

%0 om0k 0y/(PN, +u,) 1 /@GN, +u,) !

—(af+a§)/2

J —i[pg (N, +Ny )+ (U, +1/2)+p(u, +1/2)]o t
Xl//pNX+ux,qu+uy (§X’§y) e y y )
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Quantum Stationary Coherent States for Classical Lissajous Periodic Orbits™

B The 2D Schrodinger coherent state is divided into a product of two infinite

series and two finite series

B With the representation of the Cauchy product, the terms ¥ o .u, qv,-u, (&4 &)
can be arranged diagonally by grouping together those terms for which
N,+N, =N

g-1 p-1 o (0[ e|¢x)pK+u (CX e|¢y)q(N K)+u,

WE 1) = [z §ss

U,=0 U,~ON=0K= oJ(pK +ux)!\/[q(N—K)+uy]!

—i[ pgN+0 (U, +1/2)+ p(u, +1/2)] ot )

e—(a§+a§)/2

X l//pK+uX, q(N-K)+u, (gx ’ é:y) €

H

g-1 p-

o0

e (ax +ay )/2 ei¢x )Ux (ay ei¢y )qN+uy e—i[qu+q(uX+1/2)+p(uy+1/2)]a)t

=0 u,=0N :0

X{ZN: (ap/a ) [el(p¢x Q¢y)]

0/ (PK +u ) JTa(N - K) +u, ]!

u

pK+u a(N-K)+u, (éx’é )}
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Quantum Stationary Coherent States for Classical Lissajous Periodic Orbits™

B These stationary coherent states are physically expected to be associated

with the Lissajous trajectories.

¥ The minor indices u, and u, essentially do not affect the characteristics of

the stationary states.

E Including the normalization condition, the stationary coherent states in

Cartesian coordinates are given by

. ~ N AZK -2
cDN’”*’”V(QEX'QKV’A'(&)_[KZ%(pK)!-[tq(N—K)+uy]!J
N ig 1K
XZ [Ae ] l/7pK+ux,q(N—K)+uy (éxify)

=/(PK)! JIa(N —K) +u, 1!

()"

A=
(@)

9= P, —Ag,
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Quantum Stationary Coherent States for Classical Lissajous Periodic Orbits™

The stationary coherent states associated with the Lissajous trajectories are
the superposition of degenerate eigenstates with the relative amplitude

factor A and phase factor ¢ .

The relative amplitude factor A and phase factor ¢ in the stationary
coherent states (IDN,UX,Uy (§X,§y;A, @)  are explicitly related to the classical
variables (a,,a,.4,.4,)

the eigenenergies of the stationary coherent states CI)NMWUy &, , éy; A, @)

are found to be

E = [paN +q(u, +1/2) + p(u, +1/2) e

N, Uy, Uy
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Quantum Stationary Coherent States for Classical Lissajous Periodic Orbits™

B Next three figures depict the comparison between the guantum wave
patterns ‘ Dy 0ol&i &y A ¢)‘2 and the corresponding classical periodic
orbitsfor P.{ tobe 2:1, 3:2 ,and 4:3, respectively.

B Three different phase factors, ¢=0, ¢=0.37, and ¢ =0.67, are displayed
In each figure.

®  The behavior of the quantum wave patterns in all cases can be found to be

In precise agreement with the classical Lissajous figures.
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Quantum Stationary Coherent States for Classical Lissajous Periodic Orbits
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Quantum Stationary Coherent States for Classical Lissajous Periodic Orbits”
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Quantum Stationary Coherent States for Classical Lissajous Periodic Orbits™
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