phy-520/notes.motes

245 lines
6.4 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

10-23
──────────────────────────────────────────────────────────────────────────
graphical review of the tangent/cotangent bundle to show phases
Linear Operators
─────────────
rank 0 scalar ,
rank 1 vector basis(ê¹,ê²,ê³), components [v1, v2, v3]
rank 2 𝔸:𝘃→𝘄 Linear
???rank 3 εᵢⱼᵏ - cross product, gᵢ - dot product
graphically show the operation of operators
graphically show the operation of rotation operators
graphically distinguish active and passive transformations
active - includes evolution operator U⊹
passive - matrix change of basis
𝘄 = 𝔸 𝘃.
𝘄 = ℝ𝔸ℝᵀ 𝘃.
𝘄 = 𝔸 𝘃.
──────────────────────────────────────────────────────────────────────────
2017-10-25
Linear transformations
⎛1 a⎞ ⎛0⎞ = ⎛a⎞
⎝0 1⎠ ⎝1⎠ ⎝1⎠
⎛λ₁ 0⎞ ⎛0⎞ = ⎛0 ⎞
⎝0 λ₂⎠ ⎝1⎠ ⎝1/2⎠
M = U(ϕ)⎛λ₁ 0⎞ U⁻¹(ϕ) R(θ)
⎝0 λ₂⎠ ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
⏟⏟⏟⏟ Vᵀ
W
Sᵀ = S, symmetric → Hermitian
Rᵀ = R⁻¹ orthogonal → unitary
M = U W Vᵀ singular decomposition
= S R polar decomposition
normal matrix analogue
x ± ιn = r exp(ιϕ)
Theorem
─────────────
if H⁺ = H and H v⃗ᵢ = v⃗ᵢ λᵢ
then λᵢ real and v⃗ᵢ⋅v⃗ⱼ = 0 if λᵢ ≠ λⱼ
take ⊹: Vⱼ⊹ H = λ⃰ⱼ vⱼ⊹
λ⃰ⱼ v⃑ⱼ⊹ v⃑ᵢ = v⃑ⱼ⊹ H v⃑ᵢ = v⃑ⱼ⊹ v⃑ᵢ λᵢ
I i=j, ‖vᵢ‖ ≠ 0, λᵢ⃰ = λᵢ, ∋ λ
i ≠ j, λᵢ ≠ λⱼ, v⃗ⱼ⊹ v⃗ᵢ = 0
───────────────────────────────────────────────────────────────────────
10-30
"The importance of being Earnest"
0) Linear
linear combinations
separable diff. eqs.
superposition
basis
1) Unitary
Rotations
U⊹ U = I
change of coordinates
preserves angles and length
2) Hermitian
Stretches
H⊹ = H
real eigenvalues → observables
orthogonal eigenvectors
diagonalizable
H = U D U⊹ → similarity transform, rotate, stretch, rotate back
H U = U D ; H⊹ = H; U⊹ U = I; U⊹ = U⁻¹
H = U D U⁻¹ = U D U⊹
U⊹ H U = D
b
3) diagonal
element-wise multiplication
───────────────────────────────────────────────────────────────────────
11-01
From last time:
The importance of
1) linear
2) Unitary
3) Hermitian
Polar Decomposition -- A = P*U
H = U D U⊹
spectral decomposition
H = λ₁ P₁ + λ₂ P₂
4) Diagonal
Now:
5) Importance of Commuting
tied up with diagonal matrices, because diagonal matrices commute
Normal matrix: [N⊹,N] = 0.
similarity transform → change of basis
A = U D U⁻¹
A² = U D U⁻¹ U D U⁻¹ = U D² U⁻¹
f(A) = f₀ + f₁ A + 1/2! f₂ A²
= U U⁻¹ + U f₁ D U⁻¹ + U 1/2! f₂ D² U⁻¹
= U(1 + f₁ D + 1/2! f₂ D² + ...) U⁻¹
= U(diagonal matrix) U⁻¹
Obvious that diagonal matrices commute
commuting --
physical measurements represented by Hermitian operators H⊹ = H
λᵢ = what you can measure
𝘃ᵢ = definte states of 𝒪.
two measurements are compatible if they have the same eigenvectors, simulataneously diagonalizable
every physical state is reprsented as a dot on a unit circle, brilliant
expansion and projection postulate
diagonal matrices are automatically diagonalizable
A = U Dₐ U⁻¹, B = U Dᵦ U⁻¹
if [A,B] = 0, are A,B simulataneously diagonalizable?
ex [x,p] = ιħ.
Thm: if [A,B] = 0 and U⁻¹ A U = D, then U⁻¹ B U is also "block diagonal".
recall ladder operators:
if N|n> = n|n>, then N(a±|n>) = (n+1)|n>.
let A 𝐮ᵢ = λᵢ 𝐮ᵢ
A(B 𝐮ᵢ) = B(A 𝐮ᵢ)z
11-06
─────────────
Postulates - lead-up
a) How does the state evolve (when not watched)? Ĥ ψ = Ê ψ.
b) what happens when we measure? e.g. x
i) pick random x weighted by prob │ψ(x)│²
ii) collapses the wave function to δ(x-a) if measured "a"
c) Observation is richer than classical mechanics due to complementarity and superposition
1) Observables are a Hermitian operator
Q̂(x,-ιħ∂/∂x) on ❙ψ(x)❭
2) Every observable has "definitey states"
eigenstates of Q̂: Q̂❙ϕₙ❭ qₙ ❙ϕₙ❭
3) Any other state is a superposition of ❙ϕₙ❭
❙ψ❭ = ∑ cₙ ❙ϕₙ❭ cₙ = Probability Amplitude
4) Observation is an irreversible process, "collapses ❙ψ❭"
5) Measurements with same ❙ϕₙ❭ are compatible.
[Q̂,R̂] = 0.
Practical Application
1) Solve Ĥ ❙ψₙ❭ = Eₙ ❙ψₙ❭ stationary states
2) Find components of ❙ψ₀❭ = cₙ❙ψₙ❭
3) Rotate State in time ❙ψ(t)❭ = exp(-ιEₙt/ħ)cₙ❙ψ₀❭
4) Solve eigenstates of Q̂❙ϕₙ❭ = qₙ❙ϕₙ❭
5) find components of ❙ψ(t)❭ = aₙ❙ϕₙ❭
6) project the state ❙ψ(t)❭ ⟶ ❙ϕₙ❭
TOOLS:
❬ϕₙ❙ϕₘ❭ = δₙₘ -- orthonormality
∑ₙ ❙ϕₙ❭❬ϕₙ❙ = 𝕀 -- closure
Postulates
1) superposition
state ❙ψ❭ collection of probability amplitues cₙ with ∑ₙ│cₙ│² = 1.
2) expansion/projection
Q̂❙ϕₙ❭ = qₙ❙ψₙ❭
❙ψ❭ = aₙ ❙ϕₙ❭ aₙ = probability amplitude of measurement "q" after measurement qₙthe system collapses to state ❙ϕₙ❭
3) evolution Ĥψ = Êψ.
4) Uncertainty [x,p] = ιħ.
5) wait until next semester -- exclusion principle