Coronal equilibrium

- ◆ **Coronal equilibrium occurs when heat or mechanical energy sets a kinetic temperature**
- ◆ **Besides the sun, this occurs in …**
- ◆ **Accretion disks**
	- Gas "viscosity" converted into heat
- ◆ **Shocks**
	- Collision between two parcels of gas,
	- Energy of motion converted into heat

Shock in an ideal gas

- ◆ **Energy of motion ½ ρ v2**
- ◆ **Thermal energy 3/2 nkT**
- \bullet **T**(shock) = ρ v^2 / 3nk = v^2 / 3k $\rho/n = v^2 \mu / 3k$

◆ **If the gas is ionized then n ≈ 2n(H) so** $\mu \approx m_p / 2$

All stars have winds

- ◆ **Wind speed roughly escape velocity from surface of star**
- ◆ **Wind strikes surrounding clouds creating shocks**
- ◆ **visible in x-ray for moderate to high speed shocks, in the optical / UV for slow shocks**

Earth within solar wind

◆ **Solar wind speed ≈400 km/s at Earth's orbit**

Planetary nebula

◆ **Wind~103 km/s**

T Tauri jets

◆ **≈ 50 km/s**

AGN

 \bullet Wind = 1e4 km/s

Homework

- ◆ **Choose one of these objects and compute its shock spectrum**
- ◆ **Plot the ionization distribution and the spectrum**

What our calculation included

- ◆ **Coronal equilibrium**
- ◆ **Lightest 30 elements**
- ◆ **All stages of ionization**
- ◆ **About 100 molecules**
- ◆ **Fully self consistent**
- ◆ **Time steady**
- ◆ **Ionization caused by thermal collisions**
- ◆ **Light was not considered**

Mon. Not. R. astr. Soc. (1969) 142, 501-521.

THE IONIZATION EQUILIBRIUM OF ELEMENTS BETWEEN CARBON AND NICKEL

Carole Jordan

(Received 1968 July 31)

The ionization equilibrium $S(0.00)$ and $S(0.00)$ and $S(0.00)$.
The ionization equilibrium $N(0.01)/N(\text{Elemen})$, for ions of elements abundant
and $\approx 10^4 \times 10^4 \text{ K}$, these nealcolated as a function of temperature betwe

http://adsabs.harvard.edu/abs/1969MNRAS.142..501J

Shock in an ideal gas

- ◆ **Energy of motion ½ ρ v2**
- ◆ **Thermal energy 3/2 nkT**
- \bullet **T**(shock) = ρ v^2 / 3nk = v^2 / 3k $\rho/n = v^2 \mu / 3k$
- ◆ **If the gas is ionized then n ≈ 2n(H) so** $\mu \approx m_p / 2$
- \blacktriangleright **T**(shock) = 20 v(km/s)² **K**

Watch for these correlations

 \bullet **T**_{shock} \sim = 20 **v**(km/s)² [K]

◆ **Ionization potential Z2 Ryd** – ≈1.5×105 Z2 [K] (from energy match) $-$ ≈10⁴ Z² [K] (thermal distribution of energies)

◆ **100 km/s -> 200 000 [K]**

◆ **From 200 000 K = 104 Z2 -> Z≈4**

Watch for these correlations

 \bullet **T**_{shock} \sim = 20 v(km/s)² **K**

- \blacktriangleright **E**(level above ground) = Z^2 (1-n⁻²)
- ◆ **Rydberg formula** $-E($ photon $) = E_{u} - E_{1} = Z^{2} (n_{1}^{-2} - n_{u}^{-2})$
- ◆ **High Z, lines have higher energy, shorter wavelength**

Earth within solar wind

◆ **Solar wind speed ≈400 km/s at Earth's orbit**

T Tauri jets

◆ **≈ 50 km/s**

BN – KL in Orion ◆ **10 km/s**

Planetary nebula

◆ **Wind~103 km/s**

Photoionization rate [s-1]

◆ **Flux of ionizing photons × photoionization cross section**

$$
\int_{\nu_0}^{\infty} \frac{4\pi J_\nu}{h\nu} a_\nu (\mathbf{H}^0) d\nu =: \qquad \int_{\nu_0}^{\infty} \phi_\nu a_\nu (\mathbf{H}^0) d\nu = \qquad \Gamma(\mathbf{H}^0) \tag{2.1}
$$

Hydrogen collisional ionization

- ◆ **Hydrogen atom collisional rate** $-c = k_9 n(H⁰)$
- ◆ **Palla+1983**

Radiative recombination

- ◆ **Brems is produced by distant collisions between electrons and charges**
	- Photon energy taken from kinetic energy of free electron
- ◆ **A very close collision can cause an electron to lose so much energy that it becomes bound to the ion**
- ◆ **Ion + electron => atom + photon**
- ◆ **Rate coefficient α cm3 s-1**
- \bullet **Rate =** α **n**_e

Recombination AGN3 Chap 2

- ◆ **Electron and ion recombine, emitting energy**
- ◆ **Radiative recombination for H and He**
- ◆ **Dielectronic recombination for heavy elements Table** 2.7

Let's model a …

- ◆ **Relatively dense,** $n_{\rm H}$ = 10⁴ cm⁻³
- ◆ **ISM cloud**
- ◆ **O6 star, but all light at 2 Ryd**
- \bullet Q(H)=10⁴⁸ s⁻¹
- \bullet **1** pc = 3×10^{18} cm away

Strömgren length

Strömgren length

◆ **Number of ionizing photons entering layer is balance by number of recombinations along it**

 \perp

$$
\varphi(t) = \Lambda_e \cap \varphi \propto
$$

$$
L \propto \frac{\varphi(\mu)}{\Lambda_{\rm e} \eta_{\rm p} \alpha}
$$

Beyond the H+ layer

- ◆ **Little H+ ionizing radiation gets past the H+ layer**
- ◆ **Deeper regions are atomic or molecular**
- ◆ **Also cold and produce little visible light**
- ◆ **Large extinction due to dust**

