(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 11.2' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 13104, 343] NotebookOptionsPosition[ 12194, 318] NotebookOutlinePosition[ 12572, 334] CellTagsIndexPosition[ 12529, 331] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"H", "[", RowBox[{"\[Zeta]_", ",", "n_"}], "]"}], ":=", " ", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"-", "1"}], ")"}], "^", "n"}], " ", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", "^", "n"}], " ", RowBox[{"n", "!"}], " ", RowBox[{"\[Sqrt]", "\[Pi]"}]}], ")"}], "^", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "/", "2"}], ")"}]}], " ", RowBox[{"E", "^", RowBox[{"(", RowBox[{"\[Zeta]", "^", "2"}], ")"}]}], " ", RowBox[{"D", "[", RowBox[{ RowBox[{"E", "^", RowBox[{"(", RowBox[{"-", RowBox[{"\[Zeta]", "^", "2"}]}], ")"}]}], ",", RowBox[{"{", RowBox[{"\[Zeta]", ",", "n"}], "}"}]}], "]"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Psi]", "[", RowBox[{"x_", ",", "n_"}], "]"}], ":=", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], SuperscriptBox["x", "2"]}]], RowBox[{"H", "[", RowBox[{"x", ",", "n"}], "]"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Psi]", "[", RowBox[{"x", ",", "n"}], "]"}], ";"}], "\[IndentingNewLine]", RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{"%", ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "6"}], ",", "6"}], "}"}], ",", RowBox[{"AxesLabel", "\[Rule]", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\<\[Psi]\>\""}], "}"}]}]}], "]"}], ",", RowBox[{"Style", "[", RowBox[{"\"\<\[Psi]\>\"", ",", "16", ",", "Bold"}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"n", ",", "1", ",", "\"\\""}], "}"}], ",", "0", ",", "10"}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{{3.721686911190549*^9, 3.721686913879924*^9}, { 3.7216869616955223`*^9, 3.721686961896429*^9}},ExpressionUUID->"4ca179a4-27d3-4c34-ae58-\ 8b94da183330"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`n$$ = 0., Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{ Hold[ Style["\[Psi]", 16, Bold]], Manipulate`Dump`ThisIsNotAControl}, {{ Hold[$CellContext`n$$], 1, "energy"}, 0, 10}}, Typeset`size$$ = { 540., {173., 180.}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True, $CellContext`n$757670$$ = 0}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`n$$ = 1}, "ControllerVariables" :> { Hold[$CellContext`n$$, $CellContext`n$757670$$, 0]}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Plot[(-2)^$CellContext`n$$ E^(Rational[1, 2] $CellContext`x^2) Pi^Rational[1, 4] $CellContext`x^(-$CellContext`n$$) ( 2^$CellContext`n$$ Factorial[$CellContext`n$$])^Rational[-1, 2] HypergeometricPFQRegularized[{ Rational[1, 2], 1}, { 1 + Rational[1, 2] (-1 - $CellContext`n$$), 1 + Rational[-1, 2] $CellContext`n$$}, -$CellContext`x^2], {$CellContext`x, -6, 6}, AxesLabel -> {"x", "\[Psi]"}], "Specifications" :> { Style["\[Psi]", 16, Bold], {{$CellContext`n$$, 1, "energy"}, 0, 10}}, "Options" :> {}, "DefaultOptions" :> {}], ImageSizeCache->{612., {268., 277.}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Manipulate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{ 3.721686914280433*^9},ExpressionUUID->"9b3d54d1-47ed-479c-8632-\ 0bd2936168ee"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"\[Psi]", "[", RowBox[{"x", ",", "n"}], "]"}], ";"}], "\[IndentingNewLine]", RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ SuperscriptBox[ RowBox[{"Abs", "[", "%", "]"}], "2"], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "6"}], ",", "6"}], "}"}], ",", RowBox[{"AxesLabel", "\[Rule]", RowBox[{"{", RowBox[{ "\"\\"", ",", "\"\<|\[Psi]\!\(\*SuperscriptBox[\(|\), \(2\)]\)\>\""}], "}"}]}]}], "]"}], ",", RowBox[{"Style", "[", RowBox[{ "\"\<|\[Psi]\!\(\*SuperscriptBox[\(|\), \(2\)]\)\>\"", ",", "16", ",", "Bold"}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"n", ",", "2", ",", "\"\\""}], "}"}], ",", "0", ",", "10"}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{{3.7216869496547737`*^9, 3.721686965762636*^9}},ExpressionUUID->"810f6902-f7b5-477f-b48e-\ 3c81937d6083"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`n$$ = 0., Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{ Hold[ Style["|\[Psi]\!\(\*SuperscriptBox[\(|\), \(2\)]\)", 16, Bold]], Manipulate`Dump`ThisIsNotAControl}, {{ Hold[$CellContext`n$$], 2, "Energy"}, 0, 10}}, Typeset`size$$ = { 540., {177., 184.}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True, $CellContext`n$764818$$ = 0}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`n$$ = 2}, "ControllerVariables" :> { Hold[$CellContext`n$$, $CellContext`n$764818$$, 0]}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Plot[Abs[(-2)^$CellContext`n$$ E^(Rational[1, 2] $CellContext`x^2) Pi^Rational[1, 4] $CellContext`x^(-$CellContext`n$$) ( 2^$CellContext`n$$ Factorial[$CellContext`n$$])^Rational[-1, 2] HypergeometricPFQRegularized[{ Rational[1, 2], 1}, { 1 + Rational[1, 2] (-1 - $CellContext`n$$), 1 + Rational[-1, 2] $CellContext`n$$}, -$CellContext`x^2]]^2, {$CellContext`x, \ -6, 6}, AxesLabel -> {"x", "|\[Psi]\!\(\*SuperscriptBox[\(|\), \(2\)]\)"}], "Specifications" :> { Style[ "|\[Psi]\!\(\*SuperscriptBox[\(|\), \(2\)]\)", 16, Bold], {{$CellContext`n$$, 2, "Energy"}, 0, 10}}, "Options" :> {}, "DefaultOptions" :> {}], ImageSizeCache->{612., {278., 287.}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Manipulate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{{3.7216869547850924`*^9, 3.7216869663324747`*^9}},ExpressionUUID->"2fe19ef6-740d-46c6-a73e-\ dbf82142124e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"\[Psi]", "[", RowBox[{"x", ",", "n"}], "]"}], "\[Times]", RowBox[{"\[Psi]", "[", RowBox[{"y", ",", "n"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"Plot3D", "[", RowBox[{ RowBox[{ RowBox[{"Abs", "[", "%", "]"}], "^", "2"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "6"}], ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"y", ",", RowBox[{"-", "6"}], ",", "6"}], "}"}], ",", RowBox[{"AxesLabel", "\[Rule]", RowBox[{"{", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\<|\[Psi]\!\(\*SuperscriptBox[\(|\), \(2\)]\)\>\""}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"PlotPoints", "\[Rule]", "50"}]}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"n", ",", "10", ",", "\"\\""}], "}"}], ",", "0", ",", "10"}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{{3.721687038642207*^9, 3.7216871545911503`*^9}, { 3.7216871858360157`*^9, 3.7216871867746077`*^9}},ExpressionUUID->"30bedbf7-3291-4d2a-a81a-\ c18d3b6ec891"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`n$$ = 10, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{{ Hold[$CellContext`n$$], 10, "Energy"}, 0, 10}}, Typeset`size$$ = { 540., {193., 202.}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True, $CellContext`n$870100$$ = 0}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`n$$ = 10}, "ControllerVariables" :> { Hold[$CellContext`n$$, $CellContext`n$870100$$, 0]}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Plot3D[Abs[(-1)^(2 $CellContext`n$$) 2^$CellContext`n$$ E^(Rational[1, 2] $CellContext`x^2 + Rational[1, 2] $CellContext`y^2) Pi^Rational[ 1, 2] $CellContext`x^(-$CellContext`n$$) \ $CellContext`y^(-$CellContext`n$$) Factorial[$CellContext`n$$]^(-1) HypergeometricPFQRegularized[{ Rational[1, 2], 1}, { 1 + Rational[1, 2] (-1 - $CellContext`n$$), 1 + Rational[-1, 2] $CellContext`n$$}, -$CellContext`x^2] HypergeometricPFQRegularized[{ Rational[1, 2], 1}, { 1 + Rational[1, 2] (-1 - $CellContext`n$$), 1 + Rational[-1, 2] $CellContext`n$$}, -$CellContext`y^2]]^2, {$CellContext`x, \ -6, 6}, {$CellContext`y, -6, 6}, AxesLabel -> { "x", "y", "|\[Psi]\!\(\*SuperscriptBox[\(|\), \(2\)]\)"}, PlotRange -> All, PlotPoints -> 50], "Specifications" :> {{{$CellContext`n$$, 10, "Energy"}, 0, 10}}, "Options" :> {}, "DefaultOptions" :> {}], ImageSizeCache->{612., {257., 266.}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Manipulate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{{3.7216870765625362`*^9, 3.7216871038097744`*^9}, { 3.7216871405282593`*^9, 3.721687155276568*^9}, 3.721687187423189*^9},ExpressionUUID->"aad3fb46-5ba0-4c07-9cd1-\ f69642993cb6"] }, Open ]] }, WindowSize->{1500, 917}, WindowMargins->{{-8, Automatic}, {Automatic, -8}}, Magnification:>1.5 Inherited, FrontEndVersion->"11.2 for Microsoft Windows (64-bit) (September 10, 2017)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 2035, 65, 151, "Input",ExpressionUUID->"4ca179a4-27d3-4c34-ae58-8b94da183330"], Cell[2618, 89, 2222, 45, 606, "Output",ExpressionUUID->"9b3d54d1-47ed-479c-8632-0bd2936168ee"] }, Open ]], Cell[CellGroupData[{ Cell[4877, 139, 992, 30, 78, "Input",ExpressionUUID->"810f6902-f7b5-477f-b48e-3c81937d6083"], Cell[5872, 171, 2407, 49, 593, "Output",ExpressionUUID->"2fe19ef6-740d-46c6-a73e-dbf82142124e"] }, Open ]], Cell[CellGroupData[{ Cell[8316, 225, 1208, 34, 112, "Input",ExpressionUUID->"30bedbf7-3291-4d2a-a81a-c18d3b6ec891"], Cell[9527, 261, 2651, 54, 551, "Output",ExpressionUUID->"aad3fb46-5ba0-4c07-9cd1-f69642993cb6"] }, Open ]] } ] *) (* End of internal cache information *)