Problem 1 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ a) The wave function ψ(ξ) = ξᵖ exp(-ξ²/2) L(ξ²), should satisfy the boundary condition for either even or odd fuctions of ξ with p=0 or p=1, respectively, for any function L(u). Recall ξ = √(mω/ħ) x. dξ = √(mω/ħ) dx = α dx. ψ(ξ) = ξᵖ exp(-ξ²/2) L(ξ²). ψ'(ξ) = d/dξ (ξᵖ exp(-ξ²/2) L(ξ²)) = (d/dξ ξᵖ) exp(-ξ²/2) L(ξ²) + ξᵖ (d/dξ exp(-ξ²/2)) L(ξ²) + ξᵖ exp(-ξ²/2) (d/dξ L(ξ²)). For an even state, ψ'(0) = 0 and p=0, so ψ'(ξ) = (d/dξ 1) exp(-ξ²/2) L(ξ²) + 1 d/dξ exp(-ξ²/2) L(ξ²) + 1 exp(-ξ²/2) d/dξ L(ξ²). ψ'(ξ) = - ξ exp(-ξ²/2) L(ξ²) + exp(-ξ²/2) L'(ξ²). ψ'(0) = L'(0). This must be wrong, somehow... in this case the boundary condition only applies if L'(0) = 0. ∎ For an odd state, ψ(0) = 0 and p=1, so ψ(0) = 0ᵖ * ... = 0. This is trivial. ∎ b) Equation 2.72 from Griffiths: dHₙ/dξ = 2nHₙ₋₁(ξ). Substituting the state ψ(ξ), I can obtain the associated Laguerre differential equation uL'' + (p - ½ + 1 - u)L' + kL = 0, with u = ξ². A better and equivalent substitution uses ψ(x,t) = A exp(ι(kx - (ħk²/2m)t)). h = ξᵖ L(ξ²). u = ξ². ξᵖ = ξ² h = ξᵖ L(ξ²) ψ(x,t) = A exp( ι(kx - k²/4πm ξᵖ L(ξ²) t) ) = A exp( ι(kx - k²/4πm ξᵖ L(u) t) ). This... is probably not the "h" you meant. h = ξᵖ L(ξ²). dHₙ/dξ = 2nHₙ₋₁(ξ). h'(ξ) = dh/dξ = pξᵖ⁻¹ L(ξ²) + ξᵖ L'(ξ²). h''(ξ) = pξᵖ⁻¹ L(ξ²) + ξᵖ L'(ξ²) = p(p-1)ξᵖ⁻² L(ξ²) + pξᵖ⁻¹ L'(ξ²) + pξᵖ⁻¹ L'(ξ²) + ξᵖ L''(ξ²). p(p-1)ξᵖ⁻² L(ξ²) + pξᵖ⁻¹ L'(ξ²) + pξᵖ⁻¹ L'(ξ²) + ξᵖ L''(ξ²). Hₙ in Griffiths maps to hₚ in the problem sheet, I'll assume. Hₙ = ξⁿ.