phy-520/project/InfiniteSquareWell.nb

716 lines
38 KiB
Mathematica
Raw Normal View History

2020-12-23 21:28:58 +00:00
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 8.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 37537, 706]
NotebookOptionsPosition[ 37139, 688]
NotebookOutlinePosition[ 37483, 703]
CellTagsIndexPosition[ 37440, 700]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"n1", ":=", "4"}], "\[IndentingNewLine]",
RowBox[{"n2", ":=", "2"}], "\[IndentingNewLine]",
RowBox[{"n3", ":=", "1"}], "\[IndentingNewLine]",
RowBox[{"a", ":=", "\[Pi]"}], "\[IndentingNewLine]",
RowBox[{"a1", ":=",
RowBox[{"Plot", "[",
RowBox[{"0", ",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ", "0", ",", " ", "a"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", " ",
RowBox[{"{",
RowBox[{"0", ",", " ",
RowBox[{
RowBox[{"n1", "^", "2"}], " ", "+", "n1"}]}], "}"}]}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{"p1", ":=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{"2", "/", "a"}], "]"}], "*",
RowBox[{"Sin", "[",
RowBox[{"n1", "*", "x", "*",
RowBox[{"\[Pi]", "/", "a"}]}], "]"}]}], "+",
RowBox[{"n1", "^", "2"}]}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ", "0", ",", " ", "a"}], "}"}], ",", " ",
RowBox[{"PlotRange", "\[Rule]", " ",
RowBox[{"{",
RowBox[{"0", ",", " ",
RowBox[{
RowBox[{"n1", "^", "2"}], " ", "+", "n1"}]}], "}"}]}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{"p1e", ":=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"n1", "^", "2"}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", " ", "a"}], "}"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{"p2", ":=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{"2", "/", "a"}], "]"}], "*",
RowBox[{"Sin", "[",
RowBox[{"n2", "*", "x", "*",
RowBox[{"\[Pi]", "/", "a"}]}], "]"}]}], "+",
RowBox[{"n2", "^", "2"}]}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ", "0", ",", " ", "a"}], "}"}], ",", " ",
RowBox[{"PlotRange", "\[Rule]", " ",
RowBox[{"{",
RowBox[{"0", ",", " ",
RowBox[{
RowBox[{"n2", "^", "2"}], " ", "+", "n2"}]}], "}"}]}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{"p2e", ":=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"n2", "^", "2"}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", " ", "a"}], "}"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{"p3", ":=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{"2", "/", "a"}], "]"}], "*",
RowBox[{"Sin", "[",
RowBox[{"n3", "*", "x", "*",
RowBox[{"\[Pi]", "/", "a"}]}], "]"}]}], "+",
RowBox[{"n3", "^", "2"}]}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ", "0", ",", " ", "a"}], "}"}], ",", " ",
RowBox[{"PlotRange", "\[Rule]", " ",
RowBox[{"{",
RowBox[{"0", ",", " ",
RowBox[{
RowBox[{"n3", "^", "2"}], " ", "+", "n2"}]}], "}"}]}], ",", " ",
RowBox[{"GridLines", "\[Rule]", " ",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Pi]", "-", ".01"}], "}"}], ",", " ",
RowBox[{"{", "}"}]}], "}"}]}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{"p3e", ":=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"n3", "^", "2"}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", " ", "a"}], "}"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{
"a1", ",", " ", "p1", ",", " ", "p1e", ",", "p2", ",", " ", "p2e", ",", " ",
"p3", ",", " ", "p3e"}], "]"}]}], "Input",
CellChangeTimes->CompressedData["
1:eJwdxWlIkwEAgOEVBTErCbEiFDZizKKDYpNkM9AawZLoYAcpVp9TKZAxmWuw
NiVIW8vEEeIGyxEyf8wcRUqZlalILMF1WAYdjMxMMXGMBBFq7/fj4ZEL1rPV
6yUSSUEGO/zZbbcGF0pkgi7A7sldIW5cffWAa1r2DnBKyHrJOde7Rtk4nP2d
K/WffvDszb6fHJ5dS7G2MCHzZd4R2qlkqUazh4X26EHe7kqK25/d03J8puco
1y8Hj/Pjh2odr3Wc0fPFdP8lzjtnaeDS1movH9ZG/FzQYg2ysznSyyr5+z4+
nb9unD2r7kmWx3KnuObv0heusCd/sdm6KN5s6l/mqWjV7tuZy5rqlBw3KdQ8
4vUV8WvpoWI2NUlPcFfCI/5EHjjJhjG7iX3tneX84YC3go/kTwj8aIvuCm/V
Kzo5nPs1wHdzUm9ZtXnDO7b1bPvMbafmxYeNjjmeXjj/h/2m7jQr93lW2Ogs
+8cTv63iQ9/ub2wVj+dxeXFvCS9ushxjWdRs4OlrRWZONpRW8YjNcJmf779R
x7Uro/WsSjvcrAjJOjgrNh7kucKnYdZcXermxEdbhAfVLyx3Ms9IYrU85nrj
5PkLjS7+DzSfZv0=
"]],
Cell[BoxData[
GraphicsBox[{{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJxFz30s1AEYB/Bzd3Fnazt2zuyGEG3Y1Fqr253IhFjiWm9Upx/qnLo7L6tI
s0qnUTqXzGuXmsMaZeJK0i27hcksF3FEQirvoeNw1Zbn+W7Pvvv893ydCAk/
lkwikQ7+vX9NeWPZ+XVXwl7S/7h+b+Y63Dvks+GVZ14xfQoBeIwpNDQoJOD+
gIy35Yp08EeBYlup4i6Yf96uv0ChBOfOn6zLVzwFc7XBln5JGrA0NfRMnbQV
fOFFbA7ZpQusmzhAryB04CyvJVLDiU/gBI/W+5ryAfw/Or5mUDwMJl4fDZOf
HQFHz+k0mluj4Nvb1RKVbBxM1qh3Z6ROgK3cQzqHCn6Ag5R+j2cVk2DbmY6A
dPU0uOhdoxklbhbMs99n2hIzB/YYZoxeTZ4HV1daC+sTf4HTPp/q9pAt4D7e
npAHeYu4T+lP/JQvgbukRVGXHv0GcwKd1wfLDOC2/ZxK35JlcHltIWfkyQrY
xsVTdLrKCP5gRrtu17QKrqclqbra1sCeNgwRoV0Hz+QsMXf2mMAumZleEhHJ
d8MjEfp+v2/ooLHu5XqxGfhyYqyQNYUObSgOZl0kg6dXRWmUJXRZ77Xn4iQK
eEXoHZViRNuv5UYmpFLB44HZ7TTqJnCLW4ePQzZaRFNRnejmYPXDrd4tuehO
Lk/Lt7IAG0TFh6Ny0K1hyiObWTQwweFVVOSh46beLw7ko6VlAn/rQnQ6/caX
tFJ0SV8bm69C96Qck6+q0cGNiSnhenS4mNoqG0Qfd85nNQ2hz2W9rHMbRWdE
kKaNk+jmlTuEah2trXGs1ZPo4A6i1sSgoPXtupIrFmhDEbs3jIE2hVa7yqzR
5hSf5FdMNDOesHKzQ7MdFwSRbLRz980auT3aPdN2TeuI3sGtCjE6of8AVY0a
Fg==
"]]}}, {{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwd2Xk41F8XAPCxzFiiopIoWwupZqYkEZ2bFkVUSklJlBKyZclOScqSJG3E
j7Ike6hkSZSQ7LsIicgytqzzHu8/PJ9ner6+c++559xzkjax1jXlpFAoufhj
4TdXPn9Fl6Lt7sVNVlwUCpOs78vbJfHgCKz14/X/ip5OZVxsCjGCU9QfQg84
mOTXcrN/WSHWYP9mk9gGLiZpPuBT+DLEExQs2thaNCapMwqRjQi5BzOhVPsw
ASbRtVzV/DgkEoYXJ7yQWsUk91lnM8JCUiA2pCqwfSuT7CrW5Fe/VgDeLweM
bC4yydLa2O9KDwpA5kxgpbQpk3R3cj7cklEAAj2HW6vRQZQcyVWjBfDR8VKh
wmUm6dy1SXHY7iMMp5ZlDl9hEr/0Reef2xWCUMV41ElrJqmPLM+cti2C2V85
Ld+cmSQxWc51+H4RpE+sMLF1YRKvXB/Sk1YED/8ctlruyiQbW1TLqkaK4NKl
LytOuzGJm0hSR7xtMeyi7r3X6sEkawMDF52y/QxrRUKiym4yiY2LjnGGTQmM
lvb92x/IJJpWqvG8wSXwYGaHXD16rYn8kGFKCRRm3v5uGoTvc4jmzjtYAmNG
gj437zGJ2qq8x4YWX8He5Z3D2/tMwv92SyXPpVJoKyyh8oYxyctxATh7phxu
/NU+oPKcSTz6pm+luZTDwTJjh7do/bbectrTcujfckhgRySTCBQXGaQ1lsMi
2zRrRhST2IW6OdJOfgPlsA62WDSTEIWBpNSjFfCm/2J77UsmufrWNIhzbSWc
/XH8duVrJqEfOibFsb0Srjs9/7Y3iUmGm1TT2fsqIdTD5mgW2n5mWf3spUrQ
G4vle5LMJC67C9dMvqqEM1/tVPVSmcS3SCKpf1sV2D4WVIrPYJKDevzwZ28V
FO+QW7TkDZPw9YxX9p6ogvA1Ussd0AE838Z+OVZBulJr4e5MJnmg6ara8b4K
bMRlb5dkMUlUZUNZrXo1WHIJaGW+YxIT40+GNcerQSmGvXPJe1xfVvJQ1cVq
kHBbpGeGjl3mu+y7bzWkxDWvEM1hkqST2898La0GszshKVc/MMn71uA/ubo1
YD6jNzych/t71c3tw4UayH6SHaKWj/sxf3lxjn0NELHThnfQBZKw7W1YDXil
0swlCpjki8lf5/TmGtCRHDy1+yOT1PYe4oszqYWIMzJE7xOTDD2R23/TrhZS
KxYvC0bza/F4G92oBWpe1fpSNEkq+rcyuhZ8Aif5VIswHm2h1+9nLdx4n/FZ
pJhJPstIrDMdqYXZNAjRQnfUzBrt4aiDkrODzzzRIjveN0xJ1UEXZ6/ZL/SN
6e1fzM/XwbXKrq64z0wSkbiMS8OmDu5dXfmsHv32LGv3Wq86SHzQF8T9hUn+
5qVktUTWwVxE5qZzaP2b8rGH2+tAOGOTIm8Jk1zbztcpN1QHF40Dy5nooF+/
11DZdXDaUjlSH12k8fJhrkQ90Gprx1+iGQJSt+jn6kGsh3JR6SvGf+58Ab9V
PUhueVx1Gn3Rqm22x70ehsb1nF3RTyuf2kdG1EPZ7Y+OH9C0hysuLm2rh90R
f9YrljKJ9IGxyIGBejjxQN34GFp1srqlZLYeQr9+q7NE254OPu69ugGyK4XN
/0O3rlm0l3WmASR5QlU5yphksqLPo8KiAbRNc3evRAt7lbx/5doA/8JOOW9G
H+y8te3Cswa4V+L/6AT6woOLVpDYAG1n510uoz327X0lntMAoX9DwpzRGbEU
mdrmBqgKb3F4hq441W6Y+qcBGuyslBPRvbx5TwKmG+Dym47t79Fc78PrzPgb
4WP8WrMStISFq9B+sUZoOrOxpg6tvNpAW1q+ES4873boRJ/4tvPOnHIj9FAP
HR1E32VMULJON8J2u/ZErnI8X06HNvWYN0Jn1OMhQfSV/HA9EbdGSIyo01iJ
1ucZ9jwQ2Aj1kf5vJNEHj+x95fi8EVwHUxVl0TsfhdXGpjTCnQ7Vsi1oufa+
+fqCRqhrlXVQQIvKqm3kqW4ECQMLhZ1oHuvg40pdjbCqnYOmip7I6nK/PNYI
dpy/B3aje+Z3xD+iNkGj+cpegq4/cLf6i0gTTFUET+5Bfw5qm52UbYLA8WPi
6uiseqasnHITHM00OL7w+UsJn2P6mk1AG0+MBHTopQZXvzNN4JKoQVFD+yTL
x761RLczHZTR9hPulb3uTdAQZzG/HX1hd9W06L0mOL1p7hkDreu7bv2hqCYo
jOrX3ohWr3A64pyG1tm9XAa9TaTMOaGwCQb95wZXoWXOSbxoqmmCd3nbfixF
C8faVvD9aoJLhr0/aWiOwaJ/yhNNwP67cXoG92NYUXStOU8zaNC4ZYfRHe4W
2k9Fm+GVlo9ZF7qyOM+pdGMzbLn2Lm9hfwsEhaOnVZrBZE/Gxi/oVD3TcvnD
zaB990ZCNjoy4u2EgWEzGGxV3h23EG9bjLRyPJth7FpC7E20lUO6Q39wM/jJ
BLjYoA1zqVHi0c0gphd/4SxaVfv1mGtRM+wT6nfYit78kC3xuq4ZDNfvjRRD
r27TPdTa0wwq1Uo/ONEzllMRqnwt4JpoGlGJ5+XPm8MllmItcKC+cU0Wunk2
khW+qQXOh5198xT9PuCAxpx2C/RdXbHOGH399YPh3JAW4A/nFu7C82o21iM2
GNMCi5hJBz6iT6mq7JfIbIElv71CnqN3lHc88WhoAZE5TZuT6LH+LXthdSus
2i54KAfzRbeC91XrLa3QOvxqVwi6xrX2UeTuVlC6U3XADJ2+yHWAfb4Vkrjd
4oTQtptKHha8bIXTPjWPTmO+6jbt9orKaoWDi6OV5NEnoyiWXl9aYbvn76kp
zHcqK5TVSV8rvE9J7glDc7ITBvM3t8Ghw4cuf8Z8GVLtr5Gf0QZ7fybunMV8
zC0Yvy2yqA1kSuXE89GOGkVrPOvaoIbjz1pvtMGH2dHdk23wlksngRMtE3s1
Kk/lB4S8Mfafwfyf7nxkKvfjD9hz8N/fIqwX695YdEdU/4AOGdFTLuiwwdvf
3bt+gEbFrn462uVCwUs1ajuoiLQ/fIj1R117q27uwXZo9Z+d08/F9ZBalvjh
ezvECn6//Bbr2fQFi+Q2qw6QdDLa24r18rzQ6PUPjh1gtKTMzwNdnOey95lH
Bxje9pWUQgevutuoH4Sf7z6jboz1V/Z7PGdtUgeIvIm53JKG+Ual52TpQAfI
tS73ScH6nbzUmJ1l/hPYdlc/NsUxyfK83q8P7X6CQJHN4CW0s4VNqL3LT+DL
s3YejWWSfZ89N267+xMm90gl8qNbXJ8fT0r4CWo5r+5sfcEkvL9b4mJ6f0KC
osFjY7x/mOSePBp8qRNybw6o6zzG85glKrzKuhMap/ref3iE+5PSXPOfUydw
f1X2lUdHR507leHXCUL55qu48f7TefPSufpXndBfar8v5QE+T9PRcvVQJ7TZ
ZKv34H3KpOGhX7xTF6SY/k1v8cH8MFJbUODXDRkrb+wRxPtfADPbOta3B5ST
Hj4x2YN/ryBbycelFwq2DnKmLGUSIXmtivbHf2Donf98dCaDHIxUjxkOGYAw
heK8F3oMcruksu3GswG4EVV1dOUJBvk8ck50xYsBULqtEH9Xl0H273MNVM4c
gFq55cnXjjCIel+G042GAbgk3qZx5BCDqCqsP7x89V/YVbxBja7GIMwvPONK
L//Clf07Dj5azyDWww8ZpUl/4aVsTvf6dQySvGqd+dmsv6C34bl7pgyDbLEk
7V5f/sLTLtHEBkkGkRdy/vq17y9EL2+WkRNjkHVn/kScoQ+C9WmXkenFDLJy
qPyAZ/YguM39kr82RSeP7+cb9+UPgnZGor/8PzoR3Z7udrxkEDof6S7tmkA7
P0qXbRqES3X9d0+N0YkYl4lE5fQghMuFW+oM0YnEyslxqd1DIHZhh6jDLzrZ
ANIvC4uGIMnooVtKNZ3E/lxWsPnbEESvEZwPrMLPfWgtYXVDwKO3puJqJZ3I
fu1fatEzBPI0DqOtFXQSuvFMHh/3MOx6p3+p5CudhGWsl09fPwwHSwLFlD7S
ydMv7zm4rgyDw/MN+yTT6GS4I9V5yHIYnp7jv6CSSica07EjLTbDwN/CVXwy
hU7GNj/4+eb6MJzpjNZ7kEQnOiEWHy/5DUNiwc6P4q/ohNNwtXdp3DD88p5w
MY+hE31H4amsxGE44chkPI2mk5R7vLYxKcMwFxiuUPYfnZwtHDvvlj0MD/w2
MLdG0UmW7DdC/zIMnOAiKBhBJxYsd0pIzzAUaWVQqI/opHCR/XWPP8Ow8nKU
sGYYrud682HzwWHYHf/YK/ghnXw+dbJj78QwhPpduyYdSidSufSCceoIPH3N
U3L8Pp3U3m73PL1+BKgfpz9O+9OJ6po9bKmLI/DD18zw5A06OXi21s7EbAQm
FNxVPnjTyYlnl3tiLEdAn7G3ZC3aYlXQtw0OI+B5/sG/SU9cvxUtzzb7jgDN
ODHvjTud/BN02LkzfgTGSp5d9XKmE25t3tfOr0fAqds2mgO9NOCZZE7qCCik
NN/3uY77xV9I2/1uBK5HPI6+50QnJ2lL6vaWjsCGpZ+fvnegkzfz8bZHBkYg
pNbu1EU7OilQU/0VPDwCWtQb1zjQ5W7f9avHRuCU11LdKFs66ZoeB725EYha
Y6zfZUMnwpPqi88sZgFH0umHHtYYXzvqvcOFWfC1fqpyI1re4cp4mwgLfP4c
ra63opM9o/daz0uy4NuDJ7I70DZDra8uMVkw/+nsBv6rdOJGt5GI384C8dV3
n3yypBO/q1whfTtZcDV8fZ0HOrJ/o7PlHhYkWrTGTlvQySv53IGk/Sz4oh+o
loPOunL0/NAhFlQmNES4oyt+O2rY6bIgwV77Aw+6eQN/TsZJFrDxfvjdnE5+
mUbQxw1YkHnrOPcT9GzXpxXXL7AgS67daSt6U8fSbnd7FqhPv+t1uoLx+Fuq
0PE6C3S91+UfRdsMMqOs3Vgg0vJ4wyb0m9mjZ419WFD+eWtCtxmd1HMZqxj4
sSC85VnRJ/Q/flvR4wEseFzy1PYFWnXV/dp9oSyI3lLlZY4+J/VfutpjFgSW
7Ok6gvaSTQveEc4Cae93DTvQ0fSPVowoFnTxHTsniS5SrDos94IFFX6STnzo
HtWf8tLxLFB+pCIzfplOePeN8Iq9ZsHnPVlGnWh5LY7fwqks0OF9yahCH9YV
Kl70hgWlbStDPqKtTkvHcL9lwUE5idsZ6ODzW73ncljQWFC8OA6dfnmP0UQ+
C7xGxTaGo2utjqkNfWIB01OuPgQ94WAs3vuFBdkPJ1f4o0Xdbac6yljwvuVe
rw9axce7oek7C16bTWp7oc/638+srmFByedtB9zRHiH/PShrYMGS0X1Vruio
J2m2RS0sAEPG0IILoz4eyW1nQdPvkciFf98dV7Ulq4sFa3rvdi08j5byc1HK
bxYs2jD57hZaLmukL66fBVdat64NQGvmcpREDeF6vN0uGYq2LBKKfTLKAs+W
yaQIdFCZtE/IJMZvg+33eHRq9VYT/xl8/4xHNzPR1U17iA+bBcd7z5Z+Qo91
HJNw5xqFAOOMmBq0SK/xrAPPKFz08F/yC71zyLbZatEoDCytFfyHdpu7H3Z+
2SjQJc0/yuB+PeeOtj+9chRWeAY6qqALFqXr6oqPguKab7nH0dxi1Yv3rR2F
pdW7OP3RG6Q7B1RlR6HMbDs7Hn1QjlWquGkURtVaA0vQATuEb8sqjEJIRI6R
AMZjspqMqZTSKGzXSI1moiv3bdu7atcotF2tcDyJXn5cl82/dxTW2gxXxaJ3
GJi0cWmMgtLil/pVaH1ju5xZzVEITu62nkOHW4c4Deri+3jrHTHA85HnGK33
+yQ+b82mlf7oDvd0hQ6DUXgQUmuVi14XUD1UZTIK6T3N5Rvw/CXFC5tl2o3C
5L4eNQE8zz51+Xu4nEbBYJNYig76LOdV8WOuo9B+Ims0BM1/9kvFwM1ReCvX
Ny6F+eHSEjfFdQ9HIeL54jpdzB9qqhuX2D0ZhVU7rzTGoJdfqe/NjxiF64nX
X0+gPxUyw8/EjoKPxfbi/zAfSTn+4nyQPQqfOtYkC2I+m4wOae3IGQWxB5s3
X0VXfIcsesEo8O7IcqpAu298eqW0ZBSkIxwcwjAfNrfqVHI0j0Ky/ff5XfZY
//a+jbCZHYVo7WstrZhfLWxMnfIoYxAh2DCpj/lXPUL4mAB1DFR10pvq0SMT
ltzxgmPQsM+3vwHztc4raYt2iTGYkdymNOSK51XIf6fOnjHIZp7ptvWik3a1
ncLh+8dAo9RqCT/WhyzzX/19h8bgWkTfeAzatAgib+mOwbotmqxWrC+FTmPU
3AtjwBmXE3rhFsbbD8OaTb5jcO4Au6nwLsarhlqE6V18ngJL7BrWJ8u01Zcj
g8Ygkpk8sy6ATs74tEwLPxoD4eumTwID8bzKn5aZjhuDtKZ4hl0wnUw5nLAt
+ToGesZnl/phfXQU1FpiKjgO8S9UAjqwHg86yjc9FxqHNEmptZ9e4H518MU0
rhgH9+dBanEvsf5klOw4LDEOmxP5p67F0Yni6QPnFBjjIDqraiWZiO/3Yk8S
x7Fx+GTOaZ6bTie2qju1noeOQ/an78sXf6ITilWo573H49BvFJ8hUITnNXI4
wyt8HBQ+XrglUIz1gDNh9YUX4+CRF5m75AuddJasGpR9Mw7Nh7JM15VhvdWb
CU6rGYd27r43t2ow3q3y6ouEJ6CkolNUGu9D05H7TPqDJyDz4kye+yIG2T2p
FrL14QQ8UyGzLQIM4q2jVOj0ZAKei8sc2YX3M965jTLc0ROQrezEmFvKICsM
lnSuzpiAiFHl5EARvB8ubzbWqZuAVJeS3R3SDGLqZ22ctmoSgkpu7iPKDFJp
8/S8U/QkTGxXkA00ZxBlDZn5tv/+weEMsTbqNwb5ul85noRPQTk1qfOEKPbb
aU+UOxOn4cbyPQKxh5nEfOaMfGPKNOw31zMy1mYS5n4J8YqMaeBN97+0WodJ
PjRGz77LmQbTHq+g+0ewH2En5t8vmwYNiRDmdV3sj3Xy9u/pn4bPr2wlduhj
f/qn81iU/AyMO67Isb7AJCvWbjY/lzADbWlrRjKuYz8S4n8yIWkG7jFueV90
ZhJ+zn71sbQZeHpIwne5C5NQfiaI330/A0MrcnrtXJlk4Lnst8yyGXjL/WxO
zoNJisTWMgUHZ0A6djTb+SaT2AuLTeRsm4XoT5Iy8YFMMuTt3ElTmoWAiMwP
+7EfMB9prDi2axbEBWwzOtHnKx/F/d47C4u0fdPFgpnkcNCK08v0ZuHPnQdd
N0KYZC2/0Adzp1nwVZlxVMD+o5qD98aqD7NwwjTy3VLsXwaTnpw7WjAL0gbn
l4ah+Qw27bpdNAt/D3e8EfuPSUi6zthY+Sxc5Kjqlo7Gfsrk4aXKtlmI5wmo
lMV+yP+TjNZt9iycDUsxEIrH/umW2vJx9TlIr/rjfioF32/r9+FNGnNwgjvG
oxjt2nb+m4nWHJguhw/bUrG/VPTxrTw+B3rhuwf4sX+T6in9l3hxDvpCtIXT
05lk9oB+m4kv+quAUEsmk2TyXout/DqH75fZFJrDJD1u3n/zvs2Bbpb+UBda
dOTe9qSqOYj6fPfItg9M4tb0uvBO0xwUl1sOlqP3ver5od43BzHXBZ5PYT9a
rWWwMpN3HhQ1JXyZBdgvF5idixGYh+cJGTL26B3bnV7eXzoPix5YU7PRT1eH
KliJzgPfmdPhKtgfG//9dkRWbh6+eCzlUy5kkuGgPX5PNOaBNbcrQbgI+2mu
o99va81D1aC7vyb6hNM5Eccj87Aze2uqN/qtkesL3VPz8NlHrOAv2pOZWbDo
8jzM0rXGPmA/n/riE8+0+TzQ/9l0D6I7Rat1eq3m4eVruxVS2P8f4BhqLXKc
h6SAw8pe6MXVclPuvvMQFqJ3U+kL7t8BJWJ5dx4clh9zuIC2e7//tkHQPMS9
K4gNQtdHm6xQCpuHjUdPfulER1wL3zr8ch48nv6b9i5h4n3x1fUfCfNwYAm9
Ow5NOfsuvzxpHiIMni/6hr64r147IXMeaK+jlq/4yiSbVyw1NymeB8q7q4vC
0ctScl6//DoPt6uZd/PQ0wcvD/V+mwff4bq1HegStzx76/p5uPiMHidVyiQp
IubZ6c3zINb9OBjQYakrpsd/zMPBBN1QQ/TFbktPt9/zwKW35U8YWstDtDC/
H/dPQlA1Hb1NtIiba3ge7Da+jytHUw6L373zbx7EadTyeXRExtfQMD42HFx5
cr9+GZP4aDs0NAmy4SX/fRNLtOVvKbE1wmz40FD82BOtIn49MkaMDTfyPx+J
QUtnru3skWBDgqZ5ZQaa98j3dfJr2RAXnHXlE7r+xoZXqZvYcNOJq6cdnbu6
emCUwYb4vK6SAfSLLHeG0nY26AluLvqH9j+60c5lJxtESioaFuahdn9q3+Sq
ssHfIJ9rMfq0j9ckZQ8b7JVY/5+HEonNKvv2s+FT49kXC/NQ2bcNbrcPsSEm
f1x0YR66WPdmfqk2G3zt37xcmIeO99M5F+uyYfPt+5oL89DWW837jp1kQ1KQ
L8/CPPSTpO/tUAP8fhuDWnehX73bWtpwjg1+czFfF+ah94+3CYhfYAPtbVHF
wjz0+l+/I+cusyFVcLB/Yd5pdHt7yH8WbEh+LyG9MA89IN1R223NhrAbJ60W
Pt+S479Szp4NdsywmoV56HI9JQOL62zID2s/ujAPnRnsDE92Y8Ple4o9C/PQ
Tr+g9hEvNnycefZAEf1VRkVG8RYbAopWnmaiUz/8unj9Dht+NyXvkEc/Onk/
LieQDUcUzDavRXsMq/6Zv8+GB9+1VMTRpnd7N6uHsaHijcl5YfThdaHWt56y
4fRw1nNetEIepJc8Z0Nh2PHxOdwPMf3+sUUx+Pc/7bvIQnOwwpSOxLFh/dNH
/b8W5uH+6i4hiWz4ttfAvxGdlf+ELfqGDfQWy+U56IjT+9XPvmXDXvgx92oh
vkaHfSI/4Ppf4KQ8RevKHuTfUMwGDek0HYeFefnH0cNXvmI8XjZ9ZoyWOhN5
7/U3NgQWSXJoo4eCJpYr1GN8mlBFpdEDwxKFW5rZIPTGzHAR+o+uhrXcDzbk
fmlpGsP47hZ5/HVNDxtSxLWuFy/MP58re/BOsGFw+5D2wvlppJhs4ppmQ0iP
hc4edJ3J3ca5OTawjhb4rkObPbj6ZIqTQto5L0T24vk0OZU3OshPIcd5f1y7
jDb209UcEKAQlT3GO/ajz7/riepbTCH+SZlbZdCG4kt0uoUpZKOPYU0T5gf9
dqP4JjEKqWDFfAa09mUOwyJ5Con3vnSvB/PV4ccPMz5uppCtln3D2WjNrxv5
8+kUws9XFOiHPrhJN/vdNgoxT1N1kUWrD0ULpahQCOW/gLVnMR/udNr3+Ykm
hTBdE7qjPjGJUnzj6keHKaSTQ2vZJfSOJstroToUwtII9JJHK+x6KHVPl0JC
YjpWpmG+prN/ufgYUMg+vYskE/P52tu3GdbmFOJlZZj6JB/PY/12DxNLCuFa
waN9YuH/y9Z3lutZUciLtvcKi9HnilTNVe0o5MTmwx2eeVgfOFgv+FwoJKX9
bq4B1hdht7NiL+5QiP4avc+D75mE03YrtSmeQkYqOmRCsJ4dK/hxvPwVhVxf
3xu0Ax21JCA6/zWFbA54rNP8hkl2J/dAbCqFKK45USqJdul/5nLtLYVo8k1+
iMb6yDKlDQuWUMgoD63dD+trp0FLs/pvCjlQ2JfdiPVYQO1U3Pk+Cnl8ZSjr
HFpRsuaaRz+F0BUsprrimMSvq1Tg/RA+r7hfcyCWSRiW73dv/Uch6VOHGWNY
393cn0RL8nGQmWdiLj/xfrAi6pT5rDwHUagS2rDjMe7Pr5qpTCsO0sm1ruyP
D5O4bwpyTbHhIJkHnl45hk63PTgXb8dBNLqX387G+434/AdKuCMHUcmw3nPj
Bt4/RGJ5bnhwEE4X9SIhLyYJPXh9hU4QBxHcvsFvFd6XOhJXb+1J4iDTIpFH
Km0w/9iZmon85SCBkeA9b8AkOlnPNEUcOcmHwbX9l2XxebPmblwTnESmxkmY
9DHIfw3eb6yucZGOZ8VtnLcZZNpM7bzzDBfhtnCeLVvHIJo58sRhjosI2b9z
cFzLIM8ERaVs2VzEqvHfF2kZBlFNZ7WbcXGToYy0WRdJBvGYiTPSX8RNljh5
lSmJMQhXkLCRkjg3UfxsKtm6hEEEMn4bjqtwk50Jm643zmD/Rq1TG1HlJj8a
W+5ETWO/d6pwzd/d3CTH5134lSnsd2bD27rVuYmAUFHp/ASdBO/XNazV5CZ+
htpXFFnYvzV+OJthwE2snj7Jqu2lkzVz98/YunCTlTdKgrrqsd/t1H73yI2b
yMV8asiqoxP7L3wr8zy4Cc9LM2f/Wjopve9dzX+Tm4heFCnfWY39yQbbQy/8
ucnhtGu1Md+w/z1yVKkhnJu8cn/06AP2DzeiFy9Ty+cm+lUGxRxv8H1vl9pc
+MhNXmemRnNm0EmjpW/FnU/cJICrlELFfoSuNH+n/gs3kb3QtHdxKp20lP2l
2FRyk/Ili6gKr+lk+3j5YPRPbrKdd9j8M/Y/PRr+pbzcVGIldlBq9SM6MdE6
L7WeRsXzMNmli/1Tm46i4x5eKpkm11X8H9JJrV67tIsAlVStuhBDCcV+7oKC
c/9yKkneXuQ2j/1XhGeLbMV6KlnnSeHRwP5N9Gaq+x9ZKil9JHb2EfZ3ob63
amjyVOL6RORY3x06uRvI8AQ6lVR3vVsT4kcn15/drE/dQSWdWVYnJ7E/PJG9
6dYDDSopuRP+ayn2k5XvKS0ph6hkaGXmPVfsP7Xy6pjlWlTimTnS/dsT+9li
z1buo1Qiuubyg2IPOmHW1Cg46lPJp62lQg/d6ERgyLVT/wqVeO28I3YL+10/
1tGdDhZUckW9K58fzTWxPuj+VSqRGPuyKgT75enZ78qltlSy69fBvy8d6aSX
f939XS5UkuZxQboT++tPG8pBwp9KEiPvbkzCflwzqF1TJJBKjG9sjTmBrhxn
6S2+RyUHtuyMnLOhkx9FqyznQ6gk++0byRPofyaXH/94SiUDLzS0lmH/71Hq
ElMfTiV8XLUdn63ohLotKLniOZXIFCrPuKKFOTKL8qKpRG1vev6fq3SyOZJz
5PkrKonq/BPUbEkn6TSR2bDXVGK2oUP3KVrZaiPPvWQq4WSURpxBH1A7usYz
nUp8N1l97bSgk28vLsg5vcH1V454FY8+IeCkYJ1FJep7EpfZoI1bIg4ZvaeS
7VK7PbjQveppJ059oJJGhc1eC/NJq1dFRkfycP3flvFHoN2c+x2gkEqWbP/5
XhUdtlI5WrKUSn44G/sHXaGT1Z6Hk1aWU8khzp8Nl9AxPUZvl1RQyV0f62SC
Ts30rWBXUcnqPq3pf2Z0orTmadNkDZVcO9Ru3YDO80nqHqrD/YoUsMlGlx2v
nW5vwvV+n7LUDa2b85va2EIlc3xGaefRjTIzSyvbqGTHRfG2A2iju4tXl7RT
iUnV3AP6wjxyRFq24CfGW/Oa+pVoy9OK2952UQmv//0YTvRowUG11F9UQr16
dXbwMp24yJ09GP+bSmoCijpa0ZRg6+NRfRjvTvFHy9G+kzfOPe6nkiPKGw/n
ogWNwq4E/8X1NNarSUGHfk6w9xvC7zOn3BODFqPnenqNUEl9eKfPE/R/Dyvv
Xh+lkm86p1OCF+aDc10PbcZx/2NiTe+gky9ORplNUsl8QlXcTbRiOf/r81NU
8nO03cET/UFBIlt/hkqe36/77oZWf7a18OgclZxcnpm5MJ/8yrn/20E2lTgG
esoufH7UXL+RcNBIVtD29R7o+iqLrp1cNCImX53sjTZU9hxkUmlkeOREke/C
PDMqZEqOh0Za/2WbBqLNeWO5pflopLpqLOQhuozTL3DvIhrZtGiIEYXePHdF
5JIgjdQ/3/X89cL8clIr0m8JjRSalLe9Rw+NbJFLFKKRbLH7g6UL7zOwJO3b
MhqxuO5UubC+6T0jysMraCRM3OLmMHrZz5pCYVEa4QnR46Hh/ti3ZGopiuHz
TkmcXYOuq3tUe2o1jaxseOW9MI/eUels6CJBI0VmP5yOLcy3i9Ss82VohPN7
bl0A+nS+5L+f62jEaH69WhL6/TsOb25ZGpkaT7L/jnZPLg45tIlGhJU9j6/C
+PwRHyduuYVGYvXtpxfilcTceRHEoBHuvg4bczTnY+2sGgX8vseMywrRF0IY
MKFIw3y+NGUEXRQgVCK6k0YcP141lsHz4etd12SoSiMdQbpb76B/u2abeO2m
kSOsizr56IOOT/qjCY38lN6lPIleZGE493sfjdjNbHWyxPMYfOKXlJ02jYio
VAZY4vke0fmSEHqERnqoYUvT0LqHErZlH6MRpl2v0SR6xe6r+2b1aCQpcdjo
DuaPp7Ljl33P0cjvHM3WQswvM9INw/Hn8flTkLEC89HZ1e+cy0xo5PRnnuPm
aEkhd/+ll2lk0XH/flHMXy+muVOeWtPIjOVJB3/Md9TxHqVcWxpxedJ5ewB9
aaikoP0ajTxeTz1/xI5ONnYHVK+7TiP76g4aiV3DeP62fCLZi0YUeacDijGf
ZketU/t0n0YkXHuVbDAfr2Pvc/34gEb80wMEfqGDDU3f5T+kEa3ICNMzznRi
Jhar+OEJjTSObIk57ILnKVSWnvkfjRjmVOzeg/ne7ba8ZFwaro/M6Tt2WC96
f2kavsygkaEyM3M2Wm+fxbOYTBqZ5W76Eoj1hc7xemXUOxrpW/1iPPkGnbS7
bFn65CON6B0UEuTCeqRuxeTwr6IR+Q+tcSNYv5LLj8KdGhop93bmC8P6Jr7J
1v12HY1484+07cL6N/Y7bepmE424MVpb/QPo5KWxAsvtJ40E0fZLqd2jE169
HV1WI3i+3IvXd2M9rdilWqwrxEPUVVPXwX9YH986zBxYxkNU7KdMBaLpREMx
ZeuuFTyk3vDgeDO6gC7zfO0qHvLi0s9pV6znGdK8TmNSPES2RDrgWxydPOap
lQtj8hCzHT+WJSdjPNZYBDQd4SFlH/I7zuXSidTRl4XfjvGQ4YxV2ify6KS1
/Me/j8d5yANO1wHNfDo5+fmY6atTPGS6/0XBro8Yj++Udrsa8ZAgiXsvNhXj
ekVyDa+25iFLhGp99+L95Z/5s+Png3jI+pqWlsM/6OSeSwyPZzAPcXisUubR
Ticb7ibmRITwkO7lefNpHbj+CTlrW8J4yAXGt82ru/C8/24Z1YvkITaVLA/2
b8zHF1eHaqXykFAhzs8UvH91GEbU7qjmIVxLTvztojFIydFIPUERXsJjr9HV
qMAgJsqqcXGhvOS10PBUQjCDXPn7bbw1jJfsuiCtdDaEQWz+M9on/ISXVMDM
1OJQBvHku/nTLYKXCEwY8To+YpDwpq/iurG8xPNYhaDmcwapdz4VPJvNS+jr
z/TyvMb76Xs752MtvGRxxPON5V8Y5JgVd4lvGy/5HUMW+39lEH2ZMJEP7bzk
T9R+Rc0yBrl8913Ghm5ewswf3fO1gkGwtxmcGeAl37/QxUrrGCRvOtAkdp6X
tCa/+V3bxSDFyZJpLRQ+0rTajBX2i0HKTdLYS7n4yOr32mtO/2aQltLacFce
PsKrsrqs7Q+D/Hsq3nB0KR/Z25Wt2TvCIGydpPW+wnzkiM+QWOIog9C4wD5n
OR9JjGBMXx1nkOUWJkIbVvERw7BtbaP/GERccszojDgfCWEntGZNM/Cefis5
eA0fWTId0uk8yyDyt1fOFUvyke60LwOq8wyydVeC1ow0H+nSlplisxnkf5va
SLs=
"]]}}, {{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJxTTMoPSmViYGAwAWIQzbyf69xj00I7BjAwcAjKkbw1Y9J8exh/4qeYzdMm
rYfzrY96cTkVH4DzC6r8EjcXnIDzc3ek9jEpX4Dzr7zw5FyedAXO79L/xrAt
8gacX6h9YuqBpXfg/F/J2evu5j2A85P2hgVMSHsE5yd/vHLgQMcTOL/HYHv+
srZncD7Tge3mLVUv4HxBLe9z92e8gvM95jst/jDpDZwv/v6MW/32d3D+rOO7
GJkzP8D5NrKO/xVSPsL52g8EntSWfILz164Qytha9BnOr7kXe1m77QvCfzYW
3vOmfEX4b75L0usJ3+D8CwWzEsoXfYfzLd2V/t1d+APOP+lqucJhzk84f+nG
mZaPVv+C80WVdbLiVv6G8y8xcjRJ7vkD52/lKF524eRfOF9HVCAr6eg/OP99
3zcR42v/4Xzl9nb9/CwGBxj/UdTtW07PEXyPp5d/bs1jhPMrilIzxN4i+H7b
ZnuJlTHB+e/+ZNUwf0PwF15v3JJXzAzn/8qwTaj8jeDL/p0YXVjFAuc/c+8+
xcHCCucfVjtjL9eN4GdxLGNR5GSD87cvULE9PBHBP2dtczRIkB3O/5E1Ozih
D8E/ETA/lFeMA85PsrRZvnwKgu+1q6gy8DaCb2i90vu3IiecDwA5r9sq
"]]}}, {{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwV13k4VF0YAPCZO5a5Q4YZa0pRKEtSikrOm6SolBQqW6ikDRWRKJWEfFIJ
2QvtskSklOyVlC1r1jEzyp4ty3f6y/N77szxOvfdKDqe3nOYoFAo6VQK5d9P
WiGjqmuNu8HCzFYhCkUclHnvNijc3oU8FAylb1PFYeqllnNjhD0qdTdSVqGJ
Q4+ky0ROxGkU6xYDO4TEocn4alFKhD9S2/ftUJSoONTZR6jGRfyHQqujJrTk
xGHPCbmmqIgExJ7cULF/lTjcGrbJioxIR8e7akICnMVhQ4kpw/DMe2T1SSo4
66s4uPmYHcpyK0e7/WsKfVZKwMnXh8OIJdWoQvOkf3GwBNRyTcg0x1qk/KaO
PdMjAcFaY5Sc/T+QrsZ9h9OrWeCuXn73fUoLUjhtcvv2RRZ0H+6+lJjTgt6m
p6Ql+rHAMpFy4lJZC/rd7sp47s+C9VLrDIHXgna/E8z/eJkFxNzj/kKNVjTd
Yp/HvcaCiO8hWwuzWtHpGpsJ8TAWZHrvmnz7oQ0tcbji/yOOBVNOx1+0nmpH
fxsmYnTesMBBYuR8gWc7OnQ9T0uggAUl73w23/drRyl75svXYIfLBf+wDmtH
Lkqjo6fesUD16yOi9nk7usaPSo//wIK96zmWlb/a0Rf/l1JtZSx4IX5oLse1
AykrcvY117BA8h234q5HBzKV+eRwt5YF3sfd7pz16UAdbnYFZnUsMCr1X74q
uANls1udC+tZ0Hwh3uL54w60tcLGM6qRBfTe5rQH3A6kelT43PKfLHB8a7k7
/Egn2tHSnlPCY8GqHFmW3OlO9NJcaqcXH99HelNNklcnEn/OF1vWx4LkRDur
rKBOdE49XfL6LxZ0XjliV/+kE4UuWLFkwwA+z9TzxIKBThSbvknxwih2w92g
R15dSFN5tfX+WXx+tZWp9qUu9JXzUnAQm6iQE80P6kKfw6Z/XJvD5+fH/fcp
ugtt2GUx+ILChs64lMj+N13oyH7n1jGCDY7Orx7qULrR/u3Mm7bCbHAaqn3/
PqgbCdXraF1jssHBJ9zqdXg3Km8MU5zAtqHt6E+P6kY+SoHmruJssJT6KJ/w
qBvd8mg+tkOCDdvWZXheLO9GPDVJb2E2G1Zcvqmxnt6Ddl35M2ktzQY1hslH
bfEeNDe1Na8QW/W2wIHlsj1ok8ONbGUZNixOuXBddlkPaps9YzeAza441jm2
tQd5Xl550VuODRPixlFZ13uQpLbKN5cFbBiNpmo9/a8HyeWMb/6IPaT0tiT5
Xg96fXL90IKFbODr6IzcSutBr7Lzp75gt1ormbmV9aDi+UZlKovYUJQ4S9MU
5iAxVWGdLEU2vFueH7OUyUFLB/ibqUpseJN5TnuBDAfxl4+EmmFnF/+yE1Hl
oOnLSys52GncpjyeMQe17J7tn7eUDaErc0+nBnKQgeqX72tV2FC5qoFzLoyD
piLGl3hh09eM226J5KD1d/9k52BfXae7ozuFgwxHtSJXq7LhgmHuMqUS/Hwz
de/SZWx4bdSQMPSZg9xN1JLtsMeMx6U/1HJQ55tMrShsj+26gg7dHNSu+5RO
LmeD697cjjhaLzJsLHnZgf3IssH6pEgvouw8OyGlxgaO9fhXfXYv2ukr52+C
fchW912zUi8qVJAxeYFtfSQ3Rs6wF+2Zjqg6pc6GredzLe5e6kVlV97f/aSB
4/VpqHQO6kWedL+yEewi3/FNOuG9KOjEFV15TTYYXNZdWZPQixqOwfej2GuD
c0UlCnuR2tnrQ+PYZ0MbrrSX9iJeX6Dk/BVsyAwbn0qv6kUjikHnNmBr3tbl
mbX1ogMqbkMXsJfG5paEzvQihj6tegTbMb5B30aQi1aJ6XcytdiQmDiepT6P
i2ii+qvUsRek6CZXLuAip5deIfbYB9Ks5GKWctHN1tQ757GjHnuFH9PgoujN
V5vDsdkvcv3o+lz0s3iVUiH27pcNfxo2c5FS44RiHXZY5viJtO1c5CBrZc/H
ZuTqHjQ+yEXHhcsjWCtxvudZfZdy4qIWpW9BytiBb7xMely5KALsC3Sxife5
uld9uKjWarJ5P/aTeazUmQAuKnK/JHcce8/BE5JeIVx0dpDicQF76lFpwOBt
LmIZePYEYz8YWzx0LJaLZgVazkRj7zC6YN/1kIvatVYsTMMevVX3xeY5FyXz
XDqysI00g5/sesdFxWM38iuxf/l0y1aUctHujmNfa7HvlBtcN/zKRdI3lOda
sfWlo/+8aeAiuwP5JhzsHqcRpzXtXPSaqpL+GzssY+f3F1wumjl+RGsUe+1c
GiwbwueVeldOYrftINKTJrlIwc/u0uy/vz/GZqE8wUMKm9jmhDauf25OyB0G
D1nMROoLYtevkZiax+YhRgfXUBjb78pxl+vyPNRygO5Mx1b9VlJPWcpD6XJ/
Ev65WmHxFh8NHsoUTR/79/nzJ3yyRnR4yMlprYsQ9uL8WsWTG3noxs2QURp2
ubBWOGcLD+luSL9PwXbbd2PW3oyHvtgk207j+GQfdJ1otOShP0pH1o9jvx/c
2LzHnocezP7VHsI+ZhBl8vkoD8kkHTbiY7NCh3O3uPFQ09+H7p3Y+Y07VArP
89A7KMhrxHZUTbujd5mHfnY8X1CNzThHpWXe4KHEW74xJdiZRQfd1SN46Jmh
+up87APiOT8fxvDQsOpbzvN/+WEnbqbwAD/PXvMqEfvpU9eCe0/xfcVGxUdg
750sVpPI5qHU77zkK9jTxouigwt4KC1Es+jMv3zorDl38QsPTUfGm5v/ywet
Fd1jdTx0N6LugwF27MWgPW5tPHTIibVTHfu37EYtpwEeehWdlU399353pXK3
SfDRm0n9igc4v9fGUayK5Pgo6aIJKxi7jX+gZIMSH90KDPM8ja0VyExesZqP
NDe3h+tiVxecPyi5j4+eaF+Z9xbX53lGTcVNWz7iclZpx2IvttbUEz7CR9Yt
tm4+2G4jHZJTnnz0KW37Jh1sCbXtVT+j+MgvJWFFHO4PHOEEifJEPto0EdLl
hZ3fM7z35SM+CtGo/GaO7ZwU03zpNR/Z3T90gIb9WpbPVfzBR6wm0YW2uB/d
HNuowWjnI3vNe3Ha2I61t04P9/KRO+ujlSC2SPi6saJxPhoi1L2f4P5mJ3yD
5izTh6o0PN37cP9b3dNivGNRH3JzNX6fh03/uDJYR7UPlQhJmlzHzvT7IS6o
24esGn/QF2MLjqkqpFr2oSe8k4bbcL991l2qx73bh77uDH18Bvfzy0Xzfavj
+lC2rlP8GmzLxFOFr1P6kOx+dtUY7v8UG2njG6/60Opq/TZPbIuawxZqdX0o
dPzkx5PKuB98EDh1QvIXklbNTF+7BPebBMMHgxG/0KaL7aFrFNhwvby6NeD+
L1Rd9/1lA55vpUN2slIPfyFXg68D57G3GF24ue7VL0QaWxS+xvPRkJflFdDw
Cwnm3krTlMf1v1p5h+SC30jGXSTnF563K8uE/+im/Eaa0meS3uP5fnrwrlbl
89/I9q6pgzH2C7mlrjY5v1FIj7jBJ7wPaJ6An5fKfqOyW+OW38XwfJfwrqjg
/UauzvOJelHcvw/y4w6u6EeqgSO2WXQ2yAx8NvbP7UfF14Q2lOH9JOpW4SFe
YT/6uuJ5x2psWZ1MX4vyfhS8d0l2At5nZL3vZao29qMnBkqtZ2dYMJ/mqFA9
1Y82XhjdLPWXBQoy438WGwwgj6+TN1aMsUAFKaYUFQ8gKasB9WK8X8WU5VNp
xwYRqyxWNRDvd4PtL70HTgwiydfC0Z/x/rd1KnWo2Q0/L91nw8Ie1bjdkX1+
EGlEmjXe/8YCs4jjH44EDaILuQ8yUqvwfmW74HJl2iC6rMenxZaz4PjwRUoE
ZxCtVm3wEsL7qP7CTXOLnYdQ4ooU155EFmyzqfVwdBlCD+vfBvYn4H30/lHO
gxNDqLwmo3ssHn9fLuyLyrkhtGS30VFBvP/GSDXf1wgcQimJlWFy0SyYmHdO
T+/REDq6rzRF4RYLsmcfue/6NYS4B5KG4i6xQL1dvPvi2WE0evtw7GVbFjx/
xHJ55TGC5v5G2fRLssC3zbZGPXAUncwmN7DeSoC7vt72+Dt/UOiuNx+m7CRg
KsHIsS98DA0svzqSRpWAarcYB6/kcVRe2RcrHyUO67YqzbYmTSDhQYsc9mpx
qNiy7hHETqLyDy3T/vFMSMmIXtf5dApVJ7OsU8rEQGqJhqvd478onL53QkBA
DL5T6QFyBdMo/DrVpVVvHryin0mtrphBAyZbJWsvioKGlLirY8kssmNppu9r
FYGBsDHJ1fVzKLHY6LvTJhH4NahQpNk0h+Tz7DKMkAjw92w9vaxtDqnx/N+q
bBSBbumoioWcOXRKaNCuX08EmuLX+dHH5pC28qK6kJUi4Gj1bqSfQYFTrZcJ
ymIR2HmUalusRoF1f+cNVs8xYMn161qnXSlQU5F5c+VHBnjU6/g5nqBA8ZLH
b499YMB75c7P+05R4NPdOo2HhQywK9Z31fegwI5v/pULChgQQx1+SPpQQPv4
d7GFrxjA8rWZ//AGBeKiNsgeSGMA4a4t2PiIArnNzwUqQhlg/r7N4vMTCnxQ
v8FRC2FAIjM0ufAZBSxNL0mG3WCAwQsOSn1JAUCmltaBDPDpu+9z5jWO5/Of
C9P+DBg+LDQ4r5wCAZO/Hlw5w4DOA81Nhr0UUMykTPx3kAGiG63SHHgUSFUK
8p/ez4A1i2rO+PVR4B5qu+9qzYCgrkrR/AEK6Eq9vrN9HwO0TuQbaE9QoPvs
3tuLdzHA92J08iKSCt+MdiyV2cwAqUQr12k1KlCy7/it08DxBdSsna9JBZFH
xu6Nagxwcd5F09OiQszxScELyxlQsGxr7JnVVNhvzpP+qMIAx4y1VfwNVCgK
CO84osiAF0VSqxp3UGFKwvXkjDQDtvXUTL46hc9/fL7ThcaAi+phF9LdqPDp
ZnOJOcGATPdtM488qLBdgbJIn8oA+dkCSqwnFZ6Gxa6WmiOhXzpVOMAPx1vl
8fvHFAl3tp2XMgujQnIvryV1mIT2pwu0Oc+p0Cb9w9GuiwSp4frMn+lUWPU5
xsezkwRTvVs6jRlU0I/rZIZ3kJBVLKj3+RUVvL51ZJX9JCGwtd8g8y0VBtue
9m5rIUGD+WGH3xcq5Hulad6uI+G8x2EX6d9UCBqtid5WQULQ9v6j6weocD+E
deRyOQn3lnodtRuiQujU/Kk3ZSTk1AcdSf2D70/ouM/aUhJG1j9zXjtLhYfl
0p3wkYRTtBEHSyYBT7Ye9X36loSLLRccfCQIUKSmtlGwQ18JOMSzCdBvnhSx
LiDh6VFpe44MAWdrkspF3pDA/bTO1nMxAXXrFnwNek2C051L+yO1CYDCfXqN
WSR4nCT3568mwMbC7dB27ADjCOu2NQSMNx61LswkIXHigZXKegIiU26+fJZB
QptN2b4cQwJyIsbmxaWT8HvN7n1NRgQkZxs8WYg9Lda4d9aYAJ2lkVKJL0iQ
/8C3MN5OQMdm4sCT5yRYK4vtqbcgcN7FxdU+JcFlNtJ8ah8BrW6rcpywvRoW
mStYE1Dh3xs/+oSEyBvau4/YEGDfrt0hj13ze6/ZmDP+fGmSxqVHJJjl3DeV
9iSgCRgTCSn4vBHHOanzBJgu800wx76yUi1byofA/8cptQpgv37yeqGUHwH0
D5bybg9JUEqoG2QHEqDx91DK/gck6LfEprCDCHi2yosii20l53yAHUyAbJHZ
cEMyvu/bwx9ZYQR4+V2NscEeu868JxFJQN72jNnzSSSIl9Rvl4giYKI3QMII
W52Ip0jEEHD5VcgbcWwHXw1X8XgCkkrO1b1IJMEnb0RBPJGAUJ/TWy5h3x3L
r2EmE+C85dsOC+xKN5ONzFQCriVPKs4mkND9XHxY7BEBht51A3XYc/yGVLEn
BFT1b96Xjq1z+Ii42AsCPv2c5RzBNkvWLJn3kgBvd1v2FuxjP0e952US4FHl
0bAUO37/lS7RHAI6czpUePH4fiJNo0RfE7BAzTTzC3ZNjcRO0XwCFutdr8vC
7hdvpIoWEKBnmRB+H5tulpgj8o6AhttRXVexlUKOHhd5T8DtmPNVp7E3lq9Y
LFJEwLIXRuY22NaCY7WMYpyfz6gnTLE9DN/eYJTi+OZlK6zHDvW/asAoJ8Cy
y/6YOnZawfYRspKA7U30HQrYRZOsR+RnfN96maUs7Ja1TTZkFY73p10jHXvs
TJIEWU2A2DaJqxRsiQyXUvp3AoyDPpVOxuF67de6QK8l4J7Zf0mj2Mbq41r0
egIGumwlh7AdXN51C/8gwEpdb9EA9oWUa9HCTQSMJikU9WNHdu4wE24hQMhe
Yubf85eLJGnCbQRw2eLVw9iVNs25Qu3494vO3zCO3ROdfEKokwBSc4XBDDal
4ZiiUDd+n2OmjQI4vvmS2vWCHJyvAadExbB1zCeCBbm4nq9GNshi7worRIJ8
AmxN369Xxnb9FDgq8IuAygLumtXYV+lmjwX6CXhvK1phiB2/RcpOYJCAWBPV
UQvsvIAWlsAwro+1a3KP/Ht/066+tDECJIalBW9h77fevnxynACfwGqpR9jF
Wer1/ZMEhMVFvHiPHe36S6tphoBN1rLnx7AFSj+3fJ0joJ/19REb588pxec3
Sqg0cPY7e2gVttGPk10vBWkwFnzS9Sx2+mqz8FRhGoTtyci/hz3/vxUbY0ka
/JYpjijAHtwyEHl9Hg0821Y1MXC+389yM7WTokFMjEpJHrYQ03zcQoYGT5Tq
9/Cw3Vy1H5rI0YCdRHOZj+vJWHF4RmchDXxoj5ddxh4OO5MhokwDf6cC6iFc
n7Z8CzuqKg3mr5mpiMUu36IjMr4Mx+dlIdeEHTc96typQcPzQHDnv/rf5uop
m6dDg4CoCiFX3B+ySixLXqylgZ2zoFAmtoKirsdDPRpMPawP+Ys90jD+6T99
GliGD6vdTvl3/97+R4xoMNPJeFWbSgKZtF/DxpgGwa8HOMvSSDg7va7RfBsN
7kd+j/fDNsmaWrVxBw36i/CKiPvZ6GJfDnsv/n6RQ2/iYxLsfW1uk5Y0eL+n
w5iK+19lgz7MWdFAXTZD3Qk7IWwmmn+QBsb8n1fVcf80nfbb+cEJx1/xzaPq
GQlJDZezT52hQYLGTRXblyRwSlb+DDtHAyHeRrl2bI3sn2S6Fw22cBi1zri/
54RvtB+4QANFHaekM7j/fzaZJN2u0qCLXxOZmk3CxBs3e/e7NFi11bjiUB4J
Bk8WBd+6RwPHYqY6NR/326iq7IxoGjy7dmhPMrbYOQ3GcBx+n6a9gzw8j5as
4GZ7pNLgppyjS9g73J8S7Rlnc2lQbPJAWqMYz+swsTV38nA+rLia34vd6PvW
PvsNDQpMGhenlJDgvF/+1WghDaoySR1lPD+9WQ3258ppEHUs+NT6ShIeXjV7
5dlIw/3gAZFXTcKUy0YH77800DhHEoJ4fpu+UYNzMzSQmZnV5WLfnye72H2O
BvVv0wc+t+P+nzn804UmAEL+h7pi8D7g9zfN3lpEAIz3l9Vt45BAC2PZ68oL
gGWVW9av3ySIZvXa/lkvAIsHb6TsmSXBRrBu45C+AKw8WBh/GO8jz62KFv42
EIDRmUEJHwoDzKZjW7sN8feD9Q6n4X0mfMse21pTATD68i2XLcwAyR8FNlkH
BMDct+TrKnEGLJy5ddDdRwC+e4R+DlqC96POnXn3fAVARl7qXM9SBpwtI2Xe
+QnAZOXjqs14v6q8dfk744oA/Bg6dFsQ71+eKu4mD0ME4G5ri1XcCgZU79qt
2xArAHX57e4L1zMgIFmMvbFQAJ41NY/b7GEAZ2tIJV1AEE4c8F32/jre17Y7
LFYWEgTxZSsPXcT7aKvZGs9NdEHov2yySB/vq7X7fir6iAqC+s/85e/CGFDk
tNq7T1IQvr7uPFZ7lwFx/s2qVcqCcHzzumUmDxmwN1f92u2tgqBDeSq2u4gB
H1U+I4UQQTAXXZn7ihABV3qqgCIpBKmHcwXO3xCB3MSlGz/eEoIVgUtoIlqi
ULVBv2SPhDBI/+eYa9MoChOu9y0cwoThkky3lW/oPCjfnbBvnjQdjpa5fDPb
LwaO6/TT0u7QYc5VMnvlIiYc+/3lT0skHcQ/Jxx8ocQEtyR7I1Y0HaTvxBtr
qDDBn7zS4RtHB3Qtu3OZJhNiGyvk96TSoaDUTUp5AxPqva3Cp3PpEJzp5LnM
igmm+R7e5s10ePfh2jOL/5hgfkqgPLCVDndaTTMaIphgrRQpXfCTDhO+exsO
RjLhaHBelko3HaK7+wKc45hw9QCl/+8vOuy6p7re6ykT3k3ddEydpUNyY5Re
UhkTSl4symimkDCeN1Wt8okJnx0z5sRpJBxo9vJ+VsWE5sra2AvCeC49Pz+W
W8eEiRj5ht3iuI/rXgv42sWEObPnyoEsEhi/My7u62WCEA2dfSOJ617G6VIz
nwmSxx0lVORwnagJR/UOMUF+0aj9QXkSgqH2yck/TFCqufYifCHeG5Y0vR+Z
YILadZmZkkUknOYINnpPM0F7w+PtfxVJKL1vNDw3x4T/AY0cqc8=
"]]}}, {{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJxTTMoPSmViYGAwAWIQzbyf69xj00I7BjAQcAjKkbw1Y9J8exh/4qeYzdMm
rYfzrY96cTkVH4DzC6r8EjcXnIDzc3ek9jEpX4Dzr7zw5FyedAXO79L/xrAt
8gacX6h9YuqBpXfg/F/J2evu5j2A85P2hgVMSHsE5yd/vHLgQMcTOL/HYHv+
srZncD7Tge3mLVUv4HxBLe9z92e8gvM95jst/jDpDZwv/v6MW/32d3D+rOO7
GJkzP8D5NrKO/xVSPsL52g8EntSWfILz164Qytha9BnOr7kXe1m77QvCfzYW
3vOmfEX4b75L0usJ3+D8CwWzEsoXfYfzLd2V/t1d+APOP+lqucJhzk84f+nG
mZaPVv+C80WVdbLiVv6G8y8xcjRJ7vkD52/lKF524eRfOF9HVCAr6eg/OP99
3zcR42v/4Xzl9nb9/CwGBxj/UdTtW07PEXyPp5d/bs1jhPMrilIzxN4i+H7b
ZnuJlTHB+e/+ZNUwf0PwF15v3JJXzAzn/8qwTaj8jeDL/p0YXVjFAuc/c+8+
xcHCCucfVjtjL9eN4GdxLGNR5GSD87cvULE9PBHBP2dtczRIkB3O/5E1Ozih
D8E/ETA/lFeMA85PsrRZvnwKgu+1q6gy8DaCb2i90vu3IiecDwDQCtSq
"]]}}, {{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwt2Hk4lGsfB3BbGjpCUdbKKEkOQsj2e6gk20HSYlcI2R1RlmQvCSGJVCTL
QbaECElI0qFCiSQUaTBmnmfmwXu/7/X+Ndfnmpln7vX7u++RcfWzduPi4ODg
5uTg+N/rc/6+b/sD9A+cbRLg4KDBrh8tOttu/gXki1xFOW4asB4rnx1OdwKd
reamZrw0+C5yDn+S7gfJnrYJ2X/QYMQotv1hehQshVbQVcRp8N4pfXde+g1w
sbsa5qJKA+vz4iPZ6flQk1Qy+PwsDdIW7Wuy0ishW0lnq0c3DXRemvAbBrVC
Otcfrp8eLID/RQuXGv8uWB3Zv0Xn/CL4PHVL4ZLtB4M9FzwtlZdgcOYo3yPX
QTDbbkL9e20JriozOJ6cGoL7H7lNS5rpELC3K7P14WcQ2qajcSV+GVhnvCtG
fcfh185gu6jDDHBttrVMdZ+AVIFhV5cFBpxZGGxtTZwEEfnGUblCJiSr1PsV
xU9BS970nMZBHLha6zVjL85AkpGRotpHHIQVTPvGsn/CvHf8Xi1fAozzDQto
6XNQJhcnc2eBgK2/e42i6uehYiDHgf9vFuS8auTk9qSBhcqkiMdPFuhKG6zt
OLsAQ9c1rpBmbNg7LjQZEbwIsYXqQbllbLCY3tEeEor6vfcFY/IfNvjPq9zz
C1+EwcOS7YoVbKglLe1dYhdhzP+jcuNjNuiKpw0eyliE9BYzt946NphZC7/c
ULsIWTENcn3P2XC+Q7jo9tIiqLPPXjQaYEN58aZzdYFLwFT5hfHibIh9/9yA
+8ISJI6zCjUJNthz+UhaXVoCdqTW3nMsNvDbv+qbi1kCWuBsXifJBnfB8P07
M5egXfa1eBgnCTtCvnPdrF+Cg4MRJ2v5Scg4+DTPn1yCKjlnhxgpEsK/OAzs
jadDn3HD1ig9EuhH9PLcrtIhvuDK5yB9Es5XSXnkp9ChIrm40wNIsIv9xNp0
iw72Gzr5zQ1I0FY4RWU9ooOhmJ+lwGESiL9tArq66aAbNdV+1oyEEAFTQTeB
ZQi3Y/zre5qE+RCF4bvCy5A6ckXW2I4E93G+giHRZciQ9Ly1w54E25ouDbNt
y6CSwvujz4GE/aeMHNWUl0EfJvbJuKD2FRqUc1otw6FKTfNcDxICdLVM72Ys
g66CvdFcEAkcvhlRN7KXQb5gSi0vmISUfFrN5dxlSJz94mT+NwmlXCVSZwqX
YVRpPrAshISJLvH53bXL0P/bMdYxjASb4+zUqoFlkAv2Nr0XSYKGb8uHjk0M
iGgsk01PJKEjX2LDky0MOHBD8rVCEgnW70LgkQQDZLobKtuRfdWVi5OoDODP
slehXSXhESs/zEKVAZXmuhsNr5MglhAtNWTFALmhVPW2NBJY+YdcZ1MZoFvk
8lsxhwR9pl76vkwG2OyT+F2PHG2h2X7hNgMun75BMbxDAmVlD5XnAQPWKSYm
HsslQfS04IRUDQNGpwqavO+SoCIy4mLxngHUa9pT/g9ICPIeSMsYZgDvCcOI
X8hP2nvbRkYZUNHl/6dnAQl6Ac9lPKYY4Oi0bdihkASTvsKvUUwGxB/sttct
IsEt0c+lSpwJS0fZAn0lJBSPnUtjSjOBy8pXTbeUhDkN1zY9KhOqI68ElCAH
freR6VFgQpmyn2Z0GQmXDbW/TugwYfxxzI9d5STkkDwuIo5MeFUuPX7wMQn9
/jnOFx4wQTU5b+pdHQkKqULs4CIm+MyK10s/ISGmMj4zsJQJFV92N59D1pgP
7PGpZkL3xHdPEjnP21T9bDsT/N54HZZ4SoKXO7neaoIJUd86OFQa0XzFBT6w
mGJC5zojeT9k6YczumY/mVDL3BxXjtz/bTDgyCITUv+N/7K7iQRNl/JPelw4
CI05Cm1+RgKPvWOlAhWHheS68y+aSXC8NHhUXg6Hz0/Np5eR63NMJncp4MCT
zMra3YJ+f1hDXEYVh3sf4zITkd/ZCsZsNUTvZwgKGjxH/QuJkxY1wiF8H7HP
Bzk2k12/yQSHXOnxpGxkrcHpOQFrHM7vujM0h3zXqtWWxxUH1o2IhWutJOD+
Gguc7jhMTlGeVSFbp/5zbc0TBwn7iKYPyOveZreyAnA4HCZ2alsb2r9mAQoL
0ej78iMbC5E7vac75uNwONrhf/kF8vZrDk5zSTiIhYzJTSD/2300YzoNB58k
vU3S7SQcOEJdHb2Pg5R8j2sSsnpBT+Krhzjwyj1bvY+stBa4uaoEh/mLTh8b
kKn1L+Rjq3Dwjq7Vn0aW2ny+xqcO5XL4mTck8hY/Ef0TDTj0O7VkC78gYcNu
t2MKbTioLgd+10LmjRH4svklDpbmPe6myBxjdedWunC48qlrpwMyPYs3sr8f
hxSPettI5PnFCkrjIA42ng97riPPWJy4WTCExrtE41Iu8ihvcXHIOA6hXpBe
jzzkaqnmPIlDtnkd/gL53xa8+egMDo77Xt95i9wrcd9YbQ6H0jOXL40gd4Yc
HZCi4SCoP3hrErn13wUHXjoOvbs6ab+QG5VyZn4zcei7djyegVx71TBomI1D
zVz0yVXkyqmfK+1rOHT0m3is60D5Y3gz8R9uAlZeV1ZvQC68q7M5az0BPJGP
tYWR77K+5UVtIGBfutmaKHK2bbK8pyABV5/HcEggp1er11hvJqCt67i+NHLy
xlE93a0E6IS3P92OHO8V17VLkgC+2m4/GeTozj+PCW4nYPa49xkqcjj1wyhO
JcDy2KOb/3VIZOS5CTkCbEsiOP5r/xG5pdcKBPQ4z5fsQPbSeBtRp0SAXApx
Yxvy2fQLlHxVAjKs8qslkR3nt99M1CBg/sOYsBjySZMu6UBtAhqPN5VvRj5W
5F9sp0+AkrBq/EZkCy5xtcOGBCifPHSHgmzs2NasZITaE7c4x4ls2OhpLGZC
wOCq7iUWGj/dLZsGOC0IKNXYabSIrBHY6DBrRUBgabH5D2SVPteZweMEXPzW
kzaGvCu+ZuWRAwEzPLNvu5F3TNglprmg52v/7G5GltDn2XzJjQDOt0kcVcgb
GTbyFj4EPFMpl81EplivVGsGEKBfrCoUj8xV8VBP5m8C6AN2B0KQmW4Ma3o4
Ae7SeQY2yIttd0dHLxPAf7B+hyHynPSRc69iCahWDNNVRh5/fysiJ5mAE5/x
PeuRuw8fKMZyCVhV5B8tR/sh9FWkUtQ9AoIadl29iSx/tKO2uZAAxTJ3q1Dk
eLO/2rTL0fNDnZUA+dAxtxH1FgIcbHyo7Wi/0gdLnYPaCajQ+HXvHnKBLW2q
qhO1N7PgQCQy1+lLS0pvCQi+2tyggdzqnPbHnnECtDfO03NRXvhPfEj3mCSA
2ON5OBh5+1kp8aIZNF/flR+bIEd6PNoli85Np1fLBukoj3R9m/WluVgQVlB7
Sh+5/tIPf+GdLFAgZ22LUB66rygx/5JngVlCgbkf8pao4IgURRZ0io46aiIH
X1lL2rCfBRIbpvo7UL6qJokWrDNiQVtM29Igyt+KLIP3hAcyxU2rpwGtL7EE
O63zLDh1Rms4Flkgp/driD8L/jAdzNBHPp93Yn4plAXz2WH2lSj/FQp91s8n
seDbLYpSfD0JD6tuH5goY0GJ9fgXCqovXmw7haFKFjz12PCmsRatn8PbJPtq
WNBrPbnkjfxs6AHZ0MSCCf6a2dc1JAyslT1Pe82Ci+YWsVeqSeC0aDlsMMuC
/ssMh55KEhx+TljdU2CD9SGX4Q5UH6nqDw2zlNgQKpg67YA8E+GhlqzKBsrC
NmVGMeq/8JxIqDYbpv1CvHYiX9Na/viXCRsSrNrSL6B62xC/3nHNkw1N6lmV
OKrXorKKXo4lbDjBp2nqjup/avo125JyNoCT5vtP6HzAzzVrSK9ig5fdYogl
MsfXEsmrjWzoudDKqXkbrce7u9/UvWZDtsHIfiIL1UMJWRWBeTa8+k2VsU5H
7dkkwWhSRePm4W1pi843v6PDJng1Ubtbg6YqEtB4LQz1WemQMCyencmL7Nx/
69H0QfR5SzeoiSPBLEX01ObjKDd3eLZzxpAgyy/8zOsCygGH9WlBEShfOSlX
xNE8r/JfLysNQHldftvREq2r0JxakZ/+JPCd3quTgPb9HD51Tx4Zq7ag03tR
nfl6n1rgi9aDa6Z7/ygJF+dne697o/F6QTVNWCPhfdVY1wE3tB/i9ESWDVfg
rtiXtrkTJNRRgor6u1eg8ReTt12bhKnw6F8tb1aA3+mx1acD6Py1cEO9/N0K
/BMdPbakhfJw+J/2pOEVSO582EFF/T5UOvXF8McKBOpffnJBDbXf9PTWOsoq
CD1fOLS6lwRaikHi7SOr8NqmPTASnZ8VRYW8XF+uAn1GzMOCzYbfKQwRtQ9r
sEmTccYXzZtsQoKynxcHtsVK8P0GKzZMnP40YjjNgdWIY+aJv1lg/H2AqPPl
xBpke6/jYSwIDXQ7t+UXJ7atvKe0mpMFFk/umGwJ4cL+lIqrsQxGOUt6hXMz
uLAe1bsr0VM4uldF1/oGcWMqQpjxMDo3sM7pOYexuTFW3i2zshImSK+k2QVc
5MGyHJPOLHEzYerItR4Kzzrs+oMT89nGDHgh1wvbrq3DmoyNem4lLYMXpYhH
ho8XM92j8PDjOzrU39up9yKNF4tMDpk+uQ7dE3R0X1oLr8fkMz+HHDFcAtzr
zjHnlPWYZ9PQhamoReiyzD8usIWCBcvnfzxeugCuB3QfPcqgYPtDDG6f/EoD
z19vlj9nUbCPV37nDo7SwP++06FNtynY28YnNyxHaBDFF/M1PI+ChZIPDhoP
0CB3uFvSuoiCFWoHzWm8pMGHsBOpZD0FU6OyIoRLaGDSGBhm9YmCyXOIRjf7
08DKl6crfpSC6ch/ntP0ocFJataWZ2MU7MGqpWU1uud5XG2okZukYMpRtmtF
rjSIPc0xz56jYLM+NutSbWjQwrruWrRKwf6s1v7lrEWDlxXbqz5x8GEP3IXp
I+o06HWtWhPi5sP05L8ybPbR4FPPYO6l9XxY+9PIBWMFGuA5kh8thfgwMw+N
dhUpGqxZlO+K38SH9YycelwqRgNebghuEuHD4v7Mzd0pSgMRb1dhOXE+zMoh
1V9sIw0kt9Od7CT5MOLx65Pp/DSgDsRVpErzYdzvtLA/1tNAIWHrysvtfNjP
UKnd8ej+v0+nxJQtw4dp////gf8AbKln0A==
"]]}}, {{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJxTTMoPSmViYGAwAWIQzbyf69xj00I7BjD4YB+UI3lrxqT59jD+xE8xm6dN
Wg/nWx/14nIqPgDnF1T5JW4uOAHn5+5I7WNSvgDnX3nhybk86Qqc36X/jWFb
5A04v1D7xNQDS+/A+b+Ss9fdzXsA5yftDQuYkPYIzk/+eOXAgY4ncH6Pwfb8
ZW3P4HymA9vNW6pewPmCWt7n7s94Bed7zHda/GHSGzhf/P0Zt/rt7+D8Wcd3
MTJnfoDzbWQd/yukfITztR8IPKkt+QTnr10hlLG16DOcX3Mv9rJ22xeE/2ws
vOdN+Yrw33yXpNcTvsH5FwpmJZQv+g7nW7or/bu78Aecf9LVcoXDnJ9w/tKN
My0frf4F54sq62TFrfwN519i5GiS3PMHzt/KUbzswsm/cL6OqEBW0tF/cP77
vm8ixtf+w/nK7e36+VkMDjD+o6jbt5yeI/geTy//3JrHCOdXFKVmiL1F8P22
zfYSK2OC89/9yaph/obgL7zeuCWvmBnO/5Vhm1D5G8GX/TsxurCKBc5/5t59
ioOFFc4/rHbGXq4bwc/iWMaiyMkG529foGJ7eCKCf87a5miQIDuc/yNrdnBC
H4J/ImB+KK8YB5yfZGmzfPkUBN9rV1Fl4G0E39B6pfdvRU44HwBgPQIF
"]]}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
ImageSize->{523., Automatic},
PlotRange->NCache[{{0, Pi}, {0, 20}}, {{0, 3.141592653589793}, {0, 20}}],
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02], Automatic}]], "Output",
CellChangeTimes->{
3.7216852251008897`*^9, {3.7216855222808895`*^9, 3.7216855318904896`*^9}, {
3.72168579450089*^9, 3.72168583569969*^9}, {3.721685889205289*^9,
3.7216859029326735`*^9}, {3.7216860250595927`*^9,
3.7216860585668893`*^9}, {3.7216861064099426`*^9,
3.7216861343019123`*^9}, {3.721686165969303*^9, 3.7216861941111617`*^9}, {
3.7216862791919255`*^9, 3.7216863249458456`*^9}, {3.721687846724058*^9,
3.721687855382058*^9}, {3.7216880122868586`*^9, 3.7216880285264587`*^9}}]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.7216801361002283`*^9, 3.7216801375510283`*^9}, {
3.721680642538628*^9, 3.721680660821828*^9}, {3.721680761874692*^9,
3.72168077185818*^9}, 3.721680805287266*^9}],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.721680809171467*^9, 3.721680809187066*^9}}]
},
WindowSize->{1264, 889},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
FrontEndVersion->"8.0 for Microsoft Windows (64-bit) (February 23, 2011)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[579, 22, 4092, 115, 252, "Input"],
Cell[4674, 139, 32134, 538, 358, "Output"]
}, Open ]],
Cell[36823, 680, 217, 3, 31, "Input"],
Cell[37043, 685, 92, 1, 31, "Input"]
}
]
*)
(* End of internal cache information *)