mirror of
https://asciireactor.com/otho/phy-520.git
synced 2024-11-23 12:45:07 +00:00
79 lines
2.2 KiB
Plaintext
79 lines
2.2 KiB
Plaintext
|
Problem 1
|
|||
|
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
|
|||
|
a) The wave function ψ(ξ) = ξᵖ exp(-ξ²/2) L(ξ²), should satisfy the boundary condition for either even or odd fuctions of ξ with p=0 or p=1, respectively, for any function L(u).
|
|||
|
|
|||
|
Recall ξ = √(mω/ħ) x.
|
|||
|
|
|||
|
dξ = √(mω/ħ) dx = α dx.
|
|||
|
|
|||
|
ψ(ξ) = ξᵖ exp(-ξ²/2) L(ξ²).
|
|||
|
|
|||
|
ψ'(ξ) = d/dξ (ξᵖ exp(-ξ²/2) L(ξ²))
|
|||
|
= (d/dξ ξᵖ) exp(-ξ²/2) L(ξ²)
|
|||
|
+ ξᵖ (d/dξ exp(-ξ²/2)) L(ξ²)
|
|||
|
+ ξᵖ exp(-ξ²/2) (d/dξ L(ξ²)).
|
|||
|
|
|||
|
For an even state, ψ'(0) = 0 and p=0, so
|
|||
|
|
|||
|
ψ'(ξ) = (d/dξ 1) exp(-ξ²/2) L(ξ²)
|
|||
|
+ 1 d/dξ exp(-ξ²/2) L(ξ²)
|
|||
|
+ 1 exp(-ξ²/2) d/dξ L(ξ²).
|
|||
|
|
|||
|
ψ'(ξ) = - ξ exp(-ξ²/2) L(ξ²)
|
|||
|
+ exp(-ξ²/2) L'(ξ²).
|
|||
|
|
|||
|
ψ'(0) = L'(0).
|
|||
|
|
|||
|
This must be wrong, somehow... in this case the boundary condition only applies if L'(0) = 0.
|
|||
|
|
|||
|
∎
|
|||
|
|
|||
|
For an odd state, ψ(0) = 0 and p=1, so
|
|||
|
|
|||
|
ψ(0) = 0ᵖ * ... = 0. This is trivial.
|
|||
|
|
|||
|
∎
|
|||
|
|
|||
|
|
|||
|
b) Equation 2.72 from Griffiths:
|
|||
|
|
|||
|
dHₙ/dξ = 2nHₙ₋₁(ξ).
|
|||
|
|
|||
|
Substituting the state ψ(ξ), I can obtain the associated Laguerre differential equation
|
|||
|
|
|||
|
uL'' + (p - ½ + 1 - u)L' + kL = 0, with u = ξ².
|
|||
|
|
|||
|
A better and equivalent substitution uses
|
|||
|
ψ(x,t) = A exp(ι(kx - (ħk²/2m)t)).
|
|||
|
|
|||
|
h = ξᵖ L(ξ²).
|
|||
|
|
|||
|
u = ξ².
|
|||
|
|
|||
|
ξᵖ = ξ²
|
|||
|
|
|||
|
h = ξᵖ L(ξ²)
|
|||
|
|
|||
|
ψ(x,t) = A exp( ι(kx - k²/4πm ξᵖ L(ξ²) t) )
|
|||
|
= A exp( ι(kx - k²/4πm ξᵖ L(u) t) ).
|
|||
|
|
|||
|
This... is probably not the "h" you meant.
|
|||
|
|
|||
|
h = ξᵖ L(ξ²).
|
|||
|
|
|||
|
dHₙ/dξ = 2nHₙ₋₁(ξ).
|
|||
|
|
|||
|
h'(ξ) = dh/dξ = pξᵖ⁻¹ L(ξ²) + ξᵖ L'(ξ²).
|
|||
|
|
|||
|
h''(ξ) = pξᵖ⁻¹ L(ξ²) + ξᵖ L'(ξ²) = p(p-1)ξᵖ⁻² L(ξ²) + pξᵖ⁻¹ L'(ξ²) + pξᵖ⁻¹ L'(ξ²) + ξᵖ L''(ξ²).
|
|||
|
|
|||
|
p(p-1)ξᵖ⁻² L(ξ²) + pξᵖ⁻¹ L'(ξ²) + pξᵖ⁻¹ L'(ξ²) + ξᵖ L''(ξ²).
|
|||
|
|
|||
|
Hₙ in Griffiths maps to hₚ in the problem sheet, I'll assume.
|
|||
|
|
|||
|
Hₙ = ξⁿ.
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|