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PHY 520: Group Project - Written Documentation
Steven Wallbrown, Henry Colburn, Bruce He, Otho Ulrich

We present descripticns of our models in three parts. In this document,
the infinite square well and 1/r potential models are presented. The
simple harmonic cscillator iz described in word document, accompanying
thiz submission. In each case;, a model was bullt in mathematica that
parallelszs the developments in "Intreoduction bte Quantum

Mechanics" [Griffiths] and Dr. Chris Crawford's course notes for the
PHY 520 course at UK, 2017.

The states were easy to model without normalization. We found that
normalizing the states was a difficult consideration. We were pleased
Lo see the gualitative behaviour we expected, at least, and look
forward to develcping similar models more fully. The simple harmonic
oscillator is pleotted in 1d and 2d, and the infinite square well and 1/
r potential solutions are plotted in 1d. Mathematica programs are
included in this submissicn.

Modeling the infinite square well potential

The concept behind the simulaticon created is that of the infinite
sguare well potential of a one-dimensional wave. The basics behind the
idea is that a particle tCrapped in an area bordered by infinite
potential must be composed of waves whose nodes correspond Co the
distance from one infinite potential barrier to another. The waves must
be zerc at the boundaries but are not required to have their
derivatives be zero since there is no exponential decay of the wave,
due to the infinite potential. Thus, the classical egquation, sininnx/Sa)
{where a is the well width and n is an integer) works for this
situation where as the full guantum eguation is not neccesary. This
gives rise to the guantization of the snergy levels s0 only discrete
values are allowed. The program in Mathematica is designed so that up
to three different waves can be plotted of different energy levels. The
¥ axis iz the energy levels of the waves and the X axis is the width of
the well. The program demonstrates the relationship between the number
of nodes of a wave {(entered in as nl, ng, and n3) and the energy levels
associated with those wawes. The simulabion also draws attention te the
spreading out of each successive wave from its predecessor in terms of
separation energy, &.9. to go from n=5% to n=6 requires less snergy
input than n=100 to n=101. Within each wave function being plotted
there i3 & heorizontal line that represents the energy level of the wave
that is on top of it. This is for a clearer representation of the
energy level of the wave. The plotting range was also modified within
each function =0 as Lo guarantee tLhe plot would be large enough to fit
up to the highest energy wave. With continued plaving, the relationship
between energy lncreases and node wariation would become apparent to a
usar,

Modeling the 1/r potential - Hydrogen Atom

To model a guantum particle in a radial potential, we addressed the
derivation of the wave function parallel with the develcpment in
Griffiths, pg. 145, and in Dr. Crawfcrd's course notes;, and some
various anline sources.

The potential Vir) = 1/r in szpherical coocrdinates describes the svstem
as having constants of motion in the angular coordinates theta and phi,
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thus conserving angular momentum. Still, it admits an effective
potential that includes a centrifugal factor,

VIeff]l{r) = Vir) + h*/2m 1{1+1)/r*.
The Schrodinger Eguation with thisz potential may be solved using

separation of wariakles. In this development, we focus on the radial
wave functicon. The Schrodinger eguation reads

-h®f2m d®Sde? b+ (-1 + BT/ E2m L(l41)/rf] & = E W,
[-1/z + h¥/2m L(1+1)/c®] v = E ¢ + h¥/2m d*/dc? .
1/-E [-1/r + h*/2m L{1+1}/e*] ¢ = —§ + h*/-2mE d*/de? ¥,
[1/rE + h¥*/=2mE 1(1+1)/x*]1 ¥ + ¢ = h*/=2mE 4°/dr® V.
We can intreduce the variable ¥ = (-ZmE)/h, gilving
[1 + Zm/h¥e 1/kr + L{l+1)/ixc) ®] & = 1/x® d%/de? 4,
Set p = kr, revealing p, = 2m/h?x, which now gives
[1 + podp + L{1+1)/p*] & = d*/dp? W,
Wote that by scaling g, we can translate this problem from the preblem W

{r} = 1/r te that of the hydrogen atom, with its specific radius. This
is planned for later in the development.

Using an asymptotic breakdown, we can find the solution in three parts,

p o~ dE-l"l'jPE r = 1,
with solution ¥ (p) = A expl(-p} + B exp(p).,
and since the second factor is not normalizable,
vip) = A expi{-p).

p -+ D d*fdp® ¢ = 1{141)/p® W, _
with solution ¥ip) = C p"'?* + D p™ %,
but Dp™ * discbheys normalizability, so
dip) =Cp''t.

The complete solution 1s then constructed assuming a power series vipl,
yip) = A expi-p) C p'""' wip),

[2r]

where vipl = L cj pi.
=0

The recursicn relaticnship for the cj coefficlents is given by

(203 + 1 + 1) - py |

EJ-I-'. =

o

(1 + 1){3 + 21 + 2)

where ¢, iz normalized by total probability egual to one,

In general;, this power series dees result in unnormalizable states.

There must be a maximum wvalue of j; then, above which the coefficients
are all zeroc. This jmax is related to the guantum numbers n and 1 by
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qmax = n - 1 + 1.

Looking back at the recursion relationship, it becomes clear that
2{] 4+ 1 4+ 1) = py = 20 = pyy and p, = 2n.

Thiz gives us a relationship between the principle guantum number n and
the energy of a state n, recalling that the angular momentum is
conserved and so the energy value dees net rely on the gquantum numbers
1l ar m.

En = -h?x*/2m.
£ = 2m/hip,.

EI'II - _Emu"lhtpqz - —T'.'I.I"-Erlzil'l.l - El.-"'['lzi n = 1;2;3-1r i
where E, = =m/2h¥.

Aectually, this is not an energy. The szcaling factor bringing this to
solubions of the hydrogen atom would make it an energy. It comes back
to the units of Vir) = 1/r. This of course has units of energy, but
what are the constants that make 1t that way? We'we uszed no constants
here. This should at least be V(r) = E;/r, for some energy.

This reveals the dependence on the principle guantum number of the
previcus guanties,

K = 2m/h*p, = a‘n,

where a = m/h® is the Scrodinger constant factor relating the
action and mazs of thiz system (or if zcaled te the correct units, the
inverse of the Bohr radius of the Hydrogen atom);

p = kr = ar/n.

This 158 where it becomes chvigus the scaling would be good, because
here we would see that the form reveals ¢/ (bohr radius).

The spatial wawve function is defined by three guantum numbers n, 1, and
m, and as previcusly stated, can be solwved by separation of wvarious
such that

Pninir,8,d) = EnrL{r) ¥L"iB,.d),
where we hawve already found the radial function B,

Rnl{r}) = 1/r expi-g) p'** vig).

The model we've developed is nearly capable of handling the associated
LaGuerre polynomials, but they become difficult to plot. So, for now,
we focus on the radial function, only.

Substituting our new informaticn back inte the recurszion relationship
gives us the recursiecn in terms of the gquantum numbers,

[ 23 + 1 +1-mn) |

| o
(3 + 133 + 21 + Z)

Thiz is sufficient information to model the radial component of the
wave function, except for normalizing the coefficient c,. This is done
using the expression of probabllity conservation

Cley ©
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£
I |Rn1|2 r® dr = 1.
o

We want to simulate the hydrogen atom, where Vi(r) = =1/r, but instead V
{r} = -e*/{4ne,) 1/r. This changes some of our parameters, i.e.,

p=kr = rfan and p, = m /(20 £, B*® x),

where a now represents the Bohr Radius,

a = 5.2% = 10°*% nm.
The rest of the development is essentially the same.
In general, the normalization 1s given by

(2/na)? (n-1-1p!) 1/2

2n [(n+ly 1) ?

We will notate this normalization as a. If we also notate the
generalired Laguerre polynomials of x as Lig.pl (%), then ocur model is

a exp(-r/na) (2r/na)! Lin-1-1,21+1]1{2/na) ¥Y1™{8,4).

We hawve not plotted this; but here ¥Y1" refers to the spherical
harmonics; which hawve the form (to within a normalization constant)

Y17 (B, d) = expi{ung) P1™ (cosd),
where PL" (%) are the Legendre Polynomials in x.

This model is implemented in mathematica, and will be presented to the
Physics 520 class on Deg., 8, Z017,



