mirror of
https://asciireactor.com/otho/phy-4660.git
synced 2024-11-22 10:05:06 +00:00
123 lines
15 KiB
TeX
123 lines
15 KiB
TeX
\relax
|
||
\providecommand\hyper@newdestlabel[2]{}
|
||
\abx@aux@sortscheme{nty}
|
||
\abx@aux@refcontext{nty/global/}
|
||
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
|
||
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
|
||
\global\let\oldcontentsline\contentsline
|
||
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
|
||
\global\let\oldnewlabel\newlabel
|
||
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
|
||
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
|
||
\AtEndDocument{\ifx\hyper@anchor\@undefined
|
||
\let\contentsline\oldcontentsline
|
||
\let\newlabel\oldnewlabel
|
||
\fi}
|
||
\fi}
|
||
\global\let\hyper@last\relax
|
||
\gdef\HyperFirstAtBeginDocument#1{#1}
|
||
\providecommand\HyField@AuxAddToFields[1]{}
|
||
\providecommand\HyField@AuxAddToCoFields[2]{}
|
||
\abx@aux@cite{koristafeedback}
|
||
\abx@aux@segm{0}{0}{koristafeedback}
|
||
\abx@aux@cite{2017arXiv170306889H}
|
||
\abx@aux@segm{0}{0}{2017arXiv170306889H}
|
||
\abx@aux@cite{maoz2007astrophysics}
|
||
\abx@aux@segm{0}{0}{maoz2007astrophysics}
|
||
\abx@aux@segm{0}{0}{maoz2007astrophysics}
|
||
\providecommand \oddpage@label [2]{}
|
||
\@writefile{toc}{\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax }
|
||
\@writefile{lof}{\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax }
|
||
\@writefile{lot}{\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax }
|
||
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{1}{section.1}}
|
||
\newlabel{sec:intro}{{1}{1}{Introduction}{section.1}{}}
|
||
\abx@aux@cite{2006ApJ...645.1092Q}
|
||
\abx@aux@segm{0}{0}{2006ApJ...645.1092Q}
|
||
\abx@aux@segm{0}{0}{2006ApJ...645.1092Q}
|
||
\abx@aux@cite{2005Natur.435..629S}
|
||
\abx@aux@segm{0}{0}{2005Natur.435..629S}
|
||
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Centaurus A (NGC 5128), a nearby radio galaxy whose active galactic nucleus ejects a relativistic jet with discernible emission in X-ray and radio wavelengths. This galaxy has a supermassive black hole equivalent to 55 million M$_\odot $. A galaxy collision is suspected to be the cause of increased star formation and nuclear activity. \cite {2006ApJ...645.1092Q}\relax }}{2}{figure.caption.1}}
|
||
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
|
||
\newlabel{fig:CenA}{{1}{2}{Centaurus A (NGC 5128), a nearby radio galaxy whose active galactic nucleus ejects a relativistic jet with discernible emission in X-ray and radio wavelengths. This galaxy has a supermassive black hole equivalent to 55 million \Mo . A galaxy collision is suspected to be the cause of increased star formation and nuclear activity. \cite {2006ApJ...645.1092Q}\relax }{figure.caption.1}{}}
|
||
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {1.1}Cosmology}{2}{subsection.1.1}}
|
||
\newlabel{subsec:cosmo}{{1.1}{2}{Cosmology}{subsection.1.1}{}}
|
||
\abx@aux@segm{0}{0}{2017arXiv170306889H}
|
||
\abx@aux@segm{0}{0}{koristafeedback}
|
||
\abx@aux@cite{2016AN....337..410T}
|
||
\abx@aux@segm{0}{0}{2016AN....337..410T}
|
||
\abx@aux@segm{0}{0}{2017arXiv170306889H}
|
||
\abx@aux@segm{0}{0}{2016AN....337..410T}
|
||
\abx@aux@segm{0}{0}{2017arXiv170306889H}
|
||
\abx@aux@segm{0}{0}{koristafeedback}
|
||
\abx@aux@segm{0}{0}{2017arXiv170306889H}
|
||
\abx@aux@segm{0}{0}{koristafeedback}
|
||
\abx@aux@segm{0}{0}{2016AN....337..410T}
|
||
\abx@aux@cite{2016A&ARv..24...10T}
|
||
\abx@aux@segm{0}{0}{2016A&ARv..24...10T}
|
||
\abx@aux@cite{2006ApJS..163....1H}
|
||
\abx@aux@segm{0}{0}{2006ApJS..163....1H}
|
||
\abx@aux@cite{2016ASSL..418..317B}
|
||
\abx@aux@segm{0}{0}{2016ASSL..418..317B}
|
||
\newlabel{subsec:caution}{{1.1}{3}{A note of Caution}{section*.2}{}}
|
||
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {2}AGN May Regulate Galaxy Evolution}{3}{section.2}}
|
||
\newlabel{sec:galevol}{{2}{3}{AGN May Regulate Galaxy Evolution}{section.2}{}}
|
||
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Above: AGN feedback is necessary to predict stellar mass-halo mass ratios. Stellar formation feedback helps reproduce the proper ratios at low halo masses, but does not sufficiently account for the regulation of stellar formation at high halo masses. \cite {2017arXiv170306889H} Below Left: Star formation rate as a function of redshift z, i.e., age of universe. Bottom Right: Quasar density as a function of the same. Star formation and quasar density both peak about 11 Gyrs ago. \cite {koristafeedback}\relax }}{4}{figure.caption.3}}
|
||
\newlabel{fig:stellarhalo}{{2}{4}{Above: AGN feedback is necessary to predict stellar mass-halo mass ratios. Stellar formation feedback helps reproduce the proper ratios at low halo masses, but does not sufficiently account for the regulation of stellar formation at high halo masses. \cite {2017arXiv170306889H} Below Left: Star formation rate as a function of redshift z, i.e., age of universe. Bottom Right: Quasar density as a function of the same. Star formation and quasar density both peak about 11 Gyrs ago. \cite {koristafeedback}\relax }{figure.caption.3}{}}
|
||
\abx@aux@segm{0}{0}{2016ASSL..418..317B}
|
||
\abx@aux@segm{0}{0}{2016AN....337..410T}
|
||
\abx@aux@segm{0}{0}{2016A&ARv..24...10T}
|
||
\abx@aux@segm{0}{0}{2016ASSL..418..317B}
|
||
\abx@aux@cite{2016IAUS..319...17G}
|
||
\abx@aux@segm{0}{0}{2016IAUS..319...17G}
|
||
\abx@aux@segm{0}{0}{2017arXiv170306889H}
|
||
\abx@aux@segm{0}{0}{2006ApJS..163....1H}
|
||
\abx@aux@segm{0}{0}{2017arXiv170306889H}
|
||
\abx@aux@segm{0}{0}{2006ApJS..163....1H}
|
||
\abx@aux@segm{0}{0}{2005Natur.435..629S}
|
||
\abx@aux@cite{2005MNRAS.361..776S}
|
||
\abx@aux@segm{0}{0}{2005MNRAS.361..776S}
|
||
\abx@aux@cite{2005ApJ...620L..79S}
|
||
\abx@aux@segm{0}{0}{2005ApJ...620L..79S}
|
||
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {3}Modeling AGN Feedback in Galactic Mergers}{5}{section.3}}
|
||
\newlabel{sec:mergers}{{3}{5}{Modeling AGN Feedback in Galactic Mergers}{section.3}{}}
|
||
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Chaotic Cold Accretion}{5}{subsection.3.1}}
|
||
\newlabel{subsec:cca}{{3.1}{5}{Chaotic Cold Accretion}{subsection.3.1}{}}
|
||
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Quasar Activation by a Merger}{5}{subsection.3.2}}
|
||
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Left: Schematic illustrating the fuel supply relationship between galaxy and black hole growth. Gas in the reservoir is replenished during a galaxy merger, from interstellar material, or recycled internal galactic material. AGN fuel must lose sufficient angular momentum to fall deep into the gravitational well. Both processes reduce the availability of fuel by ionizing, heating, shocking, and expelling material, but they can have both positive and negative impacts on fuel availability for the other process. \cite {2017arXiv170306889H} Right: Schematic of the ``cosmic cycle'' that plays out between galaxy formation and evolution regulated by black hole growth in galaxy mergers. Galaxies in the modern universe typically contain dead quasars. Mergers and other sources of inward gas flows trigger black hole growth through accretion, leading to strong luminosities, which lead to AGN feedback and the possible continuation of the cycle at each iteration. \cite {2006ApJS..163....1H} \relax }}{6}{figure.caption.4}}
|
||
\newlabel{fig:cycle}{{3}{6}{Left: Schematic illustrating the fuel supply relationship between galaxy and black hole growth. Gas in the reservoir is replenished during a galaxy merger, from interstellar material, or recycled internal galactic material. AGN fuel must lose sufficient angular momentum to fall deep into the gravitational well. Both processes reduce the availability of fuel by ionizing, heating, shocking, and expelling material, but they can have both positive and negative impacts on fuel availability for the other process. \cite {2017arXiv170306889H} Right: Schematic of the ``cosmic cycle'' that plays out between galaxy formation and evolution regulated by black hole growth in galaxy mergers. Galaxies in the modern universe typically contain dead quasars. Mergers and other sources of inward gas flows trigger black hole growth through accretion, leading to strong luminosities, which lead to AGN feedback and the possible continuation of the cycle at each iteration. \cite {2006ApJS..163....1H} \relax }{figure.caption.4}{}}
|
||
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Time-sequence simulation of a merger resulting in quasar activation. The optical quasar mode can be seen at T=1.03,1.39, and 1.48 Gyr. This behaviour is expected as new gas becomes available as fuel for the SMBH during and after the merger. This process is in turn expected to lead to increased AGN feedback, heating surrounding gases and attenuating star formation rate.\relax }}{7}{figure.caption.5}}
|
||
\newlabel{fig:quasarmerger}{{4}{7}{Time-sequence simulation of a merger resulting in quasar activation. The optical quasar mode can be seen at T=1.03,1.39, and 1.48 Gyr. This behaviour is expected as new gas becomes available as fuel for the SMBH during and after the merger. This process is in turn expected to lead to increased AGN feedback, heating surrounding gases and attenuating star formation rate.\relax }{figure.caption.5}{}}
|
||
\abx@aux@segm{0}{0}{2005ApJ...620L..79S}
|
||
\abx@aux@segm{0}{0}{2005ApJ...620L..79S}
|
||
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Bimodal color evolution for gas-rich mergers with black hole accretion. Symbols on the tracks are spaced 0. 5 Gyr apart, with the last point corresponding to an age of ∼ 5. 5 Gyr after the merger-induced starburst. Triangles show mergers without black holes at the same time, and the solid circles give the observed mean color of the red part of the bimodal color distribution at a given luminosity. \cite {2005ApJ...620L..79S} \relax }}{8}{figure.caption.6}}
|
||
\newlabel{fig:colors}{{5}{8}{Bimodal color evolution for gas-rich mergers with black hole accretion. Symbols on the tracks are spaced 0. 5 Gyr apart, with the last point corresponding to an age of ∼ 5. 5 Gyr after the merger-induced starburst. Triangles show mergers without black holes at the same time, and the solid circles give the observed mean color of the red part of the bimodal color distribution at a given luminosity. \cite {2005ApJ...620L..79S} \relax }{figure.caption.6}{}}
|
||
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Momentum Transfer Techniques}{8}{subsection.3.3}}
|
||
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {4}Toward a better Model}{8}{section.4}}
|
||
\newlabel{sec:bettermodel}{{4}{8}{Toward a better Model}{section.4}{}}
|
||
\abx@aux@cite{2006MNRAS.366..397S}
|
||
\abx@aux@segm{0}{0}{2006MNRAS.366..397S}
|
||
\abx@aux@segm{0}{0}{2006MNRAS.366..397S}
|
||
\abx@aux@segm{0}{0}{2006MNRAS.366..397S}
|
||
\abx@aux@segm{0}{0}{2006MNRAS.366..397S}
|
||
\abx@aux@segm{0}{0}{2006MNRAS.366..397S}
|
||
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Left: Outflow velocity as a function of radial distance from the SMBH. The green dotted line shows the purely momentum-driven effective subresolution model. The red line is the velocity for the unified X-ray UFO plus warm absorber data reported by Tombesi et al. (2013). The shaded regions are UFO generated regions where most of the inflow mass is ejected. At larger radii, UFO entrains more mass, slowing down. This new model agrees more strongly with the UFO observations than the effective subresolution model. Right: Formation redshifts of the stars belonging to a model galaxy. The white histogram has only cooling and star formation, and it can be seen that star formation continues until the end of the simulation, which conflicts with observations. The grey and hatched histograms show how stellar formation times change when ``bubble'' heating is switched on, under two different models of this heating developed by Springel et al. This heating suppresses any central star formation for z $<$ 0.25 completely, and in both cases suppresses the star formation enough to not be discounted as future hypotheses. \cite {2006MNRAS.366..397S} \relax }}{9}{figure.caption.7}}
|
||
\newlabel{fig:modelcompare}{{6}{9}{Left: Outflow velocity as a function of radial distance from the SMBH. The green dotted line shows the purely momentum-driven effective subresolution model. The red line is the velocity for the unified X-ray UFO plus warm absorber data reported by Tombesi et al. (2013). The shaded regions are UFO generated regions where most of the inflow mass is ejected. At larger radii, UFO entrains more mass, slowing down. This new model agrees more strongly with the UFO observations than the effective subresolution model. Right: Formation redshifts of the stars belonging to a model galaxy. The white histogram has only cooling and star formation, and it can be seen that star formation continues until the end of the simulation, which conflicts with observations. The grey and hatched histograms show how stellar formation times change when ``bubble'' heating is switched on, under two different models of this heating developed by Springel et al. This heating suppresses any central star formation for z $<$ 0.25 completely, and in both cases suppresses the star formation enough to not be discounted as future hypotheses. \cite {2006MNRAS.366..397S} \relax }{figure.caption.7}{}}
|
||
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Emission-weighted temperature maps of a galaxy simulation involving AGN heating by non-uniform gases (``bubbles'') after a major merger event, at several red shift epochs. \cite {2006MNRAS.366..397S} \relax }}{10}{figure.caption.8}}
|
||
\newlabel{fig:bubbles}{{7}{10}{Emission-weighted temperature maps of a galaxy simulation involving AGN heating by non-uniform gases (``bubbles'') after a major merger event, at several red shift epochs. \cite {2006MNRAS.366..397S} \relax }{figure.caption.8}{}}
|
||
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {5}Discussion}{11}{section.5}}
|
||
\newlabel{sec:discussion}{{5}{11}{Discussion}{section.5}{}}
|
||
\abx@aux@refcontextdefaultsdone
|
||
\abx@aux@defaultrefcontext{0}{2016ASSL..418..317B}{nty/global/}
|
||
\abx@aux@defaultrefcontext{0}{2016IAUS..319...17G}{nty/global/}
|
||
\abx@aux@defaultrefcontext{0}{2017arXiv170306889H}{nty/global/}
|
||
\abx@aux@defaultrefcontext{0}{2006ApJS..163....1H}{nty/global/}
|
||
\abx@aux@defaultrefcontext{0}{koristafeedback}{nty/global/}
|
||
\abx@aux@defaultrefcontext{0}{maoz2007astrophysics}{nty/global/}
|
||
\abx@aux@defaultrefcontext{0}{2006ApJ...645.1092Q}{nty/global/}
|
||
\abx@aux@defaultrefcontext{0}{2006MNRAS.366..397S}{nty/global/}
|
||
\abx@aux@defaultrefcontext{0}{2005ApJ...620L..79S}{nty/global/}
|
||
\abx@aux@defaultrefcontext{0}{2005MNRAS.361..776S}{nty/global/}
|
||
\abx@aux@defaultrefcontext{0}{2005Natur.435..629S}{nty/global/}
|
||
\abx@aux@defaultrefcontext{0}{2016A&ARv..24...10T}{nty/global/}
|
||
\abx@aux@defaultrefcontext{0}{2016AN....337..410T}{nty/global/}
|