help(seq) seq(0,8191) dim(seq(0,8191) 0 dim(radium) dim(radium[1]) (radium[1,1] (radium[1,0] 0 radium[1,0] radium[1,1] plot(radium[1,1]) mean(radium) mean(radium[1]) summary(radium) sd(radium) radium[1] sd(radium[1]) sd(radium[V1]) sapply(radium,mean) sapply(radium,sd) hist(radium) sapply(radium,hist) x <- seq_along(r) x <- seq_along(radium) x x <- seq_along(radium[V1]) x <- seq_along(radium[1) x <- seq_along(radium[1]) x radiu radium f <- function(par) { m <- par[1] sd <- par[2] k <- par[3] yhat <- k * exp(-0.5 * ((x - m)/sd)^2) sum((r - rhat)^2) } optim(c(15,2,1),f,method="BFGS",control=list(reltol=1e-9)) f <- function(par) { m <- par[1] sd <- par[2] k <- par[3] yhat <- k * exp(-0.5 * ((x - m)/sd)^2) sum((radium - rhat)^2) } optim(c(15,2,1),f,method="BFGS",control=list(reltol=1e-9)) f <- function(par) { m <- par[1] sd <- par[2] k <- par[3] yhat <- k * exp(-0.5 * ((x - m)/sd)^2) sum((radium - yhat)^2) } optim(c(15,2,1),f,method="BFGS",control=list(reltol=1e-9)) help(unlist) help(data) data data() radium row row.names(radium) names(radium) help(row) Radium <- as.numeric(radium[1,]) Radium Radium <- as.numeric(radium[2,]) Radium Radium <- as.numeric(radium[1,]) Radium <- as.numeric(radium[1]) radium[1, radium[1,] radium[1,] radium[1] Radium <- as.numeric(radium[1]) Radium <- as.numeric(radium[1,2]) Radium Radium <- as.numeric(radium[1,1]) Radium radium[1,1] radium[2,1] radium[2,] radium[1,] radium[0,] radium radium["V1"] radium["V1sdf"] radium["V1"] radium[,] radium[,1] radium[,0] radium[,1] radium[,2] radium[,] Radium <- as.numeric(radium[,]) Radium plot(seq(0,8191),Radium) plot(seq_along(Radium),Radium) plot(radium) mean(radium_ mean(radium) sapply(radium,mean) skewness library(fBasics) test=c(5,6,7,8,9) test test[1:3]=0 test radium[,70:180] radium[70:180] radium[1,70:180] radium[,70:180] radium[,] radium[,][70:180] radium[,1:3] radium[,]1:3] radium[,][1:3] radium[,][90:180] radium[,][:180] radium[,][90] radium[,][70] radium[,] plot(radium[,]) radium$V1 plot(radium$v1) plot(radium$V1) library("MASS") fitdistr(radium," fitdistr(radium,"normal") help(fitdistr) fitdistr(Radium,"normal") hist hist(radium) hist(Radium) hist(Radium,prob=TRUE) dput(radium) dput(Radium) plot(Radium) x <- seq_along(radium) y <- radium f f <- function(par) m <- par[1] sd <- par[2] k <- par[3] f = function(par) { m = par[1] sd = par[2] k = par[3] yhat = k * exp(-0.5 * ((x - m)/sd)^2) sum((y - yhat)^2) } optim(c(15,2,1),f,method="BFGS",control=list(reltol=1e-9) optim(c(15,2,1),f,method="BFGS",control=list(reltol=1e-9)) optim(c(12,3,2),f,method="BFGS",control=list(reltol=1e-9)) cal = read.table("AM_calibration_curve") cal summary(cal) help(read.table) cal = read.table("AM_calibration_curve",header=TRUE) cal plot(cal) cal$count plot(cal$count) Cal = cal$count Cal plot(Cal) skewness(Cal) f g = function(par) m = par[1] sd = par[2] g = function(par) m = par[1] g = function(par) { m = par[1] sd = par[2] k = par[3] yhat = k * exp(-0.5 * ((x - m)/sd)^2) sum((y - yhat)^2) } x = Cal x = seq_along(Cal) x y = Cal optim(c(12,3,2),f,method="BFGS",control=list(reltol=1e-9)) tab = data.frame(x,y) plot(tab) (res <- nls( r ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=15,sigma=5,k=1) , data = tab)) tabv tab (res <- nls( r ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=15,sigma=5,k=1) , data = tab)) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=15,sigma=5,k=1) , data = tab)) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=15,sigma=5,k=1) , data = tab)) red res summar(res) summary(res) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=12,sigma=5,k=1) , data = tab)) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=12,sigma=3,k=1) , data = tab)) v <- summary(res)$parameters[,"Estimate"] plot(y~x, data=tab) plot(function(x) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x) ) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=7500,sigma=200,k=1) , data = tab)) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=7500,sigma=20,k=1) , data = tab)) plot(function(x) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x) ) plot(function(x) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x) ) plot(y~x, data=tab) plot(function(x) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x) ) summary(res) v <- summary(res)$parameters[,"Estimate"] plot(r~x, data=tab) plot(y~x, data=tab) plot(function(x) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x) ) plot(function(x) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=5,add=T,xlim=range(tab$x) ) plot(function(x) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=3,add=T,xlim=range(tab$x) ) plot(function(x) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x) ) function(x) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x) function(x) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2) plot(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2)) function(x) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x) plot(function(x) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x) ) plot(function(x) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x) ) help(plot) plot(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),type=l) plot(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),l) help plot help(plot) plot(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),type="l") plot(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,type="l") plot(cal) plot(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,type="l") plot(y~x, data=tab) plot(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,type="l") plot(y~x, data=tab) plot(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,type="l",add=TRUE) plot(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,type="l",add=T) plot(function(x) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x) ) plot(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,type="l",add="T) plot(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,type="l",add=T) plot(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,type="l",add=T,xlim=range(tab$x)) plot(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x)) plot(function(x) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x) ) plot(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x)) plot(function(x) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x) ) help(plot_ help(plot) help(plot) help(plot) plot(function(x) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T) plot(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x)) plot(y~x, data=tab) plot(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x)) plot(y~x, data=tab) plot(function(x) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x)) plot(function(x) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T) plot(y~x, data=tab) plot(function(x) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T) plot(function(x) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T) plot(function(x) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x)) plot(y~x, data=tab) plot(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x)) plot(y~x, data=tab) plot(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x)) plot(y~x, data=tab) plot(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x)) plot(y~x, data=tab) plot(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x)) plot(y~x, data=tab) plot(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x)) plot(y~x, data=tab) help(nls) gumbel library(gumbel) help(gumbel) ??gumbel help(maxit) library(fitdistrplus) library(fitdist) fitdist (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=7500,beta=50,) , data = tab)) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=7500,beta=50) , data = tab)) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=7500,beta=100) , data = tab)) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=7500,beta=1) , data = tab)) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=7000,beta=1) , data = tab)) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=7200,beta=10) , data = tab)) plot(y~x, data=tab) v <- summary(res)$parameters[,"Estimate"] plot(function(x) (1/v[2])*exp((x-v[1])/v[2] - exp((x - v[1])/v[2])) plot(function(x) (1/v[2])*exp((x-v[1])/v[2] - exp((x - v[1])/v[2])),col=2,add=T,xlim=range(tab$x)) function(x) (1/v[2])*exp((x-v[1])/v[2] - exp((x - v[1])/v[2])) (1/v[2])*exp((x-v[1])/v[2] - exp((x - v[1])/v[2])) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=7200,beta=.1) , data = tab)) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=7200,beta=.15) , data = tab)) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=7200,beta=.01) , data = tab)) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=7200,beta=2) , data = tab)) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=6800,beta=2) , data = tab)) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=6900,beta=2) , data = tab)) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=6950,beta=2) , data = tab)) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=7550,beta=2) , data = tab)) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=7550,beta=3) , data = tab)) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=7550,beta=4) , data = tab)) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=7550,beta=14) , data = tab)) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=7350,beta=14) , data = tab)) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=7350,beta=19) , data = tab)) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=7350,beta=10) , data = tab)) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=7250,beta=10) , data = tab)) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=7254,beta=10) , data = tab)) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=7254,beta=15) , data = tab)) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=7254,beta=19) , data = tab)) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=7254,beta=100) , data = tab)) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), start=c(alpha=7254,beta=100) , data = tab)) (res <- nls( y ~ (1/beta)*exp((-x-alpha)/beta - exp((-x - alpha)/beta)), start=c(alpha=7254,beta=100) , data = tab)) library(gumbel) help(fitdistr) help(fitdistr) fitdistr(x,"Gamma") fitdistr(x,"gamma") fitdistr(y,"gamma") fitdistr(y~x,"gamma") x 1 y help(fitdistr) x3 <- rweibull(100, shape = 4, scale = 100) x3 fitdistr(y,"gamma") fitdistr(y,"weibull"") fitdistr(y,"weibull") help(fitdistr) fitdistr(y,"weibull") y fitdistr(y,"gamma") help(nls) help(nls.control) tab man(nls) help(nls) y help(~) help("~") help(formula) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=15,sigma=5,k=1) , data = tab)) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=7200,sigma=5,k=1) , data = tab)) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=7200,sigma=50,k=1) , data = tab)) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=7200,sigma=50,k=1) , y)) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=7200,sigma=50,k=1) , cal)) cal (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=7200,sigma=50,k=1) , cal)) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=7200,sigma=50,k=1) , cal)) help(nls) help(nls.control) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=7200,sigma=50,k=1) , cal, control=minFactor(0.0002)) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=7200,sigma=50,k=1) , cal, control=minFactor(0.0002))) help(nls.control) help(nls.control) nls.control(minFactor=0.0001) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=7200,sigma=50,k=1) , cal)) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=7200,sigma=50,k=1) , cal).control(minFactor=0.0001)) help(nls.control) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=7200,sigma=50,k=1) , cal).control(minFactor=1/2048)) nls.control(minFactor=0.0001) nls.control 1/1024 nls.control(minFactor=0.0001); nls.control(minFactor=0.0001) nls.control(minFactor=0.0001) bls nls.control(minFactor=0.0001) nls nls.control(minFactor=0.0001) nls() nls.control(minFactor=0.0001); nls() (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=7200,sigma=50,k=1) , cal).control(minFactor=1/2048)) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=7200,sigma=50,k=1) , cal)) nls.control(minFactor=0.0001); (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=7200,sigma=50,k=1) , cal)) help(nls.control) nls.control(minFactor=1/2048) nls.control(minFactor=1/4096) nls.control(minFactor=0.0001); (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=7200,sigma=50,k=1) , cal)) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=7200,sigma=50,k=1) , cal)) nls.control(minFactor=1/4096) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=7200,sigma=50,k=1) , cal)) help(nls) help(nls) help(nls) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=7200,sigma=50,k=1) , data = cal)) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), cal, start=c(mu=7200,sigma=50,k=1))) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), cal, start=c(mu=7200,sigma=50,k=1),control=list(minFactor=1/4096))) v <- summary(res)$parameters[,"Estimate"] plot(y~x, data=tab) plot(function(x) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,add=T,xlim=range(tab$x) ) tab (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), data=y,start=c(alpha=7200,beta=10),control=list(minFactor=1/4096))) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), y,start=c(alpha=7200,beta=10),control=list(minFactor=1/4096))) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), cal,start=c(alpha=7200,beta=10),control=list(minFactor=1/4096))) res (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), cal,start=c(alpha=7200,beta=10))) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), cal,start=c(alpha=7200,beta=1))) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), cal,start=c(alpha=7200,beta=1),control=list(minFactor=1/4096))) help(nls.control) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), cal,start=c(alpha=7200,beta=1),control=list(minFactor=1/4096,maxiter=100))) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), cal,start=c(alpha=7200,beta=1),control=list(minFactor=1/4096,maxiter=200))) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), data=y,start=c(alpha=7200,beta=1),control=list(minFactor=1/8192,maxiter=1000))) cal y (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), data=cal,start=c(alpha=7200,beta=1),control=list(minFactor=1/8192,maxiter=1000))) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), data=cal,start=c(alpha=7200,beta=1),control=list(minFactor=1/16384,maxiter=1000))) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), data=cal,start=c(alpha=7200,beta=1),control=list(minFactor=1/50000,maxiter=1000))) (res <- nls( y ~ (1/beta)*exp((x-alpha)/beta - exp((x - alpha)/beta)), data=cal,start=c(alpha=7800,beta=1),control=list(minFactor=1/50000,maxiter=1000))) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=15,sigma=5,k=1) , data = tab)) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=7500,sigma=50,k=1) , data = tab))) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=7500,sigma=50,k=1) , data = tab) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=7500,sigma=50,k=1) , data = tab)) (res <- nls( y ~ k*exp(-1/2*(x-mu)^2/sigma^2), start=c(mu=7800,sigma=50,k=1) , data = tab)) help(write) v[3]*exp(-1/2*(x-v[1])^2/v[2]^2) write(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),file="calibration_gaussian") help(write) write(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),file="calibration_gaussian".ncolumns=1) write(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),file="calibration_gaussian",ncolumns=1) plot(cal) plot(x) plot(y) help(plot) plot(y,xlab="channel") plot(y,xlab="Channel") plot(y,xlab="Channel",ylab="Count") help(plot) help(axis) axis(1,labels=FALSe) axis(1,labels=FALSE) axis(1,labels=FALSE) axis(1,labels=TRUE) axis(2) box() rnorm require(stats) rnorm plot(1:4,rnorm(4),axes=FALSe) plot(1:4,rnorm(4),axes=FALSE) plot(1:4,rnorm(4),axes=FALSE) plot(1:4,rnorm(4),axes=FALSE) plot(1:4,rnorm(4),axes=FALSE) plot(1:4,rnorm(4),axes=FALSE) plot(1:4,rnorm(4),axes=FALSE) plot(y,xlab="Channel",ylab="Count") lines(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2)) lines(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=red) lines(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2) plot(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2) plot(y,xlab="Channel",ylab="Count") plot(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2) plot(y,xlab="Channel",ylab="Count") points(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2) undo undo() cancel() plot(y,xlab="Channel",ylab="Count") help(lines) lines(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2) help(points) lines(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,lwd=2) plot(y,xlab="Channel",ylab="Count",lwd=4) plot(y,xlab="Channel",ylab="Count",lwd=1) plot(y,xlab="Channel",ylab="Count",lwd=.5) lines(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,lwd=2) man(hist) help(hist) hist(x) hist(y) help(hist) help(hist,freq=TRUE) hist(y,freq=TRUE) hist(y) hist(y,freq=TRUE) help(hist,freq=TRUE) help(hist) hist(x~y,freq=TRUE) hist(x~y) x y hist(cal) hist(x) axis help(axis) axis(ylim=c(0,1000)) axis(list(ylim=c(0,1000))) help(axis) hist(x,ylim=c(0,1000)) plot(y,xlab="Channel",ylab="Count",lwd=4,pch="x") plot(y,xlab="Channel",ylab="Count",lwd=4,pch="-") plot(y,xlab="Channel",ylab="Count",lwd=4,pch="─") lines(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,lwd=2) abline(v = 7913.63,col=3) abline(v = 7913.63,col=2) abline(v = 7913.63,col=1) abline(v = 7913.63,col=4) abline(v = 7913.63,col=5) abline(v = 7913.63,col=4,lwd=2) abline(v = 7813.63,col=4,lwd=2) plot(y,xlab="Channel",ylab="Count",lwd=4,pch="─") lines(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,lwd=2) plot(y,xlab="Channel",ylab="Count",lwd=4,pch="─") lines(v[3]*exp(-1/2*(x-v[1])^2/v[2]^2),col=2,lwd=2) abline(v = 7813.63,col=4,lwd=2) dev.print(pdf,'calibration.pdf') q()