{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "import sys\n", "import getopt\n", "sys.path.insert(1,\"/usr/local/science/clag/\")\n", "import clag\n", "%pylab inline\n", "\n", "ref_file=\"lc/1367A.lc\"\n", "echo_file=\"lc/3465A.lc\"\n", "\n", "dt=0.01\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "fqL = np.logspace(np.log10(0.0049999999),np.log10(0.62032418),9)\n", "fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227,\n", " 0.10747115, 0.16658029, 0.25819945, 0.40020915,\n", " 0.62032418])\n", "nfq = len(fqL) - 1\n", "fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.)\n", "\n", "\n", "## load the first light curve\n", "ref_time, ref_strength, ref_strength_err = np.loadtxt(ref_file,\n", " skiprows=1).T" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "## initialize the psd class for multiple light curves ##\n", "P1 = clag.clag('psd10r',\n", " [ref_time], [ref_strength], [ref_strength_err],\n", " dt, fqL)\n", "ref_psd = np.ones(nfq)\n", "ref_psd, ref_psd_err = clag.optimize(P1, ref_psd)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "ref_psd, ref_psd_err = clag.errors(P1, ref_psd, ref_psd_err)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "xscale('log'); ylim(-4,2)\n", "errorbar(fqd, ref_psd, yerr=ref_psd_err, fmt='o', ms=10)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Load second light curve\n", "echo_time, echo_strength, echo_strength_err = np.loadtxt(echo_file,skiprows=1).T\n", "P2 = clag.clag('psd10r', [echo_time], [echo_strength], [echo_strength_err], dt, fqL)\n", "echo_psd = np.ones(nfq)\n", "echo_psd, echo_psd_err = clag.optimize(P2, echo_psd)\n", "echo_psd, echo_psd_err = clag.errors(P2, echo_psd, echo_psd_err)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "xscale('log'); ylim(-4,2)\n", "errorbar(fqd, echo_psd, yerr=echo_psd_err, fmt='o', ms=10)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "Cx = clag.clag('cxd10r',\n", "\t\t\t\t[[ref_time,echo_time]], \n", " \t[[ref_strength,echo_strength]],\n", " \t[[ref_strength_err,echo_strength_err]], \n", " dt, fqL, ref_psd, echo_psd)\n", "\n", "Cx_vals = np.concatenate( (ref_psd*0.7+echo_psd*0.4-0.3,ref_psd*0+0.1) )" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "Cx_vals, Cx_err = clag.optimize(Cx, Cx_vals)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "xscale('log'); ylim(-4,2)\n", "# errorbar(fqd, Cx_vals, yerr=Cx_err, fmt='o', ms=10)\n", "Cx_vals" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "Cx_vals, Cx_err = clag.errors(Cx,Cx_vals,Cx_err)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 2 }