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ABSTRACT
We show that the rms–flux relation recently discovered in the X-ray light curves of active
galactic nuclei (AGN) and X-ray binaries (XRBs) implies that the light curves have a formally
non-linear, exponential form, provided the rms–flux relation applies to variations on all time-
scales (as it appears to). This phenomenological model implies that stationary data will have
a lognormal flux distribution. We confirm this result using an observation of Cyg X-1, and
further demonstrate that our model predicts the existence of the powerful millisecond flares
observed in Cyg X-1 in the low/hard state, and explains the general shape and amplitude of the
bicoherence spectrum in that source. Our model predicts that the most variable light curves will
show the most extreme non-linearity. This result can naturally explain the apparent non-linear
variability observed in some highly variable narrow line Seyfert 1 (NLS1) galaxies, as well as
the low states observed on long time-scales in the NLS1 NGC 4051, as being nothing more
than extreme manifestations of the same variability process that is observed in XRBs and less
variable AGN. That variability process must be multiplicative (with variations coupled together
on all time-scales) and cannot be additive (such as shot-noise), or related to self-organized
criticality, or result from completely independent variations in many separate emitting regions.
Successful models for variability must reproduce the observed rms–flux relation and non-linear
behaviour, which are more fundamental characteristics of the variability process than the power
spectrum or spectral-timing properties. Models where X-ray variability is driven by accretion
rate variations produced at different radii remain the most promising.

Key words: methods: data analysis – methods: statistical – galaxies: active – X-rays: binaries
– X-rays: galaxies – X-rays: individual: Cygnus X-1.

1 I N T RO D U C T I O N

The X-ray light curves of active galactic nuclei (AGN) and X-ray bi-
nary systems (XRBs) are often dominated by strong flickering type
variability, which is aperiodic (noise-like), e.g. McHardy (1988),
van der Klis (1995) and Vaughan et al. (2003b). The remarkable
similarities between various aspects of AGN and black hole XRB
(BHXRB) variability suggest that the same physical mechanism un-
derlies the variability in both cases (Uttley, McHardy & Papadakis
2002; Markowitz et al. 2003; Vaughan, Fabian & Nandra 2003a;
McHardy et al. 2004). Furthermore, similarities between variabil-
ity properties in neutron star and black hole XRBs (Wijnands &
van der Klis 1999; Uttley & McHardy 2001; Belloni, Psaltis & van
der Klis 2002), which show different X-ray spectra (e.g. Done &
Gierlinski 2003) and presumably different X-ray emission mech-
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anisms, suggest that the same underlying variability process is at
work, regardless of the nature of the X-ray emission process.

The flickering nature of AGN and XRB light curves makes any
physical interpretation of the variability difficult, but despite this
problem a variety of models have been suggested to explain the
variability (e.g. Terrell 1972; Mineshige, Ouchi & Nishimori 1994;
Poutanen & Fabian 1999). Principally, such models try to explain
the shape of the power-spectral density function (PSD), which as
a first approximation can be treated as a broken or more gently
bending power law (Belloni & Hasinger 1990; Nowak et al. 1999;
McHardy et al. 2004).1 For example, additive shot-noise models,
where the light curve is produced by a sum of flares or ‘shots’,
seek to explain the breaks in the PSD in terms of the maximum and
minimum decay time-scales in a distribution of shot-widths (Lehto

1 Although recently it has been shown that the low/hard state PSDs of XRBs
are better represented as a sum of broad Lorentzians (Nowak 2000; Belloni
et al. 2002; Pottschmidt et al. 2003).
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1989; Lochner, Swank & Szymkowiak 1989). In these models, the
observed overall PSD shapes are understood in terms of an assumed
distribution of the shot-widths; however, in principle a shot-width
distribution exists to fit any noise process PSD, regardless of whether
the shot interpretation is physically meaningful, so the models do
not have much predictive or explanatory power (Doi 1978). Models
where variability is associated with self-organized criticality (SOC)
in the accretion flow (Mineshige et al. 1994) solve this problem
by predicting a specific power-law PSD as a natural outcome of the
SOC process (Bak, Tang & Wiesenfeld 1988; Christensen, Fogedby
& Jensen 1991), but these models also require some modification
in order to produce the observed PSD slopes (Takeuchi, Mineshige
& Negoro 1995).

An important lesson of the work on shot-noise and SOC models
is that although the PSD is a very useful tool for quantifying vari-
ability (e.g. in measuring characteristic time-scales), it has some
limitations in distinguishing between models for aperiodic variabil-
ity. This point is reinforced by the fact that a common PSD shape
is in fact not a defining characteristic of the X-ray variability, be-
cause the PSD shape evolves over time. In particular, the PSD shape
changes dramatically between different spectral states in BHXRBs
(e.g. McClintock & Remillard 2003; Pottschmidt et al. 2003). Other
characteristics of the variability may provide stronger model con-
straints. One recent observation which strongly constrains models of
variability is the discovery of a correlation between the X-ray vari-
ability amplitude and the flux in AGN and XRBs (Uttley & McHardy
2001). Specifically, the absolute (not fractional) amplitude of root-
mean-squared variability increases linearly with the mean flux level,
implying that a given source is in some sense more variable when
it is brighter. This linear rms–flux relation is observed in all known
spectral states of the BHXRB Cyg X-1, independent of PSD shape,
suggesting that the rms–flux relation is a more fundamental charac-
teristic of the variability than the PSD shape (Gleissner et al. 2004).
Apparently linear rms–flux relations are also observed in a variety
of AGN (Edelson et al. 2002; Vaughan et al. 2003a,b; McHardy
et al. 2004), albeit at a lower signal-to-noise ratio than in the ex-
cellent XRB data where highly linear relations are observed in both
BHXRBs and neutron star XRBs (Uttley & McHardy 2001; Uttley
2004).

In Uttley & McHardy (2001), we argued that the observation of a
linear rms–flux relation in XRB and AGN X-ray light curves rules
out additive shot-noise models for the variability, because it im-
plies that shorter time-scale variations must somehow ‘know about’
the behaviour of the source on longer time-scales (or equivalently,
the shorter and longer time-scale variations are coupled together).
Additive shot-noise models treat the shots on all time-scales to be
independent of one another and so cannot produce this effect. We
originally suggested that models should be considered where the
longer-term variations precede the short time-scale variations, e.g.
as in the perturbed accretion-flow model of Lyubarskii (1997) where
accretion rate variations on different time-scales propagate inwards
through the accretion flow to modulate the X-ray emission (see also
King et al. 2004). This model is also strongly supported by the re-
cent discovery that the aperiodic variability carrying the rms–flux
relation in the accreting millisecond pulsar SAX J1808.4–3658, is
modulated by the 401-Hz pulsations, implying an origin at the neu-
tron star surface so that the variability cannot be produced in the
corona, e.g. by magnetic flares, and is most likely associated with
the accretion flow (Uttley 2004).

In this paper, we expand on our original work to consider the phe-
nomenological implications of the rms–flux relation. In particular,
after discussing some important time-series definitions in Section 2,

we demonstrate in Section 3 that the observed rms–flux relations im-
ply that the light curves x(t) are formally non-linear, and can be gen-
erated by a simple transformation from linear data: x(t) = exp[l(t)].
This latter relation also suggests that the fluxes follow a lognormal
distribution. Thus, the rms–flux relation, non-linear behaviour and
a lognormal flux distribution represent three different aspects of the
same underlying process. We compare the predictions of our phe-
nomenological ‘exponential model’ for variability with real data for
Cyg X-1 in Section 4, confirming that the fluxes do indeed follow
a lognormal distribution, and showing that our model can explain
some of the observed consequences of non-linearity, such as the ex-
istence of occasional powerful flares (Gierlinski & Zdziarski 2003)
or the amplitude and shape of the bicoherence function (Maccarone
& Coppi 2002). In Section 5, we discuss the implications of our re-
sults, which impose strong constraints on any models for variability
which seek to reproduce the phenomenological behaviour discussed
here. The trio of effects resulting from our phenomenological model
can explain a variety of observed AGN behaviour as being part of the
same variability process, and strongly imply that successful mod-
els for AGN and XRB variability must be ‘multiplicative’ and not
additive (like shot-noise or SOC models), or deterministic (like dy-
namical chaos). We conclude with some advice for testing models
of AGN and XRB variability.

2 S O M E D E F I N I T I O N S

Before we examine the implications of the rms–flux relation for
the nature of the variability, we first consider some important time-
series issues, and definitions which will be used in the remainder of
the paper. We only cover these topics in a cursory fashion here, but
a much deeper discussion of the subject can be found in a number
of standard texts (e.g. Priestley 1982; Kantz & Schreiber 1997).

2.1 Processes, systems and models

Following standard definitions in time-series analysis (e.g. Theiler,
Linsay & Rubin 1994) we note that an observed time series (i.e.
a light curve) is a realization of the underlying stochastic process
which is sampled by the observation. The process is generated by
the physical system which produces the variability, and a major goal
of any time-series analysis is to determine the nature of that system.
However, in practice it may only be possible to determine a math-
ematical model which can reproduce the observable properties of
the process, and only relate that model to the physical system using
knowledge of the appropriate physics. It is important to remember
that since the observed light curve is only a realization of the un-
derlying process, a complete and/or accurate statistical description
of that process and the corresponding model can be difficult to ob-
tain from real data. To demonstrate these distinctions, consider an
observed light curve with a doubly broken power-law PSD shape.
The observer must first assume that the observed PSD is a good
representation of the PSD of the underlying process. Next the ob-
server may assume that a shot-noise model is suitable to reproduce
the process (based on the observed PSD, e.g. Lehto 1989). Finally,
the observer may interpret that shot-noise model in terms of a phys-
ical system consisting of independent X-ray flares due to magnetic
reconnection in a corona.

Note that, in the hypothetical example given above, steps of in-
ference are made at each stage in interpreting the data, which may
not be warranted given better data or a more complete statistical
description of the data. For example, a fundamental but often un-
stated assumption is that the underlying process is stationary, so

C© 2005 RAS, MNRAS 359, 345–362



Non-linear X-ray variability in XRBs and AGN 347

that the statistical properties of the process (i.e. its ‘moments’) re-
main constant with time. This strict-sense definition of time-series
stationarity is often referred to as strong stationarity. In practice, a
less restricted definition of ‘weak stationarity’ is used, often referred
to simply as stationarity, since this is the form of stationarity most
commonly assumed and we use this terminology here also. For a
weakly stationary process, only the first two moments are constant
(mean, and autocovariance, i.e. variance and autocorrelation func-
tion, or equivalently the PSD). Red-noise light curves, which are
realizations of the underlying stochastic process, can strictly only
be considered as weakly non-stationary in the sense that they have
a mean and variance which change with time (due to the statisti-
cal fluctuations inherent in the noise process). However, it is often
assumed that the underlying process is stationary, since on long
time-scales the red-noise PSD should flatten (to power-law indices
>−1) in order to preserve a finite total variance, and the light-curve
mean and variance will asymptotically converge on the true mean
and variance of the process (the process is said to be asymptot-
ically stationary). Similarly, if light curves are much longer than
the longest variability time-scales produced by the underlying sta-
tionary process, those light curves can themselves be considered as
stationary, since their statistical properties will approximate closely
those of the underlying process.

2.2 Linearity and non-linearity

We are now in a position to define linearity and non-linearity for-
mally in the context of time series. A linear process is one that can
be described by a model whose output (i.e. the process) is linear
with respect to the inputs to the model, e.g. so that multiplying the
inputs by a constant multiplies the output by the same constant. For
example, following the definitions of Priestley (1982) a general lin-
ear model to produce the linear process Li = L(ti), consisting of
discrete time-steps ti, i = 1, 2, 3 . . . , is:

Li =
∞∑
j=0

g j ui− j (1)

where ui,2 is a sequence of independent random variables, so that at
each time-step the value of the process Li (the ‘flux’) is given by the
sum of random variables from step i − ∞ to step i, each multiplied
by the corresponding element in the sequence gi, which essentially
denotes the ‘memory’ in the time series, i.e. how correlated the data
point Li is with the data at previous times, Li−j. To give three simple
examples, if gi = 0 for i �= 0, the time series would be completely
uncorrelated, white-noise data; if gi is a constant >0 for all i, the
data would be correlated on all time-scales, representing a random
walk form of red-noise data; if gi > 0 for small i, becoming 0 at
larger values, the data would be correlated on short time-scales only,
i.e. its PSD would flatten to zero slope at low frequencies. Note that
the sum of the squares of the gi coefficients is proportional to the
total variance of the light curve (see Priestley 1982, chapter 10.1.1).

By contrast, a non-linear process is one that does not conform to
a linear model. For example, the process Xi generated by a model
called the ‘Volterra expansion’ (Priestley 1982) is non-linear in the
inputs because of additional higher order multiplicative terms in the

2 Following standard mathematical notation, i here and elsewhere in the
paper is a dummy index and so is interchangeable with j or i − j.

model:

Xi =
∞∑
j=0

G j ui− j +
∞∑
j=0

∞∑
k=0

G jkui− j ui−k

+
∞∑
j=0

∞∑
k=0

∞∑
l=0

G jklui− j ui−kui−l + . . . (2)

where the ui are strictly independent random variables and the G
coefficients of the expansion carry out a similar role to the g coef-
ficients in equation (1). If the higher order terms Gjk, Gjkl, . . . are
all zero then the equation reduces to equation (1) and the process is
linear. Note that, as pointed out by Scargle (1997), it is not strictly
the time series or process which is non-linear, but rather the model
which describes it. Therefore it is possible to observe light curves
which may have the appearance of non-linearity but can be described
by a linear model and hence (for the purposes of definition) can be
considered linear. For example, in recent years, evidence has been
claimed for non-linearity in the large-amplitude X-ray variability of
a number of Seyfert galaxies (e.g. Leighly & O’Brien 1997; Green,
McHardy & Done 1999; Gliozzi et al. 2002), but due to the limited
data it is difficult to reject the hypothesis that the data are linear but
non-Gaussian (see the discussion in Leighly 1999).3

Typically, a stationary Gaussian process, that is, a process with
a Gaussian distribution of Li, can be produced by linear models
which involve the addition of very many small elements, e.g. certain
shot-noise models. Gaussianity then follows from the central limit
theorem. Processes with non-Gaussian distributions of Li can be
produced by linear models where only a small number of additive
elements are involved (provided their flux distributions are non-
Gaussian), or from, e.g. a Poisson process (see Leighly 1999, for
an example). But non-Gaussian processes can also arise when the
model is non-linear, e.g. multiplying elements together, rather than
adding them, as we shall see below. For describing observed light
curves, it is important to be careful to distinguish models which are
non-Gaussian and linear from models which are non-Gaussian and
non-linear (e.g. see Theiler et al. 1992).

2.3 Lognormal processes

One distribution of time-series data which is commonly found in
nature is the lognormal distribution (Aitchison & Brown 1957; Crow
& Shimizu 1988). The lognormal distribution can be thought of as
the analogue of the normal/Gaussian distribution for multiplicative
rather than additive processes. For example, consider a stationary
process X which is the result of N random subprocesses xi which
multiply together, so that X = ∏

N
i=1xi. Therefore the logarithm

of X is the sum of the logarithms of the individual xi. As N → ∞
then (provided the xi are independent and identically distributed, but
regardless of the shape of that distribution) the distribution of the
sum of the logs of xi, log [X] must approach a Gaussian distribution
(by the central limit theorem). Therefore a process produced by
multiplication of many independent processes will have a lognormal
distribution, where the distribution of log [X] is Gaussian. A general
univariate form of the lognormal distribution is the three-parameter

3 The much more rapid variability observed in XRBs provides much better
statistics, however, and measurements of the ‘bicoherence’ have conclusively
detected non-linearity in light curves of the black hole candidates Cyg X-1
and GX 339-4 (Maccarone & Coppi 2002).
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lognormal distribution:

f (x ; τ, µ, σ ) = 1

σ
√

2π(x − τ )
exp

−[log(x − τ ) − µ]2

2σ 2
(3)

where τ is a ‘threshold parameter’ representing a lower limit on x
(e.g. caused by some constant offset which is additive to x) and µ

and σ 2 in this case represent the mean and variance of the distribu-
tion of log [x − τ ]. The lognormal distribution has a long history in
describing a wide range of phenomena such as economic data, pop-
ulation statistics, or size distributions such as cloud sizes and grain
sizes in sand (e.g. see Crow & Shimizu 1988, for an overview).
The ubiquity of lognormal distributions in nature results from the
fact that many natural processes are multiplicative (e.g. increases
in populations, the random splitting of clouds or grains of sand).
In the context of this work, lognormal statistics have been found to
apply to the fluences of events in shot-fitting models of GRB and
X-ray binary variability data (Negoro & Mineshige 2002; Quilligan
et al. 2002), as well as the flux distribution of the extremely variable
NLS1 IRAS 13224–3809 (Gaskell 2003).

3 T H E R M S – F L U X R E L AT I O N
A N D N O N - L I N E A R I T Y

3.1 The nature of the rms–flux relation

The absolute rms amplitude of variability σ rms of a time series of
N data points, Xi, is defined as the square-root of the light-curve
variance, i.e.

σrms =

√√√√ 1

N − 1

N∑
i=1

(Xi − X )2 (4)

where X is the mean of the series. For weakly non-stationary time
series it is typically assumed (e.g. implicitly by most simulation
methods; Lehto 1989; Timmer & König 1995) that the σ rms mea-
sured from individual segments of the time series is not constant
but varies randomly about some mean value (determined only by
the underlying power spectrum). However, the observed X-ray light
curves of AGN and XRBs are not merely weakly non-stationary in
this sense: the σ rms of segments of the light curve varies randomly
about a mean value which scales linearly with the flux of the segment
(Uttley & McHardy 2001). We say that the light curves display a
linear rms–flux relation. The rms–flux relation is most convincingly
demonstrated in XRBs, where it can be probed on short time-scales
with high significance (e.g. Gleissner et al. 2004; Uttley 2004). Re-
cent studies of X-ray light curves of the narrow line Seyfert 1 (NLS1)
Ark 564 (Edelson et al. 2002), NGC 4051 (McHardy et al. 2004)
and the Seyfert 1 AGN MCG-6-30-15 and Mrk 766 (Vaughan et al.
2003a,b), also show clear linear rms–flux relations in these AGN4.
Therefore, the linear rms–flux relation may be fairly ubiquitous in
AGN and XRBs.

4 We note here that a number of other authors have investigated the relation-
ship of variability amplitude with flux in various AGN, with varying results
(Nandra & Papadakis 2001; Dewangan et al. 2002). However, as none of
these authors took account of the random variations in variability ampli-
tude inherent in weakly non-stationary noise processes (e.g. see discussion
in Vaughan et al. 2003b) it is difficult to assess the significance of these
results.

3.2 Time-scale dependence of the rms–flux relation

According to Fourier theory, any given time series can be decom-
posed into a set of sinusoidal signals which represent the vari-
ous time-scales of variability in the time series. For an infinitely
long stochastic time series there are (in general) an infinite number
of frequency components, although for stationary or weakly non-
stationary time series, which have finite variance, the amplitudes of
most of these components will be negligible and the time-scales of
significant variability will be concentrated into a certain range. Any
linear stochastic time series (e.g. aperiodic variability) can be syn-
thesized by summing sine waves with random phases (φ uniformly
distributed between 0 and 2π) and suitably drawn amplitudes Ai.
The amplitudes of the components Ai can be determined from the
power spectrum (e.g. see Timmer & König 1995). Thus a linear time
series (with zero mean) can be written:

l(t) =
∞∑

i=1

Ai sin(2πνi t + φi ). (5)

This time series has no dependence between rms and flux. Note
that light curves generated by this method are Gaussian. Non-linear
light curves may be generated in a similar way if the phases of the
different components are not independent, but are correlated with
one another (e.g. see later discussion in Appendix C).

The aperiodic light curves of AGN and X-ray binaries show vari-
ations over a broad range of time-scales, as is demonstrated by their
broad, continuum-like PSDs, which contain significant power over
at least a decade range in frequency. When measuring the rms–flux
relation, we are effectively considering three ranges of time-scales
(e.g. see Uttley & McHardy 2001). First, we can choose the length,
T seg, of the individual light-curve segments which we use to measure
the rms. Secondly, we can measure the rms over a specified range of
time-scales (or equivalently, frequencies) within a light-curve seg-
ment, by measuring the PSD of each segment and integrating the
PSD over the frequency range of interest to obtain the variance,
taking the square root to obtain the rms contributed by variations
over that range of frequencies (time-scales). Finally, we plot the rms
versus flux measured from each segment, and hence examine the re-
sponse of rms to flux variations on time-scales > T seg. In principle,
we can isolate the response of rms on any given range of time-scales
to flux variations on any range of longer time-scales, by carefully
choosing the length of T seg and the frequency range used to measure
rms. For example, one can measure the response of 2–20 Hz rms
to variations on time-scales > 100 s by choosing T seg = 100 s and
integrating over only the 2–20 Hz range of the resulting light-curve
segments.

Such an approach can be used to examine whether, e.g. 2–20 Hz
rms responds only to variations on time-scales <10 s, and in turn
by changing the length of time segments, and the frequency range
integrated over, whether flux variations on time-scales >10 s them-
selves show a linear rms–flux relation. For example, consider the
case where there are only two components to the light curve, a fast
variability component, and a slower component, which modulates
the amplitude of the fast variations but is not itself coupled to vari-
ations on any longer time-scale (i.e. the slow component can vary
in an arbitrary way and be treated as a simple ‘volume control’ for
the amplitude of variations of the fast component, without any ad-
ditional constraints on its own amplitude of variability). Then we
will see a relation between the rms amplitude of the fast component
and the long time-scale flux variations due to the slow component.
However, if we then measure the rms amplitude of variations of the
slow component and correlate them with the flux variations of the

C© 2005 RAS, MNRAS 359, 345–362



Non-linear X-ray variability in XRBs and AGN 349

Figure 1. Flux and rms light curves of Cyg X-1. Measurements are made
from 256-s segments of the 2–13 keV light curve. The rms is measured over
the 0.125–1 Hz band of the power spectrum obtained for each segment. Note
there is some additional scatter in rms which is not in the flux light curve,
and is caused by random variations due to the noise process.

same component on even longer time-scales we will not see a linear
rms–flux relation.

In Uttley & McHardy (2001), we showed that the rms–flux rela-
tion in Cyg X-1 operates over at least a decade range in time-scales
(from seconds, to tens of seconds). We can test the time-scale de-
pendence of the rms–flux relation on longer time-scales by plotting
the rms measured in small segments as a function of time, i.e. we can
make an ‘rms light curve’. Fig. 1 shows the rms light curve of Cyg
X-1 measured by the Rossi X-ray Timing Explorer (RXTE) in 1996
December,5 compared to the conventional flux light curve. Clearly
the variations in rms are tracking the flux variations on time-scales
of hours. Because the rms variations can be plotted as a time series
in their own right, it is possible to make a power spectrum of those
variations and so compare with the power spectrum of the flux light
curve. Gleissner et al. (2004) have used this approach to show that
the PSD of short time-scale (seconds) variations in rms is similar
to the PSD of the flux light curve, providing further evidence that
the rms variations follow the flux variations over a wide range of
flux variability time-scales. Gleissner et al. (2004) have also demon-
strated that the high-frequency (1–32 Hz) rms in Cyg X-1 responds
linearly to flux changes even on time-scales of months. Therefore,
it seems likely that the rms–flux relation applies over a very broad
range of time-scales, such that for any given time segment duration
we choose to measure the rms for, we will find a linear correlation
between the rms amplitude and the flux of the segment.

We illustrate this point in Fig. 2, which shows rms–flux relations
for the Cyg X-1 data set shown in Fig. 1, measured for different
segment lengths, and hence dominated by variations on different
time-scales. Note that because the bulk of variability originates be-
tween ∼0.1 Hz and 1 Hz (as demonstrated in the PSD which we
show in Fig. 3), the flux variations of the 1-s segments used to mea-
sure the 2–20 Hz rms–flux relation are dominated by variations in
the 0.1–1 Hz range. However, the 0.125–1 Hz rms–flux relation
clearly demonstrates that these variations themselves show a linear

5 Proposal Number 10236.

rms–flux relation, i.e. the simple ‘volume control’ model does not
apply, because the flux variations driving the 2–20 Hz rms variations
themselves show an rms–flux relation.

For the purposes of this paper, we will make the assumption,
extrapolated from the previous results described here, that Cyg X-
1 shows a linear rms–flux relation on all time-scales. By that, we
mean that whatever choice we make for the length of T seg and the
frequency range we use to determine rms, we will always see a
linear rms–flux relation. We will derive in the next section a sim-
ple mathematical model for the variability which follows from this
assumption, and show in subsequent sections that this model does
indeed seem to explain many aspects of the data.

3.3 The exponential form of AGN and XRB light curves

We now consider a simple mathematical model to approximate the
rms–flux behaviour observed in real light curves. In essence the
linear rms–flux relation requires that the amplitude of short time-
scale variations is modulated by longer time-scale trends in the data.
The rms–flux correlation can thus be viewed as an effect of ampli-
tude modulation similar to that commonly encountered in, e.g. radio
communications. To illustrate how amplitude modulation naturally
leads to a linear rms–flux relation, consider the modulation of a set
of sine waves. Variations at a given frequency (ν i) are represented
by a sine wave with unit mean and peak-to-trough amplitude less
than twice the mean:

fi (t) = 1 + Ai sin(2πνi t + φi ) (6)

where 0 < Ai < 1 ensures that the wave is always positive, and φ i

is the phase. It is simple to see that by multiplying a high-frequency
sine wave (with frequency ν 1) by another of lower frequency (ν 2),
the amplitude of the high-frequency oscillations will be modulated
by the low-frequency oscillations. The result will be a linear scaling
between high-frequency rms amplitude measured in a time segment
and the mean ‘flux’ in that segment, i.e. a linear rms–flux relation.
This contrasts with the situation where the two sine waves are added
instead of multiplied together. In this case there is no amplitude
modulation and no dependence of rms upon flux.

In the previous section, we noted that the rms–flux relation is
observed over a broad range of time-scales. Of course, it is not pos-
sible to say for certain that the rms–flux relation applies on all time-
scales, e.g. that the rms responds to very long time-scale variations.
However, since we are only considering the currently observable
behaviour of XRBs and AGN, we make the simplifying assump-
tion that the linear rms–flux relation does apply to variations on all
time-scales. We can represent this behaviour by making an anal-
ogy with the sum-of-sines representation of a time series shown in
equation (5), to synthesize a general time series possessing a linear
rms–flux relation on all time-scales by extending the multiplicative
sine model:

x(t) =
∞∏

i=1

{1 + Ai sin(2πνi t + φi )}. (7)

To examine the properties of this model, we represent the sine com-
ponents as ai(t) = Ai sin (2π ν i t + φ i ), and convert to a linear
model by taking the logs, thus:

log[x(t)] =
∞∑

i=1

log[1 + ai (t)]. (8)

Since the phases of the individual sine-wave components are un-
correlated, the ai are independent and randomly distributed for a
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Figure 2. Cygnus X-1 1996 December 2–13 keV rms–flux relations. The left-hand panel shows the rms–flux relation made by binning the 0.125–1 Hz rms
measured in 256-s segments shown in Fig. 1 according to the flux (note that due to the narrow range of fluxes, the axes do not begin at zero). The right-hand
panel shows the rms–flux relation of the same observation but with rms measured in the 2–20 Hz range for 1-s segments, prior to binning according to flux.

Figure 3. 2–13 keV PSD of Cyg X-1 in the low/hard state on 1996 Decem-
ber 16, plotted in units of frequency×power, so that a flat top corresponds
to a 1/f PSD shape. Power units are (rms mean)−2 Hz−1.

given time t. If the underlying process is aperiodic and stationary,
so that the power is spread out over many frequencies, then no single
frequency or small number of frequencies dominates the distribu-
tion of log [x(t)]. Under these conditions we can apply the central
limit theorem, finding that the distribution of log [x(t)] is Gaussian.
Therefore our model light curve x(t) has a lognormal flux distribu-
tion.

Since ai(t) < 1, we can expand the logarithms on the right-hand
side and sum each term separately to give:

log[x(t)] =
∞∑

i=1

ai (t) − 1

2

∞∑
i=1

[ai (t)]
2 + 1

3

∞∑
i=1

[ai (t)]
3

−
∞∑

n=4

−1n

n

( ∞∑
i=1

[ai (t)]
n

)
. (9)

Since the even terms are all positive definite they cannot be neglected
in comparison with the first-order term, which we denote l(t) =∑∞

i=1[ai (t)], since it is a linear time series of the form given by

equation (5). However, since the time-averaged value of l(t) is zero,
we find that:

var[l(t)] =
〈( ∞∑

i=1

ai (t)

)2〉
=

〈 ∞∑
i=1

[ai (t)]
2

〉
(10)

where angle brackets denote time-averages and the latter equality
holds because the time-averaged value of cross-terms ai(t)aj(t) is
also zero. Hence the time-average of

∑∞
i=1[ai (t)]2 is equal to the

variance of the linear time series. For a continuum process the num-
ber of sine components in the signal approaches infinity, and so for
the variance of the process to be finite, the amplitudes Ai → 0, and
hence ai → 0. The term

∑∞
i=1[ai (t)]2 can be shown to be effectively

constant. This is because, since the phases of the sine waves are in-
dependent of one another, the variance of this expression is equal
to the sum of variances of the individual squared-sine terms (which
can be simply evaluated). Hence:

var
[∑∞

i=1[ai (t)]2
]

〈∑∞
i=1[ai (t)]2

〉2 =
∑∞

i=1

[
A4

i

]/
8(∑∞

i=1

[
A2

i

]/
2
)2

=
∑∞

i=1

[
A4

i

]/
8([∑∞

i=1

∑∞
j=1 A2

i A2
j �=i

] + ∑∞
i=1

[
A4

i

])/
4
.

(11)

The denominator is dominated by the sum of cross-terms (which
are all positive): as the number of sine components tends towards
infinity the ratio above tends to zero, hence the value of the second-
order term in equation (9) can be set to its time-averaged value, i.e.
var[l(t)], regardless of t. The odd terms of third-order and higher
have the same sign as the first-order term and since ai → 0, they are
always very small in comparison to l(t). Similarly, the even terms of
fourth order or greater can be neglected in comparison to var[l(t)].
Therefore we can approximate x(t) as:

x(t) ≈ exp

{
l(t) − 1

2
var[l(t)]

}
. (12)

The variance term can be neglected, since it simply reflects a nor-
malizing constant. Therefore we can express the sine multiplication
model for the rms–flux relation rather simply as x(t) ≈ exp[l(t)],
i.e. aperiodic light curves with a linear rms–flux relation on all time-
scales can be produced by taking the exponential of a linear aperiodic
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light curve. It is obvious that this model is non-linear with respect to
the input linear ‘light curve’ l(t) (see also Appendix A for a formal
demonstration that the model is equivalent to a Volterra expansion).
Assuming that the input light curve is stationary, it is important to
note that the model itself generates a process which is stationary in
the sense described in Section 2, because it is a simple exponential
transformation of a linear process which is stationary. Of course,
if the assumptions underpinning the above derivation break down,
the exponential model will be an inappropriate representation of the
data. For example, if the rms–flux relation is only produced by a
small finite number of multiplying components, the higher order
terms in equation (9) will become important, leading to deviations
from the model (and also deviations from the lognormal flux distri-
bution, since if the number of contributing components is small the
distribution of log [x(t)] will no longer be Gaussian).

For completeness, we note here that the conclusion that the linear
rms–flux relation implies a logarithmic transformation of Gaussian
data can be independently reached using established methods for
the transformation of uncorrelated non-Gaussian sample data (i.e.
not the time series we measure here) into data with a Gaussian dis-
tribution (Bartlett 1947; Box & Cox 1964). Skewed, non-Gaussian
data is heteroskedastic, that is the expectation value of its sample
variance is not constant, and specifically it may be a function of
the mean of the data. In contrast, a Gaussian distribution is ho-
moskedastic, with a constant expectation value of sample variance.
A ‘Box–Cox’ plot can be used to determine the type of transforma-
tion needed to make the data Gaussian (and hence homoskedastic).
The logarithms of variances of segments of data are plotted against
the logarithms of means, and a slope of 2 in the plot (equivalent
to a linear scaling of rms with mean) corresponds to a logarithmic
transformation of the data (Box & Cox 1964). Our demonstration
that a linear rms–flux relation on all time-scales corresponds to a
lognormal distribution of fluxes is effectively an extension of this
result to correlated time-series data.

3.4 Simulating non-linear light curves
with an exponential model

We can simulate a non-linear aperiodic light curve with a linear
rms–flux relation on all time-scales by first simulating a linear ape-
riodic light curve with mean 0 (e.g. using the method of Timmer
& König 1995, which uses a fast Fourier technique based on the
generalized linear model for stochastic light curves shown in equa-
tion 5) and then calculating the exponential of the light curve at
each point in the series. The simple mathematical transformation
to obtain exponential-model light curves from linear light curves
implies that the more variable (in fractional rms) an exponential-
model light curve is, the more strongly non-linear it will appear.
This is because variations in the linear light curve above the mean
are enhanced in the exponential-model light curve, compared with
variations in the light curve below the mean which are suppressed.
Thus when the variations above and below the mean are larger, as
is the case when the fractional rms is increased, the flares in the
light curve are more strongly exaggerated compared to the dips. We
demonstrate this property of the light curves in Fig. 4, which shows
exponential-model light curves generated using the same random
number sequence (i.e. with the same ‘events’), but different frac-
tional rms. Fig. 5 shows the linear rms–flux relation obtained from a
simulated exponential-model light curve like those shown in Fig. 4,
albeit of much longer duration.

The non-linearity in the light curves can also be understood in
terms of the lognormal distribution of fluxes, because the lognormal

Figure 4. Simulated exponential-model light curves. The panels show light
curves with the same temporal structure (i.e. the same random number se-
quence is used in their generation), but increasing amplitude and skewness.

Figure 5. The rms–flux relation produced from a simulated exponential-
model light curve.

distribution is positively skewed and therefore can show extreme,
high values of the flux which would not be expected if the process
were Gaussian. Note, however, the caveat that if the input data are
not stationary (i.e. there are still trends on the longest time-scales
in the input time series) then the resulting distribution will not be
lognormal, since the input Gaussian distribution is only fully sam-
pled on the longest time-scales, as the data become asymptotically
stationary (Priestley 1982).

It is important to note that the exponential transformation of the
input linear light curve l(t) will produce a data set with different
statistical properties to the input light curve. Therefore any attempt
to simulate real data must account for these effects, so that the correct
variance and PSD are contained in the simulated data, in order to
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Figure 6. Flux distribution of Cyg X-1 in 1996 December (grey data points), expressed as a probability density function (PDF). A minimum of 100 flux
measurements were included in each bin and the error bar on a bin (prior to normalization) is then given by

√
N where N is the number of fluxes in the bin.

The black line shows the best-fitting lognormal distribution (see text for details).

match with the observed variance and PSD. Because the output non-
linear light curve has a lognormal distribution, the basic statistical
properties (the moments) of the output can be obtained with respect
to the properties of the input linear light curve, using the well-known
results for lognormal distributions (Aitchison & Brown 1957; Crow
& Shimizu 1988). For example, since in our model the input mean
µl = 0, the mean of the output data µx is given by:

µx = exp

[
1

2
σ 2

l

]
, (13)

where σ 2
l is the variance of the linear, Gaussian input data, l(t). The

variance of the output data σ 2
x is given by:

σ 2
x = exp

[
σ 2

l

] (
exp

[
σ 2

l

] − 1
)

(14)

and hence the fractional rms σ frac of the output is simply√
exp[σ 2

l ] − 1. The skewness of the distribution of fluxes, γ 1, is
then given by:

γ1 = σfrac

(
σ 2

frac + 3
)

. (15)

Obviously, light curves with a larger fractional rms will show more
skewed flux distributions.

It is more difficult to determine the effect of the exponential trans-
formation on the shape of the PSD, relative to the PSD of the in-
put light curve. We demonstrate the effect on the PSD shape using
simulations in Appendix B. We note here, however, that for broad
continuum type PSDs observed in XRBs and AGN, the effect is
fairly small, and the shape of the output light-curve PSD is similar
to that of the input light curve.

4 C O M PA R I S O N O F T H E M O D E L W I T H
O B S E RVAT I O N S O F C Y G X - 1

We now compare the predictions of our model with real data, specifi-
cally observations of Cyg X-1 and in particular the RXTE long-look
observation of 1996 December 16–19 shown in Fig. 1. This ob-
servation represents the longest quasi-continuous exposure (subject

mainly to orbital gaps due to Earth occultation), obtained while all
five Proportional Counter Units (PCUs) were switched on (i.e. for
optimum signal-to-noise ratio). Furthermore the PSD shape appears
to be constant during this time, so that the maximum amount of data
can be combined without the need for separate analysis of data with
different timing properties. Where we use these data, we have used
a 2–13 keV light curve extracted from all five PCUs.

4.1 The lognormal distribution of fluxes

The simplest prediction of our model is that the observed distribu-
tion of fluxes should be lognormal. As already noted, shot modelling
of X-ray light curves of Cyg X-1 yielded evidence for a lognormal
distribution of shot amplitudes (Negoro & Mineshige 2002). How-
ever, our model predicts a more simple outcome that the X-ray
fluxes themselves should have a lognormal distribution, irrespec-
tive of any shot modelling of the data. To test this possibility, we
binned up the 1996 December 2–13 keV light curve of Cyg X-1
into 0.125-s bins, so that the typical signal-to-noise ratio in each
bin exceeds 20. As can be seen in Fig. 1, the light curve is not sta-
tionary even on the relatively long time-scales observed, since clear
long-term flux variations can be seen. To minimize the effects of
the weak non-stationarity on the flux distribution, we selected the
region of the light curve in the range 77–136 ks from the start of
the observation,6 which has a relatively constant time-averaged flux
(on time-scales of hours), and measured the flux distribution of the
data, normalizing the fluxes by the mean. The resulting probabil-
ity density function of the data7 is shown in Fig. 6. Also shown is
the best-fitting three-parameter lognormal fit to the data. The fit is
not formally acceptable (χ 2 = 384 for 247 degrees of freedom), as
might be expected given that the data are weakly non-stationary,

6 The resulting light curve has a mean (background-subtracted) flux of
4570 count s−1 and contains 253 144 data points.
7 i.e. data points per flux bin normalized by flux bin width and the total
number of data points, so that the area under the plot is unity.
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together with the additional small Poisson component to the distri-
bution expected from counting statistics, which is not modelled in
our fit. However, the fit is still remarkably good considering these
factors.

Interestingly, the lognormal fit requires the offset parameter τ (see
equation 3) to be non-zero. In normalized flux we find τ = 0.16,
consistent with the constant offset of ∼800 count s−1 observed in the
rms–flux relation for these data, and also observed in other XRBs,
which may correspond to a component with a constant flux, or a
weakly varying component with a constant rms (Uttley & McHardy
2001; Gleissner et al. 2004). The fact that the fit is remarkably close
to lognormal suggests that any additive variable component cannot
vary very strongly, otherwise it would distort the distribution sig-
nificantly away from lognormal, because lognormality is preserved
multiplicatively but not additively (Crow & Shimizu 1988). We con-
clude that our basic prediction that the observed X-ray fluxes should
have a lognormal distribution is satisfied by the data.

4.2 Powerful millisecond flares in Cyg X-1

Recently Gierlinski & Zdziarski (2003) (henceforth GZ03) reported
the detection of 13 powerful millisecond flares in 2.3 Ms of Rossi
X-ray Timing Explorer (RXTE) observations of Cyg X-1. The flares
corresponded to rapid X-ray flux increases of a factor of 5–10 or
more on time-scales of ∼0.1 s during the low/hard state, and only
a few ms in the case of the most extreme event, observed during a
high/soft state. The flares reported by GZ03 were much larger and
more common than expected, assuming the underlying variability
process is linear and Gaussian. However, our exponential model for
the aperiodic variability in XRBs predicts that such extreme events
might occur if the fractional rms of the source is sufficiently high.
To test this possibility, we applied the method of GZ03 for detect-
ing powerful flares to simulated exponential-model light curves.
We first note that of the 12 flares detected in the low/hard state,
four were observed in the single long (∼90-ks exposure) RXTE ob-
servation of Cyg X-1 in 1996 December. We therefore measured
the 2–13 keV PSD of this data set (plotted in Fig. 3) for use as
the underlying PSD model for light-curve simulation, to simulate
exponential-model light curves to search for powerful flares (we
created a continuous PSD over the required frequency range by
interpolating between adjacent data points and extrapolating the
high-frequency PSD power-law slope measured between 10 and 20
Hz to higher frequencies). The presence of the constant (or weakly
varying) component revealed by the lognormal fit to the distribution
of fluxes (contributing 16 per cent of the mean flux), should dilute
the variability, so that the fractional rms of the component produc-
ing the rms–flux relation is larger than measured directly from the
light curve. We therefore increased the normalization of the input
PSD by a factor (1 − 0.16)−2 = 1.42 to account for this effect. We
simulated 1000 light curves (free of Poisson noise) of length 1024 s
and time resolution 2−8 s (about 4 ms). Following the prescription
of GZ03, we rebinned the simulated light curves into 0.125-s bins,
and measured the absolute rms, σ of each light curve in separate
128-s segments. We then searched each segment for bins where the
flux lies >10σ above the mean flux of the segment. Such extreme
events are not expected if the simulated light curve is Gaussian (i.e.
without taking the exponential of the data).

From our simulation, we find seven powerful flares in 1.024 Ms,
consistent with the 13 flares observed in ∼2 Ms of real data by
Gierlinski & Zdziarski (2003). Since the flares are independent, and
given the simulated flaring rate, we can estimate that the chance
of four or more such flares occurring in a 90-ksec exposure (as

Figure 7. Powerful flare (11.8σ ) in simulated ‘Cyg X-1’ exponential model
data (see text for details), plotted on linear (top) and logarithmic (bottom)
axes.

observed) is about 10 per cent. We note that the observed deviations
of the simulated flares from the mean are in the range 10.2–11.3σ ,
which is roughly consistent with the low/hard state flares observed
by GZ03, which extend up to σ = 11.8. We plot light curves showing
one of the simulated flares in Fig. 7, with y-axes plotted in both linear
and log units. Note that in logarithmic units, the light curve of the
flare appears to be linear (as expected given the exponential model
used), similar to the top two panels of fig. 1 in GZ03.

GZ03 suggest that the number of extreme flares they observe
in the low/hard state of Cyg X-1 are consistent with the numbers
expected if the lognormal distribution of smaller shot events pro-
posed by Negoro & Mineshige (2002) is extended to large ampli-
tude flares. Therefore, the powerful flares observed in the low/hard
state are likely to be associated with the same variability process
which produces the smaller flares, i.e. the ‘normal’ X-ray variabil-
ity. This picture is entirely consistent with the exponential model we
present here, which also predicts a lognormal distribution of fluxes
(as observed in Fig. 6). Clearly, extreme events are to be expected
occasionally, provided the average fractional rms variability is large
enough.

Finally, we note that we have also attempted to replicate the very
large (12.8σ ) flare observed in a high/soft state observation of Cyg
X-1 by GZ03, using the observed PSD shape in that observation as
the underlying model to simulate light curves with a variety of values
of fractional rms. We found that for reasonable values of fractional
rms (i.e. less than 100 per cent), such rapid, large-amplitude flares
could not be reproduced. Therefore this particular event may have
a different origin to the normal variability in the high/soft state.

4.3 The bicoherence of black hole XRBs

Maccarone & Coppi (2002) (henceforth MC02) have examined the
higher order variability properties of the BHXRBs Cygnus X-1 and
GX 339–4, using the time-skewness function, which searches for
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Figure 8. Left panel: bicoherence of simulated exponential model data (see text for details). Right panel: bicoherence of 1996 December 2–13 keV Cyg X-1
light curve (see text for details).

time-asymmetry of the light curve (e.g. due to different rise and
decay time-scales of variations) and also the bicoherence, which
quantifies the coupling between variations on different time-scales.
The light curves we simulate here are time symmetric (unlike the real
light curves investigated by MC02) but presumably the time sym-
metry of light curves is a function of the rise or decay time-scales of
the events which form the light curves and is not necessarily related
to non-linearity in the underlying process. In contrast, the bicoher-
ence is a good measure of non-linearity in light curves, so we now
investigate whether our exponential model can reproduce the re-
sults of MC02 who found a significant coupling between variations
on a broad range of time-scales, with the strength of the coupling
decreasing at higher temporal frequencies.

Formally, the bicoherence measures the degree of coupling be-
tween time-series variations at the bifrequency (k, l), by measuring
the correlation of the phase of the signal at the frequency k + l, with
the sum of phases of the signal at k and l. Therefore the bicoher-
ence can provide a measure of the strength of the coupling between
variations on different time-scales in the light curve (e.g. due to the
signals on different time-scales multiplying together). We describe
the calculation of bicoherence and its meaning in more detail in
Appendix C (also see Fackrell 1996). The important thing to note
here is that a non-linear process exhibits a bicoherence which varies
with the bifrequency, whereas a linear process exhibits a constant
bicoherence (which is zero for a linear, Gaussian process, Subba
Rao & Gabr 1980; Hinich 1982).

To demonstrate the form of bicoherence predicted by our model,
we simulated a light curve of 90-ks duration with 2−5-s time reso-
lution, using the same PSD as the 1996 December observation of
Cyg X-1, also used in the simulations in Section 4.2. As with the
simulations in Section 4.2, the PSD normalization of the simulated
variable light curve was corrected to take account of the possible
constant component in the observed light curve and the constant
component added at the end of the simulation to obtain the correct
flux level before Poisson noise was added (to account for the ad-
ditional bicoherence produced by counting statistics, see Appendix
C). We measured the bicoherence using segments of 256-s duration
and corrected for noise effects and bias using the prescription given
in Appendix C. In order to reduce the noise and present the bicoher-
ence as a simple two-dimensional plot, we followed the approach

of MC02 and averaged the bicoherence measurements according to
the sum of the frequencies k, l. We then further binned the bico-
herence into logarithmically spaced frequency bins (factor of 1.3
spacing between bins) so that there is a minimum of 20 individual
bicoherence measurements (i.e. before averaging according to k +
l) per bin. We calculated standard errors using the spread in data in
each bin.

The resulting plot of binned bicoherence is shown in Fig. 8 (left
panel). For comparison we also show the bicoherence of the entire
1996 December 2–13 keV light curve of Cyg X-1 (Fig. 8 right
panel, cf. fig. 3 of MC02 for a similar plot). Clearly the most general
features of the observed bicoherence, such as a relatively flat shape at
low frequencies and a reduction in bicoherence at high frequencies,
are well reproduced by our model. This is to be expected, since the
multiplication of sines which our model is derived from implies that
the strength of coupling between two signals is proportional to the
product of the power in the two signals. Thus the bicoherence is flat
below ∼0.1 Hz because the power is constant below that frequency,
and the bicoherence decreases at higher frequencies because the
power decreases towards higher frequencies. Note the increase in
bicoherence above ∼10 Hz in both plots, which is a result of the
photon counting statistics (see Appendix C).

The normalization of the bicoherence produced by our model is
of a similar magnitude to that observed in real data. The value of the
normalization is clearly a function of the power which is coupled
together, hence in our model a larger fractional rms will produce a
larger bicoherence. We note that in the case of a broad-band aperi-
odic signal such as measured here, the normalization is not only a
function of the coupling strength, but also a function of the duration
of segments used to calculate the bicoherence (see Greb & Rusbridge
1988, for a detailed discussion of this point). This effect is caused
by the spreading out of signal power which contributes to the bico-
herence. As the duration of a segment is increased, so the number of
Fourier frequencies used to calculate bicoherence also increases and
(in the case of a broad-band aperiodic signal) although the power
density at each Fourier frequency does not change systematically,
the signal power at each frequency decreases accordingly.

Although the most general characteristics of the bicoherence pre-
dicted by our model are similar to those of the observed bicoher-
ence, there are substantial differences in detail. In particular, the
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observed bicoherence only decreases substantially above a few Hz,
not ∼0.1 Hz as in our model. Also, clear bumps can be seen in
the observed bicoherence, which may be a result of quasi-periodic
oscillations (QPOs) which are also coupled together (although it is
not yet clear why the bump at ∼0.4 Hz is offset from the similar
feature in the PSD at ∼0.8 Hz ). Therefore, although our model can
reproduce the general properties of the observed variability such as
its lognormal and non-linear behaviour, that is not the whole story.
The significant differences between the bicoherence predicted by
our model and the observed bicoherence imply that there may be
more complex interactions occurring between different variability
time-scales than the simple multiplicative coupling assumed by our
exponential model. For example, since the bicoherence essentially
measures correlations between phases at different temporal frequen-
cies, a number of mechanisms can produce significant values of bi-
coherence without significantly distorting the flux distribution away
from lognormal, e.g. frequency modulation (Rial & Anaclerio 2000)
or phase locking of two signals. Such effects could explain the devi-
ation of the real bicoherence spectrum away from that predicted by
our model, while maintaining the observed lognormal distribution
and linear rms–flux relation.

5 D I S C U S S I O N

We have shown that the linear rms–flux relation observed in the
light curves of XRBs and AGN, if it applies on all time-scales,
implies that the light curves, x(t), are formally non-linear, being
described by the simple transformation x(t) = exp[l(t)], where l(t)
is a linear, Gaussian time series. The resulting flux distribution for
stationary data is lognormal, and we have confirmed this prediction
using data from an X-ray light curve of Cyg X-1. We have also shown
that the powerful flares observed in the low/hard state (Gierlinski &
Zdziarski 2003), occur naturally in our phenomenological model for
the variability. And we have shown that the amplitude and general
shape of the bicoherence function (Maccarone & Coppi 2002) can
be explained by our model. Thus many of the observed non-linear
properties of the light curves appear to be due to the same underlying
process. In this section, we will discuss the implications of these
results for AGN (which we have only briefly touched on so far),
consider constraints on the physical nature of the variability process,
and finally discuss implications of these results for future modelling
of the variability.

5.1 Non-linearity in AGN variability: NLS1 and low
states in NGC 4051

In Section 4, we showed that our exponential model can explain
some of the characteristics of variability in Cyg X-1 (and likely also
other XRBs). It is also natural to consider the implications of this
phenomenological model for the interpretation of AGN variability,
since AGN also show rms–flux relations in their light curves, and
similar PSDs to X-ray binaries (e.g. Vaughan et al. 2003a; McHardy
et al. 2004). The exponential model of X-ray variability provides
a natural phenomenological explanation for the X-ray light curves
of certain NLS1, which appear to be more strongly non-linear than
those of less variable AGN (e.g. Boller et al. 1997; Brandt et al.
1999; Leighly 1999; Dewangan et al. 2002). In fact, Gaskell (2003)
has demonstrated that the X-ray fluxes in the NLS1 IRAS 13224–
3809 are well described by a lognormal distribution, as expected if
our exponential model also applies to NLS1 X-ray variability. Fig. 4
shows how exponential-model light curves with greater fractional
rms variability (as typically observed in NLS1) naturally appear

more non-linear than those with lower fractional rms, even though
the same model is used to generate all the light curves. In fact,
it is interesting to note the general similarity of the most variable
exponentiated light curve in Fig. 4 to some observed light curves
of NLS 1, e.g. that of IRAS 13224–3809 (Dewangan et al. 2002;
Gaskell 2003) and also NGC 4051 (McHardy et al. 2004).

Therefore, our model suggests that non-linear X-ray variability
is common to most (if not all) AGN but is only readily observed
in NLS1 due to their enhanced fractional rms. This scenario sug-
gests that variability processes in NLS1 are similar to those seen
in other Seyferts, with the major difference being their amplitudes
of variability, rather than the physical nature of the variability it-
self. It is interesting to note that the amplitude of variations in some
NLS1 is particularly large (e.g. Brandt et al. 1999), large enough to
violate the well known constraints on rapid variability imposed by
radiative efficiency arguments (Fabian 1979). Brandt et al. (1999)
note a number of ways in which these constraints can be circum-
vented (e.g. if radiation is released from multiple locations, which
may be possible if the X-ray variability is externally triggered, per-
haps by fluctuations in the accretion flow). However, if we assume
that these extreme variations are the result of the same non-linear
process that operates in less variable objects, or when the source is
more ‘quiet’ (i.e. the extreme events are the high-flux tail of a highly
skewed lognormal distribution), it remains an open question as to
how extreme these events can be. Lognormal distributions are math-
ematical entities, but what we observe must be constrained in some
way by source physics – does the physics of the source intervene to
prevent extreme tails in lognormal distributions? Long monitoring
observations of these AGN, which would sample a wide range of
fluxes, can help to answer this question. A further related issue is
whether such extreme events can occur frequently in some XRBs
(as opposed to the very rare events seen in Cyg X-1, GZ03). On the
equivalent time-scales (i.e. less than seconds, if we scale with black
hole mass) XRBs do not show high enough rms to appear similar
to light curves of the more extreme NLS1. We have demonstrated
that the extreme non-linearity seen in NLS1 light curves probably
results from their large variability amplitudes, which imply a more
skewed distribution of fluxes. The question then is not ‘why is NLS1
X-ray variability non-linear’ but rather ‘why are NLS1 so variable
in the first place?’

One characteristic feature of aperiodic ‘red-noise’ light curves is
their self-similar (technically, self-affine) nature over a broad range
of time-scales. For example, in the particular case of ‘flickering’
where the PSD has an index of −1 over a broad range of time-scales,
the variability observed on long time-scales (e.g. years) looks very
much like the variability observed on much shorter time-scales, e.g.
days (the light curves are scale-invariant). This property of flickering
light curves means that the exponential model light curves shown in
Fig. 4 might just as well represent the long-term (years) X-ray light
curves of AGN as they do the shorter-term light curves, provided the
AGN show significant variability power on long time-scales. In this
case, the prolonged low-flux, low-variability periods observed when
the fractional rms is high would appear similar to the prolonged
(weeks to months) low-flux states observed in the NLS 1 NGC
4051 (Uttley et al. 1999, 2003, 2004). In fact, it is interesting to
note the similarity between the long-term light curve of NGC 4051
and the light curve on much shorter time-scales (e.g. see McHardy
et al. 2004), which further indicates the scale-invariance of the light
curves.

If the low states in NGC 4051 are simply the continuation
of the non-linear form of AGN light curves to long time-scales,
then they represent another manifestation of the scale-invariance of
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Figure 9. Comparison of rms–flux relations for real Cyg X-1 data (left) and simulated data (right) consisting of five independently varying light-curve elements
with equal mean flux and fractional rms. The grey dotted lines denote the best-fitting linear models (see text for details).

flickering light curves and may not be physically distinct states af-
ter all, i.e. these states are not distinct in the sense that the low/hard
and high/soft states observed in BHXRBs are (see also Uttley et al.
2003, 2004, for spectral evidence to support this conjecture). Gaskell
(2003) has also raised a similar point regarding the low-variability,
low-flux periods observed on shorter time-scales (days) in the light
curve of IRAS 13224–3809. Regardless of the physical interpre-
tation of the variability, our phenomenological model implies that
low states such as those observed in NGC 4051 may be common in
other AGN with large variability amplitudes, if the variability also
extends to long time-scales.

5.2 Implications for physical models

Our original suggestion that the rms–flux relation rules out additive
shot-noise models (Uttley & McHardy 2001) is confirmed by the
analysis presented here, since additive shot-noise models are inher-
ently linear and cannot reproduce the non-linearity and lognormal
flux distributions implied by the rms–flux relation. Furthermore,
the fact that the flux distribution is lognormal places fairly stringent
constraints on any physical models for the variability, since it im-
plies that the underlying physical process is multiplicative, rather
than additive. If the total X-ray emission were produced by many
independent elements adding together (e.g. from separate active
emitting regions in the corona), then, subject to certain caveats, ir-
respective of the distribution of flux from each element the resulting
flux distribution would tend towards a Gaussian distribution (due to
the central limit theorem). The main caveat to this statement is that
the distribution of fluxes from each independent element is not so
skewed that only a few elements contribute significantly to the flux
at any one time, e.g. if the distribution of flux from each additive
element is itself lognormal and highly skewed.

To test the effect on the observed distribution of adding together
fluxes from multiple, independent elements with lognormal flux
distributions, we simulated light curves with the same length and
time resolution as the quasi-stationary light curve used to make
the observed flux distribution in Fig. 6, but made from a sum of
exponential model light curves with PSD shape identical to that
observed (see Section 4). Since the total variance is the sum of the
individual light-curve variances, for N elements with equal mean
fluxes and fractional rms, the fractional rms of each element is equal
to the total fractional rms multiplied by

√
N . Thus to produce a

given observed fractional rms, the flux distribution from individual
elements becomes more skewed as the number of elements increases
so that only a few elements can contribute significantly to the total
flux, even for large N.

Our simulations show that for N � 5, the resulting total flux
distributions show reduced chi-squared χ2

ν < 1.5 when fitted with a
lognormal model, i.e. comparable to that observed in the real data.
We note, however, that the rms–flux relations of our simulated light
curves show significant deviations from linearity for N > 2. For
example, in Fig. 9 we show the rms–flux relations for the observed
1996 December quasi-stationary data and our simulation for N =
5. The simulated rms–flux relation shows a significant systematic
deviation from a linear relation at higher fluxes which is not observed
in the real data.

The deviation from a linear relation is caused by the fact that the
flux distributions of the individual elements are highly skewed. At
low fluxes, all the elements contribute significantly to the light curve,
and the fractional rms is diluted accordingly (since the elements
vary independently). However, at high fluxes only a small number
of components dominate the variability and hence the fractional rms
(equivalent to the gradient of the rms–flux relation) increases. A lin-
ear fit to the simulated rms–flux relation gives a reduced chi-squared
of χ 2

ν = 3.5 for 26 degrees of freedom, compared with χ 2
ν = 1.5 for

28 degrees of freedom for the real data. Only simulations with N =
2 give fits as good as those observed, so we conclude that the number
of independently varying elements is restricted by the linearity of
the rms–flux relation to be less than three. The simplest explanation
of the data is that the X-ray emission primarily originates from a
single coherent emitting region, with flux from different parts of the
emitting region being modulated in the same way (i.e. there is little
contribution from independent flares), or from multiple regions that
are somehow connected, so they do not vary independently (e.g. if
separate regions are driven by the same underlying variations in the
accretion flow).

The observed lognormal flux distribution also rules out SOC mod-
els for variability, which predict a power-law distribution of indi-
vidual shot fluences (Bak et al. 1988; Christensen et al. 1991). The
resulting distribution of the total fluxes is therefore a sum of ele-
ments with power-law distributions, with the number of summed
elements depending on how much the individual shots overlap one
another (Christensen, Olami & Bak 1992). The expected flux distri-
bution is therefore intermediate in shape between a power-law and
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Gaussian distribution, unlike the lognormal distribution observed
here. Using a ‘shot-fitting’ approach to quantify variability, Takeuchi
et al. (1995) have demonstrated that the observed distribution of shot
fluences in Cyg X-1 is better fitted by an exponential rather than the
power-law distribution expected from SOC models. This result is
probably related to the fact that the flux distribution is lognormal,
and that the tail of the lognormal distribution (which is dominated by
large ‘events’ which are easily picked out by shot-fitting methods)
approximates an exponential distribution (see also the discussion
in Negoro & Mineshige 2002). To account for this different distri-
bution (and also to produce more realistic PSD indices), Takeuchi
et al. (1995) modify the SOC model to incorporate gradual diffu-
sion of matter through the disc. The resulting model bears some
resemblance to models where the variability arises from stochastic
variations in the accretion flow, rather than from the deterministic
(if unpredictable) dynamics of any critical state.8 We also note here
the temporal variability component of the ‘thundercloud model’ of
Merloni & Fabian (2001) which, although an additive shot-noise
model, successfully produces a linear rms–flux relation. However,
the thundercloud model assumes a power-law distribution of shot
sizes (i.e. similar to the distribution produced by SOC models), and
hence should be ruled out for the same reason as SOC models, i.e.
the flux distribution is not lognormal. The reason why models with
skewed (but not lognormal) flux distributions can produce linear
rms–flux relations is discussed further in Appendix D.

More generally, the fact that the data are consistent with a static
non-linear transform of stochastic, linear input data suggests that
deterministic, non-linear types of model such as dynamical chaos
are not required to explain the data. For example, a possible inter-
pretation of apparent non-linear behaviour in light curves is that it
is a result of unpredictable chaotic behaviour (the non-linearity is
said to be dynamical). Such behaviour might be the signature of a
rather simple physical system, which can be described by simple
dynamical equations. In fact, searches for chaotic dynamics (i.e. a
‘low-dimensional attractor’) in Cyg X-1 X-ray light curves found
no evidence for such behaviour (Lochner, Swank & Szymkowiak
1989). On the other hand, possible evidence for chaotic behaviour
has been suggested for the X-ray light curves of the microquasar
GRS 1915+105 (Misra et al. 2004). However, Theiler et al. (1992)
note that a succession of nested hypotheses should be tested before
evidence for chaos is assumed, including whether or not the variabil-
ity is consistent with static non-linearity (see also Kantz & Schreiber
1997). Therefore, it is possible that the static non-linear behaviour
which we have demonstrated in this paper could be mistaken for
dynamical chaos.

Having ruled out a large number of models, we are left wondering
which models are still permitted by the data. As noted by Gaskell
(2003) (and see also Crow & Shimizu 1988), lognormal distribu-
tions are very common in nature, because they can be produced in
a number of different ways (all involving multiplicative processes).
For example, comminutive processes, involving the random split-
ting apart or fracturing of objects (e.g. the crushing of rocks) lead to
a lognormal distribution of sizes, because the probability of a given
size is dependent on a multiplicative sequence of fracture events.
One could similarly envisage how multiple emitting regions follow-
ing a lognormal distribution of sizes (or equivalently, fluxes) might
be produced. However, it is difficult to see how such an arrangement

8 As Takeuchi et al. (1995) note, in a strict sense the resulting behaviour is
no longer SOC, because a key characteristic of the SOC state is a power-law
distribution of shot fluences.

of emitting region sizes could lead to a lognormal distribution of the
total flux, unless we somehow only witness one of the emitting re-
gions at any given time (otherwise the observed distribution would
be a sum of lognormals, a possibility we have ruled out earlier in this
section). Another type of multiplicative model, involving the cumu-
lative build-up and release of energy from a reservoir, where the
amount of energy released scales with total energy in the reservoir,
is suggested by the jet–disc coupling model of Malzac, Merloni &
Fabian (2004). Further investigation of these models is needed, but
we note here that the lognormal form of observed data might be quite
constraining for the number of components (e.g. jet, disc) which con-
tribute (either adding or subtracting) independently to the reservoir.

Since the variability can be thought of as a static exponential
transformation of linear, Gaussian data, we might first consider a
direct physical interpretation of this fact. For example, the under-
lying variable process (e.g. variations in accretion rate) might be
linear and Gaussian, but the X-ray emission process may be non-
linear such that the observed X-ray variability is transformed to be
non-linear and with a lognormal distribution. This possibility seems
unlikely, however, because (as we noted earlier), the fact that lin-
ear rms–flux relations are seen in both black hole and neutron star
XRBs, which have different X-ray spectra and different emission
mechanisms (e.g. Done & Gierlinski 2003; Gilfanov, Revnivtsev
& Molkov 2003; Poutanen & Gierlinski 2003 and see also Uttley
2004), makes it appear unlikely that the emission process itself is
the origin of the non-linearity and rms–flux relation.

An intuitive and simple way to produce the observed lognormal
distribution in the underlying process is suggested by the rms–flux
relation and the derivation of our exponential model which follows
from it. The amplitude modulation effect implied by the rms–flux
relation suggests that variations on different time-scales must mul-
tiply, rather than add, together. An obvious mechanism for coupling
together variations on different time-scales is if the variations are
produced at different radii in the accretion flow, with slower vari-
ations produced at larger radii. If the accretion variations can then
propagate to small radii (where the X-ray emitting region exists),
then variations on different time-scales can couple together, because
each annulus in the accretion flow will see variations on longer
time-scales produced at larger radii. Such a model was proposed by
Lyubarskii (1997), in order to explain the fact that observed X-ray
variability time-scales in XRBs extend to much longer time-scales
than the longest time-scales expected in the inner, X-ray emitting re-
gion (see also Churazov, Gilfanov & Revnivtsev 2001; Kotov, Chu-
razov & Gilfanov 2001; King et al. 2004 for enhancements to this
model). Uttley & McHardy (2001) then noted that the same model
could explain the observed rms–flux relation, a situation that has
since been reinforced by the discovery that the rms–flux relation in
the X-ray millisecond pulsar SAX J1808.4–3658 is most likely pro-
duced in the accretion flow and not in a flaring corona (Uttley 2004).

If the variations at a given radius are constant in fractional rms
(e.g. as might be expected if they correspond to variations in the
viscosity which are independent of mass accretion rate) then the sit-
uation is almost directly analogous to the sine multiplication picture
used to derive the exponential model in this paper (here the sines
represent the variations produced at different disc radii, although in
reality the variations are unlikely to be periodic). Thus the rms–flux
relation, lognormal flux distribution and non-linearity in the light
curves can be explained in terms of a rather simple physical picture,
which it should be noted can also explain the observed spectral-
timing properties (energy-dependent phase lags, PSD shape and
coherence) of XRBs and AGN (Kotov et al. 2001; Vaughan et al.
2003a; McHardy et al. 2004).
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5.3 Testing future variability models

We first stress that the X-ray emission process (e.g. Comptoniza-
tion in a corona) and the fundamental origin of the variability are
not necessarily implicitly related. In fact, they appear to be largely
unrelated, as revealed by the fact that linear rms–flux relations are
seen in both neutron star and black hole XRBs which have different
X-ray emission mechanisms (Uttley 2004). Therefore, in this sec-
tion, we will consider tests of models for the underlying variability
process and not explanations of spectral variability, which are be-
yond the scope of this work. At the beginning of this paper, we noted
that models for variability tend to start by explaining the shape of
the PSD. We pointed out that the PSD is perhaps not the best tool
to use to distinguish variability models, because many models can
produce the required PSD shapes (e.g. using broad distributions of
shot or event time-scales) and also because a standard PSD shape
is in fact not a fundamental characteristic of real X-ray variability –
XRBs, and possibly AGN show a variety of PSD shapes and PSD
shape varies within the same state and between states. We have
demonstrated in this paper three closely related characteristics of
XRB and AGN variability that do have strong discriminating power
between models: the rms–flux relation, non-linear variability and
a lognormal distribution of fluxes. These characteristics rule out
a whole swathe of models, from additive shot-noise, to SOC, to
any models which consist of multiple, independent varying regions
whose variations add together to produce the observed variability.
The variability process should be multiplicative in order to produce
the observed characteristics.

Therefore, an important test of any variability model is whether
it can reproduce the variability properties outlined in this paper.
This fact is regardless of the specific PSD shape predicted by the
model, or other properties of the variability such as spectral-timing
behaviour, which can be thought of as higher-order features of any
model. For example, different PSD shapes can be produced by var-
ious ‘filters’ which act on the underlying variability process (since
the observed X-ray variability is only really a proxy for the under-
lying process). For example, if the variability is caused by accretion
rate variations, an extended distribution of the X-ray emission can
act as a low-pass filter, producing a steepening of the PSD of the un-
derlying process at high temporal frequencies along with frequency-
dependent lags between different energy bands (e.g. see Kotov et al.
2001; Życki 2003; Vaughan et al. 2003a; McHardy et al. 2004, for
discussion). However, the observed non-linearity, rms–flux relation
and flux distribution are characteristics of the underlying variability
process which simple filtering cannot reproduce (since the filtering
is a linear transformation of the data).

We therefore outline the following battery of tests for models of
the underlying variability process. Beginning with the most impor-
tant, these are as follows.

(i) Do the model data show a linear rms–flux relation?
(ii) Does the rms–flux relation occur on all time-scales, or equiv-

alently, if the model data are stationary do the model data show a
lognormal flux distribution?

(iii) Does the PSD of model data match with observations?

The first two properties to be tested are likely to be most closely
associated with the underlying variability process. The final test,
of PSD shape, which is normally applied to variability models (e.g.
Mineshige et al. 1994; Poutanen & Fabian 1999) is less fundamental
in our opinion, because the precise PSD shape is not even a unique
characteristic of variability in a single source, since PSD shape varies

between states and between observations of the same state (e.g.
Pottschmidt et al. 2003). However, the general characteristics of
the PSD shape [e.g. parametrization of the low/hard state PSD as
multiple Lorentzians in both neutron star and black hole XRBs,
with similar correlations between characteristic frequencies (Belloni
et al. 2002)] are common enough to a variety of sources that the PSD
shape, in combination with the first two tests, remains a useful test
of the underlying variability process.

The first test, for a linear rms–flux relation, is simple to perform
as an initial check of the model, but not sufficient to determine if the
non-linear properties of the model are similar to those of real data. It
is interesting to note here that a nearly linear rms–flux relation may
be obtained from a variety of positively skewed flux distributions, if
the amplitude of variability in the frequency range used to measure
rms is large. We investigate the rms–flux relation for a variety of flux
distributions and PSD shapes in Appendix D. However, if measured
fractional rms is small (e.g. as found for the 2–20 Hz range used to
measure the rms–flux relation for Cyg X-1, or the equivalent high
frequencies used to measure rms–flux relations in AGN), the shape
of the rms–flux relation is a strong function of the flux distribution,
and in this case a linear rms–flux relation is a good predictor of an
underlying lognormal distribution of fluxes. As an additional check,
we then suggest carrying out the second test.

The two forms of the second test arise because the lognormal
flux distribution is a corollary of the fact that the rms–flux relation
seems to apply on all time-scales (as is implicit in the derivation
of the exponential model). If that were not the case, one would
not observe a lognormal flux distribution in stationary data. How-
ever, the condition of stationarity is essential for testing for lognor-
mality. If the simulated data are not stationary, one must instead
test different time-scales of variability to see if the rms–flux re-
lation applies (e.g. see the methods in Uttley & McHardy 2001;
Gleissner et al. 2004 and in Section 3.2). For example, magne-
tohydrodynamic (MHD) simulations of turbulent accretion flows
are reaching the stage where they can demonstrate the variability
expected from such flows in a physically self-consistent way (e.g.
Armitage & Reynolds 2003; Machida & Matsumoto 2003). How-
ever, due to current computational constraints the simulated data
sets are not long enough to probe the longest variability time-scales,
and hence are not stationary. None the less, it would be simple to
test these data sets to see if linear rms–flux relations are present on
different time-scales.

Finally, we note that other tests of non-linearity, such as the bi-
coherence, may also impose strong constraints on models for the
variability. In Section 4.3 we showed how our exponential model
can explain the amplitude and general shape of the bicoherence of
Cyg X-1, but not the detailed characteristics of the bicoherence.
For example, the presence of apparent bumps in the bicoherence
spectrum indicates stronger coupling between variations on certain
time-scales than we might otherwise expect given our simple model.
It is important to develop these methods of non-linear analysis to
shed light on these issues, and provide further clues for the devel-
opment of future models.

6 C O N C L U S I O N S

We have expanded on the discovery of a linear relation between rms
variability and flux in XRBs and AGN, to demonstrate the following.

(i) If the linear rms–flux relation observed in XRBs and AGN ap-
plies on all time-scales, light curves, x(t), are produced which show
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a simple, formally non-linear type of variability, x(t) = exp[l(t)],
where l(t) is a linear input light curve.

(ii) Our phenomenological, ‘exponential model’ for X-ray vari-
ability predicts a lognormal flux distribution for stationary light
curves, which we confirm using data for Cyg X-1.

(iii) The powerful millisecond flares observed in Cyg X-1 in the
low/hard state (Gierlinski & Zdziarski 2003) are a natural conse-
quence of the non-linear variability predicted by our model.

(iv) Our model can reproduce the general shape and amplitude
of the bicoherence spectrum observed in Cyg X-1 (Maccarone &
Coppi 2002), although detailed features in the bicoherence cannot
be explained, implying a stronger coupling between certain time-
scales than we naively expect from our model.

(v) Our model suggests that the clear non-linear X-ray variability
observed in some NLS1 AGN results from the same variability
process that applies in less variable AGN (the difference is simply
that NLS1 are more variable so the non-linearity implied by our
model is easier to detect). The low flux states observed in the NLS1
NGC 4051 are also a manifestation of the same variability process.

(vi) Physical models for the variability must involve multiplica-
tive processes, such as the varying-accretion model of Lyubarskii
(1997) and cannot be due to additive processes such as shot-noise, or
SOC processes, or multiple, independently varying X-ray emitting
regions.

(vii) Future physical models for the variability should first be
tested for the existence of a linear rms–flux relation. Other common
tests such as PSD shape or spectral timing properties are more likely
secondary characteristics of the variability process; but the rms–flux
relation and the resulting non-linear variability and lognormal flux
distribution (in stationary data), appear to be more fundamental
features of the underlying process.

AC K N OW L E D G M E N T S

We would like to thank Tom Maccarone for useful discussions
about bicoherence, and the anonymous referee for an excellent
and thorough report which improved the content of this paper. PU
acknowledges support from PPARC and current support from the
US National Research Council. IMcH acknowledges the support of
a PPARC Senior Research Fellowship. SV acknowledges support
from PPARC. This research has made use of data obtained from
the High Energy Astrophysics Science Archive Research Center
(HEASARC), provided by NASA’s Goddard Space Flight Center.

R E F E R E N C E S

Aitchison J., Brown J. A. C., 1957, The Lognormal Distribution. Cambridge
Univ. Press, Cambridge

Armitage P. J., Reynolds C. S., 2003, MNRAS, 341, 1041
Bak P., Tang C., Wiesenfeld K., 1988, Phys. Rev. A, 38, 364
Bartlett M. S., 1947, Biometrics, 3, 39
Belloni T., Hasinger G., 1990, A&A, 227, L33
Belloni T., Psaltis D., van der Klis M., 2002, ApJ, 572, 392
Boller Th., Brandt W. N., Fabian A. C., Fink H. H., 1997, MNRAS, 289,

393
Box G. E. P., Cox D. R., 1964, J. R. Stat. Soc. B, 26, 211
Brandt W. N., Boller Th., Fabian A. C., Ruszkowski M., 1999, MNRAS,

303, L53
Christensen K., Fogedby H. C., Jensen H. J., 1991, J. Stat. Phys., 63, 653
Christensen K., Olami Z., Bak P., 1992, Phys. Rev. Lett., 68, 241
Churazov E., Gilfanov M., Revnivtsev M., 2001, MNRAS, 321, 759
Crow E. L., Shimizu K., 1988, Lognormal Distributions: Theory and Appli-

cations. Dekker, New York

Dewangan G. C., Boller Th., Singh K. P., Leighly K. M., 2002, A&A, 390,
65

Doi K., 1978, Nat, 275, 197
Done C., Gierlinski M., 2003, MNRAS, 342, 1041
Edelson R., Turner T. J., Pounds K., Vaughan S., Markowitz A., Marshall

H., Dobbie P., Warwick R., 2002, ApJ, 568, 610
Fabian A. C., 1979, Proc. R. Soc. London, Ser. A, 366, 449
Fackrell J., 1996, PhD thesis, Univ. Edinburgh
Gaskell C. M. 2004, ApJ, 612, L21
Gierlinski M., Zdziarski A. A., 2003, MNRAS, 343, L84 (GZ03)
Gilfanov M., Revnivtsev M., Molkov S., 2003, A&A, 410, 217
Gleissner T., Wilms J., Pottschmidt K., Uttley P., Nowak M. A., Staubert R.,

2004, A&A, 414, 1091
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A P P E N D I X A : A F O R M A L P RO O F
O F N O N - L I N E A R I T Y

We can express the exponential model for the light curve x(t) in
terms of the series expansion of exp[l(t)], where l(t) is the linear,
input light curve:

x(t) = exp[l(t)] = 1 + l(t) + [l(t)]2

2
+

∞∑
n=3

[l(t)]n

n!
. (A1)

Next, we can change to discrete time-steps and replace each of the
l(t) terms using the definition of a linear light curve in equation (1):

Xi = 1 +
∞∑
j=0

g j ui− j + 1

2

∞∑
j=0

g j ui− j

( ∞∑
k=0

gkuk− j

)

+
∞∑

n=3

(∑∞
j=0 g j ui− j

)n

n!
(A2)

which can be re-expressed as:

Xi = 1 +
∞∑
j=0

G j ui− j +
∞∑
j=0

∞∑
k=0

G jkui− j ui−k

+
∞∑
j=0

∞∑
k=0

∞∑
l=0

G jklui− j ui−kui−l + . . . (A3)

where the coefficients Gj, Gjk, Gjkl . . . ∝ gj, gjgk, gjgkgl . . . and the
higher order coefficients are non-zero. Equation (A3) is a Volterra
series (cf. equation 2), an example of a formally defined non-linear
time-series model.

A P P E N D I X B : T H E E F F E C T O F T H E
E X P O N E N T I A L T R A N S F O R M AT I O N
O N P S D S H A P E

The shape of the PSD of a linear input light curve is not preserved
by the exponential transformation envisaged by our model. This can
be understood in terms of the series expansion of the exponential
model shown in Appendix A, where the model can be expressed

in terms of the linear light curve l(t) plus higher order polynomi-
als of l(t). Multiplying signals in the time domain is equivalent to
convolving their Fourier transforms in the frequency domain, and
the effect of convolution is to transfer power to other frequencies,
thus distorting the PSD shape from its original form. Thus the ef-
fect of the exponential transformation of l(t) is to add power to the
PSD and transfer this power to different frequencies. It is important
to take this effect into account when simulating time series using
the exponential transformation, if it is necessary that the simulated
light-curve PSD must match some observed PSD.

Fortunately, for typically observed light curves, with broad con-
tinuum PSD shapes, the distorting effect of the exponential transfor-
mation is relatively small, so that it is reasonable to use the observed
PSD as the PSD of the input linear light curve. In this case it is still
important to apply the appropriate correction to the input PSD nor-
malization in order to return the correct variance in the output light
curve, i.e. use equation (14) to determine the input linear light-curve
variance needed to produce the required output variance and then
multiply the input PSD normalization by the ratio of the input vari-
ance to the observed variance.

As the fractional rms increases, so does the distorting effect on
the PSD. However, for most observed fractional rms (e.g. 20–40 per
cent) the distortion is not serious. In Fig. B1 we plot the ratio of the
PSD of the simulated light curves used in Section 4 to the PSD of
the observed light curve (shown in Fig. 3). The variance of the sim-
ulated light curves (prior to dilution with the constant component) is
∼40 per cent. The ratio is close to 1 in most cases, but increases
towards high frequencies; however as the power is small at high fre-
quencies anyway, we find this small amount of distortion acceptable.

The situation is different, and quite interesting, for input light
curves with PSDs containing sharp features. In Fig. B2 we show the
PSD produced by applying the exponential transformation to a light
curve produced by a single sharp Lorentzian noise feature (i.e. a sin-
gle QPO), with peak frequency 1 Hz, quality factor (ratio between
Lorentzian frequency and full-width at half-maximum) q = 10 and a
fractional rms of 50 per cent. The multiple peaks are an effect of the
convolution of the PSD implicit in the exponential transformation,
where the large signal at the peak of the Lorentzian couples to itself
and the signals close to the peak, to produce the higher harmonics
at separations of 1 Hz (in theory there should be an infinite number

Figure B1. Ratio of the PSD of simulated light curve to observed input PSD
(prior to normalization correction), for the broad-band PSD shape plotted in
Fig. 3. See text for details.
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Figure B2. Solid line: PSD (plotted as frequency×power) of a simulated
light curve made from an input light curve with a sharp Lorentzian PSD
(shown as the dotted line).

of such harmonics, but the third harmonic is only just visible, while
even higher harmonics are lost in the noise). Interestingly, a shoul-
der is produced at around 0.1 Hz, and in frequency×power units,
the flat top above the shoulder corresponds to a 1/f power spectral
shape, with slope 0 at lower frequencies. It is interesting that the ex-
ponential transformation of a Lorentzian can produce what appears
to be a rather broad continuum feature, since the correlation between
sharp QPO features and break frequencies in continuum PSDs is al-
ready known in X-ray binary data (Wijnands & van der Klis 1999).
However, we must be careful not to read too much into this inter-
esting mathematical effect, because the simulated Lorentzian peak
has a much higher normalization than typically observed, and is still
much larger than the ‘continuum’ level.

A P P E N D I X C : T H E C A L C U L AT I O N A N D
I N T E R P R E TAT I O N O F B I C O H E R E N C E

The bicoherence b2 is computed as follows (also see Maccarone &
Coppi 2002, and references therein). First the light curve is split
into K segments, and the Fourier transform X calculated for each
segment. Then the bicoherence for the pair of Fourier frequencies
k, l is calculated thus:

b2(k, l) =
∣∣∑K

i=1 Xi (k)Xi (l)X∗
i (k + l)

∣∣2∑K
i=1 |Xi (k)Xi (l)|2

∑K
i=1 |Xi (k + l)|2

. (C1)

The domain in which bicoherence measurements are independent of
one another is for bifrequencies (k, l) where l � k and l + k � N/2
where N is the number of data points in the light-curve segment (i.e.
N/2 corresponds to the Nyquist frequency). In data where the source
variability is also contaminated with additive Gaussian noise, the
denominator in equation (C1), which we call A1, must be corrected
for the effects of the noise (the noise cancels in the numerator to leave
only the source contribution). The noise-corrected denominator A2

can be written as:

A2 =
K∑

i=1

|Xi (k)Xi (l)|2| − n2
(|Xi (k)|2 + |Xi (l)|2 − n2

)

×
K∑

i=1

(|Xi (k + l)|2 − n2
)

(C2)

where n2 is the expected noise level of the PSD due to the additive
Gaussian process. The derivation of this equation is similar to that
of the noise correction to the related coherence function (Vaughan &
Nowak 1997; Nowak et al. 1999), which is used to examine correla-
tions between light-curve phases at identical temporal frequencies,
measured in two different energy bands (unlike bicoherence which
measures correlations between phases at different frequencies in the
same light curve).

Since the resulting bicoherence measure is forced to lie between 0
and 1, a bias of 1/K must be subtracted from the bicoherence before
correcting for noise, i.e. calculate bicoherence using equation (C1),
then subtract 1/K from all measurements, and finally multiply each
measurement by the ratio of denominators A1/A2. While this noise
correction is effective in accounting for additive Gaussian noise, it
should be noted that it is not strictly applicable for noise generated
by Poisson counting statistics. The reason for this is that the ampli-
tude of Poisson noise is correlated with

√
flux, so that the counting

noise variations are in fact coupled to the flux variations (albeit more
weakly than the intrinsic coupling between flux variations associ-
ated with the linear rms–flux relation). Therefore not only does the
noise in real photon counting data affect the denominator of the bi-
coherence equation, it also adds to the numerator, to create a source
of spurious bicoherence.

Note that the numerator of the bicoherence equation, proportional
to the modulus squared of the ‘bispectrum’, averages to zero in the
case of aperiodic variability with no coupling between variations
on different time-scales (i.e. at different frequencies), because the
phases of the signal at different Fourier frequencies are uncorre-
lated. In contrast, in the simple case where a pair of sine waves
at frequencies ν 1 and ν 2 are multiplied together, the coupling of
the sine waves will produce a higher frequency signal at ν = ν 1 +
ν 2, which has a phase equal to the sum of phases of the two sine
waves and a signal power equal to the square of the powers of the
two sine waves and hence b2(ν 1, ν 2) = 1. Thus, in simple terms,
the bicoherence for a given pair of frequencies ν 1, ν 2 indicates the
fraction of the power at the frequency ν 1 + ν 2 which is produced
by coupling of the lower-frequency signals. It is easy to see from
the series expansion of the exponential model (Appendix A) why
the model will produce light curves with a significant bicoherence.

A P P E N D I X D : T H E R M S – F L U X R E L AT I O N S
O F OT H E R D I S T R I BU T I O N S

In order to see how general the linear rms–flux relation is, we can
consider the rms–flux relations of flux distributions other than log-
normal. It is a well-known result in statistics that the values of the
sample variance and sample mean (i.e. estimates of mean and vari-
ance measured from a subset of an underlying population, such as
a segment of a light curve) are independent if and only if the under-
lying population is Gaussian (e.g. Kendall 1994). However, if the
distribution is not normal, e.g. it is skewed, then the sample mean
and variance are not independent (with the degree of correlation
scaling with the skewness of the distribution, Kang & Goldsman
1985), and hence the rms from light curves with skewed distribu-
tions is correlated with flux (with the correlation having the same
sign as the skewness). To determine the form of rms–flux relation
resulting from different distributions, we can consider the simple
case where the variance is small compared to changes in mean flux.
Consider a non-Gaussian light curve x(t) produced by some trans-
formation of an underlying Gaussian light curve, g(t), i.e. x(t) =
f [g(t)]. For small changes in the flux, we can relate the variance of
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the Gaussian light curve δg2 (which is independent of flux, and can
be treated as constant in the binned rms–flux relation), to the vari-
ance of the non-Gaussian light curve δx2 using the error equation
(see also Bartlett 1947):

δx2 =
[

∂x(t)

∂g(t)

]2

δg2. (D1)

Taking the square-root of both sides then gives an approximate
expression for the rms of x(t), σ x . For example, in the case
of a lognormal distribution, x(t) = exp[g(t)] and hence σ x ∝
x(t), as expected. However, if x(t) is produced by the power-law
transformation of g(t), x(t) = g(t)α , the relation becomes σ x ∝
x(t)(1−α−1), i.e. the rms–flux relation has a power-law form. It should
be stressed that this result only applies in the case where σ x is small
compared to x(t), i.e. the fractional rms is small. This is generally
true in the case where the rms is measured at frequencies signif-
icantly above any low-frequency break in the PSD (below which
the PSD slope is zero), but may not be true where rms is measured
close to the low-frequency break, in the regime where the data is
white-noise, where the rms–flux relation can become close to linear
for a wide range of skewed flux distributions. We demonstrate this
effect in Fig. D1, which shows the rms–flux relations measured in
the 2–20 Hz range, for simulated light curves with a distribution
x(t) = g(t)α , where α = 3 and the PSD has either the same shape
as seen in Cyg X-1 in 1996 December (Fig. 3), or is a singly broken
power law with a slope −2 above 2 Hz and slope zero below the
break (hence the measured rms is a large fraction of the total rms
and the mean flux). The figure shows that the data where measured
rms is small follows the predicted rms–flux relation σ x ∝ x(t)2/3,
whereas the data with large measured rms shows an approximately
linear rms–flux relation (including a small constant offset on the rms
axis). We also show data for the Cyg X-1-like PSD corresponding
to a flux distribution with index α = 2, which is well-fitted by the
predicted rms–flux relation σ x ∝ x(t)1/2. These results demonstrate
that, for the kind of rms–flux relations we measure using rms at rel-

Figure D1. Comparison of rms–flux relations for different PSD shapes and
distributions f [g(t)], where g(t) is a Gaussian distribution of data. From top
to bottom: rms–flux relation for f [g(t)] = g(t)3 for a PSD slope of zero
breaking to −2 above 2 Hz, fitted with a linear plus constant model (dotted
line); f [g(t)] = g(t)3 for a PSD similar to Cyg X-1 in 1996 December,
fitted with a power law of index 2/3 (dotted line); f [g(t)] = g(t)2 for a PSD
similar to Cyg X-1 in 1996 December, fitted with a power law of index 1/2
(dotted line). See text for further details.

atively high frequencies (e.g. 2–20 Hz in Cyg X-1 and equivalently
high frequencies in AGN), the shape of the rms–flux relation is a
good predictor of the functional form of the underlying skewed dis-
tribution. However, care must be taken when measuring large values
of rms, e.g. close to the low-frequency break, since in that case, ap-
proximately linear rms–flux relations can be made for a variety of
underlying distributions.
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