diff --git a/adv_lab.bib b/adv_lab.bib index f00aec0..a1a56d0 100644 --- a/adv_lab.bib +++ b/adv_lab.bib @@ -1,3 +1,324 @@ +@INPROCEEDINGS{2001sac..conf....3P, + author = {{Peterson}, B.~M.}, + title = "{Variability of Active Galactic Nuclei}", +booktitle = {Advanced Lectures on the Starburst-AGN}, + year = 2001, + eprint = {astro-ph/0109495}, + editor = {{Aretxaga}, I. and {Kunth}, D. and {M{\'u}jica}, R.}, + pages = {3}, + doi = {10.1142/9789812811318_0002}, + adsurl = {http://adsabs.harvard.edu/abs/2001sac..conf....3P}, + adsnote = {Provided by the SAO/NASA Astrophysics Data System} +} + + +@INPROCEEDINGS{2016ASSL..439..249B, + author = {{Bentz}, M.~C.}, + title = "{AGN Reverberation Mapping}", + keywords = {Physics}, +booktitle = {Astrophysics and Space Science Library}, + year = 2016, + series = {Astrophysics and Space Science Library}, + volume = 439, + editor = {{Boffin}, H.~M.~J. and {Hussain}, G. and {Berger}, J.-P. and + {Schmidtobreick}, L.}, + pages = {249}, + doi = {10.1007/978-3-319-39739-9_13}, + adsurl = {http://adsabs.harvard.edu/abs/2016ASSL..439..249B}, + adsnote = {Provided by the SAO/NASA Astrophysics Data System} +} + +@MISB{ngc5548photo, + author = {Davide de Martin}, + title = {Supermassive black hole at the heart of NGC 5548}, + howpublished = {ESA/Hubble \& Nasa. https://cdn.spacetelescope.org/archives/images/screen/heic1413a.jpg.}, + note = {CC BY} +} + + +@ARTICLE{2016ApJ...821...56F, + author = {{Fausnaugh}, M.~M. and {Denney}, K.~D. and {Barth}, A.~J. and + {Bentz}, M.~C. and {Bottorff}, M.~C. and {Carini}, M.~T. and + {Croxall}, K.~V. and {De Rosa}, G. and {Goad}, M.~R. and {Horne}, K. and + {Joner}, M.~D. and {Kaspi}, S. and {Kim}, M. and {Klimanov}, S.~A. and + {Kochanek}, C.~S. and {Leonard}, D.~C. and {Netzer}, H. and + {Peterson}, B.~M. and {Schn{\"u}lle}, K. and {Sergeev}, S.~G. and + {Vestergaard}, M. and {Zheng}, W.-K. and {Zu}, Y. and {Anderson}, M.~D. and + {Ar{\'e}valo}, P. and {Bazhaw}, C. and {Borman}, G.~A. and {Boroson}, T.~A. and + {Brandt}, W.~N. and {Breeveld}, A.~A. and {Brewer}, B.~J. and + {Cackett}, E.~M. and {Crenshaw}, D.~M. and {Dalla Bont{\`a}}, E. and + {De Lorenzo-C{\'a}ceres}, A. and {Dietrich}, M. and {Edelson}, R. and + {Efimova}, N.~V. and {Ely}, J. and {Evans}, P.~A. and {Filippenko}, A.~V. and + {Flatland}, K. and {Gehrels}, N. and {Geier}, S. and {Gelbord}, J.~M. and + {Gonzalez}, L. and {Gorjian}, V. and {Grier}, C.~J. and {Grupe}, D. and + {Hall}, P.~B. and {Hicks}, S. and {Horenstein}, D. and {Hutchison}, T. and + {Im}, M. and {Jensen}, J.~J. and {Jones}, J. and {Kaastra}, J. and + {Kelly}, B.~C. and {Kennea}, J.~A. and {Kim}, S.~C. and {Korista}, K.~T. and + {Kriss}, G.~A. and {Lee}, J.~C. and {Lira}, P. and {MacInnis}, F. and + {Manne-Nicholas}, E.~R. and {Mathur}, S. and {McHardy}, I.~M. and + {Montouri}, C. and {Musso}, R. and {Nazarov}, S.~V. and {Norris}, R.~P. and + {Nousek}, J.~A. and {Okhmat}, D.~N. and {Pancoast}, A. and {Papadakis}, I. and + {Parks}, J.~R. and {Pei}, L. and {Pogge}, R.~W. and {Pott}, J.-U. and + {Rafter}, S.~E. and {Rix}, H.-W. and {Saylor}, D.~A. and {Schimoia}, J.~S. and + {Siegel}, M. and {Spencer}, M. and {Starkey}, D. and {Sung}, H.-I. and + {Teems}, K.~G. and {Treu}, T. and {Turner}, C.~S. and {Uttley}, P. and + {Villforth}, C. and {Weiss}, Y. and {Woo}, J.-H. and {Yan}, H. and + {Young}, S.}, + title = "{Space Telescope and Optical Reverberation Mapping Project. III. Optical Continuum Emission and Broadband Time Delays in NGC 5548}", + journal = {ApJ}, +archivePrefix = "arXiv", + eprint = {1510.05648}, + keywords = {galaxies: active, galaxies: individual: NGC 5548, galaxies: nuclei, galaxies: Seyfert}, + year = 2016, + month = apr, + volume = 821, + eid = {56}, + pages = {56}, + doi = {10.3847/0004-637X/821/1/56}, + adsurl = {http://adsabs.harvard.edu/abs/2016ApJ...821...56F}, + adsnote = {Provided by the SAO/NASA Astrophysics Data System} +} + +@ARTICLE{2016Natur.535..388K, + author = {{Kara}, E. and {Miller}, J.~M. and {Reynolds}, C. and {Dai}, L. + }, + title = "{Relativistic reverberation in the accretion flow of a tidal disruption event}", + journal = {\nat}, +archivePrefix = "arXiv", + eprint = {1606.06736}, + primaryClass = "astro-ph.HE", + year = 2016, + month = jul, + volume = 535, + pages = {388-390}, + doi = {10.1038/nature18007}, + adsurl = {http://adsabs.harvard.edu/abs/2016Natur.535..388K}, + adsnote = {Provided by the SAO/NASA Astrophysics Data System} +} + + + +@ARTICLE{2007MNRAS.380..669C, + author = {{Cackett}, E.~M. and {Horne}, K. and {Winkler}, H.}, + title = "{Testing thermal reprocessing in active galactic nuclei accretion discs}", + journal = {MNRAS}, +archivePrefix = "arXiv", + eprint = {0706.1464}, + keywords = {galaxies: active, galaxies: nuclei, galaxies: Seyfert}, + year = 2007, + month = sep, + volume = 380, + pages = {669-682}, + doi = {10.1111/j.1365-2966.2007.12098.x}, + adsurl = {http://adsabs.harvard.edu/abs/2007MNRAS.380..669C}, + adsnote = {Provided by the SAO/NASA Astrophysics Data System} +} + +@ARTICLE{2014A&ARv..22...72U, + author = {{Uttley}, P. and {Cackett}, E.~M. and {Fabian}, A.~C. and {Kara}, E. and + {Wilkins}, D.~R.}, + title = "{X-ray reverberation around accreting black holes}", + journal = {A\&ARv}, +archivePrefix = "arXiv", + eprint = {1405.6575}, + primaryClass = "astro-ph.HE", + keywords = {Accretion, accretion disks, Black hole physics, Galaxies: active, Galaxies: Seyfert, X-rays: binaries}, + year = 2014, + month = aug, + volume = 22, + eid = {72}, + pages = {72}, + doi = {10.1007/s00159-014-0072-0}, + adsurl = {http://adsabs.harvard.edu/abs/2014A%26ARv..22...72U}, + adsnote = {Provided by the SAO/NASA Astrophysics Data System} +} + +@ARTICLE{2013ApJ...777...24Z, + author = {{Zoghbi}, A. and {Reynolds}, C. and {Cackett}, E.~M.}, + title = "{Calculating Time Lags from Unevenly Sampled Light Curves}", + journal = {ApJ}, +archivePrefix = "arXiv", + eprint = {1308.5852}, + primaryClass = "astro-ph.HE", + keywords = {black hole physics, galaxies: active, galaxies: nuclei, methods: data analysis }, + year = 2013, + month = nov, + volume = 777, + eid = {24}, + pages = {24}, + doi = {10.1088/0004-637X/777/1/24}, + adsurl = {http://adsabs.harvard.edu/abs/2013ApJ...777...24Z}, + adsnote = {Provided by the SAO/NASA Astrophysics Data System} +} + +@ARTICLE{2015ApJ...806..129E, + author = {{Edelson}, R. and {Gelbord}, J.~M. and {Horne}, K. and {McHardy}, I.~M. and + {Peterson}, B.~M. and {Ar{\'e}valo}, P. and {Breeveld}, A.~A. and + {De Rosa}, G. and {Evans}, P.~A. and {Goad}, M.~R. and {Kriss}, G.~A. and + {Brandt}, W.~N. and {Gehrels}, N. and {Grupe}, D. and {Kennea}, J.~A. and + {Kochanek}, C.~S. and {Nousek}, J.~A. and {Papadakis}, I. and + {Siegel}, M. and {Starkey}, D. and {Uttley}, P. and {Vaughan}, S. and + {Young}, S. and {Barth}, A.~J. and {Bentz}, M.~C. and {Brewer}, B.~J. and + {Crenshaw}, D.~M. and {Dalla Bont{\`a}}, E. and {De Lorenzo-C{\'a}ceres}, A. and + {Denney}, K.~D. and {Dietrich}, M. and {Ely}, J. and {Fausnaugh}, M.~M. and + {Grier}, C.~J. and {Hall}, P.~B. and {Kaastra}, J. and {Kelly}, B.~C. and + {Korista}, K.~T. and {Lira}, P. and {Mathur}, S. and {Netzer}, H. and + {Pancoast}, A. and {Pei}, L. and {Pogge}, R.~W. and {Schimoia}, J.~S. and + {Treu}, T. and {Vestergaard}, M. and {Villforth}, C. and {Yan}, H. and + {Zu}, Y.}, + title = "{Space Telescope and Optical Reverberation Mapping Project. II. Swift and HST Reverberation Mapping of the Accretion Disk of NGC 5548}", + journal = {\apj}, +archivePrefix = "arXiv", + eprint = {1501.05951}, + keywords = {galaxies: active, galaxies: individual: NGC 5548, galaxies: nuclei, galaxies: Seyfert}, + year = 2015, + month = jun, + volume = 806, + eid = {129}, + pages = {129}, + doi = {10.1088/0004-637X/806/1/129}, + adsurl = {http://adsabs.harvard.edu/abs/2015ApJ...806..129E}, + adsnote = {Provided by the SAO/NASA Astrophysics Data System} +} + +@ARTICLE{2015ApJ...806..128D, + author = {{De Rosa}, G. and {Peterson}, B.~M. and {Ely}, J. and {Kriss}, G.~A. and + {Crenshaw}, D.~M. and {Horne}, K. and {Korista}, K.~T. and {Netzer}, H. and + {Pogge}, R.~W. and {Ar{\'e}valo}, P. and {Barth}, A.~J. and + {Bentz}, M.~C. and {Brandt}, W.~N. and {Breeveld}, A.~A. and + {Brewer}, B.~J. and {Dalla Bont{\`a}}, E. and {De Lorenzo-C{\'a}ceres}, A. and + {Denney}, K.~D. and {Dietrich}, M. and {Edelson}, R. and {Evans}, P.~A. and + {Fausnaugh}, M.~M. and {Gehrels}, N. and {Gelbord}, J.~M. and + {Goad}, M.~R. and {Grier}, C.~J. and {Grupe}, D. and {Hall}, P.~B. and + {Kaastra}, J. and {Kelly}, B.~C. and {Kennea}, J.~A. and {Kochanek}, C.~S. and + {Lira}, P. and {Mathur}, S. and {McHardy}, I.~M. and {Nousek}, J.~A. and + {Pancoast}, A. and {Papadakis}, I. and {Pei}, L. and {Schimoia}, J.~S. and + {Siegel}, M. and {Starkey}, D. and {Treu}, T. and {Uttley}, P. and + {Vaughan}, S. and {Vestergaard}, M. and {Villforth}, C. and + {Yan}, H. and {Young}, S. and {Zu}, Y.}, + title = "{Space Telescope and Optical Reverberation Mapping Project.I. Ultraviolet Observations of the Seyfert 1 Galaxy NGC 5548 with the Cosmic Origins Spectrograph on Hubble Space Telescope}", + journal = {\apj}, +archivePrefix = "arXiv", + eprint = {1501.05954}, + keywords = {galaxies: active, galaxies: individual: NGC 5548, galaxies: nuclei, galaxies: Seyfert}, + year = 2015, + month = jun, + volume = 806, + eid = {128}, + pages = {128}, + doi = {10.1088/0004-637X/806/1/128}, + adsurl = {http://adsabs.harvard.edu/abs/2015ApJ...806..128D}, + adsnote = {Provided by the SAO/NASA Astrophysics Data System} +} + +@ARTICLE{1999MNRAS.302L..24C, + author = {{Collier}, S. and {Horne}, K. and {Wanders}, I. and {Peterson}, B.~M. + }, + title = "{A new direct method for measuring the Hubble constant from reverberating accretion discs in active galaxies}", + journal = {\mnras}, + eprint = {astro-ph/9811278}, + year = 1999, + month = jan, + volume = 302, + pages = {L24-L28}, + doi = {10.1046/j.1365-8711.1999.02250.x}, + adsurl = {http://adsabs.harvard.edu/abs/1999MNRAS.302L..24C}, + adsnote = {Provided by the SAO/NASA Astrophysics Data System} +} + +@ARTICLE{2016MNRAS.462..511K, + author = {{Kara}, E. and {Alston}, W.~N. and {Fabian}, A.~C. and {Cackett}, E.~M. and + {Uttley}, P. and {Reynolds}, C.~S. and {Zoghbi}, A.}, + title = "{A global look at X-ray time lags in Seyfert galaxies}", + journal = {\mnras}, + keywords = {black hole physics, galaxies: active, X-rays: galaxies}, + year = 2016, + month = oct, + volume = 462, + pages = {511-531}, + doi = {10.1093/mnras/stw1695}, + adsurl = {http://adsabs.harvard.edu/abs/2016MNRAS.462..511K}, + adsnote = {Provided by the SAO/NASA Astrophysics Data System} +} + +@INPROCEEDINGS{2006pces.conf...89P, + author = {{Peterson}, B.~M. and {Horne}, K.}, + title = "{Reverberation mapping of active galactic nuclei}", +booktitle = {Planets to Cosmology: Essential Science in the Final Years of the Hubble Space Telescope}, + year = 2006, + volume = 18, + editor = {{Livio}, M. and {Casertano}, S.}, + month = jan, + pages = {89}, + adsurl = {http://adsabs.harvard.edu/abs/2006pces.conf...89P}, + adsnote = {Provided by the SAO/NASA Astrophysics Data System} +} + +@ARTICLE{2012ARA&A..50..455F, + author = {{Fabian}, A.~C.}, + title = "{Observational Evidence of Active Galactic Nuclei Feedback}", + journal = {\araa}, +archivePrefix = "arXiv", + eprint = {1204.4114}, + year = 2012, + month = sep, + volume = 50, + pages = {455-489}, + doi = {10.1146/annurev-astro-081811-125521}, + adsurl = {http://adsabs.harvard.edu/abs/2012ARA%26A..50..455F}, + adsnote = {Provided by the SAO/NASA Astrophysics Data System} +} + + +@ARTICLE{2015PASP..127...67B, + author = {{Bentz}, M.~C. and {Katz}, S.}, + title = "{The AGN Black Hole Mass Database}", + journal = {\pasp}, +archivePrefix = "arXiv", + eprint = {1411.2596}, + year = 2015, + month = jan, + volume = 127, + pages = {67-73}, + doi = {10.1086/679601}, + adsurl = {http://adsabs.harvard.edu/abs/2015PASP..127...67B}, + adsnote = {Provided by the SAO/NASA Astrophysics Data System} +} + +@ARTICLE{2014SSRv..183..253P, + author = {{Peterson}, B.~M.}, + title = "{Measuring the Masses of Supermassive Black Holes}", + journal = {\ssr}, + keywords = {Active galactic nuclei, Black hole, Reverberation mapping}, + year = 2014, + month = sep, + volume = 183, + pages = {253-275}, + doi = {10.1007/s11214-013-9987-4}, + adsurl = {http://adsabs.harvard.edu/abs/2014SSRv..183..253P}, + adsnote = {Provided by the SAO/NASA Astrophysics Data System} +} + + +@ARTICLE{1973A&A....24..337S, + author = {{Shakura}, N.~I. and {Sunyaev}, R.~A.}, + title = "{Black holes in binary systems. Observational appearance.}", + journal = {\aap}, + year = 1973, + volume = 24, + pages = {337-355}, + adsurl = {http://adsabs.harvard.edu/abs/1973A%26A....24..337S}, + adsnote = {Provided by the SAO/NASA Astrophysics Data System} +} + + + + + + + + + @book{CHAOSDYNAMICS, author = {Baker, G.L. and Gollub, J.P.}, @@ -117,4 +438,11 @@ url = {http://www.engineeringtoolbox.com/air-density-specific-weight-d_600.html} month=oct # "~28", publisher={Google Patents}, note={WO Patent App. PCT/GB2004/001,654} -} \ No newline at end of file +} + + + + + + + diff --git a/chaos/report/report.tex b/chaos/report/report.tex index 0977f55..6600ab5 100644 --- a/chaos/report/report.tex +++ b/chaos/report/report.tex @@ -31,9 +31,9 @@ The chaotic behaviour of a driven pendulum is explored. Phase space behaviours o \section{Chaos} \label{sec:chaos} -Chaos is observed in many non-linear physical systems. It is the condition that a system's outcome is strongly sensitive to initial conditions. The changing conditions as the system evolves affect the outcome such that predicting the future state becomes impossible. The motion of a driven oscillator, such as a driven pendulum, for example, becomes unpredictable as the driving frequency and natural frequency of the pendulum interact. Damping can constrain the motion, and we find that while the motion is unpredictable, it still displays certain characteristics that can be analyzed. +Chaos is observed in many non-linear physical systems. It is the condition that a system's evolution is strongly sensitive to initial conditions, such that predicting the future state becomes impossible. The motion of a driven oscillator, such as a driven pendulum, becomes unpredictable as the driving frequency and natural frequency of the pendulum interact. Damping can constrain the motion, and we find that while the motion is unpredictable, it still exhibits some useful features, which will be discussed in section \ref{sec:modeling}. -For a finite period of time, chaotic behaviour isn't completely discernable from periodic behaviour, because the possibility exists that the function may repeat itself at some future time. To identify chaos, one makes a judgment after enough time has elapsed to assume for practical purposes the function will not repeat. Distinctions are seen between a periodic variable and a chaotic variable in phase space and poincar\'{e} sections. \cite{TANGLEDTALE} +For a finite period of time, chaotic behaviour isn't completely discernable from periodic behaviour, because the possibility exists that the function may repeat itself at some future time. Distinctions are seen between a periodic variable and a chaotic variable in phase space and Poincar\'{e} sections. \cite{TANGLEDTALE} \subsection{Model of a Driven Pendulum} @@ -44,7 +44,7 @@ For a finite period of time, chaotic behaviour isn't completely discernable from $\frac{d^2\theta}{dt^2} = \frac{{\omega_0}^2}{I} sin(\theta) - \frac{{\alpha}}{I} \frac{d\theta}{dt} + \frac{f}{I} cos(\omega t + \phi)$. \end{center} - Here, $\omega_0$ represents the natural frequency of the pedulum, also its resonant frequency. The system will respond most strongly to the driver at this frequency. $\alpha$ is a damping term -- this can take a variety of forms, and in the experiment of section \ref{sec:experiment} is produced by a neodymium magnet interacting with the metal wheel of the pendulum. $f$ is the forcing amplitude where $\omega$ is the forcing frequency, offset from the angular coordinate by a phase $\phi$. $I$ is the moment of inertia of the pendulum. + Here, $\omega_0$ represents the natural frequency of the pedulum, also its resonant frequency. $\alpha$ is a damping term -- this can take a variety of forms, and in the experiment of section \ref{sec:experiment} is produced by a neodymium magnet interacting with the metal wheel of the pendulum. $f$ is the forcing amplitude where $\omega$ is the forcing frequency, offset from the angular coordinate by a phase $\phi$. $I$ is the moment of inertia of the pendulum. The system will respond most strongly to the driver at this frequency. \section{Phase Space} @@ -83,7 +83,7 @@ A 2-dimensional phase space is a useful environment in which to identify the cha \end{figure} \subsection{Poincar\'{e} Map} - A Poincar\'{e} section is a 2D phase space cross-section; in the case of the driven pendulum, the cross-section at a phase $\phi$ from the forcing term. One draws a map between each successive point to create a Poincar\'e map, which is a useful representation of a system's behaviour in phase space. A poincar\'e section of the driven pendulum model is shown in figure \ref{fig:model_driven_poincare}. An undriven and undamped oscillator will always return to the same point after one period, so a Poincar\'e map sampled using the period corresponding to the oscillator's natural frequency will consist of a single dot. The existence of multiple points at the same phase indicates chaotic motion. + A Poincar\'{e} section is a 2D phase space cross-section; in the case of the driven pendulum, the cross-section at a phase $\phi$ from the forcing term. One draws a map between each successive point to create a Poincar\'e map, which is a useful representation of a system's behaviour in phase space. A Poincar\'e section of the driven pendulum model is shown in figure \ref{fig:model_driven_poincare}. An undriven and undamped oscillator will always return to the same point after one period, so a Poincar\'e map sampled using the period corresponding to the oscillator's natural frequency will consist of a single dot. The existence of multiple points at the same phase indicates chaotic motion. \begin{figure} \includegraphics[width=6.5in]{model_driven_poincare.png} @@ -117,7 +117,7 @@ An experimental driven pendulum is built in order to determine whether its motio \subsection{Periodic Motion} - To produce periodic motion, the driving arm is run with a driving period $1.45\pm0.02s$. The observed motion is plotted in figure \ref{fig:exp_periodic}. The motion still suggests the possibility of chaos by the variation in the path taken about the critical point, but the poincar\'e section in figure \ref{fig:exp_periodic} indicates that the orbit is likely converging. The period of the observed motion is consistent with the driving period. + To produce periodic motion, the driving arm is run with a driving period $1.45\pm0.02s$. The observed motion is plotted in figure \ref{fig:exp_periodic}. The motion still suggests the possibility of chaos by the variation in the path taken about the critical point, but the Poincar\'e section in figure \ref{fig:exp_periodic} indicates that the orbit is likely converging. The period of the observed motion is consistent with the driving period. \begin{figure} \hfill @@ -133,13 +133,13 @@ An experimental driven pendulum is built in order to determine whether its motio \includegraphics[width=1.8in]{exp_periodic_poincare.png} } \hfill - \caption{[A] The observed motion when the driving arm is run with period $1.45\pm0.02s$ is periodic at $1.48\pm0.08s$. [B] The periodic nature is recognizable in phase space. [C] The poincar\'e section shows the orbit is likely converging.} + \caption{[A] The observed motion when the driving arm is run with period $1.45\pm0.02s$ is periodic at $1.48\pm0.08s$. [B] The periodic nature is recognizable in phase space. [C] The Poincar\'e section shows the orbit is likely converging.} \label{fig:exp_periodic} \end{figure} \subsection{Chaotic Motion} - The driving arm period was increased until the pendulum was exhibiting visibly complex behaviour. The final period was $1.13\pm0.02s$. In figure \ref{fig:exp_chaotic_A} the observed motions are plotted. Two chaotic attractors are strikingly visible in the phase diagram, and the poincar\'e plot shows significant deviation through the phase. + The driving arm period was increased until the pendulum was exhibiting visibly complex behaviour. The final period was $1.13\pm0.02s$. In figure \ref{fig:exp_chaotic_A} the observed motions are plotted. Two chaotic attractors are strikingly visible in the phase diagram, and the Poincar\'e plot shows significant deviation through the phase. \begin{figure} \hfill @@ -155,7 +155,7 @@ An experimental driven pendulum is built in order to determine whether its motio \includegraphics[width=1.8in]{exp_chaotic_A_poincare.png} } \hfill - \caption{[A] The observed motion when the driving arm is run with period $1.13\pm0.02s$ is chaotic. [B] Chaotic attractors are recognizable in phase space. [C] The poincar\'e section shows chaos in the orbit, but that the motions are still constrained to a finite area in phase space.} + \caption{[A] The observed motion when the driving arm is run with period $1.13\pm0.02s$ is chaotic. [B] Chaotic attractors are recognizable in phase space. [C] The Poincar\'e section shows chaos in the orbit, but that the motions are still constrained to a finite area in phase space.} \label{fig:exp_chaotic_A} \end{figure} @@ -175,12 +175,12 @@ An experimental driven pendulum is built in order to determine whether its motio \includegraphics[width=1.8in]{exp_chaotic_B_poincare.png} } \hfill - \caption{[A] The observed motion when the driving arm is run with period $1.26\pm0.02s$ (near the resonance frequency) is chaotic. [B] . [C] The poincar\'e section shows the same integrated area of constraint in variation as the first test, but more evenly distributed.} + \caption{[A] The observed motion when the driving arm is run with period $1.26\pm0.02s$ (near the resonance frequency) is chaotic. [B] . [C] The Poincar\'e section shows the same integrated area of constraint in variation as the first test, but more evenly distributed.} \label{fig:exp_chaotic_B} \end{figure} - One final driving period was chosen for good measure. At $1.15\pm0.02s$, the motion appears closer to sinsuisoidal than in the pervious tests. Nonetheless, the attractors can be observed in the phase diagram and the paths through the poincar\'e section are limited to the same integrated area. + One final driving period was chosen for good measure. At $1.15\pm0.02s$, the motion appears closer to sinsuisoidal than in the pervious tests. Nonetheless, the attractors can be observed in the phase diagram and the paths through the Poincar\'e section are limited to the same integrated area. \begin{figure} \hfill @@ -190,13 +190,13 @@ An experimental driven pendulum is built in order to determine whether its motio \hfill \includegraphics[width=1.8in]{exp_chaotic_C_poincare.png} \hfill - \caption{The observed motion when the driving arm is run with period $1.16\pm0.02s$. The time graph looks significiantly different from the previous tests, but the same attractors and poincar\'e section are observed.} + \caption{The observed motion when the driving arm is run with period $1.16\pm0.02s$. The time graph looks significiantly different from the previous tests, but the same attractors and Poincar\'e section are observed.} \label{fig:exp_chaotic_C} \end{figure} \section{Discussion} \label{sec:discussion} -The periodic motion is observable in the first experimental case, plotted in figure \ref{fig:exp_periodic}. Once the driving arm period was increased from that frequency to one that induced chaotic motion, the predicted spread of intercepts through the poincar\'e section and the orbits about the chaotic attractors were visually confirmed. It would have been useful to produce the phase diagram of the damped, undriven pendulum to compare the locations of those critical points to the chaotic attractors. However, as Poincar\'e predicted so long ago, it is quite evident that constrained chaotic motion does follow complex paths about attractors, and this motion is evident in the observed motion of the damped, driven pendulum. +The periodic motion is observable in the first experimental case, plotted in figure \ref{fig:exp_periodic}. Once the driving arm period was increased from that frequency to one that induced chaotic motion, the predicted spread of intercepts through the Poincar\'e section and the orbits about the chaotic attractors were visually confirmed. It would have been useful to produce the phase diagram of the damped, undriven pendulum to compare the locations of those critical points to the chaotic attractors. However, as Poincar\'e predicted so long ago, it is quite evident that constrained chaotic motion does follow complex paths about attractors, and this motion is evident in the observed motion of the damped, driven pendulum. \printbibliography diff --git a/lag/data/clag_analysis-7bins-3465A.ipynb b/lag/data/clag_analysis-7bins-3465A.ipynb new file mode 100644 index 0000000..9e60550 --- /dev/null +++ b/lag/data/clag_analysis-7bins-3465A.ipynb @@ -0,0 +1,781 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X18VPWd9/9XSAKSRBRwbFEoxFBYg1pNKhD6s+qCqFBy\n1UI35PGzbbjorle73V2vSzK22u7P31W07aRre117tbXXlpL21zWmWnYXoevderNU7mro9sb4kxID\nyO2MiDcQhNyc64/vHOcmM8lM5szMOTPv5+ORR2BmMufkmzPnfM73+/l+viAiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjJm+4GhBF//K4/7JCIiIi42Fbg46msxJnj4\neD53SkRERLzju8DefO+EiIiIeMN44A3gy/neEREREXFOWRbf+5PABUD7CK+ZFv4SERGR9BwNf+Vc\nSRbf+0ngPeA/JXl+2iWXXHLkyJEjWdwFERGRgnUYuJY8BBDZ6nmYiUmWvG2E10w7cuQIP/vZz7j8\n8suztBsS78477+S73/1uvnejqKjNc09tnntq89x65ZVXuP322y/F9N4XTPCwBjgObB3thZdffjl1\ndXVZ2g2Jd+GFF6q9c0xtnntq89xTmxeXcVl6zzXATzDTNEVERKSAZCN4WAJMB36chfcWERGRPMvG\nsMVTQGkW3ldERERcIBs9D+Jizc3N+d6FoqM2zz21ee6pzYtLNqdqjqYO6Orq6lKSjYiISBr27NlD\nfX09QD2wJ9fbV8+DiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiI\npEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIik\nRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpKUs3zsgIlJIOjrMF8B778GBAzBzJpx3nnmsudl8\niXiZeh5ERBzU3AybN5vvZ8/C3r3wzjvw6qsmmOjogMbGSIAh4kXqeRARcVgoFOKppwK8/no3UMqh\nQ4McPlzL97/vZ/FiX753TyRj6nkQEXFQMBikoaGJ9vaV9PZuBOZy+LAF/Ae33HIDzc1/RSgUyvdu\nimREwYOIiIPuvruNnp4HgMuA1cBKYCvwNAMDv+eRR5ppaGhSACGepuBBRMRBu3d3AwuANuABYCFQ\nEn52HLCInp778fsDedpDkcwpeBARcdDAQCkmWLCDiEQWhIMMEW9S8CAi4qCyskHAAuwgIpFx4SBD\nxJsUPIiIOGj+/FpgF2AHEYkMhYMMEW9S8CAi4qBAwE9NzT3ARcDOJK/aFQ4yRLxJwYOIiIN8Ph87\ndnSyenUVZWX/GXgRGAo/OwTsoKbmXgIBf/52UiRDCh5ERBzm8/no6PgeTzzx78A/c+mlK4BGqqtX\n0NKyiR07OvH5VCxKvEsVJkVEHBS7toWPOXPamDwZDh+GGTNg6VJQ3CBep54HEREHRa9tcd55MHcu\nTJoEc+bAhAla20IKg3oeRESyQKtnSiFTz4OIiIikRcGDiIiIpEXDFiIiWRSbQAkHDsDMmSYfAjS8\nId6k4EFExCGjBQo33AD33mteU1eXt90UyZiCBxERh0T3IuzZA/X1JlCYMSOE3x/gRz/qBkpZtWqQ\n66+vJRDwq96DeJKCBxERB4VCJlB44QUTKNx2Wx8nT4Z4990fAgGghN7eIXp7d7NtW5MKRoknKWFS\nRMQhwWCQhoYm2ttX0tu7BdjMwYNX8+67DwELiayyOQ5YSE/P/fj9gbztr8hYKXgQEXHI3Xe30dPz\nALGBwivh/yeygN27u3OybyJOUvAgIuIQEwgsiHu0lEggEW8cAwOl2d0pkSxQ8CAi4hATCMQHCoOA\nleQnhigrG8zuTolkgYIHERGHmEAgPlCoBXYl+YldzJ9fm92dEskCBQ8iIg4xgUB8oOAH7gG2A0Ph\nx4aAHdTU3Esg4M/hHoo4Q8GDiIhDAgE/NTX3ADuIBApTgXVUVd3BzJm3Ao1UV6+gpWWTpmmKZ6nO\ng4iIQ3w+Hzt2dIbrPKynt7eU6mq7INSzvP66j/p6eOwxVZgUb1PwICLiIJ/Px8aNbe9XmPz852Hn\nTli71pSsnjMHvvxlrW0h3paN4OFS4FvALcBEYC+wFtiThW2JiLhG/NoWc+bA889HAoU1axQoSGFw\nOniYDLwI/BsmeAgCNcBbDm9HRMR11IsgxcLp4OFu4ACmp8F20OFtiIiISB45PduiEegCHgWOY4Yq\nPu/wNkRERCSPnA4eLgO+ALwKLAV+APxP4LMOb0dERETyxOlhi3HAbuCr4f//FrgC+C/ATxP9wJ13\n3smFF14Y81hzczPNGjgUERGho6ODDjsTN+ytt/KbSphstZax2g88BfxF1GNfAO4Fpse9tg7o6urq\nok4TnkVERFK2Z88e6uvrAerJw2xGp3seXgT+JO6xOZigQkSkaMVP4zxwAGbOVL0H8Sang4fvYAq4\nfwWTNDkf+PPwl4hI0WpuhiVLQuHqk9309pbS329Xn/SrTLV4itPBw0vAbcA3gL8FXgP+BugY6YdE\nRApdMBhk0aLV9PQ8AASAEnp7h+jt3c22bU1a50I8JRsLY20FrsJUl5wHbMjCNkREPOXuu9vCgcNC\nIulm44CF9PTcj98fyN/OiaRJq2qKiOTA7t3dwIIkzy4IPy/iDQoeRERyYGCglOQT3MaFnxfxBgUP\nIiI5UFY2CFhJnh0KPy/iDQoeRERyYP78WmBXkmd3hZ8X8QYFDyIiORAI+KmpuQfYAQyFHx0CdlBT\ncy+BgD9/OyeSJgUPIiI54PP52LGjk49/fBMVFSuARiZOXMGkSZuYPr2TtWt9NDZGCkmJuJnTdR5E\nRCQJn8/HCy+0sWcP1NfDP/wD3H47PPggqEq/eImCBxGRHIguT/3OOyEmTQrw53/eDZRy3XWDfPSj\ntTz2mCpNijdo2EJEJAeam2HzZvjRj4IcOtTEO++s5MyZLcBm+voe59//fSUNDU2EQqF876rIqBQ8\niIjkkCpNSiHQsIVIBrRSoqTLVJJMFiAsYPfu9bncHZExUfAgkoHo4MBOguvoUPKbJKdKk1IINGwh\nkqFQKMSaNa2sWrUcaGTVquWsWdOqsWtJSJUmpRCo50EkA1pmWdI1f34t3d27MDkP8VRpUrxBPQ8i\nGVDym6RLlSalEKjnQSQDSn4TSC9x1q406fcHeOGF9fT2llJdPcj119cSCKinSrxBwYNIBpT8JpBe\n4qwJNHxAG7NnQ3m5CTROnIC1azVDR7xBwxYiGVDym9hSTZy1i0U1N5ueiblzzeOvvmp6LTo60BoX\n4nrqeRDJgJLfBMaWONvcDEuWhMLDF9309pbS328PX6hMtbibeh5EMqDkN4GxJc4Gg0EaGppob19J\nb68pU93b+zjt7SpTLe6n4EEkA1pmWcBOnF2Q5NkF4edjaaaOeJmGLUTSEJ9V//vfw8CAj9LSNioq\nYNIkk/y2axdYlpLfCp19PBw4kH7irGbqiJcpeBBJQ6Ks+q4uk1UfCkXGr6GU118f5KmnalmyROPX\nhcrOW/jwh49gEmcTBRCJE2c1U0e8TMGDSJrig4RVqwaZP38mu3a9zP7930KVJouHnSj59tvzgJ1A\nQ4JXJU6cjczUST3gEHEL5TyIpKijA26+OcisWcOT3Do7T7N//zfQ+HVxieQtfBu4l+GJsy8mTZw1\nAcWuJO+smTribgoeRFLU3AxTpnydvr71DA8S3iDxXSckS5gT74skSvqATmATYBJn4RNccMFfJu11\nCgT8XHxx4pk6FRX3cuSIX4m24loKHkRSFAwG+cUvniVxkKDx62IUm7dgqkbCVmAz8EsGBj7E2rW+\nhEGAz+fjD3/oZPXqn1FVVQdcCXyUqqq/orFxHj/7mZJtxb2U8yCSorvvbqO//xISBwkavy5Go+Ut\nzJw5yObNyX/esix+/etXOHXqIUwPRgmnTg3xyCO7+fWvlSsj7qWeB5EUmS7q8SQuR12LSZhLROPX\nhSqTvIWODqivV60H8SYFDyIpMl3UyS4WfuAu4EVUaTLCXqehsRGWLjXrOCxdGnnM62P6mVQYbW6G\nSZPSLy4l4gYKHkRSZLqoW4FEF4s/UlYWYvXqR6iuNglz1dUraGnZVNRdz83NsGFDiKlTW9m3bzl7\n9zayb99ypk5tZcOGkOfH9O0Koy0tm8b0d1etB/Eq5TyIpMgsgvUaJqs+AKzHJEoOAhfh8y3l9Om/\n1zLLUcayYJQXxFYa9XHgQBsXXwy9vTBjhuldSeXXUq0H8SoFDyIpCgT8/PKXTQSD9wPfwnTcDQG7\nqKi4lyuv7CzaICGZ2PUbbLFj+hs3tuVp78bOriy5alWAl17qpq+vlIkTB5k0qZaSEj8dHWaGxWjH\ng1ZlFa9S8CCSIntqnakuuZ7e3lKqq+0llL15B51thbp+Q6IelTNnhjhzZjeHDqXeoxII+Nm2rYme\nnvsxuQ+RgNTkTHRm9fcQGSsFDyJp8Pl8bNzY9v66Fo89Zta1sMUvnHXggBm+OO8881ix9UwU6pi+\nUz0qds6EAlLxGgUPIimKDgx6e6GyEm6+2fz/zBm47DKYNQvOng3x3nsBXn+9m97eUvr77YtB8S2Q\nVahj+k71qJhjyhSXUq6MeImCB5EUJTuR270Q7e0wfXphJgiOVaGO6TvVo6LgQLxKUzVFxigUCrFm\nTSurVi0HGlm1ajkf+9ifhcevVfQHMquD4GaRHpVEvNujIpIqBQ8iYxAMBmloGL665r59JlBIrPiK\n/mRaB8GttCKmFDsNW4iMQfKEuSoKMUEwE6MlmXqRZklIsVPwIDIGyRPmCjNBcKziZ5/MmQNf/rL3\nZ59oloQUOwUPImOQPGHO7s4urATBsfJqcJCKQuxREUmVggeRMUg+BdEPNAFfBxqI7s6eOPFejhzp\npLGxsC+qxaBQe1REUqXgQWQMkk9B9AHrmD37Xs6dK+PgwROUlQ0wMFDFxRdP4pJLAkVZ76HQOB0c\nqLiYeI2CB5ExGClhrqLi21x66ffZvftLwA8YGFgAlHDgwBDt7cVR70EXw/TYa2WYHAoVFxP3S5YW\nngt1QFdXVxd1GigUDwqFYk/2kYQ5P35/gPb2lSTOfdhBS8smVy0IlY2L/Ujto4thrNi1MkywaYLR\n3dTU3FPwwaakb8+ePdTX1wPUA3tyvX0FDyJjMNrFds+e5Rw+vIVksy5qa1fw8stbc7W7KXHyYq+L\nYXrWrGn1VLAp+Zfv4EHDFiJjMNqd+Ny53loQKtEqkZmU1S7UpbizpVBXH5XCpQqTIlnglfLFHR3Q\n2Aj19dEX+8zLapuL4YIkzxZfpc3RFOrqo1K4FDyIZIFXyhc3N8OGDSHeffc5RrrYP/poN42NJtCw\nh2tGMtrFcP/+0rTer9B5JdgUsSl4EMkCrywIZa/R8fbbk4m92IeAVmA58EnOnj3I1KmtbNgQSilx\ncvjFMPr9Gunv703r/QqdV4JNEZvTwcN9mDNk9NcRh7ch4npeWRAqkpswnsjFPogpdLUSMIt+DQz8\nlvb2lTQ0NBEKhUZ939iL4fD36+9P7/3cwh7maWyEpUth7lzzPdNeFK8EmyI2p2db3Ad8ClgS9dgg\ncCLBazXbQgqWV+oczJu3nO7uLZjKmCuBGuDTwAPAogQ/kVrmfygUoqHBroPxC2AVhTKTIFtTUDW1\nVdJRiLMtBjG3GiJFyy3BQbz4oOaPf7RzE/zAbZi73fMwpbUTSS3zP3rhqH/8xyfp708WHHhrJoHT\ns1Js5u/iA9qYPRvKy02weeIErF3r3uNJilc2gocPA4eBs5h+y3uA3ixsR0TSZFcyXLUqwEsvddPf\nfxAzXOEDrgGagW+SaeZ/9MWwvPxV+vsLYyZBtqagKjgQr3E6eNgJfAbYC3wQ+CqwHZgHvOnwtkRc\nzY1DF7F3zq3An2HG2RcBr2F6HDJfVjz6d5s3b5Du7uTvd+TIYFqLhdntevgwHDwIZ87AhAlw9ixM\nnAgf+hBceml22lf1GEQMp4OHJ6L+/TLmrNQDfA74TqIfuPPOO7nwwgtjHmtubqZZYbh4nBvXK4jc\nOV8GrAbuxsT49wP2EIazy4rHLiIWwlx8u8Pbe5cPftBiw4ZQyu0R3a5vvPEb3njjBGfPmsXHLrpo\nEldddVXW2lf1GCQfOjo66IjLxn3rrbfytDe58xTwvQSP1wFWV1eXJVKIjh8/btXU3GjBDguGLLAs\nGLRgh1VTc6MVDAZzvk+1tcvC+7IuvF+WBcHw/68IPxe04EYLtof3197vX41pv4PBYLgdtoTfN749\ntqf1vpF23erI+6Uj0n5Wgq9Bq7Z2mePbFEmkq6vLwnQR5mXGQbbrPEzA3MYczfJ2RFwndnw886qN\nTojcOUdXgDS5CXALpsfBB3QCmwAzzRQWM3v2vWNKCLSTJ2fPbgPWM7w9GtJqj0i7PoeZFZLZ+6VD\n9RhEDKeDh28DHweqMWemx4Aq4CcOb0fE9dxYojlSvClR97sfk9+8A5iKCSgeB77CxIklXHbZo6xd\n60u7lkFHB6xd6+PYsUpGmsXx2GPdKb13pF1z376qxyBiOJ3zcCnQAVyEGdzcgbkteN3h7Yi4nhvH\nxyP5B4mSIu0eh29RXv4X9PdXR9UaGHthKztxce7cUvbuLWF43sMgUMvFFw+klOAYadfct2/0FNQX\nXlgfV4/BPcW/RLLN6eBBWY4iYZG7/LHPWnBSRwccOeKnoqKJvr4ZmMlR8T0BPmAlF11Uwvnntzla\na8D8vscxp4lInQRz576L11/fQig0euJkpF1z376qxyBiaEnuAuTGKYLFKHaWQbzcj4+bWQrw1399\nOY8//gKnT38GM6LYgBnBNBfxmho7t8HZ7Zv28BPJU7CZPIX+/h+lVCch0q7OzgpJhT47IobT5anT\nofLUWaRSt/kXW6J5AYkv0Ln7WwSDQa68cjXB4APh/XkD+Bamsu1JJk68mGuvvYrHHsvOMRIKhbj0\n0hvo7/8DyXoLamtX8PLLW0d9H9Ou6zBpVvHtu5OKiq9y7bWdHD3qcyRwVkAubpPv8tQKHgpQbCGg\nBUS6hndTU3OPqxZmKnRuCuLWrGmlvX0lydaYmDZtEx/9qLnrz9bFcPbs5fT0JA8O5sxp5NVXN4/6\nPna7Pvvsbzh48ARlZabOw8yZk2homA2MY9eu1+jtLaWiYpApU2qpqfFnFEy46W8pku/gQcMWBShb\nJXQlPW4bHx+tOuLkyevZPPp1e8w6OuD4ccg0T8Fu18OH2+jrg8rKSIXJd98NsmnTas6diwTOfX3H\n6evzc+zYDQwMzKK/n7Qv+tla00JE0qciUVkyWiGbysrF1vTp66zKymVWefkKq7JymTV9+jpr6dKg\n9fDD+d57yZY5c1YkOSbM15w5K7K+Dy0t0cWp4r+2Wy0t6xx+/+NJCkmlV6gr2/udiYcftqwVK8zX\nTTdZ1pw55rv9mD7ThanQi0RJHow8RfAN+voOc+jQSk6f3kJ//2ZOn36cQ4dW8vzzTbS3h2hsJO25\n/OJ+kVkKieRm9ke26yQMr63RRuJCUukV6nJjzQ5bczNs2BBi6tRW9u1bzt69jezbt5ypU1vZsCGk\nXAzJCg1bFKCRpwj+dyxrA4nWGTh3zuK11z7N9u2Pqgu2ALlh9keqdRLGmqA4PHB2ZiErN9bssI00\npNLZ2cR113UyYYJPSZ3iKAUPBSj5RSIIPAv8ffjfq4mfb79v304aGjSGW4gCAT/btiWf/REIdGZ9\nH1LNAxnromLDA+fML/qmPoa7anZEi81xir0hOHNGNwSSHQoeClDyi0QrpghoCbHdubZxwCIlVRYo\nN1RHTPXud6wJisMD59Qv+iP1dpx//mWcOmUvXR4vv2taRBJhi+OGQNNm3UE5DwXIvki0tGyiutos\nbFRdvYILLngZGI85mbp3DFeyw15j4sSJNmbP3sqcOZuZPXsrJ060jWnNimxKZ1Gxjg5obDRfvb1+\nysujcypqMZU0E4m96CfLHaio+CJlZS8B64DtxOZqvMisWV/O65oWkSGVZPkdi/K2EFs2KMfDHdTz\nUICSdQ1v394IzMVU5Ru5O/fNN0tpbDT/U3SfGbfcKXnpbzbatNLoXIXoIY4//KGb/v5yqqq+AJRx\n6tSFlJVtYWDgRySqpBk9VJO8t2MN8HfAh8OP309kTY6LWLjwirze0UeGapzJ73A7TZsVTdXMMTOF\n0566dsOI0zlra5dZwWDQamlZZ1VXL7NghVVdvcxqaVmX8vQ2iVBbpiedaaXHjx+3amoST8csL7/R\namjotqZPX2dVVIzc9smnY4489bmqallep0NG9jv/U3Fzwc3TZnMp31M180nBQ45FPnRBC6634MWk\nH8Cmpi8kPSGnMz9eRr64ub0t81VDYLRaJdEX7NEuJhMmrLMqKy1ryhTLqqy0rIsusqy6uuH7n3yb\n7r4oB4PB8PE1+g1BIRjt2CiU33M0+Q4elPNQRAIBPxdffA+wD7P08lcZPoZr5tuXlJSmPOYsI0tn\n/N5t8jW+bHIRdmFmD7QCy4HG8Pc1fOITs97fdvIaDCHgF5w79wSnTzdywQXL+fSnW+nuDtHVBZs3\nxw7jJJ+Omf/6GCOxc5xmz7YwuR6J5Dep00lunjZbTJTzUER8Ph9/+IPJtt+6tZtQqJzS0i9SUlIG\nfIAJE2Dy5FpqajrZtq2FkRMqC2P8NBfSGb93m2yNL4+WB7J8uZ/nnruNAweGgAeJXb57Jzt3fuX9\n5bsjF5PoaYoDwEFgI5bVltJ+J6+PYiddxi9fDm64KNs5Tpdd9iiHDzdx5kz+puLmgtuWupfc07BF\njjz8sGUtXRq0pkxZZ5WWLrNKSlZY48Yts8rK1llTpgQTduG6oZRxofBqWz78sGVNm/alEYe3Mhlf\nHikPJJ1tm27sY1ZsGep1FmxPa7+TD38ELWiw4Ffh4SZ72Gm748NOmQ4TFUNujXIejHwPW+STgocs\ns4OGadO+YJWU/MmIY+7xJ63x4zWu6BSvjtEeP37cKi+vzcq+p5IHkmq7mYvJZ+MuKOm3eSR3YPuw\nIOG88z5mTZv2pVGTLp0w1gCgWNa4GOnv5PYcIiflO3jQsEUBW7w4yNe+tpqjR2cAP2a0VTajK/qd\nO3cEM37qvqI4XuOGstBjcffdbfT3X8JI48sHDpSydGn6009HW/m1ri7Am2+mNrYdCPj5x3+8gf7+\n6GG29MfFn3nGR01NJ2fPBnjzza9x5swJYADLquLcuUmcPXse117b/v6y3tlYHTWTYSIvTcXNRPTf\n6eTJ9Zw7V8r48YPvD7k+84yvKNqhmKnnIcsi3Xuj34UNvxMMhruBXyya6D5bd25evVMyd/4jHTvH\nrLKyj4zpbnzkXoVj1gUXfMQqL78ipd6Dhx+2wvsQ/fzYe3vyOTtGXfKSKvU8iGPik9BeeMFO1Bv9\nLmz4naAPMyMjANwLvEd19ZScljLONbvY0KpVAV56qZu+vlJef32Q8vJarrnGT0eHqcKY7h1evstC\nZ7bIlF1ULH7dhAFgPwMDP2FgYAHRd8g//3kT117b+f4deqLtJM+YDwLNvP32Q8BjUduOF+mxaW6G\n9euhu9uKes/alH42kdF6RbJZuj0XybVuKVomMlbqeciC2PHSupTvwkYbXx4/fllBjp9Gi73jPG6Z\npLtbLVhilZXVWqtXf2lMd51uGIseyzh6bFGxLVZqCYlBCz5rVVXVj7id5Mdb9PvavV+j99gMv2NP\n/WcT/975yVHJVXJtvhMr3fCZ8Lp89zzkk4IHhw3vbrVPgqN3hXp1RoCTIhcg+4IZ3239oquHGZIZ\nazf8yEXFEl1gk7Xb8O2kXs0xGD5+zUWupOQKa/r0ddbSpcGYC0zioaFjFnzWKiurtWBZyhfIfH4W\nchG4uKVoWb4DGK9T8KDgwTHDT8jRJ/9Ed2G/SjuzvZBF2qCwxp3HOo4eDAatiy+2j5tb446PRBfY\n1LeTPA9kyZgv3PEXo4qKZdb06eus668PWnPmWNYVV1jWBz5gvq68MnK3W1dnHqury/9Mo1zkPLgh\nr8ItAYyX5Tt4UIXJAjK80p4fsCtKdgCbgE8AN1FWdiWrVz/yfvZ2pKIfDK/qt5j9+09z880hV628\n6LTIOHxhrTiavAIjjPT72EXFWlo2UVZ2jNgchURVF1Pfjp0xP336JiorV1Be3khl5QrKyk4meF9b\n8gJAiVYM/djHtnLNNW1MmuTjvvvg97+H3/8+xK23tnLqVKRa5lVXtfLcc69w1VWmimZkplEiu3jn\nndqsfQ4CAT81NdGrgkJ05VcnVu9MfDzYn/mv097+b1RVLWfGjNasfea9XHVV8k89Dw5L3N0a3e1b\nZ02cuMyaNMncjUWPL0buBOPHtlMfK/a6SM9DYQ3hjLUbPnpcurIy/m480d1r5u2Wzbvi5He7W62y\nsrlRj9s9dVssuMuyh0zgBquq6gqru7t7zPuQiky78+36LtOnr7MqK5dZpaUrrNLSZVZ5+TqrvDyY\n4O+U+nCTU9TTmbl89zzkk4IHh9gn+aqqsSc92iecior4sW1vd9mnI52prV7ixIk6tYTE+KGN9LeT\nzWmtyQOTRMmfL1twVYILanaDaCcSCY8fPx4ebored5P/AXMsmBv1+OiL5GXjM68cq8wpeFDw4Ihg\nMGjNnp35SaCY7wgiF67PJriYeDeAcuJuPvaifix8wf1TC64MX5DmW5WVVzlyEUp25/3QQ8GYO+ry\n8hVWZeWyhAmUiSQ/thM9nv+8gLGKTXRdZ8F1Fsy2YKtlAj77+LZ7HG7M+We+mM8zTlHwoOAhY5Hu\n2F9aiRMjU58lUMx3BJFy3l8Ml/PO/loGueDE3Xwqpc7PO+9j1sSJH894O8nuvJcuTXRHnXr3evJj\nO9Hj+b+4jbUXInatj60WXBH+m8QnUNtBRO4/825I2vQ6BQ8KHjIW+0GMndoGN1gVFdendGdmWboj\nsBXSNLL4MfB079ijjXbSnzbti45sZyzbHu2Ck17PgzuC6JF6YZIFFpWVK6IChXVWpGch+vcMWlCf\n4PHcfOar2oiKAAAgAElEQVQT92SZmiolJbXWtGlfcuSYKWT5Dh5UYbIAxFal8wHR1e+GmDVrBU8+\nmVoVQ6+uw+Ake4ljaGP2bCgvJ2trGeSC2d/442JsRquAOHnyel5+eWvG24lmV0R87rnMqi8mP7YT\nLbmd32WfOzrghz/s5le/amZw8IfErnOxi1/+sonnn/8egcCPeeGFbnp7S+nvN1VLL730LHv32m31\ndaAq/HtEV/X0Afa6JWOvxjlW9mybvr7/h2PHnsOyNr7/O1rWEEeP7qaiooklSzrD+yoSoZ4Hhzg5\n1ODVdRgkN0Y71ioqVmSlSmAwGLQmTVqY0XGe/Njeapkkwuh1XO6y8pn3cvz4cauq6ooR9mGLdf75\niRI6d4R/zq6XsSKqZyG+h8H+/+h1YLJFwxdjp54HyZi5C3LmLinf6zCIuw0/1qLXuyilv7+XqVNb\nCQT8KR0rqayzsHixWWnynXcmkslxHn1sP/vs1zh48ASlpe8xOGi/3+cpKRkHnM95553HuXNPMzj4\nA8wd+ThMvYVd4XoLnaP+bpm4++42Tp3ykbg3AOA53n33ByRaf+PUqW8xbtx/Y2jIwvSgXI7pWYjv\nYYj+v72OzXpMD8W7zJ5tsX37o45+5pOvv5NIbG+S1uRwFxWJKgCxBZ7ipdftGF9s54Mf3Mzbb7fz\nyCMwbVoLZWWNWS8gI+4Ve6wFgSZgJbAF2Ex//29pb19JQ0MToVBo1PdrboYNG0JMnWoKNNmFm6ZO\nbWXDhhDNzdEFherJ5Di3j+0jR1oJhYaA+xkcnIZZrv4VoBvL+h2W9SDnn1/Cddc9wvTp/xRTxGr6\n9E3vL/ucTWZ4yB5uSOQVYodZot1CVdV4TKGpWmAxpljcjeHvdgEqu4jcdmAqZljrceArTJxYwmWX\nPcratT5HP+Pxf+9z5+KLj0WLXTo9lWNFioOGLRySzaEGlZGVaLHH2l0ZdzmncnxFEh2d6V6PdJW7\nt8vcDA+NlMg42vDRUquiwp5tYX+/y4LFFlxtQa0FV1olJddZ48dfb02cuNTKRWJw8vV3Rk/W1Lko\nVr6HLfJJwYODsjU7QGOSEi165kZJyRUpn/iTGe34MjM3oi+U8bOJllmTJl2d1nEeCUbcO7PI7ONI\nwdkNI+77pZcus5YuDVpTpqyzxo2zA4YrLFhojRu31JoyZZ115ZVBq64utytbJl9/Z/Tzi85FsfId\nPCjnoQBkc3bAaNn1o2W4S2GJnrkxd+6r7N2bWpdzMrHHV2z+BAzw7rtHuPTSD7B3r4Xp3h4+m2ho\naAVr1/pSPs4ja5hEzz4Y2/5ni5kZ8qeYYYX7MWtR2HkXOykrO8zAQPwMEdsubrqplo0bnZlh46Th\n5xM/Zugr/nccnluic5G7KHgoANlMFIqcaBPJ7wlW8suJRN3I8RUEVgMPYE/ZgyHefnsng4N3MHwq\npW0Xq1bVsnHjWPY7v9MxRxII+Nm2rYmennXAL4hOZKyqeoMnntjI5z53Lz09o1903WT4+cRHbLLm\nMaqrP5gwQVvnIndRwqSMKHKiTSS/J1gndXTAzTeHmDGjlaqq5Ywfr8TQ0TiRqBs5vtowgUP8KouL\nOHXqW5x//n/BqZUmI/vtXKKx03w+H62tnUyf/hwVFa8ApZSVDTJt2kdZtOhZ/vqvP0ZFxfBVSXOV\n0DlWic8ndg/J44wf/0Fmz97KiRNtw5I1i+VcJKNTzoMHFMs4o5Kx0udEom6qi5FVVi52rHJlZL/t\nZMKxl3PPFicWyEp3e05VIR1JJueTYjkXpSrfOQ/5pODBA4qlaJROTOlz4oITOb6WJGl78+V0OWg7\nwfhDHzLJhGVlJplw5sylritDnotAIlfBcybnk2I5F6VKwYOCB9crpHUektGaHvlhByBlZfU5a3/7\nYlxXZ1kXXWRZlZWWNWWK+X7RRdb7MxDctK5Ctj+DuQyeM/ldiuFclKp8Bw/Jsk9yoQ7o6urqoq6u\n6AInzyiWqm5z5zayd+/mpM/PmdPIq68mf14ys2ZNK+3tK0lcUXEHLS2b2LjRXTMHciUYNBU2TaGs\nBdjJpLCbiRPvYdq0TmpqfBl9JufNW0539xaSJY/W1q5wZM2STM4nxXIuStWePXuor68HUz1tT663\nr9kWMqJi+UA6WeJb0heZXeCt2QO5EKmwGR1YnQB+wZkzFq+91ohlTQnPUEitLHi8XM1kyOR8Uizn\nIq9Q8CCjKoaIvxBXE/XS381eZfHs2QAnT67n3LlSxo8fZPLk2vdnD7hlX3NteH2D4dNazWqbu9m2\nrYkdO9Jfg0bBs3iJch48pNDHGgs1GSsXf7dcZeoXq+ErmTqfn6CEYe/Jd85DPil48IhimcZYaAFS\nrv5uxXJ85MvwZF7nk3sLNXguZPkOHlQkysM6OqCx0XwtXQpz55rv9mNOFTaKHXONLuCzkJ6e+/H7\nk5WM9Y741UTnzNmctFiNV+Tq71YMx0c+xRbjCgFv4nR+gr1ceUvLJqqrVwCNTJy4lIqKr3D0aDmX\nXro2b0XTVMBN4qnnwQG5uFvWNEZn5Kp7P9fTH3V8ZFekV2CLZYpa3eh4e0dPX50yJWiVln7Bgj/J\nWW/SSLUsli49bl18sXq24qnnQcYsGAzS0NBEe/tKenu3AJvp7X2c9vaVNDQ0EQqFHNmOaso7Y/Hi\nID09TRw6tJLTp7fQ37+Z06cf59ChlfT0NLFkiTN/L3s7AwOTycXfTcdHdtnJpBUVbZj1H+pxuqx2\nczNs3gz/+q9BJk9uYnDwNPBjctWb1NwMGzaEmDq1lX37lrN3byP79i1n6tRWpkz5OsGgerYkQj0P\nGcpVkpPuLJ2Rjb9Xoju2adNSK/msngdvibRz0EpcVvtXGd+Jp1ou3Om/6Uh5MyUltTq+ElDPg4yZ\nmcK1IMmzC8LPZ86JBZAkO3+vRHdsb7zxRHg7ufm76fjIjUgPj70S5SbA5CfACsrKvpTxoliRYzS6\nNykEtALL39/W3r1HHM03iM2beSO8vRXAA1jWeNSzVVy+jKny8p0kz6vnIUPDp3BlZz0AZWI7Ixt/\nr8R3bPZ2sneHGk3HR27koocncoza2zoePobiewScXTws8rsl2t6t6nlIoFB7Hq4F/gL4HSRdQ1Uy\nlKslau0xV68t/+s22fh7JZ7pYG8n0R3qJygr+0tH/26JMvWrq1fQ0rJpTAWLJLFc9PBEjlF7W8mX\nSncy3yDSq5Joe/NQz5b7ZKPCZBXwM+DzwNey8P4SlquqiKYSoQ/zwS4sHR3Q3h6iuzvAyZPdMZUN\na2v9tLQ4V9kwG3+v4dUHIXLiX4gJIKL/bju4/fZNbNzo3AXdVLI025k9G8rLTSXLEydg7Vp3VbL0\nslyU8I4co36gCRNIJAsQFrB79/qMtwnRQYt9PIfC37uBAWAL8COgAZUuL1w/Af4u/O/ngQeTvE7D\nFhlSd3HmclngKBt/r8RDIcmGK3RceFkupvrGHqPHLFiYk6HRSKLmiiRDF8cs+KwFc6yysmWqYGrl\nf9jC6Z6H1cDVmGEL0JBFVmk9gMwlXnQodhqYU6s5ZuPvlXhNAnu44luUlPwFllVNRcUgH/1oLY89\npmEEr8pFD6A9BOX3B3jhhW56e08x/PiyOTc0GulVsXs64j+TH8Dcl77I7bf/c9GusOomTgYPM4D/\nASwBzoUfK2GUZb/vvPNOLrzwwpjHmpubadZVb1SFPJyQK4m7/W3OdcuCc3+v6AWvTp6MHqKA2O7e\nc4wbN4HKyrlcc42fSZN8GkaQEcUPQZ040co772R/aNQOrI8e/TR9fV0k/4w0sHv3A45s00s6Ojro\niJva8tZbb+Vpb5z3ScxAVH/U1xAme+scw4MIDVtI3uVqxorT7MqiH/rQYstUAvyVBUeTZMYXdyU+\nGbtcD40Gg0GrvPxqT34mcy3fwxZOzrZ4BrgC+Ej462rgJUzy5NVoCENcKFczVpzS0QE33NDNtGlL\naG9fycGDTwP/DvwTptNvParEJ07J9UyaZ57xMX78xXjpM1msnAweTmH6Su2vl4E+zCouzlQrEnGY\nVwoc2YsD3XXXF3nhhUYGBx8iEiT4gG8DMzHZ6Ik4VzRMioe9YNzvftfG22+3U1Y2lwMH4Cc/eZVp\n01qYOtXZxamam+HTn74KL3wmi122K0za3SoirhQI+KmpuQfYgRllI/x9R3gamD9/OxfFXq/i6NHT\nmPSiRGPQWmNCnBW/5sXAwEqGhrZgWZsZHHycN990dl0W8M5nsthlO3i4EfhvWd6GyJh5pQBWZFbI\nG8D5JA4SvDUEI96Ry2XXVXTMG7JRJErEM7wyYyUyK6SUSJAQH0DUAjtJPHSh7l4Zu1zOSlLRMW9Q\n8CDiAZHyvYPA5cROzwQzRbMPaMEspaxKfOKcXC67ruDAG7SqpsfYiXMzZrRSVbWc8eMbqapazowZ\nziYuibvErjmwGIgeEw5iSgl/BtgG/DPwCeAmSkquZNq0h101BCPe47VZSZJ96nnwmMWLg3zta6s5\ndOgBTDdiCf39Q5w+vZsJE5pYsqQTk30vI4kutPTee3DggOkaPe8885jb7n6GrzmwDvgFZmrmEeB7\nRHoiIkMwlrWDm292di0LKT6R46+GSBEyewjtIk6enEVHx8ifmVyuIyOFTUWi0vDww5a1YoVlTZ9u\n14BPVEBlu9XSsi7fu+oZdqGl6uplFqywqquXWS0t61xZTGn4mgPrwksVL7FgjpYslqwKBoPWzJkf\ns6AhQRGyF61Zsz4+6ucml+vIFINCKhIlWdTcDBs2hHj33ecwK+olkt25/IU0ZBIMBmloaKK9fSW9\nvVuAzfT2Pk57+0oaGpoIhZybeuaE2Az0/wy8SnV1CS0tV1NTMxtN0ZRs8vl8NDRcg6knMnx57v37\nvznqjItcztiQ7NOwhUcEg0EWLVrN229PJl8XikIaMsnlglhOGCkD/fjx5eRi8SIpXh0dsGXLa4xc\nhGzkGRfpztjw2tBisVHPg0dELnbjyVfiUiHdOZgTWX56cBIZrVcHTLGezZvhqafg1VfN982bYdUq\nb1TJFO9qboZLLslsxkW6Mzbs3tapU1vZt285e/c2sm/fcqZObWXDhpAChzxT8OARkYtd/i4Ubrvg\nZiKXU89SYVeQPHRoJadPb6G/fzOnTz/OoUOjV/BTRT7JhdgZFyGgFVgONALLeO21gyMOX6Y7Y8Nr\nQ4vFRsGDR0Qudn5ip+kR/v5i1i8UbrvgZsJtU88y6dXxSpVM8bbIOjD21OCVgLmowxYGBr4/YqCb\n7joyhdTTKc7SbIs01NYui8pQDoaz7c0sAbjVKiv7iLV0adB6+OFc7YO3s/pbWtw1a6WQ2lYKU2TG\nz2fDs37S++yku7y3PhMj02wLSUls1G6XU96Kifq/xu2338STT2Z3nrRXVqBMhdu6+gupV0cKk93D\nVVb2MokXZoORhi/T7SHTZ8LdNNvCIwIBP9u2NdHTcz8m7yD3pYfdsA9OsU9kZ88GOHlyfUzBGvtE\nlsuErMgwimZMiDvZ68DMnXsJe/emf1FPdx0ZfSbcTcGDR7jhYueGfXCK2xbEilTwS3RH561eHSls\nubqo6zPhbgoePMINFzs37EMhSFSmt7y8j9LSpxgc/AHmZOndXh0pbLm6qBdST2chUs6DSI4lmpbZ\n1/cUg4PfpKrqDmbOvBVopLp6BS0tm9ixoxOfTzMmxB1ylS+kWUTulmzgKhfqgK6uri7q6vKSLCqS\nF2vWtNLevpLEd247mDZtE5bVxrlzIfr6AvT3m0WIzjtPiwiJO4RCIfz+AC+80E1vbynV1YNcf30t\ngYBfgW6O7Nmzh/r6eoB6YE+ut6+eBykqblifY7RiW5Mnd/Pb3waZPLmJ995byeDgRgYH53L6tMWh\nQ//B00/fwF13/ZXn1hORwtDRAWvX+jhxoo3Zs7cyZ85mZs/eyokTbaxd69MxWSSU8yBFxQ3rc6Qy\nBS1SIOcyYDUQ2V/LGuLo0Z1UVHhrPREpDPaaEnbuTl9fgO3bI0ts/+Y3tbS3q3es0KnnweXccKdc\nSNxQtS5xdUu73O8y9u49xE9+8gSmd6INEzgMX8lQVfYknzIpqS7ep+DB5dz4AY0PaMrKGiktXUJp\n6Q2Ult5MWZl7Axw3rM8xvNhWdLnfrcAeLKsaEyzkf39FEnFDIC75o+DB5dz4AY0PaAYHf8TQ0BBD\nQ99kaOgJBgfzH+Ak44aqdcOz1duA+4n9G9u9E/nfX5FE3BCIS/4oeHA5N35Ahwc0ybrW3XcH4oYF\nseKnoMETDJ95YfdO5H9/RRJxQyAu+aPgweXc+AGNDWhCwHO4LcBJxg3rczQ3w5NP+nj99TZOndrK\nnDn2EEU0e/XUi4CdSd5JVfYkf9wQiEv+KHhwOTd+QCMBjT1WPxm3BTjJuG1BLEj2N/YBnUAl8Bng\nRdyyvyKQeiCupO/CpODB5dxwpxwvcrGzhyvGE7n42bMGlgONwDJee+2ga04SbqpaZ59U9+8/jQlm\n4vmAzzBt2s1Mn/7Ped9fkWipBuJuTPoWb6sDrK6urnwvi+5qwWDQqqm50YLtFgy+v5Y9bLdqam60\ngsFgzveppWWdBTssWGbBkAX2/49bcGP430NR+/pi3vbVzY4fPx7+2/4y3G7xf2O1m7jXww9b1tKl\nQWvKlHXWuHGLLbjagissWGjBDVZJyfXWuHFLw4+/GD6u47+2Wy0t6/L9q3hSV1eXhblry0uJZvU8\nuJyb7pRtkTuOc5jhCnt8vpXhswZUkyCZSOLprZghik3ACkyPzWIqKu5R74K4lp2788orrVRXDwE/\nAH4H/AummJmZfQWXAA1J3sVdOVGSOlWYdDk3rmRpBzQHDtzKwIBFZHz+VhKv1wDmJLE+Z/voBeak\naQdU8X/jIWbNWsGTTypwEHeLnX0FsbOvQNONC5N6HiRt9h3H7bffSCQfw4e5w9BJIlVunEkjkq7R\nZ1+5L+lbMqfgQcZseMKUThLpcONMGpF0jT77yn1J35I5BQ8yZvH5GCUlR0g8awB0khjOjTNpRNI1\n8uwriOREuWd6tGROwYOMWXyxo+PHn6Km5qvoJJEaN9acEElXJAi2hy+ig+IQJq9nHPBF4ErgGsaN\nu5UpUzTd2MuUMCmOsXsizp4NcPLk+veX6J08ufb9k4SW6I1Qe0khCAT8bNvWRE+PPXzhxwxf3AX8\nHdHLyZvgeBfV1feyY4cfn0+Bg1cly9bKhTqgq6uri7q6vExTFRGRDHV0QHt7iGefvZWBgV9jLish\n4NOYwGFRgp/aQUvLJjZudM8sMq/Zs2cP9fX1APXAnlxvX8MWIiIyZslnX1Wi+g6FS8GDiIhkbHgO\nj6YiFzIFD1JUQqEQa9a0Mm/ecubObWTevOWsWdNKKKT6+iKZGL7UfC+aily4FDxI0XjooSCzZjXR\n3r6S7u4t7N27me7ux2lvX8msWU388IcKIETGKn72VUvLLWgqcuFS8CBFY9euNvr67LK50WtvLKSv\n73527tTaGyJO0VTkwqbgQYpGbBndeErgEnGSGxf1E+eozoMUDa0lIZI7blzUT5yjngcpGlpLQkTE\nGQoexHFundGgtSRERJyh4EEc5eYZDUrgEhFxhoIHcZSbZzQogUtExBlKmBRHmRkLyQKEBezevT6X\nuxNDCVwiIs5Qz4M4SjMaREQKn4IHcZRmNIiIFD4FD+Ko2BkNIaAVWA40AovZv/80N98coqMjX3so\nIiKZUvAgjorMaNgKNAErgS3AZuDf6Ov7Bj09TSxZonUkRES8yung4QvAb4G3w1/bgVsc3oa4mD2j\noaKiDVjP8FkXDfT03I/fr3UkRES8yung4XXgbqAOqAeexdxyznN4O+JS9sp6s2ZVAg1JXqV1JERE\nvMzpqZpb4v7/VUxvxHzgZYe3JS6mWRciIoUrm3UeSoFPAxOAbVncjrhQZNZFogBCsy5ERLwsG8HD\nlZj6vxOAM8CfAfuysB1xsfnza+nu3gXUYIpGdWPiyUHgIk6enEVHhxnmEBERb0nWr5yJcmAGcAGm\n5+FLwA3AnrjX1QFd1113HRdeeGHME83NzTTrquJpoVCIa6+9jQMHhoAHgQWYw20I2MmsWV9h9+7H\n8PlUElpEZCQdHR10xM1vf+utt9i2bRuY/ML462vWZSN4iPc0sB/487jH64Curq4u6urqcrAbkksd\nHXDXXX/F0aPNwKIEr9hBS8smNm5UqWgRkXTt2bOH+vp6yFPwkIs6D+NytB1xkeZmmDz5NTTjQkSk\n8Did8/AN4JeYKZvnA6uB64H7Hd6OeIBmXIiIFCangwcf8FNgGqZI1G+BmzH1HqTIaMaFiEhhcjp4\n+LzD7yceFplxsTDBs7vC62CIiIjXKBdBsmbhQj8VFfdgZu4OhR8dAnZQUXEvCxf687dzIiIyZtks\nEiVF7o47fHzqU534/QF2717PwEApZWWDzJ9fSyDQqWmaIiIepeBBssrn82k6pohIgdGwhYiIiKRF\nwYOIiIikRcMWUhRCoVA496I7LvfCr9wLEZE0KXiQgvfQQ0Huums1fX0PYBbpMmtsdHfv5uc/b+LB\nBzu54w4FECIiqdKwhRS8XbvawoHDQiIFq8YBC+nru5+dOwP52zkREQ9S8CAFz6yhsSDJs1pjQ0Qk\nXQoepOBpjQ0REWcpeJCCF1ljIxGtsSEiki4FD5IzHR1w880hZsxopapqOePHN1JVtZwZM1q5+eYQ\nHR3Z2a5ZQ2NXkme1xoaISLoUPEjOLF4cpKeniUOHVnL69Bb6+zdz+vTjHDq0kp6eJpYsCWVlu4GA\nn5qaxGts1NTcSyCgNTZERNKh4EFy5u672+jpSTzroafnfvz+7Mx6eOYZHzU1nUyfvonKyhWUlzdS\nWbmC6dM3UVPTyTPPaJqmiEg6VOdBcsbMakgWICxg9+71WdluczM0N/sArbEhIuIE9TxIzgyf9RAC\nWoHlwCfZt+8ga9a0EgplZ/hCREScoeBBciZ21kMQaAJWAluAzZw791va21cya1YTP/yhAggREbdS\n8CA5EzvroQ1Q1UcRES9S8CA5s3Chn4oKe9bDy6jqo4iINyl4kJy54w4f+/d30tKyifHjj6GqjyIi\n3qTgQXLK5/OxcWMbs2dPQ1UfRUS8ScGD5IWqPoqIeJeCB8mLXFR9zFc5bBGRQqciUZIXdtXHs2cD\nnDy5nnPnShk/fpDJk2vfr/rY3Dy29w6FQvj9AbZv/w29vYfp79+IKU5VQn//EKdP72bChCaWLOkE\nVF1SRCRdCh4kL5ys+mgHC7t3dxMKDfDGGwexrI2YnIr1mOmgtthy2Bs3quqkiEi6NGwhnvbQQ0Fm\nzWqivX0l3d1bCIWuwrJ+DNQAz6PpoCIizlPwIJ62a1cbfX12sak3gOeAyzDVKyej6aAiIs5T8CCe\nZnoPFhApdz0Z+DameuV4NB1URMR5Ch7Es0KhEIcOvYnpXbDLXY8H7IBC00FFRLJBwYPkVSgUYs2a\nVubNW87cuY3Mm7c8pZU17VyHd96ZiOldiA4YzmECCj+QaDroi1RU3MvChZlPBxURKUaabSF589BD\nQe66a3U4Z8FMpYQhurt38/OfN/Hgg53ccUfiqZSRXIdfYHoX7OW+/cANmIDCB3SG33t9+DUDXHDB\nEf74x6fx+TRNU0RkLNTzIHkTm+yY3sqakVwHu3fhXSIBw59iehsI/78N2ApsBr7GbbfdpMBBRCQD\nCh4kbyIBQCIjT6U0MyVKiPQuWEQChr8Fvko2q1eKiBQzBQ+SN5EAIJHkUylDoRDHjx8hMpPCBzxK\nJGCYigkofgEsBq6houJWpk/f9H71ShERGTvlPEjemKmSFokDiNiplHYVySee+A3Hjx/GsuYDO4GG\n8Cui8xvuoaTkPSoqpjB58keprfXT0jL2ctciIhJLwYPkzfz5tXR37yK2fLQtMpUyNrHSLjldg6nr\ncD9m6GMcpsfhk1RUdPHgg5uTJluKiEhmFDxI3ixc6OfnP2+iry86ABgCdoWnUnYC0YmVdsnpNkxv\nhWZSiIjkg4IHyZs77vDxqU91hhe1Ws/AQCllZYPMn19LIND5fgBgEifXMbzk9PCFtT7wgUYFDiIi\nWaaESckrn8/Hxo1tPP98O4sWzQVg+/ZXueGGlveLRZnESZWcFhFxC/U8SN6NVizqggvKMRUkA0RK\nTo+cJyEiItmjngfJu9GKRVVWniWVktOq4SAikhvqeZC8MzkNdjXJUPjf3dhJkIcPv0FJiYVlJS85\nXVZ2hJqap3nmGU3JFBHJNgUPkneRYlFBYDUmtyEyfHHmzE5KSz/P4OAOYBHDEyV3cPvtm9i4UYmS\nIiK5oGELybtIsSh7We344YtFDA5+m9LSL5Co5LRWyBQRyS31PEjeRYpFRQ9fxLuFmpoHWbRo04jT\nOkVEJPsUPEjeBQJ+tm1roqdn5LUuoIKNG9uSPC8iIrmiYQvJu2ee8VFT00lZ2UlUw0FExP0UPEje\nNTfDk0/6uP32GzE1HBJRDQcREbdQ8CCusXChn4qKRDUclBQpIuImynkQ10h1rQsREckv9TwUmY6O\njnzvwojstS5efnkrr766mZdf3srGjW2eDhzc3uaFSG2ee2rz4uJ08PAV4NfAO8Bx4J+AOQ5vQzKg\nD3juqc1zT22ee2rz4uJ08PBx4O+BBcBNmGGRp4AKh7cjIiIieeJ0zsOtcf9fg6k5XAf8yuFtiYiI\nSB5kO+fhwvD3N7O8HREREcmRbM62KAG+A2zD1B1O6JVXXsniLki8t956iz179uR7N4qK2jz31Oa5\npzbPrXxfO5PVAnbC9zDDGP8XcCTB89MwyZWXZnEfRERECtVh4FrgaK43nK3g4e+BRkwC5YERXjct\n/CUiIiLpOUoeAodsKAH+F/A6UJPnfREREREP+D5wEtPj8MGor/PyuVMiIiLiXkPAYPh79Ndn87lT\nIiIiIiIiIiIiIiIiIiIiUtTuY3guQ3z9hsuBzcBbmMWxdgAz4l7TADwLnMIkVz5HbELl/gTbeSDu\nPaAc+f8AAAV6SURBVD4EPB5+jxDwP4DyMf5ebnYfmbX5rAQ/b3+tjHqPycD/F36Pt4CfAhfEbUdt\nHuFEm+9P8LyO87GfWy4BHgaOYdprD7HtDTrOo91Hbtp8f4Lt6Dgfe5vXYBacDAJvA53AxXHv4brj\n/D7gd+Edtb+mRj1fA5wAvgl8BHMSvRWIXku5AfPL+DGNVAN8Chgf9Zpe4N647VRGPV8K/B54Jryd\nxcAh4H9m+gu60H1k1ubj4n72YuBrmIMuerGyfwV+i1nQbGF4m5ujnlebRzjV5jrOI+4j83PLc8BO\n4KPh5+8FBoCro16j4zziPnLT5jrOI+4jszavBHqAx4B5wBWYQGIXsTWbXHec3wf8ZoTnHwF+Msp7\n7AT+31Fe0wv8zQjP34o5QD8Y9VgTcAaoGuW9veY+Mm/zeL8B/iHq/5djIuBrox5bEH7sw+H/q80j\nnGhz0HEe7T4yb/N3gf877rE3MIvzgY7zePeR/TYHHefR7iOzNl+KaavodrkQcwwvDv8/Z8d5ugtj\nfRhTDvM1oAOojnqfZcAfgSeB45hA4T9F/ezFwHxMF8l2TFfX88DHEmznbsxB+BvgHmK7UxowUdOx\nqMeeAiYA9Wn+Pl6QSZvHq8dEmhuiHmvA3BX/OuqxXeHHFkW9Rm3uXJvbdJxHZNrmW4DVmC7bceF/\nj8ecY0DHeSLZbnObjvOITNp8AmAB56IeO4sJDOzrqCuP81uA2zDdJYsxXVZHgSmYCGYIM37yN8BV\nmANmEFMwCkz3yRDmIPoc5oT6IPAeMDtqO3cC12G6ZNZixnai79r+N/BEgv17DxM9FZJM2zze94E/\nxD12D/Bqgte+Gn4/UJs73eag4zyaE20+EdMNO4Q5ub5F5G4MdJzHy0Wbg47zaJm2+UWYNv4Opu0r\nMRWdh4AfhF/jieO8AvOL/1fM+hRDwM/iXvMvmIQaMFHPELA+7jW/ZXgCTbRPhX9ucvj//xsTmcUr\nxIMtXrptHm0i5sD7r3GPp3qwqc2da/NEdJxHjKXNN2GSy24ErgT+FpOQfUX4eR3nI8tGmyei4zxi\nLG1+E7APE1T0Y4Y5XsIsRAk5PM7THbaI1ofp+piN6U0YYPjS2/8/JqsTIot3xL/mlajXJLIr/N3u\nnTgGfCDuNZMx3WXHKGzptnm0VZiL2U/jHj/G8Gxdwo8di3qN2ty5Nk9Ex3lEum1+OfBJzJ3tc+Gf\n/e+Yk+pfhl+j43xk2WjzRHScR4zl3PJ0+PU+TLLl54DpmGEQyOFxnknwMAGoxQQF/Zgxlj+Je80c\nzFQdwt+PJHjN3KjXJHJN+LsdfGzHRLbRv/xSzNhPV4r77lXptnm0tZgo9kTc4zsw03jiE2wuwLQ1\nqM2dbvNEdJxHpNvm9nlsMO41Q0Sy0HWcjywbbZ6IjvOITM4tb2Kmci7GBBL2bApXHuffxoy9VId3\n5nFMl6w9B/WT4Y1/HhMZfQnTIIui3uNvwj+zMvyarwOniSSNLMR04VwdfuzPMFNI/inqPcZhpp48\nHX7dYuAgZp5qoXGizQk/N4g5QBL5JfAfxE7t+Zeo59Xmzra5jvNYmbZ5KeaO7QXMSbMGuAvT/rdE\nbUfHeUQu2rwBHefRnDi3rMEcuzXA7Zgei7a47bjuOO/AZImexRwAjzI8SloD7MV0x+wBViR4n7vD\nO3oK+BWxDXMNJnI6GX6PVzDjaPGrcs7ANPxpTON9l8IsKuJUmz/AyL07F2KKirwd/vopMCnuNWrz\niEzbXMd5LCfa/LLwzx3FnFt+w/BphDrOI3LR5jrOYznR5t/AtPdZzJDGnQm2o+NcRERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERE8ur/ANBpVY9jW9RvAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import sys\n", + "import getopt\n", + "sys.path.insert(1,\"/usr/local/science/clag/\")\n", + "import clag\n", + "%pylab inline\n", + "\n", + "ref_file=\"lc/1367A.lc\"\n", + "echo_file=\"lc/3465A.lc\"\n", + "\n", + "\n", + "dt = 0.01\n", + "t1, l1, l1e = np.loadtxt(ref_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.005 , 0.01861938, 0.04473305, 0.06933623, 0.10747115,\n", + " 0.16658029, 0.25819945, 0.40020915])" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "\n", + "fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029, \n", + " 0.25819945, 0.40020915, 0.62032418])\n", + "fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029, \n", + " 0.25819945, 0.40020915])\n", + "# fqL = np.logspace(np.log10(0.0006),np.log10(1.2),11)\n", + "nfq = len(fqL) - 1\n", + "fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.)\n", + "\n", + "\n", + "fqL\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.337e-01 6.112e+01 inf -- -4.041e+02 -- 1 1 1 1 1 1 1\n", + " 2 7.647e-01 6.015e+01 6.901e+01 -- -3.351e+02 -- 0.65784 0.58285 0.5699 0.567505 0.56704 0.566344 0.573791\n", + " 3 3.242e+00 5.939e+01 6.602e+01 -- -2.691e+02 -- 0.42512 0.198095 0.146253 0.137492 0.135449 0.133237 0.150987\n", + " 4 1.563e+00 5.894e+01 6.233e+01 -- -2.067e+02 -- 0.328446 -0.100568 -0.261985 -0.286046 -0.293214 -0.298752 -0.270142\n", + " 5 6.151e-01 5.858e+01 5.845e+01 -- -1.483e+02 -- 0.300114 -0.231637 -0.637422 -0.692493 -0.715789 -0.728243 -0.692465\n", + " 6 3.834e-01 5.758e+01 5.397e+01 -- -9.432e+01 -- 0.288119 -0.218711 -0.948517 -1.05695 -1.12601 -1.152 -1.11841\n", + " 7 2.764e-01 5.488e+01 4.687e+01 -- -4.745e+01 -- 0.288807 -0.20359 -1.129 -1.33421 -1.50858 -1.56203 -1.54725\n", + " 8 2.123e-01 4.884e+01 3.703e+01 -- -1.042e+01 -- 0.290741 -0.199424 -1.16697 -1.47951 -1.82761 -1.93862 -1.97495\n", + " 9 1.660e-01 3.761e+01 2.500e+01 -- 1.458e+01 -- 0.297078 -0.192793 -1.17471 -1.51254 -2.03046 -2.24008 -2.39415\n", + " 10 1.251e-01 2.218e+01 1.352e+01 -- 2.810e+01 -- 0.304071 -0.185609 -1.18142 -1.51049 -2.10848 -2.41366 -2.79148\n", + " 11 8.256e-02 9.018e+00 5.492e+00 -- 3.359e+01 -- 0.305677 -0.180534 -1.18507 -1.51162 -2.12584 -2.46833 -3.14066\n", + " 12 4.067e-02 2.560e+00 1.439e+00 -- 3.503e+01 -- 0.30378 -0.178308 -1.18784 -1.51647 -2.12974 -2.48272 -3.39994\n", + " 13 1.216e-02 5.340e-01 2.063e-01 -- 3.524e+01 -- 0.301773 -0.177939 -1.18966 -1.52028 -2.13067 -2.48953 -3.5382\n", + " 14 2.104e-03 8.200e-02 1.337e-02 -- 3.525e+01 -- 0.30075 -0.178052 -1.19052 -1.52208 -2.13075 -2.49214 -3.58123\n", + " 15 2.833e-04 1.082e-02 3.730e-04 -- 3.525e+01 -- 0.300445 -0.178142 -1.19077 -1.52264 -2.13068 -2.4928 -3.58876\n", + " 16 3.684e-05 1.402e-03 6.992e-06 -- 3.525e+01 -- 0.300387 -0.178169 -1.19082 -1.52276 -2.13064 -2.4929 -3.58978\n", + "********************\n", + "0.300387 -0.178169 -1.19082 -1.52276 -2.13064 -2.4929 -3.58978\n", + "0.23893 0.202426 0.232625 0.177239 0.153017 0.132987 0.308424\n", + "-0.000180614 -0.000143998 -0.000174906 -0.000705814 0.000447101 -0.000873593 -0.00140183\n", + "********************\n" + ] + } + ], + "source": [ + "P1 = clag.clag('psd10r', [t1], [l1], [l1e], dt, fqL)\n", + "p1 = np.ones(nfq)\n", + "p1, p1e = clag.optimize(P1, p1)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 3.525e+01 3.481e+01 3.004e-01 5.393e-01 0.89 +++\n", + "+++ 3.525e+01 3.432e+01 3.004e-01 6.588e-01 1.87 +++\n", + "+++ 3.525e+01 3.458e+01 3.004e-01 5.990e-01 1.34 +++\n", + "+++ 3.525e+01 3.470e+01 3.004e-01 5.692e-01 1.11 +++\n", + "+++ 3.525e+01 3.475e+01 3.004e-01 5.543e-01 0.996 +++\n", + "\t### errors for param 1 ###\n", + "+++ 3.525e+01 3.476e+01 -1.782e-01 2.426e-02 0.974 +++\n", + "+++ 3.525e+01 3.422e+01 -1.782e-01 1.255e-01 2.07 +++\n", + "+++ 3.525e+01 3.451e+01 -1.782e-01 7.486e-02 1.48 +++\n", + "+++ 3.525e+01 3.464e+01 -1.782e-01 4.956e-02 1.21 +++\n", + "+++ 3.525e+01 3.471e+01 -1.782e-01 3.691e-02 1.09 +++\n", + "+++ 3.525e+01 3.474e+01 -1.782e-01 3.058e-02 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.782e-01 2.742e-02 1 +++\n", + "\t### errors for param 2 ###\n", + "+++ 3.525e+01 3.511e+01 -1.191e+00 -1.075e+00 0.275 +++\n", + "+++ 3.525e+01 3.495e+01 -1.191e+00 -1.016e+00 0.597 +++\n", + "+++ 3.525e+01 3.485e+01 -1.191e+00 -9.873e-01 0.798 +++\n", + "+++ 3.525e+01 3.480e+01 -1.191e+00 -9.727e-01 0.909 +++\n", + "+++ 3.525e+01 3.477e+01 -1.191e+00 -9.655e-01 0.966 +++\n", + "+++ 3.525e+01 3.475e+01 -1.191e+00 -9.618e-01 0.995 +++\n", + "\t### errors for param 3 ###\n", + "+++ 3.525e+01 3.482e+01 -1.523e+00 -1.346e+00 0.861 +++\n", + "+++ 3.525e+01 3.433e+01 -1.523e+00 -1.257e+00 1.85 +++\n", + "+++ 3.525e+01 3.459e+01 -1.523e+00 -1.301e+00 1.32 +++\n", + "+++ 3.525e+01 3.471e+01 -1.523e+00 -1.323e+00 1.08 +++\n", + "+++ 3.525e+01 3.477e+01 -1.523e+00 -1.334e+00 0.967 +++\n", + "+++ 3.525e+01 3.474e+01 -1.523e+00 -1.329e+00 1.02 +++\n", + "+++ 3.525e+01 3.475e+01 -1.523e+00 -1.332e+00 0.994 +++\n", + "\t### errors for param 4 ###\n", + "+++ 3.525e+01 3.482e+01 -2.131e+00 -1.978e+00 0.868 +++\n", + "+++ 3.525e+01 3.430e+01 -2.131e+00 -1.901e+00 1.9 +++\n", + "+++ 3.525e+01 3.458e+01 -2.131e+00 -1.939e+00 1.34 +++\n", + "+++ 3.525e+01 3.471e+01 -2.131e+00 -1.958e+00 1.09 +++\n", + "+++ 3.525e+01 3.476e+01 -2.131e+00 -1.968e+00 0.977 +++\n", + "+++ 3.525e+01 3.473e+01 -2.131e+00 -1.963e+00 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -2.131e+00 -1.966e+00 1.01 +++\n", + "\t### errors for param 5 ###\n", + "+++ 3.525e+01 3.476e+01 -2.493e+00 -2.360e+00 0.992 +++\n", + "\t### errors for param 6 ###\n", + "+++ 3.525e+01 3.511e+01 -3.590e+00 -3.436e+00 0.274 +++\n", + "+++ 3.525e+01 3.491e+01 -3.590e+00 -3.358e+00 0.68 +++\n", + "+++ 3.525e+01 3.477e+01 -3.590e+00 -3.320e+00 0.971 +++\n", + "+++ 3.525e+01 3.468e+01 -3.590e+00 -3.301e+00 1.14 +++\n", + "+++ 3.525e+01 3.472e+01 -3.590e+00 -3.310e+00 1.05 +++\n", + "+++ 3.525e+01 3.475e+01 -3.590e+00 -3.315e+00 1.01 +++\n", + "+++ 3.525e+01 3.476e+01 -3.590e+00 -3.317e+00 0.991 +++\n", + "********************\n", + "0.300387 -0.178169 -1.19082 -1.52276 -2.13064 -2.4929 -3.58978\n", + "0.253863 0.205589 0.22899 0.191086 0.164971 0.132987 0.27228\n", + "********************\n" + ] + } + ], + "source": [ + "p1, p1e = clag.errors(P1, p1, p1e)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAG7xJREFUeJzt3X9s3Pd93/GnYtHRErfTEpd3tufomtuUo4y0xl0lAlKs\ncp1bbEOVdOim8LCoSJQhQUwb4LoJ8FCIM0h5WI2hpWOLHbxFyLZgR2lAMyTA1BZDlcqjKo7lZe1K\n6ZrsxNPS2HdZkmpdkyihY+6P7zGhuI9IHnXf+/l8AF+Q/N7n8/28BX1Eve6+n+/3C5IkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSbpH/xRYAP4cqAGfBfa3tSJJktQRLgK/BAwBPwF8HqgA\nb2tjTZIkqQM9CLwJvK/dhUiSpK29pYVj7a1//WYLx5QkSR1uF9Hpht9rdyGSJGl7drdonJeBx9j8\nVMND9U2SJDXm9frWVK0ICS8BPw8cBV67S5uHHn744ddee+1uL0uSpE18FThIk4NCnCFhF1FA+AAw\nAtzcpO1Dr732Gp/5zGcYGhqKsaTmGx8fZ3p6uivHu5djNdq3kfbbabtVm81eb/XfWbM415rf3rkW\n5lxrfvs459r169f50Ic+9AjRp/FdExLOAnmikPAtIFnffwu4HeowNDRENpuNsaTm27t3b0trbuZ4\n93KsRvs20n47bbdqs9nrrf47axbnWvPbO9fCnGvNbx/3XIvLfTEe+/PAW4GPAP943fZl4A83tH0I\n+PjHP/5xHnqo+5YlvPe97+3a8e7lWI32baT9dtpu1eZurxcKBfL5/LZr6STOtea3d66FOdea3z6u\nufb666/zyiuvALxCkz9J2NXMg92DLLC4uLjYlalb3eX9738/n/vc59pdhvqAc02tUCwWyeVyADmg\n2Mxjt/I+CZIkqYsYEtR3uvXjX3Uf55q6nSFBfcdf3GoV55q6nSFBkiQFGRIkSVKQIUGSJAUZEiRJ\nUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQ\nIUGSJAUZEiRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUpAhQZIkBRkSJElSkCFB\nkiQFGRIkSVKQIUGSJAUZEiRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUpAhQZIk\nBRkSJElSkCFBkiQFGRIkSVJQnCHhKPB54KvAm8AHYhxLkiQ1WZwh4W3AF4Gx+s+rMY4lSZKabHeM\nx/6t+iZJkrqQaxIkSVKQIUGSJAUZEiRJUlCcaxIaNj4+zt69e+/Yl8/nyefzbapIkqTOUSgUKBQK\nd+y7detWbOPtiu3Id3oT+AXgc3d5PQssLi4uks1mW1SSJEndr1gsksvlAHJAsZnHjvOThLcDf33d\nz+8GHge+AXwlxnElSVITxBkSDgK/W/9+Ffi1+vefBk7GOK4kSWqCOEPCF3BhpCRJXcv/xCVJUpAh\nQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGS\nJAUZEiRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAXtbncBUhwKhWgDuH0bbt6Efftgz55o\nXz4fbZKkuzMkqCetDwHFIuRyUWjIZttblyR1E083SJKkIEOCJEkKMiRIkqQgQ4IkSQoyJKhnVSoV\nTp48xfHjx4BjHD9+jJMnT1GpVNpdmiR1Ba9uUM+p1WqMjo5TKg1QrY4BwwCUy1Auz3Px4gSZzAqz\ns9MkEon2FitJHcyQoJ5Sq9U4fDjPjRsvAwcCLYapVoepVq9x5EieubmCQUGS7sLTDeopo6PjmwSE\n9Q5QLr/E6Oh4K8qSpK5kSFDPWF5eplQaYOuAsOYxSqXdrlGQpLswJKhnTE3N1NcgbF+1Osbk5ExM\nFUlSdzMkqGcsLJRYW6S4fcMsLFyPoxxJ6nqGBPWMlZWd9Nq1w36S1PsMCeoZAwM76bW6w36S1PsM\nCeoZBw9mgPkGe81z6NBQHOVIUtczJKhnTEyMkUyebahPMnmW06efiqkiSepuhgT1jFQqRSazAlzb\nZo8lMpk3SKVSMVYlSd3LkKCeMjs7TTr9NLC0Rcsl0ulnOH/+xVaUJUldyZCgnpJIJJibKzAycoZk\n8gRwFVitv7oKXCWZPMHIyBmuXJllcHCwfcVKUofz2Q3qOYlEgkuXClQqFSYnZ7h8+XnKZUin4ejR\nISYmpjzFIEnbYEhQz0qlUpw79wLFIuRycOECZLPtrkqSukfcpxueApaB7wB/ALwv5vEkSVKTxBkS\nPgj8OjAFPA68ClwEHo1xTEmS1CRxhoRfBv4NcA74E+AfAV8BPhHjmJIkqUniCgn3A1ngdzbs/x3g\ncExjSpKkJopr4eKDwH1AbcP+rwHJmMaUfqBQiDaA27dh/3549lnYsyfal89HmyTp7ry6QT3JELA9\nG8PUzZuwb59hSlIkrpDwdeD7QGLD/gTw+t06jY+Ps3fv3jv25fN58v6WkmKxPgSsXSpaKHipqNSp\nCoUChbVkX3fr1q3YxtsV25GjW90tAmPr9l0DPgv8yoa2WWBxcXGRrL+dpLZYCwmLi4YEqZsUi0Vy\nuRxADig289hxnm74NeDfE90f4SrwMeCvAv8qxjElNSi6M+VZLl8uAXD8OBw9mmFiYsw7U0p9Ls6Q\ncAF4JzABPAT8D+DvEF0GKanNarUao6PjlEoDVKtjwDAA5TKUy/NcvDhBJrPC7Ow0icTGM4eS+kHc\nCxd/o75J6iC1Wo3Dh/PcuPEycCDQYphqdZhq9RpHjuSZmysYFKQ+5FMgpT40Ojq+SUBY7wDl8kuM\njo63oixJHcaQIPWZ5eVlSqUBtg4Iax6jVNpNpVKJsSpJnciQIPWZqamZ+hqE7atWx5icnImpIkmd\nypAg9ZmFhRJrixS3b5iFhetxlCOpgxkSpD6zsrKTXrt22E9SNzMkSH1mYGAnvVZ32E9SNzMkSH3m\n4MEMMN9gr3kOHRqKoxxJHcyQIPWZiYkxksmzDfVJJs9y+vRTMVUkqVMZEqQ+k0qlyGRWiB6lsh1L\nZDJveItmqQ8ZEqQ+NDs7TTr9NLC0Rcsl0ulnOH/+xVaUJanDGBKkPpRIJJibKzAycoZk8gTRM9hW\n66+uAldJJk8wMnKGK1dmGRwcbF+xktom7mc3SOpQiUSCS5cK9adAznD58vOUy5BOw9GjQ0xMTHmK\nQepzhgSpz6VSKc6de4FiEXI5uHABstl2VyWpE3i6QZIkBRkSJElSkKcbpD5WKEQbwO3bsH8/PPss\n7NkT7cvno01SfzIkSH3MECBpM55ukCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJ\nQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGG\nBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFBRXSPgV4ArwbeDPYhpDkiTFKK6Q\nMACcB2ZiOr4kSYrZ7piO+1z964djOr4kSYqZaxIkSVJQXJ8kSFLTFQrRBnD7Nty8Cfv2wZ490b58\nPtokNUcjIeE5YGKLNj8FFHdcjSRtYn0IKBYhl4tCQzbb3rqkXtVISHgJ+A9btLl5D7UwPj7O3r17\n79iXz+fJ+9ZAkiQKhQKFtY/T6m7duhXbeI2EhG/Ut9hMT0+T9S2BJElBoTfOxWKRXC4Xy3hxrUl4\nF/CO+tf7gJ8EdgFfBr4V05iSJKmJ4goJk8Av1b9fBb5Y//o3gMsxjSmpD1QqFSYnz3L5cgmA48fh\n6NEMExNjpFKp9hYn9Zi4QsKH8R4JkpqoVqsxOjpOqTRAtToGDANQLkO5PM/FixNkMivMzk6TSCTa\nW6zUI7wEUlLHq9VqHD6c58aNl4EDgRbDVKvDVKvXOHIkz9xcwaAgNYE3U5LU8UZHxzcJCOsdoFx+\nidHR8VaUJfU8Q4Kkjra8vEypNMDWAWHNY5RKu6lUKjFWJfUHQ4KkjjY1NVNfg7B91eoYk5M+X066\nV4YESR1tYaHE2iLF7RtmYeF6HOVIfcWQIKmjrazspNeuHfaTtJ4hQVJHGxjYSa/VHfaTtJ4hQVJH\nO3gwA8w32GueQ4eG4ihH6iuGBEkdbWJijGTybEN9ksmznD79VEwVSf3DkCCpo6VSKTKZFeDaNnss\nkcm84S2apSYwJEjqeLOz06TTTwNLW7RcIp1+hvPnX2xFWVLPMyRI6niJRIK5uQIjI2dIJk8AV4me\nGUf961WSyROMjJzhypVZBgcH21es1EN8doOkrpBIJLh0qVB/CuQMly8/T7kM6TQcPTrExMRUbKcY\nCoVoA7h9G27ehH37YM+eaF8+H21Sr9nV7gLqssDi4uIi2Wy23bVI6gLFIuRysLgIrfy10a5xpbsp\nFovkcjmAHFBs5rE93SBJkoIMCZK0DZVKhZMnT3H8+DHgGMePH+PkyVM+SEo9zTUJkrSJWq3G6Og4\npdJA/UFT0XMkymUol+e5eHGCTGaF2dlpEolEe4uVmsyQIKlrbFxAuH8/PPtsfAsIa7Uahw/nuXHj\nZcKPqh6mWh2mWr3GkSN55uYKBgX1FEOCpK7R6qsIRkfHNwkI6x2gXH6J0dFxLl0qtKI0qSVckyBJ\nAcvLy5RKA2wdENY8Rqm02zUK6imGBEkKmJqaqa9B2L5qdYzJyZmYKpJaz5AgSQELCyXWFilu3zAL\nC9fjKEdqC0OCJAWsrOyk164d9pM6kyFBkgIGBnbSa3WH/aTOZEiQpICDBzPAfIO95jl0aCiOcqS2\nMCRIUsDExBjJ5NmG+iSTZzl9+qmYKpJaz5AgSQGpVIpMZgW4ts0eS2Qyb8T2JEqpHQwJknQXs7PT\npNNPA0tbtFwinX6G8+dfbEVZUssYEiTpLhKJBHNzBUZGzpBMngCuAqv1V1eBqySTJxgZOcOVK7MM\nDg62r1gpBt6WWZI2kUgkuHSpQKVSYXJyhsuXn6dchnQajh4dYmJiylMM6lmGBEnahlQqxblzL1As\nQi4HFy5ANtvuqqR4ebpBkiQF+UmCJG2h1Y+oljqFIUGStmAIUL/ydIMkSQoyJEiSpCBDgiRJCjIk\nSJKkIEOCJEkKMiRIkqQgQ4IkSQqKKySkgE8BN4BvA/8TeA4YiGk8SZLUZHHdTOk9wC7gY0QB4b3A\nvwbeDpyKaUxJktREcYWE365vayrAvwQ+gSFBkqSu0Mo1CXuBb7RwPEmSdA9a9eyGNPA08MstGk+S\nutrGh0rdvAn79vlQKbVWo58kPAe8ucW28QnrDwO/BVwAzt1DrZLUN/J5+OQnKzz44Clu3DjGl750\njBs3jvHgg6f45CcrBgS1xK4G27+zvm3mJvDd+vcPA5eA3wc+vEmfLLD4xBNPsHfv3jteyOfz5P3X\nIKmP1Go1RkfHKZUGqFbHgOF1r86TTJ4lk1lhdnaaRCLRrjLVBoVCgcLaR0x1t27d4tVXXwXIAcVm\njtdoSGjEI0QBYQH4ELC6SdsssLi4uEg2u/GDCEnqH7VajcOH89y48TJwYJOW10inn2ZurmBQ6HPF\nYpFcLgcxhIS4Fi4+AnyB6FOFU0ACSNY3SdJdjI6ObyMgABygXH6J0dHxVpSlPhXXwsWfJVqs+G7g\nT9ftXwXui2lMSepqy8vLlEoDbB0Q1jxGqbSbSqVCKpWKsTL1q7g+Sfh0/dj31b++Zd3PkqSAqamZ\n+hqE7atWx5icnImpIvU7n90gSR1iYaHEnYsUt2OYhYXrcZQjGRIkqVOsrOyk164d9pO2ZkiQpA4x\nsKNH4K3usJ+0NUOCJHWIgwczwHyDveY5dGgojnIkQ4IkdYqJiTGSybMN9Ukmz3L69FMxVaR+Z0iQ\npA6RSqXIZFaAa9vssUQm84aXPyo2hgRJ6iCzs9Ok008DS1u0XCKdfobz519sRVnqU4YESeogiUSC\nubkCIyNnSCZPAFf54V3tV4GrJJMnGBk5w5UrswwODravWPW8Vj0qWpK0TYlEgkuXClQqFSYnZ7h8\n+XnKZUin4ejRISYmpjzFoJYwJEhSh0qlUpw79wLFIuRycOEC+Aw8tZIhQZI6UKEQbQC3b8P+/fDs\ns7BnT7Qvn482KU6GBEnqQIYAdQIXLkqSpCBDgiTpBwoFePLJCu961ykeeOAY999/jAceOMa73nWK\nJ5+s/OAUiPqDpxskSQDUajVeeWWcUmmg/sjq6ImUKyvwrW/Ns7IywSuvrPAzPzNNIpFob7FqCUOC\nJIlarcbhw3lu3HgZOBBoMUy1Oky1eo0jR/LMzRUMCn3A0w2SJEZHxzcJCOsdoFx+idHR8VaUpTYz\nJEhSn1teXqZUGmDrgLDmMUql3VQqlRirUicwJEhSn5uamqmvQdi+anWMycmZmCpSpzAkSFKfW1go\nsbZIcfuGWVi4Hkc56iCGBEnqcysrO+m1a4f91E0MCZLU5wYGdtJrdYf91E0MCZLU5w4ezADzDfaa\n59ChoTjKUQcxJEhSn5uYGCOZPNtQn2TyLKdPPxVTReoUhgRJ6nOpVIpMZgW4ts0eS2Qyb5BKpWKs\nSp3AkCBJYnZ2mnT6aWBpi5ZLpNPPcP78i60oS21mSJAkkUgkmJsrMDJyhmTyBHAVWK2/ugpcJZk8\nwcjIGa5cmWVwcLB9xaplfHaDJAmIgsLHPlbgU5+qMDAwwze/+Tzf+x7cfz+84x1D7N8/xUc/msJ8\n0D8MCZKkH8jnIZ9PAS+0uxR1AE83SJKkIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpCBDgiRJCjIkSJKk\nIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpKC4QsLngJvAd4DXgH8HPBTTWJIkKQZxhYTfBf4+sB/4RSAN\n/GZMY0mSpBjE9RTI6XXffwX4VeCzwH3A92MaU5IkNVEr1iS8A/gHwCUMCJIkdY04Q8KvAn8BfB34\nceCDMY4lSZKarJGQ8Bzw5hZbdl37F4DHgZ8Dvgv8J2DXPVcsSZJaopH/tN9Z3zZzkygQbPQI0dqE\n9wFXAq9ngcUnnniCvXv33vFCPp8nn883UKYkSb2pUChQKBTu2Hfr1i1effVVgBxQbOZ4rXpn/yhR\ngPhp4NXA61lgcXFxkWw2G3hZkiSFFItFcrkcxBAS4ri64VB9+6/AnwHvBiaBLwO/H8N4kiQpBnEs\nXPw28HeB/wKUgE8Bf0T0KcIbMYwnSZJiEMcnCX8M/M0YjitJklrIZzdIkqQgQ4IkSQoyJEiSpCBD\ngiRJCjIkSJKkIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkKiuMBT5IkbVuh\nEG0At2/DzZuwbx/s2RPty+ejTa1nSJAktdX6EFAsQi4XhYZstr11ydMNkiTpLgwJkiQpyJAgSZKC\nDAmSJCnIkCBJkoIMCZKktqtUKpw8eYrjx48Bxzh+/BgnT56iUqm0u7S+5iWQkqS2qdVqjI6OUyoN\nUK2OAcMAlMtQLs9z8eIEmcwKs7PTJBKJ9hbbhwwJkqS2qNVqHD6c58aNl4EDgRbDVKvDVKvXOHIk\nz9xcwaDQYp5ukCS1xejo+CYBYb0DlMsvMTo63oqytI4hQZLUcsvLy5RKA2wdENY8Rqm02zUKLWZI\nkCS13NTUTH0NwvZVq2NMTs7EVJFCDAmSpJZbWCixtkhx+4ZZWLgeRzm6C0OCJKnlVlZ20mvXDvtp\npwwJkqSWGxjYSa/VHfbTThkSJEktd/BgBphvsNc8hw4NxVGO7sKQIElquYmJMZLJsw31SSbPcvr0\nUzFVpBBDgiSp5VKpFJnMCnBtmz2WyGTeIJVKxViVNjIkSJLaYnZ2mnT6aWBpi5ZLpNPPcP78i60o\nS+sYEiRJbZFIJJibKzAycoZk8gRwFVitv7oKXCWZPMHIyBmuXJllcHCwfcX2KZ/dIElqm0QiwaVL\nBSqVCpOTM1y+/DzlMqTTcPToEBMTU55iaCNDgiSp7VKpFOfOvUCxCLkcXLgA2Wy7q5KnGyRJUpAh\nQZIkBRkSJElSkCFBkiQFGRIkSVKQVzdIktqqUIg2gNu3Yf9+ePZZ2LMn2pfPR5taL+6Q8FaiJ3j8\nBPA48EcxjydtqVAokPc3jlrAubY9hoDOFffphheAr8Y8htSQwtpbFilmzjV1uzhDwt8GngT+SYxj\nSJKkmMQVEhLAK8AJ4DsxjdERWv1OoZnj3cuxGu3bSPvttN2qTS++g3OuNb+9cy3Mudb89t061+II\nCbuATwO/ARRjOH5H8R9T89t36z+muDnXmt/euRbmXGt++26da40sXHwOmNiizUHgCPAA8C82vLZr\nqwGuX7/eQDmd4datWxSLrctCzRzvXo7VaN9G2m+n7VZtNnu91X9nzeJca35751qYc6357eOca3H+\n37nlf9zrvLO+beYmMAsc44fP+wS4D/g+8BngI4F+DwELwCMN1CNJkiJfJXqj/nozD9pISNiuR4Ef\nWffzI8BvA79IdDnka3fp91B9kyRJjXmdJgeEVkkBbxLdK0GSJHWJVt2WeXXrJpIkSZIkSZIkSZIk\nSS33I8B/A74I/DHwdHvLUQ97FPgCsAT8IfD32lqNet1ngW8C/7Hdhahn/TxQAr4EfLTNtcTmLUD9\noaH8JeAG8GPtK0c9LMkPr8T5MeArRHNOisNPE/0SNyQoDruBPyG6vcADREHhHY0coFVXN9yrN4Hb\n9e/fBqys+1lqpio/fKT5/yZ6l9fQPyqpAb8H/EW7i1DPOkT0qejrRPPsPwM/18gBuiUkAPxloo9/\n/xfwIvB/21uO+sBPEd1wzMedS+pGD3Pn768/pcE7G3dTSPg/wE8CPw6MAX+tveWox70T+LfAx9pd\niCTt0D3foyiukHAU+DxRgnkT+ECgzVPAMtGjpP8AeN+6154hWqRYBAY29Psa0cKyx5tasbpVHHPt\nrcBvAv8cuBpL1epGcf1e82Zzupt7nXOvcecnB4/SIZ+M/i1gEvgFoj/Y+ze8/kHgu8BJ4D3ArxOd\nPnj0LscbBH60/v2PEp0zfk9zS1aXavZc2wUUgH8WR7Hqas2ea2tGcOGiwu51zu0mWqz4MNFVgl8C\n/krsVTco9AebB85u2HeN6J1bSJYogf/3+hZ6kqTUjLn2PqInlhaJ5twXgceaWKN6QzPmGkQPv/sa\n8C2iK2lyzSpQPWenc+4Y0RUOXwb+YWzV3YONf7D7ia5O2PixyTTRaQRpp5xrahXnmlqtLXOuHQsX\nHwTuA2ob9n+N6Bp1qVmca2oV55parSVzrpuubpAkSS3UjpDwdaJzvokN+xNEN3yQmsW5plZxrqnV\nWjLn2hESvgcs8v/f9elngSutL0c9zLmmVnGuqdW6es69neg+Bo8TLbYYr3+/dlnGcaLLNj4CDBFd\ntvHnbH2pkLSRc02t4lxTq/XsnBsh+gO9SfRxyNr359a1+QTRDSBuAwvceQMIabtGcK6pNUZwrqm1\nRnDOSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkdYH/B9NGmh3oneUC\nAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-4,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsnXt8VPWZ/9+TKyQhXGRAMCgYDBK8ULAhgFvQcKlSqEo1\nZNvVsNqmtntxK4Rtrb91f0Xbhq7bX3ddwV8tsbXGqMUWQUVRQYRAKtSVH+MaiUQJtxmQawJkkpzf\nH99zOHMNM5kz1zzv12teSSYz53znzDnn+3yf5/M8DwiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiC\nIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAhCr2kBugM8/jOOYxIEQRAE\nIYG5BBjm8ShDGQ9fieegBEEQBEFIHn4JNMV7EIIgCIIgJAdZwFHgn+M9EEEQBEEQrCMjitu+DRgI\n1PbwmhH6QxAEQRCE8DikP2KOLYrb3gCcA74e5P8jRo4cefDgwYNRHIIgCIIgpCwHgC8TBwMiWp6H\nK1Biydt7eM2IgwcP8uyzzzJ+/PgoDUPw5YEHHuCXv/xlvIfRp5BjHnvkmMceOeax5aOPPuJb3/rW\nZSjvfcoYD4uBI8D6i71w/PjxTJo0KUrDEHwZNGiQHO8YI8c89sgxjz1yzPsWaVHa5mLgGVSapiAI\ngiAIKUQ0jIdZQAHwmyhsWxAEQRCEOBONsMUbQHoUtisIgiAIQgIQDc+DkMBUVFTEewh9DjnmsUeO\neeyRY963iGaq5sWYBOzcuXOniGwEQRAEIQx27drF5MmTASYDu2K9f/E8CIIgCIIQFmI8CIIgCIIQ\nFmI8CIIgCIIQFmI8CIIgCIIQFmI8CIIgCIIQFmI8CIIgCIIQFmI8CIIgCIIQFmI8CIIgCIIQFmI8\nCIIgCIIQFmI8CIIgCIIQFmI8CIIgCIIQFmI8CIIgCIIQFmI8CIIgCIIQFmI8CIIgCIIQFmI8CIIg\nCIIQFhnxHoAgCEIqUVenHgcOwOefw9mzkJ0N589D//5w+eVw2WVQUaEegpCMiPEgCIJgIRUVMGuW\ni+rqGo4e/QtHjx7j/PlOOjvzGDo0n+uuu46ammrsdnu8hyoIvUaMB0EQBAtxOp1Mm7aI5uYlwE7g\nSTo7pwA2Pvusm9raHWzZUk5DQ70YEELSIpoHQRAEC1m2bAXNzY8B7wCPAaWATf9vGjCV5uZHqa6u\nidcQBSFixHgQBEGwkMZGBzAFMH4GYor+OkFITsR4EARBsJDOznSUp8H4GYg0/XWCkJyI8SAIgmAh\nGRldgAYYPwPRrb9OEJITMR4EQRAspKSkGNgBGD8DsUN/nSAkJ2I8CIIgWEhNTTWFhT8CbgJ+BDQA\n3fp/u4FtFBY+RE1NdbyGKAgRI8aDIAiChdjtdhoa6qmsfIfLL08DvkdGxvXAVK644hYqK1+WNE0h\n6ZE6D4IgCBaiKkzaOXBgBe3tkJtrVphsa4MPP4R775UKk0JyI8aDIAiChYhRIPQFJGwhCIIgCEJY\niPEgCIIgCEJYiPEgCIIQRerqYO5cF6NGLSUvbx5ZWQvIy5vHqFFLmTvXRV1dvEcoCOEjmgdBEASL\nMNpxA5w7B599BiNGOPnznxfR3v4YUAPYcLu7aWtrJDu7nFmz6gHJvBCSC/E8CIIgWERFBTz9tItL\nLlnK3r3zaGpawM6dc2hvX45/g6xSaZAlJC3ieRAEQbAIsx236WU4c+ZWYGqQd0yhsXF57AYoCBYh\nxoMgCIJFmO24Sz2ezUAaZAmphoQtBEEQLMJsx+2JNMgSUg8xHgRBECzCbMftiTTIElIPMR4EQRAs\nwmzH7Uk1qkHWNrwbZDVIgywhaRHjQRAEwSLMdtye2IF6YBV5eSXAAsaMmU9l5RppkCUkLWI8CIIg\nWITZjtu3DfdecnL2M3nyaxQVrWXs2PUcO7aCe++1S5EoISmJRrbFZcDPga8C/YEm4F5gVxT2JQiC\nkDBs3GinsLCe8+drOH58OR0d6WRldTF4cDHFxfVUVtqlaZaQElhtPAwGtgJvoYwHJ1AInLB4P4Ig\nCAmH6qhpB1bEeyiCEFWsNh6WAZ+hPA0Gn1u8D0EQBEEQ4ojVmocFwE7gReAIKlRxn8X7EARBEAQh\njlhtPFwJ3A98DMwBngR+Bdxt8X4EQRAEQYgTVoct0oBG4Mf63/8NXAN8F/htoDc88MADDBo0yOu5\niooKKkRVJAiCIAjU1dVR55OWc+JEfKWEwQqu95YW4A3gOx7P3Q88BBT4vHYSsHPnzp1MmjTJ4mEI\ngiAkFoHadV9xBfTrp55TYsv4jU9ILnbt2sXkyZMBJhOHbEarPQ9bgat9nitCGRWCIAh9looKmDXL\nRXV1DZs3O9i3Lx23u4sZM4qpqamWYlFCUmG18fDvqBqsP0SJJkuAb+sPQRCEPkugdt379nWzb18j\nW7aUS7VJIamwWjD5PnA7UAHsRoUr/hGQGmqCIPRpvNt1GxHjNKCU5uZHqa6uid/gBCFMolGeej1w\nHaq65ATg6SjsQxAEIakI3K7bYIr+f0FIDqS3hSAIQgwI3K7bIE3/vyAkB2I8CIIgxIDA7boNuvX/\nC0JyIMaDIAhCDAjcrttgh/5/QUgOxHgQBEGIAcHbdTfQv/9DHDxYzYIFSItuISkQ40EQBCEG2O12\nGhrqqaxcw+WXzwG+REbG9cAPGDYsk5Eja3j6aZcUihKSAjEeBEEQYkBdHdx7r52DB5ficnUDT9LZ\n+SHQwGefvUZt7UKmTi3H5XLFe6iCcFHEeBAEQYgBFRWwdi2MHLmCs2el3oOQ3FhdYVIQ+hTSr0AI\nF1XPIZiBMIXGxuWxHI4g9AoxHgQhAqRfgRAuUu9BSAXEeBCECJB+BUK4mPUeAhkQUu9BSA5E8yAI\nESD9CoRwkXoPQiogxoMgRID0KxDCpad6D4WFD1FTUx2/wQlCiIjxIAgRIPFrAZRodu5cF6NGLSUv\nbx5ZWQvIy5vHqFFLmTvX5VX4aeNGO4WF9RQUrCE3dz6ZmQvIzZ1PQcEaCgvr2bhRwlxC4iPGgyBE\ngPQrEADKypw0N5fT2rqQtrZ1uN1raWt7hdbWhTQ3lzNrllm7oaICNmywU1OzgunTaxk+fBwAR458\nzNatlVRX+xscgpBoiPEgCBEg8WsBeqd9CcfgEIREQ4wHQYgAiV8L0Dvti4hthWRGjAdBiAAjfj1k\nyBrS0lS/AlD9Cvbty+Tqq2vEBZ3C1NXBggXw2Wfha19EbCskM1LnQRDCoK4OamtdOBw1HD/uoKMj\nnaysLvLzryA7283Zs0+iJgQb3d3dfPFFo+6CrgdECJdqGEXCrrrqIOHWbhCxrZDMiOdBEMIgWJz6\n0KE2zp79KeKC7ls4nU6mTi3n5MkJwPYgrwqsfRGxrZDMiPEgCCFSVwcTJ/6E5ubl+BsJR4GpQd4p\nLuhUxdQt/AJ4CH/ty9ag2peLiW1PnSqWcJeQsEjYQhBCpKzMydGjbwO/CvBfcUH3RcwmVzagXv99\nOep86GTgwIM0NLwZsER5TU01W7aU09y8BHgb+Eh/32ny8o7yxhsvMH58rD6JIISHeB4EIUSWLVuB\n2z2SwEaCuKD7It66BTuwAlgPrAVepbPzcu691x7Qg2C321m79j8ZMOCHwDeAdfr73uLMmaeYP//7\nuFySrikkJmI8CEKIqFVmFoGNhGLCjXkLyc/FdAtXXNHF2rWB27KrqpSrOX16Ff5hsKmilRESGjEe\nBCFE1CozWJy6GngQ2IrUezAJp2xzMhJJkbCKCsjPl3RNITkR40EQQkStMpcCgYpCfUJGhotFi55n\nzJj5wALGjJlPZeWaPt2WO9WrKEZaJEzSNYVkRYwHQQgRtYr8FCWMWwMoI0H9XEV6+hyamv6DsWPX\nU1S0lrFj13Ps2IqgMe++QKpWUTQ8KldfXcO+fWnA91DFwaaSlnYLQ4aE1uRK0jWFZEWyLQQhREx1\n/KPAz1GTYDewg8LCh3QPQ3zHmGiY2QiBmEJj4/JYDscyysqcPPzwIr744jHMbItuoJExY35EQ0N1\nSN6mkpJiHI4dKOPKF9HKCImLeB4EIUTsdjsNDfVUVq4JGppI9Rh/uKSqW94qj4r0RhGSFfE8CEKI\n1NVBXZ1Kx8vNhdxcOH0a1q2DF1+EK6+EESOcvPfeItrbzRWp291NW1sj2dl9r0y16ZYPvWxzMmCV\nR8XojXL+fA3Hjy+/UO588ODiC2GPQJkaghBvxHgQhBCpqPBOuXO5XFRX17B5s4OjR9M5c6aLTz9t\no73dKFNt4L0iXb16RYxHHj9S1S1vlUdFnVNGfQhBSB7EeBCEXuB0Opk2bZHuulYehn37uoFZBJ4o\nIZlj/L3FWycyBV+dSE1NfXwH2EtS1aMiCKEimgdB6AXBY955pGKMv7eEohNJRiKp7yAIqYB4HgSh\nFwSPecuK1BNPncjYsZCZCVdcAceOwb33+oeCkoVU9agIQqiI8SAIvSB4zNtYkaZWjL+3JKtxcDFE\n6Cj0dcR4EIReEDzmXQ2UAz8BxqJaNe8B3NhsB9mw4WbmznVRWSmTSzIjQkehryPGgyD0guBZBHZg\nCf37L+XcueNo2moMQaWmdXPoUCM5OamfsqnCFer3c+fgs89UuKJfP/VcqnokektdHdTWunA4ajh+\n3OHlySgurhZjU0g4gim7YsEkYOfOnTuZNGlSHIchCOHjcrmYOjV4zPvLX57A889/k8DhiwYqK9ck\nVMpmNCZ7z1TWffvSGTOmixkziqmpCa36Yl/CO3tnCp4VKwsLf5TU4lIhOuzatYvJkycDTAZ2xXr/\nkm0hCL3AiHkXFKwhN3c+mZkLyM2dT0GB6mmwZcunJFO3xIoKePppF5dcspS9e+fR1LSAvXvncckl\nS3n6aVfYhoPT6WTq1HJqaxeyb986YC379r1Cbe1Cpk4tx+VK7oZYVpOqPUCE1EXCFoLQCy4W8x43\nLrnKMgerW7FvXyNbtpSHvfL1ngwN+m6xrIuRqj1AhNRFPA+CEAWSpVui0YtjzJi7aG5ejlUrXzUZ\nJo/nJd6kag8QIXWx2nh4BBWo83wctHgfgpDwJEsRobIyJ83N5bS3pwFTPf7jApYC84Cf8swzr4fV\n3Mt/MvTc3m189NHnfbZZWCCSxdgUBINohC3+H6pGr4Gc9UKfI1mKCJnhhccwJ3snsEh/zswUaW0N\nvbmXdypr5NtLFKKVRZKqPUCE1CUaYYsu1N3CeByLwj4EIaG5mKBy48bEmCzN8IIx2buAu4DIQhje\nnpcVKMMh+cWAVgtLDaQ1t5BsRMPzcBVwADiPunv8CNgXhf0IQsKSqEWEjHoC779fw8mTDrq6DqMm\n9GLgNVRRK98Qhiehife8PS97SBUxoNXCUgOpWCkkG1YbD9uBvwGagEuBHwPbgAnAFxbvSxCEMCkr\nc/Lww4v44ovHUBqEW1Eeh2rgZuAp4KdEKt7znAwPHDiMplkvBoxHYaVoZZEkqrEpCMGw2nh43eP3\nPSgfXDNwD/DvFu9LEBKaRKwaaE5+V6J0CBNQNv9UYCRqUoy8uZfnZDhhwjwcDmN7LtSK3QGkA518\n+unBsEp2G8d19+5/4fDhd7yqeLrd3bS1RU9LISmVgqCIdp2HdmA3qsh/QB544AEGDRrk9VxFRQUV\n4qMTkhxjld/aarq4oz25XQxz8qtG6RAKUb04HgWyMUMY1on3TDGgYbCYxwO66ezcTnNz6MfDOK6H\nDo0CfkMsa0lISqUQD+rq6qjzSUs6ceJEnEYTG7KBVlT4wpdJgLZz505NEFKRysolGjRooAV4bNMq\nK5fEfExFRfP1/d+qQbf+u1ODJRpcoz/n1OAmDbZp0KW/pkuD97TCwps0p9MZ1j6dTqdWWHiTBnfr\n24zseJjH1fMz+D66tOLiW3tziHqkuDj2+xSEQOzcuVNDuQjj0t/B6myLXwBfAcagJNwvAXnAMxbv\nRxASnkQslGSmUHquoI1Y+1dRHgc7UA+sAeYDC4AycnIe6lWmiKF/yMjYg/ISeNZ8WKD//AMvvviX\nkGo+mMc19l6AZKnfIQjRxmrj4TKgDvgf4A/AOdTdYr/F+xGEhCfRXNx1dXD8+JUoKVKgokTVqOSo\nbcAlKIPiFeCHFBbaaGl5kQ0bwtdpVFTAhg12rrxyJMpwKAcWAqrnhdrHN+joOMCsWRfveWEe19gX\nVpKUSkFQWG08VKAMiGygALgTZUgIQp8j0aoGlpU5yc7+C7AEGIoSSnpieBxWkZFRYnltCvV5awhW\n88Ht/nVINR/M4xp7L0Cy1O8QhGgjjbFSkERU+fdFEq1q4LJlK2hp+QVKJPkI8LfAr1GZFkYFzL0U\nFu6noeE1y1tAq+Oxk+DpiFNpbHwsxO3sQHlKDLGnZxXPBgoLH45KFU9JqRQEhTTGSkGMfgWtrQtp\na1uH272WtrZXaG1dqKvapR1yLEg0F7epFbADTwDvAn/E0DXYbNdHdQVdU1NNZuZxIg3lmMd1LypK\nugb4GjCbtLRrGTZsNe3tExgzppKMjAWkp88iPX0m6elzychYQF7evLD7ahgNxEaNWkpe3jyysnq3\nHUFIFcTzkIJcrJDN9dc/Qnp6jnglokyiVQ3012B4r6CvumoBH38cvRX1xo12srKG4XZHVkPCOK7H\nj6sqmd3d6dhsNtLSJpKX9384ceLv6Oh4DGUouVDpoT/T/7bR1hZ+umwipt0KQl9FUjWjRM/pZIe0\nzMyr9VS3I3qK3i0azNJstmJtxIi/0+bMcWrPPRfvTyFYTSKkGUY7fdV/+9bsLxHTbg2ee07T5sxx\nagUFS7Tc3Fu1zMz5Wm7urVpBwRK5llOYVEvVFBKAnlX+j+J2P41ZsGchsB54E03bzaFDFRLaSFES\nIc0w1FBOb8ME/umx1qTLJmLarYF3mHI1bvc42to0Wls/4M03Z/Lgg38voRXBcsR4SEGCq/ydwNso\ngVywTofTkq7ToRAaiaDBCDVbobe6HX/DOfJ02bo6aGkh4u1EC/+S47IgEKKPaB5SkOAq/xWo/gU2\n1IpMavT3Jex2Ow0N9VRX17B583L27UtnzJguZswopqamd90gwyXUbIXeNqAyDWdjog+9T0ewLKX8\n/Cs4e7Yl5O3EGv+S477HbFrUynXHA8kmSwzE85CCBF9hvg9k4V9h0Bep0Z+K1NXBvffaOXZsBWPH\nrqeoaC1jx67n2LEV3HuvPaHc2uGECTxDHE1NB1DnvUHooZpg3o5Dh9rQtBt62E5DXCtLmt6WxA2t\nWIlkkwkimIwSwQRU6emlHgKynsVzl112q4iwLEIEbeFj9uAI/Cgqmn/htUeOHNF7Zxgi4Js02Kr3\n43D6/G306djm16cjuCjyVo/t+vb72KplZl4ddr8PKzGFsKEfs2QmkcWrsSTegkkJW6QgwVzDqjXy\nUlRcdBRmK2ZfdnDjjVfw/vvlkppmAZLmFz5m+OEo3i28u4DxHDjQTl2dOtf9Qxz1+nseBTpITz9G\ndvaP0LRszp7NDhqqCd5uOx0Y5rHd5R5jKSYz8/KYp916YoYpI2+lngxIW/TEQMIWfQjlWv0UdRPM\nQ1UY3Eog8ZzNlu5xQ/YuIyyCyvDwntyS61jGqziSOldfI3AfjIWkpbkuuKfNEIfRcKsS+Bg4D7jp\n6uqkvT2f8+czyMgYx8mTtXz4oX+oJniWkjEpGwb5en0s64GfM3p0Rlxj7GaYMlDJcYPUadqVaD1j\n+ipiPPQRXC4X5861k5m5GGgC/gNVYfBloAz4Ejk5t1xQvW/Z8il9IX4aCxI5ze9iRCu+fDGjpLS0\nmry8ZSjvga/RNZXTp5+8YHSpycK34davUcbwz4D/B6ylu/sVOjsXMnhwOa+/7mLtWrwm/eBZSsUk\n8qRsZLCMGJGHzRZ8QZAqTbsSrWdMX0WMhxTH5XIxder3GD78Kzz//N/gdm9GlST+GvDXwGsMGnQN\nc+a8wa9/vYH9+1ewYYOd3Fyx7q0iWVdKdXUwceJPaG5ejtVek4sZJQCaNpLAfUEASi8YXYEbbgVL\nRQ4+7uB1MKqBB4nFpNwbT4/RtfTf/u0JZs9+l4KCP6Z0065EqFcixBcRTEaZJ588ouXk3KTB3brQ\nK7jAyFfUB9fEvRphqpAIlR17w5EjR7TMzOKojD0U0Vuookm1rZt8xhn+MXc6nbrwcpsGhzXP6qtQ\npKWl3ailpc3R0tOjJ3j1Fn92XxgvNPgJPPsq3t9TzyLYVCbegknxPKQwO3asoL39MZToLNgKTrnN\nfVeC8FUS2VUbDaIV30/WldKyZStwu426IGBqCuYBC4A5OByf9KrhVM+hnCt59tk3+eSTfYTing7c\ncCt8b4/p/v8dNttMPIstwUd0d69gzBg3hw49zZkz6y946azUOySzPiZWSFt0QTwPFhPce3DxFZz/\nStBIces71r1/yp81fT/ivVLqbaqo8pgYK3gjVbEhyN/GZ3pVS0+/RsvJmdPjfoJ7FTy3++BFvRPG\n58vNnROx58EgnqmAyeqlEmJPvD0P8USMB4vxd3nOD/lGGvim5fSYQL+U8rUJzEkj2MS4tVeTfbzr\nPPTWFa4meOOYhNJwKthx899P8ElyiWaG2EI3YK1siBXPCTyc+ha9Jd7nY6KMIdkR40GMB8vwv4Ea\nN0Hr4supjDlppFYRmt6upNXxMAyCmdrFV/ah76fngkye2zUM2Fs1mK/ZbNcEnGD8vTuhF4fyJZ7X\nQiwMl0TQVSTCGJKdeBsPonlIIfzjyEasvRoIVK566wW1uHf6k29s+1Y+/fTzlO/Ml6plfnubKupd\nF+QcF9cUhL6f4CXUO3y2611b4aqrxgTUGvjGwdPT7yUtLY20tB+RlnYL6ekLyM6eT3b2s7S2TmDU\nqMoLmpZLLlnK0KEfccklSuvS1LQPdS34XgfzgCVAe5DPGDmx0McE1lUcA/5Ac7PG8OHRr+Uh2g4h\nEsTzYDH+KyZPt6+3etw3hh8tl30ykaplfnu7kvZezd8Sguch9P0Ec1tnZEyO2so7+Gp3vZaRMc7j\n+SUarAtyHWzT0tOv01aujM51YIU+xvfYpqfP19LSyjSbbYamPEhX+xzj0MNNViHajsgRz4NgCS6X\niyNHDoKXOt2OWjWuARYDb5Gba6OgYCKzZ2/i3/7tPy6s4MyV4FICF+ZJ/Vbd5qovtYrQ9Laojudq\nPiPjIGbDKRfQ5vG3Qej7MWoT7N+/gjNn1tPRsZYzZ9bzrW/dRLRW3sFXu+/Q2bna4/lq4J8JVqCq\nq+tJtm+PznVgRSZBWZmTDz4op7X1ZtraxtPVdYLu7s/QtGr9sxTgnUFzF6rkduy8AMla+0RIDMTz\nYBHh1HMIhrFaiebKL9ExV329P46JiBXZA+axMVbkr2r+YsYHIz5uPa28hw27SZs509FrkV3w1W6g\n532zN5LnOlDf93r9+1mvqayrbZp/UzzD4+BbIyP6n1U8D5ETb89DPBHjwSLMySGYOv29kN2PfVk4\naRhQI0Z8T7PZrtbgPb8JLBlDN1a6wnNyZmhKhOgvZoRpms1WpPVGpOi7n0AGwowZe7Rhw3rvXg9+\nbgd6Pv7XQWQptkaaq2cBLV9BsPEz9p/V26D1PY9majk5MyTr4iKI8SDGQ8R4W/G+F+ItWkbG9SFf\niLIiSL00Mis/z8XOj9zcsqgdt0g9KOF5HuJ7HTz3nKbNmLFHS0+/LoCxtE3Lzw/uhcnJ8azPYdwH\nPA0iY5ExU/M2KmL3Wf09Wf6fMRkN9VgixoMYDxFjpbcgngVyhMQnsCj34qmUkWBVSC34ue1ZW8Lz\nufhdB0eOHNHy8q4JMC7jsU4bMCCQYdGglxT3NBg8DQnPRUZp3D5rYE+W3G/CQYwHMR4ixkpvQbyr\nIQqJjfe5FrlKPxSviJklMSsiIzlw74qbNRivQaHmHaY6rMFULV6hq8D9OjwfD/Yw6d6teXsVPEMY\ngerARB7uDAen06lVVi7Riotv1bKywuuh4/neoqL5WnHxrVpl5ZI+eV+Kt/Eg2RYpgJW54f758gtI\nS5tDWtoP2bcvkxEj7o16DriQuHifa+F3rvQllJbfZpZEFkSQBePfu+ImfXu/AbZhdpudDdxMVlYx\n2dnPk50d+/4JqiZGHsEzEj4Cpgb5Xw02235Ub5pioAxV5+UmvOu9GK3GPbOy5qNqWpSRk/OQ5Z91\n5Uono0eXU1u7EIdjHR0dYwg168L3vU1Na3E4XqG2diGjR5ezalXv2sMLyYd4Hiwimt4CqQQneNJz\n7YfwPV6hhMmsrvxp7jNxQ3QqPNSTR7HnUGX//jN1vcQrmpl18aAGZRpM1KBY97iMC+hdycm5KSq1\nLIJXwb34OSQhVW/E8yBETDS7zEklOMETz3PNZjtMpLn63tUvfSs6/oRnn32TlhYw6y8ErpSak/MQ\npaXVIX0Gc5+JW0lUeVHGE9yjeJqevDBDhuRQVraRIUM2k5aWBjwEbADaSEsbxpAhtzJnzmZWrtxC\nZeUfKS6eT1HRAoqL51NZuYaWlnqqqqz3rgSvghsIb69pbyulCtEhI94DECKnogIqKowyvtaiLshg\nBsIUGhuXW75PIXHxPNcmTJiHw6ER2IAIrZiWWSzICSxChUFq9Oe66ezcjs32bdREabjXa1BFjdKB\nTgYOPMgnn7yJ3R7aZGfuM3ELFZWUFONw3Iwylh5FTZppKGNpOxkZB+js3E7g0MUOZs8uZvXq0O4J\nVVXW3zeC4V8cqhoox/8z7tBL59f38F5PpLBUrBHPg9AjfeWCrauDuXNdjBql+hsYfQ9E2xEcK7Q2\nZvXLYPqJabjdN2BWs/TudQEPc/vts0M2HLz3mbiVRGtqqhk2bAWql8Yf8NQipKdXUVKymmHDHsLf\nC9NwoV9NIuJf7dRTb/E1YFJQr2lvK6UK0UGMB6FH+soFG4pwT/AmeHOr0Ccw0wDpySVdg812b8D9\nhBOu8N9n9JtQ9ZaNG+1MnFhPQcE75OZ+RGZmOrm5XRQU3EBZ2dtMmjRd/781ocpYGc+BDU7DIHyY\nysoyzpxZH7D5WSyahgnJgQgmk4C+IlLqK5/TSqwoPmUKMHtOw7zyyjmWpeitXOnUy7kbJZx9hcZb\noyYY7A1biKp+AAAgAElEQVSxKFoWK2F0JOJuSSP3Jt6CyXgixkMS0FcuWKmsGR/i1VPFqBdQVFSm\n5edP1LKyrtHy80u1oqI5CVc3IBYTe6yM50gMoVSr/Bop8TYeRDAp9Iihrj9/vobjx5fT0ZFOVlYX\ngwcXX3CPeroWk5W+ou1INAwB5uLFN1FbuwOlefDFepe03W5n9erYCQUjwTvjyeAY8AeamzWGD19A\nTs4QBg8upri4msrK8K/JWAmjIxF3R1MYLoSPaB6EHqmogMpKO8XF1QweXExWVhcdHekcP+7A4aih\ntjY1xISpqO2IpQjU5XKxePFSJkyYx7hxC5gwYR6LFy/F5QpNK1JaWk1OTmD9RG90DamEf4qiE5Wh\nsBB4G01riFifI8azkExI2CJJ6AuFolJR8xCr781sCe+/n3C0A1J6ODD+/USsP1clbJd8xDtsEU/E\neEgSUnFi9SUVtR2x+t76wvkRT/y75lqvDwn8HRpNz2ZqNltp3PQFonUITLyNBwlbJDGxckv3hcpu\n0azSaRCr78vYz7PPvkMsvre+cH7EEzNF0QhXDMbqEIN32OgI8D3gK1gZGrkYwUJf11/vkDRqwQvx\nPERIrNzSVrb87svE6vuyqgtlqMj5EV1Mr9jdumcsOiEGp9OplZber9lsV3vsKzbepJ5CX+npPbUm\n77ueLfE8CL0mVn0nUlFMGA+i9X35rtiKiubQ3LycSLtQhoqcH9HF8IplZOxBnTvRKZZkt9u5+upc\nNG01cJTAmS8QDW/Sjh0raG83ro2jqB4n84HH6OrqjulYhNCIpvHwzyi59L9HcR99mli5i6WymzVE\n4/sK1Kb45MmRqJ4Hsfne5PyILhUVsGGDnSuvHImVDcICYZ6jntkXvg3L5tPUdDBKoVHPTJJ1qBLk\nhUgmSOIRLePhy8B3gA8JviQRIiRW6VVWlCEWovN9ea/YjG1ncLFJxsrvTc6P2GB6eDz7QRg9L77G\nwIHfj7gbpnmOGvsKNJm/QmfnE5bqDcz9BupxIp6tRCQaxkMe8CxwH3A8CtsXdGLlLo6FmDBexLIW\nQjS+r8DejJ4nmYyM71v6vaXy+ZFIeHt4Im8QFgjzHDX2FbxhWXRCo8b57OntOIjZGM0X8WylEs8A\n/6b/vgl4PMjrRDAZIZIiFzmxrGERje8rsFhRzotUxOzJ4Z9ObFUvDvMcdWqq78fMqIgzg+93vgZH\n9H0b16Qxlq1+nztZ06itIN6CSatZBPw3SqkF8A5iPESNWNxMUp1YGmDRqCXhX9zHqcH3NLhag/fk\nZptiRLuQlvc5eliD0iDXhrWZNOZ+Z2rwYIBrMjFqTiQS8TYerOxtMQr4P8AsoEN/zkbwIC8ADzzw\nAIMGDfJ6rqKigopUaJgQZaqq7NxxRz3V1TU0Ni6nszOdjIwuSkqKqampj9iF2ReIVU1/sK5PSF0d\n1Na6cDhqOHz4AMqlOw0Vn16EcjP/C8rl/CjgBg4yaNDNKdWPpC8S7Z4c3ueog7a2M6j5KdBt3PrQ\n6KFDd9LevhP//hVGmKab8ePns2fPekv2myzU1dVR5xNDPXHiRJxGYz23oVRSbo9HNyoA24H/2See\nByHuJFuNguee07QZM/Zo6enX6aszw8W7NciKTcIVQu+JdWjU6XRqmZkTk+qajBfx9jxYKZjcCFwD\nXK8/JgLvo8STE5GsCyEBSaYaBS6Xiz/96Xu8++4CurpWokRsw1CiyJeBDUilR8FK/CtPLgVuBWZj\ns93Hxx+fC7n5WShs3GgnK2sYyXJN9mWsNB7OoKSyxmMP0A58of8tCAlHstQoMOo51Ne3oWmj8C6a\nY7h0xyD58IKVVFXZaWmpp7T0d9hsM1Epm+uBN9G03TQ0fJPRo8tZtcoaA6KiAu688zqS4Zrs60S7\nwqThVhGEhCRZahSY9RyOAgMIbCQkjxdFSB68K0/6V0dtb3+U7dutSdmE5Lkm+zrRNh5uAn4Q5X0I\nQq9JlhoF3pX/AhkJLqANyYcXokEsm58lyzXZ17Ey20KIES6XS8+wcPhkWFRLhkWYVFRARYXh9k9c\nvCv/jUe5dY3QhZFlsQz4MSrDYgpqbdANbKew8MfU1NTHethCihCraraQPNdkX0eMhyRj5UonDz64\nSHdh16Au6G4cjkZeeKGcxx+PrDxtXyKZjDDvyn83o8pOG0aCkZI5FbgBdV4sR3kpTpOTo1FY+KKk\naAq9xjz/jqLOLwemF2w8Bw60U1dHj+eXZ4rx8eMOr1Tl4uJqKivl/BRCQ1I1w8TpdGpjx87Q0/Li\nk44X7SI1saKnFsCJWGDLv/Lfej0181YNrtFiUQVQ6Luo82+95l350Sw+NmDAdRe9B8SymmtfIN6p\nmvFEjIcwMCe7m+I2USTbhNsTyVba27/y3xINbtFglm48SF68ED2cTqeWl3eNfv4FOs+2XvSaSbZr\nLtGJt/EQbcGkYBGm2j6PeKXjBe7gGB3FdbSJpQDMCrxFZH9LZubH5ObaKCiYSG7uSCTLQogmGzfa\n0bSReKcIe1J60Wsm3Gsulk3rhPAR4yFJMC+8+KXjJduE2xOxFICFwsVulAAbNtjZv38FZ86sp6Nj\nLWfOrGf//hWSFy9EnYoKuOyybMxrxrPr5QJgPq2tB3ssGBXuNVdW5qS5uZzW1oW0ta3D7V5LW9sr\ntLYutLQduNA7xHhIEswLL35FjRJtwo2ERKssGcmNUvLihVhgXjNOoBxVMGodqiX4K5w69USPBaPC\nveaWLVtBc3NgT6eV7cCF3iHGQ5JgXnjVKKW970SxNeoTRaJNuJGQaJUlI7lRSl68EAvMa2YFqvma\n77k6rcfwZbjXXCp5OlMRMR6SBPPCs6N6GawB5qNchmXk5DwU9Yki0SbcSEi01XokN8qKiuAhjQ0b\nJP1NsAazz8X79OZc9e6T4X3N5eQ8RGmp9zWXSp7OVESMhyTBe7K7BGX9vwL8kMJCGy0tL0Z9oki0\nCTcSEm21LjdKIdEx+lzk55+jN+eq8f7KyjUUF8+nqGgBxcXzqaxcQ0uLf32aVPJ0piJSJCpJMCa7\n8+drOH58uVeBFWOyi/YKMxHGYBXxrmLnW6CqpWUf6kYZ6KYsN0ohMbDb7RQUDMHh6N25arfbWb06\ntGuupKQYh8OzkqonyeXpTEXEeEgS4j3ZJcoYUoHAVUKXANtRVSJ9kRulkDjEalIvLa3mhRfKaW/3\nLbe+Qw9zSLn1eBLM9xQLJgE7d+7cyaRJfa5AlhBH4l2WevHipdTWLsT75utCKdiX68+nAUdQAtn3\nSU8fTb9+SClfIe64XC6mTi2nudl/Ui8sfIiGhnrLrqN4X6uJzK5du5g8eTLAZGBXrPcvxoPQp/Be\n9U/B6A0CjeTk/CgmvUEmTJiHw7EO/8vPBfycrKwNFBSMZP/+z3G7VwNXorw9ewA3NttBLr30Zq69\n9n+JESHEHM8eFV988RfOnj0GdJKWlke/fvlMnnwdL70kk3u0ibfxIILJJMDlcrF48VImTJjHuHEL\nmDBhHosXL+2xIIsQmESokhlYHOlChTA+QtOyOHbsCG730yjDYREqp3498CaatptDhyqkUI4QF4zs\nnoceWgp0o2lPomkf0tXVQFvba7z77sIe6z0IqYEYDwnOypVORo8up7Z2IQ7HOpqa1uJwvEJtbXwv\nUF+DZty4WVx11UzGjZub0AZOIuSO+6vIvYvuuN07OXlyJEr/EDynXgrlCPEkEQxxIX6I8ZDgJOIF\n6m/Q/Jqmpm727v0ZTU2vJ4yBE4hESIn0r5cRyEDI0H+Pv7EjCIFIBENciB9iPCQ4iXiB+hs0wVbH\nibcCSYTccf96GYG+Y2Oc8Td2BCEQiWCIC/FDjIcEJxEvUG+DxgW8Q6IZOMFIhCqZvgWq4DD+37Ex\nzvgbO4IQiHAMcdFtpR5iPCQ4ibBS9sU0aIxY/WAi6bYXSxKhSqZnOel9+2oZONCG/3ds9DAZiqr/\nEAip/yDEj1AN8UTVbQmRIcZDgpMIK2VfTIPGCFdkEUm3vViSSGWpjZvqyZMT8DcQjB4m54B7gK2E\n0g9AEGKFtyF+BLVouBWYTUZGJZs2bWfcuLksWzaX9najfklihzWF0JEKkwlOIlZZMyvMOVDphYaB\n8wdM7YOBd7e9qqr4VqdMpCqZpnakEGV0+X7HTeTkuPjXf/0Te/b8hsbGx3wK5VhXjEcQwsUwxI8d\n+xdOnHgHWI26H7jo7FxES4tRS+VrBK6cCiqsuTxGIxasRIyHBKeqys4dd9TrVdaWJ8TkYRo0Rvii\nGjX5aaibRyDkJuGL0oIY5anr9d+Xo0SSnQwceJBPPnlT/47jb+wIgieGIb54cS61tasxFw2eAmoQ\n0W9qIsZDEhBOM5lYYBg0V111CydPapgu9gXITSJ0vMWw/gbC8OELxLMgJDymEQymgNpzEWGEOaXp\nWyohmgehV9jtdm6//SZMPYYdGEKiiTsTmUQUwwpCuPQsoAYzrBkIEf0mK2I8CL2mtLSanBzPzIVi\nJDMgdBJRDCsI4RJcQA3KE9EOLCaQ6DdWGU6C9YjxIPSaqio7LS31VFauobh4PsOGfYjN9rdIZkBo\n+BtfIMdLSDZMI9io/2L8bXgi/gbYDPwRJZ6cDVzLoEHPxTzDSbAO6aopWIq00A0POV5CsrNqlYsf\n/MAQUL+J2V5+FPBdAmdaNFBZuSahtFzJRry7aorxIAiCIESEy+XSBdR/Rk0rLuAWwPjbl26Ki+ez\nZ8/6WA4zpYi38SBhC0EQBCEiAguoRyLZV6mLGA9Cn6GuDubOdTFq1FLy8uaRlbWAvLx5jBq1lLlz\nXdTVxXuEgpC8+Gt4JJsolRHjQegzlJU5aW4up7V1IW1t63C719LW9gqtrQtpbi5n1qz4l88WhGTF\nV0Cdn38QZUgEQrKJkh0xHoQ+w7JlK2huDtw6vLn5Uaqrpca+IESCUdBuz5717N37BoWFPyaeTeiE\n6CHGg9Bn8G4l7ktitQ4XhGQnkZrQCdYj5amFPoN3OWhfRMAlCFaSSE3oBOsRz4NgKYksSpRy0IIg\nCNYgxoNgKYksSpRy0IIgCNYgxoNgKYksSpRy0IIgCNYgmgfBUrzb8/oyhcbG5bEcjhdGK3FVDnq5\nTznoeikHLQiCECJiPAiW4i1KdKEMCQeQDnTR2noQl8sVt4naSCUTBEEQeo+ELQRLMUWJRke9hcA6\nYC3wCqdOPcHo0eWsWiUFmQRBEJIVq42H+4H/Bk7qj23AVy3eh5DAmKLEFUAg7cM02tsfZft2Kcgk\nCIKQrFhtPOwHlqE6Zk4G3kYtOSdYvB8hQTFFie8jBZkEQRBSE6uNh3XA60AzsBf4MXAaKLF4P0KC\nYtS3z88/hxRkEgRBSE2iKZhMB+4EsoEtUdyPkGDY7XYKCobgcGjAUXxFkzAeaI/jCAVBEIRIiIZg\n8lrgDHAOeAq4C+WFEPoQSvvwGoFEk7CQ5maXiCYFQRCSlGh4Hv4HuA4YiPI8PA/MBHYFevEDDzzA\noEGDvJ6rqKigoqIiCkMTYkVpaTW/+93NdHU9hRJNGqQBU+nqepLt22uoqpK0SUEQhJ6oq6ujzqe2\n/4kTJ+I0GkWwoLSVvAm0AN/2eX4SsHPnzp1MmjQpBsMQYs24cXNpanqdwKdZN8XF89mzZ32shyUI\ngpD07Nq1i8mTJ4NKTgi4OI8msajzkBaj/QgJRzYimhQEQUg9rA5b/BR4FZWyOQBYBMwAHrV4P0IS\nYBaMCux5kC6WgiAIyYnVHgE78FuU7mEj8GVgLqreg9DHkC6WgiAIqYnVxsN9wBigHzAcmAO8ZfE+\nhCRBulgKgiCkJtIYS4ga0sVSEAQhNRHjQYgq0sVSEAQh9RDjQegTuFwu3QPi8PGAVIsHRBAEIUzE\neBBSnpUrnTz44CLa2x9Dlcq2Ad04HI288EI5jz9eT1WVGBCCIAihIvUXhJRnx44VuuHg2x68VNqD\nC4Ig9AIxHoSUR7X/lvbggiAIViHGg5DyqEqWUulSEATBKkTzIMSUeAgXpdKlIAiCtYjxIMSMeAkX\nS0qKcTh24N3d00AqXQrW8vev/j1179Rx/A/H6W7rhnSgC9Jy0xi8cDCTr5sM7eD4o4Pjnx+nQ+sg\ny5bF4MsHU3xbMZXTKqm4VroKC4mNGA9CzPAWLhp4Cxej0aK7tLSaF14op739UZT2IQ1V6XKHXumy\n3vJ9Cn2X717xXVY+s5LuBd1QALQD70H3oW6O/fYYb2S/oZ67DXU62sDd7abtQBsd/9nBrDtmxXX8\nghAKonkQYka8hItVVXZaWuqprFxDcfF8iooWUFw8n8rKNbS0SJqmYC23/c1tdC7ohFGAC9Xtpxi4\nB7gbOIcyHEbhnfwzCpxTnFQ/ImXbhcRHPA9CzPAXLrpQ4QsHkM7evZ+zePHSqOgfpNKlECs+P/y5\n8jicAV4EFqC6/dQCp4F81P8DcRk0bmyMxTAFISLE8yDEDFO4COAEyoGFwDpgLR0d/01t7UJGjy5n\n1SpXvIYpCBGhpWvKRt4G5AJZwPPALGCw/nfw5B866YzJOAUhEsR4EGKGd4vuFYAUbhJSD1uXTdnI\nLpSh8CoqTDEYaEP97wzwBvB74Dn95xvAaWg71xaPYQtCWIjxIMQM7xbde5DCTUIqUbe7jrmr5tLV\n1QWtKJtYQ4kjC1CeiH7AQJQnYjzw1/qjAhgNPAOnvzjNuOnjmDB9Aou/vxiXS7xwQuIhxoMQMzyF\ni1lZh5HCTUIqUTa8jF2/3EUXXfAy0IEyFGz6wwWMAM4CczEFk20o78QG4Otw6p5TNM1pwjHLQe35\nWq6YdgWrNq+Kx0cShKCI8SDEFEO4OHbsCEz9gy/WFW5yuVwsXryUCRPmMW7cAiZMmMfixUtlNSdY\nhsvlYvH3F1NUUsTR7KMwH+VJaEMZChpmjbIbUXIfQzBpiCrPEDQD4+xXzvLMr56J2ecRhFAQ40GI\nC976B1+sKdy0cqWT0aPLqa1diMOxjqamtTgcr0QkyjQmioLJBeRclUPa0DRsdhu24TZsg23YBtmw\n5es/B9uwXaI/RtjILspmRsUMMVxSiJWbVjL6xtHUnq/lZNZJM0RhBypRhkIOKoyh6b8PwjQQtgHT\nUF6JYBkYBeD4i4TxhMRCjAchLnjrH7r1Z7uBBr1wU+i57r7ehXHjZnHVVTNZtmw27e3LsUqU6TlR\nHJhygLPHz6LN1VSsuhPoD2QDmcA81CRxO/D3wHeho6KDd3PfZfSNo8UNnSLseHEH7X/VbnoMjAeo\nTItBwNeAP6LOj1b9f4bTzQXsQ50zPWRgnHWfjcLoBaH3SJ0HIS5UVdm54456vc/Fcp8+F/Uh13lw\nOp1Mm7aI5maj5LULWAQsAx4GpgZ55xQaG5eHNWaviWI1Km69DRXXHqW/6CjKbf0RUKY/3wZs1Ydm\ng/aOdn5w3w9Ys2SNlCJOct7c/qb6vsE0CM6gzgsXcBIYijol/wSsQZ0TrZgGx1GU3Ry8/QpI+xUh\nwRDjQYgbVhRuuvPOFbrhUIq6W98FLEWlgg7GSlFm4weNMFv/ox21YiwD3kXd4NMAN8r9/C7KHb0O\naAG+rv+9DXBCe3c7b/6vN9l97W5q76wVIyJJ6ZfRzzzF7MAJVCbFXNS58iamoXAfypDchDIkFmCe\nNzaP13kam13Aaejo6iCtKI2s9Czso+3SA0OIO2I8CEnN0aMOlMfBiVrepQHvoGpI/AQru2l20qk2\ndQZzxThY/1tDVQ40imh2AS+hvBJf11/3EsrYmK1eo3VrHDpwiJyncqSfQZJy1HXUPMWmozxSX8f0\nRE1HCSLLgMtQoYxbgL2Q/mo62KAru0u9fgNQAryH8mZMQ50zC4AC0Gwa57vP03qgleynsuWcEeKK\naB6EuBJJNoTL5aK19QvUndsoOpWHihlMQTUUsE6UmUGGmig2oYwDw0DoROXva/pzGmr1WIZ3jr8R\nxvBR0zd/qVn6GSQARp2GUbeMIm9CHlnFWeRNyGPULaOYu2oudbvr/F538uRJU8eQizIWPYWPucCd\nqFPyOWAV5L6US8EXBZQ9UsYTdU+Q15kHRSgvxDsow2EUcs4ICY0YD0LccDqdTJ0aOBti6tTyHg0I\nI5Pi1Kn+qNnaaLrVhbn8rwYCiTK3hi3KBCiZWKImiv0oY+E06uaegcrfz0EJ31pRV1YB3jn+PfUz\n+CBx+hkYGSUTpk/oU8WKyoaX0fxUM62XtdJ2Zxvucjdt32ij9bJWmp9qZtals7xfN6RVffdvoc6J\nbsxTz5NcYA7wLSgaU8SZPWfY/9p+NlRtIH9IPjf84w2kvZ2mvFOexscR1HOBKlEOSqxzRuh7SNhC\niBveegUDlQ3R3Pwo3/hGDZs3B9ZEmO29/4DyLhh37WJgJ8qgsAP1qLDGcv01nQwceJBPPnkzZFFm\n3e46arfVsvt/dmP70IZm05Rr+nnUjT4Plb//PErz8DIqhGFUGDSEdEZBIA/xpDHMli9aqNtdF/cY\n9spNK/nHb/8jHSUdqsjRfjVGx6cOautrGVg0kJ//9OdUzagKaXsul4vqR6pp/KCRTjppO9dG96Bu\nsMGpQ6fo0DrIsmUx+PLBcY/jL/vXZTR/qTmgyLW5o5nR00Zz45IbObfpnHrdRyiD8RsoL8G7KIFk\nD8LHDJ9brvFZswZk8fbyt+nM0UNjTn1bL6HCFxoqTGYDDgK/hU8GfJIQ54zQNxHjQYgbpl4hEFM4\nejR4NoQqX10DFKIabBmzdDVwM7AdlWlhR4U0DLZx++0vh9W18+Sxk2yp2cLZfmfV6jIDGIZ3vn4O\nSnKxCfgUOIVpv3yCEtKdwU/3QDdwANzr3BdWtvGibncd/3v5/1aGwxbU+MtQwlB94jp56CTfL/8+\np1edZsnXl/S4vZWbVvJg1YMqQ8X4vKdR9txclMFlA3e3m7YDbRHF8X2NlAwyKJlYQs0jNSF/1xcE\nsUG+p/YD7TQ/1Ux6RrrSLbyL8jgdR3kWQHkFDOGjLwd075UPFddWUHFtBeN+O44mV5PyONSjbF1D\nZFuG6cnSz5nOlzvjfs4IfRcxHoS44d+i2xPvbAiXy6WndTo4d66TlpZD+nsN78KdqPDENOAF1Ez+\nXygDIg11x91OTs6PKS2tD2ucm57ZxNmOszAAVbfhVdTEmo5pIBgTxjz9TcYkMh3VinkkSnk/DfgQ\nlYWhcUFp7x7qpmhhEf/1xH/FbSVZNryMo3uOKp3GEGACASeurgNd/PN3/5kBgwb06IHwSm01VvJ7\nMWP6BkYcHxXHX/3EasD0+Dj+6OD458f9vBRFo4po2t9E4+8bOfHRCeUN8pjsHQccvHDjCzz+1OMh\neUouCGKNzzwE9Z0ZWQ9taoyAOkZnUQaQpyDSEEjerB8z49Q7AIV/KaTm9eC1RTLIUGGLF1Geq3OY\nGT0BvCFavsa0udPYtmGb5S3sBeFiiOZBiBveLbp9MbMhvLURv+HTT910dw/1eK8ddcf9McqAGAds\nRMUPyrDZvsSIEbdQWfkyLS31VFWFd6N9/Z3X1UrZED8WoAwDw2iYjnfcG5TNsgE4hpoIZuuv3QIc\nQhUOuh/4LvBtoBTaPm6L60py2b8uw53jVl4Gz1TUAIK9rlu72P7C9h631/hBozpWRgnm0aivzIjp\nt+Edz98ML69/+YK24mIahPtH30/Tk02cOHXCzHDwGWf7X7UHHaen8LHf+H40fdJkdsMcjApDnUR5\njY4Bl6KWW+f1z5OB8jgZgsg6VAqmDXgLbCttZNZnKoHkgQIKv1PIxsMbgx6vkoklyiDJQ3XjTEd9\nF77H0Dj1s2Dv8b0Mu2YYxY8UXxB0CkIsEM9DH8UKN2+klJQU43DswFvzYGBmQ5jaiELUnfoxlGHg\n+V5PfcOP6N//HGPGDKGk5AZqaqoj+kzt59u9xY8zUc6NaSijoQxYiLJbNgPdkNmeybyb5tGPfqw5\nv4aOvA51tQ0BbsB7VatrH9yXuvmHZf9A3W+iOwkE++63vb/NlI4YMXZPkadP/YHaE7U8+6dnIQ+y\ntCzllUjvQtM0uk9309ndqdz5xkr+Q5T3xkh3DRAaOHngJKNvHM3jTz3O9he2mxoEA8NLcbaZSWWT\nOD/vvAof9CRG3RhYWHh9+vU0PNrA6TmnYQzq9DG6YW5CZdGcRH1XbajT7zOUALIMZTAYHqc5Phvf\nD/dk33PBixIKNY/U8Pvrfo87362OvxvznDPKWAcJYbT+ppVZ35cQhhA7xHjogwSMRffCzRsppaXV\nvPBCOe3tj6IyJQwf7w49G0KFF5Q2YglK25CGWtZfpf/t+d5LgNsoLNxJQ8NaS4yglZtW4u52e4sf\nc1G1qLainl+PcmunQc7gHIaMHkLxbcXcNe0uKq6tYML0CTg0h9meeTCmq9tH+1D/p3pmbp4ZteN/\n4bu/od1LhOd41aFWvYUoQd55zIm+DZVC2IJa4V+P0ql+FTr3dcJh6Dzdqf6Xhaqi+DXUpG6s5Gej\nwj05+nO+oYFDqP13Q3tGO9WV1dhsNrjb5wN4jOV8+nlvo874v48gtamtibmr5nqJMVduWsnfVfwd\nXfO61PfxjPo8vKVvZz/K03ADqrT0bShnlqFzKdDH7hmyME7fVij8oOcQRSA2Ht5I5pBM3G638i6c\nRIlWjWNoaFACGFOnZ5/2CvkIQrQR46EP4hWLNvBx88bCePAsUb1t28McPnyMc+c66dcvj0svzWf7\n9hruuKNa1z78AuVxeAxvrYNnJkUX+fkHaWh4IyLD4UJ2xQu7Ofzfh9VV4qttMNLvDPbDV9q+wua6\nzX7bK5lYgqPVoSZWG8o7EWQS0GZr/OKffsGv+v/KEo+Qr5fhyIEjtE9vD7yC/S1qdWs0cOzA9BB4\nFruqxdujACrG341y3S/UP9sgzJW8YXx16s+5MOUp01EGyzx9PO1w6r1TKmziKYnxHct6vI26Nvy9\nGaehc2Mn7zzyDs2XN7M8YznXjbuObY3b6OrXpfb3Kur7vAplBDyvfxYjTIU5LgbrP22YNRy2ogwl\nY2vpDrQAAB/OSURBVCzHoXC5ClFU2EPXr1RcW8HyQcuVoTkGaNI/k3EMfT1BnhQE97AIQjQQ4yHF\nCeSiPnDogP+KzqAHN280sNvt/PznS5k2bRGnTj0JTKGjw8apU900NTWyZUs56emZqDoONZhVmAwD\nwjOTopuCgvkRexzKhpfxD7/8B46eOapW357ahh5Wmi+9/lLA7dU8UsOWr26hOa1ZuaJbgBmoeL9n\nyuZAwAl7Z+/1mtR76xEK6GF6Fm8tg0EaStR5HOVVqUdNXG9iluAu0P9O99nGuyjDqA5lMBgx+sMo\nj4JhfBmlmN/Sf24GZuHdB8QwEKbpx8nw1niKLTfp+zD6QeShvp8PfT6XE+UhKQN3jpvmo83QBY6P\nHOozGOGIFrwrmRunl/FI11+Xpv+vw+M1vkZkN2T93yw2VG0I9rX0SMnEEhwnHMowuxQl31mHaqpl\nGJ+BSNMFn4IQI0QwmaK4XC6m3j6V4cXDqT1fi2O2g6Y5TThmOThpO9njTeic+9yFIkGFJYUMGj2I\n3CtyyRmXQ8bwDNLsadiG20gbmUbmqExGzhoZUZdI73oPR1G9KeYDj9HcrPH55wdQd2yjjkN0W3kv\n+9dlHM0+qkSSWSiNw0aUaG4hZrXA3wJPwNQTU2l4vSGo0bLx8EYKv1NITlaO+hg5qAlyPPDX+qMC\nZVjMRk1qrwJPAiuB9dB+sp2f/cPPwirU5NfxEdQVH2wFawg/z6IMmTtRk/Jg/Tmj2JXvKtimj3cQ\nZnfIbahJtQI10Xp6IO7Ut9eqb8OzgJZnbH8IKs3VU2w5GDWRG9v6BPhc3/8+j+39GvUdlenbKkZ5\nK7qAy1EiVg1llAzQfzdEiRmYhoJRNXQrylgZqo/TqCrpywHol9UvyD8vTuldpeS8n6OOQX+UYXYz\n3kZLIALUkBCEaCLGQwpitI7evm872tc1/8nDSDEMxGnY//l+ZXBMc/Cp61NOzjpJ+13tnD17lq6s\nLrXN+0Gr0uj8204OjT7EP933T702IJSmYQpqqViOmqHXAWuBtzh37ueoGcKo42Bd1chANH7QaLqs\n3ajJ/i7gf/QhGcV6hsOwS4ex7Q89p8pVXFvBhqoNPP7rx9UEcI7AWQxnMFX+vhkZVdDy5RYKSgu8\njnNP1SAvZDuAmdlwAm+NgCe6Gz7/rXwGdg5Uuod8lKFjeA9scGGB67lSP4sytIw+H4ZBYOhD3tCP\n5Sn9eI7Bf4UPZovqMv11b+i/t6Am+W2YpcAv1/8/QN9XPuoUeh4lfxnksa1s4Hf6ftpR18BQ/Tgb\nvxteliz9u8lBGQk5+uuMcXfhn13Trf/9Flw67NIABzc0qmZU0fJeC5WDKinOKubKMVcycNtABmgD\nsJ209Wi0BKohIQjRQoyHFOTCitMzZuuJ4YYPxEZwf83tX1vfWAnOJWBK3NmvnL1o6l4wzHoPRn+K\nUp8dzAMmoQwGQ+uwBuWdWACUMXz4Q71Kw/SlbncdLSdaTKHgCdSxMtzT30R5Cr4JjIf8rPyQt101\no4rCMYVm6WpfzuN9nA0x4e9RE+K70NGvg+9+87vYhtuwDbYxbNww07M0vQmH5qD21VqGXz+cj1s+\nNjMbXlTjpZCeV7D9oeCyAj758ycU/qVQvbcMFdJoxQw/nPLYhh1zpa6HcbwMglyUC/6r+t9GCMiN\nubr3rMJpeDVOYJZrdqEmeReqMFMryiMEarI/of//VZS4sV1/3mhe9iLKGDNc/3aUIXDO4/eD+r40\nVFjpGCrd9gZ9e1/T/74U5Rkw0jOf039+pJ6/tLD3xgPo3WafWM2erXtobmzmRMsJ7vzpnWg5mjJe\nP8fbaPkc0t9Op/SuQFlLghAdxHhIQS6sOIOtMA33tO9NaD/YDtnMic3TnexCTSQ9CLY2bO1dnNes\n92B4IALxSzIz70UZEJegDI1XgB9SWGhj9+4XI9Y61O2u4yd/+AntR9pNl3YewVeZb0NaRniXUHZG\nttqmZ3bAGyiRYjvmcTYmPM/QxgKUJqEbNQleAdyBWUDoRdQkOAK0PI2uzi7vzIZRqKJGhggvEPoK\n1gi12NDPB+OcyUHdNTo8tjFR/3soyivwFv4GygnMBJl1qIk5Xd/GII9tBdIbGL/bUav+G/V9fKG/\n11MCYxjMNo/nt6EMGMMw0DBDI1kev+d5bOc4KuQyQv9fp/75FqGyIF4DrtZfY4SdxkPh/xTy0q8C\na18ioXtrtzK+KlEeME+jZSfcOfPOmIicBcFAgmQpyIVKecaN0teAyAUWwsCXBnLZZZd5qfq3jN5C\ns02voudpfNhQK2NjRR6gP8ORo0d6VWvfrPfQU8XJ4YwadTlf+coaGhuX09mZTkZGFyUlxdTU1Edk\nOBii0m2N22ja22QW/zmEijt/HX9FvR24E069fSqsfZVMLFFpkUZ2QD3wV8AB1H67UBOvEfv/yGO/\nJ1GrXlCrYc/6BpvxrwPwJmZmw2yPQVyGKpNxG95VEFsh690sSn9deqFk8vCVw3HanGZmwSZ9jEZD\nqDKUzdcfZbjsBe5BGTKeZZo9DYC7UemW51Er+YH6z7mYoQRPb4TnhP8MZmGmrSgPSKH+nmlAM+Z3\nZGzLhbfHoQ1lHNyJyvYwfn9Wf5+nMPYW/fhs8Pg892FeA1vU8cg4n8Gl1156oRBUOFkWoXChdLYN\n/5oS3fDhxg8t3Z8gXAwxHlKQC62jPVMLfTkBt8+73S8vfML0CabB4Wl8GIKtYP0Z9kK3o5v77rqP\ne2z3hNXsyKz3EMzaAeimX78MVq8O3Cirt3hlJHShBH+zUROzW/87B/8bthoSQ7KHhLW/0rtK+d2a\n39HV2gW79O1+iMo6eBvV+8GGmvQO4n2cn0WtrMFbrOhE9dPIwLuUsRtV8dBo0uX53c3CbOakF7Va\neOtCfrXtV16G2NCcoTg1p5lZMA+VInkEsyFUs/57Pcq4MTI2PDNTPL/aXNRkPg81+R4F/kbf1gGU\nQWBU8Gzz+P04SjjpW5hpNMpoMbwyxrlvPD8AU+czHRUC2qC//xuojIybfbbtm4J5FjL2ZtC5oFN9\nnlz9GOplp3sSzFrBhQVBICTTQogDErZIQS60jg5UNlmPkeZsyQkYI73wXvDWRhj3RUNUZuge2lBx\n5jeAhdBe3h60lXEwqqrstLTUM3ashgpLBMKaTAq/rRr6kMGoMI4NFd83btRDCe7ibw1fpFY1o4rd\nb+9mwBsD1PdilLouQLnIh+kvbCOwqNJYwRt6jDOoSTsDUyvgRGWCXIdyc5/FP3yRx4U20dwN7nlu\n+vXr5zcBep0PBjP1bRoNoQbp4zZc+mvwz0w5ifd2XKgwxiKUgZaH8hzYUBP5K6iwzBeoif4K1Ll8\nFd7n9HT9c92ovycL89zfhvLqnMT8HnP1fY5AGUG/QxlkL6OMoD+hzoP+mNkifwVZ2Vlc9b2rKDhQ\nQO5LuWGVnbaCCwuCQEimhRAHxHhIQUrvKiVnS4668fqkFtpW2ph6Yiot77UEjJFeeO9+VCFHQxsx\nFbUyN0RlYArx3ATtLdD8JdXs6GLY7XaWLHmRnByjP4WntdNgWSaFLxf0IdtQk1gaZpphIcoVH8QA\nS3+1dyK1Dzo/YOpDU01jwFiRT0etujtRx7oAZSSsR6VtHsNcwW/GbLaVhprsDKPCEAcaRsIYzPBF\nT2WcP/Cv7+F1Phifvz9qUl6DqZsxVvv36Q+PzBTbaRuDxg0i7a00czuGEZSrb8/4TLNQRs89qFLQ\nGSiP1+soI+B1/Rj9CVgJtudt9M/oT87uHHIG5pDuTvc2Xg6jvA6e32N/lNejSh2nAdkDcH7sRDui\n4XQ4qexXSfHGYoreKKJ4YzGV2ZW0bmvF8YiD/a/t58yeM3Q4Ojiz5wz7X9vPhqoNUW9mFtCIM5BM\nCyEOBHOE9ZYfoiRc41Brk23AMlStNF8mATt37tzJpEmTLB6GEEnvCs/3nnOf45jzGG7NzfmO83T1\n71I39jZUvHgWyrX716gV3CbMrEp9cszPyGfvzr0huXU9u2d66xoi608RjHHTx9E0p0mtQE+jJpo8\nj8/zImpF7NGWmg5IP5fOz1b+7KJtqXvCZrfB91GGwf2Yk//zKAPimyivgobSA3yoj0lDeRcqURoA\nG2bc344yEu7BW5T5Iur7CFYcDCh6o4iPt37s93ywc6n676qp+c8aXl7/MidnnQwcHtsPldmVrH5i\ntdd29u7bS8d3OtQY30AJQ18FvkPgu1I3DPzdQE58eiL4B0CJXp/a8BSNqxo5e/osWppmZnXMQaV8\nenyPtMP4+8fz8MKH49bNNBRWbV7FD77zA+Ul8yxQdkB5EWNVUl5IHHbt2sXkyZMBJqOCoDHFauPh\nNZT+98+oddyjwLWoEi3tPq8V4yHJWLV5FfffdT/a3ZqajGyoSaoOlQngOdH5NO7JeieLX/3mVwl3\ng5swfQKOaQ5TLDcUZfYak2wAcWh+Rz57/xyaMdQTaUPT0G7TVPaB4Skw9rka5aJvR4kjB2NWfbSh\nRIYLUR6lLpRmoBY1qQxEGT+etKE+Yw+Tc/HGYvZs3RP25+jNxLb4+4upPV/rnSlyDlXTIghZv87i\n/P7zYY8PEqMRXKSkwmcQrCPexoPVgbJbfP5ejFojTQLes3hfQoypmlHFpq9t4vnXnlcehy2Ybvet\nmB0jA/Rs6JjZEbOeGeFQMrEEx2sOlWI4FCXYM1aqQcoPF2wssORmPfSSobg2uNR+jWwDQ4w3BuVJ\nyMTMnJiD8uzo4+BF/f/dmIWsXiRwlo2xzWAC2ghc31UzqrjjvTvUxLbRZ2J7L/DEVnpXKS985wXT\n4LgTZTAF18sqI6mXGLUTkplU+AxC6hBtlc0g/ecXUd6PECNm3j2T5//0vHfOvB2lhchErZDX4xe6\noAC2sS0+g+6B0rtKqa2vhSLU5HpE/0cUJllfZv9gNs/98DmVDdGO8tdtRh0zt/6c0cXRSLdM19/c\nidkXwhAjGuMdSuDxT0d5iebgnaKpewhKn+p9kaFwJ7ZABscn2idorVrg494K/bP693p8giBYSzQF\nkzbg31HrU0cU9yPEkKoZVWT2yzRz5g1l+znUyrAe/9LK3waug6Z9TRH1wIgGdxTfgS3TptT6hjr/\nMkzVvU9hqGBZKr3h91W/x7HVwdjssWRmZGI7aIMTkHkmk8IhheTn5Ht7ETzTZzMwizedQgkJjWyR\nYCLPY8AZ1YvDVxAYTEAbTTwrKX689WOm/NUU5YEJVJDrDRj/pfExHZ8gCMGJpufhP4EJ/P/27j84\nivO+4/j7JCQhEZD4IYMNuAER3MNxSwIRCBuZDMFAndZxcBxIMomI28Ez7thOmqlnktSj/pg40zZx\nQ5pAXJfBJBPhmNpDnBCIIRYBg7AxNqYVCRRDiDAUQSyBED8k3fWP7y67tzpkTvdTp89rRoO0t7d7\n952H2+89+32exz6WJY+EIqHek+mUYveux2G3Ltyplf0TSd0Ejc805syti9WNq/nyX32ZaE80duKh\ndqw34OdYet0D06ZM67Mbvr/C4TCH9x2O+9jyh5azdvtab1pot5fnAt58EO7Qw0bn9V7GClhrsZTd\nnafAmaNjRs0Mdv1X7vUAAdQ9Wsf+L+7n4t6LXg9MBBhmvQ51j9Zl9wWKyFWpLph0fRcroavFBlzF\n82Hg9blz51JRURHzwLJly1i2LHcrnwe7ivdXeNX1F7DZAo9gY+xHYMM23cmIAoWToY0hVm1YlRMJ\nRM2SGppGNvUuWPQ7DuXbymk71neVfzr8YPsPePBTD9qiTqPxkrL1WFHnQ/T+H+yO1hiJ3fbwX4DP\nl/LkmidzIvbXoqJAkd4aGhpoaGiI2dbW1saOHTsgT0ZbhLDE4R5sKpkjfeyr0RYD1LIvLmP9S+u9\nAr+t2Ox827BK/zHY0Dv/6AF3xEIPlEfLuXfxvVm/IFRMrqD98+02RPAk3vvx1QKwBWbPnM3uF641\neVV63TLrFg7VHrJv4kexlHwkNkz2LuInPIdgysEpFJcW6wIskqfybbTF97A52e7B68QGmwvvUorP\nJVkybMEwCn5VQGRvxC5q57Bivj14yzG7aynEmc66PdLO2hNr2bFoR9qn9e3Lxa6Llu7Ow76t7yW2\nu7wsB7rLh2DzTtxNbBJWhNVl/AW9ix/3lvGVp76S0z0MIjKwpTp5eBC7fDQGttdhE+ZKHnh62dM8\n8bEnrnYvH750mK5QF4wl9n48xE6J7HJnn+QI9z18H9sbtmf2DWDd492Xu621unUDrxAzG0noRIjf\nHfxdVr+tX52WON6w0fPxFzdLdV2GiEhQqpMHTXc9SPiH5t16+600R5u9RYfctRT8QwzjGQ9ntp7J\nxMuN4S6GFSHiDWkMXpiPw4htI7J+Ea6eXk1zS3NCi5uJiKSbLvaStKvz7rvf4Evx5uH3L+sdlKXV\nALf/cLs3OVGODw2Mu7ZEGoaNiogkQsmDJC3mAleKJRDuglruoknxZGE1wNWNq3n2xWet6PAsNjfF\na9g0z+7Pa1BUWJQTQwNX3LmCYzuPUVfSe7GmbMzNICIC6RuqeT002iKPBIfY0QWR7ginz57m3IJz\n3rBO36gL2iEUDTGkeAihISFKi0pZ/NHFrPzmyrTdLqhZUkPTm01WyhvGhj4G1q6gFJbOWErDmoY+\njiQikj35NtpCBqlrTU98ddGkmZ1e8eQcbCbKUogujNI1oQtCcCVyhfUn1rNxzkaefDq18xG0trby\n8GMP07S9yRIGtxYjRGytA0AE3tr6VsrOLSKSb3TbQtLK7XYf++ZYSxxGYbNSjsLmVZiI1//ljMK4\nWHuRpp80pew1rG5czfjq8TY3RRE2S2MPOVeLISIyUCh5kLSrrKxkdMVoqzNwl/LuxOYnuIBNq7wK\n+D6wGvgFPP/i87S2tqbk/Hue20NXeZclKxGs5+M8OVWLISIykCh5kIzoptu7bVGMJRDuVMotWA1C\nOTa99TA4N+oc4dvDKUkgdu3d5SUrIeBdbEbMlms84QSMuXlM0ucVEclX+nolGTGEIV6dgfuN/xVg\nODZD5Ux6rYNxdstZ5nxuDoe3xF84Kijeugi3Tb2Nt1vetlkaO7HbFluwVVe2YcmMf0rqFqh6s4oN\nmzek6J2LiOQfJQ+SEdXTq2ne3Owt5d2OrSdxkd6LUjm1D9wFrdtar2uxJHfip86ZnbaC5O+BKDT/\nptl6M7qwWya12CLx/4O9lp9j9Q9FUNRTxJK7l7Byc/pGe4iI5AMlD5IRs++fzTMbniEajdpMlGvw\nvu1PcHbyD+V0eiDa29qZ/OHJdNR2WI/FGXuseVMzG366gVd/+SrhcNgmfprZaUtQu8uFv46trVEJ\nvAMswpKS8XhTUY8ArkDRpSJOHDihpEFE5DooeZCMWHHnCho/3sj6lvV2Aa/ALuyFWKIQXECrE1vq\n+wyWOLj1EiOxxauOQ0d3B9PumEYoFLKkpAqrm7jF2WchdmviFHAZL0kJTkUdgUmbJylxEBG5TiqY\nlIyZ9/l53kyUhVjrcydm8i+gdQG7xdCBJRlHncdKgLXY7Y75WL3EIoiWRq2WoQX4A9bjsBBbnu0y\nliiMpM+hmUqjRUSun5IHyRj/VMvF54utiHECdtFvxRu6+Rw2/+hpbGTGGezi/xPslsNC4DA25HIX\ntth7KZaERLE6iqNYslCC1+OgoZkiIimh5EEyyp2J8jP3fsaKGO8EtmJFi27iEMJ6DyrwVufchfVW\ndGKJxDEsQZjj7HOjc4yIs98Z7Pgj8Io0+xiaWT29OtVvVUQkbyl5kKyYff9sQhdDNufC/VhvwStY\nMtDl/F0IjMFGT7hFlG4iMRxLEI5ityzuALqxRKLb2a/QOZlbQLmN3qtTHtfqlCIiiVJfrWTFijtX\nUPtyLbMWzuL8gvPepE0tWJ3CEKznYRJ2i2IE3gqdrXiFls7oC8qAP8JW8oxiCUcPlny0YLUUn8IS\nlF87z7kCY8vGcmDnARVLiogkQD0PkjXhcJgjrx+hbmgd4zrG2W2LUVhdQxeWBPwaGI1NJOUmCT3Y\nbYgrzja3bmIBMBRLMtqwHolJeD0OpVjx5DLgDijsKORAoxIHEZFEKXmQrHJrIE6+dZLi4mKraViA\nJQhngKVY4jAJ60U47fw9B0s2ruDVTZzFEoOpWFJxDtgM1ADNQAPwY2Ad8AJ8/VtfV+IgItIPum0h\nOaNwaKFd9N+H3abodH4fDszD1sEA61FwayUafL/7J5gaAxTDTV030bq1la5oFxRCQaSAm2+8mU2b\nNhEOhzP47kRE8od6HiRnTLxhojfcsgSbzMn9uwzrhZiAFUQ+jxVVfhr4Gdbr8DHgs85+tVDWVcbj\nTz3OldNXiLZGiZ6K0nO6h6P7jypxEBFJgnoeJGeMmzyOQwcPWf1CJXZbwv3dLXq829nZncr6HRha\nPJSSbSVQAGMqx1AypMTWvtj5z7otISKSBkoeJGdsWLmB6vnVHNtyDOYCO7EVMOfSewXMUiAMVZeq\n2L15t5IEEZEM0m0LyRmVlZW8uu1Vli5YSvmucoouF1ndw2YInQ8R2hiiYFUBw9cNZ+rmqdSV1Clx\nEBHJAvU8SE6prKykYU1Dtl+GiIj0QT0PIiIikhAlDyIiIpIQJQ8iIiKSECUPIiIikhAlDyIiIpIQ\nJQ8iIiKSECUPIiIikhAlDyIiIpIQJQ8iIiKSECUPIiIikhAlDyIiIpIQJQ8iIiKSECUPIiIikhAl\nDyIiIpIQJQ8iIiKSECUPIiIikhAlD4NMQ0NDtl/CoKOYZ55innmK+eCSjuShFngROAFEgHvScA7p\nJ/0HzzzFPPMU88xTzAeXdCQPZcAbwEPO39E0nENERESyZEgajrnZ+REREZE8pJoHERERSUg6eh4S\ncvDgwWy/hEGlra2Nffv2ZftlDCqKeeYp5pmnmGdWtq+doTQfPwJ8AvhpnMduBF4Dxqf5NYiIiOSj\nE8BHgJOZPnE2ex5OYm/6xiy+BhERkYHqJFlIHCD7ty2y9sZFRESkf9KRPAwDPuD7ezIwHTgL/D4N\n5xMREZEBbh5W6xABeny/r8niaxIREREREREREREREREREZHBqx6vfsH9eSewTxib06ENOAfsBiYG\n9qkBfgV0AO8CLwNDfY8fi3OebwSOcTO2+FYH0Ap8Byjq5/vKZfUkF/P3x3m++7PEd4yRwA+dY7QB\n64DywHkUc08qYn4szuNq5/3/bLkJ+DFwCovXPmLjDWrnfvVkJubH4pxH7bz/Ma8CXgBOA+3As8AN\ngWPkXDuvB95yXqj7M9r3eBU2ouKbwJ9iH6KLgUrfPjXYm/lbLEhVwCeBYt8+R4GvBc4zzPd4IXAA\n2OqcZz7QAqxM9g3moHqSi3lB4Lk3AH+HNboy33F+AewHZgGznXP6J/ZSzD2pirnauaee5D9bXgaa\ngJnO418DurGRXi61c089mYm52rmnnuRiPgw4AmwAbgU+iCUSe4id8DHn2nk9tlrmtawHnnmPYzQB\nf/8e+xwFHunj8cVYAx3n2/Zp4CLwvvc49kBTT/IxD3oD+A/f32EsA/6Ib9ssZ5s75FYx96Qi5qB2\n7ldP8jE/D3w2sO0MsNz5Xe08Vj3pjzmonfvVk1zM78Ji5Y9LBdaG5zt/Z6ydJ7ow1gew6TDfBhqA\nSb7j/BlwGNgC/B+WKNzje+4NQDXWRbIL6+pqBG6Pc57HsEb4BvBVYrtTarCs6ZRv2y+BEmBGgu9n\nIEgm5kEzsEzzP33barBvxa/5tu1xts3x7aOYpy7mLrVzT7Ix/xmwFOuyLXB+L8Y+Y0DtPJ50x9yl\ndu5JJuYlQBS44tt2GUsM3OtoTrbzRcC9WHfJfKzL6iQwCstgItj9k0eAP8EaTA9Q6zx/trPPGeAL\n2Afqt4FLwBTfeR4F5mJdMg9g93b839qeIv6S35ew7CmfJBvzoO8D/x3Y9lXgt3H2/a1zPFDMUx1z\nUDv3S0XMS7Fu2Aj24dqG920M1M6DMhFzUDv3SzbmY7AYP4nFfhjw787zVjn7DIh2Xoa98S9h61NE\ngB8F9tmIFdSAZT0R4J8C++yndwGN3yed5410/n4Ky8yC8rGxBSUac79SrOF9KbD9ehubYp66mMej\ndu7pT8yfx4rLPgrcBjyOFWR/0Hlc7bxv6Yh5PGrnnv7EfAHwv1hS0YXd5tgLfM95PGPtPNHbFn6d\nWNfHFKw3oRtoDuzzG6yqE7w1LIL7HPTtE88e51+3d+IUMDawz0isu+wU+S3RmPvdh13M1gW2n6J3\ntS7OtlO+fRTz1MU8HrVzT6IxD2Or9z6AfZs7APwD9qH6kLOP2nnf0hHzeNTOPf35bHnJ2b8SK7b8\nAjABuw0CGWznySQPJcA0LCnowu6x/HFgn6nYUB2cf9+Js88tvn3i+ZDzr5t87MIyW/+bvwu79/P6\ndb72gSrRmPs9gGWxZwPbd2PDeIIFNuVYrEExT3XM41E79yQac/dzrCewTwSvCl3tvG/piHk8auee\nZD5b/oAN5ZyPJRLuaIqcbOf/it17meS8mBexLll3DOonnJP/JZYZ/TUWkDm+YzziPGeJs88/Ahfw\nikZmY104051t92NDSF7wHaMAG3rykrPffOA4Nk4136Qi5jiP9WANJJ5NwJvEDu3Z6HtcMU9tzNXO\nYyUb80LsG9t27EOzCvgbLP6LfOdRO/dkIuY1qJ37peKzZTnWdquAz2E9Fv8SOE/OtfMGrEr0MtYA\nnqN3lrQcOIR1x+wD/jzOcR5zXmgHsJPYwHwIy5zedY5xELuPNjRwjIlY4C9gwfs38nNSkVTF/Bv0\n3btTgU0q0u78rANGBPZRzD3JxlztPFYqYj7Zed5J7LPlDXoPI1Q792Qi5mrnsVIR8yeweF/Gbmk8\nGuc8auciIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKSVf8P\ncfEwB7+DSYoAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t2, l2, l2e = np.loadtxt(echo_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o')\n", + "errorbar(t2, l2, yerr=l2e, fmt='o')" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.360e-01 4.662e+01 inf -- -2.840e+01 -- 1 1 1 1 1 1 1\n", + " 2 7.723e-01 4.603e+01 5.319e+01 -- 2.478e+01 -- 0.595569 0.573902 0.564885 0.564933 0.564693 0.564817 0.564018\n", + " 3 3.411e+00 4.536e+01 5.196e+01 -- 7.675e+01 -- 0.241284 0.160851 0.128635 0.129632 0.129254 0.129464 0.128634\n", + " 4 1.484e+01 4.466e+01 5.009e+01 -- 1.268e+02 -- -0.00703234 -0.219623 -0.310096 -0.306017 -0.306362 -0.306197 -0.306021\n", + " 5 5.921e-01 4.382e+01 4.797e+01 -- 1.748e+02 -- -0.111363 -0.525952 -0.75296 -0.741885 -0.742361 -0.742634 -0.74129\n", + " 6 3.733e-01 4.246e+01 4.584e+01 -- 2.207e+02 -- -0.140827 -0.700007 -1.19878 -1.1757 -1.17861 -1.18043 -1.17869\n", + " 7 2.744e-01 4.002e+01 4.318e+01 -- 2.638e+02 -- -0.163132 -0.756421 -1.63306 -1.59991 -1.61462 -1.6204 -1.61864\n", + " 8 2.214e-01 3.558e+01 3.862e+01 -- 3.024e+02 -- -0.180826 -0.786047 -2.01272 -1.99632 -2.05034 -2.06438 -2.06287\n", + " 9 1.964e-01 2.792e+01 3.104e+01 -- 3.335e+02 -- -0.198109 -0.808078 -2.25955 -2.32516 -2.48547 -2.51643 -2.51957\n", + " 10 2.013e-01 1.674e+01 2.083e+01 -- 3.543e+02 -- -0.213273 -0.817818 -2.33481 -2.52428 -2.9116 -2.9802 -3.01438\n", + " 11 2.834e-01 5.753e+00 1.015e+01 -- 3.645e+02 -- -0.221915 -0.819446 -2.34863 -2.58195 -3.28722 -3.43843 -3.62111\n", + " 12 1.282e+00 5.594e-01 2.962e+00 -- 3.674e+02 -- -0.22692 -0.818447 -2.35934 -2.59 -3.51729 -3.8012 -4.6475\n", + " 13 7.073e+02 9.360e-02 2.736e-01 -- 3.677e+02 -- -0.229484 -0.817489 -2.36471 -2.59372 -3.56061 -3.9224 -7.6475\n", + " 14 1.523e+03 1.144e-01 1.474e-03 -- 3.677e+02 -- -0.229711 -0.817671 -2.36494 -2.59367 -3.55253 -3.91079 -8\n", + " 15 1.523e+03 1.092e-01 3.831e-04 -- 3.677e+02 -- -0.229667 -0.817642 -2.365 -2.59369 -3.55271 -3.9141 -8\n", + " 16 1.523e+03 1.099e-01 6.214e-05 -- 3.677e+02 -- -0.229676 -0.817649 -2.36499 -2.59368 -3.55237 -3.91373 -8\n", + "********************\n", + "-0.229676 -0.817649 -2.36499 -2.59368 -3.55237 -3.91373 -8\n", + "0.26864 0.229014 0.349667 0.273159 0.62553 0.906575 7060.11\n", + "-0.00293561 -0.00849564 -0.0205528 -0.0525552 -0.0608705 -0.109908 -0.000245353\n", + "********************\n" + ] + } + ], + "source": [ + "P2 = clag.clag('psd10r', [t2], [l2], [l2e], dt, fqL)\n", + "p2 = np.ones(nfq)\n", + "p2, p2e = clag.optimize(P2, p2)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 3.677e+02 3.672e+02 -2.297e-01 3.897e-02 0.967 +++\n", + "+++ 3.677e+02 3.667e+02 -2.297e-01 1.733e-01 2.01 +++\n", + "+++ 3.677e+02 3.670e+02 -2.297e-01 1.061e-01 1.45 +++\n", + "+++ 3.677e+02 3.671e+02 -2.297e-01 7.255e-02 1.2 +++\n", + "+++ 3.677e+02 3.672e+02 -2.297e-01 5.576e-02 1.08 +++\n", + "+++ 3.677e+02 3.672e+02 -2.297e-01 4.736e-02 1.02 +++\n", + "+++ 3.677e+02 3.672e+02 -2.297e-01 4.316e-02 0.995 +++\n", + "\t### errors for param 1 ###\n", + "+++ 3.677e+02 3.672e+02 -8.176e-01 -5.886e-01 0.936 +++\n", + "+++ 3.677e+02 3.667e+02 -8.176e-01 -4.741e-01 1.97 +++\n", + "+++ 3.677e+02 3.670e+02 -8.176e-01 -5.314e-01 1.41 +++\n", + "+++ 3.677e+02 3.671e+02 -8.176e-01 -5.600e-01 1.16 +++\n", + "+++ 3.677e+02 3.672e+02 -8.176e-01 -5.743e-01 1.05 +++\n", + "+++ 3.677e+02 3.672e+02 -8.176e-01 -5.815e-01 0.991 +++\n", + "\t### errors for param 2 ###\n", + "+++ 3.677e+02 3.675e+02 -2.365e+00 -2.190e+00 0.303 +++\n", + "+++ 3.677e+02 3.674e+02 -2.365e+00 -2.103e+00 0.671 +++\n", + "+++ 3.677e+02 3.672e+02 -2.365e+00 -2.059e+00 0.905 +++\n", + "+++ 3.677e+02 3.672e+02 -2.365e+00 -2.037e+00 1.03 +++\n", + "+++ 3.677e+02 3.672e+02 -2.365e+00 -2.048e+00 0.968 +++\n", + "+++ 3.677e+02 3.672e+02 -2.365e+00 -2.043e+00 1 +++\n", + "\t### errors for param 3 ###\n", + "+++ 3.677e+02 3.675e+02 -2.594e+00 -2.457e+00 0.301 +++\n", + "+++ 3.677e+02 3.674e+02 -2.594e+00 -2.389e+00 0.667 +++\n", + "+++ 3.677e+02 3.672e+02 -2.594e+00 -2.355e+00 0.902 +++\n", + "+++ 3.677e+02 3.672e+02 -2.594e+00 -2.338e+00 1.03 +++\n", + "+++ 3.677e+02 3.672e+02 -2.594e+00 -2.346e+00 0.966 +++\n", + "+++ 3.677e+02 3.672e+02 -2.594e+00 -2.342e+00 0.999 +++\n", + "\t### errors for param 4 ###\n", + "+++ 3.677e+02 3.675e+02 -3.552e+00 -3.240e+00 0.35 +++\n", + "+++ 3.677e+02 3.672e+02 -3.552e+00 -3.083e+00 0.938 +++\n", + "+++ 3.677e+02 3.670e+02 -3.552e+00 -3.005e+00 1.39 +++\n", + "+++ 3.677e+02 3.671e+02 -3.552e+00 -3.044e+00 1.15 +++\n", + "+++ 3.677e+02 3.672e+02 -3.552e+00 -3.064e+00 1.04 +++\n", + "+++ 3.677e+02 3.672e+02 -3.552e+00 -3.073e+00 0.988 +++\n", + "+++ 3.677e+02 3.672e+02 -3.552e+00 -3.069e+00 1.01 +++\n", + "+++ 3.677e+02 3.672e+02 -3.552e+00 -3.071e+00 1 +++\n", + "\t### errors for param 5 ###\n", + "+++ 3.677e+02 3.673e+02 -3.914e+00 -3.460e+00 0.7 +++\n", + "+++ 3.677e+02 3.667e+02 -3.914e+00 -3.234e+00 2.01 +++\n", + "+++ 3.677e+02 3.671e+02 -3.914e+00 -3.347e+00 1.23 +++\n", + "+++ 3.677e+02 3.672e+02 -3.914e+00 -3.404e+00 0.939 +++\n", + "+++ 3.677e+02 3.672e+02 -3.914e+00 -3.375e+00 1.08 +++\n", + "+++ 3.677e+02 3.672e+02 -3.914e+00 -3.390e+00 1.01 +++\n", + "\t### errors for param 6 ###\n", + "+++ 3.677e+02 3.677e+02 -8.000e+00 -6.000e+00 0.0117 +++\n", + "+++ 3.677e+02 3.676e+02 -8.000e+00 -5.000e+00 0.203 +++\n", + "+++ 3.677e+02 3.674e+02 -8.000e+00 -4.500e+00 0.665 +++\n", + "+++ 3.677e+02 3.671e+02 -8.000e+00 -4.250e+00 1.19 +++\n", + "+++ 3.677e+02 3.672e+02 -8.000e+00 -4.375e+00 0.891 +++\n", + "+++ 3.677e+02 3.672e+02 -8.000e+00 -4.312e+00 1.03 +++\n", + "+++ 3.677e+02 3.672e+02 -8.000e+00 -4.344e+00 0.958 +++\n", + "+++ 3.677e+02 3.672e+02 -8.000e+00 -4.328e+00 0.994 +++\n", + "********************\n", + "-0.229674 -0.817648 -2.365 -2.59368 -3.55236 -3.91386 -8\n", + "0.272837 0.236171 0.32235 0.251819 0.481357 0.524238 3.67188\n", + "********************\n" + ] + } + ], + "source": [ + "p2, p2e = clag.errors(P2, p2, p2e)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X+UVOd93/E3grWo7cYYpcwgYzHRpMossiR314AEFlml\ntquqkZ3aCdmJrByLULnRSj7bVDpRkzLVWXDaKJwYHQnSEhm7jaVZyKndWOeIyHWyCnQRdLNrSxYw\njTvsYGExQ2SM08hBWUn0jztrLfjC7uzOnZ/v1zn37O7M88zzIF2Wz8x97vMFSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkzdG/A0aAvwFKwFeAa+o6I0mS1BD2Ar8KdALXA08BBeDtdZyT\nJElqQD8JvAl8sN4TkSRJ07ushmMtKn89XcMxJUlSg5tHcLnhL+o9EUmSNDMLajTOY8C1XPpSw9Ly\nIUmSKnOyfFRVLULCo8DPA+uAly/SZumVV1758ssvX+xpSZJ0Cd8FVlLloBBlSJhHEBA+BvQAxy/R\ndunLL7/Ml770JTo7OyOcUvX19/ezbdu2phxvLq9Vad9K2s+k7XRtLvV8rf+fVYvnWvXbe66F81yr\nfvsoz7WjR4/yyU9+8j0En8Y3TUjYDqQJQsKrQLz8+BngbFiHzs5Ourq6IpxS9S1atKimc67meHN5\nrUr7VtJ+Jm2na3Op52v9/6xaPNeq395zLZznWvXbR32uRWV+hK/9FHA5cBfwb6cc3waev6DtUuDT\nn/70p1m6tPmWJVx33XVNO95cXqvSvpW0n0nb6dpc7PlsNks6nZ7xXBqJ51r123uuhfNcq377qM61\nkydPsnPnToCdVPmThHnVfLE56AJGR0dHmzJ1q7l89KMf5atf/Wq9p6E24LmmWhgbG6O7uxugGxir\n5mvXcp8ESZLURAwJajvN+vGvmo/nmpqdIUFtx1/cqhXPNTU7Q4IkSQplSJAkSaEMCZIkKZQhQZIk\nhTIkSJKkUIYESZIUypAgSZJCGRIkSVIoQ4IkSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIU\nypAgSZJCGRIkSVIoQ4IkSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCGRIkSVIo\nQ4IkSQoVZUhYBzwFfBd4E/hYhGNJkqQqizIkvB34BtBX/vlchGNJkqQqWxDha/9p+ZAkSU3INQmS\nJCmUIUGSJIUyJEiSpFBRrkmoWH9/P4sWLTrvsXQ6TTqdrtOMJElqHNlslmw2e95jZ86ciWy8eZG9\n8vneBH4B+OpFnu8CRkdHR+nq6qrRlCRJan5jY2N0d3cDdANj1XztKD9JeAfwj6f8fDXwfuB7wEsR\njitJkqogypCwEvjz8vfngN8vf/9FYEOE40qSpCqIMiQ8iwsjJUlqWv4jLkmSQhkSJElSKEOCJEkK\nZUiQJEmhDAmSJCmUIUGSJIUyJEiSpFCGBEmSFMqQIEmSQhkSJElSKEOCJEkKZUiQJEmhoizwJNVN\nNhscAGfPwvHjsHw5LFwYPJZOB4ck6eIMCWpJU0PA2Bh0dwehoaurvvOSpGbi5QZJkhTKkKCWVSgU\n2LDhAdavvx24nfXrb2fDhgcoFAr1npokNQUvN6jllEolenv7yeU6KBb7gNUA5POQzx9i794MqdQE\ng4PbiMVi9Z2sJDUwQ4JaSqlUYs2aNMeOPQasCGmxmmJxNcXiEdauTTM8nDUoSNJFeLlBLaW3t/8S\nAWGqFeTzj9Lb21+LaUlSUzIkqGWMj4+Ty3UwfUCYdC253ALXKEjSRRgS1DI2b95RXoMwc8ViHwMD\nOyKakSQ1N0OCWsbISI7JRYozt5qRkaNRTEeSmp4hQS1jYmI2vebNsp8ktT5DglpGR8dsep2bZT9J\nan2GBLWMlStTwKEKex1i1arOKKYjSU3PkKCWkcn0EY9vr6hPPL6dTZvuiWhGktTcDAlqGYlEglRq\nAjgywx6HSaVeJ5FIRDgrSWpeUYeEe4Bx4O+AvwQ+GPF4anODg9tIJu8FDk/T8jDJ5H3s3v1ILaYl\nSU0pypDwy8DngM3A+4H9wF7gvRGOqTYXi8UYHs7S07OFePxO4CBwrvzsOeAg8fid9PRs4cCBQZYs\nWVK/yUpSg4uydsNvAI8Du8o//xvgnwG/DvxWhOOqzcViMYaGshQKBQYGdrBv32fJ5yGZhHXrOslk\nNnuJQZJmIKqQ8DagC/idCx7/GrAmojGl8yQSCXbtepixMejuhj17oKur3rOSpOYR1eWGnwTmA6UL\nHj8FxCMaU5IkVZGlotWS7vsvWf44lwVg4o036dj4Qz78xbfT8UdBLv6lVJpHP52u5xQbQjYbHABn\nz8Lx47B8OSxcGDyWTgeHpPY0L6LXfRvwKvCLwJ9MefwR4HrglgvadwGjN998M4sWLTrviXQ6Tdrf\nUpqDsZNjdO/sZvTuUbqWer3hQsHaje3s25ebsnYjRSbT59oNqcFks1myk8m+7MyZM+zfvx+gGxir\n5nhRhQQIlpWPAlPL8h0BvgL89gVtu4DR0dFRurxorCozJIQrlUr09vaTy3WUq2dOLY51iHh8O6nU\nBIOD24jFYvWapqRpjI2N0d3dDRGEhCgvN/w+8EcE+yMcBO4GlgH/OcIxpR8pFAoM/N4A+8b2wWlY\n/6frWde1jswDmbZ/h1wqlVizJs2xY48BK0JarKZYXE2xeIS1a9MMD2cNClIbijIk7AGuADLAUuBb\nwG3ASxGOKQXvkDf2kjudo7iiCLcGj+fJkz+RZ+8de0ktTjH4+GDb/sPX29t/iYAw1Qry+Ufp7e1n\naCg7TVtJrSbqhYt/UD6kmiiVSqy5bQ3HbjwGHwhpsAyKy4oUTxVZe9tahp8ebrugMD4+Ti7XwfQB\nYdK15HILKBQKbf8JjNRurN2gltK7sTcICNNtpLgE8jfm6d3YW5N5NZLNm3eU1yDMXLHYx8DAjohm\nJKlRGRLUMsbHx8mdzk0fECYtgdzpHIVCIcppNZyRkRznL1KcidWMjByNYjqSGpghQS1j89bNwRqE\nChQ7iwxsHYhoRo1pYmI2vebNsp+kZmZIUMsYeWEkuH+mEstg5PmRSObTqDo6ZtPr3Cz7SWpmhgS1\njIk3ZvFWdx5MvNleb5FXrkwBhyrsdYhVqzqjmI6kBmZIUMvomD+Lt7rnoOOy9nqLnMn0EY9vr6hP\nPL6dTZvuiWhGkhqVIUEtY+X1K+FEhZ1OwKobVkUyn0aVSCRIpSYINkCdicOkUq97+6PUhgwJahmZ\nBzLEj1RWZDR+NM6m+zdFNKPGNTi4jWTyXuDwNC0Pk0zex+7dj9RiWpIajCFBLSORSJBanAoKks/E\nKUgtTrXlO+RYLMbwcJaeni3E43cS7Jx+rvzsOeAg8fid9PRs4cCBQZYsmel9pZJaiaWi1VIGHx9k\n7W1ryd+Yv/R+CacgeTDJ7r27aza3RhOLxRgayparQO5g377PTqkC2Ukms7ktA5SktxgS1FJisRjD\nTw8HtRu+maPYWQxui5xH8Ab5RHCJIbU4xe69u9v+HXI2C9lsAniYq6+G+fNh+XJ45RX4zGcgnQ4O\nSe3JkKCWE4vFGHpqKHiHvHWAfc/sI386T3JxknXd68g8YRXISYYASZdiSFDLSiQS7HpsF2Mnx+je\n2c2eu/fQtbSr3tOSpKbhwkVJkhTKkCBJkkJ5uUEtKfutLNkXswCcff0s11xxDQ9+/UEWLlgIQPp9\nadLXeTFeki7FkKCWlL7OECBJc+XlBkmSFMpPEqQ2duFlmeM/OM7ydy33sowkwJAgtbWpl2UmbxXN\nfiLrraKSAC83SG2vUCiwoW8D6z++Hp6E9R9fz4a+DRQKhXpPTVKd+UmC1KZKpVKwffXpHMUVRbg1\neDxPnvyJPHvv2EtqcYrBxweJxWL1naykujAkSG2oVCqx5rY1HLvxGHwgpMEyKC4rUjxVZO1taxl+\netigILUhLzdIbah3Y28QEKarb7UE8jfm6d3YW5N5SWoshgSpzYyPj5M7nZs+IExaArnTOdcoSG3I\nkCC1mc1bNwdrECpQ7CwysHUgohlJalSGBKnNjLwwAssq7LQMRp4fiWQ+khqXIUFqMxNvTFTeaR5M\nvDmLfpKaWlQh4beBA8APge9HNIakWeiY31F5p3PQcdks+klqalGFhA5gN7AjoteXNEsrr18JJyrs\ndAJW3bAqkvlIalxRhYSHgEeAFyN6fUmzlHkgQ/xIvKI+8aNxNt2/KaIZSWpUrkmQ2kwikSC1OAWn\nZtjhFKQWp0gkElFOS1IDMiRIbWjw8UGSB5PTB4VTkDyYZPfnd9dkXpIaSyXbMj8EZKZp8wFgbNaz\nkVQTsViM4aeHg9oN38xR7CwGt0XOA84BJ4JLDKnFKXbv3c2SJTPdeSla2WxwAJw9C8ePw/LlsDCo\nbE06HRySqmNeBW2vKB+Xchx4bcrPnwI+B7x7mn5dwOjNN9/MokWLznsinU6T9m+9FJlCocDA1gH2\nje4jfzpPcnGSdd3ryNyfachLDIVCgYGB7ezblyOfh2QS1q1Lkcn0NeR8pWrKZrNkJ5Ny2ZkzZ9i/\nfz9AN1V+o15JSJiNT1FBSBgdHaWryzr2Uj2MnRyje2c3o3eP0rW08f4elkolenv7yeU6KBb7gNVT\nnj1EPL6dVGqCwcFtFqNSWxkbG6O7uxsiCAlRVYG8Clhc/jofuIEgkHwbeDWiMSVVKPutLNkXg3cl\nZ18/yzVXXMODX3+QhQuCz+/T70uTvq7+n+SVSiXWrElz7NhjwIqQFqspFldTLB5h7do0w8NZg4JU\nBVGFhAHgV8vfnwO+Uf56C7AvojElVSh9XWOEgOn09vZfIiBMtYJ8/lF6e/sZGspO01bSdKK6u+FT\n5de+jOCThMmvBgRJFRkfHyeX62D6gDDpWnK5BVatlKrAWyAlNbTNm3eU1yDMXLHYx8CAG75Kc2VI\nkNTQRkZynL9IcSZWMzJyNIrpSG3FkCCpoU3MqvjkvFn2kzSVIUFSQ+uYVfHJc7PsJ2kqQ4KkhrZy\nZQo4VGGvQ6xa1RnFdKS2YkiQ1NAymT7i8e0V9YnHt7Np0z0RzUhqH4YESQ0tkUiQSk0AR2bY4zCp\n1Otu0SxVgSFBUsMbHNxGMnkvcHialodJJu9j9+5HajEtqeUZEiQ1vFgsxvBwlp6eLcTjdwIHCTZx\npfz1IPH4nfT0bOHAgcGqV63MZuFDHypw1VUP8M533s7b3nY773zn7Vx11QN86EMFsm7uqBYV1bbM\nklRVsViMoaFsuQrkDvbt++yUKpCdZDKbI7nEUCqV2LnzxwtLTUzAq68eYmIiw86dE/zcz1lYSq3H\nkCCpqSQSCXbtepixMejuhj17IKrisRaWUrszJEhqGtksP/po/+xZuOYaePBBWBgUrSSdDo5qsbCU\n2p0hQVLTqHYIuJS5FJbyzgq1ChcuSlIIC0tJhgRJCmVhKcmQIEmhLCwlGRIkKZSFpSRDgiSFsrCU\nZEiQpFAWlpIMCZIUysJSkiFBki7KwlJqd4YESbqIeheWkurNHRcl6RLqVVhKagSGBEmaRlAzIgE8\nzNVXw/z5sHw5vPIKfOYztd0uWqolQ4IkTcMQoHblmgRJkhTKkCBJkkIZEiRJUqioQkIC+DxwDPgh\n8H+BhwB3NZckqUlEtXDxZ4B5wN0EAeE64A+BdwAPRDSmJEmqoqhCwjPlY1IB2Ar8OoYESZKaQi3X\nJCwCvlfD8SRJ0hzUap+EJHAv8Bs1Gk+Sml6wy+N2RkZyTExAR0dQwjqT6XOXR9VEpSHhISAzTZsP\nAGNTfr4S+FNgD7CrwvEkqe2USiVuuaWfY8c6eO21PmD1j5578cVDPPlkhquvnmBoaBuxWKx+E1XL\nm1dh+yvKx6UcB14rf38lMAQ8B3zqEn26gNGbb76ZRYsWnfdEOp0m7VZnktpEqVRizZo0x449Bqy4\nRMsjJJP3MjycNSi0kWw2SzabPe+xM2fOsH//foBuzn+TPmeVhoRKvIcgIIwAn+St0mlhuoDR0dFR\nurq6IpySpGaW/VaW7IvBL8izr5/l+A+Os/xdy1m4YCEA6felSV/X3G8qbrklzbPPbuLSAWHSYXp6\ntjA0lJ2+qVrW2NgY3d3dEEFIiGpNwnuAZwnuangAmBpzixGNKanFpa97KwSMnRyje2c32U9k6Vra\nGm8uxsfHyeU6mFlAALiWXG4BhULBNQqKRFR3N3yYYLHizwEngJfLx3cjGk+Smt7mzTsoFvsq6lMs\n9jEwsCOiGandRRUSvlh+7fnlr5dN+VmSFGJkJMfURYozs5qRkaNRTEeydoMkNYqJidn0mjfLftL0\nDAmS1CA6ZlXd5tws+0nTMyRIaiqFQoENfRtY//H18CSs//h6NvRtoFAo1Htqc7ZyZQo4VGGvQ6xa\n1RnFdKSa7bgoSXNSKpXo3dhL7nSO4ooi3Bo8nidP/kSevXfsJbU4xeDjg027b0Am08fevRmKxZmv\nS4jHt7Np0+YIZ6V25icJkhpeqVRizW1rePaqZyl+pAjLLmiwDIofKfLsVc+y9ra1lEqlusxzrhKJ\nBKnUBHBkhj0Ok0q97u2PiowhQVLD693Yy7Ebj8GSaRougfyNeXo39tZkXlEYHNxGMnkvcHialodJ\nJu9j9+5HajEttSlDgqSGNj4+Tu50bvqAMGkJ5E7nmnaNQiwWY3g4S2fnFi6//E7gIG9tWHsOOMjl\nl99JZ+cWDhwYZMmSmf6HkSrnmgRJDW3z1s3BGoQKFDuLDGwdYNdjzVlTLhaLceRItlwFcgcjI5+d\nUgWyk0xmc6SXGKw+qUmGBEkNbeSFEfhQhZ2WwcifjVRtDvWqGZFIJNi16+Gqv+7FlEolenv7yeU6\nyjs/nl99cu/eDKnUBIODVp9sF4YESQ1t4o1Z7BQ0DyberN4OQ61eMwJmUn1yNcXiaorFI6xdm7b6\nZJtwTYKkhtYxfxY7BZ2DjsvcYagSvb39MyhPDbCCfP5Renv7azEt1ZkhQVJDW3n9yqBMXCVOwKob\nVlV1Hq28idNcqk+qtRkSJDW0zAMZ4kfiFfWJH42z6f5NVRm/VCpxy+23cNMdN/GFv/8C+Vvz8CuQ\nvzXPF/7+C9x0x03ccvstTbs3A1h9UhdnSJDU0BKJBKnFKTg1ww6nILU4VZVV+O2yiZPVJ3UxhgRJ\nDW/w8UGSB5PTB4VTkDyYZPfnd1dl3HbZxMnqk7oYQ4KkhheLxRh+epie7/QQ/1ocXuL8/YVegvjX\n4vR8p4cDew9UZYOhdtrEyeqTuhhDgqSmEIvFGHpqiOeeeI67Ft5F8pkkPAnJZ5LctfAunnviOYae\nGqraDoRz2cSp2Vh9UhdjSJDUVBKJBLse28WeL++BX4E9X97Drsd2VX0nwJEXRn58DcJ0lsHI89Xb\nxKlWMpk+4vHtFfUJqk/eE9GM1CgMCZIUohE2caoVq0/qYgwJkhSi3TZxsvqkwhgSJClEo2ziVCuT\n1Sd7erYQj4dXn4zH76Snx+qT7WRevSdQ1gWMjo6O0tXVOnuhS6quWhZaKhQK3HTHTcH+CDMU/1qc\n5554ruk/hn+r+uTRC6pP3tP0f7ZWNDY2Rnd3N0A3MFbN17bAk6SmMbXQUtQmN3EqnirO7DbIKm7i\nVG+1rj6pxuXlBkm6iHpt4iQ1CkOCJF1EPTZxkhqJlxsk6RImN3EqFAoMbB1g3zP7yJ/Ok1ycZF33\nOjJPZFriEoMUxpAgSTMwuYnT2Mkxund2s+fuPXQtdaG1WpuXGyRJUqioPkn4KnADwZrg7wNfB34T\nOBnReJIUmQtvvbzmimt48OsPRnLrpdRIogoJfw5sIQgFy4CtwJeBmyIaT5IiU8tbL6VGElVI2Dbl\n+5eA3wW+AswH3ohoTEmSVEW1WJOwGLgDGMKAIElS04gyJPwu8LfAK8BPAb8c4ViSJKnKKgkJDwFv\nTnNMvR/oYeD9wEeA14D/QePUipAkSdOo5B/tK8rHpRwnCAQXeg/B2oQPAgdCnu8CRm+++WYWLVp0\n3hPpdJp02gVDkiRls1my2ex5j505c4b9+/dDBAWeavXO/r0EAeJngf0hz1sFUpKkWWi2KpCrysf/\nItgj4WpgAPg28FwE40lSy6llWWzpYqIICT8E/iXBGoZ3EOyVsBfYDLwewXiS1HKm7s0wuRV09hNZ\nt4JWTUUREl4E/mkErytJkmrI2g2SJCmUIUGSJIUyJEiSpFCGBEmSFMqQIEmSQhkSJElSKEOCJEkK\nFcU+CZIkzVg2GxwAZ8/C8eOwfDksDDaXJJ0ODtWeIUGSVFdTQ8DYGHR3B6HBUj715+UGSWpQhUKB\nDX0bWP/x9fAkrP/4ejb0baBQKNR7amoTfpIgSQ2mVCrRu7GX3OkcxRVFuDV4PE+e/Ik8e+/YS2px\nisHHB4nFYlUdu16FpQqFAgMD29m3LwfA+vWwbl2KTKaPRCJR9fE0M7UqFT0dS0VLEkFAWHPbGo7d\neAyWXKLhKUgeTDL89HDVg8KkycJSo3ePRlZYqlQq0dvbTy7XQbHYB6ye8uwh4vHtpFITDA5ui+zP\n2eyarVS0JGmWejf2Th8QAJZA/sY8vRt7GXpqqCZzq7ZSqcSaNWmOHXsMWBHSYjXF4mqKxSOsXZtm\neDhrUKgx1yRIUoMYHx8ndzo3fUCYtARyp3NNu0aht7f/EgFhqhXk84/S29tfi2lpCkOCJDWIzVs3\nB2sQKlDsLDKwdSCiGUVnfHycXK6D6QPCpGvJ5RY0bSBqVoYESWoQIy+MwLIKOy2DkedHIplPlDZv\n3lFegzBzxWIfAwM7IpqRwhgSJKlBTLwxUXmneTDx5iz61dnISI7zFynOxGpGRo5GMR1dhCFBkhpE\nx/yOyjudg47LZtGvziZmlWvmzbKfZsuQIEkNYuX1K+FEhZ1OwKobVkUynyh1zCrXnJtlP82WIUGS\nGkTmgQzxI/GK+sSPxtl0/6aIZhSdlStTwKEKex1i1arOKKajizAkSFKDSCQSpBan4NQMO5yC1OJU\nU+5ImMn0EY9vr6hPPL6dTZvuiWhGCmNIkKQGMvj4IMmDyemDQnnHxd2f312TeVVbIpEglZoAjsyw\nx2FSqdebMhA1M0OCJDWQWCzG8NPD9Hynh/jX4vAScK785DngJYh/LU7Pd3o4sPcAS5bMdOelxjM4\nuI1k8l7g8DQtD5NM3sfu3Y/UYlqawpAgSQ0mFosx9NQQzz3xHHctvIvkM0l4EpLPJLlr4V0898Rz\nDD01FFlAqFX1yVgsxvBwlp6eLcTjdwIHOT8RHSQev5Oeni0cODDY1IGoWVngSZIaXC0KLUFI9cmp\nGzudgPiReGTVJ4MqkDvYt+8o+Twkk7BuXSeZzD1eYpiGBZ4kSZE6r/rkB0IaLIPisiLFU0XW3ra2\n6tUnE4kEu3Y9zNgYdHfDnj3ge8b683KDJGlW1SfV+gwJktTm2q36pGYu6ssNlxPslnE98H7ghYjH\nkyRVaC7VJ3c9tmvO42ezwQFw9ixccw08+CAsXBg8lk4Hh2ov6pDwMPBdgpAgSWpAIy+MwIcq7LQM\nRv6sOtUnDQGNK8rLDf+c4LS7P8IxJElz1E7VJ1WZqD5JiAE7gY8BfxfRGJKkKmin6pOqTBSfJMwD\nvgj8AVW+X1OSVH3tVH1Slankk4SHgMw0bVYCa4F3Av/pguem3bipv7+fRYsWnfdYOp0m7cUqSYpM\n5oEMe+/YS3HZzBcvxo/G2fRE81WfbHbZbJbs5CrPsjNnzkQ2XiUh4VHgyWnaHAf+PXAT8NoFz/0l\n8CXgrot13rZtmzsuSlKNTVafLJ4qzuw2yCauPtnswt44T9lxseoqCQnfKx/T+Qzw21N+fg/wDLCe\nyouHS1Jbyn4rS/bF4B3j2dfPcs0V1/Dg1x9k4YLgvsD0+9Kkr6vep6yDjw+y9ra15G/MXzooTFaf\n3Nuc1SdVmSgWLr50wc8/LH/NAy9HMJ4ktZz0ddUNAdOZrD7Zu7GX3DdzFDvLtRvmEdRaOhFcYkgt\nTrF7726LLbWJWtVuODd9E0lSPU1WnywUCgxsHWDfM/vIn86TXJxkXfc6Mk9kvMTQZmoREgrA/BqM\nI0mqgkQiwa7Hdv2o+uSeu/dEWn1SjcvaDZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCGRIkSVIo\nQ4IkSQpVq82UJEkKdeEW1Md/cJzl71oe2RbUmjlDgiSprqZuQT25gVP2E1k3cGoAXm6QJEmhDAmS\nJCmUlxskST9S6xLVamyGBEnSj9S6RLUam5cbJElSKEOCJEkKZUiQJEmhDAmSJCmUIUGSJIUyJEiS\npFCGBEmSFMqQIEmSQhkSJElSKEOCJEkKZUiQJEmhDAmSJCmUIUGSJIUyJEiSpFBRhYQC8OYFx+9E\nNJYkSYrAgohe9xywCfjDKY+9GtFYkiQpAlGFBIC/BU5F+PqSJClCUa5J+E3gFeAbwG8BHRGOJUmS\nqiyqTxIeAUaB7wOrgf8I/BTwryIaT5IkVVklnyQ8xI8vRrzw6Cq33QbsB14EPg/8a+DXgHdXY9KS\nJCl6lXyS8Cjw5DRtjl/k8UPlrz8NjFysc39/P4sWLTrvsXQ6TTqdnukcJUlqWdlslmw2e95jZ86c\niWy8SkLC98rHbPyT8teTl2q0bds2urq6LtVEkqS2FfbGeWxsjO7u7kjGi2JNwo3ATcAQ8ANgJfD7\nwJ8AJyIYT5IkRSCKkPAasB7IAJcTXILYCTwcwViSJCkiUYSEbxB8kiBJkpqYtRskSVIoQ4IkSQpl\nSJAkSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCGRIkSVIoQ4IkSQplSJAkSaEMCZIkKZQh\nQZIkhTIkSJKkUIYESZIUypAgSZJCGRIkSVIoQ4IkSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUIYE\nSZIUypAgSZJCGRIkSVIoQ4IkSQplSJAkSaEMCZIkKVSUIeFfAIeAHwJ/Dfz3CMeSZiybzdZ7CmoT\nnmtqdlGFhE8A/w34PHA9sAZ4IqKxpIr4i1u14rmmZrcgotd8BLgf+MKUx78dwViSJCkiUXyS0AVc\nCZwDvgG5llKyAAAEK0lEQVS8DDwNXBvBWHVX63cK1RxvLq9Vad9K2s+k7XRtWvEdnOda9dt7roXz\nXKt++2Y916IICVeXvz4EDAA/D3wfeBZ4dwTj1ZV/marfvln/MkXNc6367T3XwnmuVb99s55rlVxu\neAjITNNmJW8Fjy3AV8rf3wWcAH4J2HmxzkePHq1gOo3hzJkzjI2NNeV4c3mtSvtW0n4mbadrc6nn\na/3/rFo816rf3nMtXD3PtaN/fRRehqMvHIWTc3utqPs2yrkW5b+d8ypoe0X5uJTjBIsU/wz4IHBg\nynMHgf8JbArptxQYAd5TwXwkSVLguwRv1GcRrS6ukk8Svlc+pjMKvAakeCskdAAJghAR5iTBH25p\nBfORJEmBk1Q5IETpc8BLwIeBnwEeJ5j8u+o5KUmSVH8LgN8DisAPgGeAzrrOSJIkSZIkSZIkSZIk\n6cf9Q+B/E+zg+CJwb32noxb2XoKNvw4DzwO/WNfZqNV9BTgN/HG9J6KW9fNADvgr4NfqPJfIXAYs\nLH//D4BjwD+q33TUwuIERckgOMdeIjjnpCj8LMEvcUOCorAA+D8E2wu8kyAoLK7kBaIsFV1NbwJn\ny9+/HZiY8rNUTUXghfL3f03wLq+iv1RSBf4C+Nt6T0ItaxXBp6InCc6zp4GPVPICzRISINhj4Xng\nOwRVJv9ffaejNvABgl1Jv1vviUjSLFzJ+b+/TlDhzsbNFBJ+ANwA/BTQB/x0faejFncF8F+Bu+s9\nEUmapXNzfYGoQsI64CmCBPMm8LGQNvcA48DfAX9JUOth0n0EixTHCLZ0nuoUwcKy91d1xmpWUZxr\nlwNfBn6HoOaIBNH9XpvzL3K1rLmecy9z/icH76VBPhm9laBM9C8Q/ME+esHzv0xQ32EDwbbNnyO4\nfPDei7zeEuAnyt//BME145+p7pTVpKp9rs0DssB/iGKyamrVPtcm9eDCRYWb6zm3gGCx4pUEdwn+\nFfDuyGddobA/2CFg+wWPHSF45xamiyCBf7N83FXNCaplVONc+yDwBsG7vW+Uj2urOEe1hmqcaxBs\nWX8KeJXgTpruak1QLWe259ztBHc4fBvYGNns5uDCP9jbCO5OuPBjk20ElxGk2fJcU614rqnW6nLO\n1WPh4k8C84HSBY+fIrhHXaoWzzXViueaaq0m51wz3d0gSZJqqB4h4RWCa76xCx6PEWz4IFWL55pq\nxXNNtVaTc64eIeHvgVF+fNenDwMHaj8dtTDPNdWK55pqranPuXcQ7GPwfoLFFv3l7ydvy1hPcNvG\nXUAnwW0bf8P0twpJF/JcU614rqnWWvac6yH4A71J8HHI5Pe7prT5dYINIM4CI5y/AYQ0Uz14rqk2\nevBcU2314DknSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZLUBP4/E5Tk\nMZ1FSscAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-6,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10)\n", + "errorbar(fqd, p2, yerr=p2e, fmt='o', ms=10)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 6.628e+02 9.007e+00 inf -- 4.160e+02 -- -0.264643 -0.797908 -2.07791 -2.35822 -3.1415 -3.50338 -6.09489 0.1 0.1 0.1 0.1 0.1 0.1 0.1\n", + " 3 6.842e+02 1.078e+01 2.116e+00 -- 4.181e+02 -- -0.226169 -0.759199 -2.03908 -2.32032 -3.11387 -3.43598 -6.39489 0.0502949 0.152916 0.212494 0.121125 0.216976 0.336684 -0.244596\n", + " 5 1.559e+02 1.270e+01 1.915e+00 -- 4.201e+02 -- -0.193741 -0.726441 -2.00316 -2.28893 -3.08464 -3.36731 -6.69489 0.0145685 0.191324 0.293499 0.136888 0.312024 0.482796 1.86942\n", + " 7 1.618e+03 1.477e+01 1.743e+00 -- 4.218e+02 -- -0.166298 -0.698635 -1.97153 -2.26256 -3.05584 -3.30885 -6.99489 -0.0118999 0.220073 0.352843 0.149084 0.389017 0.574531 -0.403772\n", + " 9 2.935e+02 1.701e+01 1.600e+00 -- 4.234e+02 -- -0.142929 -0.674898 -1.94419 -2.24018 -3.02852 -3.26097 -7.29489 -0.0319925 0.242138 0.397314 0.158774 0.451737 0.636061 -2.89416\n", + " 11 9.523e+02 1.944e+01 1.478e+00 -- 4.249e+02 -- -0.122901 -0.654512 -1.92069 -2.22102 -3.00314 -3.22181 -6.99489 -0.0475429 0.25942 0.431356 0.166636 0.503311 0.679979 0.381182\n", + " 13 4.366e+02 2.207e+01 1.373e+00 -- 4.262e+02 -- -0.105633 -0.636902 -1.9005 -2.20452 -2.97982 -3.18951 -7.29489 -0.0597637 0.273183 0.4579 0.173119 0.546186 0.712957 1.78135\n", + " 15 1.284e+02 2.490e+01 1.279e+00 -- 4.275e+02 -- -0.0906648 -0.62161 -1.8831 -2.19023 -2.95852 -3.16261 -7.59489 -0.0694848 0.284294 0.478919 0.178532 0.582205 0.73873 -2.12851\n", + " 17 6.684e+01 2.796e+01 1.196e+00 -- 4.287e+02 -- -0.0776289 -0.608271 -1.86808 -2.17781 -2.93913 -3.14003 -7.29489 -0.0772912 0.293368 0.495775 0.183096 0.612767 0.759519 -2.12851\n", + " 19 1.131e+03 3.125e+01 1.119e+00 -- 4.298e+02 -- -0.0662284 -0.596588 -1.85505 -2.16698 -2.92148 -3.12092 -6.99489 -0.0836055 0.300851 0.509435 0.186975 0.638935 0.776775 -0.468363\n", + " 21 7.866e+01 3.476e+01 1.049e+00 -- 4.309e+02 -- -0.0562219 -0.586319 -1.84372 -2.1575 -2.90544 -3.10467 -6.69489 -0.0887399 0.307075 0.5206 0.190292 0.661523 0.791406 3.12663\n", + " 23 4.749e+01 3.851e+01 9.840e-01 -- 4.319e+02 -- -0.0474108 -0.577266 -1.83385 -2.14919 -2.89085 -3.09077 -6.39489 -0.0929293 0.312289 0.529789 0.19314 0.681153 0.80404 2.58773\n", + " 25 9.016e+01 4.250e+01 9.239e-01 -- 4.328e+02 -- -0.0396304 -0.569264 -1.82521 -2.14191 -2.87758 -3.07884 -6.69489 -0.0963531 0.316687 0.537395 0.195593 0.698325 0.815127 2.31075\n", + " 26 2.291e+03 4.856e+03 4.196e+00 -- 4.370e+02 -- 0.0292432 -0.498358 -1.74955 -2.0779 -2.75662 -2.9761 -8 -0.124329 0.354004 0.600746 0.216726 0.849429 0.913805 -2.9851\n", + " 27 3.278e+00 8.497e+01 6.218e+00 -- 4.432e+02 -- 0.0254995 -0.502475 -1.77412 -2.11199 -2.72719 -3.04402 -5 -0.0720726 0.308662 0.702517 0.165496 0.94859 0.890579 1.11967\n", + " 28 3.369e+02 3.689e+01 7.032e-01 -- 4.439e+02 -- 0.02803 -0.501445 -1.76227 -2.08919 -2.72868 -3.00045 -7.18712 -0.103292 0.35578 0.648429 0.1705 0.951458 0.974389 -2.55109\n", + " 29 1.859e-01 1.619e+01 2.026e-01 -- 4.437e+02 -- 0.0284028 -0.501795 -1.76339 -2.09611 -2.722 -3.01268 -4.18712 -0.0900085 0.341162 0.653855 0.173506 0.94415 0.962545 2.3652\n", + " 30 9.710e-01 1.003e+01 2.272e-01 -- 4.439e+02 -- 0.0287103 -0.501625 -1.76349 -2.09457 -2.72212 -3.0105 -4.78581 -0.0929545 0.347387 0.644721 0.172745 0.942888 0.964175 2.80497\n", + " 31 3.231e+01 4.382e+00 4.330e-02 -- 4.440e+02 -- 0.0288105 -0.50173 -1.76305 -2.0945 -2.72206 -3.00972 -5.95917 -0.0912361 0.344716 0.65491 0.172811 0.94407 0.967832 -0.754455\n", + " 33 7.887e+00 3.999e+00 5.730e-03 -- 4.440e+02 -- 0.0288182 -0.501725 -1.76307 -2.09454 -2.72196 -3.00967 -5.65917 -0.0912811 0.344831 0.654757 0.172631 0.944361 0.968167 3.09091\n", + " 34 1.021e+03 1.567e+00 3.306e-03 -- 4.440e+02 -- 0.0288906 -0.501682 -1.76326 -2.09497 -2.72112 -3.00942 -8 -0.0916682 0.345845 0.653313 0.170964 0.94684 0.970952 2.33492\n", + " 35 1.958e+03 8.857e-01 2.455e-04 -- 4.440e+02 -- 0.0289281 -0.501698 -1.76317 -2.09482 -2.72066 -3.00928 -8 -0.0913907 0.345397 0.655119 0.171217 0.948376 0.971555 -1.95846\n", + " 36 2.231e+01 1.235e+00 1.134e-03 -- 4.440e+02 -- 0.0289502 -0.501688 -1.76324 -2.09495 -2.7204 -3.00936 -5 -0.0914472 0.345652 0.654699 0.170847 0.949278 0.972212 0.258881\n", + " 37 8.016e+00 5.056e-01 1.360e-02 -- 4.440e+02 -- 0.0289689 -0.501701 -1.76321 -2.09488 -2.71981 -3.00893 -5.06546 -0.0913367 0.345498 0.655382 0.171555 0.950824 0.972854 0.766704\n", + " 38 1.884e+02 2.121e-01 1.200e-02 -- 4.440e+02 -- 0.0289819 -0.501697 -1.76328 -2.09496 -2.71958 -3.00916 -6.54275 -0.0913617 0.345681 0.654623 0.17157 0.951297 0.972966 0.903638\n", + " 39 1.947e+04 3.463e-01 5.080e-04 -- 4.440e+02 -- 0.0289824 -0.501696 -1.76321 -2.0949 -2.71995 -3.00932 -8 -0.0913416 0.345612 0.655284 0.170969 0.950797 0.973096 0.295641\n", + " 40 3.049e+03 1.048e-01 3.268e-05 -- 4.440e+02 -- 0.0289805 -0.501691 -1.76324 -2.09495 -2.72006 -3.00933 -8 -0.0913641 0.345627 0.655123 0.170779 0.950573 0.972811 -0.79378\n", + "********************\n", + "0.0289805 -0.501691 -1.76324 -2.09495 -2.72006 -3.00933 -8 -0.0913641 0.345627 0.655123 0.170779 0.950573 0.972811 -0.79378\n", + "0.00488089 0.00320555 0.0166349 0.0498124 0.0675131 0.0930602 5801.93 0.082796 0.0625792 0.157936 0.242192 0.285454 0.316561 13418.5\n", + "-0.0761655 -0.104783 0.024591 0.0175272 0.0313802 0.0122834 6.72756e-05 0.000572629 -0.00671213 0.00501444 0.000107792 -0.0065959 -0.0147919 -1.32979e-05\n", + "********************\n" + ] + } + ], + "source": [ + "Cx = clag.clag('cxd10r', [[t1,t2]], [[l1,l2]], [[l1e,l2e]], dt, fqL, p1, p2)\n", + "p = np.concatenate( ((p1+p2)*0.5-0.3,p1*0+0.1) ) # a good starting point generally\n", + "p, pe = clag.optimize(Cx, p)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 4.441e+02 4.440e+02 2.894e-02 3.139e-02 0.184 +++\n", + "+++ 4.441e+02 4.439e+02 2.894e-02 3.262e-02 0.538 +++\n", + "+++ 4.441e+02 4.437e+02 2.894e-02 3.323e-02 0.868 +++\n", + "+++ 4.441e+02 4.436e+02 2.894e-02 3.354e-02 1.1 +++\n", + "+++ 4.441e+02 4.436e+02 2.894e-02 3.339e-02 0.977 +++\n", + "+++ 4.441e+02 4.436e+02 2.894e-02 3.346e-02 1.04 +++\n", + "+++ 4.441e+02 4.436e+02 2.894e-02 3.342e-02 1.01 +++\n", + "\t### errors for param 1 ###\n", + "+++ 4.441e+02 4.440e+02 -5.016e-01 -5.000e-01 0.272 +++\n", + "+++ 4.441e+02 4.437e+02 -5.016e-01 -4.993e-01 0.765 +++\n", + "+++ 4.441e+02 4.435e+02 -5.016e-01 -4.989e-01 1.18 +++\n", + "+++ 4.441e+02 4.437e+02 -5.016e-01 -4.991e-01 0.954 +++\n", + "+++ 4.441e+02 4.436e+02 -5.016e-01 -4.990e-01 1.06 +++\n", + "+++ 4.441e+02 4.436e+02 -5.016e-01 -4.990e-01 1.01 +++\n", + "\t### errors for param 2 ###\n", + "+++ 4.441e+02 4.439e+02 -1.763e+00 -1.754e+00 0.496 +++\n", + "+++ 4.441e+02 4.433e+02 -1.763e+00 -1.750e+00 1.76 +++\n", + "+++ 4.441e+02 4.437e+02 -1.763e+00 -1.752e+00 0.96 +++\n", + "+++ 4.441e+02 4.435e+02 -1.763e+00 -1.751e+00 1.3 +++\n", + "+++ 4.441e+02 4.436e+02 -1.763e+00 -1.752e+00 1.12 +++\n", + "+++ 4.441e+02 4.436e+02 -1.763e+00 -1.752e+00 1.03 +++\n", + "+++ 4.441e+02 4.436e+02 -1.763e+00 -1.752e+00 0.994 +++\n", + "\t### errors for param 3 ###\n", + "+++ 4.441e+02 4.439e+02 -2.096e+00 -2.071e+00 0.418 +++\n", + "+++ 4.441e+02 4.435e+02 -2.096e+00 -2.058e+00 1.22 +++\n", + "+++ 4.441e+02 4.438e+02 -2.096e+00 -2.064e+00 0.741 +++\n", + "+++ 4.441e+02 4.437e+02 -2.096e+00 -2.061e+00 0.959 +++\n", + "+++ 4.441e+02 4.436e+02 -2.096e+00 -2.060e+00 1.08 +++\n", + "+++ 4.441e+02 4.436e+02 -2.096e+00 -2.060e+00 1.02 +++\n", + "+++ 4.441e+02 4.436e+02 -2.096e+00 -2.061e+00 0.989 +++\n", + "+++ 4.441e+02 4.436e+02 -2.096e+00 -2.061e+00 1 +++\n", + "\t### errors for param 4 ###\n", + "+++ 4.441e+02 4.440e+02 -2.720e+00 -2.686e+00 0.217 +++\n", + "+++ 4.441e+02 4.438e+02 -2.720e+00 -2.670e+00 0.62 +++\n", + "+++ 4.441e+02 4.436e+02 -2.720e+00 -2.661e+00 0.996 +++\n", + "\t### errors for param 5 ###\n", + "+++ 4.441e+02 4.439e+02 -3.008e+00 -2.962e+00 0.426 +++\n", + "+++ 4.441e+02 4.435e+02 -3.008e+00 -2.939e+00 1.27 +++\n", + "+++ 4.441e+02 4.438e+02 -3.008e+00 -2.951e+00 0.758 +++\n", + "+++ 4.441e+02 4.436e+02 -3.008e+00 -2.945e+00 0.986 +++\n", + "+++ 4.441e+02 4.436e+02 -3.008e+00 -2.942e+00 1.12 +++\n", + "+++ 4.441e+02 4.436e+02 -3.008e+00 -2.944e+00 1.05 +++\n", + "+++ 4.441e+02 4.436e+02 -3.008e+00 -2.944e+00 1.02 +++\n", + "+++ 4.441e+02 4.436e+02 -3.008e+00 -2.945e+00 1 +++\n", + "\t### errors for param 6 ###\n", + "+++ 4.441e+02 4.440e+02 -4.031e+00 -3.728e+00 0.351 +++\n", + "+++ 4.441e+02 4.435e+02 -4.031e+00 -3.577e+00 1.31 +++\n", + "+++ 4.441e+02 4.438e+02 -4.031e+00 -3.653e+00 0.699 +++\n", + "+++ 4.441e+02 4.437e+02 -4.031e+00 -3.615e+00 0.961 +++\n", + "+++ 4.441e+02 4.436e+02 -4.031e+00 -3.596e+00 1.12 +++\n", + "+++ 4.441e+02 4.436e+02 -4.031e+00 -3.605e+00 1.04 +++\n", + "+++ 4.441e+02 4.436e+02 -4.031e+00 -3.610e+00 0.999 +++\n", + "\t### errors for param 7 ###\n", + "+++ 4.441e+02 4.440e+02 -9.183e-02 -5.033e-02 0.277 +++\n", + "+++ 4.441e+02 4.438e+02 -9.183e-02 -2.959e-02 0.608 +++\n", + "+++ 4.441e+02 4.437e+02 -9.183e-02 -1.921e-02 0.805 +++\n", + "+++ 4.441e+02 4.437e+02 -9.183e-02 -1.403e-02 0.914 +++\n", + "+++ 4.441e+02 4.436e+02 -9.183e-02 -1.143e-02 0.97 +++\n", + "+++ 4.441e+02 4.436e+02 -9.183e-02 -1.014e-02 0.998 +++\n", + "\t### errors for param 8 ###\n", + "+++ 4.441e+02 4.440e+02 3.447e-01 3.758e-01 0.288 +++\n", + "+++ 4.441e+02 4.438e+02 3.447e-01 3.913e-01 0.618 +++\n", + "+++ 4.441e+02 4.437e+02 3.447e-01 3.991e-01 0.821 +++\n", + "+++ 4.441e+02 4.437e+02 3.447e-01 4.030e-01 0.931 +++\n", + "+++ 4.441e+02 4.436e+02 3.447e-01 4.049e-01 0.987 +++\n", + "+++ 4.441e+02 4.436e+02 3.447e-01 4.059e-01 1.02 +++\n", + "+++ 4.441e+02 4.436e+02 3.447e-01 4.054e-01 1 +++\n", + "\t### errors for param 9 ###\n", + "+++ 4.441e+02 4.438e+02 6.661e-01 8.218e-01 0.763 +++\n", + "+++ 4.441e+02 4.434e+02 6.661e-01 8.997e-01 1.49 +++\n", + "+++ 4.441e+02 4.436e+02 6.661e-01 8.607e-01 1.11 +++\n", + "+++ 4.441e+02 4.437e+02 6.661e-01 8.413e-01 0.932 +++\n", + "+++ 4.441e+02 4.436e+02 6.661e-01 8.510e-01 1.02 +++\n", + "+++ 4.441e+02 4.436e+02 6.661e-01 8.461e-01 0.976 +++\n", + "+++ 4.441e+02 4.436e+02 6.661e-01 8.486e-01 0.999 +++\n", + "\t### errors for param 10 ###\n", + "+++ 4.441e+02 4.437e+02 1.618e-01 4.046e-01 0.907 +++\n", + "+++ 4.441e+02 4.432e+02 1.618e-01 5.261e-01 1.91 +++\n", + "+++ 4.441e+02 4.434e+02 1.618e-01 4.654e-01 1.38 +++\n", + "+++ 4.441e+02 4.436e+02 1.618e-01 4.350e-01 1.13 +++\n", + "+++ 4.441e+02 4.436e+02 1.618e-01 4.198e-01 1.02 +++\n", + "+++ 4.441e+02 4.437e+02 1.618e-01 4.122e-01 0.962 +++\n", + "+++ 4.441e+02 4.436e+02 1.618e-01 4.160e-01 0.99 +++\n", + "+++ 4.441e+02 4.436e+02 1.618e-01 4.179e-01 1 +++\n", + "\t### errors for param 11 ###\n", + "+++ 4.441e+02 4.438e+02 9.572e-01 1.242e+00 0.573 +++\n", + "+++ 4.441e+02 4.435e+02 9.572e-01 1.384e+00 1.26 +++\n", + "+++ 4.441e+02 4.437e+02 9.572e-01 1.313e+00 0.888 +++\n", + "+++ 4.441e+02 4.436e+02 9.572e-01 1.348e+00 1.07 +++\n", + "+++ 4.441e+02 4.436e+02 9.572e-01 1.330e+00 0.976 +++\n", + "+++ 4.441e+02 4.436e+02 9.572e-01 1.339e+00 1.02 +++\n", + "+++ 4.441e+02 4.436e+02 9.572e-01 1.335e+00 0.999 +++\n", + "\t### errors for param 12 ###\n", + "+++ 4.441e+02 4.437e+02 9.835e-01 1.298e+00 0.846 +++\n", + "+++ 4.441e+02 4.432e+02 9.835e-01 1.456e+00 1.85 +++\n", + "+++ 4.441e+02 4.435e+02 9.835e-01 1.377e+00 1.3 +++\n", + "+++ 4.441e+02 4.436e+02 9.835e-01 1.338e+00 1.06 +++\n", + "+++ 4.441e+02 4.437e+02 9.835e-01 1.318e+00 0.952 +++\n", + "+++ 4.441e+02 4.436e+02 9.835e-01 1.328e+00 1.01 +++\n", + "\t### errors for param 13 ###\n", + "********************\n", + "0.028939 -0.501626 -1.76254 -2.09557 -2.71971 -3.00832 -4.0306 -0.0918281 0.344656 0.666137 0.16175 0.957202 0.983537 -1.17645\n", + "0.0044848 0.00262318 0.0102132 0.0350358 0.0585583 0.0635997 0.42048 0.0816919 0.0607682 0.182442 0.256176 0.377633 0.344174 7.10562\n", + "********************\n" + ] + } + ], + "source": [ + "p, pe = clag.errors(Cx, p, pe)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "phi, phie = p[nfq:], pe[nfq:]\n", + "lag, lage = phi/(2*np.pi*fqd), phie/(2*np.pi*fqd) \n", + "cx, cxe = p[:nfq], pe[:nfq]" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAFrCAYAAACE+GArAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAFTFJREFUeJzt3X2MXeddJ/CvGzsxNMu6L3TGKU2mMYRxqy5lpm5oUxmX\nDV3+2KZIoOIrNQK2S7I0pZpdVKiKOoS8sFK1Sx2Bs8i7RKCt9josAlEEgfJH2oiEeM1MgDqJF5jE\nIcT2pGnrQlOcuEn441w34/GMZ+4z995zXz4f6WrunPvcc38zfjzznXPPc34JAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAyN3Un+IMlTSV5M8r4VxtzcevzrSe5N8qZeFQcAbNwrurjvb03yUJKbWp+/tOzx\nn08y03p8V5KTSf40yaVdrAkAGEAvJrluyeebkpxI8tEl2y5O8pUkN/SwLgBgA7p5ROJC3phkLMln\nl2x7Psnnk7yzlooAgLbVFSTGWx8Xl21/esljAECf21x3AStYfi7FWdtbNwCgPSdat46rK0icbH0c\nW3J/pc/P2n7ZZZcdP378eNcLA4Ah9FSqhQ0dDxN1BYnHUwWG9yT5q9a2i5N8f849AfOs7cePH8+n\nP/3p7Ny5s0clds7MzEz27ds3kK+1kf21+9z1jl/PuLXGXOjxXv57dZq51tnx5trqzLXOju/mXHv0\n0UfzgQ984PWpjuoPVJB4ZZLvWvL5lUnemuRLSZ5Msi/Jx5P8bZK/a93/WpL/s9oOd+7cmampqW7V\n2zXbtm3rWd2dfq2N7K/d5653/HrGrTXmQo/38t+r08y1zo4311ZnrnV2fLfnWjdd1MV9X5PkgSQ3\npjrv4Yda91+V5PeT3J9ka5JfTPKRJF9N0kiy0vsX25PceOONN2b79sE8TeItb3nLwL7WRvbX7nPX\nO34949Yas9rjzWYzjUZjXXX0I3Ots+PNtdWZa50d3625duLEiRw4cCBJDqQLRyQ2dXqHXTKVZG5u\nbm5g0zuD47rrrstnPvOZustgBJhr9ML8/Hymp6eTZDrJfKf3X9fyTwBgCAgSsMwgH2pmsJhrDANB\nApbxw51eMdcYBoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJ\nEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCAB\nABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBA\nMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQT\nJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUEC\nACgmSAAAxQQJAKCYIAEAFKszSNyc5MVlt+M11gMAtGlzza9/JMm1Sz5/oa5CAID21R0kXkjydM01\nAACF6j5H4ruSPJXksSTNJG+stxwAoB11BokHk1yf5D1JfirJeJIHkry6xpoAgDbU+dbGHy+5/3CS\nP0+ykOTHk3yqlooAgLbUfY7EUl9P8oUk37nagJmZmWzbtu2cbY1GI41Go8ulAUD/azabaTab52w7\ndepUV19zU1f33p5LUh2R+PUkty17bCrJ3NzcXKampnpeGAAMqvn5+UxPTyfJdJL5Tu+/znMk/luS\n3alOsLw6ye8kuTTJb9VYEwDQhjrf2nh9qpUar03yxVTnSHxfkidrrAkAaEOdQcKJDQAw4Oq+jgQA\nMMAECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQ\nTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUE\nCQCgmCABABTbXHcBALCWZrO6Jcnp08kTTyRXXJFs3VptazSqG70nSADQ95YGhfn5ZHq6ChZTU/XW\nhbc2AIANECQAgGKCBABQTJAAAIoJEgBAMUECAChm+ScwVFxvAHpLkADWdOzYsdxyy/4cPnw0Z84k\nW7Yku3ZNZnb2pkxMTNRd3jkajeQd76jqve++o1lYSF54Idm9uz/rhUEnSACrWlxczN69Mzl6dEtO\nnrwpydXffOzIkUO5557ZTE6eycGD+zI2NlZfoS2r1buwkCws9F+9MAwECWBFi4uLeec7G3nssV9L\n8qYVRlydkyevzsmTj+Saaxq5//5mrb+cB61eGBZOtgRWtHfvzAV+KS/1piws/Gr27p3pRVmrGrR6\nYVgIEsB5Hn/88Rw9uiVr/1I+6805enRzjh071sWqVjdo9cIwESSA89x6652tcwzW7+TJm3LLLXd2\nqaILG7R6YZgIEsB5Dh8+mqUnVq7P1Tl8+NFulLOmQasXhokgAZznzJmSZ20qfN7GDVq9MEwECeA8\nW7aUPOulwudt3KDVC8NEkADOs2vXZJJDbT7rUN7+9p3dKGdNg1YvDBNBAjjP7OxNGR/f39Zzxsf3\n5xOf+FCXKrqwQasXhokgAZxnYmIik5Nnkjyyzmc8nMnJb9R2+elBqxeGiSABrOjgwX3ZsePDSR5e\nY+TD2bHjZ3L33Xf0oqxVDVq9ndBsJtdeeyyXX/7RXHrpe3Pxxe/NpZe+N5df/tFce+2xbzYvg25y\niWxgRWNjY7n//mbe/e6ZPPbY5jz33NneFZuSvJTkUC65ZH+uvPIb+dznDuZ1r3tdX9Rb9drYvKTX\nxsv1jo/vz+TkN3L33fXXu1GLi4s5cOD8viJnziTPPnsoZ87M5sCBM/mBH9BXhO4SJIBVjY2N5ZFH\nmq3un3fm8OHbl3T/3JnZ2Vv76u2BsbGx3Hvvy/Xed9/tWVhIduxIdu/uv3pL6StCPxEkgDVNTEzk\nrrs+WXcZ69JsJs3mRJJP5sork4suSq64InnmmeQjH6najDcadVe5MSV9Re691/scdIcgAQyVYQgK\nF7KRviLDcDSG/uNkS4ABoq8I/cYRCYABUt5X5PaO1lGdh7I/hw8fXXLezGRmZ29y5GPECBIAA6Tu\nviKLi4utlTHnrhZJkiNHDuWee2YzOXkmBw9aLTIqBAmAAVJnXxGrRViJcyQABkidfUVKVosw/AQJ\ngAFSV1+RjawWYbgJEgADpK6+IlaLsBpBAmDA1NFXpHy1yKMbfm36myAB0AG9bKB1tq/Inj23ZXz8\n+iQPpuonktbHBzM+fn327LktDzzQmb4ida8WoX9ZtQGwQXU00BobG8sNNzTzG79xLFu23Jkvf/n2\nPP98cvHFyatfvTNXXXVrPvjBiXSqN1mdq0Xob4IEwAbUuSSyuhz4RJLu90HZtWsyR44cSntvb3Rm\ntQj9zVsbABswKksi61otQv8TJAAKjdKSyLpWi9D/BAmAQqO2JLKO1SL0v34IEh9K8niSf07yF0ne\nVW85AOszaksi61gtQv+r+2TLH0vyqSQ/neT+JP8pyT2pjhM+WWNdAGsaxSWRY2NjuffeZqv75505\nfPj2Jd0/d2Z29lZvZ4yYuoPEf0nyv5Lc1fr8Pyf5d6mCxcfrKgpgPUZ5SeTExETuuqv7q0Xof3W+\ntXFxkqkkn122/bNJ3tn7cgDaU2cDLegXdQaJ1ya5KMnisu1PJxnvfTkA7bEkEvrjZEuAgWRJJNR7\njsQzSV5IsvwSb2NJTqz0hJmZmWzbtu2cbY1GI41GoysFAqzl4MF9ueaaRhYWfjXJmy8w8uySyIO9\nKo0R1Gw201zW2OXUqVNdfc1NXd372h5MMpdk6ULsR5L8XpJfWLJtKsnc3NxcpqamelgewNoWFxez\nd+9Mjh7dvKTXxqZUSyIPZXx8fyYnv5G7777DksgOmJ9PpqeTubnEr4S1zc/PZ3p6Okmmk8x3ev91\nr9r4lST/O9X1Ix5MckOS70jy63UWxWhoNvPNjoynTydPPJFccUWydWu1repjUF99DI7lSyLvu+/2\nLCwkO3Yku3dbEtkp1fd3f+6772iS5P3vT3bvnszs7E2+vzWq+4hEUi31/Lkk25N8IdUS0D9bNsYR\nCbrKXzhslGDaPS8f8Tm3u2rl7BGfMzl4sHPdVYfJsB+RSJL/0boBDCxBoTvq7K7K+li1AUDfGpXu\nqoNMkACgL41Sd9VBJkgA0JdGrbvqoBIkAOhLo9ZddVAJEgD0pVHsrjqIBAkA+tIod1cdJIIEAH1J\nd9XBIEgA0Jd0Vx0MggQAfUl31cEgSADQtw4e3JcdOz6c5OE1Rp7trnpHL8piCUECgL41NjaW++9v\nZs+e2zI+fn2q/o4vtR59KcmDGR+/Pnv23JYHHjiou2oN+qHXBtRGN0Hof7qr9jdBgpG0WjfBhYVk\nYeFQ7rlnVjdB6DMTExO5665PfrNb72//tm69/UCQYOToJgjQOc6RYOToJgjQOYIEI0U3QYDOEiQY\nKboJAnSWIMFI0U0QoLMECUaKboIAnSVIMFJ0EwToLEGCkaKbIEBnCRKMFN0EATpLkGCk6CYI0FmC\nBCNHN0GAzhEkGDm6CQJ0jl4bjCTdBAE6Q5BgpOkmCLAx3toAAIoJEgBAMUECACgmSAAAxQQJAKCY\nIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMU07WJkNZvVLUlOn06uuir52MeSrVurbY1G\ndQNgdYIEI0tQANg4b20AAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkA\noJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxTbXXQAArKXZrG5Jcvp0ctVVycc+lmzd\nWm1rNKobvSdIAND3BIX+5a0NAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoVmeQOJbkxWW3\nX66xHgCgTXVekOqlJJ9I8j+XbHu2ploAgAJ1X9nya0merrkGAKBQ3edI/HySZ5I8lOTjSbbUWw4A\n0I46j0jckWQuyVeSXJ3kvyZ5Y5KfqrEmAKANnQ4SNyeZXWPM25LMJ9m3ZNuRVIHid5L8XOv+eWZm\nZrJt27ZztjUajTR0cgGANJvNNM+2SW05depUV19zU4f395rW7UKeSPLcCttfn+TJVEcnDi97bCrJ\n3NzcXKampjZcJACMivn5+UxPTyfJdKo/5Duq00ckvtS6lfje1scTHaoFAOiyus6R+L4k70hyb5Kv\nJtmV5FeS/H6Sf6ipJgCgTXUFieeSvD/V+RSXpHq740CST9ZUDwBQoK4g8VCqIxIAwACr+zoSAMAA\nEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFB\nAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQA\ngGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAo\nJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKC\nBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgA\nAMUECQCgmCABABQTJACAYt0KEr+Q5IEkX0/ylVXGXJ7kD5J8LckXk9yRZEuX6oF1azabdZfAiDDX\nGAbdChJbktyd5M5VHr8oyR8m+ZYk1yTZm+RHkvz3LtUD6+aHO71irjEMNndpvze3Pv7EKo+/J8nO\nJD+Y5GRr288m+c0kH091lAIA6HN1nSPxjiRfyMshIkk+m+SSJNO1VNRFvfyro9OvtZH9tfvc9Y5f\nz7i1xgzrX4LmWmfHm2urM9c6O36Q51pdQWI8yeKybV9J8nzrsaHiP1xnxw/yf7huM9c6O95cW525\n1tnxgzzX2nlr4+Yks2uMeVuS+XXub1Mbr50kefTRR9t9Sl84depU5ufX+23pr9fayP7afe56x69n\n3FpjLvR4L/+9Os1c6+x4c2115lpnx3dzrnX7d2c7v8xf07pdyBNJnlvy+U8k+VSSVy0b90tJ3pfk\nrUu2vSrJl5K8O8nnl43fnuRwkte3US8AUHkqya4kJzq943aOSHypdeuEP0+1RHQsL7/F8Z5UIWRu\nhfEnUn0Dtnfo9QFglJxIF0JEN12e6mjDbJJ/TPI9rc9f2Xr8FUn+Osmftrb/2yR/n+paEgDAiPvN\nJC+2bi8s+bh7yZg3pLog1bNJnkmyLy5IBQAAAAAAAACwln+V5P8leSjJkSQfrrcchtgbknwuycNJ\n/irJj9ZaDcPu95J8Ocn/rbsQhta/T3I0yd8k+WDNtdTqFUm2tu5/S5LHknx7feUwxMaT/JvW/W9P\n8mSqOQfd8P2pftALEnTD5iT/P9XlFS5NFSZe3c4O6rpEdje8mOR06/63Jjmz5HPopJOpli8nyRdT\n/bXY1n88aMPno5Eh3fP2VEdXT6SaZ3+U6rpO6zZMQSJJ/nWqQ81nr0nxT/WWwwh4W6orxD5VdyEA\nBS7LuT+//iFtXkV62ILEV1Nd/OqNSW5K8p31lsOQe02S30pyQ92FABR6aaM7qDNI7E51QaqnUr0t\n8b4VxnwoyeNJ/jnJXyR515LHfibViZXzOf9CVk+nOhnurYHuzLVLkvxukl9O8mBXqmYQdevn2oZ/\n2DO0NjrnjufcIxBvyAAdYf2hJLck+eFUX/x1yx7/sVS9N/5Dku9O1fzrn1J9kSt5XZJva93/tlTv\nYX93Z0tmQHV6rm1K0kzyi90oloHW6bl21p442ZKVbXTObU51guVlqVY//k3Ob7Q5EFb64g8l2b9s\n2yOp/gJcyVSqJP+XrdtPdrJAhkYn5tq7Ul3yfT7VnHsoyZs7WCPDoRNzLUn+JNVR1mdTrRCa7lSB\nDJ3SOffeVCs3/jbJf+xadV22/Iu/ONWqi+WHaPalessCSplr9Iq5Rq/VMuf69WTL1ya5KC+3GD/r\n6VRr+KFTzDV6xVyj13oy5/o1SAAAA6Bfg8Qzqd6DHlu2fSzVRTOgU8w1esVco9d6Muf6NUg8n2Qu\n519d6weTPND7chhi5hq9Yq7Ra0M/516Z6joPb011gshM6/7ZJSnvT7Vk5SeT7Ey1ZOUfs/YyKVjO\nXKNXzDV6baTn3J5UX/SLqQ69nL1/15IxP53qIhqnkxzOuRfRgPXaE3ON3tgTc43e2hNzDgAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD61L8A2NQzysYeQkQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "\n", + "xscale('log'); ylim(-10,10)\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=10)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGYCAYAAACQz+KaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XmYHHWd+PH35IBwJgxHuANRowHUOKOIskpEV8X7iK6j\nrMKIP93VXaNj3OyCgit4ZUfjqrArMiKgg2YFZUXx4lpRATOggEGUhCCEewinISQzvz8+1XbPpHum\ne6p6qqf7/Xqeeqqnzm9X9VR/+nuCJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJKk5LAIu\nBtYDjwMPAL8E3pFnoiRJamUz8k7AJJsN3A58E7gT2JkIRM4FDgJOyy1lkiSppf2KyC2RJEmTbFre\nCWgQDwBb8k6EJElqHW1EEdWewD8CTwL/kGuKJElSS/kvYCiZngQ+mG9yJElqXW15JyAnBxC5InsB\nrwPeC/wb8Nky2+6TTJIkqTZ3JdOYWjUYGe104ARgP+C+kuX77Lvvvhs2bNiQT6okSZra7gSexzgB\nSas17a3kWuB9wMGMCkY2bNjAeeedx8KFC6s+2NKlS1m5cmXGSWxtzXJNG+l9THZa6nW+LI+b9lhp\n9p/Ivo30eWoGzXI9G+V9rFmzhmOPPXY/onTBYKQKLwG2AreWW7lw4UI6OjqqPticOXNq2l7ja5Zr\n2kjvY7LTUq/zZXnctMdKs/9E9m2kz1MzaJbrWe599Pf309/fD8CmTZtYv3498+bNY9asWQB0dXXR\n1dU16WktaLVg5KvAQ0ROyD3AHsBbgLcCnyOa+KoB5flPkqVGeh+TnZZ6nS/L46Y9Vpr9G+mz0aqa\n5R6Uex+lwcbAwACdnZ309/c3TPDVanVGjgOOBxYCc4BHgeuBrwHfKrN9B7B69erVNd2w173udVx0\n0UWpEytJY/FZo4koBCO1frdN9DxAJzAw1ratljNydjJJkqQGYQ+sddAsWX2SGpvPGjULg5E68AEh\naTL4rFGzMBiRJEm5MhiRJEm5MhiRJEm5MhiRJEm5MhiRJEm5MhiRJEm5MhiRJEm5MhiRJEm5MhiR\nJEm5MhiRJEm5MhiRJEm5MhiRJEm5MhiRJEm5MhiRJEm5mpF3AiSpoL+/n/7+fgA2bdrE+vXrmTdv\nHrNmzQKgq6uLrq6uPJMoqQ4MRiQ1jNJgY2BggM7OTvr7++no6Mg5ZZLqyWIaSZKUK4MRSZKUK4MR\nSZKUK4MRSZKUK4MRSZKUK1vTSBmxWaokTYzBiJQRm6VK0sRYTCNJknLVasHIS4FvALcAjwF3AN8D\n/OkqSVJOWi0YeS9wIPAF4Bjgg8BewK+Bl+SYLkmSWlar1Rn5AHDvqGWXAH8C/g24bNJTJElSi2u1\nnJHRgQhEcc0aYP9JToskSaL1gpFyZhN1Rm7KOyGSJLUigxH4CrADcFreCZEkqRW1Wp2R0T4JvJ2o\nS3JdzmmRJKkltXIwcjJwIlFx9fSxNly6dClz5swZsczeNFVJX18fp556KgBLlizhpJNOoru7O+dU\nTS1eQ2lqKe2BumDjxo05pWbqOBkYAj42znYdwPDq1auHpWqcddZZw+3t7cPAX6f29vbhs846K++k\nTRleQ6m+Vq9ePTwZ322F81BFX16tWGfkY0Qw8slkkjLT29vL4ODgiGWDg4P09vbmlKKpx2sotZ5W\nK6bpAT5B9C3yQ+CIUet/PekpUlPZsmVLTcu1La+h1HpaLRh5DZFl9MpkKjUMTJ/0FKmpzJhR/l+q\n0nJty2sotZ5WK6Z5CRFwTCszGYgotZ6eHtrb20csa29vp6enJ6cUTT1eQ6n1tFowItVVd3c3K1as\nYP78+QDMnz+fFStW2BKkBl5DqfVkke+5E3Ak8HxgLrAn0avpRuA+4G7gauCXwOMZnE9qaN3d3Sxa\ntIjOzk5WrVpFR4eDQtfKayi1lokGI3sCxwJvJZrszADaxtnnSWA18B3gm0SgIkmSWlytxTRPAfqA\n24FeIjdkJiMDkUeBDcQAdKVmEq1XPg+sB85KjidJklpYtTkjuwOnAu8u2ecJ4FKiOezVwG+BQSIH\npGAmsAewCDicCF6OBmYBxxO5K31ET6gjOxaQJEktodpg5BZgt+T1FcB5wCrg4XH2exK4K5l+lCyb\nDbwFeAdwFPDe5O89qk61JElqGtUW0+wGXAw8j2geexbjByKVPAR8LTnO85Ljto+5hyRJalrV5owc\nDvymDudfDbwWeG4dji1JkqaAanNG6hGITObxJUlSg7LTM0mSlCsHe5Ay0t/fT39/PwCbNm1iwYIF\nLF++nFmzZgHQ1dVFV1dXnkmUMjP6875+/XrmzZvn510TkjYY2Q54avJ6LbBp1PodgNOIztF2B9YB\nZwBfSnleqeH48FUrKf28DwwM0NnZSX9/v73lakLSBiNvAM4nelM9oMz6C4BXlPz9DOCLwNOAf055\nbkmS1ATS1hkpBBoXAptHrXt1yfo7gO8RPbMCvB94QcpzS5KkJpA2GOlM5leWWXd8Mr8FOBR4UzK/\nmeg+/oSU55YkSU0gbTCyFzAM3FrmuH+bvP4y8Ejy+qHkb4AXpjy3JElqAmmDkUIX7qMrri4CdiEC\nlYtHrbsxmZerYyJJklpM2gqsm4kWM6PHlXlxMr+DaEFTqpBLMj3luSU1GZtHS60pbTByG3AIcATw\n85Llr03m/1dmn8I4NPelPLekJmOwIbWmtMU0lyXzDxBBCcDrgMXJ6x+W2efQZH5XynNLkqQmkDYY\n+RLwJDAXuAG4n2jC2wbcCXy3zD4vT+Y3pDy3JElqAmmDkVuAY4HHiQCkUASzEegCnhi1/d4Ug5FL\nU55bkiQ1gSzGpllF9DPyaiLY2ABcBAyW2fZZwLeIVjblinAkSVKLyWqgvHuAviq2+0kySZIkAemL\naSRJLayvr48lS5YAsGTJEvr6qvldKo2UNhi5GfgoUYFVktRC+vr6WLZsGevWRXdS69atY9myZQYk\nqlnaYGQB8Bngz8D3gdfT+J2Z7Qx8jiguug8YAk7ONUWSNAX19vYyODiyeuDg4CC9vb05pUhTVdpg\n5LpkPoPo6OxCotfVFcAzUh67XvYA3gPMJNILUaFWklSDLVu21LRcqiSLUXsXAV8EHkiWzQV6gJuA\nXxKj8+6c8jxZug3YDXgJ8K/5JkWSpq4ZM8q3gai0XKokiwqsvwM+BOwLLCEGxttK9DtyBPBVorfV\nrwMvyuB8WWrLOwGSNFX19PTQ3t4+Yll7ezs9PT05pUhTVZataZ4ELiCKaw4AlgN/SNbtBLwLuILo\nKG05sE+G55YkTbLu7m5WrFjB/PnzAZg/fz4rVqygu7s755RpqqlX0967iUqiC4EXAl+jOFrvU4FP\nAeuBHwBvpPErvUqSyuju7mbVqlUArFq1ykBEEzIZBXu/TqaLiCKbvUvO/apk2gD0EmPdNFzNp6VL\nlzJnzpwRyxxdVJKaT39/P/39/QBs2rSJ9evXM2/ePGbNmgX47K+k9LoVbNy4ser96x2MzAOOA94J\nHESxjsYW4GfECL4HEPVNeolxbl4GPFjndNVk5cqVdHR05J0MSVKdlQYbAwMDdHZ20t/f73fAOMoF\naYXrV416FNPsQAQVPwduJfrwOJgIRP5I1BfZn8gRORh4BRGYADwHOKUOaZIkSQ0qy2DkBRRbzpxD\nNJ2dBmwCvgksBp5O1CW5N9lnCPgpMZLvl5Jlr80wTZIkqcGlLabZF/h7oijm6aPW/ZaouHoe8FAV\nx/oG8E9EsU29HUO08Nkl+ftQolkyRNPkv0xCGiRJEumDkdsZmbvyCNBPBCG/qfFYDyfzyWhZczpR\nnwWi99W3JNMwUXR0+ySkQZIkkT4YKQQivwLOBL4DPD7BY90NdDM5XbMfnNWBrrkG7r8f2pKquW1t\n274ea101r/PYv9nPKUlqHGmDkZVEELImg7Q8CpydwXEm1Yknws9+Nv52ajz1DqDa2mDGDJg+PabC\n69HzsdY12/7TphkQamro6+vj1FNPBWDJkiWcdNJJ9qFSR2mDkQ9nkoop7PzzYdOmeD08HFM1r6vd\nzuNO3eMODcHWrbBlS8xLX1eal1u2eXO6/SutGxoiF6MDmLGCmFmzYIcdYMcdYyq8Trts1iyDIlXW\n19fHsmXL/joi8bp161i2bBmAAUmdOJpRSrvvnncKpIkZHt42SMk64Emz/5NPwhNPwF/+Ao8/HvNH\nH4V77x257PHHi9PWrdW997a2CEqyCG7GWz9zph1pTTW9vb1/DUQKBgcH6e3tNRipE4MRqUUVipFm\nzIDtt887Ndl48smRAUq519Uue+ABuOOOyuurNX067LhjFzvu2MUOO8D06X/h1luv5oADns0BB+zG\nnnvCgw/CqlWw116w554xb2+PYi1Nvi1byncEXmm50ssyGDkaeAPwLGAPovOz8TJC52d4fkktbubM\nmHbdtb7nGR6OXJtqgprR69eufYRbb72TRx/t4Kqr4L77Irdn9PfctGmwxx7F4GS8+Zw5Bi9ZmTGj\n/FdjpeVKL4srOxc4Hzgqg2NJUsNra4t6J7NmRQ5GLQYG7uD884/l9NNX/7WL8eFheOihCEoKwUm5\n+Zo1Mb/vvm2LpKZPj8Ck2uBl9ux09WZGFz0tWLCA5cuXN0XRU09Pz4g6IwDt7e309PTkmKrmljYY\nmQn8kOjGHeB6YtC7VyV/nwu0Ax3APsmyAeBGJqcJryQ1vLa2yNmYMwcWLBh/+6Eh2Lhx7ODlnnvg\nhhvi7/vv37bC8syZtQUvu+wyMniZysHGeAr1Qk477TTWrl3L/PnzOfHEE60vUkdpg5HjKAYi3UTT\n3MOIYGQYeFeyrg14HdHZ2ELg08B3U55bklrStGmRI9PeDs94xvjbb90a9VJKg5XRAcwdd8B118Xf\ng4PFVmEF2203drCy775w6KGw//7N0VKpu7ubRYsW0dnZyapVqxwor87SBiNvTuaXMHYfIcPA94kc\nkdVE1+83ALekPL8kaRzTp0f9kz32qG77LVuiAu9YRUa33QbXXht/P1gyzvquu0ZQcthhMS+8nju3\nOYIU1UfaYGRRMj+vwvo2RhbH3Ep0lPZx4IPA+1OeX5KUsRkzIniYO7e67Z98MnJWbropphtvhN/8\nBs45Jyr6QuTiHHZYMUgpzO0eQZA+GGkngo21Jcs2l7zeEXhs1D6XEsHIy1KeW5LUAGbOhIMPjuk1\nryku37oV1q6N4OTGGyNQueIK+OpXi62H9t57ZHBy2GFwyCFRwVatI20wsplowlsagDxc8no/ti2K\n2VSyTpLUpKZPh6c9LaY3vrG4fPNm+OMfi7koN90EP/oRfOlLxYq2+++/bS7KIYfATjvl815UX1mM\n2vsMonlvwT3EODM7A89n22DkkGRuaxpJakHbbVesT/LWtxaXb9oEN988Mki54ALo7Y31bW1w0EEj\ng5TDDoOnPz2aWWvqShuMDBDByHOAHyXLhoEriRY1S4mRfJNSQ+YAH01eZzG4niSpScyaBYsWxVTq\n0Uejj5XSIOW886KeCkTroqc9bWSF2UMPjWbSM2fWloZm7j+lkaUNRn4OvB14DfCpkuVnEMHIc4hW\nM98HdgJeS7F45pyU55YktYCdd4bnPS+mUg89NLLS7E03RX2Ue+6J9TNnRkAyuuLs/PlRhFSOwUY+\n0gYj3wNOBvYHnkK0lgG4GOgj+h55KjC627qfEAGLJEkTMns2vPCFMZW6//5tg5Sf/jT6T4HIgVm4\ncNsmyPPm2aV+XtIGIw8CB1VY9x7gV8n80ORctxA5Il8EqhxfU5Kk6u2xBxx1VEwFw8ORY1IITgrz\n738fHnkkttlpp6gkW5qL0tlZff8smrh6jvozDJyVTJLU8vr6+jj11FMBWLJkCSeddJJdjE+StrZo\nRrz33vCyko4lhoej7klpkHLDDXD++TGwIUQdlqOPhpe+FF70ougaX9lyCEJJmgR9fX0jBl9bt24d\ny5YtAzAgyVFbGxxwQEzHHFNcPjQE69bBVVfBz38O3/42fP7z0SHc4YcXg5MjjrAlTxYsHZOkSdDb\n2ztiFFiAwcFBegvtVtVQpk2DpzwF3vlO+MY34M9/hj/8IfpC2XdfOOMMeMlLYLfd4G//Fj79abjm\nmmJnbqqNwYgkTYItFb6lKi1XY2lri5Y573sfrFoVY/Jcdx2cdlr0m/KpT8Hznx/d27/+9fDFL0aR\nz+gBB1VetcU066hPJ2Xz63BMSWo4M2aUf9xWWq7GNm1asU+UD384xue59lq49NIo1vnoR6On2b32\niiKdQrHOfL/1yqr2v2BeXVMhSU2up6dnRJ0RgPb2dnp6Rvd8oKlo5sxiM+OTTorKr1ddVQxOvvOd\nqIdy0EHF4OToo2GfffJOeWOoNhgZr4OyZycTwEbgOuDe5O+5xOi+c5K/fwtcX0MaJWnKK1RSPe20\n01i7di3z58/nxBNPtPJqk9phh2i1U2i589BDMUhgITjp64vlCxdGjsnRR8PixVEHpRVVG4wcN8a6\n44Eu4A6ic7MLgdGFoDOANwL/QYxN8yWiUzRJahnd3d0sWrSIzs5OVq1aRUdHR95J0iSZPRte97qY\nIPo8ueyyCE5++EP48pej6Kejo1ikc+SRrTMwYNoKrM8F/ht4ADgCWMW2gQjJslXJNg8Qva8+r8x2\nk2FnYCVwJ/AXIhfn73JKiySpBc2dC297W3Rff+ut0Yz4zDNj0L9zzoFXvCJySY46Cj7xCfjFL6IO\nSrNKG4x8iMj1+BSwoYrt70q2nQl8OOW5J+oC4J3AKcArgWuBfiJ3R5KkSXfQQdDdHQMAbtgAv/99\n9Guy++6wcmV0ttbeHn2hrFgBAwOwtYn6MU9bjfvFRCubX9ewz9XJ/MiU556IVwEvIwKPbyfLriAq\n6K5Ilg3lkC5JkoBoRrxwYUwf+EAEHddfH3VNLr0UTjklWuvstlv0dVIo1nn602PfqShtMLJnMt++\nhn22G7XvZHoj8AhRZFTq68C3gOcT4+lIktQQpk+PMXI6O4tNhq++uhicfOhD0bR4331HNiM+8MC8\nU169tMU09wFtRI5DtQrb3p/y3BNxGLCGbXM/bkjmh05uciRJqs1220WxzSmnwJVXwoMPwiWXwDve\nEcU77353jED81KfCe98bXdnfe++4h81V2pyRS4G/J+qO/Aj4xTjbH5lsW9h3su0O/KnM8sGS9ZIk\nTRk77RQVXl/xivh7cBAuvzxyTS69NCrJAjzzmZFjMm/ebKItR+NIG4x8FngbMAv4GdGy5utEXyKF\nHlvbiH5G3gX8A1F5dTPwmZTnliRJo7S3w5veFBNEhdhCYHLBBXD77U8BXptrGkdLG4z8nggyziXq\ngvwT8AEi2BgkApLdk3WFajVbiH5L1qQ890Q8QPncj/aS9dtYunQpc+bMGbGsq6uLri4b4EiSGtu+\n+8Kxx8Y0PAwXXXQjb3jDD4CPZHaO/v5++vv7RyzbuHFj1ftnMSjC+cTYNV8BOoigY3ugXCe3A8A/\nAtdkcN6J+B3RkmYaI+uNPDOZ31hup5UrV9o5kSRpymtrgwMO2Ey05chOuR/oAwMDdHZ2VrV/ViM0\nXU10gHY40XT2mUChU9tBooLoz4g+PfJ0IfAeYAnwnZLlxxGdoF1dZh9JklRHWQ8XeQ355XpU4xLg\np0QPsLsCtxI5JS8H3kF9RiaWJEljaMWxq98EnAb8O1FXZA1RCfc7Y+0kSZLqoxWDkceApckkSZJy\nVm2nZ/Ue1C6vQfMkSVLOqs0ZuRr4AfBx4PoMz99BFJccA0zP8Lh1VdqEadOmTaxfv5558+Yxa9Ys\nwGa/kkYa/cxYsGABy5cv95khJaoNRh4EXgO8mug59Vzgu0SRR612JVqzHAssTpYNVty6AZU+OApN\nl/r7+23+K6ksgw1pbNUGIwuAU4ETgJcm0+lEc92riRY0vyM6DSvtv2MaMSDeIqLZ7xFEALJDsn4L\n8DXgpBTvQZIkTWHVBiMPEF259wInAm8HdgRel0ylTWIfJnpT2RXYJVk2elDjJ4BvAp8mmtdKkqQW\nVeuovX8CjgcOBJYRnZgNEcFGYZoN7E8EI4VlJNtdQ/Q/eyCRy2IgIklSi5to0957iFySXiL340ii\nGGYfolhmNrARuA/YQAQhVzGxOiaSJKmJZdHPyCNEz6aXZHAsSZLUYmotppEkScqUwYgkScqVwYgk\nScqVwYgkScqVwYgkScqVwYgkScqVwYgkSS2ir6+PJUuWALBkyRL6+vpyTlHIop8RSZLU4Pr6+li2\nbBmDgzE27bp161i2bBkA3d3deSbNnBFJklpBb2/vXwORgsHBQXp7e3NKUZHBiCRJLWDLli01LZ9M\nBiOSJLWAGTPK18yotHwyGYxIktQCenp6aG9vH7Gsvb2dnp6enFJUlDYcOhkYrnGfYWAT8BDwR2A1\n8HDKdEiSpDEUKqmedtpprF27lvnz53PiiSfmXnkVsglG0toMXAT8G/CnDI4nSZLK6O7uZtGiRXR2\ndrJq1So6OjryThLQGMU02wFLgOuBl+WcFkmSNMnSBiPTgIOBa5K/LwTeCBwA7JBMBwJvAr6XbHM1\n8FSgHXgxcAYwBOwIrAJ2T5kmSZI0haQNRnYBfgJ0Am8B3gx8H7gTeCKZ7iACkTcl2zw32WcY+AXw\nfuDVREAyG/hAyjRJkqQpJG0wshR4GpG78d0qtv8u8F/AfOAjJct/DJyXvH5lyjRJkqQpJG0w8tZk\nfmEN+1yQzN84avlFyfypqVI0tp2BzxE5M/cRuTFZVMKVJEkTlDYYOZgobnmohn0KzXjnjVq+Ppnv\nmjJNY9kDeA8wk2IAVWvTZEmSlKG0TXufJCqePhMYqHKfw0r2LVUIjDamTNNYbgN2S17vDpxQx3NJ\nkqQqpM0ZuSGZfwSYVcX2OwDLktc3jlo3P5nflzJN1WqbpPNIkqQxpA1GzkrmhwKXUcz1KOeZyTaH\njNq3oNDHyA1IkqSWkbaY5hyiw7JXA88Hfkt0XrYauDfZZi7RnPfZJfv9APhGyd9zKFaG/VHKNEmS\npCkkbTAyTPQt8iWiYmgb8JxkqrT9mcA/jVo+HXh9sv43VZ57MXBpldsuAn5X5baSJGkSZTFu8Gbg\nvcB/A/8PeCnwlFHb3Ar8HPgq5Su6PgBcXuN5b6b6Cqh/rvHYIyxdupQ5c+aMWNbV1UVXV1eaw0qS\n1BT6+/vp7+8fsWzjxurbo2QRjBQMAO9LXs8iil4gWsdsyvA8BXcDfXU47jZWrlzZMIMJSZLUaMr9\nQB8YGKCzs7Oq/bMMRkptIoIFSZKkMdUrGGlkxwA7EePqQLQEWpK8vhj4Sx6JkiSpVbViMHI6xd5f\nh4nB+96SvD4YuD2ndEmS1JKyDEaOBt4APIvodn0Hxu9YbP446+vh4BzOKUmSKsgiGJkLnA8clcGx\nJElSi0kbjMwEfkixX5HrgQ3Aq5K/zwXagQ5gn2TZANEVvAPUSZKk1N3BH0cxEOkmgo7lyd/DwLuA\n1wL7A28E7gIWAv8LHJ/y3JIkqQmkDUbenMwvAc4eY7th4PvAi4nRer8BLEh5bkmS1ATSBiOLkvl5\nFdaPrsB6K7AS2BH4YMpzS5KkJpA2GGkncj3WlizbXPJ6xzL7FMaTeVmZdZIkqcWkDUY2j5oDPFzy\ner8y+2waY50kSWoxaYOR24mimLkly+4BHk2WP7/MPockc1vTSJKk1MFIYQTe55QsGwauTF4vBbYv\nWTcH+Gjyek3Kc0uSpCaQNhj5eTJ/zajlZyTz5wA3ACuIbthvAJ6RrDsn5bklSVITSBuMfI8oqtkf\neErJ8ouBvuT1U4Ee4H0U64n8hGLAIkmSWljaYORB4CDgQKLZbqn3JNM1wGPAE0TOyDIiJ2VrynPn\nrq+vjyVLYsDfJUuW0NfXN84ekiRptHqO2jsMnJVMTaevr49ly5YxODgIwLp161i2bBkA3d3deSZN\nkqQpJW3OyETMJQbVe3EO585Mb2/vXwORgsHBQXp7e3NKkSRJU1M9c0YqeSXwdSLnZHoO58/Eli1b\nalouSZLKyyNnZHQX8VPSjBnl47hKyyVJUnl5BCNNoaenh/b29hHL2tvb6enpySlFkiRNTQYjE9Td\n3c2KFSuYP38+APPnz2fFihVWXpUkqUaWKaTQ3d3NokWL6OzsZNWqVXR0dOSdJEmSphxzRiRJUq4M\nRiRJUq4MRiRJUq4MRiRJUq5qqcD6LqKjsrSOzOAYkiSpSdQSjBR6TW2KTsskSVJjqLWYJstAxKBG\nkiTVlDOSdW9eWRT51OqlwDuBFwD7AQ8CvwH+HRjIIT2SJLW8WoKRs+uViEn0XmBP4AvATcnrHuDX\nwCuAy/JLmiRJranVemD9AHDvqGWXAH8C/g2DEUmSJl2rNe0dHYgAPAasAfaf5LRIkiRaLxgpZzbQ\nQRTbSJKkSWYwAl8BdgBOyzshkiS1oqkcjCwGhqqcnlXhGJ8E3g58CLiuvsmVJEnlTOUKrDcDJ1S5\n7Z/LLDsZOJGouHr6WDsvXbqUOXPmjFjW1dVFV1dXlaeXJKl59ff309/fP2LZxo0bq95/KgcjdwN9\nE9z35JLpM+NtvHLlSjo6OiZ4KkmSmlu5H+gDAwN0dnZWtf9ULqaZqI8RQcgnk0mSJOVoKueMTEQP\n8Amib5EfAkeMWv/rSU+RJEktrtWCkdcQ3dC/MplKDQPTJz1FkiS1uFYLRl6SdwIkSdJIWQcjTyEG\nodub6Lvjv4D7Mj6HJElqIlkFI4uALwJ/k/zdRhR7fJeRwcg/AR8HHgIWAk9mdH5JkjRFZdGa5hjg\nV8CLiCCkLVneVmbbc4AdgflE/Q1JktTi0gYjc4Hzge2JweZeDeyarBsus/1DwP8mr49JeW5JktQE\n0gYjS4FdgDuIIpofAY+Os8/lyby6nlAkSVJTSxuMFHI3vgA8WOU+a5L5QSnPLUmSmkDaYORgojjm\nlzXs81Ay3yXluSVJUhNIG4xsl8yfqGGfnZP5YynPLUmSmkDaYOQeotXMgTXs85xkfmfKc0uSpCaQ\nNhj5VTKvtpluG3BC8vr/Up5bkiQ1gbTByHnJ/F3A4VVs/3ngmcnrs1OeW5IkNYG0wcjFwE+Amcn8\ng0RX8AX3b0tHAAAXiElEQVQzgf2AtwK/SNYDfBu4OuW5JUlSE8iiO/i/A35G9BvyBSL3A6JIZqDk\ndcGvKBbVSJKkFpdFd/APAUcCpwEPMzLwKO0e/jHgM8BibEkjSZISWQ2Utxn4GPBZ4CjgucBewHRi\noLzrgJ9T7GNEkiQJyC4YKXiUqEdyccbHlSRJTSqLYhpJkqQJMxiRJEm5yrKYZg/gBcR4NbsQ9UXG\n8+8Znl+SJE1BWQQj+xDNed9MBCBtY2/+V8MYjEiS1PLSBiN7EiP2zpvAvtUGLZIkqYmlrTPyCYqB\nyCrgaKK4ZkZy7PEmSZLU4tLmjBQGyDuXGJ9GkiSpJmlzJ/Yi6n70ZZAWSZLUgtIGIxuS+aNpEyJJ\nklpT2mDkCqIi6rMySEu9LSJ6hl0PPA48QFS+fUeeiZIkqdWlDUZ6gSeBHmBW+uTU1WzgduBfgWOA\ndwK3EfVdTswvWZIktba0FVhvBN4NnA38FDgB+EPKY9bLFclU6mKik7b/R4w6XJX+/n76+/sB2LRp\nEwsWLGD58uXMmhXxWFdXF11dXZkkWpKkZpdFp2fnAeuA/wVuAn4H3EIUhYynO4Pzp/UAURG3agYb\nkiRlJ4tg5JlED6xzkr8XJdN4hsknGGkjeordDXgL8Argn3NIhyRJIn0wcjBwGdBesuxRYCMwNM6+\nwynPPVFnEMUyAFuBjyTLJElSDtIGIx8jApFh4D+A04nWKvW2GLi0ym0XEUVHBacBXyWKZl5H5OrM\nAj6bYfokSVKV0gYjL03mK4F/SXmsWtxMVJatxp/L/F1Ydkky/yTRcdt95Q6wdOlS5syZM2KZ9UYk\nSQqlDTsKNm7cWPX+aYORQg+s3015nFrdTXa9vl4LvI8ociobjKxcuZKOjo6MTidJUnMp9wN9YGCA\nzs7OqvZP28/IXcl8c8rj5OklRN2RW/NOiCRJrShtzsiPgfcChwO/SZ+cuvoq8BCRE3IPMbrwW4C3\nAp8jmvhKkqRJljZn5D+AR4CPArunT05d/ZIImr5MdNB2JlHMdCywPMd0SZLU0tIGI7cCbwZ2Ba4C\nXp46RfVzNnAUEYBsR7QCOhr4Vo5pkiSp5aUtprmMqMB6H7CAaJ3yIPBHquuB9eiU55ckSVNc2mDk\nqDLLdiOKQ8aTV6dnkiSpgaQNRq5Msa/BiCRJSh2MLM4iEZIkqXWlrcAqSZKUisGIJEnKlcGIJEnK\nVbV1Rg4seX17heUTcfv4m0iSpGZWbTByG8XWL9MrLK9FW7Lf9PE2lCRJza2W1jRtNS6f6PEkSVIL\nqTYY6aZ8Dkh3inPbz4gkSao6GDkbGCICiGuB35cslyRJmrBaW9NYtCJJkjJVazBi0YokScqU/YxI\nkqRcGYxIkqRcGYxIkqRcGYxIkqRc1dLpGURrmh8DT6Y8b6EH1vkpjyNJkqa4WoMRgP0yOrctcyRJ\n0oSCkQ3AlgzObTAiSZJqDkaGgVcAN9UhLZIkqQVNpAKrORqSJCkztqaRJEm5MhiRJEm5MhiRJEm5\nauVg5ARgCHgk74RIktTKag1G2uqSism3H/AfRDNlK+RKkpSjWpr2FnpLvaMeCZlk/wVcBmwEluSc\nFkmSWlotOSO3JVMWHZ7l6VjgRcD7aZ6cHkmSpqxWqzMyF1gJLCeKaCRJUs5aLRj5CvB7ophGkiQ1\ngKkajCwmWsJUMz0r2WcJ8BrgPZOcVkmSNIaJDJTXCG4mmuZW43ZgZ+DLwH8C9wBzknXbJfPZRF2Y\nx8odYOnSpcyZM2fEsq6uLrq6umpLtSRJTai/v5/+/v4RyzZu3Fj1/q1SgfMgYO0423wPeNOoZR3A\n6tWrV9PR0VGPdEmSNKkGBgbo7Oyk3t9thfMAncDAWNtO1ZyRWt0FvISRfYq0ERVZjwJeCdyfQ7ok\nSWp5rRKMPAFcUWb58cBW4MrJTY4kSSpolWCkkmHsgVWS1ORK63Rs2rSJBQsWsHz5cmbNmgXkXw+y\n1YOR45NJkqSmlXewMZ6p2rRXkiQ1CYMRSZKUK4MRSZKUK4MRSZKUK4MRSZKUK4MRSZKUK4MRSZKU\nK4MRSZKUK4MRSZKUK4MRSZKUK4MRSZKUK4MRSZKUK4MRSZKUK4MRSZKUK4MRSZKUK4MRSZKUK4MR\nSZKUK4MRSZKUK4MRSZKUK4MRSZKUK4MRSZKUK4MRSZKUK4MRSZKUK4MRSZKUK4MRSZKUK4MRSZKU\nq1YLRhYDQxWmw/NLliRJravVgpGCfwWOGDXdlNXB+/v7szqUJFXks0bNolWDkT8C14yaHsvq4D4g\nJE0GnzVqFq0ajLTlnQBJkhRaNRj5CvAk8BBwCXBkvsnReJrlF2AjvY/JTku9zpflcdMeK83+jfTZ\naFXNcg+m4vtotWBkI7AS+H9EZdYPAgcAlwMvzy1VGtdU/Ocqp5Heh8FI9scyGJnamuUeTMX3MSPv\nBKSwGLi0ym0XAb8Drk+mgquAC4EbgM8CPym385o1a2pK2MaNGxkYGKhpH42tWa5pI72PyU5Lvc6X\n5XHTHivN/hPZt5E+T82gWa5no7yPWr47p3Ldib2BV1W57YXAg2OsPwN4L7AD8ETJ8n2Aa4H9JpJA\nSZJa3J3A84C7xtpoKueM3A30ZXzM4VF/30VcxH0yPo8kSa3gLsYJRBR2A+4AVuedEEmSWtFUzhmZ\niG8C64ABYBB4GtAD7Am8M8d0SZKkFvEvRCDyING09x7gf4DOPBMlSZIkSZIkSZIkSZKklrId8HXg\ndqJr+l8BL8g1RZKa0T8Q9eU2AyfnnBZpG63WHXyjmQGsBV4IzCY6X7uI6HxNkrKyAfg48D227U9J\nkrbxAPDMvBMhqSmdiTkjakDmjDSWZxC5IrfmnRBJkiaLwUjj2BE4F/gk8HjOaZEkadIYjEyudwCP\nJNPFJctnAquAG4FP55AuSc2j0nNG0hS1M/A54CfAfcAQlctbdwZWEiMU/gW4Dvi7Ks4xDTifGFnY\n4FBqPZPxnCk4k6jIKjUUv/zGtgfwHiLn4sJkWaWa6BcQ49ucArwSuBboB7rGOcd/A3OBtxEPIUmt\nZTKeM9OBWUQLvpnJa5//0hS0OxEslPtV8apk3ehfKD8mRgSu9E8/L9nvMYrZqo8AR2aQXklTTz2e\nMxDBy9CoycFBpSloDyo/JM4kOi0b/TAo5HbYkZmkavicUUsymy4bhwFr2LaY5YZkfujkJkdSE/I5\no6ZlMJKN3YHBMssHS9ZLUho+Z9S0DEYkSVKuDEay8QDlf5W0l6yXpDR8zqhpGYxk43fAQra9noUx\nZm6c3ORIakI+Z9S0DEaycSHRGdGSUcuPIzonunqyEySp6ficUdOakXcCpoBjgJ2AXZK/D6X4MLiY\n6AXxEuCnwBnArsRAd13Ay4mumR2yW9JYfM5IGtM6ip0EbR31+sCS7XYiumneAGwiuml+66SmVNJU\n5XNGkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRV7SDgf/JORCOblncC\nJElqYn8LXAG0552QRjYj7wRIktSEOoFPArcDf8k5LZIm2XHAUDIdmG9SpIa3HfAH4v9lyQSPcRz+\nz43ncuDSGrb/MnE9z6lLahqQxTTNbTHFh0Q107tySWV9DOedgBotpnXvlfLzIeBpwO9IX6dhqv3P\nNbJPAU8A7wCOyDktk8JgpLUMVzFNdc3wHqA17pXyNQdYTnyWTs45LRppA3Am0AZ8Oue0TArrjLSO\n05NpLHdORkLq7BvJNJW1yr1Svj4IzAb+BHw/57RoW58HPgAcBbwYuDLf5NSXwUjruBf4fd6JUFW8\nV6q37YF/TF6fl2dCVNFtwFXAkcBSmjwYsZhGklrPa4A9iSIag5HGVbg3rybuV9MyGNF4tiN+QV0G\n3AdsBu4GLiYqV7WNse/ZRGXLdeOc4zjGro1/Ssl6iKzljwHXARsZWaFzvGOV+hugj8imfgx4FFgD\n/Ccwf4z9aknPZJlomiZ6DQp2Az4D3Ew0X7wX+CnFlhnHMfb9OJtsPiMFWd3TWcAyYAB4JJmuBt4P\nTB8nrQVHAl8jWqs8TPzv3AH8L/E/NTvZbibxPzUE/KiK4x5WktblVaZltLcm8xuAteNsO949rsZh\nwEnAj4lr8ARxb/5IfAaeX2G/LK/NvsT7GAAeovgsuwH4FvH/scuofQ4HflXD9Joq0liLC5L5TOBN\nGR9bmjSLKf5jfnwC+x9EPMhLW3FsHfX3lcTDqpyzk23Ge9gdV3LssYKRrcBTiS+u0Wl6Z5XHgsii\n/kaZY5S+tyeA4yvsX0t6qrWYdPeq1jSlvQYAhxAV7Srt/zXiAT/W/TibbD4jWd7TvYDrRx2n9Ljf\nZ+wgfAfiy22stAwxstLoZ5NlTxJfmmP5fLLtZmCfcbatpPAF/9/jbFfNPT6Ose/NYka+70rX41MV\n0pDFtXkREYCMl4ZXj3P8ibqc2pr2lrqVSFt/ZqlpQNYZUSU7Az8HDk7+vpD4xbmB+IVZqFj1N8Qv\nvRdT/FVZL23Ad4mHzH8CFwEPEk0T19dwnO8AryXS+11gFfFlOA3oIMpnn0E8aO8BfjiB9NxeQ3qy\nVG2a0l6D2cSv3L2Tv88ngoF7gacDHwa6gWdm+ebGkOU9vTDZ9ovEZ3sw+ftjwMLkPO8Bvlpm/2lE\nsPKy5O9biMrIvwEeJ75MXwi8hZEtor5G5MRMJ4LGz1RI30zg2OT1T4C7Kmw3lmcQARfANWNsl9U9\nnkHkUv2A+EK+mcgp2ovIyfhnYB6Rk3ELEaCWSntttk/Svkty3jOInN57k30OAl5A5Dw0Yiu1q4nn\n8IvzTog0UYspRvxfAQ4l/vnLTaPLI1eU7PuJCsc/t2Sb95VZfzbZ5owUfh29rMw21R7r3RR/Jb+2\nwjFmEQ+rIeJXyejizFrSU63FTPxe1ZqmLK5Bb8n5/qXM/jOAS0q2qWfOSNb3dBPlH/y7EV9wQ0TO\nSTkfLDnO/xBfduW0sW2uxuXJfjdX2AfgjSXHf+MY243lnRSv5fPG2C6re7w7sOsY55lJBD1DRI5e\nueoDlzPxa3N0yfJXjbH/dLYtpsnKr4mgYiL+heL1PSCzFEmTaDHbZo9WmkqzjLcnfk0PEeWplbKk\ndyHqkQwBN5ZZfzbZByNnpjhWG1FGPQR8YZzjLCw5zktTpKdai5nYvao1TVlcg+2J3IIhok5KJfsR\nAUI9g5F63NMVYxzjU8k2W9j2C3YaUR9iiMiF2nGc9Ix2bEkaXlhhm4uS9fdQfd2V0Uq/3A6usE2W\n97gazyo5RkeZ9WmuzdtLjr3zBNM3EQcSQVahh9utRF2mHxO5MdU6oWT/52abxMZhBdbWUm0nWp0U\nK9edTeWsy0eI7HGIB/3eFbbL0jdT7HsI8BTi/Xx7nG3XEA/jNiILtx7pGUuaDs/GSlMW16CT6DAL\nxu7T5U4iu7yesr6nw4x9/VYn8za2/UJZRLFOw5lEsUwt/oeobAzl67bMBY5JXp9HfDlNRGnO2mCF\nbep5j7cnvqgPIXL6DqX4XdQGPLvMPmmuzYaSY3fXmNY0bgdeQRRpTSMCpKcmy26r4TiFe9RGE7eo\nMRhpHacQ/wyVpn8v2fawZD7M+FmLpesPq7hVNoaJbqsnqvCrog34JePnQBRG2awUZKVNTyWnUP29\nqjVNWVyDQh2BYeDacd7LWHUSspD1PYWxiwIeLHk9Okv/Ocl8mIn1CbGJqPgK0dplh1Hr/564/8NE\n/a2Jml3y+pEK22R9j3cC/hX4LVF/5DYiN/V3RO7rQMm2u5fZP821+QXFnLeVxDNrORGQVipGayQP\nl7yeXXGrKc5gROWUDnV9zzjbFta3UblVTZYeHH+TivYqeV1td+vDbPvgyyo99TJWmrK4BqX3+d5x\n0jLe+rTqcU83jbFuqOT16GKSPUpeT6RiKRSL2HZh26azhRyBa4GbJnh8KOYwQOW6HFne44OIgOM0\nIshpY+zcvkr3ZqLXZgtRl2hN8vfziOK2q4gWNj8Eumjc78PSAGRjxa2mOFvTaKpJU9u99MvjtVSf\nVTrWA6ARa9+Plaasr0He778e9zRPvyWKgjqJL9hzk+XPJ4pCIV2uCEQ9r4J2xr8Wae/xuURAMgR8\nnWjZsiZJx5PJNm0Ui1Yq1VFLc23WEIHQa5PpKKJV4Czglcn0YaKC630VjpGXwo/DYRovbZkxGFE5\nD5S83puoIFhJaXb36PLnwq/I8X5x7FRlutIq/CMPE7+IWrHL9SyuQel93puolFfJ3HGOlfYz0kj3\ntPSLYl+imepEfI34wj2K+BK/jeIv/8dJ39/EhpLXe1K+8nBW9/gZROdvEAO+fazCdu0Vlo+W5toM\nEc2uC+Pw7E3UM/nH5JidRL8rjda5WGmO2925paLOGjVbSvkqtIxpo3LPiAWHJ/Nhtm1RUyiPnsPY\nnl590lIptApoo/iAbDVZXIMbSo4xVtNQqlif9jPSSPe0UO+hjXR9QnyL+GJtI1oRzQLelqy7gMr1\nPKpVqOPRRlS6LSere3xoMh8mckQqqbaVSJbX5m4ip+YFFO/dq4kKto2kcI820MQDZBqMqJzVFLNu\n30Xlz8kuFLuV/j3b1i9ZW7LdggrH2A5488SSWbPrgD8nr99L4z10JkMW12A1xXopfz/GdvsBLx/n\nWGk/I410T39bkpYTmHiOX2krtXcRHaTtSnyhn5UmgYlbKP6vHl5hm6zucWnu+1jXo1w/ReXU49ps\noVjheAbjB8aTrXCP/i/XVNSZwYjK2Uxkh0L8sinXr0Ub8GWKNd+/XGabK0q27alwjC8y8S6tazVM\nVKKD6F/hXMb+8ppF9DTbTEFLFtdgM/GLEuJX27Iy+80gKhyO11oh7Wekke7pMMU+SvYHzqHy+5/G\n2J/7wv/fPKI7dIjA7Yrym9escJwjKqzP6h4XiqraqDxe0z8Arx/jGKPVem3+hmj+Xcl2RLEPxHg5\njVQvYy7xPiE6fpOmpMUUmzR+vMZ9dybKiQv7f5fIwuwgfqVeVrLuF1SudHZVyXZfT9LUAfxdyTEK\n21QzNs14jhvnWBC/rAppuhX4KPEwWkQ8uI4nKsIVOn4b3XlVLemp1mImfq+g9jSlvQa7Ev0oFI7x\nTaL/hA4i2/yaZPnVjH8/sviMTNY9XVyyXbmimDaKvYkOEc2E/5koQnoOUUfhE8SXdLkgv9RNJccZ\nAk4cZ/tavIni+6iUI5XVPf7dqGO8KjnG64lu+4eInIlaPv+1XJtTkrRdBnyEyMnpIO7J8SXpHyJ6\nnW0k7yPS9QQj645IU8pi0n3BzSOKX8bqt+FKxs7WfDrFQblGT1uJX5LvKlmWVTBS6VgQLTBWEtmz\n4/VL8TDb/oquJT3VWky6e3UKtaUp7TWAbQdRG31vqxkoD7L5jEzWPV1ccpxywQhE09TS4KjS+xrv\nPn+4ZPsniSKRrMyk2LX9WP3W1HKPK92bZxOV4itdi+uJyqS1fP5ruTYnj3Hu0veyisglaSS/INJ3\nwXgbSo3sKKp/8FUyk6htXhhYahPxcLqY6Ga5GvsS462sI4YgvzvZ/5XJ+vG+sE4uWT+ear78ChYS\no3yuBu4nsqYfJH7JfQN4B+XLuWtJT7XS3quJpmmi16CgMLz8H4iKhfcAPyNyNaC6nCpI/xlJ+36q\nvX6l96lSMFKwODnnn4js/78QrT++R3V1Svai+GVZaWC/NE5Kjn3rONuNd4+ruTcHEAMGriOeIfcB\nvwI+RDEAqOXzX8u12YkYq+YrRA7bOqLjtceI9/4tip+zRnIQxWvyonyTIklT23FUHxxqpJdS/MId\n3clXFmZTHH+m0Zqzjqfe16YR/Cfx/i7LOyGSNNUdh8HIRH2TuHaFoe7r4aPJOeoxrEE9Tca1ydN+\nRA7SVipXMpYkVek4DEYm4iCiiGmIYouRephJFL9sJZrJTgUHMTnXJk9fJu7JWIMUSpKqdBwGI9Xa\nD3ga0dpjgLhujzF5Td8bmddGkjRhxzF+6yaFy9m2hUe5vlda0eV4bZqaY9NIqqfhUXNVVhi99nGi\nH5KVFAeDa3VeG0mSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSppj/D+JNNC2M\nRxjcAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from scipy.optimize import curve_fit\n", + "\n", + "# Define model function to be used to fit to the data above:\n", + "def tophat_time(x, *p):\n", + " mean, width = p\n", + " if x>(mean+width): y=0\n", + " if x<(mean-width): y=0\n", + " if x==(mean+width) | x==(mean-width): y=5\n", + " return y\n", + "\n", + "def tophat_freq(f, *pars):\n", + " A,T,t0 = pars\n", + " #return A*T*sinc(pi*f*T)*exp(-i*2*pi*f*t0)\n", + " return A*T*sinc(pi*f*T)*cos(2*pi*f*t0)\n", + "\n", + "x=np.logspace(fqd[0],fqd[-1],200)\n", + "\n", + "# p0 is the initial guess for the fitting coefficients\n", + "p0 = [3, 3, 3]\n", + "coeff, var_matrix = curve_fit(tophat_freq, fqd, lag, p0)\n", + "fit = tophat_freq(fqd, *coeff)\n", + "\n", + "\n", + "mpl.rcParams['xtick.labelsize']=12\n", + "mpl.rcParams['ytick.labelsize']=12\n", + "xscale('log'); xlim(.009,.4)\n", + "xlabel(\"Fourier Frequency (days$^{-1}$)\",fontsize=20)\n", + "ylabel(\"Time Lag (days)\",fontsize=20)\n", + "\n", + "\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=5,color=\"black\")\n", + "plot(fqd,fit)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAGJCAYAAACZwnkIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XecXFXZwPHfJoQktIQkEEhAOgKhmUSq9IiACC9VQntD\nk6JArKCCNLHAKwJiaFJEdAVEBJHei4CQoHQRpSWUhIQECJCQZN8/njvO7GRmdmbv3Z3NzO/7+dzP\nnbntnLnJ7jx77jnPAUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSpEXRDsCvgReB2cBk\n4E/AyCrPXx64EpiWnP9XYPvMaylJklSFa4F7gaOBrYG9iOBkLrBdB+f2BZ4GXgXGEkHSDcm5W3dR\nfSVJkspavsS2JYE3gTs7OPcYYAGwacG23sAzwKOZ1E6SJCkD9wDPd3DMncBzJbafSAQ8K2ZdKUmS\nVLte9a5AnQ0g+tg828Fx6wNPldj+dLIekWWlJElS5zR7YPNLoD9wZgfHDQJmlNie2zY4y0pJkqTO\nWazeFaijM4D9ga8BT9a5LpIkKQPNGticAnwf+B4woYrjpxOtNsUGFewvZ0XsgyNJUme8mSxVa8bA\n5pSC5SdVnvM0sGGJ7Rsk62fKnLfisGHD3njjjTdqq6EkSQKYAnyWGoKblq6rS490MnAa8RjqlBrO\nO4po2dkM+FuybTHg78B7wBZlzhsJTLz66qtZd911O1XhRjF+/HjOPffcelcjMzvttBPTpk1jueWW\n47bbbqvp3Ea7F53lfQjehzzvRfA+hOeff54DDzwQYBQwqdrzmqnF5ptEUHMbcAsRpBTK5aO5DDgY\nWB14Pdl2OfBV4DpiiPc0IrfNWsCYjgped911GTmy2gTHjWngwIENdQ8WX3zx/65r/VyNdi86y/sQ\nvA953ovgfUinmQKbXYE2YKdkKdRGJNyDGCnWi/atWXOJbMNnAb8AliA6HO8MPNh1VZYkSbVopsCm\no2kTcg5JlmJTgXGZ1UaSJGWu2fPYSJKkBmJgo24xduzYelehx/BeBO9D8D7keS+C9yGdZhsV1d1G\nAhMnTpxoR7AGs9JKKzFlyhSGDx/O5MmT610dSWo4kyZNYtSoUVDjqChbbCRJUsMwsJEkSQ3DwEaS\nJDUMAxtJktQwDGwkSVLDMLCRJEkNw8BGkiQ1DAMbSZLUMAxsJElSwzCwkSRJDcPARpIkNQwDG0mS\n1DAMbCRJUsMwsJEkSQ1jsYyuszawKTAUWA4YAMwEpgFvAY8BL2VUliRJUkmdDWz6ALsC+wJbAysA\nLRWObyMCnPuBa4GbgXmdLFuSJKmkWgObAcDxwNFE60y1WoAVgf2S5W1gAnA+MKvGOkiSJJVUbWCz\nOPB14ARgYMH254FHiUdN/wCmAzOA94ggaBAwBNgY2IR4XLUOERSdllzzp8A5wCfpPookSWp21QY2\nzwBrJq9fBn4HXA38s8I505PlX8AjwIXJ9nWAA4H9gVWBHwOHEf10JEmSOq3aUVFrAk8DewNrACdT\nOaip5AXgpOQ6eyfXXbPiGZIkSVWotsVmX+APGZfdBvwRuAHYK+NrS5KkJlRti03WQU2hti6+viRJ\nahIm6JMkSQ3DwEaSJDWMrDIPAywD7ANsRuSs6Q8cCrxacMxwYhj4x8B/MixbkiQps8DmaGLY9jIF\n29qAJYuO2w64CphDBDkzMipfkiQpk0dRJwG/JIKaOcCkCse2ElmH++JIKEmSlLG0gc1GRAZhiKBl\nRWB0hePnE0O8AcakLFuSJKmdtIHNscQ8UH8DDiJm9O7IX5P1hinLliRJaidtYLNtsr4AWFDlOS8n\n62Epy5YkSWonbWAzjOgk/GwN53yYrPulLFuSJKmdtIHNvGTdu4ZzBifrWSnLliRJaidtYDOZ6GOz\nTg3nbJWs/52ybEmSpHbSBjb3JuuDqjx+IHBk8vrulGVLkiS1kzawuYjoYzOGSNJXyRDgRmAoMBe4\nOGXZkiRJ7aQNbJ4GziYeR10A3ADsl+xrAbYADgAmAC+Rfwx1KvB6yrIlSZLayWJKhe8CSwBfA3ZP\nlpxLShz/M+AnGZQrSZLUThZTKrQBxwE7AvdQPp/Nw8BOwLczKFOSJGkhWc7ufVeyLAN8BlieGAY+\nDfgH8E6GZUmSJC0ky8Am5z3g/i64riRJUkVpH0Utm0ktJEmSMpA2sHmLGMK9L06RIEmS6ixtYNMH\n+BLwe+Bt4Erg88RQb0mSpG6VNrC5EJievF4aOBi4DZgC/BwYnfL6kiRJVUsb2HwVWJFotWklZu5u\nAVYAjgceA/4J/ABYI2VZkiRJFWWRx2Ye8Bciw/BQ4EDgVmA+EeSsRWQafhF4FDgWWC6DciVJktrJ\nIrApNBv4HfBFoiXna8Ajyb4WYBPgPOJR1a0Zl12NpYCzgDuI/DoLgFOqPHdccnypZfmsKypJkmqX\ndWBT6B1ijqgtgdWBk4Dnkn2LEZmKu9sQ4Aii0/MNyba2Gq8xDtisaJmRUf0kSVIKXZGgr5RXgD8C\n/YFhwMBuKrdUPXK5dwYDh3fiGs8Ak7KqkCRJyk5XBzbDgLHA/sDGtB8GPqeLy+5IZ4ekO5RdkqQe\nqiseRQ0ADiMmxHwVOJuYO6qFeOxzN3Ao0dF4UXQz0WF6OnA9MKK+1ZEkSTlZtdj0BXYlRkbtnLwv\n9CTwW2JI+JsZldnd3gR+SIzseg/YEDgxeb8F8HT9qiZJkiB9YDOGeMy0JzGrd6GXiRFSvwVeSFlO\nT3B7suQ8RAxzfxo4HdijHpWSJEl5aQObO4reTweuJYKZv6a89qLgVeBhYmSUJEmqsyweRX0E3EQE\nM7cR/U+aTcUh4+PHj2fgwPYDwcaOHcvYsWO7tFKSJC0KWltbaW1tbbdt5syZnbpW2sBmHDGM+4OU\n11lUrQ5sRftHVAs599xzGTlyZPfUSJKkRUypP/YnTZrEqFGjar5W2sDmqpTn18POwJLEpJ0Qo5r2\nTl7/hWiBuoyY0HN14PVk353ESK9niUBuA+A7RAvVyd1RcUmSVFl3JejrSSYAqySv24B9kqUNWA14\njRgG34v2OWueJkZ9rUwkGpwK3AWcAbzUHRWXJEmVNWNgs1oVxxySLIW+0QV1kSRJGao2sFlAvoNs\n7zLbO6N3x4dIkiRVp5YWm3JTCTjFgCRJ6hGqDWxOT9bFrTOnFx9YgzQtPZIkSQupNrA5tcbtkiRJ\n3a4rJsGUJEmqi7SjorYhHik9AXxY5Tn9gE2T8x5IWb4kSdJ/pQ1s7iUClA2A56o8Z6WC8xwVJUmS\nMuOjKEmS1DDqEdjkypxfh7IlSVIDq0dgk5vOYFYdypYkSQ2s1j42nyp4XZiYbxgdz/DdF1iTmFsJ\nqu+TI0mSVJVaA5tXWDixXgtwew3XyAVEi+LM4JIkqQfrzKioUlMo1DKtwsfA+cBlnShbkiSprFoD\nm0OTdRsRzFyevD8JeKPCeW1EQPMG8CQdP7aSJEmqWa2BzZVF73OBzY3As6lrI0mSlELaBH3bE60x\nL2dQF0mSpFTSBjb3ZVEJSZKkLJh5WJIkNYy0LTaFegEbAxsBg4H+dDxa6vQMy5ckSU0uq8BmHHAK\nkcCv2qHfbRjYSJKkDGUR2PwIOLET59WS+0aSJKlDafvYbEo+qLmTeBQ1MnnfBvQGlgN2JoaEAzxE\nTMFg/x5JkpSptMHF0cn6VWBX4Cngk4L9bcB0YsqFPYCvAp8DbgMWT1m2JElSO2kDmy2T9fnkA5pK\nj5guBK4HNiSCHEmSpMykDWxWJFplninYtqDgdZ8S51ydrPdNWbYkSVI7aQObXOAytWBb4TxQy5U4\n5/VkvWbKsiVJktpJG9hMIx49LVOw7W3yrTbrljhnhWS9dMqyJUmS2kkb2OQmvlynYNucZHsLsF+J\ncw5I1m+mLFuSJKmdtIHNg8l6+6Ltv0/WhwBnACOATYBfAmOTfbemLFuSJKmdtIHNn5L1rrR/HHU+\n8Epy/e8Tw8AfIT88/F3gxynLliRJaidtYPMM0VqzB+1HQM1Otj+cvG8hPww8d87rSJIkZSiLKRXu\nK7P9FWArov/NiKSsF4EnMyhTkiRpIVnO7l3OC8kiSZLUpZyvSZIkNQwDG0mS1DCqfRT1v8TUCVm7\nqguuKUmSmlS1gc0VRGBTaYLLWrVhYCNJkjJUy6OoLIOarrieJElqctW22KzepbWQJEnKQLWBzStd\nWQlJkqQsOCpKkiQ1DAMbSZLUMLLMPLwMsA+wGbAi0B84FHi14JjhwADgY+A/GZYtSZKUWWBzNDFb\nd+EM323AkkXHbUcM8Z5DBDkzMipfkiQpk0dRJwG/JIKaOcCkCse2Am8DfYG9MihbkiTpv9IGNhsB\npyWvW4lHUKMrHD8f+GPyekzKsiVJktpJG9gcSyTa+xtwEDCzinP+mqw3TFm2JElSO2kDm22T9QXA\ngirPeTlZD0tZtiRJUjtpA5thRCfhZ2s458Nk3S9l2ZIkSe2kDWzmJeveNZwzOFnPSll2ZywFnAXc\nAUwjWplOqeH85YErk3NnE4/Vts+2ipIkqbPSBjaTiT4269RwzlbJ+t8py+6MIcARQB/ghmRbW5Xn\n9gXuJoasHwfsRozwug3YOttqSpKkzkibx+ZeIqg5CLi6iuMHAkcmr+9OWXZnvAIsm7weDBxew7mH\nASOAzYHHkm33Af8gWoE2y6SGkiSp09K22FxEtHiMIZL0VTIEuBEYCswFLk5ZdlotNR6/B/AC+aAG\nYvj61cAmxFB3SZJUR2kDm6eBs4kg4QLi8c5+yb4WYAvgAGAC8BL5x1CnAq+nLLu7rQ88VWL708l6\nRDfWRZIklZDFlArfBZYAvgbsniw5l5Q4/mfATzIot7sNovQUELltg0vskyRJ3SiLKRXaiM60OwL3\nUD6fzcPATsC3MyhTkiRpIVnO7n1XsiwDfIYYGt2bGBr9D+CdDMuqh+lEq02xQQX7JUlSHaUNbK4g\nWmxuBa5Ltr0H3J/yuj3R05SeBmKDZP1MuRPHjx/PwIED220bO3YsY8eOza52kiQtolpbW2ltbW23\nbebMamZpWljawOZ/icDm2pTXWRTcQHSC3oSYGwvi/h0IPAq8Ve7Ec889l5EjR3Z5BSVJWhSV+mN/\n0qRJjBo1quZrpe1jM40Y/VT2S70H2hnYG/hS8n5E8n5voH+y7TLgE2DlgvMuJ6aOuA4YSwxxvxZY\nCzihy2stSZI6lLbF5jlgG2AV4O/pq9MtJhD1hWht2idZ2oDVgNeIgK8X7XPdzAV2IJLx/YIYCfYk\nESg92B0VlyRJlaVtsflNsh6X8jrdaTXygUvvotevJcccUvQ+ZyrxWYcQgc2WxEgwSZLUA6QNbK4k\npkbYHTiN2rP5SpIkZSbto6jPAf8HLAecDOwLXENk6H2XmHKgkgdSli9JkvRfaQOb+4i+KbmWmk8D\nP0heV5o1uyXZ3ztl+ZIkSf+VRYK+co+fOnos5WMrSZKUqbSBzfYpzq3UoiNJklSzLB5FSZIk9QhZ\nTIIpSZLUIxjYSJKkhmFgI0mSGka1gc3NQFfN4jga+EsXXVuSJDWRagObXYDHiRmut8yo7K2Bm4iZ\nsnfO6JqSJKmJVRvYnE5MArk7kS3438QUChvXcI0+wGeBHwGvAPcCuwIfJ9eSJElKpdrh3qcS80Kd\nChxITCR5MnAS8BExy/VTwDvADOB9YBlgEDFh5GeAjYC+5BPzzScm0TyVhSeblCRJqlkteWxeIWa2\nPh04DjgIWJb8LNfVPqKaTgQ05yfXlCRJykRnEvT9BxgPfAfYAdgW2IboXFzqevOAJ4hHWPcRs4F/\n0olyJUmSKkqTeXgucGuyQExoOYSY6XsAMBOYRrTQdDTLtyRJUmpZTIKZMx94O1kkSZK6nQn6JElS\nwzCwkSRJDcPARpIkNQwDG0mS1DAMbCRJUsMwsJEkSQ3DwEaSJDUMAxtJktQwDGwkSVLDMLCRJEkN\nw8BGkiQ1jCwDm+2A3wD/Aj4g5o5ar+iYrYFjgAMzLFeSJAnIZhLMJYArgH2qOLYNuCBZP0YEQZIk\nSZnIosXmd+SDmseBc5LXbSWOfRB4DmgB9sygbEmSpP9KG9jsDuyWvD4G2BT4Vgfn/ClZb5OybEmS\npHbSBjbjkvXvgYuqPOfxZL1uyrIlSZLaSRvYbJqsW2s4581kvXzKsiVJktpJG9gMIfrSvFbDOfMz\nKluSJKmdtMHF+8l6qRrOWSlZT09ZtiRJUjtpA5uXiBFOo2o4Z+dk/WzKsiVJktpJG9jcmqyPBHpX\ncfwI4H+T139JWbYkSVI7aQObXxJZhtcFrgT6Vjh2R+CO5Jh3gMtSli1JktRO2szD04DDieHeBwDb\nAzcl+1qA44ngaUtgnWT7AuAgYHbKsiVJktrJYkqFa4mRTpcBKxKPpXKOKDr2PeBg4PYMypUkSWon\nqyHX1wNrAD8AJpIf0p3zDHAmsCb5Fp2m0VZqcglJkpS5LHPJTAd+CHwW6AcMBYYRfWo2BE4m+tY0\nnTPPhHnz6l0LSZIaX1clyZtP9L95C/iki8pYZNx4I+yxB8y2V5EkSV3K7L/d4Lzz4N57YfvtYdq0\netdGkqTGlTawWRxYL1n6ldjfHzgHmAx8BDwHHJuyzEXOFlvA/ffDK6/E63//u941kiSpMaUNbP6H\n6Bh8LzGMu9gfgfHk+9qsA5wHnJ+y3EXOqFHwyCPQ0gKbbw6PP97xOZIkqTZpA5svJOsbgLlF+75Y\nsH8y8CfgjeT9V4HNU5a9yFl9dfjrX2GNNWDbbeGWW+pdI0mSGkvawCY3R9QDJfYdkqxfJKZS2DNZ\nv0Ak7zs8ZdmLpCFD4O67YcwY2G03uPzyetdIkqTGkTawWR5oA4p7jfQCPp+8voD8LOCzkvcAW6Qs\nuzOWAs4FphB9fp4EvlzFeeOIR22lluVrrcQSS8D118MRR8Bhh8Fpp5nrRpKkLKTNPDwkWX9ctH1j\nYGki6Cme7PKZZL1yyrI744/AaOAEoiXpAKCVCMRaqzh/HNHiVGhGZyqy2GIwYQKsvDJ8//sweTJc\neGFslyRJnZP2a3QuMfJpSNH2rZP1ZODlon251ptqZgPP0i7AGGAscE2y7X5gFeDsZFupDtCFngEm\nZVWhlhb43vdg2LBovXnzTbjmGlhyyaxKkCSpuaR9FPUK0V9ms6LtX0rWD5Y4Z1Cy7u6MLnsQQdV1\nRduvIEZtbVrFNVqyrhTAuHFw880xJHy77WDq1K4oRZKkxpc2sLk3WX+NyGUDsBuwbfK61LifEcn6\nzZRl12p94HkWbpV5OlmPoGM3A/OI6SOur/KcqnzhCxHYvPZa5Lp56aWsrixJUvNIG9j8gpgyYSgR\nILxDDOtuITroXl/inB2T9dMl9nWlwZTuDzOjYH85bxLzYB1GBG0nE3NiPQpskFUFR46MXDe9e0dw\nY64bSZJqkzaweRE4EPiQCGZyj5lmEn1Z5hQdvwL5wOaelGV3p9uJmctvAR4CJgBbEZ2jT8+yoNVW\ng4cfhjXXjFw3fynuei1JksrKYgzOdUQemy8SgcsbwE2Ubh3ZEPgdERB0d3q66ZRulRlUsL8WrwIP\ns3D/otSGDIG77oL994fdd4eLL45h4ZIkqbKsBhe/DVSTau6OZKmHp4hWpF6072eTe5T0zEJnVKfD\nDDTjx49n4MCB7baNHTuWsWPHlj0nl+vm2GPh8MPh9dfhlFNiJJUkSY2ktbWV1tb2WVdmzpzZqWs1\n09fkTkQr0X7AtQXbbyM6AX+KKoKUAqsTwdLtwF5ljhkJTJw4cSIjR46sucIQift+8pMYFn7YYXDR\nRea66QlWWmklpkyZwvDhw5k8eXK9qyNJDWfSpEmMGjUKYpaDqlOtNNNX5G3AncCFwDJEtuSxRJ+f\nA8gHNZcBBxOBy+vJtjuJPkHPAh8QrTzfIUZIndyVlW5pge9+F4YPj8DmzTfh2mvNdSNJUilZBjZD\niIktVyOyDleTgC/TjrdV2BM4Myl3EDH8u7gFp1eyFLZmPU0EPysTCQmnAncBZwDdMjD74INhhRVg\nr70i183NN8PyNU/mIElSY8sisBkK/BzYmwhmqn28lfmIoirMBsYnSzmHkJ/AM+cbXVajGuy4Izzw\nAOyySwwHv+22GD0lSZJC2uHeyxLZhfcjgqRa+uw0U/+ezHzmM5HrZrHFIrj529/qXSNJknqOtIHN\niUCuzeAOooPu8kSQ06uKRZ2w6qqR62attfKPpSRJUvrgYvdk/RciqLmDyD7c0WSSSmnw4Mh1s+OO\nkevm0kvrXSNJkuovbWCzCtFX5pcZ1EU16t8f/vAHOOoo+MpXIs9NWy0D1iVJajBpOw9/QIwueiuD\nuqgTeveGCy6AlVeOYeGTJ0eumz596l0zSZK6X9oWm6eITsCrZFAXdVJLC5x4Ilx1VSy77w4ffFDv\nWkmS1P3SBjYXJ+uD01ZE6R10ENxyCzz4YHQqnjq13jWSJKl7pQ1srgVagT2A76avjtL6/OcjsJk8\nOYaDv9Qt6QMlSeoZ0vax2ZqYgmBVIqPvHsTs3S8AH1Zx/gMpy1cJG28cuW523hk23zyGg2+6ab1r\nJUlS10sb2NxHjIrKJdsbnSxQeULJlmR/NdMuqBNyuW522y0eS117Ley6a71rJUlS18oiSV65DMIt\nFZZK5ykjgwbBnXfCTjtFh+JLLql3jSRJ6lppW2y2T3GuGVe6Qf/+cN11cPzxcOSR0ffmtNNiJJUk\nSY0mi0dR6uF694Zf/CJy3Zx4YgQ3F19srhtJUuPJYnZvLQJaWuCEE2D4cDj0UHjrreh3s9RS9a6Z\nJEnZcSLKJnPggZHr5qGHYNtt4e23610jSZKyk3WLzWhgDDCCmGoBYAbwDHAXMDHj8tQJY8bAAw/A\nLrtErptbb4W11653rSRJSi+rwGZD4BJgkwrH/Aj4G3AkMRWD6iiX62annSK4uflm2GyzetdKkqR0\nsngUNYYIWAqDmnnA28kyL9nWAmwKPJacozpbZZXIdbPOOrD99vDnP9e7RpIkpZM2sBkCXAcsDiwA\nfkUEL0sCKybLEsm2S5Nj+hJTMQxOWbYykMt1s/PO8D//E6OlJElaVKUNbI4HBgCfAF8EvgI8nrzP\nmZdsOxLYJXk/EBifsmxlpH//GCH11a/CUUfBD34AbWYZkiQtgtIGNl9M1hcAt1dx/B3A+cnrXVKW\nrQz17g3nnQdnnQVnnAGHHQaffNLxeZIk9SRpA5vViQzCN9VwTq4nx+opy1bGWlrg29+G3/4Wrr46\n5pn64IN610qSpOqlDWz6Jetavv5ys373TVm2usj++8cQ8IcfNteNJGnRkjaweYsY7TSyhnM2TtZ+\nXfZgO+wADz4Ib7wBm28OL75Y7xpJktSxtIHNg8n6BGCZKo5fJjkW4KGUZauLbbQRPPoo9OsXuW4e\nfbTeNZIkqbK0gU1ucPDqRJBTKUHfJskxub41DixeBHzqUzH9wnrrRa6bm2rpTSVJUjdLm3n4IWAC\ncAywAfAI8ByRhC/3qGkFIo/NegXnTcAWm0XGoEFwxx1w0EGwxx4wYQIceWS9ayVJ0sKymFLhOKJD\n8DeJ/jYjkqWUBcDPgBMzKFfdqF8/+P3v4RvfiFw3kyfD6afHSCpJknqKLAKbBcB3gN8ARxPTJaxZ\ndMy/iEkwLyQmxNQiqHdvOPdcWHnlGBY+eTJccgn06VPvmkmSFLKc3ftp4pEUxFDuZZPX7wJzMixH\nddTSAt/6FgwbBuPGwZtvwnXXwdJL17tmkiRlMwlmKXOIoeBvYVDTkPbfH267LWYI33ZbeOutetdI\nkqSuC2zUBLbfPnLdvPVW5Lr55z/rXSNJUrPLMrDpA+wNXEQM6342WR4k+tbsRbaPvtQDbLhhtNos\nsQRsuWW8liSpXrIKbPYAXgauJWb43hJYN1m2JGb2vg54JTlWDaQ4182NN9a7RpKkZpVFYPN14Hpg\nWMG2l4lcNo8RwUzOMOAPyTlqIMsuG7ludt0V9twTLrqo3jWSJDWjtIHNZsDZyev3iOkSlgfWADZP\nltWBocm+94hcN2cRSfvUQPr1g2uugWOPhaOPhpNOgra2etdKktRM0vZ5+QYRHL0HbEFkHS5lGhEA\n3UxkJ16GSOi3b8ry1cP06gU//3nkuvnWtyLXzaWXmutGktQ90rbYbJWsf0r5oKbQ88BPis5Vg2lp\ngW9+E1pb4Xe/i8dT779f71pJkppB2sBmWaANuKeGc+5L1gNTlq0ebr/94PbbY1bwjTaCs8+GqVPr\nXStJUiNLG9i8SfSZ6ey5anDbbReBzRZbwMknw0orwb77wp13woIF9a6dJKnRpA1s7kzW29ZwzjbJ\n+t6UZWsRse66cPXV8MYb0Wrz7LOw446w5prwox/FtAySJGUhbWDzM2Jm7xOAT1dx/NrJsR+SH02l\nJjFoEBx/PDzzDDz8MGy9Nfzwh9HReI894NZbYf78etdSkrQoSxvY/BPYh3gc9QiRn2ZQieMGAeOT\nY1qI0VAvpCxbi6iWlng0deWV0Ypz3nnwn//ALrvA6qvD6afHaCpJkmqVNrC5F/g2MJXoDPyz5PW/\ngIeBh5LXU4FziM7G04BvER2Oyy1qEgMHwle/Cn//Ozz2WDyiOussWGUV+NKX4KabYN68etdSkrSo\nSJvHZpsS23oRCfrWKHPOmslSjindmlBLC2yySSznnBNDxS+9FHbfHYYNg0MPhcMOg1VXrXdNJUk9\nWdrA5oFMatGegU2TW3pp+MpXYnnyyQhwzjsPzjwzWnS+8pVozTHpnySpWNrAZtssKiGV85nPwIQJ\nMZrq2mvhkktgr71g6FAYNw4OPzxGV0mSBNnN7i11qSWXhEMOgUcegaeeilw4F18Ma60FO+wQc1TN\nmVPvWkqS6s3ARoucDTaA88+PEVVXXQWffBJZjldaKean+uc/611DSVK9dEdg0w8YA3wZ2KQbyqtk\nKeBcYArwEfAkUa9qLA9cSYzqmg38Fdg++yqqWv37w0EHwQMPwHPPwcEHxxDyddaBbbaJpIAffVTv\nWkqSulPawGYVItHeWcRQ7mKbAf8GbgdaiTw2TwCfSlluZ/0ROBg4FdgJeDyp19gOzusL3A1sBxwH\n7Aa8DdyP2OSOAAAcRUlEQVQGbN1FdVUN1l0XfvYzmDIlRlT17h1Bz/Dh+aSAkqTGl7bz8J7AN4FJ\nwHeK9i0N/Ilo6chpAUYCtwAbA92ZoWQXouVoLHBNsu1+8sHZNUC52YsOA0YAmwOPJdvuA/5BBHWb\ndUmNVbO+feOx1H77wb/+Bb/6VbTinH8+bL55jKjad19YYol617R5tLVFwDlxIjzxRKwnToSPP4ZP\nfar8MmyYI98k1S5tYPP5ZH1jiX1fIR/UnE8k3tsROAZYDxgH/Cpl+bXYA3gfuK5o+xXA74BNiRal\ncue+QD6oAZgPXA38CFgRJ/XscdZaC376UzjjjEj0d+ml0QH5+OPhwAPhiCNg443rXcvG88Yb7YOY\nJ56At9+OfcsvD6NHw5FHwlJLweuvw2uvxUSp114LM2bkr9OrF6y4YuXgZ9llIweSJOWkDWxWT9ZP\nlNi3b7K+gZhOAeAmYDliGoa96N7AZn3geRZulXk6WY+gfGCzPtG6U6zwXAObHmrxxWHvvWN5+WW4\n7DK4/PIYRv7Zz0aAs99+kT9HtXnrrYWDmNykpkOGRBBzxBEwalS8Hj68ciAye3Y+2Clenngi9s2d\nmz9+ySVjrrFygc9KK0UrnnqOtjaYORPeeWfhpVevmFNu2WUXXpZc0iC2Ec2bF/8f3n134eW55zp3\nzbSBzfJEQr23i7YvA4xK9l1RtO8aIrDZKGXZtRoMvFRi+4yC/eUMKjiu1nPVg6y2Wky8eeqp8Je/\nRCvOUUfBN74BY8fGl/Do0f4CLWXq1HzwkgtkpkyJfYMHR/ByyCFx/0aNioCj1vu45JLR+XuddUrv\nX7Ag6vHaawsHQH//e7TMTZ3a/pwVVoggp1wAtNxy/nun8eGH7YOTadMqv3/nndKT3Q4YENs/+KB0\nOX36xBQs5QKfwqX4mCWW8N+4K82fXz44mTGj9Pbc8t57pa/Zu3f8PuiMtIFN7m/c3kXbtyQ6Js8j\n+qIUej1Zl5osU+oWiy0W0zXsvnt8QV5+efTHufTSeDx1xBFwwAHxy7YZTZuW7wuTC2JeT35yl102\ngpeDDsoHMaus0j1fHL16RaCywgox/UYpH30Uk6jmAp7CAOiWW2JdOFqub9/2gU5xALTyys3TJ2ve\nPJg+vbYg5cMPF75Ov34RMC63XLTcDR8OG22Uf59bcu8HDcr3p/rkk/ZfkpW+GKdMiYEBueNmzy79\nufr06Tj4KRcg9e/fHEHR/Pkwa1b1AUnhMZWCk4ED29/PoUPjD5eO7v3SS0fm+VGjav8saQObWUSA\nMqxo+7bJ+imgTPzNxynLrtV0SresDCrYX+nccrOWd3SueriVV4ZTToGTToLbb4/sxscdFzlxvvzl\n6HC82WaN+8tt+vSFg5hXX419AwZE8DJ2bD6IWW21nn0v+veP/lVrrVV6f1tbfObiR12vvw7PPx//\nB958M47LGTJk4ZaewgBohRUi6OpJ2trii6pcQFIqaJk5c+Hr9O7dPhgZMiT+D5QLUoYMSRcI9umT\nD4pqNXdu+ZaD4i/j11+PZJ+57eWCosUXr611qHDp7qCoODjp6B4ULrNmlb5mr14Lf67lloO11+74\nHiy9dH1+V6QNbJ4hhjvvSb4DcW/y/WvuLXFOLggqfnzV1Z4iRkT1on0/mw2SdaUBwU8DG5bYXs25\njB8/noEDB7bbNnbsWMaO7WiUubpT796wyy6xvPEGXHFFflTViBER4Bx4YPwQL6refXfhPjGvvBL7\nllkmApd99okgZvRoWH31nh3EdEZLS/4LeOTI0sfMnRutAaX6+tx9dwR+hY9M+vSJ/jylHnXlAqC0\nfbg++qj6AOWddyJ4m1di3OnAge0Dkk9/Gj73ufJByoABPS9oK2fxxaOD+vLLd3xsseKgqFKLRWFQ\nNGNG6VarXH2qaRkqDg769SsdoHXUijJrVvuAPKdXr4VbToqDk0otJ93x79/a2kpra2u7bTNLRdpV\nSPsr6zgi4V0b8DNiUsyDgb2T/ZsSuWIKnQF8nxglNSZl+bXYiRhmvh9wbcH224jOv5+i/AScRwET\niGHdf0u2LQb8HXgP2KLMeSOBiRMnTmRkud+g6tEWLIC77opHVH/6UwQ/++wDt9++EtOmTWH48OFM\nnjy53tUsaeZMmDSpfRDzn//EvqWWiiAm16l39GhYY41F5wus3nKtIaUCn9wyZUr8/8kZOLB8H59y\nLSuF7ys98ikXlBS/HzzYIfRdYe7czrWSvPtu+aCoWHFwUkvrUXcFJ1mbNGkSo+JZ1CgirUxV0rbY\nXAIcCawLfIvIaZMLlv7MwkENxNBpaD90ujvcBtwJXEh0bv430YKzI3AA+aDmMiI4W518f6DLga8S\nQ8VPJLIPHwOsRfcGZ+pmvXrFjOI77hhDln/96whypk2L/R98EF86Q4bUt57vvbdwEPNS0lV+ySWj\nZWL33fOBzFprLZq/6HqKlpb4khk4EDYs1ZZLtJa8+WbpoOehh2Jd+Adpr14LP/JZddXKQYudYnuG\nxRePviNDh9Z+7pw5C7cUffzxwi0si2pwUg9pA5uPiS/2XxDZeBcD5hIjn75W4vhtiBw2ENmIu9ue\nwJnA6UT/mOdZuAWnV7IU/rqYC+xAJOP7BbAEMR3DzsCDXV5r9QhDh8J3vhN9b4YOjYBm1qzoGLnH\nHtHheLvtuv6Xz/vvRxBT+EjpxRdj3xJLxIzoX/xiPohZe+1oaVL3WmyxeAy18sqw5Zalj3n//QiS\nc0GSX1zNp2/fzgdFKi1tYAORv2VvYk6oQURH2nLzLL9GzK/UBjyUQdm1mk3k1Blf4ZhDkqXYVCKp\noJpcr1753CgrrhiBzqWXwpgx8Tjn8MNh3LjoUJrWBx/EyIDCIOaf/4xHIf37xwiuL3wBvv/9CGTW\nWccgZlGy9NLmT5KylkVgk/Mx8EYHx7ycLFJD6NUrcuB8/evw8MMxouq00+Dkk2G33aLD8ec/X91f\n4rNnRy6WwlwxL7wQQUy/fhHE7LADnHBCBDHrrhutApKkPH8tShloaYmRJZ/7HJx3XswsfsklsNNO\nkePl8MMjed3w4XH8hx/CP/7Rvk/M889HZ9O+fSPnx7bbRmvQ6NERxNjpU5I6lmVgswyRUXgzYu6k\n/sChwKsFxwwHBhCtO//JsGypx1h2WTj2WPja1+Cxx+Ix1Y9/HLlyttsuMuM+91zknFh88eh8utVW\nMH58BDEjRhjESFJnZRXYHA38mAhuctqA4oTI2wFXEX1whlN6mgKpIbS0RGK/zTaDc86B1tYYMr75\n5hH0jB4N668fwY0kKRtZBDYnEaOMIAKWZ4n8LaW0AmcDQ4lJMC/NoHypxxswIOakOuqoetdEkhpb\n2sGFGwGnJa9biUdQoyscPx/4Y/La/C+SJClTaQObY4l8L38DDgKqyX/812RdJq2VJElS56QNbLZN\n1hfQfv6lSnLDvYsnzpQkSUolbWAzjOgk/GwN5+RmxuiXsmxJkqR20gY2ublja8l1OjhZl5kkXZIk\nqXPSBjaTiT4269RwzlbJ+t8py5YkSWonbWBzb7I+qMrjBxKzgQPcnbJsSZKkdtIGNhcRfWzGEEn6\nKhkC3EjksJkLXJyybEmSpHbSBjZPEwn3WoiRUTcA+yX7WoAtgAOACcBL5B9DnQq8nrJsSZKkdrLI\nPPxdYAnga8DuyZJzSYnjfwb8JINyJUmS2knbYgPxKOo4YEfgHsrns3kY2An4dgZlSpIkLSTL2b3v\nSpZlgM8AyxPDwKcB/wDeybAsSZKkhWQZ2OS8B9xfxXF7Add3QfmSJKlJZfEoqhYtROfip4Fru7ls\nSZLU4LqixaaU3sD+wPeAT3dTmZIkqcl0JrBZAjic6Cy8crLtVeDPwFXAnKLj9wPOANYo2DYX+HUn\nypYkSSqr1sBmfeAWYKWi7RsAuwLHAzsAbwOfAn5DPncNwMfAZcBPiekYJEmSMlNLYLMEkTm4OKgp\ntB5wNXAYMbx7eLJ9NpFp+Gwi6JEkScpcLZ2HDwZWS17fA2wNLE0EPKOB3yf7diACoOFETpsJwOrA\ntzCokSRJXaiWFpvdkvWLwM7AJwX7JhGdgwcSSfg2SvbvQTy6kiRJ6nK1tNhsmKzPoX1QU+hHBa8v\nx6BGkiR1o1oCm8HE9AkvVDjm+WTdBtzU2UpJkiR1Ri2BTd9kXWlqhOkFr6fUXh1JkqTO68rMw/O6\n8NqSJEkL6e4pFSRJkrpMrQn6WoBjgKkV9ldzXM7pNZYvSZJUVmemVDgmo+PaMLCRJEkZquejqJaO\nD5EkSapeLS0222dcdlvG15MkSU2ulsDmvq6qhCRJUhYcFSVJkhqGgY0kSWoYBjaSJKlhGNhIkqSG\nYWAjSZIahoGNJElqGAY2kiSpYRjYSJKkhmFgI0mSGoaBjSRJahgGNpIkqWEY2EiSpIZhYCNJkhqG\ngY0kSWoYzRbYLAWcC0wBPgKeBL5c5bnjgAVlluWzrqgkSardYvWuQDf7IzAaOAF4ETgAaCUCvNYq\nrzEOeKFo24yM6idJklJophabXYAxwNHApcD9wFeAO4Gzqf5ePAP8rWiZl3VlG01ra7VxY+PzXgTv\nQ/A+5HkvgvchnWYKbPYA3geuK9p+BTAM2LTK67RkWalm4Q9qnvcieB+C9yHPexG8D+k0U2CzPvA8\n0Sem0NPJekSV17mZaKGZDlxfw3mSJKmLNVMfm8HASyW2zyjYX8mbwA+BR4H3gA2BE5P3W5APkCRJ\nUp0sqoHNtsA9VR67MfBUBmXeniw5DwF/IQKa04lHXZIkqY4W1cDmBeDwKo99LVlPp3SrzKCC/bV6\nFXgY2KzSQc8//3wnLt1YZs6cyaRJk+pdjczMnTv3v+taP1ej3YvO8j4E70Oe9yJ4H0JnvzubqSPs\nxcBYYCDt+9nsB/yOeJz0aCeueyuwEdEBudiKwOPA8E5cV5KkZjcF+CzRHaQqzRTY7ATcQgQy1xZs\nv43oAPwpoK3Ga65OPOa6HdirzDErJoskSarNm9QQ1DSj24lHTocD2wGXEK03Y4uOuwz4BFi5YNud\nwHeB3YDtgeOJSHImsF6X1lqSJKmEJYkpFd4APiamVNi3xHFXAPOJVpycc4jkfLOAucBk4NfAml1Y\nX0mSJEmSJGUlzWSbjWQp4CzgDmAa8djvlLrWqD52IFr3XgRmE619fwJG1rNSdbAxkSLhVeBD4rHw\nX4k525rd4cTPx/v1rkg325bykwtvUr9q1c3niL6gM4ifkReBk+pao+53JeX/T1T1/2JRHe7d02Ux\n2WYjGAIcAfwduIH45V1rB+1GcCSwHPBz4Nnk9TeJUXhfAO6tX9W61QAi/cJviaB/KeJn4zfAqsCZ\ndatZfQ0H/o94RL5MnetSL99l4Z+DZ+tRkTraH7gKuAY4CPiA6OrQbINPTgcmFG1rAf5MNBQ83u01\nErsQUWVxC83txF/qzTSNRaHBxH35Qb0rUgfLl9i2JNHT/85urktP9AjRitOs/kwE/lfQvC02e9a5\nHvU2nAhkLqh3RXqobYj/J6dVc3Czfsl2pawm22w0zZRaoNjUEttmE3OXrdTNdemJphPzrzWjA4Gt\ngK/S3D8jzfzZIVqzlwB+Wu+K9FCHEYHNZdUcbGCTvawm21RjG0D0sWm25naIL7HFiEdyxxCP4/6v\nrjWqj6FEX7wTicdQzeyXRIqNWURusS3rW51utzUR4K9HPLr/BHgbuBBYuo716gkGAHsDd5OfSUDd\n7EWi81exFYlg54TurU6PMYTmfRRVytXAHOAz9a5IHVxEviPgJ0ROqGb0B+CBgvdX0nyPojYmUmns\nRgQz44hg/xNgx/pVq9u9QHQWnkV8R2wNfIto2X2wjvXqCY4ifleUSs2ibmJgU5qBTd4ZxL04pt4V\nqZOVidaqnYhOgvNpvp+LvYlcWp8u2HYlzRfYlJLrZP5kvSvSjV4kfid8p2j7ccn27bu9Rj3H48Tj\n/D71rkgzewR4rMT2EcR/0Gon72w0BjbhFOI+nFjvivQgE4ikl8vVuyLdZCngLSIVwsCC5XdEYDOA\n6FzezC4kfk761rsi3eQR4vNuVLR97WT7N7u9Rj3DhsTnP6eWk+xjk72ngHVZ+N5ukKyf6d7qqAc5\npWD5SZ3r0pM8TvS5Wa3eFekmQ4iRct8i8pXklv2IgOZdYgi8mic9xN872N8s96HYYcn6V3WthdiJ\n0s8DbwNep3l7/zd7i83J1DBcsclcRfSpGFzvinSTvsTw1a0Llm2AW4l+FlvT3PPPLUukxphY74p0\nozHE74fvFm3/erK92TpTQ/ycTCdas2pigr7s3UbkJrmQSLb1b2KSzR2JZGTNFnnvTPwVmuvZP4Lo\nXwCRhfajelSqm32TCGhuI/pfbVa0/9Fur1F9XEJ0jnycGPExBNiH+CPgLOKXWDOYA9xfYvshRH+j\nB0rsa1S/BV4GJhGtVmsRPy/LAQfXsV7d7S7gZuIPv15Ed4bRyfs/Aw/Xr2p18z9EkGtrTQ9R7WSb\nzeBl8iNg5he9/lSF8xrJvbT/7IXL/DrWq7uNI77QpxJ9amYA9xAZVxW5rt6rdyW62QlEUPMu+SHO\nfwBG1bNSddIP+DGRrHIu8bvzhzRvp9nbiZ+HZu9vJkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJDW5ceSneGiWaS4KDSbmqVoAfDbFda5MrvFyBnXqaUYTn206zTNZqRZRvepdAUmdtiql\n55+qdclNzNpsE7Tm/JCYbO9mYoLOtBrxPj5BTFq7LHG/JEnK3KrkJ9IstRRPtllq/3zgfwteN1uL\nzZrE5IvzgY1TXutK4j7+J+V1eqpRxOebC6xR57pIZS1W7wpI6rTJwPpl9rUQs+MOA6YAX6hwneeA\nX2dbtUXG94HewN3A3+tcl55uIjE7+zbEfTu0vtWRJDWbV2jsFoS0hgJziHt0cAbXu5LGv9+HEZ/x\nI2C5OtdFKsk+NpKa1YFAH+BD4Po612VRcR0RDPYl7p/U4xjYSBpH5VFR9yX77k3erwFcSLRMfAS8\nClwOrFZ03vrAFclxHwOvAROo/i/9LwKtRMvTR8As4nHRj4nWlrT2TdZ3AbOrOH494pHd68TneR34\nLTFiqBrLAocAVxOP/z4g+qu8BdwGHEEEWqWcQ/wbzCMeL3ZkYnL8CyX2rQ38AnimoA5vEPf2MuK+\nLF7muu8B9ySv9y1zjCRJXeIVqns0Mo7KnYfvS/bfA4whAozCDsm5oOgdYIPknAPJP+YpPu5lYMUK\n9RlAfNGX6vycez8L2LmDz1XJ0kSQsAD4bhXH70f+8xTXZy4RsFxJ5fv9CpU/0wIiICkVtK1bcMwJ\nHdR1w4Jjv1O0b58yn6O4HutVuP7JyTFzgCU7qIskSZl5hWwDm38CM5LrHkO0VGwB/Iz8F+NjwJZE\n0PAM8YU/iuhw+mvyX5ytZeqyODHkOvfFeQmwGzFiaVPg60TLT66fR2dHMu1E/jPv0MGxmxIjpxYQ\nj63OJD7jaOBrRGvHHOBJKt/v14C/At8jgrKRwGbA/sAt5O/NvWXOfzjZ/3wH9f05+YCrMEgaSrTQ\nLADeJDoA7wBslHzG/YGLgLepHNjsSP7e7dhBXSRJyswrZBvY5B5tlErQ9tOCY2YADwL9Shx3Dfkv\n3SEl9p+R7J8JbFKmvssCzybH3V/mmI78gPxn7ujR2BPJsR8Dnyuxfxj5YKvS/e5oiPS4gmts38H+\nzctcow8wLTnmxqJ9h5L/zJUCl8Up/W+XM7SgHidXOE6SpEy9QvaBTbm/0FcpOGYe8Okyx21bUNaX\nivYtRQQ0C4DjO6jzzgXX6UxOlQsLzq/U13AT8p/rvArH7UPHgU01JiXXOL/EviXIPwa8pMz5exbU\nY/eifd8j/8gwjT4FZVyQ8lpS5uw8LKla7wJ3lNn3KvGYA+Ap4rFVKU8l6xYW7my8DbAMkbn3mg7q\n8mDB63KtF5XkWmneI76gyxmTrNuIjtDl3EAEZdVqAVYgOvKuX7C8kezfsMQ5H5J/hLcv0L/EMYck\n67eJTMqFctceRDze66xPyP9bO+RbPY6BjaRq/auD/bkv9herOAaiA2+h3OiiFuJLeEGF5b2CY1fo\noF6lDEjW73dwXK4z9FzgHxWOm0f0senIF4mAYxbxGV8ggr3csktyXKnHdAC/StbLAHsV7VuB6DsE\nMfJqftH+m8jf/xuIpITjib4+tX4X5O7/gIpHSXVgYCOpWh92sD/X8lHpuMLWkd5F+5YveN1WxZI7\nrlTLRUdyX/DLdHDcssl6Bh3PATW1wr4WIij5MxG8LEX5zwTlP9MT5AOsQ4r2HUzc0zZi2HaxGURL\nzZSkPtsRw8ifIFrj/kAEXtXIBTS1tFJJ3cIpFST1FLlAp41oRfikyvOmdaKs3DlLE3/gVXoclatT\nGoeSn4LgSeBcYgTZFCIQzF3/18BBROBRzq+IPDTbEH2bXk225wKdxyidvwbgIWJ+rL2IAGsrYCXi\nPuyZLLcn64/KXKMP+WHenbn3UpcysJHUUxR+Sb5DfOl3lTcKXi9H9EkpZUayHkwEG5UCnEpJA49I\n1i8RQ+TnlDluUIVr5FwNnE2MXBoHnEYMG8912L68g/PnAL9LFoi+Tl8khq6vTcwrdibwjTLnFz4m\ne6uK+krdykdRknqKXB+VFiJPTFf6W0FZlXLhPJ2sF+/guMU62D8iWd9I+aCmhWip6sgs8lNAHJys\nc61Bs4HfV3GNQi8To5s+S0ysCpWzChd+zsdqLEvqcgY2knqKu8lPbXBcF5eVS3YH5fPlQEy3ABF0\n/G+F4/YABlbYn2sdr5SpdzcqZ2QudGmyXhXYFfhy8v4P5Ecs1ep9or8NlM5VlJO7X58QCQelHsXA\nRlJPMYvoOwLxuObnVO5rMgA4tpNlzSb/Jb5ZheMeJ3LLABxN6ZakFYH/66C83EixL1E6AFqDmEer\nWg8Qo9RaiJw2uRFmlR5D7UjlEWQDyActL1c4btNkPZGOO5RLkpSZV8h+rqhqyuuoj0duyPYPSuzr\nQ741ZQExAuhYIuPvxkSH2aOIxy2zSdd59RtJGbOpPDpqE2K4d/GUCp+l+ikVvlnwmZ4j7vkmwNbA\nqcToolywVW2Sv+/Qfgh8pWH2EHNZzSWGmx9HTKfwmaQOxyT1yl2rXMA4gMjAvIAYKi5JUrd5hfyk\nk5WMI/+FVu/ABuJxTSvtv7TLLS91UFYlyxEjfxaQ76NSzn7kv9CLlznJ+VdQPihZjIUn9ixcPiBG\nKl1Z4RrFlicfcC0ATuzg+Cvo+H7Op3TW45zDyQd4JudTj+SjKKlxlcqPUu64wnW561RbXjUqHTcb\nGEtkFL6YaEmYRSTBe5doGfkVEQisW2V5pUwDfpu8PrCDY39PtG78hhitNYfoaHsN0ZrUUTA3jxh5\ndBzRKjObCA7+RUzvMJLoEFzLsPKp5PsAzSOGilfydeJzXk48YpucfI4PiUzRVySfpVL/pgOSdSsO\n9ZYkqcdZg3yrRzUjknqSXkQOmwUsPH1CVxhFvoWqM/NzSZKkbjCB7gsOsvR58o+Q9uiG8v6clHVh\nN5QlSZI6aRCREHA+0SF4UXEHEWhMZuHpKbI2mvzM4NUkEZQkSapoKWI6hJHAeeRba75ez0pJkiR1\nxjgWHsU0EafGkdpxVJQkLRpyI6bmE0PrfwGMIUZESZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSQ3o/wHwh9tnGRaNgwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "time_fit = irfft(fit)\n", + "\n", + "mpl.rcParams['xtick.labelsize']=12\n", + "mpl.rcParams['ytick.labelsize']=12\n", + "ylabel(\"Response (relative)\",fontsize=20)\n", + "xlabel(\"Time (days)\",fontsize=20) \n", + "\n", + "ylim(-0.5,2)\n", + "xlim(0,7)\n", + "\n", + "plot(time_fit)\n", + "plot([1.80,1.80], [-50, 50], color='k', linestyle='-', linewidth=2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lag/data/clag_analysis-ZoghbiCopy.ipynb b/lag/data/clag_analysis-ZoghbiCopy.ipynb new file mode 100644 index 0000000..17e7140 --- /dev/null +++ b/lag/data/clag_analysis-ZoghbiCopy.ipynb @@ -0,0 +1,704 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X18VPWd9/9XSAKSRBRwbFEoxFBYg1pNKhD6s+qCqFBy\n1UI35PGzbbjorle73V2vSzK22u7P31W07aRre117tbXXlpL21zWmWnYXoevderNU7mro9sb4kxID\nyO2MiDcQhNyc64/vHOcmM8lM5szMOTPv5+ORR2BmMufkmzPnfM73+/l+viAiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjJm+4GhBF//K4/7JCIiIi42Fbg46msxJnj4\neD53SkRERLzju8DefO+EiIiIeMN44A3gy/neEREREXFOWRbf+5PABUD7CK+ZFv4SERGR9BwNf+Vc\nSRbf+0ngPeA/JXl+2iWXXHLkyJEjWdwFERGRgnUYuJY8BBDZ6nmYiUmWvG2E10w7cuQIP/vZz7j8\n8suztBsS78477+S73/1uvnejqKjNc09tnntq89x65ZVXuP322y/F9N4XTPCwBjgObB3thZdffjl1\ndXVZ2g2Jd+GFF6q9c0xtnntq89xTmxeXcVl6zzXATzDTNEVERKSAZCN4WAJMB36chfcWERGRPMvG\nsMVTQGkW3ldERERcIBs9D+Jizc3N+d6FoqM2zz21ee6pzYtLNqdqjqYO6Orq6lKSjYiISBr27NlD\nfX09QD2wJ9fbV8+DiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiI\npEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIik\nRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpKUs3zsgIlJIOjrMF8B778GBAzBzJpx3nnmsudl8\niXiZeh5ERBzU3AybN5vvZ8/C3r3wzjvw6qsmmOjogMbGSIAh4kXqeRARcVgoFOKppwK8/no3UMqh\nQ4McPlzL97/vZ/FiX753TyRj6nkQEXFQMBikoaGJ9vaV9PZuBOZy+LAF/Ae33HIDzc1/RSgUyvdu\nimREwYOIiIPuvruNnp4HgMuA1cBKYCvwNAMDv+eRR5ppaGhSACGepuBBRMRBu3d3AwuANuABYCFQ\nEn52HLCInp778fsDedpDkcwpeBARcdDAQCkmWLCDiEQWhIMMEW9S8CAi4qCyskHAAuwgIpFx4SBD\nxJsUPIiIOGj+/FpgF2AHEYkMhYMMEW9S8CAi4qBAwE9NzT3ARcDOJK/aFQ4yRLxJwYOIiIN8Ph87\ndnSyenUVZWX/GXgRGAo/OwTsoKbmXgIBf/52UiRDCh5ERBzm8/no6PgeTzzx78A/c+mlK4BGqqtX\n0NKyiR07OvH5VCxKvEsVJkVEHBS7toWPOXPamDwZDh+GGTNg6VJQ3CBep54HEREHRa9tcd55MHcu\nTJoEc+bAhAla20IKg3oeRESyQKtnSiFTz4OIiIikRcGDiIiIpEXDFiIiWRSbQAkHDsDMmSYfAjS8\nId6k4EFExCGjBQo33AD33mteU1eXt90UyZiCBxERh0T3IuzZA/X1JlCYMSOE3x/gRz/qBkpZtWqQ\n66+vJRDwq96DeJKCBxERB4VCJlB44QUTKNx2Wx8nT4Z4990fAgGghN7eIXp7d7NtW5MKRoknKWFS\nRMQhwWCQhoYm2ttX0tu7BdjMwYNX8+67DwELiayyOQ5YSE/P/fj9gbztr8hYKXgQEXHI3Xe30dPz\nALGBwivh/yeygN27u3OybyJOUvAgIuIQEwgsiHu0lEggEW8cAwOl2d0pkSxQ8CAi4hATCMQHCoOA\nleQnhigrG8zuTolkgYIHERGHmEAgPlCoBXYl+YldzJ9fm92dEskCBQ8iIg4xgUB8oOAH7gG2A0Ph\nx4aAHdTU3Esg4M/hHoo4Q8GDiIhDAgE/NTX3ADuIBApTgXVUVd3BzJm3Ao1UV6+gpWWTpmmKZ6nO\ng4iIQ3w+Hzt2dIbrPKynt7eU6mq7INSzvP66j/p6eOwxVZgUb1PwICLiIJ/Px8aNbe9XmPz852Hn\nTli71pSsnjMHvvxlrW0h3paN4OFS4FvALcBEYC+wFtiThW2JiLhG/NoWc+bA889HAoU1axQoSGFw\nOniYDLwI/BsmeAgCNcBbDm9HRMR11IsgxcLp4OFu4ACmp8F20OFtiIiISB45PduiEegCHgWOY4Yq\nPu/wNkRERCSPnA4eLgO+ALwKLAV+APxP4LMOb0dERETyxOlhi3HAbuCr4f//FrgC+C/ATxP9wJ13\n3smFF14Y81hzczPNGjgUERGho6ODDjsTN+ytt/KbSphstZax2g88BfxF1GNfAO4Fpse9tg7o6urq\nok4TnkVERFK2Z88e6uvrAerJw2xGp3seXgT+JO6xOZigQkSkaMVP4zxwAGbOVL0H8Sang4fvYAq4\nfwWTNDkf+PPwl4hI0WpuhiVLQuHqk9309pbS329Xn/SrTLV4itPBw0vAbcA3gL8FXgP+BugY6YdE\nRApdMBhk0aLV9PQ8AASAEnp7h+jt3c22bU1a50I8JRsLY20FrsJUl5wHbMjCNkREPOXuu9vCgcNC\nIulm44CF9PTcj98fyN/OiaRJq2qKiOTA7t3dwIIkzy4IPy/iDQoeRERyYGCglOQT3MaFnxfxBgUP\nIiI5UFY2CFhJnh0KPy/iDQoeRERyYP78WmBXkmd3hZ8X8QYFDyIiORAI+KmpuQfYAQyFHx0CdlBT\ncy+BgD9/OyeSJgUPIiI54PP52LGjk49/fBMVFSuARiZOXMGkSZuYPr2TtWt9NDZGCkmJuJnTdR5E\nRCQJn8/HCy+0sWcP1NfDP/wD3H47PPggqEq/eImCBxGRHIguT/3OOyEmTQrw53/eDZRy3XWDfPSj\ntTz2mCpNijdo2EJEJAeam2HzZvjRj4IcOtTEO++s5MyZLcBm+voe59//fSUNDU2EQqF876rIqBQ8\niIjkkCpNSiHQsIVIBrRSoqTLVJJMFiAsYPfu9bncHZExUfAgkoHo4MBOguvoUPKbJKdKk1IINGwh\nkqFQKMSaNa2sWrUcaGTVquWsWdOqsWtJSJUmpRCo50EkA1pmWdI1f34t3d27MDkP8VRpUrxBPQ8i\nGVDym6RLlSalEKjnQSQDSn4TSC9x1q406fcHeOGF9fT2llJdPcj119cSCKinSrxBwYNIBpT8JpBe\n4qwJNHxAG7NnQ3m5CTROnIC1azVDR7xBwxYiGVDym9hSTZy1i0U1N5ueiblzzeOvvmp6LTo60BoX\n4nrqeRDJgJLfBMaWONvcDEuWhMLDF9309pbS328PX6hMtbibeh5EMqDkN4GxJc4Gg0EaGppob19J\nb68pU93b+zjt7SpTLe6n4EEkA1pmWcBOnF2Q5NkF4edjaaaOeJmGLUTSEJ9V//vfw8CAj9LSNioq\nYNIkk/y2axdYlpLfCp19PBw4kH7irGbqiJcpeBBJQ6Ks+q4uk1UfCkXGr6GU118f5KmnalmyROPX\nhcrOW/jwh49gEmcTBRCJE2c1U0e8TMGDSJrig4RVqwaZP38mu3a9zP7930KVJouHnSj59tvzgJ1A\nQ4JXJU6cjczUST3gEHEL5TyIpKijA26+OcisWcOT3Do7T7N//zfQ+HVxieQtfBu4l+GJsy8mTZw1\nAcWuJO+smTribgoeRFLU3AxTpnydvr71DA8S3iDxXSckS5gT74skSvqATmATYBJn4RNccMFfJu11\nCgT8XHxx4pk6FRX3cuSIX4m24loKHkRSFAwG+cUvniVxkKDx62IUm7dgqkbCVmAz8EsGBj7E2rW+\nhEGAz+fjD3/oZPXqn1FVVQdcCXyUqqq/orFxHj/7mZJtxb2U8yCSorvvbqO//xISBwkavy5Go+Ut\nzJw5yObNyX/esix+/etXOHXqIUwPRgmnTg3xyCO7+fWvlSsj7qWeB5EUmS7q8SQuR12LSZhLROPX\nhSqTvIWODqivV60H8SYFDyIpMl3UyS4WfuAu4EVUaTLCXqehsRGWLjXrOCxdGnnM62P6mVQYbW6G\nSZPSLy4l4gYKHkRSZLqoW4FEF4s/UlYWYvXqR6iuNglz1dUraGnZVNRdz83NsGFDiKlTW9m3bzl7\n9zayb99ypk5tZcOGkOfH9O0Koy0tm8b0d1etB/Eq5TyIpMgsgvUaJqs+AKzHJEoOAhfh8y3l9Om/\n1zLLUcayYJQXxFYa9XHgQBsXXwy9vTBjhuldSeXXUq0H8SoFDyIpCgT8/PKXTQSD9wPfwnTcDQG7\nqKi4lyuv7CzaICGZ2PUbbLFj+hs3tuVp78bOriy5alWAl17qpq+vlIkTB5k0qZaSEj8dHWaGxWjH\ng1ZlFa9S8CCSIntqnakuuZ7e3lKqq+0llL15B51thbp+Q6IelTNnhjhzZjeHDqXeoxII+Nm2rYme\nnvsxuQ+RgNTkTHRm9fcQGSsFDyJp8Pl8bNzY9v66Fo89Zta1sMUvnHXggBm+OO8881ix9UwU6pi+\nUz0qds6EAlLxGgUPIimKDgx6e6GyEm6+2fz/zBm47DKYNQvOng3x3nsBXn+9m97eUvr77YtB8S2Q\nVahj+k71qJhjyhSXUq6MeImCB5EUJTuR270Q7e0wfXphJgiOVaGO6TvVo6LgQLxKUzVFxigUCrFm\nTSurVi0HGlm1ajkf+9ifhcevVfQHMquD4GaRHpVEvNujIpIqBQ8iYxAMBmloGL665r59JlBIrPiK\n/mRaB8GttCKmFDsNW4iMQfKEuSoKMUEwE6MlmXqRZklIsVPwIDIGyRPmCjNBcKziZ5/MmQNf/rL3\nZ59oloQUOwUPImOQPGHO7s4urATBsfJqcJCKQuxREUmVggeRMUg+BdEPNAFfBxqI7s6eOPFejhzp\npLGxsC+qxaBQe1REUqXgQWQMkk9B9AHrmD37Xs6dK+PgwROUlQ0wMFDFxRdP4pJLAkVZ76HQOB0c\nqLiYeI2CB5ExGClhrqLi21x66ffZvftLwA8YGFgAlHDgwBDt7cVR70EXw/TYa2WYHAoVFxP3S5YW\nngt1QFdXVxd1GigUDwqFYk/2kYQ5P35/gPb2lSTOfdhBS8smVy0IlY2L/Ujto4thrNi1MkywaYLR\n3dTU3FPwwaakb8+ePdTX1wPUA3tyvX0FDyJjMNrFds+e5Rw+vIVksy5qa1fw8stbc7W7KXHyYq+L\nYXrWrGn1VLAp+Zfv4EHDFiJjMNqd+Ny53loQKtEqkZmU1S7UpbizpVBXH5XCpQqTIlnglfLFHR3Q\n2Aj19dEX+8zLapuL4YIkzxZfpc3RFOrqo1K4FDyIZIFXyhc3N8OGDSHeffc5RrrYP/poN42NJtCw\nh2tGMtrFcP/+0rTer9B5JdgUsSl4EMkCrywIZa/R8fbbk4m92IeAVmA58EnOnj3I1KmtbNgQSilx\ncvjFMPr9Gunv703r/QqdV4JNEZvTwcN9mDNk9NcRh7ch4npeWRAqkpswnsjFPogpdLUSMIt+DQz8\nlvb2lTQ0NBEKhUZ939iL4fD36+9P7/3cwh7maWyEpUth7lzzPdNeFK8EmyI2p2db3Ad8ClgS9dgg\ncCLBazXbQgqWV+oczJu3nO7uLZjKmCuBGuDTwAPAogQ/kVrmfygUoqHBroPxC2AVhTKTIFtTUDW1\nVdJRiLMtBjG3GiJFyy3BQbz4oOaPf7RzE/zAbZi73fMwpbUTSS3zP3rhqH/8xyfp708WHHhrJoHT\ns1Js5u/iA9qYPRvKy02weeIErF3r3uNJilc2gocPA4eBs5h+y3uA3ixsR0TSZFcyXLUqwEsvddPf\nfxAzXOEDrgGagW+SaeZ/9MWwvPxV+vsLYyZBtqagKjgQr3E6eNgJfAbYC3wQ+CqwHZgHvOnwtkRc\nzY1DF7F3zq3An2HG2RcBr2F6HDJfVjz6d5s3b5Du7uTvd+TIYFqLhdntevgwHDwIZ87AhAlw9ixM\nnAgf+hBceml22lf1GEQMp4OHJ6L+/TLmrNQDfA74TqIfuPPOO7nwwgtjHmtubqZZYbh4nBvXK4jc\nOV8GrAbuxsT49wP2EIazy4rHLiIWwlx8u8Pbe5cPftBiw4ZQyu0R3a5vvPEb3njjBGfPmsXHLrpo\nEldddVXW2lf1GCQfOjo66IjLxn3rrbfytDe58xTwvQSP1wFWV1eXJVKIjh8/btXU3GjBDguGLLAs\nGLRgh1VTc6MVDAZzvk+1tcvC+7IuvF+WBcHw/68IPxe04EYLtof3197vX41pv4PBYLgdtoTfN749\ntqf1vpF23erI+6Uj0n5Wgq9Bq7Z2mePbFEmkq6vLwnQR5mXGQbbrPEzA3MYczfJ2RFwndnw886qN\nTojcOUdXgDS5CXALpsfBB3QCmwAzzRQWM3v2vWNKCLSTJ2fPbgPWM7w9GtJqj0i7PoeZFZLZ+6VD\n9RhEDKeDh28DHweqMWemx4Aq4CcOb0fE9dxYojlSvClR97sfk9+8A5iKCSgeB77CxIklXHbZo6xd\n60u7lkFHB6xd6+PYsUpGmsXx2GPdKb13pF1z376qxyBiOJ3zcCnQAVyEGdzcgbkteN3h7Yi4nhvH\nxyP5B4mSIu0eh29RXv4X9PdXR9UaGHthKztxce7cUvbuLWF43sMgUMvFFw+klOAYadfct2/0FNQX\nXlgfV4/BPcW/RLLN6eBBWY4iYZG7/LHPWnBSRwccOeKnoqKJvr4ZmMlR8T0BPmAlF11Uwvnntzla\na8D8vscxp4lInQRz576L11/fQig0euJkpF1z376qxyBiaEnuAuTGKYLFKHaWQbzcj4+bWQrw1399\nOY8//gKnT38GM6LYgBnBNBfxmho7t8HZ7Zv28BPJU7CZPIX+/h+lVCch0q7OzgpJhT47IobT5anT\nofLUWaRSt/kXW6J5AYkv0Ln7WwSDQa68cjXB4APh/XkD+Bamsu1JJk68mGuvvYrHHsvOMRIKhbj0\n0hvo7/8DyXoLamtX8PLLW0d9H9Ou6zBpVvHtu5OKiq9y7bWdHD3qcyRwVkAubpPv8tQKHgpQbCGg\nBUS6hndTU3OPqxZmKnRuCuLWrGmlvX0lydaYmDZtEx/9qLnrz9bFcPbs5fT0JA8O5sxp5NVXN4/6\nPna7Pvvsbzh48ARlZabOw8yZk2homA2MY9eu1+jtLaWiYpApU2qpqfFnFEy46W8pku/gQcMWBShb\nJXQlPW4bHx+tOuLkyevZPPp1e8w6OuD4ccg0T8Fu18OH2+jrg8rKSIXJd98NsmnTas6diwTOfX3H\n6evzc+zYDQwMzKK/n7Qv+tla00JE0qciUVkyWiGbysrF1vTp66zKymVWefkKq7JymTV9+jpr6dKg\n9fDD+d57yZY5c1YkOSbM15w5K7K+Dy0t0cWp4r+2Wy0t6xx+/+NJCkmlV6gr2/udiYcftqwVK8zX\nTTdZ1pw55rv9mD7ThanQi0RJHow8RfAN+voOc+jQSk6f3kJ//2ZOn36cQ4dW8vzzTbS3h2hsJO25\n/OJ+kVkKieRm9ke26yQMr63RRuJCUukV6nJjzQ5bczNs2BBi6tRW9u1bzt69jezbt5ypU1vZsCGk\nXAzJCg1bFKCRpwj+dyxrA4nWGTh3zuK11z7N9u2Pqgu2ALlh9keqdRLGmqA4PHB2ZiErN9bssI00\npNLZ2cR113UyYYJPSZ3iKAUPBSj5RSIIPAv8ffjfq4mfb79v304aGjSGW4gCAT/btiWf/REIdGZ9\nH1LNAxnromLDA+fML/qmPoa7anZEi81xir0hOHNGNwSSHQoeClDyi0QrpghoCbHdubZxwCIlVRYo\nN1RHTPXud6wJisMD59Qv+iP1dpx//mWcOmUvXR4vv2taRBJhi+OGQNNm3UE5DwXIvki0tGyiutos\nbFRdvYILLngZGI85mbp3DFeyw15j4sSJNmbP3sqcOZuZPXsrJ060jWnNimxKZ1Gxjg5obDRfvb1+\nysujcypqMZU0E4m96CfLHaio+CJlZS8B64DtxOZqvMisWV/O65oWkSGVZPkdi/K2EFs2KMfDHdTz\nUICSdQ1v394IzMVU5Ru5O/fNN0tpbDT/U3SfGbfcKXnpbzbatNLoXIXoIY4//KGb/v5yqqq+AJRx\n6tSFlJVtYWDgRySqpBk9VJO8t2MN8HfAh8OP309kTY6LWLjwirze0UeGapzJ73A7TZsVTdXMMTOF\n0566dsOI0zlra5dZwWDQamlZZ1VXL7NghVVdvcxqaVmX8vQ2iVBbpiedaaXHjx+3amoST8csL7/R\namjotqZPX2dVVIzc9smnY4489bmqallep0NG9jv/U3Fzwc3TZnMp31M180nBQ45FPnRBC6634MWk\nH8Cmpi8kPSGnMz9eRr64ub0t81VDYLRaJdEX7NEuJhMmrLMqKy1ryhTLqqy0rIsusqy6uuH7n3yb\n7r4oB4PB8PE1+g1BIRjt2CiU33M0+Q4elPNQRAIBPxdffA+wD7P08lcZPoZr5tuXlJSmPOYsI0tn\n/N5t8jW+bHIRdmFmD7QCy4HG8Pc1fOITs97fdvIaDCHgF5w79wSnTzdywQXL+fSnW+nuDtHVBZs3\nxw7jJJ+Omf/6GCOxc5xmz7YwuR6J5Dep00lunjZbTJTzUER8Ph9/+IPJtt+6tZtQqJzS0i9SUlIG\nfIAJE2Dy5FpqajrZtq2FkRMqC2P8NBfSGb93m2yNL4+WB7J8uZ/nnruNAweGgAeJXb57Jzt3fuX9\n5bsjF5PoaYoDwEFgI5bVltJ+J6+PYiddxi9fDm64KNs5Tpdd9iiHDzdx5kz+puLmgtuWupfc07BF\njjz8sGUtXRq0pkxZZ5WWLrNKSlZY48Yts8rK1llTpgQTduG6oZRxofBqWz78sGVNm/alEYe3Mhlf\nHikPJJ1tm27sY1ZsGep1FmxPa7+TD38ELWiw4Ffh4SZ72Gm748NOmQ4TFUNujXIejHwPW+STgocs\ns4OGadO+YJWU/MmIY+7xJ63x4zWu6BSvjtEeP37cKi+vzcq+p5IHkmq7mYvJZ+MuKOm3eSR3YPuw\nIOG88z5mTZv2pVGTLp0w1gCgWNa4GOnv5PYcIiflO3jQsEUBW7w4yNe+tpqjR2cAP2a0VTajK/qd\nO3cEM37qvqI4XuOGstBjcffdbfT3X8JI48sHDpSydGn6009HW/m1ri7Am2+mNrYdCPj5x3+8gf7+\n6GG29MfFn3nGR01NJ2fPBnjzza9x5swJYADLquLcuUmcPXse117b/v6y3tlYHTWTYSIvTcXNRPTf\n6eTJ9Zw7V8r48YPvD7k+84yvKNqhmKnnIcsi3Xuj34UNvxMMhruBXyya6D5bd25evVMyd/4jHTvH\nrLKyj4zpbnzkXoVj1gUXfMQqL78ipd6Dhx+2wvsQ/fzYe3vyOTtGXfKSKvU8iGPik9BeeMFO1Bv9\nLmz4naAPMyMjANwLvEd19ZScljLONbvY0KpVAV56qZu+vlJef32Q8vJarrnGT0eHqcKY7h1evstC\nZ7bIlF1ULH7dhAFgPwMDP2FgYAHRd8g//3kT117b+f4deqLtJM+YDwLNvP32Q8BjUduOF+mxaW6G\n9euhu9uKes/alH42kdF6RbJZuj0XybVuKVomMlbqeciC2PHSupTvwkYbXx4/fllBjp9Gi73jPG6Z\npLtbLVhilZXVWqtXf2lMd51uGIseyzh6bFGxLVZqCYlBCz5rVVXVj7id5Mdb9PvavV+j99gMv2NP\n/WcT/975yVHJVXJtvhMr3fCZ8Lp89zzkk4IHhw3vbrVPgqN3hXp1RoCTIhcg+4IZ3239oquHGZIZ\nazf8yEXFEl1gk7Xb8O2kXs0xGD5+zUWupOQKa/r0ddbSpcGYC0zioaFjFnzWKiurtWBZyhfIfH4W\nchG4uKVoWb4DGK9T8KDgwTHDT8jRJ/9Ed2G/SjuzvZBF2qCwxp3HOo4eDAatiy+2j5tb446PRBfY\n1LeTPA9kyZgv3PEXo4qKZdb06eus668PWnPmWNYVV1jWBz5gvq68MnK3W1dnHqury/9Mo1zkPLgh\nr8ItAYyX5Tt4UIXJAjK80p4fsCtKdgCbgE8AN1FWdiWrVz/yfvZ2pKIfDK/qt5j9+09z880hV628\n6LTIOHxhrTiavAIjjPT72EXFWlo2UVZ2jNgchURVF1Pfjp0xP336JiorV1Be3khl5QrKyk4meF9b\n8gJAiVYM/djHtnLNNW1MmuTjvvvg97+H3/8+xK23tnLqVKRa5lVXtfLcc69w1VWmimZkplEiu3jn\nndqsfQ4CAT81NdGrgkJ05VcnVu9MfDzYn/mv097+b1RVLWfGjNasfea9XHVV8k89Dw5L3N0a3e1b\nZ02cuMyaNMncjUWPL0buBOPHtlMfK/a6SM9DYQ3hjLUbPnpcurIy/m480d1r5u2Wzbvi5He7W62y\nsrlRj9s9dVssuMuyh0zgBquq6gqru7t7zPuQiky78+36LtOnr7MqK5dZpaUrrNLSZVZ5+TqrvDyY\n4O+U+nCTU9TTmbl89zzkk4IHh9gn+aqqsSc92iecior4sW1vd9mnI52prV7ixIk6tYTE+KGN9LeT\nzWmtyQOTRMmfL1twVYILanaDaCcSCY8fPx4ebored5P/AXMsmBv1+OiL5GXjM68cq8wpeFDw4Ihg\nMGjNnp35SaCY7wgiF67PJriYeDeAcuJuPvaifix8wf1TC64MX5DmW5WVVzlyEUp25/3QQ8GYO+ry\n8hVWZeWyhAmUiSQ/thM9nv+8gLGKTXRdZ8F1Fsy2YKtlAj77+LZ7HG7M+We+mM8zTlHwoOAhY5Hu\n2F9aiRMjU58lUMx3BJFy3l8Ml/PO/loGueDE3Xwqpc7PO+9j1sSJH894O8nuvJcuTXRHnXr3evJj\nO9Hj+b+4jbUXInatj60WXBH+m8QnUNtBRO4/825I2vQ6BQ8KHjIW+0GMndoGN1gVFdendGdmWboj\nsBXSNLL4MfB079ijjXbSnzbti45sZyzbHu2Ck17PgzuC6JF6YZIFFpWVK6IChXVWpGch+vcMWlCf\n4PHcfOar2oiKAAAgAElEQVQT92SZmiolJbXWtGlfcuSYKWT5Dh5UYbIAxFal8wHR1e+GmDVrBU8+\nmVoVQ6+uw+Ake4ljaGP2bCgvJ2trGeSC2d/442JsRquAOHnyel5+eWvG24lmV0R87rnMqi8mP7YT\nLbmd32WfOzrghz/s5le/amZw8IfErnOxi1/+sonnn/8egcCPeeGFbnp7S+nvN1VLL730LHv32m31\ndaAq/HtEV/X0Afa6JWOvxjlW9mybvr7/h2PHnsOyNr7/O1rWEEeP7qaiooklSzrD+yoSoZ4Hhzg5\n1ODVdRgkN0Y71ioqVmSlSmAwGLQmTVqY0XGe/Njeapkkwuh1XO6y8pn3cvz4cauq6ooR9mGLdf75\niRI6d4R/zq6XsSKqZyG+h8H+/+h1YLJFwxdjp54HyZi5C3LmLinf6zCIuw0/1qLXuyilv7+XqVNb\nCQT8KR0rqayzsHixWWnynXcmkslxHn1sP/vs1zh48ASlpe8xOGi/3+cpKRkHnM95553HuXNPMzj4\nA8wd+ThMvYVd4XoLnaP+bpm4++42Tp3ykbg3AOA53n33ByRaf+PUqW8xbtx/Y2jIwvSgXI7pWYjv\nYYj+v72OzXpMD8W7zJ5tsX37o45+5pOvv5NIbG+S1uRwFxWJKgCxBZ7ipdftGF9s54Mf3Mzbb7fz\nyCMwbVoLZWWNWS8gI+4Ve6wFgSZgJbAF2Ex//29pb19JQ0MToVBo1PdrboYNG0JMnWoKNNmFm6ZO\nbWXDhhDNzdEFherJ5Di3j+0jR1oJhYaA+xkcnIZZrv4VoBvL+h2W9SDnn1/Cddc9wvTp/xRTxGr6\n9E3vL/ucTWZ4yB5uSOQVYodZot1CVdV4TKGpWmAxpljcjeHvdgEqu4jcdmAqZljrceArTJxYwmWX\nPcratT5HP+Pxf+9z5+KLj0WLXTo9lWNFioOGLRySzaEGlZGVaLHH2l0ZdzmncnxFEh2d6V6PdJW7\nt8vcDA+NlMg42vDRUquiwp5tYX+/y4LFFlxtQa0FV1olJddZ48dfb02cuNTKRWJw8vV3Rk/W1Lko\nVr6HLfJJwYODsjU7QGOSEi165kZJyRUpn/iTGe34MjM3oi+U8bOJllmTJl2d1nEeCUbcO7PI7ONI\nwdkNI+77pZcus5YuDVpTpqyzxo2zA4YrLFhojRu31JoyZZ115ZVBq64utytbJl9/Z/Tzi85FsfId\nPCjnoQBkc3bAaNn1o2W4S2GJnrkxd+6r7N2bWpdzMrHHV2z+BAzw7rtHuPTSD7B3r4Xp3h4+m2ho\naAVr1/pSPs4ja5hEzz4Y2/5ni5kZ8qeYYYX7MWtR2HkXOykrO8zAQPwMEdsubrqplo0bnZlh46Th\n5xM/Zugr/nccnluic5G7KHgoANlMFIqcaBPJ7wlW8suJRN3I8RUEVgMPYE/ZgyHefnsng4N3MHwq\npW0Xq1bVsnHjWPY7v9MxRxII+Nm2rYmennXAL4hOZKyqeoMnntjI5z53Lz09o1903WT4+cRHbLLm\nMaqrP5gwQVvnIndRwqSMKHKiTSS/J1gndXTAzTeHmDGjlaqq5Ywfr8TQ0TiRqBs5vtowgUP8KouL\nOHXqW5x//n/BqZUmI/vtXKKx03w+H62tnUyf/hwVFa8ApZSVDTJt2kdZtOhZ/vqvP0ZFxfBVSXOV\n0DlWic8ndg/J44wf/0Fmz97KiRNtw5I1i+VcJKNTzoMHFMs4o5Kx0udEom6qi5FVVi52rHJlZL/t\nZMKxl3PPFicWyEp3e05VIR1JJueTYjkXpSrfOQ/5pODBA4qlaJROTOlz4oITOb6WJGl78+V0OWg7\nwfhDHzLJhGVlJplw5sylritDnotAIlfBcybnk2I5F6VKwYOCB9crpHUektGaHvlhByBlZfU5a3/7\nYlxXZ1kXXWRZlZWWNWWK+X7RRdb7MxDctK5Ctj+DuQyeM/ldiuFclKp8Bw/Jsk9yoQ7o6urqoq6u\n6AInzyiWqm5z5zayd+/mpM/PmdPIq68mf14ys2ZNK+3tK0lcUXEHLS2b2LjRXTMHciUYNBU2TaGs\nBdjJpLCbiRPvYdq0TmpqfBl9JufNW0539xaSJY/W1q5wZM2STM4nxXIuStWePXuor68HUz1tT663\nr9kWMqJi+UA6WeJb0heZXeCt2QO5EKmwGR1YnQB+wZkzFq+91ohlTQnPUEitLHi8XM1kyOR8Uizn\nIq9Q8CCjKoaIvxBXE/XS381eZfHs2QAnT67n3LlSxo8fZPLk2vdnD7hlX3NteH2D4dNazWqbu9m2\nrYkdO9Jfg0bBs3iJch48pNDHGgs1GSsXf7dcZeoXq+ErmTqfn6CEYe/Jd85DPil48IhimcZYaAFS\nrv5uxXJ85MvwZF7nk3sLNXguZPkOHlQkysM6OqCx0XwtXQpz55rv9mNOFTaKHXONLuCzkJ6e+/H7\nk5WM9Y741UTnzNmctFiNV+Tq71YMx0c+xRbjCgFv4nR+gr1ceUvLJqqrVwCNTJy4lIqKr3D0aDmX\nXro2b0XTVMBN4qnnwQG5uFvWNEZn5Kp7P9fTH3V8ZFekV2CLZYpa3eh4e0dPX50yJWiVln7Bgj/J\nWW/SSLUsli49bl18sXq24qnnQcYsGAzS0NBEe/tKenu3AJvp7X2c9vaVNDQ0EQqFHNmOaso7Y/Hi\nID09TRw6tJLTp7fQ37+Z06cf59ChlfT0NLFkiTN/L3s7AwOTycXfTcdHdtnJpBUVbZj1H+pxuqx2\nczNs3gz/+q9BJk9uYnDwNPBjctWb1NwMGzaEmDq1lX37lrN3byP79i1n6tRWpkz5OsGgerYkQj0P\nGcpVkpPuLJ2Rjb9Xoju2adNSK/msngdvibRz0EpcVvtXGd+Jp1ou3Om/6Uh5MyUltTq+ElDPg4yZ\nmcK1IMmzC8LPZ86JBZAkO3+vRHdsb7zxRHg7ufm76fjIjUgPj70S5SbA5CfACsrKvpTxoliRYzS6\nNykEtALL39/W3r1HHM03iM2beSO8vRXAA1jWeNSzVVy+jKny8p0kz6vnIUPDp3BlZz0AZWI7Ixt/\nr8R3bPZ2sneHGk3HR27koocncoza2zoePobiewScXTws8rsl2t6t6nlIoFB7Hq4F/gL4HSRdQ1Uy\nlKslau0xV68t/+s22fh7JZ7pYG8n0R3qJygr+0tH/26JMvWrq1fQ0rJpTAWLJLFc9PBEjlF7W8mX\nSncy3yDSq5Joe/NQz5b7ZKPCZBXwM+DzwNey8P4SlquqiKYSoQ/zwS4sHR3Q3h6iuzvAyZPdMZUN\na2v9tLQ4V9kwG3+v4dUHIXLiX4gJIKL/bju4/fZNbNzo3AXdVLI025k9G8rLTSXLEydg7Vp3VbL0\nslyU8I4co36gCRNIJAsQFrB79/qMtwnRQYt9PIfC37uBAWAL8COgAZUuL1w/Af4u/O/ngQeTvE7D\nFhlSd3HmclngKBt/r8RDIcmGK3RceFkupvrGHqPHLFiYk6HRSKLmiiRDF8cs+KwFc6yysmWqYGrl\nf9jC6Z6H1cDVmGEL0JBFVmk9gMwlXnQodhqYU6s5ZuPvlXhNAnu44luUlPwFllVNRcUgH/1oLY89\npmEEr8pFD6A9BOX3B3jhhW56e08x/PiyOTc0GulVsXs64j+TH8Dcl77I7bf/c9GusOomTgYPM4D/\nASwBzoUfK2GUZb/vvPNOLrzwwpjHmpubadZVb1SFPJyQK4m7/W3OdcuCc3+v6AWvTp6MHqKA2O7e\nc4wbN4HKyrlcc42fSZN8GkaQEcUPQZ040co772R/aNQOrI8e/TR9fV0k/4w0sHv3A45s00s6Ojro\niJva8tZbb+Vpb5z3ScxAVH/U1xAme+scw4MIDVtI3uVqxorT7MqiH/rQYstUAvyVBUeTZMYXdyU+\nGbtcD40Gg0GrvPxqT34mcy3fwxZOzrZ4BrgC+Ej462rgJUzy5NVoCENcKFczVpzS0QE33NDNtGlL\naG9fycGDTwP/DvwTptNvParEJ07J9UyaZ57xMX78xXjpM1msnAweTmH6Su2vl4E+zCouzlQrEnGY\nVwoc2YsD3XXXF3nhhUYGBx8iEiT4gG8DMzHZ6Ik4VzRMioe9YNzvftfG22+3U1Y2lwMH4Cc/eZVp\n01qYOtXZxamam+HTn74KL3wmi122K0za3SoirhQI+KmpuQfYgRllI/x9R3gamD9/OxfFXq/i6NHT\nmPSiRGPQWmNCnBW/5sXAwEqGhrZgWZsZHHycN990dl0W8M5nsthlO3i4EfhvWd6GyJh5pQBWZFbI\nG8D5JA4SvDUEI96Ry2XXVXTMG7JRJErEM7wyYyUyK6SUSJAQH0DUAjtJPHSh7l4Zu1zOSlLRMW9Q\n8CDiAZHyvYPA5cROzwQzRbMPaMEspaxKfOKcXC67ruDAG7SqpsfYiXMzZrRSVbWc8eMbqapazowZ\nziYuibvErjmwGIgeEw5iSgl/BtgG/DPwCeAmSkquZNq0h101BCPe47VZSZJ96nnwmMWLg3zta6s5\ndOgBTDdiCf39Q5w+vZsJE5pYsqQTk30vI4kutPTee3DggOkaPe8885jb7n6GrzmwDvgFZmrmEeB7\nRHoiIkMwlrWDm292di0LKT6R46+GSBEyewjtIk6enEVHx8ifmVyuIyOFTUWi0vDww5a1YoVlTZ9u\n14BPVEBlu9XSsi7fu+oZdqGl6uplFqywqquXWS0t61xZTGn4mgPrwksVL7FgjpYslqwKBoPWzJkf\ns6AhQRGyF61Zsz4+6ucml+vIFINCKhIlWdTcDBs2hHj33ecwK+olkt25/IU0ZBIMBmloaKK9fSW9\nvVuAzfT2Pk57+0oaGpoIhZybeuaE2Az0/wy8SnV1CS0tV1NTMxtN0ZRs8vl8NDRcg6knMnx57v37\nvznqjItcztiQ7NOwhUcEg0EWLVrN229PJl8XikIaMsnlglhOGCkD/fjx5eRi8SIpXh0dsGXLa4xc\nhGzkGRfpztjw2tBisVHPg0dELnbjyVfiUiHdOZgTWX56cBIZrVcHTLGezZvhqafg1VfN982bYdUq\nb1TJFO9qboZLLslsxkW6Mzbs3tapU1vZt285e/c2sm/fcqZObWXDhpAChzxT8OARkYtd/i4Ubrvg\nZiKXU89SYVeQPHRoJadPb6G/fzOnTz/OoUOjV/BTRT7JhdgZFyGgFVgONALLeO21gyMOX6Y7Y8Nr\nQ4vFRsGDR0Qudn5ip+kR/v5i1i8UbrvgZsJtU88y6dXxSpVM8bbIOjD21OCVgLmowxYGBr4/YqCb\n7joyhdTTKc7SbIs01NYui8pQDoaz7c0sAbjVKiv7iLV0adB6+OFc7YO3s/pbWtw1a6WQ2lYKU2TG\nz2fDs37S++yku7y3PhMj02wLSUls1G6XU96Kifq/xu2338STT2Z3nrRXVqBMhdu6+gupV0cKk93D\nVVb2MokXZoORhi/T7SHTZ8LdNNvCIwIBP9u2NdHTcz8m7yD3pYfdsA9OsU9kZ88GOHlyfUzBGvtE\nlsuErMgwimZMiDvZ68DMnXsJe/emf1FPdx0ZfSbcTcGDR7jhYueGfXCK2xbEilTwS3RH561eHSls\nubqo6zPhbgoePMINFzs37EMhSFSmt7y8j9LSpxgc/AHmZOndXh0pbLm6qBdST2chUs6DSI4lmpbZ\n1/cUg4PfpKrqDmbOvBVopLp6BS0tm9ixoxOfTzMmxB1ylS+kWUTulmzgKhfqgK6uri7q6vKSLCqS\nF2vWtNLevpLEd247mDZtE5bVxrlzIfr6AvT3m0WIzjtPiwiJO4RCIfz+AC+80E1vbynV1YNcf30t\ngYBfgW6O7Nmzh/r6eoB6YE+ut6+eBykqblifY7RiW5Mnd/Pb3waZPLmJ995byeDgRgYH53L6tMWh\nQ//B00/fwF13/ZXn1hORwtDRAWvX+jhxoo3Zs7cyZ85mZs/eyokTbaxd69MxWSSU8yBFxQ3rc6Qy\nBS1SIOcyYDUQ2V/LGuLo0Z1UVHhrPREpDPaaEnbuTl9fgO3bI0ts/+Y3tbS3q3es0KnnweXccKdc\nSNxQtS5xdUu73O8y9u49xE9+8gSmd6INEzgMX8lQVfYknzIpqS7ep+DB5dz4AY0PaMrKGiktXUJp\n6Q2Ult5MWZl7Axw3rM8xvNhWdLnfrcAeLKsaEyzkf39FEnFDIC75o+DB5dz4AY0PaAYHf8TQ0BBD\nQ99kaOgJBgfzH+Ak44aqdcOz1duA+4n9G9u9E/nfX5FE3BCIS/4oeHA5N35Ahwc0ybrW3XcH4oYF\nseKnoMETDJ95YfdO5H9/RRJxQyAu+aPgweXc+AGNDWhCwHO4LcBJxg3rczQ3w5NP+nj99TZOndrK\nnDn2EEU0e/XUi4CdSd5JVfYkf9wQiEv+KHhwOTd+QCMBjT1WPxm3BTjJuG1BLEj2N/YBnUAl8Bng\nRdyyvyKQeiCupO/CpODB5dxwpxwvcrGzhyvGE7n42bMGlgONwDJee+2ga04SbqpaZ59U9+8/jQlm\n4vmAzzBt2s1Mn/7Ped9fkWipBuJuTPoWb6sDrK6urnwvi+5qwWDQqqm50YLtFgy+v5Y9bLdqam60\ngsFgzveppWWdBTssWGbBkAX2/49bcGP430NR+/pi3vbVzY4fPx7+2/4y3G7xf2O1m7jXww9b1tKl\nQWvKlHXWuHGLLbjagissWGjBDVZJyfXWuHFLw4+/GD6u47+2Wy0t6/L9q3hSV1eXhblry0uJZvU8\nuJyb7pRtkTuOc5jhCnt8vpXhswZUkyCZSOLprZghik3ACkyPzWIqKu5R74K4lp2788orrVRXDwE/\nAH4H/AummJmZfQWXAA1J3sVdOVGSOlWYdDk3rmRpBzQHDtzKwIBFZHz+VhKv1wDmJLE+Z/voBeak\naQdU8X/jIWbNWsGTTypwEHeLnX0FsbOvQNONC5N6HiRt9h3H7bffSCQfw4e5w9BJIlVunEkjkq7R\nZ1+5L+lbMqfgQcZseMKUThLpcONMGpF0jT77yn1J35I5BQ8yZvH5GCUlR0g8awB0khjOjTNpRNI1\n8uwriOREuWd6tGROwYOMWXyxo+PHn6Km5qvoJJEaN9acEElXJAi2hy+ig+IQJq9nHPBF4ErgGsaN\nu5UpUzTd2MuUMCmOsXsizp4NcPLk+veX6J08ufb9k4SW6I1Qe0khCAT8bNvWRE+PPXzhxwxf3AX8\nHdHLyZvgeBfV1feyY4cfn0+Bg1cly9bKhTqgq6uri7q6vExTFRGRDHV0QHt7iGefvZWBgV9jLish\n4NOYwGFRgp/aQUvLJjZudM8sMq/Zs2cP9fX1APXAnlxvX8MWIiIyZslnX1Wi+g6FS8GDiIhkbHgO\nj6YiFzIFD1JUQqEQa9a0Mm/ecubObWTevOWsWdNKKKT6+iKZGL7UfC+aily4FDxI0XjooSCzZjXR\n3r6S7u4t7N27me7ux2lvX8msWU388IcKIETGKn72VUvLLWgqcuFS8CBFY9euNvr67LK50WtvLKSv\n73527tTaGyJO0VTkwqbgQYpGbBndeErgEnGSGxf1E+eozoMUDa0lIZI7blzUT5yjngcpGlpLQkTE\nGQoexHFundGgtSRERJyh4EEc5eYZDUrgEhFxhoIHcZSbZzQogUtExBlKmBRHmRkLyQKEBezevT6X\nuxNDCVwiIs5Qz4M4SjMaREQKn4IHcZRmNIiIFD4FD+Ko2BkNIaAVWA40AovZv/80N98coqMjX3so\nIiKZUvAgjorMaNgKNAErgS3AZuDf6Ov7Bj09TSxZonUkRES8yung4QvAb4G3w1/bgVsc3oa4mD2j\noaKiDVjP8FkXDfT03I/fr3UkRES8yung4XXgbqAOqAeexdxyznN4O+JS9sp6s2ZVAg1JXqV1JERE\nvMzpqZpb4v7/VUxvxHzgZYe3JS6mWRciIoUrm3UeSoFPAxOAbVncjrhQZNZFogBCsy5ERLwsG8HD\nlZj6vxOAM8CfAfuysB1xsfnza+nu3gXUYIpGdWPiyUHgIk6enEVHhxnmEBERb0nWr5yJcmAGcAGm\n5+FLwA3AnrjX1QFd1113HRdeeGHME83NzTTrquJpoVCIa6+9jQMHhoAHgQWYw20I2MmsWV9h9+7H\n8PlUElpEZCQdHR10xM1vf+utt9i2bRuY/ML462vWZSN4iPc0sB/487jH64Curq4u6urqcrAbkksd\nHXDXXX/F0aPNwKIEr9hBS8smNm5UqWgRkXTt2bOH+vp6yFPwkIs6D+NytB1xkeZmmDz5NTTjQkSk\n8Did8/AN4JeYKZvnA6uB64H7Hd6OeIBmXIiIFCangwcf8FNgGqZI1G+BmzH1HqTIaMaFiEhhcjp4\n+LzD7yceFplxsTDBs7vC62CIiIjXKBdBsmbhQj8VFfdgZu4OhR8dAnZQUXEvCxf687dzIiIyZtks\nEiVF7o47fHzqU534/QF2717PwEApZWWDzJ9fSyDQqWmaIiIepeBBssrn82k6pohIgdGwhYiIiKRF\nwYOIiIikRcMWUhRCoVA496I7LvfCr9wLEZE0KXiQgvfQQ0Huums1fX0PYBbpMmtsdHfv5uc/b+LB\nBzu54w4FECIiqdKwhRS8XbvawoHDQiIFq8YBC+nru5+dOwP52zkREQ9S8CAFz6yhsSDJs1pjQ0Qk\nXQoepOBpjQ0REWcpeJCCF1ljIxGtsSEiki4FD5IzHR1w880hZsxopapqOePHN1JVtZwZM1q5+eYQ\nHR3Z2a5ZQ2NXkme1xoaISLoUPEjOLF4cpKeniUOHVnL69Bb6+zdz+vTjHDq0kp6eJpYsCWVlu4GA\nn5qaxGts1NTcSyCgNTZERNKh4EFy5u672+jpSTzroafnfvz+7Mx6eOYZHzU1nUyfvonKyhWUlzdS\nWbmC6dM3UVPTyTPPaJqmiEg6VOdBcsbMakgWICxg9+71WdluczM0N/sArbEhIuIE9TxIzgyf9RAC\nWoHlwCfZt+8ga9a0EgplZ/hCREScoeBBciZ21kMQaAJWAluAzZw791va21cya1YTP/yhAggREbdS\n8CA5EzvroQ1Q1UcRES9S8CA5s3Chn4oKe9bDy6jqo4iINyl4kJy54w4f+/d30tKyifHjj6GqjyIi\n3qTgQXLK5/OxcWMbs2dPQ1UfRUS8ScGD5IWqPoqIeJeCB8mLXFR9zFc5bBGRQqciUZIXdtXHs2cD\nnDy5nnPnShk/fpDJk2vfr/rY3Dy29w6FQvj9AbZv/w29vYfp79+IKU5VQn//EKdP72bChCaWLOkE\nVF1SRCRdCh4kL5ys+mgHC7t3dxMKDfDGGwexrI2YnIr1mOmgtthy2Bs3quqkiEi6NGwhnvbQQ0Fm\nzWqivX0l3d1bCIWuwrJ+DNQAz6PpoCIizlPwIJ62a1cbfX12sak3gOeAyzDVKyej6aAiIs5T8CCe\nZnoPFhApdz0Z+DameuV4NB1URMR5Ch7Es0KhEIcOvYnpXbDLXY8H7IBC00FFRLJBwYPkVSgUYs2a\nVubNW87cuY3Mm7c8pZU17VyHd96ZiOldiA4YzmECCj+QaDroi1RU3MvChZlPBxURKUaabSF589BD\nQe66a3U4Z8FMpYQhurt38/OfN/Hgg53ccUfiqZSRXIdfYHoX7OW+/cANmIDCB3SG33t9+DUDXHDB\nEf74x6fx+TRNU0RkLNTzIHkTm+yY3sqakVwHu3fhXSIBw59iehsI/78N2ApsBr7GbbfdpMBBRCQD\nCh4kbyIBQCIjT6U0MyVKiPQuWEQChr8Fvko2q1eKiBQzBQ+SN5EAIJHkUylDoRDHjx8hMpPCBzxK\nJGCYigkofgEsBq6houJWpk/f9H71ShERGTvlPEjemKmSFokDiNiplHYVySee+A3Hjx/GsuYDO4GG\n8Cui8xvuoaTkPSoqpjB58keprfXT0jL2ctciIhJLwYPkzfz5tXR37yK2fLQtMpUyNrHSLjldg6nr\ncD9m6GMcpsfhk1RUdPHgg5uTJluKiEhmFDxI3ixc6OfnP2+iry86ABgCdoWnUnYC0YmVdsnpNkxv\nhWZSiIjkg4IHyZs77vDxqU91hhe1Ws/AQCllZYPMn19LIND5fgBgEifXMbzk9PCFtT7wgUYFDiIi\nWaaESckrn8/Hxo1tPP98O4sWzQVg+/ZXueGGlveLRZnESZWcFhFxC/U8SN6NVizqggvKMRUkA0RK\nTo+cJyEiItmjngfJu9GKRVVWniWVktOq4SAikhvqeZC8MzkNdjXJUPjf3dhJkIcPv0FJiYVlJS85\nXVZ2hJqap3nmGU3JFBHJNgUPkneRYlFBYDUmtyEyfHHmzE5KSz/P4OAOYBHDEyV3cPvtm9i4UYmS\nIiK5oGELybtIsSh7We344YtFDA5+m9LSL5Co5LRWyBQRyS31PEjeRYpFRQ9fxLuFmpoHWbRo04jT\nOkVEJPsUPEjeBQJ+tm1roqdn5LUuoIKNG9uSPC8iIrmiYQvJu2ee8VFT00lZ2UlUw0FExP0UPEje\nNTfDk0/6uP32GzE1HBJRDQcREbdQ8CCusXChn4qKRDUclBQpIuImynkQ10h1rQsREckv9TwUmY6O\njnzvwojstS5efnkrr766mZdf3srGjW2eDhzc3uaFSG2ee2rz4uJ08PAV4NfAO8Bx4J+AOQ5vQzKg\nD3juqc1zT22ee2rz4uJ08PBx4O+BBcBNmGGRp4AKh7cjIiIieeJ0zsOtcf9fg6k5XAf8yuFtiYiI\nSB5kO+fhwvD3N7O8HREREcmRbM62KAG+A2zD1B1O6JVXXsniLki8t956iz179uR7N4qK2jz31Oa5\npzbPrXxfO5PVAnbC9zDDGP8XcCTB89MwyZWXZnEfRERECtVh4FrgaK43nK3g4e+BRkwC5YERXjct\n/CUiIiLpOUoeAodsKAH+F/A6UJPnfREREREP+D5wEtPj8MGor/PyuVMiIiLiXkPAYPh79Ndn87lT\nIiIiIiIiIiIiIiIiIiIiUtTuY3guQ3z9hsuBzcBbmMWxdgAz4l7TADwLnMIkVz5HbELl/gTbeSDu\nPaAc+f8AAAV6SURBVD4EPB5+jxDwP4DyMf5ebnYfmbX5rAQ/b3+tjHqPycD/F36Pt4CfAhfEbUdt\nHuFEm+9P8LyO87GfWy4BHgaOYdprD7HtDTrOo91Hbtp8f4Lt6Dgfe5vXYBacDAJvA53AxXHv4brj\n/D7gd+Edtb+mRj1fA5wAvgl8BHMSvRWIXku5AfPL+DGNVAN8Chgf9Zpe4N647VRGPV8K/B54Jryd\nxcAh4H9m+gu60H1k1ubj4n72YuBrmIMuerGyfwV+i1nQbGF4m5ujnlebRzjV5jrOI+4j83PLc8BO\n4KPh5+8FBoCro16j4zziPnLT5jrOI+4jszavBHqAx4B5wBWYQGIXsTWbXHec3wf8ZoTnHwF+Msp7\n7AT+31Fe0wv8zQjP34o5QD8Y9VgTcAaoGuW9veY+Mm/zeL8B/iHq/5djIuBrox5bEH7sw+H/q80j\nnGhz0HEe7T4yb/N3gf877rE3MIvzgY7zePeR/TYHHefR7iOzNl+KaavodrkQcwwvDv8/Z8d5ugtj\nfRhTDvM1oAOojnqfZcAfgSeB45hA4T9F/ezFwHxMF8l2TFfX88DHEmznbsxB+BvgHmK7UxowUdOx\nqMeeAiYA9Wn+Pl6QSZvHq8dEmhuiHmvA3BX/OuqxXeHHFkW9Rm3uXJvbdJxHZNrmW4DVmC7bceF/\nj8ecY0DHeSLZbnObjvOITNp8AmAB56IeO4sJDOzrqCuP81uA2zDdJYsxXVZHgSmYCGYIM37yN8BV\nmANmEFMwCkz3yRDmIPoc5oT6IPAeMDtqO3cC12G6ZNZixnai79r+N/BEgv17DxM9FZJM2zze94E/\nxD12D/Bqgte+Gn4/UJs73eag4zyaE20+EdMNO4Q5ub5F5G4MdJzHy0Wbg47zaJm2+UWYNv4Opu0r\nMRWdh4AfhF/jieO8AvOL/1fM+hRDwM/iXvMvmIQaMFHPELA+7jW/ZXgCTbRPhX9ucvj//xsTmcUr\nxIMtXrptHm0i5sD7r3GPp3qwqc2da/NEdJxHjKXNN2GSy24ErgT+FpOQfUX4eR3nI8tGmyei4zxi\nLG1+E7APE1T0Y4Y5XsIsRAk5PM7THbaI1ofp+piN6U0YYPjS2/8/JqsTIot3xL/mlajXJLIr/N3u\nnTgGfCDuNZMx3WXHKGzptnm0VZiL2U/jHj/G8Gxdwo8di3qN2ty5Nk9Ex3lEum1+OfBJzJ3tc+Gf\n/e+Yk+pfhl+j43xk2WjzRHScR4zl3PJ0+PU+TLLl54DpmGEQyOFxnknwMAGoxQQF/Zgxlj+Je80c\nzFQdwt+PJHjN3KjXJHJN+LsdfGzHRLbRv/xSzNhPV4r77lXptnm0tZgo9kTc4zsw03jiE2wuwLQ1\nqM2dbvNEdJxHpNvm9nlsMO41Q0Sy0HWcjywbbZ6IjvOITM4tb2Kmci7GBBL2bApXHuffxoy9VId3\n5nFMl6w9B/WT4Y1/HhMZfQnTIIui3uNvwj+zMvyarwOniSSNLMR04VwdfuzPMFNI/inqPcZhpp48\nHX7dYuAgZp5qoXGizQk/N4g5QBL5JfAfxE7t+Zeo59Xmzra5jvNYmbZ5KeaO7QXMSbMGuAvT/rdE\nbUfHeUQu2rwBHefRnDi3rMEcuzXA7Zgei7a47bjuOO/AZImexRwAjzI8SloD7MV0x+wBViR4n7vD\nO3oK+BWxDXMNJnI6GX6PVzDjaPGrcs7ANPxpTON9l8IsKuJUmz/AyL07F2KKirwd/vopMCnuNWrz\niEzbXMd5LCfa/LLwzx3FnFt+w/BphDrOI3LR5jrOYznR5t/AtPdZzJDGnQm2o+NcRERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERE8ur/ANBpVY9jW9RvAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import sys\n", + "import getopt\n", + "sys.path.insert(1,\"/usr/local/science/clag/\")\n", + "import clag\n", + "%pylab inline\n", + "\n", + "ref_file=\"lc/1367A.lc\"\n", + "echo_file=\"lc/1367A_shifted.lc\"\n", + "\n", + "\n", + "dt = 0.01\n", + "t1, l1, l1e = np.loadtxt(ref_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.005 , 0.01861938, 0.04473305, 0.06933623, 0.10747115,\n", + " 0.16658029, 0.25819945, 0.40020915])" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "\n", + "fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029, \n", + " #0.25819945, 0.40020915, 0.62032418])\n", + " 0.25819945, 0.40020915])\n", + "# fqL = np.logspace(np.log10(0.0006),np.log10(1.2),11)\n", + "nfq = len(fqL) - 1\n", + "fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.)\n", + "\n", + "\n", + "fqL\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.337e-01 6.112e+01 inf -- -4.041e+02 -- 1 1 1 1 1 1 1\n", + " 2 7.647e-01 6.015e+01 6.901e+01 -- -3.351e+02 -- 0.65784 0.58285 0.5699 0.567505 0.56704 0.566344 0.573791\n", + " 3 3.242e+00 5.939e+01 6.602e+01 -- -2.691e+02 -- 0.42512 0.198095 0.146253 0.137492 0.135449 0.133237 0.150987\n", + " 4 1.563e+00 5.894e+01 6.233e+01 -- -2.067e+02 -- 0.328446 -0.100568 -0.261985 -0.286046 -0.293214 -0.298752 -0.270142\n", + " 5 6.151e-01 5.858e+01 5.845e+01 -- -1.483e+02 -- 0.300114 -0.231637 -0.637422 -0.692493 -0.715789 -0.728243 -0.692465\n", + " 6 3.834e-01 5.758e+01 5.397e+01 -- -9.432e+01 -- 0.288119 -0.218711 -0.948517 -1.05695 -1.12601 -1.152 -1.11841\n", + " 7 2.764e-01 5.488e+01 4.687e+01 -- -4.745e+01 -- 0.288807 -0.20359 -1.129 -1.33421 -1.50858 -1.56203 -1.54725\n", + " 8 2.123e-01 4.884e+01 3.703e+01 -- -1.042e+01 -- 0.290741 -0.199424 -1.16697 -1.47951 -1.82761 -1.93862 -1.97495\n", + " 9 1.660e-01 3.761e+01 2.500e+01 -- 1.458e+01 -- 0.297078 -0.192793 -1.17471 -1.51254 -2.03046 -2.24008 -2.39415\n", + " 10 1.251e-01 2.218e+01 1.352e+01 -- 2.810e+01 -- 0.304071 -0.185609 -1.18142 -1.51049 -2.10848 -2.41366 -2.79148\n", + " 11 8.256e-02 9.018e+00 5.492e+00 -- 3.359e+01 -- 0.305677 -0.180534 -1.18507 -1.51162 -2.12584 -2.46833 -3.14066\n", + " 12 4.067e-02 2.560e+00 1.439e+00 -- 3.503e+01 -- 0.30378 -0.178308 -1.18784 -1.51647 -2.12974 -2.48272 -3.39994\n", + " 13 1.216e-02 5.340e-01 2.063e-01 -- 3.524e+01 -- 0.301773 -0.177939 -1.18966 -1.52028 -2.13067 -2.48953 -3.5382\n", + " 14 2.104e-03 8.200e-02 1.337e-02 -- 3.525e+01 -- 0.30075 -0.178052 -1.19052 -1.52208 -2.13075 -2.49214 -3.58123\n", + " 15 2.833e-04 1.082e-02 3.730e-04 -- 3.525e+01 -- 0.300445 -0.178142 -1.19077 -1.52264 -2.13068 -2.4928 -3.58876\n", + " 16 3.684e-05 1.402e-03 6.992e-06 -- 3.525e+01 -- 0.300387 -0.178169 -1.19082 -1.52276 -2.13064 -2.4929 -3.58978\n", + "********************\n", + "0.300387 -0.178169 -1.19082 -1.52276 -2.13064 -2.4929 -3.58978\n", + "0.23893 0.202426 0.232625 0.177239 0.153017 0.132987 0.308424\n", + "-0.000180614 -0.000143998 -0.000174906 -0.000705814 0.000447101 -0.000873593 -0.00140183\n", + "********************\n" + ] + } + ], + "source": [ + "P1 = clag.clag('psd10r', [t1], [l1], [l1e], dt, fqL)\n", + "p1 = np.ones(nfq)\n", + "p1, p1e = clag.optimize(P1, p1)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 3.525e+01 3.481e+01 3.004e-01 5.393e-01 0.89 +++\n", + "+++ 3.525e+01 3.432e+01 3.004e-01 6.588e-01 1.87 +++\n", + "+++ 3.525e+01 3.458e+01 3.004e-01 5.990e-01 1.34 +++\n", + "+++ 3.525e+01 3.470e+01 3.004e-01 5.692e-01 1.11 +++\n", + "+++ 3.525e+01 3.475e+01 3.004e-01 5.543e-01 0.996 +++\n", + "\t### errors for param 1 ###\n", + "+++ 3.525e+01 3.476e+01 -1.782e-01 2.426e-02 0.974 +++\n", + "+++ 3.525e+01 3.422e+01 -1.782e-01 1.255e-01 2.07 +++\n", + "+++ 3.525e+01 3.451e+01 -1.782e-01 7.486e-02 1.48 +++\n", + "+++ 3.525e+01 3.464e+01 -1.782e-01 4.956e-02 1.21 +++\n", + "+++ 3.525e+01 3.471e+01 -1.782e-01 3.691e-02 1.09 +++\n", + "+++ 3.525e+01 3.474e+01 -1.782e-01 3.058e-02 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.782e-01 2.742e-02 1 +++\n", + "\t### errors for param 2 ###\n", + "+++ 3.525e+01 3.511e+01 -1.191e+00 -1.075e+00 0.275 +++\n", + "+++ 3.525e+01 3.495e+01 -1.191e+00 -1.016e+00 0.597 +++\n", + "+++ 3.525e+01 3.485e+01 -1.191e+00 -9.873e-01 0.798 +++\n", + "+++ 3.525e+01 3.480e+01 -1.191e+00 -9.727e-01 0.909 +++\n", + "+++ 3.525e+01 3.477e+01 -1.191e+00 -9.655e-01 0.966 +++\n", + "+++ 3.525e+01 3.475e+01 -1.191e+00 -9.618e-01 0.995 +++\n", + "\t### errors for param 3 ###\n", + "+++ 3.525e+01 3.482e+01 -1.523e+00 -1.346e+00 0.861 +++\n", + "+++ 3.525e+01 3.433e+01 -1.523e+00 -1.257e+00 1.85 +++\n", + "+++ 3.525e+01 3.459e+01 -1.523e+00 -1.301e+00 1.32 +++\n", + "+++ 3.525e+01 3.471e+01 -1.523e+00 -1.323e+00 1.08 +++\n", + "+++ 3.525e+01 3.477e+01 -1.523e+00 -1.334e+00 0.967 +++\n", + "+++ 3.525e+01 3.474e+01 -1.523e+00 -1.329e+00 1.02 +++\n", + "+++ 3.525e+01 3.475e+01 -1.523e+00 -1.332e+00 0.994 +++\n", + "\t### errors for param 4 ###\n", + "+++ 3.525e+01 3.482e+01 -2.131e+00 -1.978e+00 0.868 +++\n", + "+++ 3.525e+01 3.430e+01 -2.131e+00 -1.901e+00 1.9 +++\n", + "+++ 3.525e+01 3.458e+01 -2.131e+00 -1.939e+00 1.34 +++\n", + "+++ 3.525e+01 3.471e+01 -2.131e+00 -1.958e+00 1.09 +++\n", + "+++ 3.525e+01 3.476e+01 -2.131e+00 -1.968e+00 0.977 +++\n", + "+++ 3.525e+01 3.473e+01 -2.131e+00 -1.963e+00 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -2.131e+00 -1.966e+00 1.01 +++\n", + "\t### errors for param 5 ###\n", + "+++ 3.525e+01 3.476e+01 -2.493e+00 -2.360e+00 0.992 +++\n", + "\t### errors for param 6 ###\n", + "+++ 3.525e+01 3.511e+01 -3.590e+00 -3.436e+00 0.274 +++\n", + "+++ 3.525e+01 3.491e+01 -3.590e+00 -3.358e+00 0.68 +++\n", + "+++ 3.525e+01 3.477e+01 -3.590e+00 -3.320e+00 0.971 +++\n", + "+++ 3.525e+01 3.468e+01 -3.590e+00 -3.301e+00 1.14 +++\n", + "+++ 3.525e+01 3.472e+01 -3.590e+00 -3.310e+00 1.05 +++\n", + "+++ 3.525e+01 3.475e+01 -3.590e+00 -3.315e+00 1.01 +++\n", + "+++ 3.525e+01 3.476e+01 -3.590e+00 -3.317e+00 0.991 +++\n", + "********************\n", + "0.300387 -0.178169 -1.19082 -1.52276 -2.13064 -2.4929 -3.58978\n", + "0.253863 0.205589 0.22899 0.191086 0.164971 0.132987 0.27228\n", + "********************\n" + ] + } + ], + "source": [ + "p1, p1e = clag.errors(P1, p1, p1e)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAG7xJREFUeJzt3X9s3Pd93/GnYtHRErfTEpd3tufomtuUo4y0xl0lAlKs\ncp1bbEOVdOim8LCoSJQhQUwb4LoJ8FCIM0h5WI2hpWOLHbxFyLZgR2lAMyTA1BZDlcqjKo7lZe1K\n6ZrsxNPS2HdZkmpdkyihY+6P7zGhuI9IHnXf+/l8AF+Q/N7n8/28BX1Eve6+n+/3C5IkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSbpH/xRYAP4cqAGfBfa3tSJJktQRLgK/BAwBPwF8HqgA\nb2tjTZIkqQM9CLwJvK/dhUiSpK29pYVj7a1//WYLx5QkSR1uF9Hpht9rdyGSJGl7drdonJeBx9j8\nVMND9U2SJDXm9frWVK0ICS8BPw8cBV67S5uHHn744ddee+1uL0uSpE18FThIk4NCnCFhF1FA+AAw\nAtzcpO1Dr732Gp/5zGcYGhqKsaTmGx8fZ3p6uivHu5djNdq3kfbbabtVm81eb/XfWbM415rf3rkW\n5lxrfvs459r169f50Ic+9AjRp/FdExLOAnmikPAtIFnffwu4HeowNDRENpuNsaTm27t3b0trbuZ4\n93KsRvs20n47bbdqs9nrrf47axbnWvPbO9fCnGvNbx/3XIvLfTEe+/PAW4GPAP943fZl4A83tH0I\n+PjHP/5xHnqo+5YlvPe97+3a8e7lWI32baT9dtpu1eZurxcKBfL5/LZr6STOtea3d66FOdea3z6u\nufb666/zyiuvALxCkz9J2NXMg92DLLC4uLjYlalb3eX9738/n/vc59pdhvqAc02tUCwWyeVyADmg\n2Mxjt/I+CZIkqYsYEtR3uvXjX3Uf55q6nSFBfcdf3GoV55q6nSFBkiQFGRIkSVKQIUGSJAUZEiRJ\nUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQ\nIUGSJAUZEiRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUpAhQZIkBRkSJElSkCFB\nkiQFGRIkSVKQIUGSJAUZEiRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUpAhQZIk\nBRkSJElSkCFBkiQFGRIkSVJQnCHhKPB54KvAm8AHYhxLkiQ1WZwh4W3AF4Gx+s+rMY4lSZKabHeM\nx/6t+iZJkrqQaxIkSVKQIUGSJAUZEiRJUlCcaxIaNj4+zt69e+/Yl8/nyefzbapIkqTOUSgUKBQK\nd+y7detWbOPtiu3Id3oT+AXgc3d5PQssLi4uks1mW1SSJEndr1gsksvlAHJAsZnHjvOThLcDf33d\nz+8GHge+AXwlxnElSVITxBkSDgK/W/9+Ffi1+vefBk7GOK4kSWqCOEPCF3BhpCRJXcv/xCVJUpAh\nQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGS\nJAUZEiRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAXtbncBUhwKhWgDuH0bbt6Efftgz55o\nXz4fbZKkuzMkqCetDwHFIuRyUWjIZttblyR1E083SJKkIEOCJEkKMiRIkqQgQ4IkSQoyJKhnVSoV\nTp48xfHjx4BjHD9+jJMnT1GpVNpdmiR1Ba9uUM+p1WqMjo5TKg1QrY4BwwCUy1Auz3Px4gSZzAqz\ns9MkEon2FitJHcyQoJ5Sq9U4fDjPjRsvAwcCLYapVoepVq9x5EieubmCQUGS7sLTDeopo6PjmwSE\n9Q5QLr/E6Oh4K8qSpK5kSFDPWF5eplQaYOuAsOYxSqXdrlGQpLswJKhnTE3N1NcgbF+1Osbk5ExM\nFUlSdzMkqGcsLJRYW6S4fcMsLFyPoxxJ6nqGBPWMlZWd9Nq1w36S1PsMCeoZAwM76bW6w36S1PsM\nCeoZBw9mgPkGe81z6NBQHOVIUtczJKhnTEyMkUyebahPMnmW06efiqkiSepuhgT1jFQqRSazAlzb\nZo8lMpk3SKVSMVYlSd3LkKCeMjs7TTr9NLC0Rcsl0ulnOH/+xVaUJUldyZCgnpJIJJibKzAycoZk\n8gRwFVitv7oKXCWZPMHIyBmuXJllcHCwfcVKUofz2Q3qOYlEgkuXClQqFSYnZ7h8+XnKZUin4ejR\nISYmpjzFIEnbYEhQz0qlUpw79wLFIuRycOECZLPtrkqSukfcpxueApaB7wB/ALwv5vEkSVKTxBkS\nPgj8OjAFPA68ClwEHo1xTEmS1CRxhoRfBv4NcA74E+AfAV8BPhHjmJIkqUniCgn3A1ngdzbs/x3g\ncExjSpKkJopr4eKDwH1AbcP+rwHJmMaUfqBQiDaA27dh/3549lnYsyfal89HmyTp7ry6QT3JELA9\nG8PUzZuwb59hSlIkrpDwdeD7QGLD/gTw+t06jY+Ps3fv3jv25fN58v6WkmKxPgSsXSpaKHipqNSp\nCoUChbVkX3fr1q3YxtsV25GjW90tAmPr9l0DPgv8yoa2WWBxcXGRrL+dpLZYCwmLi4YEqZsUi0Vy\nuRxADig289hxnm74NeDfE90f4SrwMeCvAv8qxjElNSi6M+VZLl8uAXD8OBw9mmFiYsw7U0p9Ls6Q\ncAF4JzABPAT8D+DvEF0GKanNarUao6PjlEoDVKtjwDAA5TKUy/NcvDhBJrPC7Ow0icTGM4eS+kHc\nCxd/o75J6iC1Wo3Dh/PcuPEycCDQYphqdZhq9RpHjuSZmysYFKQ+5FMgpT40Ojq+SUBY7wDl8kuM\njo63oixJHcaQIPWZ5eVlSqUBtg4Iax6jVNpNpVKJsSpJnciQIPWZqamZ+hqE7atWx5icnImpIkmd\nypAg9ZmFhRJrixS3b5iFhetxlCOpgxkSpD6zsrKTXrt22E9SNzMkSH1mYGAnvVZ32E9SNzMkSH3m\n4MEMMN9gr3kOHRqKoxxJHcyQIPWZiYkxksmzDfVJJs9y+vRTMVUkqVMZEqQ+k0qlyGRWiB6lsh1L\nZDJveItmqQ8ZEqQ+NDs7TTr9NLC0Rcsl0ulnOH/+xVaUJanDGBKkPpRIJJibKzAycoZk8gTRM9hW\n66+uAldJJk8wMnKGK1dmGRwcbF+xktom7mc3SOpQiUSCS5cK9adAznD58vOUy5BOw9GjQ0xMTHmK\nQepzhgSpz6VSKc6de4FiEXI5uHABstl2VyWpE3i6QZIkBRkSJElSkKcbpD5WKEQbwO3bsH8/PPss\n7NkT7cvno01SfzIkSH3MECBpM55ukCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJ\nQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGG\nBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFBRXSPgV4ArwbeDPYhpDkiTFKK6Q\nMACcB2ZiOr4kSYrZ7piO+1z964djOr4kSYqZaxIkSVJQXJ8kSFLTFQrRBnD7Nty8Cfv2wZ490b58\nPtokNUcjIeE5YGKLNj8FFHdcjSRtYn0IKBYhl4tCQzbb3rqkXtVISHgJ+A9btLl5D7UwPj7O3r17\n79iXz+fJ+9ZAkiQKhQKFtY/T6m7duhXbeI2EhG/Ut9hMT0+T9S2BJElBoTfOxWKRXC4Xy3hxrUl4\nF/CO+tf7gJ8EdgFfBr4V05iSJKmJ4goJk8Av1b9fBb5Y//o3gMsxjSmpD1QqFSYnz3L5cgmA48fh\n6NEMExNjpFKp9hYn9Zi4QsKH8R4JkpqoVqsxOjpOqTRAtToGDANQLkO5PM/FixNkMivMzk6TSCTa\nW6zUI7wEUlLHq9VqHD6c58aNl4EDgRbDVKvDVKvXOHIkz9xcwaAgNYE3U5LU8UZHxzcJCOsdoFx+\nidHR8VaUJfU8Q4Kkjra8vEypNMDWAWHNY5RKu6lUKjFWJfUHQ4KkjjY1NVNfg7B91eoYk5M+X066\nV4YESR1tYaHE2iLF7RtmYeF6HOVIfcWQIKmjrazspNeuHfaTtJ4hQVJHGxjYSa/VHfaTtJ4hQVJH\nO3gwA8w32GueQ4eG4ihH6iuGBEkdbWJijGTybEN9ksmznD79VEwVSf3DkCCpo6VSKTKZFeDaNnss\nkcm84S2apSYwJEjqeLOz06TTTwNLW7RcIp1+hvPnX2xFWVLPMyRI6niJRIK5uQIjI2dIJk8AV4me\nGUf961WSyROMjJzhypVZBgcH21es1EN8doOkrpBIJLh0qVB/CuQMly8/T7kM6TQcPTrExMRUbKcY\nCoVoA7h9G27ehH37YM+eaF8+H21Sr9nV7gLqssDi4uIi2Wy23bVI6gLFIuRysLgIrfy10a5xpbsp\nFovkcjmAHFBs5rE93SBJkoIMCZK0DZVKhZMnT3H8+DHgGMePH+PkyVM+SEo9zTUJkrSJWq3G6Og4\npdJA/UFT0XMkymUol+e5eHGCTGaF2dlpEolEe4uVmsyQIKlrbFxAuH8/PPtsfAsIa7Uahw/nuXHj\nZcKPqh6mWh2mWr3GkSN55uYKBgX1FEOCpK7R6qsIRkfHNwkI6x2gXH6J0dFxLl0qtKI0qSVckyBJ\nAcvLy5RKA2wdENY8Rqm02zUK6imGBEkKmJqaqa9B2L5qdYzJyZmYKpJaz5AgSQELCyXWFilu3zAL\nC9fjKEdqC0OCJAWsrOyk164d9pM6kyFBkgIGBnbSa3WH/aTOZEiQpICDBzPAfIO95jl0aCiOcqS2\nMCRIUsDExBjJ5NmG+iSTZzl9+qmYKpJaz5AgSQGpVIpMZgW4ts0eS2Qyb8T2JEqpHQwJknQXs7PT\npNNPA0tbtFwinX6G8+dfbEVZUssYEiTpLhKJBHNzBUZGzpBMngCuAqv1V1eBqySTJxgZOcOVK7MM\nDg62r1gpBt6WWZI2kUgkuHSpQKVSYXJyhsuXn6dchnQajh4dYmJiylMM6lmGBEnahlQqxblzL1As\nQi4HFy5ANtvuqqR4ebpBkiQF+UmCJG2h1Y+oljqFIUGStmAIUL/ydIMkSQoyJEiSpCBDgiRJCjIk\nSJKkIEOCJEkKMiRIkqQgQ4IkSQqKKySkgE8BN4BvA/8TeA4YiGk8SZLUZHHdTOk9wC7gY0QB4b3A\nvwbeDpyKaUxJktREcYWE365vayrAvwQ+gSFBkqSu0Mo1CXuBb7RwPEmSdA9a9eyGNPA08MstGk+S\nutrGh0rdvAn79vlQKbVWo58kPAe8ucW28QnrDwO/BVwAzt1DrZLUN/J5+OQnKzz44Clu3DjGl750\njBs3jvHgg6f45CcrBgS1xK4G27+zvm3mJvDd+vcPA5eA3wc+vEmfLLD4xBNPsHfv3jteyOfz5P3X\nIKmP1Go1RkfHKZUGqFbHgOF1r86TTJ4lk1lhdnaaRCLRrjLVBoVCgcLaR0x1t27d4tVXXwXIAcVm\njtdoSGjEI0QBYQH4ELC6SdsssLi4uEg2u/GDCEnqH7VajcOH89y48TJwYJOW10inn2ZurmBQ6HPF\nYpFcLgcxhIS4Fi4+AnyB6FOFU0ACSNY3SdJdjI6ObyMgABygXH6J0dHxVpSlPhXXwsWfJVqs+G7g\nT9ftXwXui2lMSepqy8vLlEoDbB0Q1jxGqbSbSqVCKpWKsTL1q7g+Sfh0/dj31b++Zd3PkqSAqamZ\n+hqE7atWx5icnImpIvU7n90gSR1iYaHEnYsUt2OYhYXrcZQjGRIkqVOsrOyk164d9pO2ZkiQpA4x\nsKNH4K3usJ+0NUOCJHWIgwczwHyDveY5dGgojnIkQ4IkdYqJiTGSybMN9Ukmz3L69FMxVaR+Z0iQ\npA6RSqXIZFaAa9vssUQm84aXPyo2hgRJ6iCzs9Ok008DS1u0XCKdfobz519sRVnqU4YESeogiUSC\nubkCIyNnSCZPAFf54V3tV4GrJJMnGBk5w5UrswwODravWPW8Vj0qWpK0TYlEgkuXClQqFSYnZ7h8\n+XnKZUin4ejRISYmpjzFoJYwJEhSh0qlUpw79wLFIuRycOEC+Aw8tZIhQZI6UKEQbQC3b8P+/fDs\ns7BnT7Qvn482KU6GBEnqQIYAdQIXLkqSpCBDgiTpBwoFePLJCu961ykeeOAY999/jAceOMa73nWK\nJ5+s/OAUiPqDpxskSQDUajVeeWWcUmmg/sjq6ImUKyvwrW/Ns7IywSuvrPAzPzNNIpFob7FqCUOC\nJIlarcbhw3lu3HgZOBBoMUy1Oky1eo0jR/LMzRUMCn3A0w2SJEZHxzcJCOsdoFx+idHR8VaUpTYz\nJEhSn1teXqZUGmDrgLDmMUql3VQqlRirUicwJEhSn5uamqmvQdi+anWMycmZmCpSpzAkSFKfW1go\nsbZIcfuGWVi4Hkc56iCGBEnqcysrO+m1a4f91E0MCZLU5wYGdtJrdYf91E0MCZLU5w4ezADzDfaa\n59ChoTjKUQcxJEhSn5uYGCOZPNtQn2TyLKdPPxVTReoUhgRJ6nOpVIpMZgW4ts0eS2Qyb5BKpWKs\nSp3AkCBJYnZ2mnT6aWBpi5ZLpNPPcP78i60oS21mSJAkkUgkmJsrMDJyhmTyBHAVWK2/ugpcJZk8\nwcjIGa5cmWVwcLB9xaplfHaDJAmIgsLHPlbgU5+qMDAwwze/+Tzf+x7cfz+84x1D7N8/xUc/msJ8\n0D8MCZKkH8jnIZ9PAS+0uxR1AE83SJKkIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpCBDgiRJCjIkSJKk\nIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpKC4QsLngJvAd4DXgH8HPBTTWJIkKQZxhYTfBf4+sB/4RSAN\n/GZMY0mSpBjE9RTI6XXffwX4VeCzwH3A92MaU5IkNVEr1iS8A/gHwCUMCJIkdY04Q8KvAn8BfB34\nceCDMY4lSZKarJGQ8Bzw5hZbdl37F4DHgZ8Dvgv8J2DXPVcsSZJaopH/tN9Z3zZzkygQbPQI0dqE\n9wFXAq9ngcUnnniCvXv33vFCPp8nn883UKYkSb2pUChQKBTu2Hfr1i1effVVgBxQbOZ4rXpn/yhR\ngPhp4NXA61lgcXFxkWw2G3hZkiSFFItFcrkcxBAS4ri64VB9+6/AnwHvBiaBLwO/H8N4kiQpBnEs\nXPw28HeB/wKUgE8Bf0T0KcIbMYwnSZJiEMcnCX8M/M0YjitJklrIZzdIkqQgQ4IkSQoyJEiSpCBD\ngiRJCjIkSJKkIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkKiuMBT5IkbVuh\nEG0At2/DzZuwbx/s2RPty+ejTa1nSJAktdX6EFAsQi4XhYZstr11ydMNkiTpLgwJkiQpyJAgSZKC\nDAmSJCnIkCBJkoIMCZKktqtUKpw8eYrjx48Bxzh+/BgnT56iUqm0u7S+5iWQkqS2qdVqjI6OUyoN\nUK2OAcMAlMtQLs9z8eIEmcwKs7PTJBKJ9hbbhwwJkqS2qNVqHD6c58aNl4EDgRbDVKvDVKvXOHIk\nz9xcwaDQYp5ukCS1xejo+CYBYb0DlMsvMTo63oqytI4hQZLUcsvLy5RKA2wdENY8Rqm02zUKLWZI\nkCS13NTUTH0NwvZVq2NMTs7EVJFCDAmSpJZbWCixtkhx+4ZZWLgeRzm6C0OCJKnlVlZ20mvXDvtp\npwwJkqSWGxjYSa/VHfbTThkSJEktd/BgBphvsNc8hw4NxVGO7sKQIElquYmJMZLJsw31SSbPcvr0\nUzFVpBBDgiSp5VKpFJnMCnBtmz2WyGTeIJVKxViVNjIkSJLaYnZ2mnT6aWBpi5ZLpNPPcP78i60o\nS+sYEiRJbZFIJJibKzAycoZk8gRwFVitv7oKXCWZPMHIyBmuXJllcHCwfcX2KZ/dIElqm0QiwaVL\nBSqVCpOTM1y+/DzlMqTTcPToEBMTU55iaCNDgiSp7VKpFOfOvUCxCLkcXLgA2Wy7q5KnGyRJUpAh\nQZIkBRkSJElSkCFBkiQFGRIkSVKQVzdIktqqUIg2gNu3Yf9+ePZZ2LMn2pfPR5taL+6Q8FaiJ3j8\nBPA48EcxjydtqVAokPc3jlrAubY9hoDOFffphheAr8Y8htSQwtpbFilmzjV1uzhDwt8GngT+SYxj\nSJKkmMQVEhLAK8AJ4DsxjdERWv1OoZnj3cuxGu3bSPvttN2qTS++g3OuNb+9cy3Mudb89t061+II\nCbuATwO/ARRjOH5H8R9T89t36z+muDnXmt/euRbmXGt++26da40sXHwOmNiizUHgCPAA8C82vLZr\nqwGuX7/eQDmd4datWxSLrctCzRzvXo7VaN9G2m+n7VZtNnu91X9nzeJca35751qYc6357eOca3H+\n37nlf9zrvLO+beYmMAsc44fP+wS4D/g+8BngI4F+DwELwCMN1CNJkiJfJXqj/nozD9pISNiuR4Ef\nWffzI8BvA79IdDnka3fp91B9kyRJjXmdJgeEVkkBbxLdK0GSJHWJVt2WeXXrJpIkSZIkSZIkSZIk\nSS33I8B/A74I/DHwdHvLUQ97FPgCsAT8IfD32lqNet1ngW8C/7Hdhahn/TxQAr4EfLTNtcTmLUD9\noaH8JeAG8GPtK0c9LMkPr8T5MeArRHNOisNPE/0SNyQoDruBPyG6vcADREHhHY0coFVXN9yrN4Hb\n9e/fBqys+1lqpio/fKT5/yZ6l9fQPyqpAb8H/EW7i1DPOkT0qejrRPPsPwM/18gBuiUkAPxloo9/\n/xfwIvB/21uO+sBPEd1wzMedS+pGD3Pn768/pcE7G3dTSPg/wE8CPw6MAX+tveWox70T+LfAx9pd\niCTt0D3foyiukHAU+DxRgnkT+ECgzVPAMtGjpP8AeN+6154hWqRYBAY29Psa0cKyx5tasbpVHHPt\nrcBvAv8cuBpL1epGcf1e82Zzupt7nXOvcecnB4/SIZ+M/i1gEvgFoj/Y+ze8/kHgu8BJ4D3ArxOd\nPnj0LscbBH60/v2PEp0zfk9zS1aXavZc2wUUgH8WR7Hqas2ea2tGcOGiwu51zu0mWqz4MNFVgl8C\n/krsVTco9AebB85u2HeN6J1bSJYogf/3+hZ6kqTUjLn2PqInlhaJ5twXgceaWKN6QzPmGkQPv/sa\n8C2iK2lyzSpQPWenc+4Y0RUOXwb+YWzV3YONf7D7ia5O2PixyTTRaQRpp5xrahXnmlqtLXOuHQsX\nHwTuA2ob9n+N6Bp1qVmca2oV55parSVzrpuubpAkSS3UjpDwdaJzvokN+xNEN3yQmsW5plZxrqnV\nWjLn2hESvgcs8v/f9elngSutL0c9zLmmVnGuqdW6es69neg+Bo8TLbYYr3+/dlnGcaLLNj4CDBFd\ntvHnbH2pkLSRc02t4lxTq/XsnBsh+gO9SfRxyNr359a1+QTRDSBuAwvceQMIabtGcK6pNUZwrqm1\nRnDOSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkdYH/B9NGmh3oneUC\nAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-4,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXt81OWZ9/+eZELIJIZDHOSQCCEUSjg8chAMoKggoJSo\nNSyM292G0tXdn9btbyvBau3iat02dPv0ae129Vkkba0DBWmLJ0TEA0IkAlKDcUkTwykBM5wSSEIy\nk+T5455zvnP+Tk5c79eLF5CZzJX5zjf3fd3X4XOBIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiC\nIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIETNMaBD489zPfgzCYIgCILQ\ni8kAhnn9WYByHm7pyR9KEARBEIS+w8+Byp7+IQRBEARB6BsMAM4Cj/X0DyIIgiAIgn4Y4/ja9wCD\ngJIgzxnh/CMIgiAIQmScdv7pdgxxfO23gCvA3QEeHzFy5Mi6urq6OP4IgiAIgtBvqQVupAcciHhF\nHkajiiXvDfKcEXV1dbz00ktMnDgxTj+G4M93v/tdfv7zn/f0j3FVIde8+5Fr3v3INe9ePv/8c77x\njW+MQkXv+43zsAr4Eng91BMnTpzI9OnT4/RjCP4MHjxYrnc3I9e8+5Fr3v3INb+6SIjTa64CfoNq\n0xQEQRAEoR8RD+dhIZAJvBiH1xYEQRAEoYeJR9piJ5AYh9cVBEEQBKEXEI/Ig9CLsVgsPf0jXHXI\nNe9+5Jp3P3LNry7i2aoZiunAwYMHD0qRjSAIgiBEwKFDh5gxYwbADOBQd9uXyIMgCIIgCBEhzoMg\nCIIgCBEhzoMgCIIgCBEhzoMgCIIgCBEhzoMgCIIgCBEhzoMgCIIgCBEhzoMgCIIgCBEhzoMgCIIg\nCBEhzoMgCIIgCBEhzoMgCIIgCBEhzoMgCIIgCBEhzoMgCIIgCBEhzoMgCIIgCBEhzoMgCIIgCBEh\nzoMgCIIgCBEhzoMgCIIgCBEhzoMgCIIgCBEhzoMgCIIgCBEhzoMgCIIgCBFh7OkfQBAEoT9htao/\nAFeuwPHjMHo0DByovmaxqD+62Su3Yj2iDF5xXOF4w3FGDxrNQKMyaJlswTJFR4OCgEQeBEEQdMVi\nge3b1d+trVBZCY2NcPSociasVsjP9zgYMdubYmG7ZTuWyRZaHa1UnquksbWRo+eOcsVxBesRK/nW\nfKzlOhkUBCTyIAiCoDs2m42dO4s5ebICSOTUqXZqa3P5z/8sYsECc3zs/ddOTh44CRfhVNopagfW\n8p/P/ycLJi/Q3Z4gSORBEARBR+rr68nLW0FJyX3U1GwEJlBb2wkcZsmSW7FYvoPNZtPX3pI8SlpL\nqLmlBq6F2sZaOANLFi7Bstqiqz1BAHEeBEEQdGXt2vVUVz8LjAVWAvcBrwNv43CUs2mThby8Fbpt\n6GufWkv1tGoYAmwFJgJ/C/w9OB50sMmwibwleeJACLoizoMgCIKOlJVVALOB9cCzwE2AwfloAjCH\n6uofUVRUrI+9w2WQCewDFgBZfuayoHpaNUXrinSxJwggzoMgCIKuOByJqN3b5URoMdvpZOhgD4cy\nZ0M5EVqMcjoZgqAT4jwIgiDoiNHYDnQCLidCiwSnk6GDPYzKnCGoOeVkCIJOiPMgCIKgI7Nm5QL7\nAZcToUWH08nQwd4Ns+CU01Rgc8rJEASdEOdBEARBR4qLi8jJeRy4FvgowLP2O50MHeytKybnkxww\noZwILWqdToYg6IQ4D4IgCDpiNpspLd3MypVpGI3fAvYCHc5HO4BScnKeoLhYnwJGs9lM6Y5SVk5f\nifFVI5zwM3cScj7JoXidPgWaggDiPAiCIOiO2WzGav0VO3Z8APyJUaOWAflkZy+jsHAbpaWbMZv1\nE4sym81YX7Sy450d8D8w6rVR8DJk78imMLmQ0h2lutoTBEmCCYIg6IjvbAsz48evZ8gQqK2FrCxY\ntAj03Mf9Z1uMt4xnyMAh1NbWknV9FotmLhLHQdCdQLW53cF04ODBgweZPn16D/4YgiAI+iMDsoR4\ncujQIWbMmAEwAzjU3fYl8iAIghAH9HYOQtqbIs6B0H1IzYMgCIIgCBEhzoMgCIIgCBEhaQtBEIQ4\nIrUPQn9EnAdBEASdCOUo3HorPPGEek6sdeLhOAkTrp3AjBdmYL3PyvQRUpgu6Id0WwiCIMSBQ4dg\nxgw4eBCysmwUFRXz/vsV1NQkkp3dzvz5uRQXF+nSRnno9CFmvDCDgw8cZPqI6dhsNorWFfH+gfep\nuVhD9uBs5s+cT/G6Ymnb7CdIt4UgCEI/wmbzOAqQyL33NnPhgo1Ll54HigEDNTUd1NSUsWfPipgE\no7ydBC5CwRsFzMqdxf5P9nNs5jG4EzBATUcNNbU17FmyRwSjBF2QyIMgCIJO1NfXM2fOSqqrn0WN\n4zYAjwL3AXka31FKYeE2Nm5cH52tO+dQPa1ajeI2oOSo/wzMBLI0vukkFCYXsvFXGyO2J/Quejry\nIN0WgiAIOrF27Xqn43ATnrPZ587/azGbsrKK6Gw9tVY5DllephKAZpQzocUoKDtcFpU9QfBGnAdB\nEASdUI7AbL+vJhI4yJuAw5EYna3DZdpOgiGoORw4orInCN6I8yAIgqATyhHw37nbgc4A39GB0dge\nnS0c2k5CZ1BzGKXUTdABcR4EQRB0QjkC/jt3LrA/wHfsZ9as3OhsYdR2EszAqQDfVAuzbpgVlT1B\n8EacB0EQBJ1QjoC/o1AEPA7sQ1U04vy7lJycJyguLorO1g2ztJ2EucBbwAk/cych55McitcVR2VP\nELwR50EQBEEniouLyMl5HCjFs3NnAI+SlvYgo0ffCeSTnb2MwsJtMbVpFq8rJueTHDiJr5NwHsYM\nGcNKVpK9Ixtehuwd2RQmF0qbpqAbkvwSBEHQCbPZTGnpZqfOwzN+glC7OXnSzIwZsHVr7AqTZrOZ\n0h2lSudhh58Y1DtKDMolHrX1ga2iMCnoiug8CIIgxAGXwuSPfgQffaS+Fq/ZFt4Kk0fPHpXZFlcB\nPa3zEI/IwyjgJ8ASIAWoBFbTA29OEAShO/GfbTF+PLz3nsdRWLVKvyFY/rMtxmeM57Fdj4mTIHQL\nejsPQ4C9wDso56EeyAEu6mxHEASh16H3hMygtqaIcyD0HHo7D2uB46hIg4sTOtsQBEEQBKEH0bvb\nIh84CGwBvkSlKr6tsw1BEARBEHoQvZ2HscA/AUeBRcCvgV8Af6+zHUEQBEEQegi90xYJQBnwA+f/\n/wJMBv4R+K3WN3z3u99l8ODBPl+zWCxYuitxKAiCIAi9GKvVitVVievk4sWeLSXUu1XzGLATeMDr\na/8EPEHXES7SqikIgiAIUdDfWjX3Al/1+9p4lFMhCIJw1eLfxhkPvQcfe36tnKL3IOiJ3s7D/0YJ\nuH8fVTQ5C/gH5x9BEISrFosFFi60OdUnK6ipScRud6lPFukuG22ZYmHh8IVKgfKAUqC0D7YrBcp1\nxSJTLcSE3s7DAeBe4N+BHwJfAP8MWIN9kyAIQn+nvr6eOXNWUl39LFAMGKip6aCmpow9e1bENOci\noL0751A9rRruBAxQ01FDTW0Ne5bskTkXQkzEYzDW68BUlLrkJGBDHGwIgiD0KdauXe90HG7CU26W\nANxEdfWPKCrSd9rl2qfWKschy89cFlRPq6ZoXXTTPAUBZKqmIAhCt1BWVgHMDvDobOfjOto7XNa1\nTN3FKOfjghAl4jwIgiB0Aw5HIoEb3BKcj+toD0cwc+pxQYgScR4EQRC6AaOxHegM8GiH83Ed7WEM\nZk49LghRIs6DIAhCNzBrVi6wP8Cj+52P62jvhllwKsCDtc7HBSFKxHkQBEHoBoqLi8jJeRwoBTqc\nX+0ASsnJeYLiYn0LGIvXFZPzSQ6c9DN3EnI+yaF4nb4FmsLVhTgPgiAI3YDZbKa0dDO33LINk2kZ\nkE9KyjLS07eRmbmZ1avN5Od7hKT0sLfmZ2vIrM3EtNUEL4Nxs5ERp0aQ80AOq3etxlouXfRCdOgt\nTx0JIk8tCMJVyaFDMGMGvPQSfOMbcPAgxHMZPHT6EDNemAHAwQcOMn2ErLl9nf4mTy0IgiBo4C1P\n3dhoIz29mH/4hwogkZtvbmfmzFy2btVPadIlT93a2Er5H8sxHjPi6HRw8x9uZuj1Q/nBYz/gwfkP\n6mJLuPqQyIMgCEI34qs0ORu1DHcAZeTkPK6r0qSPymSml6laVfcgKpN9l56OPEjNgyAIQjfSnUqT\nojIpxAtJWwhCDMikRCFSlJJkIAdhNmVlz+hn63AZ3BHgwVFQtktUJoXoEOdBEGLA2zlwFcFZrfEr\nfrNM8TgHriI4631WKYDrQ3Sn0qSoTArxQtIWghAjNpuNVavWUFCwFMinoGApq1atwWazxc/eQ6so\nuKcAXoaCewpY9dCquNkT9KU7lSZFZVKIF3LnCEIMyJhlIVJmzcqlomI/qubBH32VJmfdMIuKUxWq\n5sEfUZkUYkAiD4IQAzJmWYiU7lSaFJVJIV5I5EEQYqA7i99ACuB6K5EUzrqUJouKinn//WeoqUkk\nO7ud+fNzKS4OL1IVbuGs2WymdEcpReuKeH/H+9RcrCF7cDbzZ86neEexRKmEqBHnQRBiQMYsCxBZ\n4axyNMzAesaNg6Qk5WicOwerV4fXoRNu4azbyZgH424aR1JDEqMHjeac8Ryrd62W7hwhaiRtIQgx\nIGOWBRfhFs5aLLB9u/p74ECYMEF9/ehRFbWwWglrxkU4hbOWKRa2W7ZjmWxhoHEgEzKUsaPnjnLF\ncQXrESv51nyZcSFEjKw0ghAD3Vn8BlIA11uJpnDWYoGFC23O9EUFNTWJ2O2u9EVwmepIC2ctUyws\nHL5QpS8OqPSFfbBdpS/WSfpCiByRpxaEGLDZbOTlraC6+kcoqeEEVEXafnJyntC928Jms5G3JE9t\nGqO8zInccI+yatUaSkruQ9uJLKWwcBsbN673+WosMtWrHlpFSWuJthN5EgqTC9n4q42+tkSmul8h\n8tSC0IfpiTHLpTtKuaXpFveY5ZQtKaR/kU7mtzJZvWu1hKF7AFU4OzvAo7Odj/sSS6dO2eEy5QRo\nMcr5uLct6dIRdEbSFoIQAf5V9eXl4HCYSUxcj8kE6emq+G3/fujsjF2e2r+qvry+HEeHg8QZiZim\nm0hPSGf0oNHsr91Pp6lTCuC6Gdf9cPx45IWz0XTquO6H443HIyqclS4dQW/EeRCECNCqqj94UFXV\n22ye/DUkcvJkOzt35rJwYfRjlrWq6g8+cJDpI6Yre84cNhfh5OCT7Jy5k4XrFkoIuptw1S185St1\nqEpWrR1du3A2mk4dV+3CV574SjBzXQpnpUtH0BtxHgQhQvydhIKCdmbNGs3+/Z9x7NhP0Ftp0t9J\nKHijgFm5s9j/yX6OzTwmSpM9iKtuoaFhEvARkKfxLO3CWU+nTvgOh6t2oSG9AU4RduGsu0snTGdD\nEEIhNQ+CECZWKyxeXM+YMSsoKbmPmprXgO3U1LzK5s1NHDv27+ipNGktt7L4vxYzZt4YSlpLqLmz\nBu6HmiU1bP5ks3IcJIfdo3jqFn4KPEFX1ci9AVUjlUOxP8Arazsc7tqFRcA7dFWOPKGtHDnrhlnK\n2dBCunSEKBDnQRDCxGKBoUOfprn5Gbo6CWfRPnVCoIK5kPamWBj68VCab27u6iQ0E1HBnBAfPIWS\nZmAzsA1QhbPwNQYNeihg1Km4uIhhw7Rlqk2mJ6irK+pSaOsulEwFlgOfA1bgZfVn0DuDNKNOwWSq\nUz5IoW5qnRTaChEhzoMghEl9fT2vvLIbbSdBf6XJ+vp6XnnjFW0nwRDUnOSwuwnfugWlGgmvA9uB\nN3A4rmf1arNmt43ZbObIkc2sXPkSaWnTgSnATNLSvkN+/iReeqlrsa1P7UIqKgLxt8D9wDfAcY2D\n1btWd3ECXF06hcmFXP/q9fBfYHzBCG/BsPRhjPx0JBsWbpBiWyFsJNElCGGydu167PaRaO/akeev\nQ9p7ai12k137JTuDmpMcdjcRqm5h9Oh2tm8P/P2dnZ18/PHnXL78X7i0Hi5f7mDTpjI+/rhrrUyo\n2oXR6aPZbtE2aDab+cm//oQZi2bAUnBkKkfkeMdxSmpLpFZGiAiJPAhCmKgQ9QC09aFzUQVzWkSn\nNFl2uEwFNLTMmZEcdi8gmroFF1YrzJgRmdZDtLUL1nIlQz3jmzM4NfOU1MoIMSMKk4IQJhMm5FNZ\nOQHQUhK0AXejwtZ56KE0OWHuBCqphIl0rapvQuW6F6HSGr1UaTKSaZO62Atz2qRexKowOmnSUioq\nXiNQKCE3dxmfffa6r70YFEYnzZ1ExR0VASMXubty+WzvZ2G8c6GnEYVJQegjqBD1GkCryO2vGI02\nVq7cRHa2KpjLzl5GYeG2qNs0jRhhDtpV9efA2GpkJSvJ3pENL0P2jmwKkwt7jeMAyjHYsMFGRsYa\nqqqWUlmZT1XVUjIy1rBhg01XxwFUkemGhRvI+DCDqueqqPxlJVXPVZHxYUZccvouhdHCwm1Rfe6R\naj141y5E87mL3oOgF5IYFYQwUUOwvkBV1RcDz6DyCu3AtZjNi2hq+mXUY5a72LthFhUXKlRV/V7g\nA9TC3wmYwDzFTNPCJsbd2ntHLUczMCpmexEMjIoW34iKmePH1zNsGNTUQFYWLFoE4ZgJV+uhS0Rl\n4nGGTRtGTW0NWddnsWjmorDel+g9CHohaQtBCBObzcbkySuor+8aojaZnmDevM0UFpp1O03bbDYm\n3z6Z+tn1XULUpj0m5v3LPArnFPYKJyEQ0QyMislehAOjYsFms1FQUMyBAxU0NyeSktJOUlIu06YV\nkZ6uNvJQTmMk18dms1HwSAEHPj1As6OZlMQUkoYnMe2+aaQPTVf2QjiN3Xl9hPjS02kLcR4EIQK8\n1SVrahLJzg5vhHJM9rzGKGcPzu5TY5QjzenHbK+bcvqxTMT0JtyaCb2mYspU1v5DTzsPEqMShAgw\nm81s3LjePddi61Y118KF3gWCZrOZjb/a6J5rsfWBrUwf4THY3QWCkRLN/IaY7HVTTt93IqaXAa8u\niXAiKq6aCeWQPuPnkHocEJ+pmN7msqAa1SURTsTAVTNRtK6I93f4OaQ7+oZDKvQOxHkQhDDxdgxq\naiA1FRYvVv9vaYGxY2HMGGhttXHlSjEnT6rohN0eXXTC2zGouVhDalIqi19SBlvsLYwdMpYxg8fQ\n2tjKlfeucPKLk9RcrME+2N5rohPRzG+IyV435fSjmYiphbqnlLhUsFoZvaZiuu+peTDupt5bKyP0\nfsR5EIQwCRQ1cEUhSkogM1O/AkHviZo+9pxRiJJ7SshMzOyWAsFoUUWm+9HO6UenfxHU3g2zqDhV\nEfbAqGjRK6ISbiRKr4hKoHtKECJFWjUFIUpsNhurVq2hoGApkE9BwVLmzv0bZ/5avwFZPvYeWkXB\nPQXwMhTcU8DcJXM94exeKPpTXFxETo72/IZAA6NishdkhoPWwKho8URUtIhjREXbnHRJCN2OOA+C\nEAX19fXk5XWdrllVpRwFbaIbkOW2tySvy3TNqgtVvXpAVqw6CFHZi0EHIVxiUZaMyp5MxRR6GeKu\nCkIUBC6YSyMeBYIBC+YGBDXXK0R/QhWZxsVekCJTPSguLmLPnsBdEsXFm/W1t66YPUv2UI12l0Tx\nDn0iKoIQLuI8CEIUBC6Yi0+BYMCCuV4+IMu/+2T8eHjsse6Tpx6fMZ7Hdj2me/dJuF0SeiFdEkJv\nQ5wHQYiCwAVzrnC2vgWCAQvmXAOy4lwgGC16Owch7XVjQWB/jKgIQriI8yAIURC4BbEIWAE8jf+A\nrJSUJ6ir20x+fuSbasAWxLnAFuB2ugzISvkghbrv1ZFvzZcWPJ3prxEVQQgXcR4EIQoCtyCagUcZ\nN+4J2tqMnDhxDqPRgcORxrBh6YwcWRyVGmXAFsRUYA6M+2QcbZ+0ceL0CYwYcRgdDLtuGCM/Hdkr\n9B76G7o7ByHFxSxs19FgbxcXE3o/Ik8tCFEQTFbYZHqCG298jrKyh2lpiU2+2MdeAFlh0x4TN377\nRsr+bxktt7TEJF+sF/19FHc8EOlzIRJ6Wp5anAdBiJJgi31RUbHuA6GCLfZF64piGngUj80+2PXZ\ndWaX7pt9X94M9ZqVEZE9HWZlCD2HOA/iPAh9kFCb7aFDS6mt1W8gVKiT9aGfHqJ2WW1MA6H0PPmG\nsxkCum32fX0z7M/TR4X40NPOg9Q8CEIUhDqJT5ig70CoUF0EE56bEJPeg+9mH5usNoQeHPWd7/wr\nB/66UzdZbb0GR/UUes3KCNueTrMyhKsXUZgUhDjQV+SLrVbIz4cZM7w3+9hltdVmOLvrA5OtYHmW\nV/5no66y2mWHy3q10mYo+uv0UaH/Is6DIMSBviJfbLHAhg02Ll16F83NHoDZbNlSQX6+cjRc6Zpg\nBNwMj1jA+iKOk46gm/2W97aQb80n35qPtTy0wVCb4bGGYxG9XnfTV5xNQXAhd4ggxIG+Il/sSlc0\nNAzBd/e1ocLoFUAira0nyMhYE3b9Q1cdDNfrfQLppTDYb7NvAvY6n2aA1sZWMj7MCLv+oYsOht/r\n2RvtEb1ed9Nfp48K/Re9Iw/rUEuW9586nW0IQq+nrwyE8tQmDMBzFK1HCV3dB6ihXw7HXygpuY+8\nvBXYbLaQP49v5MXr9UyZsLwZEr3MXUYJXU0E7ld/HA84KGktIW9JXnj2vCMvGq9nf8Ae0esFwpXm\nyc+HRYtgwgT1dyRRGS0CTh+d/BSm1cs4fWs5i363iAnPTWDR7xbFHEXprumjQv9F726LdcDXgYVe\nX2sHzmk8V7othH5LX9E5mDRpKRUVr6GUMe8DcoDlwLPAHA1L4VX+++pgvAIUADfB4EnwzxXwNmpz\nHwr8AbVixFD576ODUYFSCY9TJ0G89BgCvW5R0bcofq5Y9xbUvtzaKvR8t0U8nIe7gWlhPFecB0Ho\nZvydmvfey8du346K79+LOn4OBN4h1jZTm81GwVOr2HPhAzo7b1VfLN0NhU0qrbAJFX0wAt8MaC6s\nNlOXvaJ1Rfx+2++xP2iP+fW0iJceQyBn02Co58PyOTTfpW8Lan8Q1bra6WnnIR41D18BaoFWVNzy\ncaAmDnYEQYgQiwUWLrRRUFDMgQMV2O0nUDu4GeXzW4AfE2vlv9oMzQziNQbuWkzLkAYwHoKWZmUu\nFRgOTAX2BDUXVuW/ezOcB0nvJ2E32GN6vUCEakEtKiqOSo8hUCRq1UNrac7SvwW1OweICf0TvZ2H\nj4C/AypRS8MPgH3AJOC8zrYEoVfTG1MXC65b4HVyXgP8DSrPPgf4AjXMK/ax4q73Vl9fT+akD+HO\nZhiCqkVwTQG9iDpNRzhW3HVda2vhxAloaYHkZAutrRZSUqDDOAk6KwK+Xl1DHdZya9ibp+u61jbW\n8pfrjsCjv/N9QuMouDQKylc4W1T1Q/QYhN6K3s7DDq9/f4ZalapRQcn/rfUN3/3udxk8eLDP1ywW\nC5bunOMrCHHAdcr3zmPb7fGbV2CZYmHh8IU+eWz7YLtPHnvVqjVOx2EssBJYi/Lxf4SqYjSg51jx\ntU+txX6303HYipoC+g6wwGnKQMRjxb2v69mzn3D27DlaW9XwsWuvTWfwIANVp1D1FF4dF3QCJvja\nrK9FdOr2vq5/2fw/0N4CCVcgYSA4hkPbVGguBsw4xuvbRSN6DAKA1WrF6leNe/HixR76aRTxbtVs\nBsqBcYGe8POf/1xqHoR+id6qjWHZc0k0B1Bt9CgZFqGKIm8CZjq/VoPaYV1jxf3bTEvJyXkyojZT\n98n5bZTDkIVqJd2Lijx04hkrvgDfNtNTkHO4a5up57o+ChwEfo3DoeoPjh/vAHaQePLrtKe2wmKU\nfa9agY8OfITNZgv72ruv61er4Rrnz5kJGNqgoxFqK2HLHmjcGz89hjCjMkL/ROtA7VXz0CPEWyQq\nGXWMOR1nO4LQ6/DNj8eu2hjSnrdEcwDVRo94k7cCpBlYDyxBRRzMwGZgG6DaTGEB48Y9EbHD4z45\n2/CIQqUCi1BHilPO/y8HPgeswMvAb9WYca2CQM91fRePA+T9hu+ivXWechw0rsWxmcciUrB0X9dj\neBwgv9ekoBpM3+o14l+CEG/0dh5+CtwCZKNWpq1AGvAbne0IQq8noEQzoOYVxCE/HkKi2SPepKUA\nWYSqby4FMlAOxavA90lJMTB27BZWrzZHpGXgc3L2N+dKYZwEUlAOhQW4GVKSUhj74FhW71rdRcvA\nc12DSGBfuz/otdj6/tawdRLc19XbAfInE5JS36O4ODJZ7VCIHoPQW9E75jUKdXa4FvWrVoo6FpzU\n2Y4g9Hp647yCOW4lQ62iSFfE4SckJT2A3Z7tpWEQXYrFrWSoVRTpijh8CPwxARITyM7OUjUaewNr\nDXiuaxAJ7Ix1YKhU//dTm6QTEtoS2LBwQ1jvyX1dtRwgFwlwffaIuIl/Fa0r4v0dfnoMO0SPQeg5\n9HYepMpREJx0lWj2Jo7zCgLkx5sajNTVFWEyraC5OQvVHJXn90QzcB/XXmvgmmvWM3o0nDsHq1dH\n1h3i6lBondpKyn+k0GJq0S6KTEWJRTVeC/+ridG3j+ac6Ryrd60OqDXgua5Brm+781o0oeKfC/Cp\nfWisbSRvSV5YOgnu6xqiK+TLumSs1jh10MyDcTeNI6khidGDRnPOGPwaCUK8kWqbfkhvbBG8Ghe4\n3jav4I75syheB488MpFXX32fpqa/Q2UU8/CfvaFqG6L/Wbw7FMxpZk7UnlAlFPeiQv9eRZFszYHG\nUviskjED/hRSJ8FzXYN0hbSNgVMVqo7CVafgIkKdBPd1DdEVUpA/S9ffKxA9BqH3orfCZCSIwmQc\niZeEblB7InXrg69Ec9fhWHp3W/hINGsMx9r+u+3cdtvD1Ne71BHPAj9BidNdICVlGDfeOJWtW2O/\nR3w6P1zKiJeAXUCtAVJToDMBHNOhbitqZw5PvdJzXR9FlVn5X9+PSEkpojO9lispx2JWr7TZbEye\nl0f9jGo5slxAAAAgAElEQVSViNXoChnwnom8f7mR052ndXGcxSEXQtHTCpPiPPRD4iWhG9Se/0ah\ng4Ruf6A3OXFFRcWUlNyHdiSklBEjtjFzpjr1xxqdWvXQKkpaS7RP6SeA/Zkw1UvFvtwCRyyMH5/P\n0aPbQ76+67ru3v0JJ06cw2hUOg+jR6eTlzcOSGDfvs850fwePBw4PTR863hOlx8Ny94jjz3Cq2+9\nQVPLJfXFREhNvoY7br6dgSkD2X9kPzUXazAZTQy9fig5X8uJyZkQh1wIhjgP4jzozqpVa4JuEuEM\nNorIXrCNQodBRH2V3pY+OvSbk9S+dYhYZ1aEw6S5k6i4I7DKI7/IhYv+J/7wfgZthUlobYXk5Hou\nX15J2/hbYcoB2PsurLocU+TBWm6l5GAJ7x3aR1vyACDJ82BTK7zeAHd0domwGM8YcaQ7yB4S+aYv\nDrkQip52HqTmoR/iEQLSYjZbtjzJrl1ruHChgra2RAYMaGfIkFxyc4soLDRHvKGFktDdsnkLu+7c\nxYUTF2jrbGOAYQBDrh9C7j25FM4p7LfhV72dg5D2QuTHJ6zLp7u6P0J1fpCopYwYXh1IsOu6atV6\nSkqehSM3wRHAtBJObdZ2bE/B1K9ODW1vioWdPztEW8lTdHHITavAUuJ5/cuoIaILwJHp0BTqCmfT\n99HscBGgVqO3OamSUrk6EOehHxK8RfAszc21NDU9g0v10G7voKmpjPr6FcBmrFZzRAtO0I2iGZrP\nN9M0r8mdQbF32GmqbaJ+fT2sAesRqyw43UB3dn+E6vygvc35D986kEjUK7Xo4jg3Z8CWUVBQq1Go\nOQruGhrd67oY4KetsY+YCzQhspkWvVEGXej/iPPQDwm+SfwbnZ0bUCcoG2pBrAASaWvr5IsvlrNv\n35aIFoCgG8X70JnfqRZTv377tvY2vnj+C/a9tU8WnG6gO7s/QnV+jLs+lfYhy/zqQDy1ONGeprs6\nzseg8RBsWqs2+kSHauNsmwXNP+bTT78V1kk6oEOe6Oc429BlkFUkMy2CyaBv3ryCm2/eTHJyZAeC\nYASTQd88dzM3f+9mktOT5UDQzxHnoR8SeJOoB3YDv3T+eyVK3lctONBBVdVH5OVFNnch4EZxGTUu\n4S7nvzX67atqq8Lutxdio7i4iD17And/xHrq97G1rpg9S/ZQTdfOD9MbOYyd8i6d15lJSkJTSyLa\n03QXx3nyGZjybeejOV7PPAf8A+fPngl5kt61y0xd3Utoesjtfo5zCCGpUIOsXI5MXUNd2DMtfGXQ\nfQ8ELS3RHQiC4ZNS8TsQtNhb5EBwlSDOQz8k8CaxBrWSG1DSw64Fx0UCMMc9dyHcosqAG8XbQLrT\nnE7hXCF6zGYzpaWbnRvyMwFP/brZCqSM+JfQoe1oh4p1cZyPDIcjfybQLjw0d1nwk/TUPdw8tZRr\nrhnL5cuu0eVetM1SehKu+zqC8eKBIh6GZgMdrR1hTxr1pFT0OxAEw51S6aEDgdR49A6k26KfotUi\neP78lzQ0XAe8BnzN+bc+lfdabWXnbedpMDbA/ahhR/cHNBdW1bsQG9256Ma64EbSMeT9vhobbezb\ntwK73eU4rwW+TlclTc/rYDobtK10zEcTaL80hJMnDTB5sericOlcX6nH8PEBOhd3KMd5F0oxM8zO\nI//fm+tTr+fC2QtcuvmSx+HW0Ozw3pgnTMinsnI76nAQ/y6rCXMnULmoEnZG9l71pDe1QPdUhEW6\nLQTdUYupmpQ4bhzu0PC+ffnABJQqX/C5C+fPJ5Kfr/4XaqMJJKG7r3ifijycImQ493jjcfKt+f3S\ns+9VJyVL91zPWJURQ3UMlZU947HlleI4cqQCuz2JtLR/AoxcvjwYo/E1HI7/RktJs7h4M7fec2vg\nOoVMOFZ3Bi6+CHwFjhTDkRYwHYUBFyHRQMoAEyMPDcd+2M7xC8cxVhlxfM3hW6Dp3PS9x4trRTxO\nvHVCDQjzHl3+gXqMNhg3ZFyXlIAnVRP+NYsFd42TTvUdkdIbR91fjSkacR76IYE2o0mT2qmoWIMK\nbQaPrw4d2s6GDeHlnANtFJP+axIVcypUaJOg5hiVMoqMDzP6ZfW2VMNHTiRDxbQ2k8uXlShaUtLj\nzJy5jZMnX+T8+Wdpbu6aqgndVmpHOR4GYA2kz4Hlp9z6C83OUH3KBymM/fZYstKzqH6tmvMfnafZ\n0RxwkJVmO+ZZuo4ud9EBZ14502WmhSdV0z2D2Nw1TjHWd0SLb42Hl0GvUfd66thE0jZ7NSHOw1WE\nWmS+QE1OXI7S2p2j8cz9TJky2ikBHL13P+uGWVRcqFCm/kDgHG4VnD5zWoWO+6Fn35dPSj0VNamb\nvx9m5Hd9QrkFjqygrq7dPYQq2GZit/+IQ4dexGhcz8CBYDDApUvw6aeeAs2QbaWprbDobmX7i52w\nXHsjabmlhYvvXKRxcSMtN7cw0DgQg8PApaRLfJr+aZdNX7MdM8SGPHLQSLZbfBU4PTVOwQ8EerXi\numuc2qrDru/Qk0iiUrrYi6Bt9moioad/AKH7KC4uYtiwx4EqlAPxA1RitcP5jA6glJycJzAYEr0W\nZNfq4Ovdh7S3rphh+4fBeaAAeAclText7iSkfZDGpUWX1ILsbSoLqqcpz74v47u5RXctI7LnfVKK\n8XpaLLBhg42MjDVUVS2lsjKfqqqlZGSsYcMGW1wGQW1YuIHh+83wZjnsrIA398GfD4G1FY68BKzi\na18b47atNpPZGq9mA16hrW0HTU35DBq0lOXL11BRYePgQdi+Xb2/WTfMUo4tqO6BncDvUXU6vwUu\nJIP1v9Wob39dB28GQ2NFI80lzTT9polBrwxiee1yKgorOPjgQbZbtvtE6DQjHq79X4sAG7KrEHbc\nuE7UgUAL/VpxXcWw44aM81w3f/yKOvWkN466vxqRyMNVhNls5sgRVW3/+usV2GxJJCb+fxgMRuA6\nkpNhyJBccnI2s2dPIdoLMoTr3ZvNZo7sPkLRuiJef+d1bAk2Et9MxJBggDRITkxmyPVDuHDNhcAL\ncj/w7PvySSleUZNAEQ2DoZ4Py+fQfFe1msDpJcvMloHQuBeo5qOPvo/NZlNpB/dm4t2m6EB5qhvp\n7FwPkzdRM+Vlalo/YvP3v8rISUMYe+1YBhoH0jq1lWHPDaO+ud4z+OoOb9vNsGU6NH7iq+vg3abY\nDjSC425H2MqSmhGPEJM7tTZkV43T2LFbqK1dQUtLfFtxXdGhsQ+OpfY/amm5pUWzqNO7vkNPetuo\n+3hFWHo7V+e7vsqwWqGkxMaBA8U0NFTQ0ZGIwQBG41TS04sYM8bMqFG+IegJE6Lz7q3lVkr2lVDx\npwpsx2y0dbaR0JmAcbgR010mxmaOJXtwNuAp3JswdwKVhspApvq8Z99XT0pWK3zve09z+vQz6J1f\n1qoDuZB5kssX/0rLXU2aaQEKqmHTY9C8kWPHfuy2rTaLLwELnjbFImCd5+c+YoEjC8FURMuAU1S/\nWUNHZgfzZ87npr+5CR6Gd57dTfsdjgC2a2HTNz26Dk34tim+DdxGRHlxTX2UucAW4Ha6KGKa3szh\npn/tuiF7fm/N2GyRteJG0xXjXeNk+7pNux13R/xqa3rbqPt4RVh6O+I89GNcTkN5+b9y5sy7dHZu\nxHV67OzsoKOjjCFDVrBjx2Z27TK7T4NXrsCxY5F799ZyK8/veJ4Pf/Yh7Uvb3XLU7R3ttNe2M2z7\nMHbv3o3ZbHYvWtYjVmov1vZrz76vnpQWLKjn7NndwC8CPCP6qIlWRMO2+wwMzYJlAb4pE5U2aPa1\nrTaTInx1S/yjPfXOQkfPoCl3ZOBfVGRg3ovzqMwM4MRmgtH0EZ2tJtpPAZ/jq1sSRedB8bpi3rj9\nDeqp95zcU1BlSK8aIMUA7QaMbcmMGZHN9ne2MHFi4A05UJeVvwCXN7EU1wbqsjpnPNelvkNPulPs\nDIILnsUzwtLb6durshCUBQvqefLJlZw+nQW8SKjTo/dJsK2tjmAFlVre/YLrFvDALx5QjoPGCaye\nevcJzHvRMlw2RByq7Uv01ZPS2rXrsdtHEiyMcfx4IosWRV5IqVnkaPo+DA7R+TD4ONypCimPpR4g\n35pP261tJH5yhPa/lHg92S/aY1obsNCxmmqm//106hvOB7XdkQCzJ7/NgT8vw55W7essRNF5sOvM\nLm54+AbK/1CO7Q0bjnaHpwot0wiTvwqOMTjopIqLzPyPm/nZt37Eg3Me1DQTTfFqLMW1sbbjRsuu\nXWZycjbT2lrMhQvP+Az3y8lRByE9a3F2ndlFzgM5tP6plQulvsP9ch7IYdeZXVjMfbeVPFrEeejH\neBbop9HeuMB1gut6EjwLrABcIevQ3v3ap9Zy2Xg5rPoFn0Xrb1AhYP9QbTd79vHqLAh4Upr8NKbZ\nv+T0zTNZ9LtFuulb6HVSUrUaAwgcxviS1tYT7N27lObmyNpPNetABpSpPT+QuUvA5VY1ZtuRht1x\nmYwBGdw0tZg9fy2k2eeb/KI9IQodL+26RGerPWjEpqNtMNWmAub98Ho++Okx2g1eEaMIlCVdWKZY\nWHDdAua8MAfHXQ6/0dt22NIMjRtQhRDQTCkftW/jQS1/Pkr6Yhui+j1UEZZusedykrR9tqsWcR76\nEf6b3/vvuxbo0Dn3ridBM6ojoxh4ArhCdvZQn/ypf770/d3vq70mjBNYl0VrOar4bA/QDmntaRQs\nLYhr7tQfVx6+oKCYAwcqaG5O5OTJdpKScpk2rQir1exuD4zEiQgoCz0zl6Lv7eEf/+0fOfDpAZod\nzZxMPEnS8CSm3TfNndaJ1InoIg395VlMjpEMTc0jc0Qx8+aZIxgy5RIV85+b4ACO4XD8BodD5adc\nhZQvl9/KNXlZXLkygOSUDlrbm0lJMnF9ZoKqrQk0aCrR4Vsw6F+Q2ADc44DMy2C4jL0DSmpL+MPP\n/gBfT4F279bOo1D+NBz5oee1te5L5wjthoUN6m0FioCdAtrmU//OA9yVtY0JmV9S0Vnhec0oCh0h\n+OatajyKoNm1eetTXOu9Tuw+VAbfDvBEnYqVRd65fyLOQz/Cvwitre0ManULnXPX7ghwefcdDBiw\njHHjXvfLn/rmS9sa2iAtqCn3CaxLR4C3IE4HdG7t5Ny8+OZO/fGNvqwB1tPS8hktLYfZu/dWCgpu\n5xe/+GHEzkygXHRdXT0zFzg7C+4C9kFLfQstx1vY+/ReCpYW8Isf/yJyexq56JEpI6iu3MPH5ybT\nfC4Te9XwMIdMuUTFvgf8BwELEgG16+XQdnAmV/7nME2d52lNPY8j6QrXjshi6uzbKP6mcgafMWoM\nmmo3qizZVtTfLnnmYAWJQ6E5pRnj23ZwHIb2a5wTM18FHnJ+8+yuA6xceM9cGYoqVvSXhD4FbM2B\n5mIgg7KyZ5h1q19qaG6A7w0R7QnaGeNT46HesB7Ftd7rRGv7sbi3IWrVVVxI6CC5Yx65Y4rZ2Glm\nncyn6HOI89CP6Jp6+BpqxczFc3r0R+Xc9+07SrBVZMyYRHbu1LDnnS99GbiWoKc31wksVEfAqMGj\nuojhxBtP9GUs/gOGHI4ONm36iI8/jrw9MdBCuOqhtTRnVcMQugwYcnQ42FS7iY+XfByxSJZ/Ltp1\nX5ysfglXFWsN4Q6Z8hYVC1aQCJ7BTI/SlLgXlp/C4QzFH+84TkltiTuPrlkH0jYLvEXFFhK8INFr\nMJMj0w6Gk84NuwK27IHGPwPFGI3fxtHWoH1fer9uKp4ImEsS+oIBho2CBTnw111wREVNuqSGUlFj\nJXaB8TUjjnQH2UNCdx6EVrf03rz1Ka71WScGvwHeERRvdCpW1qqrsHVUQW0VDW/9kSEJMzlxwiSq\nq30MEYnqR3QVI3I5DUXA46gCSG+Fpr3O+oUir44ALbQXrS5iRGYgGyUGddLP1Am45u1rKF6nNhx3\nR4C2uR7psPCIDXlPHPVWWZqjq6hT2WFnHt779BsHkaxoRap8RcVM+A6X0kqFOa+baYunODHA+yku\nLiInx++ebP4xbE9S07KT8K1R0CpIDHLdKKgm8ZrFZGYOY+7c9xg7/BOStud0FSlr93tdVwTsb1GD\n3Dq+Ap+dhD++pdo9nb8LrtRQYXIh2Tuy4WUwvWkic0Qmc5+cy/hHxpNamMqb2W8y5TdTmPrrqUx4\nbgKLfreIGc/PYPhPhzPj+RmeTiMtOlAREzf6FNf63A9ts+Iu9BRMtOzSogZOnM0EtlNT8yolJfeR\nl7cCm80Ws11v6uvryVuSR0lrCTV31sD9ULOkhpLWEvKW5Olu72pAnId+RFelPZfTUAVYgW2oaMQd\nGI1TWLlyk/vUqRal/c7vs6HC1UuBfGABx441sXixzZ0rBa/Nz8Vc1II+B3UwteJW6Uvbmcb+t/a7\nPfxQqn7H6o+x+PnFWMu9DMYZTx4+kGIhqLxzhT72XKdOG8GLTA/HlncOrMAIwd6PS1SssHAbRqMr\nBeZCy9l02glWnOh8P66K+czMbaSmLiMpKZ/U1G+ReH6i0lNoGOBrTkt5Mdh1y4SB6YOYNm096elm\n7iraxW1P5zDy1EiMv0+C3yZASSI0GSLYvAH209iYy3eet7J612rOzTvHuIfHMf4745n72Fym/f00\n0oems27+Osr/qZzyb5ZzZ82dXC65TOUvK6l6roqpn07l3aXvMvXTqZ5OIy1OAaMawbIMJj/ldvRj\nxed+aC6GLRpO1QlI/OMgjlUU+fzOR2XPf50Az+/8B0D6b+H6a2DSaLj3X6lOmd+rVVcFhaQt+hFd\ni9C8ix4rgDOkpAwnKekGpk17maYms7t+wdMR4J/bVuXfzc37qa5ewcKFm3FVf3cJuXqHfc8Cl8GY\nbsQ8wcyUe6ew9vBaLA4VUneHfVuqfXPbzmrz5tpmql+oZuHXF8bvgvnhib50j6iTjx5DHPPO0YpU\neddqJCcvxeHwLhrQSoU57QQqTlTmcODQrJi3lltZ+9KTnDxZDXsHQGdb8ILEENdt1GgH292ZLwv1\n9QuYs34ljupXcIuQmArh1G+CFEkaUE50InCJtLSz7Nz5ByZOnIgSpQpMwDbIqhpemv8SjnyHb6fR\nEFQgph61gV80wJV2rr/Uwu23Xw4o9OSPS9+loqKYCxcquHIlEWgnISEXKMJu974fzNC4HTYtgAEp\nkJikHKa2G2lvXsHJkw/5/M5r2vMShrtw4gJXOq5AByQMS4B5YD9n9/2cvNJN6ne+EzouQ+1l2JIM\njb+lrONbId9nJMh8Cv2RyEM/wGqF/Hyoq9M6DboW6FcZMGA48+a9zvz56jRmsXj0/V0nQZNpPZ72\nTG8XPc8d4raWW8m35lPXUNfVnCvsa4EBgwZw2xO3MfObM0lOT/YpSnL1TpvKTHEN2UeCJ/oSeQon\nKnuu6EsU8wwiIZqUFOC+P7Zvh+XLvSNToJ0Kcyg77dGlpCxTLBx8tJScsiQ4e4vviXwu2umwCOxo\npm+a18OWQZonb7YOUI/zGrAdeIfLl19g2bKHwgpzBzztHkM5DlmoAuPlwKfAb4CJqJTJ3wMPd4Ll\nNLa2Y9TVFbF6tTmsKMCCBfUcPryCU6fuo6npNdrbt9Pe/iJ2ez12+zygEveFm/w8WG6Bu3Pgzsmw\naALcmQN3nwfLr8OKAjSca+DDn33IqVGnaFreRPvKdtqXtWO/ZMf+f+3qIOH6nJrwFJYGSDdheqzX\nqq4KHiTy0A9wVU/PmdNEVVVgYaf7789lY4CWbddJcNKkVCoq8rSf5GwV2zhlPQuHL2TO+jlUnaoK\n2J52/+33s/HvtA26ivom/XYSFZkB0gDdfCLwRF+ygI/wzfG70E/UyR19MVXHVSRLD5EqX62KscBP\nUavxg0ArMJjU1Cs0NZU68+jRiVS52lofeWQdW/9kwnF3s+dEbgBeRfkoCQlgT4BTjrDtBOwoapwJ\nmzJhwMcqatJuVBGH65fCgp9D5QNw6SIkdEKHgeqBJm74t1n89IFng1boBzzt+hd/pqJanO9Ge1rn\n0mpGJoevt7B27Xrq658FclBO3n7gNPB/UN6X6/7OgSOb4chUlGemXTVZ1hFI8lOxf8t+mmc2K9XN\nD4A2lCbHElR77SDU/e0qDDYQNN3EgDKMxjFhvddwkfkU+iNXrB/gqZ5ei5qU6S/b+hE5OT8IS7Y1\nnBC3Oxw7sVqtORG2p/nY60UnAlf0pbl5HWfOfIvOzv9GORDxkb91RV+a/9DMmT+foTO/My4iWXrI\n+XquTVepc/VaZbS3P0pKyvdpaV6ruh0KqiN+P65USe2QeaTfW0XDvnLavzwD93T6DavqgNeT4c0k\nWNISlh3Ne3uyFaYcQRWE5ng9sB+uHIYPD0N+vZ+A02Vsm0ws/GHwlFrAe1sr3RJC3nrLhjL27Qqv\nnVE5SY+iRN4eBXagxoNuQ6Ujc5yPZaHWin9XP9BkK0zpGto4nnqQfGt+wHbGfWX7VHRhAerc8hvU\nUDOXhLerBXaQ8/97NN6/iwQg8VKvVV0VPIjz0A/wDcfORC3qz+DK05pMneTkbAlLtjWcOQw+4dhR\n+La2tYHJaCLn0fBkW3vTicCTh/8VNptLL+PZsAYMRWXPS7nOZovfgCE95Hxd12bVqlRKSjaiJXV+\n5cp6Rox4iZQb/5OLwxro2D8Q3rFDgoEEQzKDM0PL+Xo2RAtgYdVDqyhpLdEWUbqrBfaOgP0ZsOsc\nhgGtmAakBJQN1ry3j1icY77/7Pt18sGUAZadmrbt+c0h1RcD3ttaapQh6jda249RWZnvbme86SaP\naJm/Gurx44moyNCzwCuo1OVNqDXB5fBtRhVi3IQ7Tec1PEypfaoojDHFyNJvLHWLlvnrJHxR94V6\nqSxUEWQqytn6AI/Dtxx4yfn1EGqctH/JW29dYfFiG4WF+khN+7TWDsantsRw2cBbU95i8fOLKZxT\nKHoPYSLOQz/ANxzrL9vawZgxy3jrrfA2oHBC3GWH3/DtjV/k9ZQOGLNrDG89+FZ49nrhiSCaAUMx\n2YvzgCE95XxDjRcfMuQZPnv/9ZjtuO2FElH6cghc/AzoYGLuMj77LLDtwPd2Lj5pqslWmLIf9jYH\nDa+HSqkFvLe1ij9DbKiOK2NQ7Ywd1NTs5403VvDee7+iuPhF91RSl2MxalQrlZWuz+lpVGGFAd9C\nYDPgmluSC5Ofhut3Q9mHcHe7T6SloRZ++PAPee8P71H8XHEXnYSEjgTPdbLhUZn1dohSgWvwtHQH\nVfK0cPri32IyrQhZrBku7ijf5mbOlJ+h825PJKuzo5PTtacxvWDq1gLtvo44D/0APUc+hxPinnfP\ndt1SDb1xYp3ezkFIez00YCgaQt1rx44lku9UidbjOoYUUfIalHX+7JmgrxX43r4NWIV7eNwRCxzZ\nA9f+Jqb7POC9PQb4E6rGwZVuCSGuRpvLiVbFy/X132P27JVcuvQ8rmiCSx48LW0HMByPw+CKuPhH\nXlz/L4Ij98LJT6AgwFC7lnpmL57NpUWXugzQMnQaPC9pwOMI+TtErv8HUuN0K3muB8wxjXz3x/U7\nturTVZSMLelTszx6K+I89AP0HPkccA6DV8hez1RDlzkMOofsBX3peq95z7tIxG6vISNjTdgqgaGG\nkTU1+N1r3vMuDECjHf6cAc0/Zmhu8PY+s9nMmt+u4Ed//jvOnm2gpaUNZ/Wl8z0thiODofw6DIM/\nozPtSkz3ufe9vfvV3Zw4fYLEjkTaO9rVa24HQ4IBkmFg8kDaXm9TE2kDSmN78y6XLv0arfTR5cs/\nISHhX+jocDkME1FFk/7ttV7/N2XBkL2BIy01KMdBY9PtTO70XKdOPI6Qf4TB+//+Sp5twLlxcGkf\nnkiD7yyPaAbXac7fWRHgPfoVaIukdXCkVbMf4Cvw5E9k3QFWK6xebebcufWMG/c6w4dvp6GhhE2b\nYMSIQozGfCqPNOimSmct94jtpBamYiowUTewjt/t+h3X3XwdAycOJOvOrG4XjBK08b3X6lEr8X24\n2hnt9r9EpBJoscCGDTYyMtZQVbWUysp8qqqWkpGxhg0bbNwx30tM7DLqxDoRpf54P/BwG1hKIH0G\nU6eOCWrLaoXXf/wgOWXbadtihDcHw85OeNMMfy4A6xdQfhxM19F53xUV1Y/hPnfd23VT6rBdtsHt\n0G5qVxGHh4CHofMfO+lc1Mk1A6/h5u/dTGZtJqlbUz0iVvszlTT25F1+r/452t1AAEtISxuASuzn\noo74j6MiLN7tta52230w4NPgQ+3OElT4y32dvFVmx+DbXutqtz0BpOBu6WYeYDfBwrFgWa3SRoB/\n1DTUvaIV5bJMsbBh4QYyPsyg6rkqNX8nzGiS//e6RL4yPsxgw8INV7XjAIEvY3cwHTh48OBBpk+f\n3oM/Rt/HZrORlxc41RDpLAZvfOdlOIV1+BLSZ0BBrWaVe6SzGHxsuUR1fKrbY3tdQT9877VXgAK0\n62NKKSzcFjLkrH1/qe6NnJzHefXVX/G/bpmJPd/ZCpiLdmj/BKxkJdYNwR3M+vp6xs0Yz6XFDV3u\nMbbkQGMpDL4V/rlCDaQKEF7PORz+/egu+vwc5fho/fwnoTC50B0ynzAhn8rKdpRTprVM56O0J7Qx\nmRYDdpqbH0UVTz4K7AYOo/S/24BEDIbBJCUlYE//mM4hzcoh0zL3MuoxLZrAUGJQ3UKDUbdFHnAM\nOAO04JYBN6QY6OwAGAjtg6D5MrTd505V+NJBrlcdS6h7RWud67KmuN5HgGhS7q5cPtv7mfb39rL1\n6NChQ8yYMQNgBnCou+1L5KEf4Eo1FBZuIzt7GZBPdvYyCgu3xeQ4QKC5CNdB4yew6S7SSgbDy5C9\nI5vC5MKYfqFEQrb34y0rbTC8Rawy3qHmbsz7xzW035qqTuBVhqAFjJ/+z6eh7T21VjkOgQSKJk1X\ndRQGPIqpn+ORWrdC+jvpEd3nbnnmCGTIVXrIlW7Q4hLBFLKGDDEyb95mhg59l4SEBOAJ4C2giYSE\nYUdGK5sAACAASURBVAwdehdTprzDtGkfsHjxe5iSx3jSDVq0BTGXAqahJjJrM0l+PVmVWbwLHAeD\n0UDy4GQyZ2QyZc0UhtxvhnlzYd5CmH8j3Hkd3F3tF3Fw4Rs1jWZGi+b8nTCjSbIeBUdqHvoB8ewO\n0Kyud/eDJ9CZlsT4qeN16Q4QCdnej3fnxoQJR6msjK1Q1/f+8q2fAAftf6lj3HXTqKzcARlfBUNl\nIHOcbwxdqOtzj/nXT3QAtktgGAWdlR4Hwq+bqOOVjojuc3fRZwQy5Koz5HZUWqGrbovRWIvDEVjI\n7I47ctm4MfwOm1UPzaLkYoW2bsspMF424ggiyLV8wfKwCg0nTVrK+QrvaIoNlfr6Ph5HVFuDJFSn\nj3d9hPt7/NeUCEany3oUHHEe+gHx7A7QrK4/YnFOGIRR4/M5+oI+o7N7k2CUEBo9CnU995drnLfv\nTJWGho9ob38Q+Mgjex0g5Dw0PfRy5r7HusxXwLmJNMDW9qCKnwXzC9hoCb8i311gHKId07sA09MZ\n8igqD+DRbUlLO8uOHRv55jefiEn4yxt3Z8icauW7eRUypjnS2PGnHXzzkW/G3BUVfP7OM8AZsrOH\na2qqRNNVFnT+zgfAZcjO0i7QlvUoOJK2EIIS7VyEqGz14JhuqxUWL7aRlbWGtLSlDBiQT1raUrKy\n1nSZJqqLvXIri59fTNadWaRNSmNA7gDSJqX1qeJQPQp1PfdX4DHoly//hGuu+UdoGxNzoa77Hgs2\nzvuuy/CKqeu8i5POjXJdZO3D7hkmEYTMzWYza9ZsJjPzXUymz4FEjMZ2RoyYyZw5u3nkkbmYTP5T\nSZeRmbnNLfwVCWazmTU/W0Pm+UxMDSYwgNFgZMSEEcz5wRweOfIIJovJXdCZtDmJ1K2pZNZmugW5\nwkF7PfGdvzNu3OucO7e+yyyPaNYizTXFb/7OuIfHcW6eipp6/9715HrUF7i6370QEj3mIoRtqwcF\noxYsqOfJJ1dy6pTn5Gu3d9DUVEZysn5iNW571y3gyRee5NS0U+7aL3uHnabaJpJfSO4TYjV6yF57\n7q9gIekldHT8jBGDxnDmFROdX2+OWsbbfY8Fk4P+CvBhCyNPjaThowbaOtsYYBgQULkyFO5T/VfD\nl3O3WuH1181Mm7Zesy3x0Uf1E/4C+M7zVjZX/JFLI5KxX5sGHal0Jhi4kGTikwoDK3If5ZePWlTd\nZQy4P+/JNfCVEqis8Job0oFxeCKG+xZj0VB6jGYtCrWmBJu/0xsF7HoT0m0hBCWenRyatpbkqSIl\njcU1ntXNq1atoaTkPmLpHIjInpbssgu/yvveiv/oZ2/Z69zcorCkhT33VyLwdsDnjR+fz7qtFp/R\nz96beu49uWFJC7vvsYvVanJlAHLeyKFqf1XwHz4CXPLju0uV3oMRIw6jg9HXjea22bdRvC6wpkk0\n+gaR4tPJMPkLmLIJdey+SNLAT5k7dzrXmK5R9mLQN/B83t+D9H+G5eF3MkSzFsWypvTkehQOPd1t\nIc6DEBLPnIcKP9Go8ISAIra1rsgtgesWjAqyuOrBpElLqagI1Bbn2zKmi725k6i4oyKslrH+jMsB\n2b37ThyOj4n39beWW/n3V0o48vxuOh8MkNPugLQXc3mh+DNdaolcYkO1jbWcaDxBi72FZGMyrY5W\nUpJSuD79ekaljwq6Kcf7d7Cr82zzmnFxibTUSxR87R5dfg9tNhtzFt5G1Y2fRew8R3MdYllTemo9\nCgdxHsR56NV0x6nHbasHFd1UX33gws/x4/M5elSfwlCACXMnULkoQOcAMH7neI7uPaqbvd6ORH4C\nE0zfICXlcUaM2ExOjjmm30lf57ke0udoRgVSPkhhxKoR5GTmRPV76VpP3v1kEpdXR+Y866EwGcma\n0tsVJsV5EOdB6AVI5KFn6c70mNteLw5Je6PtWLnaWg8AV8jOHhpTJMLHeTatUqqd3o6Vq621DnBA\n9sjYTuDiPMdOTzsPUjAphKQ7ow/QMx5/dxaGQvcUY/Wlz02PseGR4Jqy2PqnVi6UXoi5KDKedNU3\n6NrW6hqKtWfPiqgcLZ+22wFlvmJWGm2trqFYe5bsicrR0nM+jtAzSORBCIvurHtw2+vGXGN/Pfl2\nx+fmXTh5/vwntBiOwoALdBoNpCQN58ap89j6W/0+N2u5NebCyb5E15TaGtQ8Ef1SPD7RjYwJ8B2v\nqMBOwpbVDtteH0ob9VZ6OvIgzoMQkmg05WO21wOa8v3NQequz81j51FIfySiCvqo7fXimQN60zWl\ntpTAMy+iS7H5OM+Dv61me7he/veEPQ8iInt9JG3UWxHnQZyHqOmusLT7VDK5xilL7c15srLOcMMN\nubqlE3riVNKXQvzh0l1FiG47pue75spd6Pi5XW2nVt/P0YYailUa8PnRFve6nOetb1i5vKxWXd8m\n1FyPbwf+vmjrE/yd5xRSMHQYwAh2g90dTRoyOxf++nUufFAVdUtwJPSVyFZPOw+SWOrDWCywcKHv\nadlu1/+07M65HrkJjiz0auFyQLuRxpQrbHh0g372ekBTPp4S3y4C6yL8L3Jzf6/bIuiys+vLV+De\nT/2EeAxwzWAYP5G3T4cemR0Ob5/epezs2x188JNOn9vVNnPAI8b1PeA/UPOsY5MF98c1H6e2dj3G\ntm/B1pvgrkbloxiDmouqPsHdvjq1loZrGzC8YaTlWIsaV+6MJrlE0849byTV8TvOnv0pegm4BXPe\nWxtaOfyrw9TPru+zAm7dgTgPfRjfsLQ+hVNa+Mwf0GjhaqiFvCV5uoUa+6umfHepWLrsdFRnQU01\nLD/lF96/DFuSSb42J2ZbAMl/HQZnq+Ha7vnc+uv9EQhXMenp08tpbn4W+CNKFly/4l6X81xfX8+U\n+wsgPRXea4O7rqipokFmfURT3GuZoiJrrhTU+fbzynHwtuGUC2+56xgtm3Lxfb++0zQjjaBZplhY\nOHyhT+TDPtjO/JnzuXLlinIcNH6WatQ0zf4U2YoWcR76ML4jal3E9kulhbsS27RWOQ5x/qXqr5XY\n8fi8tNItly6t5/TpZ8FUAMtrNT8vCqo59+aViN+D1ontxDXH4bZWNWioGz63/np/BMI1yXTSpFQq\nKvJQ+tkr6Dpts5ScnCcjHorlzdq166l/ZwPwNAw+BpkVMBTtSZSnIOdw+EOxNO25xl5/QNBx6ww4\nBs1aD2pP0wxFfX09UxZMUU7Cnfh0kBheM8A/BfjGfhjZihYZjNWHUemE2QEene18PHbcA5D8W7i8\nGeUMJ+thzzVISIs+rCkfj8/LYoENG2xkZKyhqmoplZX5nD27Q9kZcCXEghy582CZYmHDwg1kfJhB\n1XNVVP6ykvY6u3q9CAY/xUJ/vT9C4YkAuiZRbgOWoWoglmE0PhzVUCxvPPdookpLusaSL0dFIKzA\ny86/X0/EtCz8oVia9g6XeaJiLmewCdXh8XsvW0mVcO9imOxfcxXe6Hd/1j61VjkOQ1Gq6L8HNgEf\nQKex86qKbEVLPF30x1CNyP8H+P/jaOeqJZoRtdHgzrlevNQtv1TuQUIxjv/tbcTj89JKXdnt+cpO\n4mAwnAtkjmuvGxydPVeng/PE1vlyh3pbc4nbCdWb/np/hMJ3BLr/UKwOxo9fxltvxZb28tyj7b4j\n0F2TKD3mSPp1Mu889FJMqUp3Cso1rryJAKPSHbClGhr96w2iq/EoO1wGc/Dcr962fstVFdmKlnhF\nHm4EHgA+JfBQUyFGumtctivnajQ0d8uIWpeAT6zjf3sb8fi8fFMhrtXOaac9OejndaUpOXJ7rjCz\n9yhr18KvdUJ9GYxvGnX93MxmM6U7SilMLiR7Rza8DNk7silMLuzXLX56jEAPhecezQ0+Av0U2Jtu\npagoNkfNnYJyRa2CjUovqFbF2j5E974dOALbGslVGdmKlHi4UGnAS6jmnifj8PqCk+5SRXTlXFc9\ntIySUyVxH1HrKqbiQV1eLih6TIYMl1mzcqlIeBq+slejA8LExdtMWMutEbWBdVUfBHBuMm2zIIiK\n5R3zI/+8NDsdXAt/Fl1PqCdgTt03eOtB/QrM3HUX82DcTeNIakhi9KDRnDOeY/Wu1T0+cyBe6DEC\nPRSeNaUImu+FLQOh4IrvCPRTwNYcaH6RsrJvxWbPpbTqilpB4E6aTFTqtBlifd9GjL5j2V3y2zaU\n712JygZFOfr9aiAeOg+/Ac4C3wPeQ/Wf/ovG80TnIUb6qypid9KdAlg2m40bb7yX4xeOqUJGP4Gj\nMQfGUPZ2WUT2tAd62VAFdU7RpoJqzUUwms9LcyZBE9rpij58X/RGusPR9VlTJv8FvvIYVF6j0eqb\nC/+vvbOPj6q+8/07JCQ4QXlyqgjUxLFQQrGgFQnqYg0ISGVVVJyWbsN1W+5uu9vuiyXe1bo3vYtt\nX6GXvXetLXjXTXRtpyiiRWwBU0WjBFJ5qNRhRQMBgjyMGkASCSST+8dvTuYhk0kmc2YyST7v12te\nITMn8z3z48w53/N9+HzfL2b8eU9CA+PazylTamEEppQjhqYEjw0m6/RscnJI6HMv+e4SKjZVmLHs\nofLb1nfyU6ASMo5lkDkik5zMHOk8RGB35OF+YAombQFKWSQVzQNInFR1rID5/zo/eBzc+1bUDog6\n6uLuWAnPg1sECuq+VAxfOA47hkDlBTKy4KKcHEZeObLH/19ROx2sdMWbkPFSBm3D23BkOfjKNV9h\n3aZ1chxswooAhtc62IvT6aS6em1QO+aFcZjsc8R95rsAfrIKnknc3qZq/v5//D3rnv4tLa3noK2T\ngkU/0DqGxYsLEv5OlpWW8av1v+JC24Xw9IXFxcBd0HakjcU5i9WaGQU7nYdxmOLIWcD5wHOhNbRR\n+cEPfsDw4eGFW263G3eyFXv6Aak4mYTZS2E6IVVED/tb9KwNrDPcbljx83c4lqCQUmh7ZkODlQe3\nnB9r2qIX/nyezH1fJDf3q0ydWsIllzjb9yOer1doe2bDxQ3hPf8R4d5BgweROyaXqQuncsnIS/p1\nGqE/YolFwUquvho+/ng5Z84kLzXaLhY1EYbl3sjHr70B9eejp9rqgfMzbekiqzxeyaWTLuVY/bHw\n9EUkadKa6fF48HjCO01OnTrVS3tjsDNtcSemdyi06isTc5/SCuQQHolQ2kL0OtHD/kF6KvXbqT2b\nRhFbUsKvvrqbw4ePAv8OuDBDCOxPwVhSwq9Wv8rhI4dNPngE8Dzh4V6lK/oVqU6N7tu3j4LCKbDw\nfPQ6izPVjB//gC3fyfaUyalak77ohHQdD97baQs7uy0qgS8BXw48pmCGzT8T+LdSGCLtSFXHSrs9\nK+wf3VyXHSseD9xyi5fRo2dRUbGQw4dfwSjsvIAJ+q0gvPMiPAUTL569Hm5ZeQujrxlNRXMFhxcc\nhiWYjoqn6bQyvnaqEQ0TfRsrjVFcvJ78fKMpkZ9/B8XF6213HAD27JmI48IM+M234N8K4LHx5udv\niuFMNTDKvi6yQBo263xi38mBip3Ow1nAG/J4F1MX+0ngdyHSjlS0v4XZ66HAkccDc+b4WLbsb3n9\n9QW0tq4m6CQ4gZ8BVwKFnbx5fCJUnr0e5qyZw7LvL+P1n7xO6/zWoJOQC8wBhpMS0TDRe3g88MAD\nTt55ZyWnT1eQlTWBQ4fgqafeY/ToYkaNWs6cOT48kdpNPeVLHkZ97wgs3g5f98FVh2HUezDmP8E1\nGqaM4NStXjx7Ezfonuxm89LNLF6wWK2ZPSDZCpNWB7gQaUlZWQku10OYCUD+wLOW1O/DlJXZe/dc\nVlqGa7cLjkSYOxJoAyuNHh0oKjpJbe0ijh1rxFzFo+Wg7ROhKrqsiNonajn2yTEYRnQnIVZFk5T4\n+gVuN2zYAL///UlGjFhES8tC/P6NtLVtoLX1JT75ZCG1tYuYNcueIWvuyW52/mM1V26+FJ7JhmvO\nweJW+Ebgcd0Zsqtg1uX2Dafq6XdyoJNs5+GrRG/TFCItsDpWxo5dT27uHQwevIDc3DsYO3Z9wlK/\nUe31UAAr2BXyEaYUPNpV274UTLsYVBOQ3Ym5WLcGCvf2K6KLkSWWEusMp9NJYdG44FyWiJRY3Vfq\nbE2JDVTRsUTRt1sMaPpKx0qwKySToJMQeUUvALYTPXURXwqmXQwqVDo40lyoOFQkCvf2K1LZleTx\nwMYt78ADnWxgcwfEQBUdSxQ5D0L0AcJmDjCRjiOZfZgwQTHwHxgHoucKhGEzBy6lo5PQCFwAXsSM\nUpYSX78mVXN0wDj0pT9vYX+KUmLtDr2IC03V7GNYhXPjxi1n6ND5ZGcvYOjQ+YwbZ3PhkmUvUDg3\nbt44hk4aSnZBNkMnDWXcvHHMWTPHlsIl0TVhMwcoAkLrNE5iFCW/CVRhruhfA2aTkTGZ0aN/HXcK\nJmzmQD7wB4I54bMYRclrMJ0X/4WZY/E0ZKzOYHTd6D49g0R0pK91JYnko/+BPkZR0UkeeeR+6utD\npyj6aWysISdnEbNmrcWc8W2yd1kRjzzxCPVT69ulAy74L9B4tJGcJ3KYdbd9hUupJFRo6dw5OHQI\nrrwShgwxz8UrpNSlvRChpXMt5zh0+hBXDruSIVnGYFeh0bCZA5b0NM9jWjM/BB4nGIkIpmDa2qqZ\nM2c95eXxHRMdZg7MwPRMvYGR7p1PMBIRMsui7Ugbc3LmUG7jLAvR+wSPPxftImTtKbRLaWjIw+OJ\n/Z2JR167/fgbSVCEzIqEOaBhVEOXc2A8ez1UbKvA+6KXhsPhirjpJDPdV0nGbIvuIpGoOLAudrt3\nL6e+fiHRq+2rKS5eb4ucsnWx2/30burH1EfPax+B4pziPivdagktvf66l4MHM8nPb2XmzALKykqS\nUiRlCS29/vbrHDx1kPzh+cz8ykzKSsu6tBcu1nMVpjXzXUzu4DDm9j+6pm9BwR28++7Lce9r+xyT\n4Zggx0lM5OE08L1OzVFQWcC7b70blz2R3rTPZTnkB1YRLkK2nby8f6KmJrYUeTxzZHw+H9cXXc+h\nhkOmLbgHc2DCxsf3QxGz/iQSJZKI2w1PPunj009fw3zxohFfL39Me5PdPDnrST5979OYvfxPedb1\nyZTJyZMnKSxcREXFQg4e3Ahs4ODBl6ioWEhh4SJ8Pntaz8LszS2kormCg/MOwtfh4NyDVDRXUDi3\nsEt74WI9/w14j/z8DIqLp+ByXY3d+eiwCvSqfPgI8kfmUzy3GJfLpRbNAYbT6aSwcCrGaY3suJhB\nXd1Pu+y4iKdjw+l0Unh9oXEcethxEXV8vETMbENpiz6C5bWfPj2CVBQuWV776YzTMS8UbYOuoL5+\nYZ9LmaRyIBZEnMhCzY2DWmq7HIgVOXNg8GCTZvn4YzhxYj7R2yGgp/noWBXoJ14/Ecuc8tH9EI8H\nNm48QGwRstgdF/F0bHj2enjxrY1m1GI0xsArz8fuuIg6Pj7k7yM7NhJNLQ40FHnoIwQvdtmkonCp\n/WJnTSeJbg5as0hGr3fYPiThzsGcyJIfwWm3t6cmZgTnlddrYhbCghHr2bABtmyB994zPzdsgHvu\niV8ls6uoDsAG9wY2uDew5ZtbeO9777Hlm1vY4N7APTPvkSLfAMPthiuuSKzjIp6ODfdkN58fdUXM\nG5fcYbEjXO0dQ538fWSEzIq2jnpzFB/8/AP2P7afD37+AaPeHMWTs56U4xCBnIc+QvBilxo55faL\nndXLH4164Lx1oUj9BTcR+eNUtp5B1yeyIbnN1NYuor5+IY2NG7lwYQONjS9RX9+1gl9PVDItBcn6\nMfU03tvIhUUXaLynkfox9dQ+URtTwU+KfAOT8I4LH7AcUzm7ALidAwcOx0xfxt2x0RKyeSOwBfgV\nprPnGThw8EDM9GW8HRuJphYHGnIe+gjBi10J4W16BH6+ZauccvvF7kbC2/Qsc4cxU+6arAtF6i+4\nieTW06317KMTp3qs4NcTlcxEojo9VckUfZvgHBirNXghYOqFYCMtLb+I6ejGO0fGf26wuUGxWoMn\nYobGBh4tt7fEdHTjnSOjGon4UHKyjxC82DmBtZjc4QpMXqGFrKwPcbleobLSaUuLYfvFLhe4F9Mu\n9QbBiuVTWVDkgvcr4c9uknrBTUJuPdh6Fq1rJTkDsbz13k7VGDk/hNhplM7zyT1RyYw3Hxxmr4cq\nmaJvU1ZWQlXVImprxwGP0rFeaEbMeqHg30cf7x0pYjbo3OXw3DnIqw1Obw0110W9UFlpGVVzq6il\nFsaEmOtExCyR78RARJGHPkK4125dKF7GeP2PsHjxbDZvtsdxgAivPRfTy/8NjNf/F0DTYnhhc8Bx\ngHSaQNkd0m0g1qiLJpFOaRR1TIhIrAhXVta7RHe6IVb6Mt4I2ZkrG8wNyomsHqUv442Q6TsRH4o8\n9BHi9doTtteZ114PrBsDTT8NbNkL+2CD/LF1ImtuLqOhYUWYYI11IrNTJMo6kTW/2ExDdbhgjes7\nLt594SQcsLdjIhbJjOqI/okV4Zow4Qr2x9CO7szRjTdCNvLo5Rz3boRRX4SM/Z2Z6/SiHm+ETN+J\n+NBq9BHS4WI3qDUbLh4G8wfD/rn43xnXqxfcyuOVuJ09M5huA7GWbF9ORYd5FRapT6OoY0J0RjCF\nmlxHtz212Jqai7q+E/EhhUkhUkw0md7Bg5tobvbR2vpLjAMRHlkKVd+Ly1YnEr2XXH4Jpw6f4rOZ\nn0WN6vR19T2RPJYsWU5FRfJVbttVVY9dBO7fJV3lNkxVtQ98J6QwKcQAo6joZIe2zKamLbS2/pSh\nQ5dy5ZXzgAXk599BcfH6HjsO0HlL5rH8Y1x20WXc33Y/+Zvy4deQvymf4pzitDtJivQiVfVCVrR1\n9LA8Mp53mA6vJLYGq4soPhR5ECLFdHXnNnr0etraVnL+vI+mpjIuXDBDiIYMiT5EKKat7y6hormi\n07u2sUfHMvHrE9l7ci/nz5ynaWsTF45fMNoTg4ZoiJCISl+aC9Nf6e3Ig5wHMaCIZ7KfLfaipA1a\nPvPTljsaxhfA+8UhHStgDbJ67bXykCFCV2FqM8wgrIyMD7n88luZPPmfu9zfSTdOwjvb2+UQq7Ah\nQiOAbbQPwso4m8Hlky9n8r2T5USIPjeRtr8i50HOg0gh8Uz2s81eJ5P9eM4FZ6qJnAcyfvwCZsyY\nEIhOXIUR+I/c3+24XD/scn8n3DiB/bd1UqkOjN8ynvfeei8YoRgBrMP01ffDSYTCPtLBER/II7Z7\n23lQzUOa83drPFz67VvJ/PLFZORlkXFVFhl5WWR++WIu/fat/N0am0dZ9nPimexni70YqnXcUwsO\nKz9syf3ezv799Tz11CaMs7AS4zh0nGTYnf2NqmxpSf0+A/sP7mfopKE8s+EZ4yxsIyjII5U9EYNo\ntTvdlVTvkb0EJNWF/ch5SHP++03XcPqFavzXn4XiVviWefivP8vpF6r527+YkvJ98ngIG+KUlbWA\nzMxZZGbeQmbmHLKywoc6JTqqO3KIU9bELDJdmWRelUnmFzLJmpjV7VHdaTUQayyQXUO43O/LwC7a\n2vIxV+/E9reD0Fao1O83gKXQeE8jLdkBgRwfSZsnIvoX6eSIy7FNPXIe0pw7v76IljvPRf3CtPzl\nORbcf2/K9ynyjqO19d/x+/34/T/F799Ea6u9dyCRdxytX2s19m714/+Gn9b7W7t9B5JuA7HIbMFE\nFyy5X2tjq5c+sf3toGzZWWTBmp6aEdOcVPZEO2nliMuxTTlyHtKcwycOxbxzPXziUEr3B6LdcXQW\nWrfnDqTDHUcCofV0G4iV4f8Q2ETHzgtLjjyx/Y1sP+MDoh9P1vTUtpjmpLIn2kk3R1yObWqR85Dm\ntA1qi/mFaRvU2Zk+eYTfcfiA10jmHUjYHUcjcJAe34HEO9kvUbqaz/Et9z2MH2+lKEKxpqdeCmzv\n5A263l/3ZDebl27myO+PcPbds4y/enz048mannoRSZsnIvoX6eaIy7FNLXIe0pwMf0YXd66pb5gJ\n3nFYufoRJPMOpP2Ow8rXXxTTXMw7kHQbiFVWWtbJSdianpoLfBMz1jTx/e30BJwLLITM45lk/DYj\n6YI8ou/TXUc8skYqO7tnNVHdGZQXWR+VXZDd7XooER9yHtKcz192ZedfmPrA6ykmeLGz0hXZBK9I\nVtfAfGABcDsHDhxOqHCy/YJnpSus/DwEOwd+BfwaeAYOHDzQ6Yki3sl+iRJLtc5xh4uiH6ynrq4R\n48xE4gS+yejRcxg79sWE99ez10PDRQ2dH0+n4MZbb2T2itmM/VAqeyI23XXE7erK6I4jro6M1CGd\nhzRn3759XHPztbT85TkTqg+Zbpn12yG8U7WLiRMnpnSfggqJ/wJsxITYE9ck6NSepUHwBmYk+CuY\nboE+rkkQ1JxYTrBoMnRiamLrFs3eDbNuoK6hzoxYjzie8nbmUfNKTVqvmUgfLJ2Ht98u49Sp3fj9\nHwMtwFBgCBkZbWRk5OD3nwQeB2ZEeZfuz8KwdB7efu5tTh08hb/Jb47dTII/W4GvkfQ5GOmAdB5E\nTH7xxh6G3VXIoLeHwlOZ7Y9Bbw9l2F2F/OKNPSnfp+Adx3nMFdvKzy+nY9dA9zUJOrVn3XG0Bt7W\nys+/Qp/WJAgWns7DpCjWA3dgIjZFOBwP2RoNefBHD1I3rQ7cwH8BHky0xgPshOZRzYosiG7jdsPm\nzU727VtOfr4f+CXwDvBbIIO2NtN9BVcAhZ28S/droqz6nX2/3kf+8HwT3PwrIAfjMHwbuAR1ZKQI\nVZikOY8tdfPY0vRSTbNC/4cOzaOlpY1gfn4e0ec1gDlJrOiZvUDo/9CKQ7S0tZj8/L3AM8Q+UVSm\n94nCnDQthypyPLifvLw72LzZvihAzZ4amI1xtG6LeNEPIypHDCiFPmEP4d1XEN59BYm2G3ewF9p9\ntYXgDQSo1TiFKPIg4sa641i8+KsEC6acmDsM+wsnrTuOxQsWB/P1ucDFMc2l/YlCrW6iP9B1OirL\n3QAAGK5JREFU95W9XRlh3VcnCL+BUKtxypDzIHpMx4Kp5LZudSiY6uMnCrW6if5A191X9rZHh3Vf\nNUaYsvRKoqFWY1uR8yB6TGTnQkbGh0TvGgA7NBQiOxcyzmb06RNFumlOpPt6ifQkdvcVBGui7GmP\nDuu+GhJhyqqHitGRIexBzoPoMVb64siRlZw9+zInTmzB5fohydJQiBQ8OvGnE122bqUz6ag5IUS8\nBJ1gK30R6hT7MHU9g4C/BSYDUxk0aB4jR/asPbrdCfYBo+noEDsxTWC/DDz+HXK8OTjcDhUE24ji\nlMI2rEhEc3MZDQ0rwkb0WicJO0f0WpGI5hebaagOH9FraRK4nelbAKj1Ev2BsrISqqoWUVtrpS9K\nMOmLZcD/xkQjygj2Uu8gP/9hqqtLetQWXFZaRtXcKmpba+EmjHBcETAceD7w79sJa90eu3ssf/jW\nH9SGbCPSeRBCCNFjLL2HV1+dR0vLHwmOZ70X4zgkpu/QwV5A7+HVFa/S8kALNGEEWGsZMBoPIJ0H\nIYQQfZjOu69ysUPfoYO9yO6rXEzrsTQeUoqcByGEEAnTsYYnua3IHWp4pPGQUuQ8iAGFz+djyZLl\nTJo0nwkTFjBp0nyWLFmOz9c9ff0e2fvuEibdOIkJN05g0o2TWPLdJUmzJ0RvEdl9ZcbfJq8VucO4\n+VMxzakV2WbkPIgBw+rVJ8nLW0RFxUK83o3s378Br/clKioWkpe3iDVr7L2gr966mryb8qhorsA7\n28v+2/bjneWlormCvJvyWPP6GlvtCdGbRHZfFRfPJZmtyJHdV8X3FKsVOYXIeRADhh07VtLUZMnm\nhg7DmE5T06Ns325vq+KO53bQdHNT1NkbTTc3sf3Z7bbaEyKdUCty/0bOgxgwhMvoRtLzAq5O7YXK\n6EaiAi7Rz4lMYyQyTr5b9iLSGBonn1yUBBIDBs2SECJ1uN3gdkcOfEuivcluM9htaUrMDXgUeRAD\nBs2SEEIIe5DzIGwnXTsaNEtCCCHsQQqTwlZWrz7JsmX3BwoTbyCoEVuDw/EQq1atZelS+3Kdq7eu\nZtnSZaYwcSxhkrSOKgernljF0pkmjunz+SgsXERt7aOBfRuEJZfrcj1MdfVaW+VrfT4fhXMLqZ1a\nC2NCzB01BVzVm6ollyuE6BFSmBT9inTuaFABlxBC2IOSrsJWTMdCZw7CDdTUrLDX3p4amN3Ji2Og\npjLY0aACLiGEsAdFHoStqKNBCCH6P3IehK2oo0EIIfo/ch6ErYR3NPiA5cB8YAFQRF1dI3Pm+PB4\nbLIX2tHQCGwBfgX8Gnga6k7WMWfNHDx7bTIohBBCzoOwl6Ak7cvAImAhsBHYAPyBpqafUFu7iFmz\n7GnbbJek3Q88B0wEvh54/BU0zWyi9olaZl0+yxZ7Qggh7Hce/gb4E3A68NgGzLXZhkhjrI4Gh2Ml\nsIKOXReF1NY+SkmJPV0XVkeDo8YBRUTtuqidWktJqb06+kIIMZCx23k4AjyI0XC4DngVc8s5yWY7\nIk2xJuvl5eUChZ1sZd8cCWuyXt7n8jRHQgghUoTd1WQbI37/ISYaMQ1412ZbIo1R14UQQvRfklmK\nngncC+QAVUm0I9KQYNdFtCt6ErsuoptT14UQQthIMs6okzED3HOAz4D7gA+SYEekMdOmFeD17gBc\nGNEoL8afbAUupaEhD4/HpDlssTdlGt56L4wE3sI0emRgHAoHNIxqwLPXY0SbhBBCJEQyZlsMxpSt\nDcNEHr4H3EJH7e1rgZ0333wzw4cPD3vB7XbjtuuqInoFn8/H9dffxaFDfmAV4XMutpOX90/U1Kyz\nbbaDz+fj+qLrOdRwCObQYc5F3tt51LxSo1kSQog+h8fjwRPR337q1Cmqqqqgl2ZbpGIw1itAHfDt\niOc1GKsf4/HAsmV/x7FjbmBGlC2qKS5eT3m5PVLRnr0elv3DMo7lHTOuayRHoDinmPLHy22xJ4QQ\nvclAGIw1KEV2RBrhdsOIEQdIRccFmK6LEZ+NUMeFEEKkALtrHn4C/A7TsnkxcD8wE3jUZjuiD6CO\nCyGE6J/Y7Tw4gaeB0RiRqD9hMtCv2mxH9AHUcSGEEP0Tu9MJfw3kA0OAy4DbgD/YbEP0EcLnXESy\nI/C6jfZC51xEcjTwuhBCiIRRLYJIGtOnl+BwPITp3PUHnvUD1TgcDzN9ur2S0dPvm46jymGSZqHm\njoCjysH0+6bbak8IIQYqqei26Ax1WwwAfD4fJSVl1NR4aWnJJCurlWnTCigrK0lK26TP56OktISa\nPTW00EIWWUybMo2y0jK1aQoh+g293W2hJLBIKk6n07Z2zG7bUzumEEIkFaUthBBCCBEXch6EEEII\nERdKW4gBgWovhBDCPhR5EP2e1atPkpe3iIqKhXi9G9m/fwNe70tUVCwkL28Ra9b47LW3dTV5N+VR\n0VyBd7aX/bftxzvLS0VzBXk35bHm9TW22hNCiFQj50H0e3bsWElT04+B6QQbjAYB02lqepTt28vs\ntffcDppubjIzNkLNjYOmm5vY/ux2W+0JIUSqkfMg+j1mhsYNnbxq74wNCMzQ0IwNIUQ/Rs6D6Pdo\nxoYQQtiLnAfR7wnO2IhGEmdsRDenGRtCiD6PzmIiZXg8UFHhw+sto6HBy/nzmWRntzJiRAEFBSUU\nFztxu220t9dDxbYK6oZug8/nwqBB4M+Ai4fD+AJ4vxj+nJeUGRveeq+peYhEMzaEEP0AOQ8iZRQV\nneSRR+6nvv7HQBmQwYULfhoba8jJWcSsWWsxg1ltsndZEY888QhNU8/CPEwqwQ8cPQvP5cCZYbhc\nD1NWttY2mwBlpWVUza2illoYg4nv+YGj4NrtomyTvQWaQgiRapS2ECnjwQdXUlsbveuhtvZRSkrs\nvag++KMHqZ1aG7XrgXtqcVxagsu1lspKe3UXKo9X4vqOi7FHx5K7LpfBaweTuy6XsUfH4vqOi8rj\nlbbaE0KIVKPIg0gZpquhMwfhBmpqVthrb08NzO7kxbGQN76NzZvtF2xyT3bjnuyGpba/tRBCpAWK\nPIiU0bHrwQcsB+YDd/LBB4dZsmQ5Pp89ok0duh4agS3Ar4DfwAcHP2DJd5fYZk8IIQYKch5Eygjv\nejgJLAIWAhuBDZw//ydbVR/Duh7OAs8BE4Gvm8f5b5+X6qMQQvQAOQ8iZZiuhh2B31YCyVV9nDZl\nGtQHftkGFCHVRyGEsAE5DyJlTJ9egsPxEFANvEuyVR+n3zcdR5UDjmACHVJ9FEIIW5DzIFLG0qVO\n6urWUly8nuzs4yRb9XHpzKXUvVlHcU4x2eeypfoohBA2IedBpBSn00l5+Uquvno0qVB9dDqdlD9e\nztWfv1qqj0IIYRNyHkSvEF7/EMmOpKg+ttc/RCLVRyGEiAs5D6JXKCsrweWy6h/8gWf9QHVA9bEk\nYRseD8yZ42PcuOU8W3EE1jngcIS5IwHVx9LECzQ9ez3MWTOHcfPGMXTSULILshk6aSjj5o1jzpo5\nePZ6ErYhhBDpgGK1oleorHTicq2lubmMhoYVYXMuLNXHns658Pl8lJSUsW3bbg4ePMqFC+Xwpanw\nhUzY4YXKjyHrHI6cixh55ch21Ue3s2cGfT4fJaUlbKvZxsEjB7nwtQumFjQDLvgv0Hi0kZwncph1\n96yefSAhhEgzOishSwXXAjt37tzJtdde24u7Ifo6lrNQU+PF52vho48O09ZWDqwD7sG0g0ZSTXHx\nesrLV8Zvq7SEmj01tNDCmU/P4PP5aJ3fCl6ggOgDsY5AcU4x5Y+Xx/vxhBCiA7t27eK6664DuA7Y\nlWr7SluIPs3q1SfJy1tERcVCvN6N+HzX0Nb2H4AL2Iqd7aCrt64m76Y8Kpor8M72sv+2/Rwfetw4\nDiOBOtQOKoQYEMh5EH2aHTtW0tRkiU19BLwGXIVRrxyBne2gO57bQdPNTSay0ISRuq4NmHkOuCim\nObWDCiH6DXIeRJ/GRA9uICh3PQL4GUa9Mhs720Fr9tSYyEKo1PVwguqVmTHNqR1UCNFvkPMg+iw+\nn4/6+k8wt/uW3HU2pvjgBkwBgn3toM0tzcZUqNR1G2a+11jAidpBhRADAjkPolfx+XwsWbKcSZPm\nM2HCAiZNmt+tyZpWrcOZMxdhruChDsN5zFW+BIhsBz0BjtvJGDGL39W8wKQbJ3Vrsubqras5UHcg\n3FkA4zC0BszdCPwBI4cd2g56GBxVDqbfF61wUwgh+h6Ko4peY/Xqkyxbdn+gZqEMcwX24/XW8Oyz\ni1i1ai1Llzqj/m2w1uF5THTBGvddAtyCuco7gbWB914BXzwCn74Lc/20jYWTGbWc9IP3qJdnb3qW\nVU+sYunMpdHtPbeDttFtJrKQQbC24UagImAuF7gXeAt4o/3jMOzCMN7/4/s4ndE/ixBC9DUUeRC9\nRnixY3yTNYO1DlZ04VOCDsOtmGgDgd9XAi/D4etgrr9HkzVr9tTAbExk4TzB2oZcII9guiIXuA34\nBmb090y4a/5dchyEEP0KOQ+i1wg6ANGI3UppOiUyCEYX2gg6DP8M/JAO6pXZW3vcStlCCwzFRBba\nCK9tuIXo6Qob1SuFECKdkPMgeo2gAxCNzlspfT4fJ058SPD234lpf7AchlEYh+J5TGXjVByOeWTm\nnO5RK6XP5+PEsRPB1MR9hDsLucBC4G3IWJ1BlieL3HW5jD06tl29Uggh+hOqeRC9hmmVbCP6FT28\nldJSkdy0aTcnThylrW0asB0oDGwRWt/wEBkZ53A4RjJixFcoKCihuNjJip9PwtvW0Jm5sFZKS0ly\nU9UmThw/QdsVgXqHcXSsbWiFrOYsLp98OQV/U0DxjGLck3uorS2EEH0AOQ+i15g2rQCvdwfR5aOD\nrZThhZVtwAqMguQi4FFM6mMQJuJwJw7HTlat2tCh2HLLm9Pw1nujy0eHtFKu3rqaZUuXGUGoocAC\njILkc5hAxhiMAzELqAfHmw5W/UfnxZZCCNHfkPMgeo3p00t49tlFNDWFOgB+YAcOx8NMn74WCC2s\ntCSnV2LCByGdFGQCLQwb9iHvv/9K1ALF6fdN59nvPGucgjEh5o4GWimfME5Mu5KkJTl9W8CcOimE\nEAKQ8yB6kaVLndx999rAUKsVtLRkkpXVyrRpBZSVrW2/IJvCyX+ko+S01UkR5LLLFnR6IV86cyl3\nv3m3GWxVaQZbZZHFtCnTKHuzLGhvTw3MoKPktNVJEWpvy2VyHIQQAw4VTIpexel0Ul6+kq1bK5gx\nYwIA27a9xy23FLeLRZnCSXskp51OJ+WPl7P1xa3MmDLD2NuzjVvuvKVdLKqFFklOCyFEDHTmE71O\nV2JRw4YNxihIlhGUnI5dJxHTXmhNw+x2c+1iUcMuGmYGX80mKDndRZ2EEEIMJBR5EL1OV2JRubnN\nxJac9gNv4XI9TFlZSdf2QqdjRhGLyh2U2y3JaWk4CCEGKoo8iF7H1DRYF2Ff4N9erCLIo0c/IiOj\njba2KJLTgW2ysj7E5XqFykon7i66JNvVIgEaMUWQPtojEEcbj5LRkmHsdSI5ndWYhet/Gg0Ht1Nt\nmUKIgYWcB9HrBMWiTgL3Y2obgumLzz7bTmbmX9PaWo2pZIwslKxm8eL1lJd3r3CxhRbz1meBdZja\nhpD0xWdHPyPzpUxa61uDug6hhZJHYHHOYsqXlifwqYUQou+itIXodYJiUdZY7cj0xQxaW39GZubf\n0DFdUR1o6+w6XdFujyxjLnS0dkT6onVWK5kvZ0aVnNaETCHEQEeRB9HrBMWiQtMXkczF5VrFjBnr\nY7Z1dsvelIBYlI9g+iKSq8H1vosZOTNitnUKIcRARM6D6HXKykqoqlpEbW3sWRfgoLx8ZSevx2Gv\ntIyquVXUttbGNjcYyh9XakIIISJR2kL0OpWVTlyutWRlNZCIhkO37R2vxPUdF1nns6ThIIQQPUDO\ng+h13G7YvNnJ4sVfxWg4RKN7Gg7dsjfZzealm1m8YHH4aO1QpOEghBCdIudBpA3Tp5fgcETTcIi/\nKLJb9u6bjqPKoaJIIYSIk84yvqngWmDnzp07ufbaa3txN0Q6YY3erqnxRhRFliSlSNEavV2zJ6Io\nslRFkUKI9GXXrl1cd911ANcBu1JtX0ndAYbH48HdlYpSL2LNukipvSQXRab7mvdHtOapR2s+sLA7\nbfFPwB+BM8AJ4AVgvM02RAJ4PJ7e3oUBh9Y89WjNU4/WfGBht/PwF8BjwA2YDvosYAvgsNmOEEII\nIXoJu9MW8yJ+X4LRHL4WeNNmW0IIIYToBZLdbTE88POTJNsRQgghRIpIZsFkBvCvQBVGdzgq+/bt\nS+IuiEhOnTrFrl0pL8wd0GjNU4/WPPVozVNLb187k9mq+TgmjXET8GGU10djiivHJHEfhBBCiP7K\nUeB64FiqDSfLeXgMWIApoDwUY7vRgYcQQggh4uMYveA4JIMM4OcYzT5XL++LEEIIIfoAvwAaMBGH\ny0MeQ3pzp4QQQgiRvviB1sDP0Mdf9eZOCSGEEEIIIYQQQgghhBBCCCGEEGJAU0rHWoZI/YaJwAbg\nFGY4VjUwLmKbQuBV4CymuPI1wgsq66LY+XHEe3weeCnwHj7g/wKDe/i50plSElvzvCh/bz0WhrzH\nCOA/A+9xCngaGBZhR2sexI41r4vyuo7znp9brgB+DRzHrNcuwtcbdJyHUkpq1rwuih0d5z1fcxdm\n4ORJ4DSwFvhcxHuk3XFeCrwT2FHrMSrkdRfwMfBT4MuYk+g8wBmyTSHmw5RgFskF3A1kh2xzEHg4\nwk5uyOuZwF6gMmCnCKgH/i3RD5iGlJLYmg+K+NvPAY9gDrrQYWW/B/6EGWg2PWBzQ8jrWvMgdq25\njvMgpSR+bnkN2A58JfD6w0ALMCVkGx3nQUpJzZrrOA9SSmJrngvUAuuAScCXMI7EDsI1m9LuOC8F\ndsd4/TfAU128x3bgR11scxD4fozX52EO0MtDnlsEfAYM7eK9+xqlJL7mkewG/l/I7xMxHvD1Ic/d\nEHjuC4HfteZB7Fhz0HEeSimJr/mnwDcinvsIM5wPdJxHUkry1xx0nIdSSmJrfhtmrULXZTjmGC4K\n/J6y4zzewVhfwMhhHgA8QH7I+9wOvA9sBk5gHIW/DPnbzwHTMCGSbZhQ11bgxih2HsQchLuBhwgP\npxRivKbjIc9tAXKA6+L8PH2BRNY8kuswnuaTIc8VYu6K/xjy3I7AczNCttGa27fmFjrOgyS65huB\n+zEh20GBf2djzjGg4zwayV5zCx3nQRJZ8xygDTgf8lwzxjGwrqNpeZzPBe7ChEuKMCGrY8BIjAfj\nx+RPvg9cgzlgWjGCUWDCJ37MQfQtzAl1FXAOuDrEzg+AmzEhmQcwuZ3Qu7YngE1R9u8cxnvqTyS6\n5pH8AvhzxHMPAe9F2fa9wPuB1tzuNQcd56HYseYXYcKwfszJ9RTBuzHQcR5JKtYcdJyHkuiaX4pZ\n43/FrH0uRtHZD/wysE2fOM4dmA/+D5j5FH7gmYhtfospqAHj9fiBFRHb/ImOBTSh3B34uxGB35/A\neGaR9MeDLZJ41zyUizAH3j9EPN/dg01rbt+aR0PHeZCerPl6THHZV4HJwD9jCrK/FHhdx3lskrHm\n0dBxHqQnaz4b+ADjVFzApDnexgyihBQe5/GmLUJpwoQ+rsZEE1roOHr7vzBVnRAc3hG5zb6QbaKx\nI/DTik4cBy6L2GYEJlx2nP5NvGseyj2Yi9nTEc8fp2O1LoHnjodsozW3b82joeM8SLxrPhG4E3Nn\n+1rgb/8X5qT63cA2Os5jk4w1j4aO8yA9Obe8EtjeiSm2/BYwFpMGgRQe54k4DzlAAcYpuIDJsXwx\nYpvxmFYdAj8/jLLNhJBtojE18NNyPrZhPNvQD38bJvezs5v73leJd81DeQDjxX4c8Xw1po0nssBm\nGGatQWtu95pHQ8d5kHjX3DqPtUZs4ydYha7jPDbJWPNo6DgPksi55RNMK2cRxpGwuinS8jj/GSb3\nkh/YmZcwIVmrB/XOgPG/xnhG38MsyIyQ9/h+4G8WBrb5F6CRYNHIdEwIZ0rgufswLSQvhLzHIEzr\nySuB7YqAw5g+1f6GHWtO4LVWzAESjd8Bewhv7fltyOtac3vXXMd5OImueSbmju11zEnTBSzDrP/c\nEDs6zoOkYs0L0XEeih3nliWYY9cFLMZELFZG2Em749yDqRJtxhwAz9HRS1oC7MeEY3YBd0R5nwcD\nO3oWeJPwhZmK8ZwaAu+xD5NHi5zKOQ6z8I2Yxfs/9E9REbvW/MfEju4Mx4iKnA48ngYuidhGax4k\n0TXXcR6OHWt+VeDvjmHOLbvp2Eao4zxIKtZcx3k4dqz5TzDr3YxJafwgih0d50IIIYQQQgghhBBC\nCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEKJX+f8WzDiH\nQkpg7gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "errorbar(t1, l1, yerr=l1e, fmt='o')\n", + "t2, l2, l2e = np.loadtxt(echo_file).T\n", + "errorbar(t2, l2, yerr=l2e, fmt='o')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.337e-01 6.129e+01 inf -- -4.045e+02 -- 1 1 1 1 1 1 1\n", + " 2 7.642e-01 6.012e+01 6.908e+01 -- -3.354e+02 -- 0.659275 0.584349 0.573488 0.567303 0.567058 0.566313 0.572424\n", + " 3 3.228e+00 5.916e+01 6.581e+01 -- -2.696e+02 -- 0.42785 0.202009 0.156574 0.137043 0.135869 0.133522 0.149486\n", + " 4 1.558e+00 5.870e+01 6.191e+01 -- -2.077e+02 -- 0.331792 -0.095026 -0.241091 -0.287087 -0.291742 -0.297484 -0.270575\n", + " 5 6.161e-01 5.838e+01 5.801e+01 -- -1.497e+02 -- 0.307892 -0.233206 -0.602158 -0.695208 -0.712571 -0.725065 -0.692226\n", + " 6 3.835e-01 5.717e+01 5.345e+01 -- -9.623e+01 -- 0.307174 -0.236649 -0.896104 -1.06223 -1.12044 -1.1459 -1.11873\n", + " 7 2.763e-01 5.434e+01 4.635e+01 -- -4.988e+01 -- 0.329917 -0.225069 -1.07001 -1.34027 -1.50052 -1.55267 -1.54775\n", + " 8 2.125e-01 4.842e+01 3.677e+01 -- -1.311e+01 -- 0.365734 -0.216758 -1.11613 -1.48335 -1.81897 -1.92787 -1.97538\n", + " 9 1.662e-01 3.735e+01 2.505e+01 -- 1.194e+01 -- 0.396836 -0.209034 -1.12234 -1.51466 -2.02433 -2.23196 -2.39516\n", + " 10 1.251e-01 2.200e+01 1.359e+01 -- 2.553e+01 -- 0.414786 -0.203235 -1.12662 -1.51315 -2.10323 -2.41253 -2.79331\n", + " 11 8.212e-02 8.898e+00 5.471e+00 -- 3.100e+01 -- 0.420985 -0.199803 -1.12907 -1.51521 -2.11742 -2.47391 -3.14266\n", + " 12 4.003e-02 2.505e+00 1.412e+00 -- 3.241e+01 -- 0.421103 -0.198221 -1.13105 -1.52048 -2.11896 -2.4902 -3.40075\n", + " 13 1.174e-02 5.152e-01 1.981e-01 -- 3.261e+01 -- 0.419844 -0.197745 -1.1323 -1.52425 -2.11903 -2.49687 -3.53687\n", + " 14 1.974e-03 7.723e-02 1.236e-02 -- 3.262e+01 -- 0.418984 -0.197677 -1.1328 -1.52593 -2.11879 -2.49921 -3.57839\n", + " 15 2.574e-04 9.878e-03 3.258e-04 -- 3.262e+01 -- 0.418666 -0.197682 -1.13291 -1.52643 -2.11863 -2.49979 -3.58545\n", + " 16 4.291e-05 1.242e-03 5.812e-06 -- 3.262e+01 -- 0.418586 -0.197687 -1.13292 -1.52653 -2.11856 -2.49988 -3.58637\n", + "********************\n", + "0.418586 -0.197687 -1.13292 -1.52653 -2.11856 -2.49988 -3.58637\n", + "0.230614 0.201096 0.230036 0.178274 0.152947 0.133797 0.307332\n", + "-0.000341872 -4.95209e-05 -1.00476e-05 -0.000577377 0.000648932 -0.000804247 -0.00124186\n", + "********************\n" + ] + } + ], + "source": [ + "P2 = clag.clag('psd10r', [t2], [l2], [l2e], dt, fqL)\n", + "p2 = np.ones(nfq)\n", + "p2, p2e = clag.optimize(P2, p2)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAH/RJREFUeJzt3X98VfWd5/FXQtD4A0iL5AblR4RKoSRVk6IdiZqydVrd\ntnZ1qtzR6UPRtVXqPNjZrdtpHzIsdjpb20e129p2nYptR73gPqpb7EPsTBcQEiqDCbVGRVskAQok\noA2iEAWS/eNcKokHkhvuuT9fz8fjPJKc+/2e7wf4krxzzrnnC5IkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSTpBfw9sAN4AOoHHgWlZrUiSJOWEFcDngRnAh4EngHbg1CzWJEmSctAZQC/Q\nkO1CJEnS4EozOFZF8uPrGRxTkiTluBKCyw1PZ7sQSZI0NGUZGuf7wEyOf6lhfHKTJEmp2Znc0ioT\nIeF7wKeAS4Adx2gz/swzz9yxY8exXpYkScfxR2AWaQ4KUYaEEoKAcCXQCHQcp+34HTt28NBDDzFj\nxowIS0q/BQsWcO+99+bleCdyrFT7ptJ+KG0Ha3O81zP9b5YuzrX0t3euhXOupb99lHPtpZde4vrr\nrz+L4Gx83oSE+4A4QUh4C6hK7u8GesI6zJgxg7q6ughLSr+KioqM1pzO8U7kWKn2TaX9UNoO1uZ4\nr2f63yxdnGvpb+9cC+dcS3/7qOdaVEZEeOwngJOBG4H/etT2e+C5AW3HA1/4whe+wPjx+XdbQm1t\nbd6OdyLHSrVvKu2H0nawNsd6PZFIEI/Hh1xLLnGupb+9cy2ccy397aOaazt37uT+++8HuJ80n0ko\nSefBTkAd0NLS0pKXqVv55TOf+QzLly/PdhkqAs41ZUJrayv19fUA9UBrOo+dyeckSJKkPGJIUNHJ\n19O/yj/ONeU7Q4KKjt+4lSnONeU7Q4IkSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIUypAg\nSZJCGRIkSVIoQ4IkSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCGRIkSVIoQ4Ik\nSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCGRIkSVIoQ4IkSQoVZUi4BHgC+CPQ\nC1wZ4ViSJCnNogwJpwIbgfnJr/siHEuSJKVZWYTHfiq5SZKkPOQ9CZIkKZQhQZIkhTIkSJKkUFHe\nk5CyBQsWUFFR0W9fPB4nHo9nqSJJknJHIpEgkUj029fd3R3ZeCWRHbm/XuCzwPJjvF4HtLS0tFBX\nV5ehkiRJyn+tra3U19cD1AOt6Tx2lGcSTgPOOerrKcB5wGvAtgjHlSRJaRBlSJgFrEx+3gd8J/n5\nT4B5EY4rSZLSIMqQsBpvjJQkKW/5Q1ySJIUyJEiSpFCGBEmSFMqQIEmSQhkSJElSKEOCJEkKZUiQ\nJEmhDAmSJClUTi3wJKVL4vkEibZgEZSeQz107O1g8pjJlJeVAxCviROvdeEwSToeQ4IKUrz23RDQ\nurOV+vvrSVydoG68C4hJ0lB5uUEFq729nXnz53HNVdfAI3DNVdcwb/482tvbs12aJOUFzySo4HR2\ndjL35rlsen0Tuz60Cz4Z7N/MZjZv38yK61Yw/f3TWfrjpcRisewWK0k5zJCggtLZ2clFV1zEqx99\nFT4S0mAC7Jqwi11du5h9xWyan2w2KEjSMXi5QQVl7s1zg4BQOUjDStj80c3MvXluRuqSpHxkSFDB\n2LJlC5te3zR4QDiiEja9vsl7FCTpGAwJKhh3ffuu4B6EFOyasYvF314cUUWSlN8MCSoYG363ASak\n2GkCbHhuQyT1SFK+MySoYBw8fDD1TiVwsHcY/SSpCBgSVDBGjhiZeqc+GFk6jH6SVAQMCSoY08+e\nDttT7LQdPjT1Q5HUI0n5zpCgwnHgfbBybGp9Vo6l962KaOqRpDxnSFDB2LRpJ3TVQtcQO3QBu2vY\ntGlHlGVJUt4yJKhgHDwIvLkUHp46eFDoImj35qNBP0nSe/hYZhWMkSMBYrC3GX42F8Ztgjm7grdF\nlgB9BPcsrKyC3dPhzWXAuGQ/SdJAhgQVjFmzptPWth64EN5cBW+2wyOL4aQNMOIgHB4J78yCAwuB\n6mSvZ7jgghlZq1mScpkhQQVj4cL5rFixkF27LkzuqYYDS+DAsftUVd3HnXfelYnyJCnvGBJUMKqr\nq5k+/SC7dr0INc9BbeLYjZ+PQ9uHmT79ENXV1RmrUZLySdQh4Tbgy0AV8AKwAGiKeEwVsaVL72X2\n7Dib274HbfHjtHyBqVNvZ9mypRmrTZLyTZTvbrgWuAe4CzgPWAusACZGOKaKXCwWo7k5QWPj16mq\n+hvgGYI7Fkl+fIaqqr+hsfHrrFu3lMrKoS4ZKUnFJ8ozCX8H/BhYkvz6vwCfAG4FvhrhuCpysViM\nVasStLe3s3jxD1iz5h/ZvBmmToVLLpnBwoV3eYlBkoYgqpBwElAHfGPA/n8FLopoTKmf6upqliy5\nm9ZWqK+HRx+FurpsVyVJ+SOqyw1nACOAzgH7uwjuT5AkSTnOdzeoICUSwQbQ0wPTpsFXvgLl5cG+\neDzYit3Av6eODpg82b8nSYGoQsIe4DAQG7A/Buw8VqcFCxZQUdF/sZ14PE7c71JKkT/chqgmwf4r\nH+CVV9rZ89obHKg8xLbyMs4YO5pp06qh5ibAv0gpVyQSCRKJ/m/v7u7ujmy8ksiOHNxW3gLMP2rf\ni8DjwNcGtK0DWlpaWqjzorGUEZ2dncydu4C2trfZ89ZBOKn9qCdTVnPGaSOpqTmZpUvvJRYbmPcl\n5YrW1lbq6+sB6oHWdB47yssN3wH+BXiWIDDcQvAU/R9FOKakIejs7OSCC65m6+vvQOU2+GxyjYsj\ntrexZ2UVq5+dyIUXXs369T83KEhFKMqQ8CgwFlgIjAeeB64AtkU4pqQhuOqqL7J171b4/DYIe1TE\nBODzu6BrFx0PT+Sqq75Ic/PjmS5TUpZFvVT0D4GzgXJgFj5tUcq6LVu2sGHTb+C6YwSEo1UC121j\nw6Z1tLe3Z6A6Sbkk6pAgKcfcccc3OFhxaPCAcEQlHBxzmC9/+Z8irUtS7jEkSEXm181PwZzXUus0\n5zV+ve7JaAqSlLMMCVKR2X94b/+bFIdiAuw/tDeSeiTlLkOCVGxG9Kbep2SY/STlNUOCVGROPfmU\n1Dv1wWnD6ScprxkSpCLz8UsaYXuKnbbDZZfOiaIcSTnMkCAVmW/9j28xsqk8pT4nNZXzzUXfjKgi\nSbnKkCAVmerqamZNqgvWZB2KLvjI5Dqqq6ujLEtSDjIkSEXosZ89xuTmyYMHhS6obq7m8X/xaYtS\nMTIkSEUoFoux/lfradzayLgV44KHpfclX+wDtsG4FeNo3NrI+n9dT2XlUJ+8JKmQRLl2g6QcFovF\nuOWvV/HAA+280rSYPfue4cDhNzhlxGjOGPVRpk1YyE1/XY35QCpehgSpmNUkOPWmBOcBPYcm0LG3\ng8ljJlBetgf4W6iJA/EsFykpWwwJUhGL18aJ1xoCJIXzngRJkhTKkCBJkkIZEiRJUihDgiRJCmVI\nkCRJoQwJkiQplCFBkiSFMiRIkqRQhgRJkhTKkCBJkkIZEiRJUihDgiRJCmVIkCRJoQwJkiQplCFB\nkiSFiiokfA1YB+wH/hTRGJIkKUJRhYSRwDLgBxEdX5IkRawsouMuSn68IaLjSypCiecTJNoSAPQc\n6qFjbweTx0ymvKwcgHhNnHhtPJslSgUlqpAgSWkXr303BLTubKX+/noSVyeoG1+X5cqkwuSNi5Ly\nSnt7O/Pmz+Oaq66BR+Caq65h3vx5tLe3Z7s0qeCkciZhEbBwkDYfAVqHXY0kHUNnZycf+/RcXn1z\nE2/P3gWfDPZvZjObt2/mkStWMOX06ax6YimxWCy7xUoFIpWQ8D3gkUHadJxALSxYsICKiop+++Lx\nOPG41xilYtbZ2clFV1zEqx99FSpDGkyAt6/dxUtdu5h9xWyan2w2KKggJRIJEolEv33d3d2RjVcS\n2ZEDNwD3AO8bpF0d0NLS0kJdndcWJfX3sU9/jNWTVocHhIG6oHFrI6ueWBVxVVJuaG1tpb6+HqCe\nNJ/Nj+qehEnAecmPI4Bzk1+fFtF4kgrUli1beHHPi0MLCACV8OKeF71HQUqDqELCYoI0s4ggGGwE\nWghSjiQN2V3fvouumq6U+nTN7GLxtxdHVJFUPKIKCTckj11KcCbhyMc1EY0nqUA1P9sME1LsNAGa\nNzRHUo9UTHwLpKSctmv37tQ7lcCu3XvSX4xUZAwJknLa2/sPpd6pD97efzD9xUhFxpAgKaedXDIG\ntqfYaXuyn6QTYkiQlNOqRk+DlVWpdVpZFfSTdEIMCZJy2uzZddB1Jgz1DQ5dwO7xNDT4ZirpRBkS\nJOW0hQvnM+6UKfDw1MGDQhfw8FTGnTKVO++8LRPlSQXNkCApp1VXVzNzZhnsXQI/a4SfVsE2oC/Z\noI/g659WBa/vXcLMmWVUV1dnpV6pkLhUtKSct3TpvcyeHWfz5u/Dm6fBI4vhpA0w4iAcHgnvzIID\nC4G3mDr1dpYtW5rtkqWC4JkESTkvFovR3JygsfHrVFXdCQdugb2/g9c3BR8P3EJV1Z00Nn6ddeuW\nUlk51Gc4D00iAbNnN3HauBpK3z+akjNOp/T9ozltXA2zZzcxYL0dqWB4JkFSXojFYtzyvz7DA//+\nACNfuZ49r73BgZ5DnFJexhljRzNtWjU3XXBT2gNCW1sbN39tNvtPfRM+2/vnpz/2Afu3v8C631zK\nb792OrW1zdTU1KR1bCnbDAmS8ka8Nk68Nlg6vrUV6uuhqQWiWjy2ra2N8xtncejanmMuUc3netnf\n9QbnN85i4+oNBgUVFEOCpLyRSPDnU/s9PTBtGnzlK1BeHuyLx4MtXRoun3PsgHC0Sjh0bQ8Nl8+h\ne1tqi1FJucyQIClvpDsEHM+aNWvYV74vpSWq95Xvo6mpiYaGhkhrkzLFGxclKcRNt99Gb2NPSn16\nL+1h3vxbI6pIyjxDgiSF2Na5dVhLVG/t7IikHikbDAmSFKK3pDf1TiXD7CflKEOCJIUo7RvGt8e+\nYfaTcpSzWZJCTIxNGtYS1ZNi1VGUI2WFIUGSQjx4348oXV2eUp/Sp8tZct8PIqpIyjxDgiSFaGho\nYFTPqJSWqB7VM8q3P6qgGBIk6RiaVqykbFn5kJaoLltWTvNTqzJSl5QphgRJOoaamho2rt7AmOXj\nKH2oPHSJ6tKHyhmzfBy/ffpZZs6cmcVqpfTziYuSdBw1NTX88Mnv8v0nv89zjz3P/pX76evro6Sk\nhFPHncq5N9fypSu+ZEBQQTIkSNJg2uKMbY4zJwY9Y6CjAyZPTq4Z0QxMAmqzXKMUAUOCJA0ik2tG\nSLnEexIkSVIoQ4IkSQplSJAkSaGiCgnVwAPAq8B+4A/AImBkRONJkqQ0i+rGxQ8CJcAtBAGhFvhn\n4DTgyxGNKUmS0iiqkPCr5HZEO/Bt4FYMCZIk5YVM3pNQAbyWwfEkKa+1t7czb/48ai+uZfpF06m9\nuJZ58+fR3t6e7dJUJDL1nISpwJeAv8vQeJKUtzo7O5l781xe2PMCu2t2w8fffa1texu/jP+SmWfM\nZOmPlxKLxbJXqApeqmcSFgG9g2x1A/qcCTwFPAosOYFaJangdXZ2cuEnLmT1pNXs/uRumDCgwQTY\n/cndrJ60mgs/cSGdnZ1ZqVPFoSTF9mOT2/F0AG8nPz8TWAX8BrjhOH3qgJaLL76YioqKfi/E43Hi\nPupMUpGY/YnZrPvAOqgcQuMuuOgPF9H8q+bI61JuSCQSJBKJfvu6u7tZu3YtQD3Qms7xUg0JqTiL\nICBsAK7n3bXTwtQBLS0tLdTVDTwRIUnFYcuWLXzwig9xcG7PkPuclCjn5adeorq6OrrClNNaW1up\nr6+HCEJCVDcungWsJjir8GUgBlQlN0lSiDv+4Q4ONgw9IAC809DDHYvuiKgiFbuobly8jOBmxSnA\n9qP29wEjIhpTkvLar9euPv6F2TAT4N9+uiqCaqToziT8JHnsEcmPpUd9LUkKsf/tA6l3KhlmP2kI\nXLtBknLF4WF8S+4bZj9pCJxZkpQjTh0xpv8F2qHYDqeWjYmkHsmQIEk54uOzL4eVg73LfICVY7ls\n9hXRFKSiZ0iQpBzxrW99lZHdZdA1xA5dMHLvCO6+++8jrUvFy5AgSTmiurqaWdP/Ah6eOHhQ6AIe\nnsis6Rf5jARFxpAgSTnkscd+xOSKSfDzKfDoybCNdx9F10fw9aMnw8+nMLliEo8//r+zV6wKXqYW\neJIkDUEsFmP9+p/zsY8tYPMfenhnyyE4qR1GHITDI+Gdak46XMbUqeWsXv1dKiuH8vxmaXg8kyBJ\nOSYWi/Hiiwlefvkebpw7g5qJ1Xxw3DnUTKzmxrkzePnle3jxxURkAaGpqYlzzq2hvGo0J40/nfKq\n0Zxzbg1NTU2RjKfc5ZkEScpR1dXVLFlyd8bGa2tro+HyOewr30dvY0+/FSj/sP0FLr3xMkb1jKJp\nxUpqamoyVpeyx5AgSaKtrY3zG2dx6Nqe8BUoJ0Dv9T3s7erh/MZZbFy9waBQBLzcIEmi4fI5xw4I\nR6uEQ9f20HD5nIzUpewyJEhSkVuzZg37yvcNHhCOqIR95fu8R6EIGBIkqcjddPttwT0IKei9tId5\n82+NqCLlCkOCJBW5bZ1b+92kOCQTYGtnRyT1KHcYEiSpyPWW9KbeqWSY/ZRXDAmSVORK+4a3RPWw\n+imv+C8sSUVuYmzSsJaonhSrjqIc5RBDgiQVuQfv+xGlq8tT6lP6dDlL7vtBRBUpVxgSJKnINTQ0\nMKpnVEpLVI/qGUVDQ0OkdSn7DAmSJJpWrKRsWfmQlqguW1ZO81OrMlKXssuQIEmipqaGjas3MGb5\nOEofKg9dorr0oXLGLB/Hb59+lpkzZ2axWmWKazdIkoAgKHRv66KpqYl5829l6y876C3ppbSvlEmx\nySx58IdeYigyhgRJUj8NDQ288tzz2S5DOcDLDZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCRRUS\nlgMdwAFgB/AzYHxEY0mSpAhEFRJWAp8DpgFXA1OBxyIaS5IkRSCq5yTce9Tn24BvAo8DI4DDEY0p\nSZLSKBP3JLwfuA5YhQFBkqS8EWVI+CbwJrAHOBu4NsKxJElSmqUSEhYBvYNsdUe1vxs4D/hL4G3g\n/wIlJ1yxJEnKiFR+aI9NbsfTQRAIBjqL4N6EBmBdyOt1QMvFF19MRUVFvxfi8TjxeDyFMiVJKkyJ\nRIJEItFvX3d3N2vXrgWoB1rTOV6mfrOfSBAgLgXWhrxeB7S0tLRQV1cX8rIkSQrT2tpKfX09RBAS\nonh3wwXJrQn4EzAFWAz8HvhNBONJkqQIRHHj4n7gPwG/BjYBDwC/IziLcCiC8SRJUgSiOJPQBvyH\nCI4rSZIyyLUbJElSKEOCJEkKZUiQJEmhDAmSJCmUIUGSJIWKahVISZKGJPF8gkRb8BTBnkM9dOzt\nYPKYyZSXlQMQr4kTr/XJu9lgSJAkZVW89t0Q0Lqzlfr760lcnaBuvE/gzTZDgiQpqxKJYAPoemMK\n7PwFt62aQuXoYF88HmzKPEOCJCmrjg4BD698lfVrr+T2i1u4bo5nErLNGxclSVIoQ4IkKeuampo4\n59wabph7Cdw3khvmXsI559bQ1NSU7dKKmpcbJElZ09bWRsPlc9hXvo/exh6YEOw/xEH+sP0FLr3x\nMkb1jKJpxUpqamqyW2wRMiRIkrKira2N8xtncejaHqgMaTABeq/vYW9XD+c3zmLj6g0GhQzzcoMk\nKSsaLp9z7IBwtEo4dG0PDZfPyUhdepchQZKUcWvWrGFf+b7BA8IRlbCvfJ/3KGSYIUGSlHE33X5b\ncA9CCnov7WHe/FsjqkhhDAmSpIzb1rn1zzcpDtkE2NrZEUk9CmdIkCRlXG9Jb+qdSobZT8NmSJAk\nZVxp3zB+/PQNs5+Gzb9tSVLGTYxNgu0pdtoOk2LVUZSjYzAkSJIy7sH7fkTp6vKU+pQ+Xc6S+34Q\nUUUKY0iQJGVcQ0MDo3pGQdcQO3TBqJ5RNDQ0RFqX+jMkSJKyomnFSsqWlQ8eFLqgbFk5zU+tykhd\nepchQZKUFTU1NWxcvYExy8dR+lA5bAP6ki/2Adug9KFyxiwfx2+ffpaZM2dmsdri5NoNkqSsqamp\noXtbF01NTcybfytblm/hEO9QxkmcPf5sljz4Qy8xZJEhQZKUdQ0NDbzy3PM8vLKV69fW85OLn+G6\nOXXZLqvoeblBkiSFMiRIkqRQUV9uOBlYD3wYOA/4XcTjSZLyTCIRbABdb0yBnb/ge6umsOzeYF88\nHmzKvKhDwt3AHwlCgiRJ71WTgHiQEkYf6mHa3g5Gj5kMZcmHLdXEAVNCNkQZEi4HPg78VfJzSZLe\nI14bJ15rCMhFUYWEGHA/cCVwIKIxJElShKK4cbEE+AnwQ6A1guNLkqQMSOVMwiJg4SBtZgGzgdOB\n/zngtZLBBliwYAEVFRX99sXjceLesSJJEolEgsSRuzyTuru7Ixtv0B/cRxmb3I6nA1gKfJp3H64J\nMAI4DDwE3BjSrw5oaWlpoa7Oh2dIkjRUra2t1NfXA9ST5jP4qZxJeC25DeZvga8d9fVZwK+Aawje\nDilJkvJAFDcubhvw9f7kx83AjgjGkyRJEcjUExf7Bm8iSZJySSYWeGonuCdBkiTlEddukCRJoQwJ\nkiQplCFBkiSFMiRIkqRQhgRJkhTKkCBJkkIZEiRJUihDgiRJCmVIkCRJoQwJkiQplCFBkiSFMiRI\nkqRQhgRJkhTKkCBJkkIZEiRJUihDgiRJCmVIkCRJoQwJkiQplCFBkiSFMiRIkqRQhgRJkhTKkCBJ\nkkIZEiRJUihDgiRJCmVIkCRJoQwJkiQplCFBkiSFiioktAO9A7ZvRDSWJEmKQFlEx+0D7gT++ah9\nb0U0liRJikBUIQHgTaArwuNLkqQIRXlPwn8H9gAbga8CIyMcS5IkpVlUZxK+C7QAfwIuBP4JOBv4\nzxGNJ0mS0iyVMwmLeO/NiAO3umTbe4G1QBvwAPBF4CbgfekoWpIkRS+VMwnfAx4ZpE3HMfavT378\nALDhWJ0XLFhARUVFv33xeJx4PD7UGiVJKliJRIJEItFvX3d3d2TjlUR25P4+BSwHJgHbQ16vA1pa\nWlqoq6sLeVmSJIVpbW2lvr4eoB5oTeexo7gn4aPAXwCrgL3ALOA7wC8IDwiSJCkHRRES3gauARYC\nJxNcgrgfuDuCsSRJUkSiCAkbCc4kSJKkPObaDZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCGRIk\nSVIoQ4IkSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCGRIkSVIoQ4IkSQplSJAk\nSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCGRIkSVIoQ4IkSQplSJAkSaEMCZIkKZQhQZIk\nhTIkSJKkUIYESZIUKsqQ8B+B9cB+YDfw8wjHkoYskUhkuwQVCeea8l1UIeFq4GfAA8CHgYuAhyMa\nS0qJ37iVKc415buyiI75XeC/AQ8etf/3EYwlSZIiEsWZhDrgTKAP2AjsAJ4EZkYwVtZl+jeFdI53\nIsdKtW8q7YfSdrA2hfgbnHMt/e2da+Gca+lvn69zLYqQMCX5cRGwGPgU8CdgNfC+CMbLKv8zpb99\nvv5nippzLf3tnWvhnGvpb5+vcy2Vyw2LgIWDtJnFu8Hj68Djyc9vBLYDnwPuP1bnl156KYVyckN3\ndzetra15Od6JHCvVvqm0H0rbwdoc7/VM/5uli3Mt/e2da+Gca+lvH+Vci/JnZ0kKbccmt+PpILhJ\n8f8BDcC6o157Bvg34M6QfuOBDcBZKdQjSZICfyT4RX1nOg+aypmE15LbYFqAt4HpvBsSRgLVBCEi\nzE6CP9z4FOqRJEmBnaQ5IETpHmAbcBnwQeDHBMWPyWZRkiQp+8qAbwG7gL3Ar4AZWa1IkiRJkiRJ\nkiRJkiTpvUYB/07wBMc24EvZLUcFbCLBg79eAJ4D/iqr1ajQPQ68DvyfbBeigvUpYBPwCnBTlmuJ\nTClQnvz8FOBVYFz2ylEBqyJYlAyCObaNYM5JUbiU4Ju4IUFRKANeJni8wOkEQeH9qRwgyqWi06kX\n6El+fipw8KivpXTaBfwu+flugt/yUvpPJaXgaeDNbBehgnUBwVnRnQTz7EngL1M5QL6EBAiesfAc\nsJVglcl92S1HReAjBE8l/WO2C5GkYTiT/t+/tpPik43zKSTsBc4FzgbmAx/IbjkqcGOBnwK3ZLsQ\nSRqmvhM9QFQh4RLgCYIE0wtcGdLmNmALcAB4lmCthyNuJ7hJsZXgkc5H6yK4sey8tFasfBXFXDsZ\neAz4BsGaIxJE933thL+Rq2Cd6JzbQf8zBxPJkTOjnyRYJvqzBH+wzwx4/VqC9R3mETy2+R6CywcT\nj3G8SmB08vPRBNeMP5jekpWn0j3XSoAE8A9RFKu8lu65dkQj3riocCc658oIblY8k+Bdgq8A74u8\n6hSF/cHWA/cN2PciwW9uYeoIEvhvk9uN6SxQBSMdc60BOEzw297G5DYzjTWqMKRjrkHwyPou4C2C\nd9LUp6tAFZzhzrlPE7zD4ffAzZFVdwIG/sFOInh3wsDTJvcSXEaQhsu5pkxxrinTsjLnsnHj4hnA\nCKBzwP4ugveoS+niXFOmONeUaRmZc/n07gZJkpRB2QgJewiu+cYG7I8RPPBBShfnmjLFuaZMy8ic\ny0ZIeAdo4b1PfboMWJf5clTAnGvKFOeaMi2v59xpBM8xOI/gZosFyc+PvC3jGoK3bdwIzCB428Yb\nDP5WIWkg55oyxbmmTCvYOddI8AfqJTgdcuTzJUe1uZXgARA9wAb6PwBCGqpGnGvKjEaca8qsRpxz\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJeeD/Axd9m7CW90xeAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-6,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10)\n", + "errorbar(fqd, p2, yerr=p2e, fmt='o', ms=10)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 3.262e+01 3.224e+01 4.186e-01 6.492e-01 0.774 +++\n", + "+++ 3.262e+01 3.180e+01 4.186e-01 7.645e-01 1.66 +++\n", + "+++ 3.262e+01 3.203e+01 4.186e-01 7.069e-01 1.18 +++\n", + "+++ 3.262e+01 3.214e+01 4.186e-01 6.780e-01 0.967 +++\n", + "+++ 3.262e+01 3.209e+01 4.186e-01 6.924e-01 1.07 +++\n", + "+++ 3.262e+01 3.212e+01 4.186e-01 6.852e-01 1.02 +++\n", + "+++ 3.262e+01 3.213e+01 4.186e-01 6.816e-01 0.993 +++\n", + "\t### errors for param 1 ###\n", + "+++ 3.262e+01 3.217e+01 -1.977e-01 3.409e-03 0.913 +++\n", + "+++ 3.262e+01 3.166e+01 -1.977e-01 1.040e-01 1.94 +++\n", + "+++ 3.262e+01 3.193e+01 -1.977e-01 5.368e-02 1.38 +++\n", + "+++ 3.262e+01 3.205e+01 -1.977e-01 2.855e-02 1.14 +++\n", + "+++ 3.262e+01 3.211e+01 -1.977e-01 1.598e-02 1.02 +++\n", + "+++ 3.262e+01 3.214e+01 -1.977e-01 9.693e-03 0.968 +++\n", + "+++ 3.262e+01 3.213e+01 -1.977e-01 1.284e-02 0.995 +++\n", + "\t### errors for param 2 ###\n", + "+++ 3.262e+01 3.219e+01 -1.133e+00 -9.029e-01 0.868 +++\n", + "+++ 3.262e+01 3.170e+01 -1.133e+00 -7.879e-01 1.84 +++\n", + "+++ 3.262e+01 3.197e+01 -1.133e+00 -8.454e-01 1.32 +++\n", + "+++ 3.262e+01 3.208e+01 -1.133e+00 -8.741e-01 1.08 +++\n", + "+++ 3.262e+01 3.214e+01 -1.133e+00 -8.885e-01 0.973 +++\n", + "+++ 3.262e+01 3.211e+01 -1.133e+00 -8.813e-01 1.03 +++\n", + "+++ 3.262e+01 3.212e+01 -1.133e+00 -8.849e-01 1 +++\n", + "\t### errors for param 3 ###\n", + "+++ 3.262e+01 3.219e+01 -1.527e+00 -1.348e+00 0.872 +++\n", + "+++ 3.262e+01 3.169e+01 -1.527e+00 -1.259e+00 1.88 +++\n", + "+++ 3.262e+01 3.196e+01 -1.527e+00 -1.304e+00 1.33 +++\n", + "+++ 3.262e+01 3.208e+01 -1.527e+00 -1.326e+00 1.09 +++\n", + "+++ 3.262e+01 3.213e+01 -1.527e+00 -1.337e+00 0.979 +++\n", + "+++ 3.262e+01 3.211e+01 -1.527e+00 -1.332e+00 1.03 +++\n", + "+++ 3.262e+01 3.212e+01 -1.527e+00 -1.334e+00 1.01 +++\n", + "\t### errors for param 4 ###\n", + "+++ 3.262e+01 3.220e+01 -2.119e+00 -1.966e+00 0.845 +++\n", + "+++ 3.262e+01 3.170e+01 -2.119e+00 -1.889e+00 1.85 +++\n", + "+++ 3.262e+01 3.197e+01 -2.119e+00 -1.927e+00 1.3 +++\n", + "+++ 3.262e+01 3.209e+01 -2.119e+00 -1.946e+00 1.06 +++\n", + "+++ 3.262e+01 3.215e+01 -2.119e+00 -1.956e+00 0.951 +++\n", + "+++ 3.262e+01 3.212e+01 -2.119e+00 -1.951e+00 1.01 +++\n", + "\t### errors for param 5 ###\n", + "+++ 3.262e+01 3.214e+01 -2.500e+00 -2.366e+00 0.978 +++\n", + "+++ 3.262e+01 3.155e+01 -2.500e+00 -2.299e+00 2.16 +++\n", + "+++ 3.262e+01 3.187e+01 -2.500e+00 -2.333e+00 1.51 +++\n", + "+++ 3.262e+01 3.201e+01 -2.500e+00 -2.349e+00 1.23 +++\n", + "+++ 3.262e+01 3.207e+01 -2.500e+00 -2.358e+00 1.1 +++\n", + "+++ 3.262e+01 3.211e+01 -2.500e+00 -2.362e+00 1.04 +++\n", + "+++ 3.262e+01 3.212e+01 -2.500e+00 -2.364e+00 1.01 +++\n", + "\t### errors for param 6 ###\n", + "+++ 3.262e+01 3.249e+01 -3.586e+00 -3.433e+00 0.274 +++\n", + "+++ 3.262e+01 3.228e+01 -3.586e+00 -3.356e+00 0.68 +++\n", + "+++ 3.262e+01 3.214e+01 -3.586e+00 -3.317e+00 0.97 +++\n", + "+++ 3.262e+01 3.205e+01 -3.586e+00 -3.298e+00 1.14 +++\n", + "+++ 3.262e+01 3.210e+01 -3.586e+00 -3.308e+00 1.05 +++\n", + "+++ 3.262e+01 3.212e+01 -3.586e+00 -3.313e+00 1.01 +++\n", + "+++ 3.262e+01 3.213e+01 -3.586e+00 -3.315e+00 0.99 +++\n", + "********************\n", + "0.418586 -0.197687 -1.13292 -1.52653 -2.11856 -2.49988 -3.58637\n", + "0.263044 0.210523 0.248008 0.192202 0.167286 0.135887 0.271316\n", + "********************\n" + ] + } + ], + "source": [ + "p2, p2e = clag.errors(P2, p2, p2e)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 1.751e+01 2.876e+01 inf -- 5.733e+01 -- 0.0594864 -0.487928 -1.46187 -1.82465 -2.4246 -2.79639 -3.88808 0.1 0.1 0.1 0.1 0.1 0.1 0.1\n", + " 2 1.970e+01 3.013e+01 1.798e+01 -- 7.532e+01 -- 0.29683 -1.52364 -1.4649 -2.25166 -2.5651 -3.43969 -4.03355 1.21455 0.923908 -1.61801 1.85071 -0.285296 -0.531157 0.012722\n", + " 4 6.537e+00 1.384e+01 2.528e+00 -- 7.784e+01 -- 0.291378 -1.68551 -1.44919 -2.09362 -2.55998 -3.48384 -4.03518 1.14909 2.74383 -1.47933 1.80908 -0.301606 -0.875227 0.0310364\n", + " 6 3.785e+00 7.896e+00 1.984e+00 -- 7.983e+01 -- 0.288282 -1.38551 -1.42819 -1.9952 -2.55472 -3.47151 -4.03617 1.0893 2.48495 -1.36763 1.78981 -0.314059 -1.2346 0.0473648\n", + " 8 2.247e+00 7.953e+00 1.903e+00 -- 8.173e+01 -- 0.287062 -1.08551 -1.40581 -1.9248 -2.54944 -3.41037 -4.03676 1.03541 2.70301 -1.2801 1.77686 -0.323434 -1.51696 0.0617974\n", + " 10 1.524e+00 9.195e+00 1.868e+00 -- 8.360e+01 -- 0.287304 -0.84158 -1.38402 -1.87105 -2.54419 -3.33668 -4.03696 0.987277 2.6684 -1.21194 1.76655 -0.330285 -1.69315 0.0746248\n", + " 12 1.161e+00 1.058e+01 1.526e+00 -- 8.513e+01 -- 0.288653 -0.721287 -1.36379 -1.8284 -2.53901 -3.27143 -4.03682 0.944635 2.66148 -1.15906 1.75754 -0.335021 -1.79864 0.0859985\n", + " 14 9.236e-01 1.358e+01 1.320e+00 -- 8.645e+01 -- 0.29076 -0.640904 -1.34555 -1.79371 -2.53397 -3.21778 -4.03644 0.907049 2.65848 -1.11758 1.74949 -0.338064 -1.86544 0.0959851\n", + " 16 7.887e-01 1.616e+01 1.163e+00 -- 8.761e+01 -- 0.293363 -0.581712 -1.32932 -1.76496 -2.5291 -3.17401 -4.03591 0.874019 2.65704 -1.08472 1.74218 -0.339743 -1.91057 0.104678\n", + " 18 6.852e-01 1.848e+01 1.035e+00 -- 8.864e+01 -- 0.296262 -0.535833 -1.31497 -1.7408 -2.52442 -3.13802 -4.03528 0.84503 2.65643 -1.05844 1.73544 -0.340323 -1.94268 0.112177\n", + " 20 6.016e-01 2.063e+01 9.268e-01 -- 8.957e+01 -- 0.299311 -0.499119 -1.30233 -1.72029 -2.51992 -3.1081 -4.03459 0.819584 2.65634 -1.03727 1.7292 -0.340017 -1.96645 0.11858\n", + " 21 1.026e+00 1.793e+03 1.113e+01 -- 7.844e+01 -- 0.330255 -0.19883 -1.191 -1.54462 -2.4769 -2.85684 -4.0275 0.595995 2.65885 -0.865635 1.67089 -0.329856 -2.14791 0.172608\n", + " 22 2.203e+01 4.653e+01 1.881e+01 -- 9.725e+01 -- 0.346046 -0.283463 -1.21608 -1.56969 -2.45327 -2.92337 -4.05674 0.633366 2.66967 -1.02345 1.65017 -0.216181 -2.10193 -0.00456476\n", + " 23 9.017e-02 4.157e+01 4.743e-01 -- 9.772e+01 -- 0.350061 -0.2856 -1.19812 -1.56937 -2.44621 -2.91187 -4.02571 0.593047 2.67704 -0.939304 1.64631 -0.234834 -2.06914 0.0960162\n", + " 24 1.011e-01 1.709e+01 7.447e-02 -- 9.780e+01 -- 0.351939 -0.286126 -1.19593 -1.56919 -2.44211 -2.91054 -4.02815 0.594891 2.68864 -0.964614 1.63615 -0.233118 -2.07263 0.0873586\n", + " 25 7.198e-03 7.315e+00 9.879e-03 -- 9.781e+01 -- 0.352451 -0.285708 -1.19443 -1.5689 -2.44029 -2.90957 -4.02701 0.591849 2.68648 -0.958907 1.63497 -0.229941 -2.07127 0.0961923\n", + " 26 7.573e-03 2.607e+00 1.318e-03 -- 9.781e+01 -- 0.352645 -0.285889 -1.19403 -1.56883 -2.43938 -2.90916 -4.02687 0.591744 2.6883 -0.960874 1.63369 -0.228302 -2.0711 0.0968847\n", + " 27 1.407e-03 1.002e+00 1.762e-04 -- 9.781e+01 -- 0.35271 -0.285841 -1.19384 -1.5688 -2.43903 -2.909 -4.02679 0.59146 2.68804 -0.960478 1.63339 -0.22751 -2.07101 0.0976184\n", + " 28 7.648e-04 3.587e-01 2.373e-05 -- 9.781e+01 -- 0.352735 -0.28586 -1.19379 -1.56879 -2.43888 -2.90894 -4.02677 0.59142 2.68826 -0.960644 1.63322 -0.22719 -2.07099 0.0977376\n", + "********************\n", + "0.352735 -0.28586 -1.19379 -1.56879 -2.43888 -2.90894 -4.02677 0.59142 2.68826 -0.960644 1.63322 -0.22719 -2.07099 0.0977376\n", + "0.00496596 0.0557416 0.0244243 0.0261901 0.169649 0.216583 0.627326 0.0836975 0.256304 0.179223 0.163052 0.470721 0.550365 1.46594\n", + "0.358674 0.00129977 0.0426552 0.00780676 0.00197808 0.000483372 2.94351e-05 -0.00466008 -0.000401306 0.00086537 -0.00189251 0.000598726 2.9782e-05 3.40563e-05\n", + "********************\n" + ] + } + ], + "source": [ + "Cx = clag.clag('cxd10r', [[t1,t2]], [[l1,l2]], [[l1e,l2e]], dt, fqL, p1, p2)\n", + "p = np.concatenate( ((p1+p2)*0.5-0.3,p1*0+0.1) ) # a good starting point generally\n", + "p, pe = clag.optimize(Cx, p)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 9.781e+01 9.767e+01 3.527e-01 3.552e-01 0.284 +++\n", + "+++ 9.781e+01 9.736e+01 3.527e-01 3.565e-01 0.898 +++\n", + "+++ 9.781e+01 9.705e+01 3.527e-01 3.571e-01 1.51 +++\n", + "+++ 9.781e+01 9.723e+01 3.527e-01 3.568e-01 1.17 +++\n", + "+++ 9.781e+01 9.730e+01 3.527e-01 3.566e-01 1.02 +++\n", + "+++ 9.781e+01 9.733e+01 3.527e-01 3.565e-01 0.959 +++\n", + "+++ 9.781e+01 9.731e+01 3.527e-01 3.566e-01 0.991 +++\n", + "\t### errors for param 1 ###\n", + "+++ 9.781e+01 9.757e+01 -2.859e-01 -2.580e-01 0.487 +++\n", + "+++ 9.781e+01 9.709e+01 -2.859e-01 -2.441e-01 1.43 +++\n", + "+++ 9.781e+01 9.738e+01 -2.859e-01 -2.510e-01 0.864 +++\n", + "+++ 9.781e+01 9.725e+01 -2.859e-01 -2.475e-01 1.12 +++\n", + "+++ 9.781e+01 9.732e+01 -2.859e-01 -2.493e-01 0.985 +++\n", + "+++ 9.781e+01 9.728e+01 -2.859e-01 -2.484e-01 1.05 +++\n", + "+++ 9.781e+01 9.730e+01 -2.859e-01 -2.488e-01 1.02 +++\n", + "+++ 9.781e+01 9.731e+01 -2.859e-01 -2.491e-01 1 +++\n", + "\t### errors for param 2 ###\n", + "+++ 9.781e+01 9.763e+01 -1.194e+00 -1.182e+00 0.354 +++\n", + "+++ 9.781e+01 9.727e+01 -1.194e+00 -1.175e+00 1.09 +++\n", + "+++ 9.781e+01 9.749e+01 -1.194e+00 -1.179e+00 0.638 +++\n", + "+++ 9.781e+01 9.739e+01 -1.194e+00 -1.177e+00 0.837 +++\n", + "+++ 9.781e+01 9.733e+01 -1.194e+00 -1.176e+00 0.954 +++\n", + "+++ 9.781e+01 9.730e+01 -1.194e+00 -1.176e+00 1.02 +++\n", + "+++ 9.781e+01 9.732e+01 -1.194e+00 -1.176e+00 0.986 +++\n", + "+++ 9.781e+01 9.731e+01 -1.194e+00 -1.176e+00 1 +++\n", + "\t### errors for param 3 ###\n", + "+++ 9.781e+01 9.765e+01 -1.569e+00 -1.556e+00 0.327 +++\n", + "+++ 9.781e+01 9.736e+01 -1.569e+00 -1.549e+00 0.907 +++\n", + "+++ 9.781e+01 9.712e+01 -1.569e+00 -1.546e+00 1.39 +++\n", + "+++ 9.781e+01 9.725e+01 -1.569e+00 -1.548e+00 1.13 +++\n", + "+++ 9.781e+01 9.730e+01 -1.569e+00 -1.548e+00 1.01 +++\n", + "+++ 9.781e+01 9.733e+01 -1.569e+00 -1.549e+00 0.958 +++\n", + "+++ 9.781e+01 9.732e+01 -1.569e+00 -1.549e+00 0.985 +++\n", + "+++ 9.781e+01 9.731e+01 -1.569e+00 -1.548e+00 0.998 +++\n", + "\t### errors for param 4 ###\n", + "+++ 9.781e+01 9.766e+01 -2.439e+00 -2.354e+00 0.291 +++\n", + "+++ 9.781e+01 9.739e+01 -2.439e+00 -2.312e+00 0.833 +++\n", + "+++ 9.781e+01 9.716e+01 -2.439e+00 -2.290e+00 1.3 +++\n", + "+++ 9.781e+01 9.729e+01 -2.439e+00 -2.301e+00 1.04 +++\n", + "+++ 9.781e+01 9.734e+01 -2.439e+00 -2.306e+00 0.934 +++\n", + "+++ 9.781e+01 9.732e+01 -2.439e+00 -2.304e+00 0.988 +++\n", + "+++ 9.781e+01 9.730e+01 -2.439e+00 -2.302e+00 1.02 +++\n", + "+++ 9.781e+01 9.731e+01 -2.439e+00 -2.303e+00 1 +++\n", + "\t### errors for param 5 ###\n", + "+++ 9.781e+01 9.760e+01 -2.909e+00 -2.801e+00 0.412 +++\n", + "+++ 9.781e+01 9.723e+01 -2.909e+00 -2.746e+00 1.17 +++\n", + "+++ 9.781e+01 9.745e+01 -2.909e+00 -2.774e+00 0.72 +++\n", + "+++ 9.781e+01 9.735e+01 -2.909e+00 -2.760e+00 0.923 +++\n", + "+++ 9.781e+01 9.729e+01 -2.909e+00 -2.753e+00 1.04 +++\n", + "+++ 9.781e+01 9.732e+01 -2.909e+00 -2.757e+00 0.98 +++\n", + "+++ 9.781e+01 9.730e+01 -2.909e+00 -2.755e+00 1.01 +++\n", + "\t### errors for param 6 ###\n", + "+++ 9.781e+01 -inf -4.027e+00 -3.027e+00 inf +++\n", + "+++ 9.781e+01 9.626e+01 -4.027e+00 -3.527e+00 3.1 +++\n", + "+++ 9.781e+01 9.763e+01 -4.027e+00 -3.777e+00 0.349 +++\n", + "+++ 9.781e+01 9.724e+01 -4.027e+00 -3.652e+00 1.14 +++\n", + "+++ 9.781e+01 9.748e+01 -4.027e+00 -3.714e+00 0.653 +++\n", + "+++ 9.781e+01 9.737e+01 -4.027e+00 -3.683e+00 0.869 +++\n", + "+++ 9.781e+01 9.731e+01 -4.027e+00 -3.667e+00 0.996 +++\n", + "\t### errors for param 7 ###\n", + "+++ 9.781e+01 9.733e+01 5.914e-01 6.750e-01 0.966 +++\n", + "+++ 9.781e+01 9.688e+01 5.914e-01 7.169e-01 1.87 +++\n", + "+++ 9.781e+01 9.711e+01 5.914e-01 6.960e-01 1.4 +++\n", + "+++ 9.781e+01 9.722e+01 5.914e-01 6.855e-01 1.18 +++\n", + "+++ 9.781e+01 9.727e+01 5.914e-01 6.803e-01 1.07 +++\n", + "+++ 9.781e+01 9.730e+01 5.914e-01 6.777e-01 1.02 +++\n", + "+++ 9.781e+01 9.731e+01 5.914e-01 6.763e-01 0.992 +++\n", + "\t### errors for param 8 ###\n", + "+++ 9.781e+01 9.765e+01 2.688e+00 2.816e+00 0.315 +++\n", + "+++ 9.781e+01 9.747e+01 2.688e+00 2.880e+00 0.685 +++\n", + "+++ 9.781e+01 9.735e+01 2.688e+00 2.912e+00 0.915 +++\n", + "+++ 9.781e+01 9.729e+01 2.688e+00 2.929e+00 1.04 +++\n", + "+++ 9.781e+01 9.732e+01 2.688e+00 2.921e+00 0.977 +++\n", + "+++ 9.781e+01 9.731e+01 2.688e+00 2.925e+00 1.01 +++\n", + "\t### errors for param 9 ###\n", + "+++ 9.781e+01 9.767e+01 -9.606e-01 -8.710e-01 0.287 +++\n", + "+++ 9.781e+01 9.750e+01 -9.606e-01 -8.262e-01 0.615 +++\n", + "+++ 9.781e+01 9.740e+01 -9.606e-01 -8.038e-01 0.814 +++\n", + "+++ 9.781e+01 9.735e+01 -9.606e-01 -7.927e-01 0.921 +++\n", + "+++ 9.781e+01 9.732e+01 -9.606e-01 -7.871e-01 0.976 +++\n", + "+++ 9.781e+01 9.731e+01 -9.606e-01 -7.843e-01 1 +++\n", + "\t### errors for param 10 ###\n", + "+++ 9.781e+01 9.737e+01 1.633e+00 1.796e+00 0.887 +++\n", + "+++ 9.781e+01 9.687e+01 1.633e+00 1.878e+00 1.89 +++\n", + "+++ 9.781e+01 9.713e+01 1.633e+00 1.837e+00 1.35 +++\n", + "+++ 9.781e+01 9.725e+01 1.633e+00 1.817e+00 1.11 +++\n", + "+++ 9.781e+01 9.731e+01 1.633e+00 1.806e+00 0.995 +++\n", + "\t### errors for param 11 ###\n", + "+++ 9.781e+01 9.744e+01 -2.271e-01 2.436e-01 0.733 +++\n", + "+++ 9.781e+01 9.707e+01 -2.271e-01 4.789e-01 1.47 +++\n", + "+++ 9.781e+01 9.726e+01 -2.271e-01 3.612e-01 1.09 +++\n", + "+++ 9.781e+01 9.736e+01 -2.271e-01 3.024e-01 0.906 +++\n", + "+++ 9.781e+01 9.731e+01 -2.271e-01 3.318e-01 0.996 +++\n", + "\t### errors for param 12 ###\n", + "+++ 9.781e+01 9.655e+01 -2.071e+00 -1.071e+00 2.53 +++\n", + "+++ 9.781e+01 9.739e+01 -2.071e+00 -1.571e+00 0.834 +++\n", + "+++ 9.781e+01 9.697e+01 -2.071e+00 -1.321e+00 1.68 +++\n", + "+++ 9.781e+01 9.719e+01 -2.071e+00 -1.446e+00 1.24 +++\n", + "+++ 9.781e+01 9.729e+01 -2.071e+00 -1.508e+00 1.03 +++\n", + "+++ 9.781e+01 9.734e+01 -2.071e+00 -1.540e+00 0.932 +++\n", + "+++ 9.781e+01 9.732e+01 -2.071e+00 -1.524e+00 0.981 +++\n", + "+++ 9.781e+01 9.731e+01 -2.071e+00 -1.516e+00 1.01 +++\n", + "\t### errors for param 13 ###\n", + "********************\n", + "0.352744 -0.285856 -1.19376 -1.56878 -2.43883 -2.90891 -4.02676 0.591388 2.68824 -0.960618 1.63318 -0.22706 -2.07098 0.0978123\n", + "0.00383633 0.0367967 0.0178294 0.0203568 0.135817 0.153961 0.359375 0.0849581 0.236274 0.176365 0.173234 0.558872 0.554688 10\n", + "********************\n" + ] + } + ], + "source": [ + "p, pe = clag.errors(Cx, p, pe)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "phi, phie = p[nfq:], pe[nfq:]\n", + "lag, lage = phi/(2*np.pi*fqd), phie/(2*np.pi*fqd) \n", + "cx, cxe = p[:nfq], pe[:nfq]" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAFrCAYAAACE+GArAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAF/JJREFUeJzt3X9sXed9H+CPY9FRG69T4lSXdhabCVuHcpAtEyOrtROX\n6ZKgKGZn2AZXHGKsSdpkseyA22DUyCI2k+wOMLZGhi0t8FojBYJcOStSJMHmLf1DizOp0jjR62pZ\nTDtJ9FJbpGMnSvNjsulY++NQDaVQJvny3nt4yecBDnh5zvue+6X4ivzwnPeckwAAAAAAAAAAAAAA\nAAAAAAAAAAAAAADAqnFTkq8keTrJy0neP0+bT81u/2GS/Umu61RxAMDyvaqN+/7pJI8n2T77+dkL\ntv9WkpHZ7VuSTCX54ySXt7EmAKALvZzkljmfX5LkVJK75qy7LMl3knykg3UBAMvQziMSr+RNSRpJ\nvjpn3YtJvpbkhloqAgCWrK4g0Tv7cfqC9c/O2QYArHDr6i5gHhfOpTjnytkFAFiaU7NLy9UVJKZm\nPzbmvJ7v83OuvOqqq5555pln2l4YAKxCT6e6sKHlYaKuIHEyVWB4X5I/nV13WZJfyvkTMM+58pln\nnsnnPve5bNq0qUMlts7IyEh2797dle+1nP0tte9i2y+m3cXaPP300/ngBz+T55//XpKL7WPkvG1X\nXPHJfPazt+eqq65asLa6GWutbb+csbaY7Z38frWasdba9u0ca8eOHcsHPvCBN6Q6qt9VQeI1SX5+\nzudvTvL2JM8n+Waqn9SfSPIXSf7P7OvvJ/n8xXa4adOmbN68uV31ts2GDRs6Vner32s5+1tq38W2\nX0y7i7V58MFmnn9+NMm9SS62jw3nbXv++dF88YtfzMMP37dgbXUz1lrbfjljbTHbO/n9ajVjrbXt\n2z3W2unSNu77xiQHk3w01byHX5l9/dokX0pyIMn6JL+d5ONJvptkOMl85y+uTPLRj370o7nyyu6c\nJvG2t72ta99rOftbat/Ftl9Mu/nafPKTD+TZZ88d9LrYPpqphuI5b8hLLz2Q22//J4uqrW7GWmvb\nl461xWxvNpsZHh6ed1s3MNZa275dY+3UqVN56KGHkuShtOGIxCWt3mGbbE5y5MiRI12b3lkZBgZu\nzje+8ZUFWt2S5MvnrXnLW27OxMRC/WBpbrnllnz5y19euCEsw/j4eAYHB5NkMMl4q/df1+WfUIue\nnpJeZwv7Aax+ggRrypYtA0kOL9DqwkPNh3P99d03yZeVr5tPa8A5ggRryujo9vT27lmg1fk/3Ht7\n92THjtvbVxRrliDBaiBIsKb09fVlYGAmyZOL7HE0AwMvpa+vr41VAXQvQYI1Z9++3envvyPJ0QVa\nHk1//5155JH7O1EWQFcSJFhzGo1GDhxoZmjonvT23pbkUH58Z/azSQ6lt/e2DA3dk4MH92Xjxo31\nFQuwwq3EZ21A2zUajezf38zk5GR27tybxx67N8ePJ/39yU03bcro6C6nMwAWQZBgTevr68vDD9+X\n8fFkcDD5whcStyoBWDynNgCAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKC\nBABQTJAAAIoJEgBAMQ/tYs1qNqslSc6cSa69Nrn77mT9+mrd8HC1AHBxggRrlqAAsHxObQAAxQQJ\nAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAA\nigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCY\nIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkS\nAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGJ1BolPJXn5guWZGusBAJZoXc3v/0SS98z5/Ed1FQIA\nLF3dQeJHSZ6tuQYAoFDdcyR+PsnTSU4kaSZ5U73lAABLUWeQOJTktiTvS/KbSXqTHEzyuhprAgCW\noM5TG/9lzuujSf4kyfEk/zTJp2upCABYkrrnSMz1wyR/luTnLtZgZGQkGzZsOG/d8PBwhoeH21wa\nAHVqNqslSc6cSZ56KrnmmmT9+mrd8HC1rHXNZjPNc/9Qs06fPt3W97ykrXtfmlenOiLxmST3XLBt\nc5IjR44cyebNmzteGAArx/h4MjiYHDmS+JWwsPHx8QwODibJYJLxVu+/zjkS/zbJTakmWG5N8odJ\nLk/yBzXWBAAsQZ2nNt6Q6kqN1yf5Vqo5Er+Q5Js11gQALEGdQcLZLADocnXfRwIA6GKCBABQTJAA\nAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCg\nmCABABQTJACAYoIEAFBMkAAAiq2ruwCA1WJycjI7d+7J2NhEZmaSnp5ky5aBjI5uT19fX93lQVsI\nEgDLND09nW3bRjIx0ZOpqe1Jtv71tieeOJxHHx3NwMBM9u3bnUajUV+h0AaCBMAyTE9P54YbhnPi\nxINJrpunxdZMTW3N1NSTufHG4Rw40BQmWFXMkQBYhm3bRl4hRMx1XY4ffyDbto10oizoGEECoNDJ\nkyczMdGThUPEOW/NxMS6TE5OtrEq6CxBAqDQrl17Z+dELN7U1Pbs3Lm3TRVB5wkSAIXGxiYyd2Ll\n4mzN2NixdpQDtRAkAArNzJT0uqSwH6xMggRAoZ6ekl5nC/vByiRIABTasmUgyeEl9jqc66/f1I5y\noBaCBECh0dHt6e3ds6Q+vb17smPH7W2qCDpPkAAo1NfXl4GBmSRPLrLH0QwMvOR22awqggTAMuzb\ntzv9/XckObpAy6Pp778zjzxyfyfKgo4RJACWodFo5MCBZoaG7klv721JDiU5O7v1bJJD6e29LUND\n9+TgwX3ZuHFjfcVCG3jWBsAyNRqN7N/fnH36596Mjd075+mfmzI6usvpDFYtQQKgRfr6+vLww/fV\nXQZ0lFMbAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJ\nAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAA\nigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABdYXJyMh/60F259dabk9ycW2+9OR/60F2Z\nnJysu7Q1bV3dBQDAK5mens62bSOZmOjJ1NT2JFuTJMePJ8ePH86jj45mYGAm+/btTqPRqLfYNWgl\nBInbk9yVpDfJ0SQjSf57rRUBdIFms1qS5MyZ5KmnkmuuSdavr9YND1dLN5uens4NNwznxIkHk1w3\nT4utmZramqmpJ3PjjcM5cKApTHRY3UHi15J8OsnHkhxI8s+SPJpqtHyzxroAVry5QWF8PBkcrILF\n5s311tVK27aNvEKImOu6HD/+QLZtG8n+/c1OlMasuudI/Iskv5fk4STfSPLPUwWIj9VZFAD1O3ny\nZCYmerJwiDjnrZmYWGfORIfVGSQuS7I5yVcvWP/VJDd0vhyA7rOaJyDu2rV3dk7E4k1Nbc/OnXvb\nVBHzqfPUxuuTXJpk+oL1z6aaLwHARayFCYhjYxM593Ut3taMjd3bjnK4iLrnSACwRGtlAuLMTEmv\nSwr7UarOIPFckh8luXB0N5Kcmq/DyMhINmzYcN664eHhDHf7tGSAJVgrExB7ekp6nS3stzo0m800\nm+d/r0+fPt3W96wzSLyY5EiS9yX50pz1703yR/N12L17dzavpunIAEu0nAmIfX19bays9bZsGcgT\nTxzO0k5vHM71129qV0kr3nx/XI+Pj2dwcLBt71n3VRu/m+Q3knwwyaZUl4L+rSSfqbMogJVqLU1A\nHB3dnt7ePUvq09u7Jzt23N6miphP3UHiC6luQDWa5PEk70zyq3EPCYB5lU9APNaOctqqr68vAwMz\nSZ5cZI+jGRh4qeuOvHS7uoNEkvz7JG9Ksj7JlrirJcBFrbUJiPv27U5//x2pbnz8So6mv//OPPLI\n/Z0oizlWQpAAYJHW2gTERqORAweaGRq6J729tyU5lOTs7NazSQ6lt/e2DA3dk4MH92Xjxo31FbtG\nufwToIusxQmIjUYj+/c3Mzk5mZ079+axx+7N8eNJf39y002bMjq6y+mMGgkSAF1kdHR7Hn10NFNT\niw8S1QTEXW2sqjP6+vry8MP3/fVzRb7whdX1XJFu5dQGQBcxAZGVRpAA6DImILKSCBIAXcYERFYS\ncyQAupAJiKwUggRAFzMBkbo5tQEAFHNEAqBLNZvVkiRnziTXXpvcfXeyfn21bni4WqCdBAmALiUo\nsBI4tQEAFHNEAoAlq64W2ZOxsYnMzFTPANmyZSCjo9tdLbLGCBIALNr09HTe/e6RnDjRkxde2J65\nz/x44onD+fznR/PmN89k//7daTQa9RVKxwgSACzK9PR0brhhOCdOPJjkunlabM0LL2zNsWNP5sYb\nh3PgQFOYWAPMkQBgUbZtG3mFEDHXdTl+/IFs2zbSibKomSABwIJOnjyZiYmeLBwiznlrJibWZXJy\nso1VsRIIEgAsaNeuvZma2r6kPlNT27Nz5942VcRKIUgAsKCxsYnMnVi5OFszNnasHeWwgggSACxo\nZqak1yWF/egmggQAC+rpKel1trAf3USQAGBBW7YMJDm8xF6Hc/31m9pRDiuIIAHAgkZHt6e3d8+S\n+vT27smOHbe3qSJWCkECgAX19fVlYGAmyZOL7HE0AwMvuV32GiBIALAo+/btTn//HUmOLtDyaPr7\n78wjj9zfibKomSABwKI0Go0cONDM0NA96e29LcmhJGdnt55Ncii9vbdlaOieHDy4Lxs3bqyvWDrG\nszYAWLRGo5GPfKSZ3//9yfT07M23v31vXnwxueyy5HWv25Rrr92VD3+4LzLE2iFIALAkw8PJ8HBf\nkvvqLoUVwKkNAKCYIAEAFBMkgFWl2Uze857JXH31Xbn88ptz2WU35/LLb87VV9+V97xnMs1m3RXC\n6mKOBLBqTE9P56GHRjIx0TP7pMrqIVMzM8kPfnA4MzOjeeihmfzyL+9Oo9Got1hYJQQJYFWYnp7O\nDTcM58SJB5NcN0+LrZma2pqpqSdz443DOXCgKUxACzi1AawK27aNvEKImOu6HD/+QLZtG+lEWbDq\nCRJA1zt58mQmJnqycIg4562ZmFiXycnJNlYFa4MgAXS9Xbv2zs6JWLypqe3ZuXNvmyqCtUOQALre\n2NhEzk2sXLytGRs71o5yYE0RJICuNzNT0uuSwn7AXIIE0PV6ekp6nS3sB8wlSABdb8uWgSSHl9jr\ncK6/flM7yoE1RZAAut7o6Pb09u5ZUp/e3j3ZseP2NlUEa4cgAXS9vr6+DAzMJHlykT2OZmDgpfT1\n9bWxKlgbBAlgVdi3b3f6++9IcnSBlkfT339nHnnk/k6UBaueIAGsCo1GIwcONDM0dE96e29LcijJ\n2dmtZ5McSm/vbRkauicHD+7Lxo0b6ysWVhHP2gBWjUajkf37m5mcnMzOnXvz2GP35vjxpL8/uemm\nTRkd3eV0BrSYIAGsKs1m0mz2Jbkvb35zcumlyTXXJM89l3z848nwcLUArSFIAKuKoACdZY4EAFBM\nkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJ\nAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoVmeQmEzy8gXL79RYDwCwROtqfO+zSXYk+Q9z\n1v2gploAgAJ1Bokk+X6SZ2uuAQAoVPccid9K8lySx5N8IklPveUAAEtR5xGJ+5McSfKdJFuT/Jsk\nb0rymzXWBMAK1GxWS5KcOZNce21y993J+vXVuuHhaqHzLmnx/j6VZHSBNu9IMj7P+n+Y5A+TXJEq\nXMy1OcmRd73rXdmwYcN5G4aHhzNs9ABAms1mmucS16zTp0/n61//epIMZv7fv8vS6iBxxezySp5K\n8sI869+Q5Jupjk6MXbBtc5IjR44cyebNm5ddJACsFePj4xkcHEzaFCRafWrj+dmlxN+d/XiqRbUA\nAG1W1xyJX0jyi0n2J/luki1JfjfJl5L8ZU01AQBLVFeQeCHJranmU7w61emOh5LcV1M9AECBuoLE\n46mOSAAAXazu+0gAAF1MkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJ\nEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCAB\nABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBA\nMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQT\nJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUEC\nACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKtStI/KskB5P8MMl3LtLm6iRfSfL9JN9Kcn+S\nnjbVA4vWbDbrLoE1wlhjNWhXkOhJ8kiSvRfZfmmS/5Tkp5LcmGRbkn+U5N+1qR5YND/c6RRjjdVg\nXZv2+6nZj79+ke3vS7IpyXuTTM2u+5dJPpvkE6mOUgAAK1xdcyR+Mcmf5cchIkm+muTVSQZrqaiN\nOvlXR6vfazn7W2rfxbZfTLuF2qzWvwSNtda2N9YuzlhrbftuHmt1BYneJNMXrPtOkhdnt60q/sO1\ntn03/4drN2Otte2NtYsz1lrbvpvH2lJObXwqyegCbd6RZHyR+7tkCe+dJDl27NhSu6wIp0+fzvj4\nYv9ZVtZ7LWd/S+272PaLabdQm1fa3snvV6sZa61tb6xdnLHW2vbtHGvt/t25lF/mV8wur+SpJC/M\n+fzXk3w6yWsvaPevk7w/ydvnrHttkueTvDvJ1y5of2WSsSRvWEK9AEDl6SRbkpxq9Y6XckTi+dml\nFf4k1SWijfz4FMf7UoWQI/O0P5XqH+DKFr0/AKwlp9KGENFOV6c62jCa5K+S/J3Zz18zu/1VSf53\nkj+eXf/3kvzfVPeSAADWuM8meXl2+dGcjzfNafPGVDek+kGS55LsjhtSAQAAAAAAAAAs5G8k+R9J\nHk/yRJI76i2HVeyNSf5bkqNJ/jTJP661Gla7P0ry7ST/se5CWLX+fpKJJH+e5MM111KrVyVZP/v6\np5KcSPKz9ZXDKtab5G/Pvv7ZJN9MNeagHX4p1Q96QYJ2WJfkG6lur3B5qjDxuqXsoK5bZLfDy0nO\nzL7+6SQzcz6HVppKdflyknwr1V+LS/qPB0vwtXiQIe1zfaqjq6dSjbP/nOq+Tou2moJEkvzNVIea\nz92T4nv1lsMa8I5Ud4h9uu5CAApclfN/fv1llngX6dUWJL6b6uZXb0qyPcnP1VsOq9wVSf4gyUfq\nLgSg0Nnl7qDOIHFTqhtSPZ3qtMT752lze5KTSf5fkv+Z5J1ztt2ZamLleH7yRlbPppoM9/ZAe8ba\nq5N8McnvJDnUlqrpRu36ubbsH/asWssdc8/k/CMQb0wXHWH9lSQ7k/yDVF/8LRds/7VUz974UJK3\npHr41/dSfZHz2ZjkZ2Zf/0yqc9hvaW3JdKlWj7VLkjST/HY7iqWrtXqsnTMUky2Z33LH3LpUEyyv\nSnX145/nJx+02RXm++IPJ9lzwbonU/0FOJ/NqZL8/5pdPtjKAlk1WjHW3pnqlu/jqcbc40ne2sIa\nWR1aMdaS5L+mOsr6g1RXCA22qkBWndIxd3OqKzf+IslvtK26Nrvwi78s1VUXFx6i2Z3qlAWUMtbo\nFGONTqtlzK3UyZavT3JpfvyI8XOeTXUNP7SKsUanGGt0WkfG3EoNEgBAF1ipQeK5VOegGxesb6S6\naQa0irFGpxhrdFpHxtxKDRIvJjmSn7y71nuTHOx8OaxixhqdYqzRaat+zL0m1X0e3p5qgsjI7Otz\nl6TcmuqSlQ8m2ZTqkpW/ysKXScGFjDU6xVij09b0mBtK9UW/nOrQy7nXD89p87FUN9E4k2Qs599E\nAxZrKMYanTEUY43OGooxBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAr1P8HRNR427xWgZEA\nAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "\n", + "xscale('log'); ylim(-10,10)\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=10)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1.40138477, 1.30298225, 0.50400939, 0.31939362, 0.66477489,\n", + " 0.42567588, 4.95106888])" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lage" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lag/data/clag_analysis-origbins-3471A.ipynb b/lag/data/clag_analysis-origbins-3471A.ipynb new file mode 100644 index 0000000..1abd6f7 --- /dev/null +++ b/lag/data/clag_analysis-origbins-3471A.ipynb @@ -0,0 +1,841 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X18VPWd9/9XSAKSRBRwbFEoxFBYg1pNKhD6s+qCqFBy\n1UI35PGzbbjorle73V2vSzK22u7P31W07aRre117tbXXlpL21zWmWnYXoevderNU7mro9sb4kxID\nyO2MiDcQhNyc64/vHOcmM8lM5szMOTPv5+ORR2BmMufkmzPnfM73+/l+viAiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjJm+4GhBF//K4/7JCIiIi42Fbg46msxJnj4\neD53SkRERLzju8DefO+EiIiIeMN44A3gy/neEREREXFOWRbf+5PABUD7CK+ZFv4SERGR9BwNf+Vc\nSRbf+0ngPeA/JXl+2iWXXHLkyJEjWdwFERGRgnUYuJY8BBDZ6nmYiUmWvG2E10w7cuQIP/vZz7j8\n8suztBsS78477+S73/1uvnejqKjNc09tnntq89x65ZVXuP322y/F9N4XTPCwBjgObB3thZdffjl1\ndXVZ2g2Jd+GFF6q9c0xtnntq89xTmxeXcVl6zzXATzDTNEVERKSAZCN4WAJMB36chfcWERGRPMvG\nsMVTQGkW3ldERERcIBs9D+Jizc3N+d6FoqM2zz21ee6pzYtLNqdqjqYO6Orq6lKSjYiISBr27NlD\nfX09QD2wJ9fbV8+DiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiI\npEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIik\nRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpKUs3zsgIlJIOjrMF8B778GBAzBzJpx3nnmsudl8\niXiZeh5ERBzU3AybN5vvZ8/C3r3wzjvw6qsmmOjogMbGSIAh4kXqeRARcVgoFOKppwK8/no3UMqh\nQ4McPlzL97/vZ/FiX753TyRj6nkQEXFQMBikoaGJ9vaV9PZuBOZy+LAF/Ae33HIDzc1/RSgUyvdu\nimREwYOIiIPuvruNnp4HgMuA1cBKYCvwNAMDv+eRR5ppaGhSACGepuBBRMRBu3d3AwuANuABYCFQ\nEn52HLCInp778fsDedpDkcwpeBARcdDAQCkmWLCDiEQWhIMMEW9S8CAi4qCyskHAAuwgIpFx4SBD\nxJsUPIiIOGj+/FpgF2AHEYkMhYMMEW9S8CAi4qBAwE9NzT3ARcDOJK/aFQ4yRLxJwYOIiIN8Ph87\ndnSyenUVZWX/GXgRGAo/OwTsoKbmXgIBf/52UiRDCh5ERBzm8/no6PgeTzzx78A/c+mlK4BGqqtX\n0NKyiR07OvH5VCxKvEsVJkVEHBS7toWPOXPamDwZDh+GGTNg6VJQ3CBep54HEREHRa9tcd55MHcu\nTJoEc+bAhAla20IKg3oeRESyQKtnSiFTz4OIiIikRcGDiIiIpEXDFiIiWRSbQAkHDsDMmSYfAjS8\nId6k4EFExCGjBQo33AD33mteU1eXt90UyZiCBxERh0T3IuzZA/X1JlCYMSOE3x/gRz/qBkpZtWqQ\n66+vJRDwq96DeJKCBxERB4VCJlB44QUTKNx2Wx8nT4Z4990fAgGghN7eIXp7d7NtW5MKRoknKWFS\nRMQhwWCQhoYm2ttX0tu7BdjMwYNX8+67DwELiayyOQ5YSE/P/fj9gbztr8hYKXgQEXHI3Xe30dPz\nALGBwivh/yeygN27u3OybyJOUvAgIuIQEwgsiHu0lEggEW8cAwOl2d0pkSxQ8CAi4hATCMQHCoOA\nleQnhigrG8zuTolkgYIHERGHmEAgPlCoBXYl+YldzJ9fm92dEskCBQ8iIg4xgUB8oOAH7gG2A0Ph\nx4aAHdTU3Esg4M/hHoo4Q8GDiIhDAgE/NTX3ADuIBApTgXVUVd3BzJm3Ao1UV6+gpWWTpmmKZ6nO\ng4iIQ3w+Hzt2dIbrPKynt7eU6mq7INSzvP66j/p6eOwxVZgUb1PwICLiIJ/Px8aNbe9XmPz852Hn\nTli71pSsnjMHvvxlrW0h3paN4OFS4FvALcBEYC+wFtiThW2JiLhG/NoWc+bA889HAoU1axQoSGFw\nOniYDLwI/BsmeAgCNcBbDm9HRMR11IsgxcLp4OFu4ACmp8F20OFtiIiISB45PduiEegCHgWOY4Yq\nPu/wNkRERCSPnA4eLgO+ALwKLAV+APxP4LMOb0dERETyxOlhi3HAbuCr4f//FrgC+C/ATxP9wJ13\n3smFF14Y81hzczPNGjgUERGho6ODDjsTN+ytt/KbSphstZax2g88BfxF1GNfAO4Fpse9tg7o6urq\nok4TnkVERFK2Z88e6uvrAerJw2xGp3seXgT+JO6xOZigQkSkaMVP4zxwAGbOVL0H8Sang4fvYAq4\nfwWTNDkf+PPwl4hI0WpuhiVLQuHqk9309pbS329Xn/SrTLV4itPBw0vAbcA3gL8FXgP+BugY6YdE\nRApdMBhk0aLV9PQ8AASAEnp7h+jt3c22bU1a50I8JRsLY20FrsJUl5wHbMjCNkREPOXuu9vCgcNC\nIulm44CF9PTcj98fyN/OiaRJq2qKiOTA7t3dwIIkzy4IPy/iDQoeRERyYGCglOQT3MaFnxfxBgUP\nIiI5UFY2CFhJnh0KPy/iDQoeRERyYP78WmBXkmd3hZ8X8QYFDyIiORAI+KmpuQfYAQyFHx0CdlBT\ncy+BgD9/OyeSJgUPIiI54PP52LGjk49/fBMVFSuARiZOXMGkSZuYPr2TtWt9NDZGCkmJuJnTdR5E\nRCQJn8/HCy+0sWcP1NfDP/wD3H47PPggqEq/eImCBxGRHIguT/3OOyEmTQrw53/eDZRy3XWDfPSj\ntTz2mCpNijdo2EJEJAeam2HzZvjRj4IcOtTEO++s5MyZLcBm+voe59//fSUNDU2EQqF876rIqBQ8\niIjkkCpNSiHQsIVIBrRSoqTLVJJMFiAsYPfu9bncHZExUfAgkoHo4MBOguvoUPKbJKdKk1IINGwh\nkqFQKMSaNa2sWrUcaGTVquWsWdOqsWtJSJUmpRCo50EkA1pmWdI1f34t3d27MDkP8VRpUrxBPQ8i\nGVDym6RLlSalEKjnQSQDSn4TSC9x1q406fcHeOGF9fT2llJdPcj119cSCKinSrxBwYNIBpT8JpBe\n4qwJNHxAG7NnQ3m5CTROnIC1azVDR7xBwxYiGVDym9hSTZy1i0U1N5ueiblzzeOvvmp6LTo60BoX\n4nrqeRDJgJLfBMaWONvcDEuWhMLDF9309pbS328PX6hMtbibeh5EMqDkN4GxJc4Gg0EaGppob19J\nb68pU93b+zjt7SpTLe6n4EEkA1pmWcBOnF2Q5NkF4edjaaaOeJmGLUTSEJ9V//vfw8CAj9LSNioq\nYNIkk/y2axdYlpLfCp19PBw4kH7irGbqiJcpeBBJQ6Ks+q4uk1UfCkXGr6GU118f5KmnalmyROPX\nhcrOW/jwh49gEmcTBRCJE2c1U0e8TMGDSJrig4RVqwaZP38mu3a9zP7930KVJouHnSj59tvzgJ1A\nQ4JXJU6cjczUST3gEHEL5TyIpKijA26+OcisWcOT3Do7T7N//zfQ+HVxieQtfBu4l+GJsy8mTZw1\nAcWuJO+smTribgoeRFLU3AxTpnydvr71DA8S3iDxXSckS5gT74skSvqATmATYBJn4RNccMFfJu11\nCgT8XHxx4pk6FRX3cuSIX4m24loKHkRSFAwG+cUvniVxkKDx62IUm7dgqkbCVmAz8EsGBj7E2rW+\nhEGAz+fjD3/oZPXqn1FVVQdcCXyUqqq/orFxHj/7mZJtxb2U8yCSorvvbqO//xISBwkavy5Go+Ut\nzJw5yObNyX/esix+/etXOHXqIUwPRgmnTg3xyCO7+fWvlSsj7qWeB5EUmS7q8SQuR12LSZhLROPX\nhSqTvIWODqivV60H8SYFDyIpMl3UyS4WfuAu4EVUaTLCXqehsRGWLjXrOCxdGnnM62P6mVQYbW6G\nSZPSLy4l4gYKHkRSZLqoW4FEF4s/UlYWYvXqR6iuNglz1dUraGnZVNRdz83NsGFDiKlTW9m3bzl7\n9zayb99ypk5tZcOGkOfH9O0Koy0tm8b0d1etB/Eq5TyIpMgsgvUaJqs+AKzHJEoOAhfh8y3l9Om/\n1zLLUcayYJQXxFYa9XHgQBsXXwy9vTBjhuldSeXXUq0H8SoFDyIpCgT8/PKXTQSD9wPfwnTcDQG7\nqKi4lyuv7CzaICGZ2PUbbLFj+hs3tuVp78bOriy5alWAl17qpq+vlIkTB5k0qZaSEj8dHWaGxWjH\ng1ZlFa9S8CCSIntqnakuuZ7e3lKqq+0llL15B51thbp+Q6IelTNnhjhzZjeHDqXeoxII+Nm2rYme\nnvsxuQ+RgNTkTHRm9fcQGSsFDyJp8Pl8bNzY9v66Fo89Zta1sMUvnHXggBm+OO8881ix9UwU6pi+\nUz0qds6EAlLxGgUPIimKDgx6e6GyEm6+2fz/zBm47DKYNQvOng3x3nsBXn+9m97eUvr77YtB8S2Q\nVahj+k71qJhjyhSXUq6MeImCB5EUJTuR270Q7e0wfXphJgiOVaGO6TvVo6LgQLxKUzVFxigUCrFm\nTSurVi0HGlm1ajkf+9ifhcevVfQHMquD4GaRHpVEvNujIpIqBQ8iYxAMBmloGL665r59JlBIrPiK\n/mRaB8GttCKmFDsNW4iMQfKEuSoKMUEwE6MlmXqRZklIsVPwIDIGyRPmCjNBcKziZ5/MmQNf/rL3\nZ59oloQUOwUPImOQPGHO7s4urATBsfJqcJCKQuxREUmVggeRMUg+BdEPNAFfBxqI7s6eOPFejhzp\npLGxsC+qxaBQe1REUqXgQWQMkk9B9AHrmD37Xs6dK+PgwROUlQ0wMFDFxRdP4pJLAkVZ76HQOB0c\nqLiYeI2CB5ExGClhrqLi21x66ffZvftLwA8YGFgAlHDgwBDt7cVR70EXw/TYa2WYHAoVFxP3S5YW\nngt1QFdXVxd1GigUDwqFYk/2kYQ5P35/gPb2lSTOfdhBS8smVy0IlY2L/Ujto4thrNi1MkywaYLR\n3dTU3FPwwaakb8+ePdTX1wPUA3tyvX0FDyJjMNrFds+e5Rw+vIVksy5qa1fw8stbc7W7KXHyYq+L\nYXrWrGn1VLAp+Zfv4EHDFiJjMNqd+Ny53loQKtEqkZmU1S7UpbizpVBXH5XCpQqTIlnglfLFHR3Q\n2Aj19dEX+8zLapuL4YIkzxZfpc3RFOrqo1K4FDyIZIFXyhc3N8OGDSHeffc5RrrYP/poN42NJtCw\nh2tGMtrFcP/+0rTer9B5JdgUsSl4EMkCrywIZa/R8fbbk4m92IeAVmA58EnOnj3I1KmtbNgQSilx\ncvjFMPr9Gunv703r/QqdV4JNEZvTwcN9mDNk9NcRh7ch4npeWRAqkpswnsjFPogpdLUSMIt+DQz8\nlvb2lTQ0NBEKhUZ939iL4fD36+9P7/3cwh7maWyEpUth7lzzPdNeFK8EmyI2p2db3Ad8ClgS9dgg\ncCLBazXbQgqWV+oczJu3nO7uLZjKmCuBGuDTwAPAogQ/kVrmfygUoqHBroPxC2AVhTKTIFtTUDW1\nVdJRiLMtBjG3GiJFyy3BQbz4oOaPf7RzE/zAbZi73fMwpbUTSS3zP3rhqH/8xyfp708WHHhrJoHT\ns1Js5u/iA9qYPRvKy02weeIErF3r3uNJilc2gocPA4eBs5h+y3uA3ixsR0TSZFcyXLUqwEsvddPf\nfxAzXOEDrgGagW+SaeZ/9MWwvPxV+vsLYyZBtqagKjgQr3E6eNgJfAbYC3wQ+CqwHZgHvOnwtkRc\nzY1DF7F3zq3An2HG2RcBr2F6HDJfVjz6d5s3b5Du7uTvd+TIYFqLhdntevgwHDwIZ87AhAlw9ixM\nnAgf+hBceml22lf1GEQMp4OHJ6L+/TLmrNQDfA74TqIfuPPOO7nwwgtjHmtubqZZYbh4nBvXK4jc\nOV8GrAbuxsT49wP2EIazy4rHLiIWwlx8u8Pbe5cPftBiw4ZQyu0R3a5vvPEb3njjBGfPmsXHLrpo\nEldddVXW2lf1GCQfOjo66IjLxn3rrbfytDe58xTwvQSP1wFWV1eXJVKIjh8/btXU3GjBDguGLLAs\nGLRgh1VTc6MVDAZzvk+1tcvC+7IuvF+WBcHw/68IPxe04EYLtof3197vX41pv4PBYLgdtoTfN749\ntqf1vpF23erI+6Uj0n5Wgq9Bq7Z2mePbFEmkq6vLwnQR5mXGQbbrPEzA3MYczfJ2RFwndnw886qN\nTojcOUdXgDS5CXALpsfBB3QCmwAzzRQWM3v2vWNKCLSTJ2fPbgPWM7w9GtJqj0i7PoeZFZLZ+6VD\n9RhEDKeDh28DHweqMWemx4Aq4CcOb0fE9dxYojlSvClR97sfk9+8A5iKCSgeB77CxIklXHbZo6xd\n60u7lkFHB6xd6+PYsUpGmsXx2GPdKb13pF1z376qxyBiOJ3zcCnQAVyEGdzcgbkteN3h7Yi4nhvH\nxyP5B4mSIu0eh29RXv4X9PdXR9UaGHthKztxce7cUvbuLWF43sMgUMvFFw+klOAYadfct2/0FNQX\nXlgfV4/BPcW/RLLN6eBBWY4iYZG7/LHPWnBSRwccOeKnoqKJvr4ZmMlR8T0BPmAlF11Uwvnntzla\na8D8vscxp4lInQRz576L11/fQig0euJkpF1z376qxyBiaEnuAuTGKYLFKHaWQbzcj4+bWQrw1399\nOY8//gKnT38GM6LYgBnBNBfxmho7t8HZ7Zv28BPJU7CZPIX+/h+lVCch0q7OzgpJhT47IobT5anT\nofLUWaRSt/kXW6J5AYkv0Ln7WwSDQa68cjXB4APh/XkD+Bamsu1JJk68mGuvvYrHHsvOMRIKhbj0\n0hvo7/8DyXoLamtX8PLLW0d9H9Ou6zBpVvHtu5OKiq9y7bWdHD3qcyRwVkAubpPv8tQKHgpQbCGg\nBUS6hndTU3OPqxZmKnRuCuLWrGmlvX0lydaYmDZtEx/9qLnrz9bFcPbs5fT0JA8O5sxp5NVXN4/6\nPna7Pvvsbzh48ARlZabOw8yZk2homA2MY9eu1+jtLaWiYpApU2qpqfFnFEy46W8pku/gQcMWBShb\nJXQlPW4bHx+tOuLkyevZPPp1e8w6OuD4ccg0T8Fu18OH2+jrg8rKSIXJd98NsmnTas6diwTOfX3H\n6evzc+zYDQwMzKK/n7Qv+tla00JE0qciUVkyWiGbysrF1vTp66zKymVWefkKq7JymTV9+jpr6dKg\n9fDD+d57yZY5c1YkOSbM15w5K7K+Dy0t0cWp4r+2Wy0t6xx+/+NJCkmlV6gr2/udiYcftqwVK8zX\nTTdZ1pw55rv9mD7ThanQi0RJHow8RfAN+voOc+jQSk6f3kJ//2ZOn36cQ4dW8vzzTbS3h2hsJO25\n/OJ+kVkKieRm9ke26yQMr63RRuJCUukV6nJjzQ5bczNs2BBi6tRW9u1bzt69jezbt5ypU1vZsCGk\nXAzJCg1bFKCRpwj+dyxrA4nWGTh3zuK11z7N9u2Pqgu2ALlh9keqdRLGmqA4PHB2ZiErN9bssI00\npNLZ2cR113UyYYJPSZ3iKAUPBSj5RSIIPAv8ffjfq4mfb79v304aGjSGW4gCAT/btiWf/REIdGZ9\nH1LNAxnromLDA+fML/qmPoa7anZEi81xir0hOHNGNwSSHQoeClDyi0QrpghoCbHdubZxwCIlVRYo\nN1RHTPXud6wJisMD59Qv+iP1dpx//mWcOmUvXR4vv2taRBJhi+OGQNNm3UE5DwXIvki0tGyiutos\nbFRdvYILLngZGI85mbp3DFeyw15j4sSJNmbP3sqcOZuZPXsrJ060jWnNimxKZ1Gxjg5obDRfvb1+\nysujcypqMZU0E4m96CfLHaio+CJlZS8B64DtxOZqvMisWV/O65oWkSGVZPkdi/K2EFs2KMfDHdTz\nUICSdQ1v394IzMVU5Ru5O/fNN0tpbDT/U3SfGbfcKXnpbzbatNLoXIXoIY4//KGb/v5yqqq+AJRx\n6tSFlJVtYWDgRySqpBk9VJO8t2MN8HfAh8OP309kTY6LWLjwirze0UeGapzJ73A7TZsVTdXMMTOF\n0566dsOI0zlra5dZwWDQamlZZ1VXL7NghVVdvcxqaVmX8vQ2iVBbpiedaaXHjx+3amoST8csL7/R\namjotqZPX2dVVIzc9smnY4489bmqallep0NG9jv/U3Fzwc3TZnMp31M180nBQ45FPnRBC6634MWk\nH8Cmpi8kPSGnMz9eRr64ub0t81VDYLRaJdEX7NEuJhMmrLMqKy1ryhTLqqy0rIsusqy6uuH7n3yb\n7r4oB4PB8PE1+g1BIRjt2CiU33M0+Q4elPNQRAIBPxdffA+wD7P08lcZPoZr5tuXlJSmPOYsI0tn\n/N5t8jW+bHIRdmFmD7QCy4HG8Pc1fOITs97fdvIaDCHgF5w79wSnTzdywQXL+fSnW+nuDtHVBZs3\nxw7jJJ+Omf/6GCOxc5xmz7YwuR6J5Dep00lunjZbTJTzUER8Ph9/+IPJtt+6tZtQqJzS0i9SUlIG\nfIAJE2Dy5FpqajrZtq2FkRMqC2P8NBfSGb93m2yNL4+WB7J8uZ/nnruNAweGgAeJXb57Jzt3fuX9\n5bsjF5PoaYoDwEFgI5bVltJ+J6+PYiddxi9fDm64KNs5Tpdd9iiHDzdx5kz+puLmgtuWupfc07BF\njjz8sGUtXRq0pkxZZ5WWLrNKSlZY48Yts8rK1llTpgQTduG6oZRxofBqWz78sGVNm/alEYe3Mhlf\nHikPJJ1tm27sY1ZsGep1FmxPa7+TD38ELWiw4Ffh4SZ72Gm748NOmQ4TFUNujXIejHwPW+STgocs\ns4OGadO+YJWU/MmIY+7xJ63x4zWu6BSvjtEeP37cKi+vzcq+p5IHkmq7mYvJZ+MuKOm3eSR3YPuw\nIOG88z5mTZv2pVGTLp0w1gCgWNa4GOnv5PYcIiflO3jQsEUBW7w4yNe+tpqjR2cAP2a0VTajK/qd\nO3cEM37qvqI4XuOGstBjcffdbfT3X8JI48sHDpSydGn6009HW/m1ri7Am2+mNrYdCPj5x3+8gf7+\n6GG29MfFn3nGR01NJ2fPBnjzza9x5swJYADLquLcuUmcPXse117b/v6y3tlYHTWTYSIvTcXNRPTf\n6eTJ9Zw7V8r48YPvD7k+84yvKNqhmKnnIcsi3Xuj34UNvxMMhruBXyya6D5bd25evVMyd/4jHTvH\nrLKyj4zpbnzkXoVj1gUXfMQqL78ipd6Dhx+2wvsQ/fzYe3vyOTtGXfKSKvU8iGPik9BeeMFO1Bv9\nLmz4naAPMyMjANwLvEd19ZScljLONbvY0KpVAV56qZu+vlJef32Q8vJarrnGT0eHqcKY7h1evstC\nZ7bIlF1ULH7dhAFgPwMDP2FgYAHRd8g//3kT117b+f4deqLtJM+YDwLNvP32Q8BjUduOF+mxaW6G\n9euhu9uKes/alH42kdF6RbJZuj0XybVuKVomMlbqeciC2PHSupTvwkYbXx4/fllBjp9Gi73jPG6Z\npLtbLVhilZXVWqtXf2lMd51uGIseyzh6bFGxLVZqCYlBCz5rVVXVj7id5Mdb9PvavV+j99gMv2NP\n/WcT/975yVHJVXJtvhMr3fCZ8Lp89zzkk4IHhw3vbrVPgqN3hXp1RoCTIhcg+4IZ3239oquHGZIZ\nazf8yEXFEl1gk7Xb8O2kXs0xGD5+zUWupOQKa/r0ddbSpcGYC0zioaFjFnzWKiurtWBZyhfIfH4W\nchG4uKVoWb4DGK9T8KDgwTHDT8jRJ/9Ed2G/SjuzvZBF2qCwxp3HOo4eDAatiy+2j5tb446PRBfY\n1LeTPA9kyZgv3PEXo4qKZdb06eus668PWnPmWNYVV1jWBz5gvq68MnK3W1dnHqury/9Mo1zkPLgh\nr8ItAYyX5Tt4UIXJAjK80p4fsCtKdgCbgE8AN1FWdiWrVz/yfvZ2pKIfDK/qt5j9+09z880hV628\n6LTIOHxhrTiavAIjjPT72EXFWlo2UVZ2jNgchURVF1Pfjp0xP336JiorV1Be3khl5QrKyk4meF9b\n8gJAiVYM/djHtnLNNW1MmuTjvvvg97+H3/8+xK23tnLqVKRa5lVXtfLcc69w1VWmimZkplEiu3jn\nndqsfQ4CAT81NdGrgkJ05VcnVu9MfDzYn/mv097+b1RVLWfGjNasfea9XHVV8k89Dw5L3N0a3e1b\nZ02cuMyaNMncjUWPL0buBOPHtlMfK/a6SM9DYQ3hjLUbPnpcurIy/m480d1r5u2Wzbvi5He7W62y\nsrlRj9s9dVssuMuyh0zgBquq6gqru7t7zPuQiky78+36LtOnr7MqK5dZpaUrrNLSZVZ5+TqrvDyY\n4O+U+nCTU9TTmbl89zzkk4IHh9gn+aqqsSc92iecior4sW1vd9mnI52prV7ixIk6tYTE+KGN9LeT\nzWmtyQOTRMmfL1twVYILanaDaCcSCY8fPx4ebored5P/AXMsmBv1+OiL5GXjM68cq8wpeFDw4Ihg\nMGjNnp35SaCY7wgiF67PJriYeDeAcuJuPvaifix8wf1TC64MX5DmW5WVVzlyEUp25/3QQ8GYO+ry\n8hVWZeWyhAmUiSQ/thM9nv+8gLGKTXRdZ8F1Fsy2YKtlAj77+LZ7HG7M+We+mM8zTlHwoOAhY5Hu\n2F9aiRMjU58lUMx3BJFy3l8Ml/PO/loGueDE3Xwqpc7PO+9j1sSJH894O8nuvJcuTXRHnXr3evJj\nO9Hj+b+4jbUXInatj60WXBH+m8QnUNtBRO4/825I2vQ6BQ8KHjIW+0GMndoGN1gVFdendGdmWboj\nsBXSNLL4MfB079ijjXbSnzbti45sZyzbHu2Ck17PgzuC6JF6YZIFFpWVK6IChXVWpGch+vcMWlCf\n4PHcfOar2oiKAAAgAElEQVQT92SZmiolJbXWtGlfcuSYKWT5Dh5UYbIAxFal8wHR1e+GmDVrBU8+\nmVoVQ6+uw+Ake4ljaGP2bCgvJ2trGeSC2d/442JsRquAOHnyel5+eWvG24lmV0R87rnMqi8mP7YT\nLbmd32WfOzrghz/s5le/amZw8IfErnOxi1/+sonnn/8egcCPeeGFbnp7S+nvN1VLL730LHv32m31\ndaAq/HtEV/X0Afa6JWOvxjlW9mybvr7/h2PHnsOyNr7/O1rWEEeP7qaiooklSzrD+yoSoZ4Hhzg5\n1ODVdRgkN0Y71ioqVmSlSmAwGLQmTVqY0XGe/Njeapkkwuh1XO6y8pn3cvz4cauq6ooR9mGLdf75\niRI6d4R/zq6XsSKqZyG+h8H+/+h1YLJFwxdjp54HyZi5C3LmLinf6zCIuw0/1qLXuyilv7+XqVNb\nCQT8KR0rqayzsHixWWnynXcmkslxHn1sP/vs1zh48ASlpe8xOGi/3+cpKRkHnM95553HuXNPMzj4\nA8wd+ThMvYVd4XoLnaP+bpm4++42Tp3ykbg3AOA53n33ByRaf+PUqW8xbtx/Y2jIwvSgXI7pWYjv\nYYj+v72OzXpMD8W7zJ5tsX37o45+5pOvv5NIbG+S1uRwFxWJKgCxBZ7ipdftGF9s54Mf3Mzbb7fz\nyCMwbVoLZWWNWS8gI+4Ve6wFgSZgJbAF2Ex//29pb19JQ0MToVBo1PdrboYNG0JMnWoKNNmFm6ZO\nbWXDhhDNzdEFherJ5Di3j+0jR1oJhYaA+xkcnIZZrv4VoBvL+h2W9SDnn1/Cddc9wvTp/xRTxGr6\n9E3vL/ucTWZ4yB5uSOQVYodZot1CVdV4TKGpWmAxpljcjeHvdgEqu4jcdmAqZljrceArTJxYwmWX\nPcratT5HP+Pxf+9z5+KLj0WLXTo9lWNFioOGLRySzaEGlZGVaLHH2l0ZdzmncnxFEh2d6V6PdJW7\nt8vcDA+NlMg42vDRUquiwp5tYX+/y4LFFlxtQa0FV1olJddZ48dfb02cuNTKRWJw8vV3Rk/W1Lko\nVr6HLfJJwYODsjU7QGOSEi165kZJyRUpn/iTGe34MjM3oi+U8bOJllmTJl2d1nEeCUbcO7PI7ONI\nwdkNI+77pZcus5YuDVpTpqyzxo2zA4YrLFhojRu31JoyZZ115ZVBq64utytbJl9/Z/Tzi85FsfId\nPCjnoQBkc3bAaNn1o2W4S2GJnrkxd+6r7N2bWpdzMrHHV2z+BAzw7rtHuPTSD7B3r4Xp3h4+m2ho\naAVr1/pSPs4ja5hEzz4Y2/5ni5kZ8qeYYYX7MWtR2HkXOykrO8zAQPwMEdsubrqplo0bnZlh46Th\n5xM/Zugr/nccnluic5G7KHgoANlMFIqcaBPJ7wlW8suJRN3I8RUEVgMPYE/ZgyHefnsng4N3MHwq\npW0Xq1bVsnHjWPY7v9MxRxII+Nm2rYmennXAL4hOZKyqeoMnntjI5z53Lz09o1903WT4+cRHbLLm\nMaqrP5gwQVvnIndRwqSMKHKiTSS/J1gndXTAzTeHmDGjlaqq5Ywfr8TQ0TiRqBs5vtowgUP8KouL\nOHXqW5x//n/BqZUmI/vtXKKx03w+H62tnUyf/hwVFa8ApZSVDTJt2kdZtOhZ/vqvP0ZFxfBVSXOV\n0DlWic8ndg/J44wf/0Fmz97KiRNtw5I1i+VcJKNTzoMHFMs4o5Kx0udEom6qi5FVVi52rHJlZL/t\nZMKxl3PPFicWyEp3e05VIR1JJueTYjkXpSrfOQ/5pODBA4qlaJROTOlz4oITOb6WJGl78+V0OWg7\nwfhDHzLJhGVlJplw5sylritDnotAIlfBcybnk2I5F6VKwYOCB9crpHUektGaHvlhByBlZfU5a3/7\nYlxXZ1kXXWRZlZWWNWWK+X7RRdb7MxDctK5Ctj+DuQyeM/ldiuFclKp8Bw/Jsk9yoQ7o6urqoq6u\n6AInzyiWqm5z5zayd+/mpM/PmdPIq68mf14ys2ZNK+3tK0lcUXEHLS2b2LjRXTMHciUYNBU2TaGs\nBdjJpLCbiRPvYdq0TmpqfBl9JufNW0539xaSJY/W1q5wZM2STM4nxXIuStWePXuor68HUz1tT663\nr9kWMqJi+UA6WeJb0heZXeCt2QO5EKmwGR1YnQB+wZkzFq+91ohlTQnPUEitLHi8XM1kyOR8Uizn\nIq9Q8CCjKoaIvxBXE/XS381eZfHs2QAnT67n3LlSxo8fZPLk2vdnD7hlX3NteH2D4dNazWqbu9m2\nrYkdO9Jfg0bBs3iJch48pNDHGgs1GSsXf7dcZeoXq+ErmTqfn6CEYe/Jd85DPil48IhimcZYaAFS\nrv5uxXJ85MvwZF7nk3sLNXguZPkOHlQkysM6OqCx0XwtXQpz55rv9mNOFTaKHXONLuCzkJ6e+/H7\nk5WM9Y741UTnzNmctFiNV+Tq71YMx0c+xRbjCgFv4nR+gr1ceUvLJqqrVwCNTJy4lIqKr3D0aDmX\nXro2b0XTVMBN4qnnwQG5uFvWNEZn5Kp7P9fTH3V8ZFekV2CLZYpa3eh4e0dPX50yJWiVln7Bgj/J\nWW/SSLUsli49bl18sXq24qnnQcYsGAzS0NBEe/tKenu3AJvp7X2c9vaVNDQ0EQqFHNmOaso7Y/Hi\nID09TRw6tJLTp7fQ37+Z06cf59ChlfT0NLFkiTN/L3s7AwOTycXfTcdHdtnJpBUVbZj1H+pxuqx2\nczNs3gz/+q9BJk9uYnDwNPBjctWb1NwMGzaEmDq1lX37lrN3byP79i1n6tRWpkz5OsGgerYkQj0P\nGcpVkpPuLJ2Rjb9Xoju2adNSK/msngdvibRz0EpcVvtXGd+Jp1ou3Om/6Uh5MyUltTq+ElDPg4yZ\nmcK1IMmzC8LPZ86JBZAkO3+vRHdsb7zxRHg7ufm76fjIjUgPj70S5SbA5CfACsrKvpTxoliRYzS6\nNykEtALL39/W3r1HHM03iM2beSO8vRXAA1jWeNSzVVy+jKny8p0kz6vnIUPDp3BlZz0AZWI7Ixt/\nr8R3bPZ2sneHGk3HR27koocncoza2zoePobiewScXTws8rsl2t6t6nlIoFB7Hq4F/gL4HSRdQ1Uy\nlKslau0xV68t/+s22fh7JZ7pYG8n0R3qJygr+0tH/26JMvWrq1fQ0rJpTAWLJLFc9PBEjlF7W8mX\nSncy3yDSq5Joe/NQz5b7ZKPCZBXwM+DzwNey8P4SlquqiKYSoQ/zwS4sHR3Q3h6iuzvAyZPdMZUN\na2v9tLQ4V9kwG3+v4dUHIXLiX4gJIKL/bju4/fZNbNzo3AXdVLI025k9G8rLTSXLEydg7Vp3VbL0\nslyU8I4co36gCRNIJAsQFrB79/qMtwnRQYt9PIfC37uBAWAL8COgAZUuL1w/Af4u/O/ngQeTvE7D\nFhlSd3HmclngKBt/r8RDIcmGK3RceFkupvrGHqPHLFiYk6HRSKLmiiRDF8cs+KwFc6yysmWqYGrl\nf9jC6Z6H1cDVmGEL0JBFVmk9gMwlXnQodhqYU6s5ZuPvlXhNAnu44luUlPwFllVNRcUgH/1oLY89\npmEEr8pFD6A9BOX3B3jhhW56e08x/PiyOTc0GulVsXs64j+TH8Dcl77I7bf/c9GusOomTgYPM4D/\nASwBzoUfK2GUZb/vvPNOLrzwwpjHmpubadZVb1SFPJyQK4m7/W3OdcuCc3+v6AWvTp6MHqKA2O7e\nc4wbN4HKyrlcc42fSZN8GkaQEcUPQZ040co772R/aNQOrI8e/TR9fV0k/4w0sHv3A45s00s6Ojro\niJva8tZbb+Vpb5z3ScxAVH/U1xAme+scw4MIDVtI3uVqxorT7MqiH/rQYstUAvyVBUeTZMYXdyU+\nGbtcD40Gg0GrvPxqT34mcy3fwxZOzrZ4BrgC+Ej462rgJUzy5NVoCENcKFczVpzS0QE33NDNtGlL\naG9fycGDTwP/DvwTptNvParEJ07J9UyaZ57xMX78xXjpM1msnAweTmH6Su2vl4E+zCouzlQrEnGY\nVwoc2YsD3XXXF3nhhUYGBx8iEiT4gG8DMzHZ6Ik4VzRMioe9YNzvftfG22+3U1Y2lwMH4Cc/eZVp\n01qYOtXZxamam+HTn74KL3wmi122K0za3SoirhQI+KmpuQfYgRllI/x9R3gamD9/OxfFXq/i6NHT\nmPSiRGPQWmNCnBW/5sXAwEqGhrZgWZsZHHycN990dl0W8M5nsthlO3i4EfhvWd6GyJh5pQBWZFbI\nG8D5JA4SvDUEI96Ry2XXVXTMG7JRJErEM7wyYyUyK6SUSJAQH0DUAjtJPHSh7l4Zu1zOSlLRMW9Q\n8CDiAZHyvYPA5cROzwQzRbMPaMEspaxKfOKcXC67ruDAG7SqpsfYiXMzZrRSVbWc8eMbqapazowZ\nziYuibvErjmwGIgeEw5iSgl/BtgG/DPwCeAmSkquZNq0h101BCPe47VZSZJ96nnwmMWLg3zta6s5\ndOgBTDdiCf39Q5w+vZsJE5pYsqQTk30vI4kutPTee3DggOkaPe8885jb7n6GrzmwDvgFZmrmEeB7\nRHoiIkMwlrWDm292di0LKT6R46+GSBEyewjtIk6enEVHx8ifmVyuIyOFTUWi0vDww5a1YoVlTZ9u\n14BPVEBlu9XSsi7fu+oZdqGl6uplFqywqquXWS0t61xZTGn4mgPrwksVL7FgjpYslqwKBoPWzJkf\ns6AhQRGyF61Zsz4+6ucml+vIFINCKhIlWdTcDBs2hHj33ecwK+olkt25/IU0ZBIMBmloaKK9fSW9\nvVuAzfT2Pk57+0oaGpoIhZybeuaE2Az0/wy8SnV1CS0tV1NTMxtN0ZRs8vl8NDRcg6knMnx57v37\nvznqjItcztiQ7NOwhUcEg0EWLVrN229PJl8XikIaMsnlglhOGCkD/fjx5eRi8SIpXh0dsGXLa4xc\nhGzkGRfpztjw2tBisVHPg0dELnbjyVfiUiHdOZgTWX56cBIZrVcHTLGezZvhqafg1VfN982bYdUq\nb1TJFO9qboZLLslsxkW6Mzbs3tapU1vZt285e/c2sm/fcqZObWXDhpAChzxT8OARkYtd/i4Ubrvg\nZiKXU89SYVeQPHRoJadPb6G/fzOnTz/OoUOjV/BTRT7JhdgZFyGgFVgONALLeO21gyMOX6Y7Y8Nr\nQ4vFRsGDR0Qudn5ip+kR/v5i1i8UbrvgZsJtU88y6dXxSpVM8bbIOjD21OCVgLmowxYGBr4/YqCb\n7joyhdTTKc7SbIs01NYui8pQDoaz7c0sAbjVKiv7iLV0adB6+OFc7YO3s/pbWtw1a6WQ2lYKU2TG\nz2fDs37S++yku7y3PhMj02wLSUls1G6XU96Kifq/xu2338STT2Z3nrRXVqBMhdu6+gupV0cKk93D\nVVb2MokXZoORhi/T7SHTZ8LdNNvCIwIBP9u2NdHTcz8m7yD3pYfdsA9OsU9kZ88GOHlyfUzBGvtE\nlsuErMgwimZMiDvZ68DMnXsJe/emf1FPdx0ZfSbcTcGDR7jhYueGfXCK2xbEilTwS3RH561eHSls\nubqo6zPhbgoePMINFzs37EMhSFSmt7y8j9LSpxgc/AHmZOndXh0pbLm6qBdST2chUs6DSI4lmpbZ\n1/cUg4PfpKrqDmbOvBVopLp6BS0tm9ixoxOfTzMmxB1ylS+kWUTulmzgKhfqgK6uri7q6vKSLCqS\nF2vWtNLevpLEd247mDZtE5bVxrlzIfr6AvT3m0WIzjtPiwiJO4RCIfz+AC+80E1vbynV1YNcf30t\ngYBfgW6O7Nmzh/r6eoB6YE+ut6+eBykqblifY7RiW5Mnd/Pb3waZPLmJ995byeDgRgYH53L6tMWh\nQ//B00/fwF13/ZXn1hORwtDRAWvX+jhxoo3Zs7cyZ85mZs/eyokTbaxd69MxWSSU8yBFxQ3rc6Qy\nBS1SIOcyYDUQ2V/LGuLo0Z1UVHhrPREpDPaaEnbuTl9fgO3bI0ts/+Y3tbS3q3es0KnnweXccKdc\nSNxQtS5xdUu73O8y9u49xE9+8gSmd6INEzgMX8lQVfYknzIpqS7ep+DB5dz4AY0PaMrKGiktXUJp\n6Q2Ult5MWZl7Axw3rM8xvNhWdLnfrcAeLKsaEyzkf39FEnFDIC75o+DB5dz4AY0PaAYHf8TQ0BBD\nQ99kaOgJBgfzH+Ak44aqdcOz1duA+4n9G9u9E/nfX5FE3BCIS/4oeHA5N35Ahwc0ybrW3XcH4oYF\nseKnoMETDJ95YfdO5H9/RRJxQyAu+aPgweXc+AGNDWhCwHO4LcBJxg3rczQ3w5NP+nj99TZOndrK\nnDn2EEU0e/XUi4CdSd5JVfYkf9wQiEv+KHhwOTd+QCMBjT1WPxm3BTjJuG1BLEj2N/YBnUAl8Bng\nRdyyvyKQeiCupO/CpODB5dxwpxwvcrGzhyvGE7n42bMGlgONwDJee+2ga04SbqpaZ59U9+8/jQlm\n4vmAzzBt2s1Mn/7Ped9fkWipBuJuTPoWb6sDrK6urnwvi+5qwWDQqqm50YLtFgy+v5Y9bLdqam60\ngsFgzveppWWdBTssWGbBkAX2/49bcGP430NR+/pi3vbVzY4fPx7+2/4y3G7xf2O1m7jXww9b1tKl\nQWvKlHXWuHGLLbjagissWGjBDVZJyfXWuHFLw4+/GD6u47+2Wy0t6/L9q3hSV1eXhblry0uJZvU8\nuJyb7pRtkTuOc5jhCnt8vpXhswZUkyCZSOLprZghik3ACkyPzWIqKu5R74K4lp2788orrVRXDwE/\nAH4H/AummJmZfQWXAA1J3sVdOVGSOlWYdDk3rmRpBzQHDtzKwIBFZHz+VhKv1wDmJLE+Z/voBeak\naQdU8X/jIWbNWsGTTypwEHeLnX0FsbOvQNONC5N6HiRt9h3H7bffSCQfw4e5w9BJIlVunEkjkq7R\nZ1+5L+lbMqfgQcZseMKUThLpcONMGpF0jT77yn1J35I5BQ8yZvH5GCUlR0g8awB0khjOjTNpRNI1\n8uwriOREuWd6tGROwYOMWXyxo+PHn6Km5qvoJJEaN9acEElXJAi2hy+ig+IQJq9nHPBF4ErgGsaN\nu5UpUzTd2MuUMCmOsXsizp4NcPLk+veX6J08ufb9k4SW6I1Qe0khCAT8bNvWRE+PPXzhxwxf3AX8\nHdHLyZvgeBfV1feyY4cfn0+Bg1cly9bKhTqgq6uri7q6vExTFRGRDHV0QHt7iGefvZWBgV9jLish\n4NOYwGFRgp/aQUvLJjZudM8sMq/Zs2cP9fX1APXAnlxvX8MWIiIyZslnX1Wi+g6FS8GDiIhkbHgO\nj6YiFzIFD1JUQqEQa9a0Mm/ecubObWTevOWsWdNKKKT6+iKZGL7UfC+aily4FDxI0XjooSCzZjXR\n3r6S7u4t7N27me7ux2lvX8msWU388IcKIETGKn72VUvLLWgqcuFS8CBFY9euNvr67LK50WtvLKSv\n73527tTaGyJO0VTkwqbgQYpGbBndeErgEnGSGxf1E+eozoMUDa0lIZI7blzUT5yjngcpGlpLQkTE\nGQoexHFundGgtSRERJyh4EEc5eYZDUrgEhFxhoIHcZSbZzQogUtExBlKmBRHmRkLyQKEBezevT6X\nuxNDCVwiIs5Qz4M4SjMaREQKn4IHcZRmNIiIFD4FD+Ko2BkNIaAVWA40AovZv/80N98coqMjX3so\nIiKZUvAgjorMaNgKNAErgS3AZuDf6Ov7Bj09TSxZonUkRES8yung4QvAb4G3w1/bgVsc3oa4mD2j\noaKiDVjP8FkXDfT03I/fr3UkRES8yung4XXgbqAOqAeexdxyznN4O+JS9sp6s2ZVAg1JXqV1JERE\nvMzpqZpb4v7/VUxvxHzgZYe3JS6mWRciIoUrm3UeSoFPAxOAbVncjrhQZNZFogBCsy5ERLwsG8HD\nlZj6vxOAM8CfAfuysB1xsfnza+nu3gXUYIpGdWPiyUHgIk6enEVHhxnmEBERb0nWr5yJcmAGcAGm\n5+FLwA3AnrjX1QFd1113HRdeeGHME83NzTTrquJpoVCIa6+9jQMHhoAHgQWYw20I2MmsWV9h9+7H\n8PlUElpEZCQdHR10xM1vf+utt9i2bRuY/ML462vWZSN4iPc0sB/487jH64Curq4u6urqcrAbkksd\nHXDXXX/F0aPNwKIEr9hBS8smNm5UqWgRkXTt2bOH+vp6yFPwkIs6D+NytB1xkeZmmDz5NTTjQkSk\n8Did8/AN4JeYKZvnA6uB64H7Hd6OeIBmXIiIFCangwcf8FNgGqZI1G+BmzH1HqTIaMaFiEhhcjp4\n+LzD7yceFplxsTDBs7vC62CIiIjXKBdBsmbhQj8VFfdgZu4OhR8dAnZQUXEvCxf687dzIiIyZtks\nEiVF7o47fHzqU534/QF2717PwEApZWWDzJ9fSyDQqWmaIiIepeBBssrn82k6pohIgdGwhYiIiKRF\nwYOIiIikRcMWUhRCoVA496I7LvfCr9wLEZE0KXiQgvfQQ0Huums1fX0PYBbpMmtsdHfv5uc/b+LB\nBzu54w4FECIiqdKwhRS8XbvawoHDQiIFq8YBC+nru5+dOwP52zkREQ9S8CAFz6yhsSDJs1pjQ0Qk\nXQoepOBpjQ0REWcpeJCCF1ljIxGtsSEiki4FD5IzHR1w880hZsxopapqOePHN1JVtZwZM1q5+eYQ\nHR3Z2a5ZQ2NXkme1xoaISLoUPEjOLF4cpKeniUOHVnL69Bb6+zdz+vTjHDq0kp6eJpYsCWVlu4GA\nn5qaxGts1NTcSyCgNTZERNKh4EFy5u672+jpSTzroafnfvz+7Mx6eOYZHzU1nUyfvonKyhWUlzdS\nWbmC6dM3UVPTyTPPaJqmiEg6VOdBcsbMakgWICxg9+71WdluczM0N/sArbEhIuIE9TxIzgyf9RAC\nWoHlwCfZt+8ga9a0EgplZ/hCREScoeBBciZ21kMQaAJWAluAzZw791va21cya1YTP/yhAggREbdS\n8CA5EzvroQ1Q1UcRES9S8CA5s3Chn4oKe9bDy6jqo4iINyl4kJy54w4f+/d30tKyifHjj6GqjyIi\n3qTgQXLK5/OxcWMbs2dPQ1UfRUS8ScGD5IWqPoqIeJeCB8mLXFR9zFc5bBGRQqciUZIXdtXHs2cD\nnDy5nnPnShk/fpDJk2vfr/rY3Dy29w6FQvj9AbZv/w29vYfp79+IKU5VQn//EKdP72bChCaWLOkE\nVF1SRCRdCh4kL5ys+mgHC7t3dxMKDfDGGwexrI2YnIr1mOmgtthy2Bs3quqkiEi6NGwhnvbQQ0Fm\nzWqivX0l3d1bCIWuwrJ+DNQAz6PpoCIizlPwIJ62a1cbfX12sak3gOeAyzDVKyej6aAiIs5T8CCe\nZnoPFhApdz0Z+DameuV4NB1URMR5Ch7Es0KhEIcOvYnpXbDLXY8H7IBC00FFRLJBwYPkVSgUYs2a\nVubNW87cuY3Mm7c8pZU17VyHd96ZiOldiA4YzmECCj+QaDroi1RU3MvChZlPBxURKUaabSF589BD\nQe66a3U4Z8FMpYQhurt38/OfN/Hgg53ccUfiqZSRXIdfYHoX7OW+/cANmIDCB3SG33t9+DUDXHDB\nEf74x6fx+TRNU0RkLNTzIHkTm+yY3sqakVwHu3fhXSIBw59iehsI/78N2ApsBr7GbbfdpMBBRCQD\nCh4kbyIBQCIjT6U0MyVKiPQuWEQChr8Fvko2q1eKiBQzBQ+SN5EAIJHkUylDoRDHjx8hMpPCBzxK\nJGCYigkofgEsBq6houJWpk/f9H71ShERGTvlPEjemKmSFokDiNiplHYVySee+A3Hjx/GsuYDO4GG\n8Cui8xvuoaTkPSoqpjB58keprfXT0jL2ctciIhJLwYPkzfz5tXR37yK2fLQtMpUyNrHSLjldg6nr\ncD9m6GMcpsfhk1RUdPHgg5uTJluKiEhmFDxI3ixc6OfnP2+iry86ABgCdoWnUnYC0YmVdsnpNkxv\nhWZSiIjkg4IHyZs77vDxqU91hhe1Ws/AQCllZYPMn19LIND5fgBgEifXMbzk9PCFtT7wgUYFDiIi\nWaaESckrn8/Hxo1tPP98O4sWzQVg+/ZXueGGlveLRZnESZWcFhFxC/U8SN6NVizqggvKMRUkA0RK\nTo+cJyEiItmjngfJu9GKRVVWniWVktOq4SAikhvqeZC8MzkNdjXJUPjf3dhJkIcPv0FJiYVlJS85\nXVZ2hJqap3nmGU3JFBHJNgUPkneRYlFBYDUmtyEyfHHmzE5KSz/P4OAOYBHDEyV3cPvtm9i4UYmS\nIiK5oGELybtIsSh7We344YtFDA5+m9LSL5Co5LRWyBQRyS31PEjeRYpFRQ9fxLuFmpoHWbRo04jT\nOkVEJPsUPEjeBQJ+tm1roqdn5LUuoIKNG9uSPC8iIrmiYQvJu2ee8VFT00lZ2UlUw0FExP0UPEje\nNTfDk0/6uP32GzE1HBJRDQcREbdQ8CCusXChn4qKRDUclBQpIuImynkQ10h1rQsREckv9TwUmY6O\njnzvwojstS5efnkrr766mZdf3srGjW2eDhzc3uaFSG2ee2rz4uJ08PAV4NfAO8Bx4J+AOQ5vQzKg\nD3juqc1zT22ee2rz4uJ08PBx4O+BBcBNmGGRp4AKh7cjIiIieeJ0zsOtcf9fg6k5XAf8yuFtiYiI\nSB5kO+fhwvD3N7O8HREREcmRbM62KAG+A2zD1B1O6JVXXsniLki8t956iz179uR7N4qK2jz31Oa5\npzbPrXxfO5PVAnbC9zDDGP8XcCTB89MwyZWXZnEfRERECtVh4FrgaK43nK3g4e+BRkwC5YERXjct\n/CUiIiLpOUoeAodsKAH+F/A6UJPnfREREREP+D5wEtPj8MGor/PyuVMiIiLiXkPAYPh79Ndn87lT\nIiIiIiIiIiIiIiIiIiIiUtTuY3guQ3z9hsuBzcBbmMWxdgAz4l7TADwLnMIkVz5HbELl/gTbeSDu\nPaAc+f8AAAV6SURBVD4EPB5+jxDwP4DyMf5ebnYfmbX5rAQ/b3+tjHqPycD/F36Pt4CfAhfEbUdt\nHuFEm+9P8LyO87GfWy4BHgaOYdprD7HtDTrOo91Hbtp8f4Lt6Dgfe5vXYBacDAJvA53AxXHv4brj\n/D7gd+Edtb+mRj1fA5wAvgl8BHMSvRWIXku5AfPL+DGNVAN8Chgf9Zpe4N647VRGPV8K/B54Jryd\nxcAh4H9m+gu60H1k1ubj4n72YuBrmIMuerGyfwV+i1nQbGF4m5ujnlebRzjV5jrOI+4j83PLc8BO\n4KPh5+8FBoCro16j4zziPnLT5jrOI+4jszavBHqAx4B5wBWYQGIXsTWbXHec3wf8ZoTnHwF+Msp7\n7AT+31Fe0wv8zQjP34o5QD8Y9VgTcAaoGuW9veY+Mm/zeL8B/iHq/5djIuBrox5bEH7sw+H/q80j\nnGhz0HEe7T4yb/N3gf877rE3MIvzgY7zePeR/TYHHefR7iOzNl+KaavodrkQcwwvDv8/Z8d5ugtj\nfRhTDvM1oAOojnqfZcAfgSeB45hA4T9F/ezFwHxMF8l2TFfX88DHEmznbsxB+BvgHmK7UxowUdOx\nqMeeAiYA9Wn+Pl6QSZvHq8dEmhuiHmvA3BX/OuqxXeHHFkW9Rm3uXJvbdJxHZNrmW4DVmC7bceF/\nj8ecY0DHeSLZbnObjvOITNp8AmAB56IeO4sJDOzrqCuP81uA2zDdJYsxXVZHgSmYCGYIM37yN8BV\nmANmEFMwCkz3yRDmIPoc5oT6IPAeMDtqO3cC12G6ZNZixnai79r+N/BEgv17DxM9FZJM2zze94E/\nxD12D/Bqgte+Gn4/UJs73eag4zyaE20+EdMNO4Q5ub5F5G4MdJzHy0Wbg47zaJm2+UWYNv4Opu0r\nMRWdh4AfhF/jieO8AvOL/1fM+hRDwM/iXvMvmIQaMFHPELA+7jW/ZXgCTbRPhX9ucvj//xsTmcUr\nxIMtXrptHm0i5sD7r3GPp3qwqc2da/NEdJxHjKXNN2GSy24ErgT+FpOQfUX4eR3nI8tGmyei4zxi\nLG1+E7APE1T0Y4Y5XsIsRAk5PM7THbaI1ofp+piN6U0YYPjS2/8/JqsTIot3xL/mlajXJLIr/N3u\nnTgGfCDuNZMx3WXHKGzptnm0VZiL2U/jHj/G8Gxdwo8di3qN2ty5Nk9Ex3lEum1+OfBJzJ3tc+Gf\n/e+Yk+pfhl+j43xk2WjzRHScR4zl3PJ0+PU+TLLl54DpmGEQyOFxnknwMAGoxQQF/Zgxlj+Je80c\nzFQdwt+PJHjN3KjXJHJN+LsdfGzHRLbRv/xSzNhPV4r77lXptnm0tZgo9kTc4zsw03jiE2wuwLQ1\nqM2dbvNEdJxHpNvm9nlsMO41Q0Sy0HWcjywbbZ6IjvOITM4tb2Kmci7GBBL2bApXHuffxoy9VId3\n5nFMl6w9B/WT4Y1/HhMZfQnTIIui3uNvwj+zMvyarwOniSSNLMR04VwdfuzPMFNI/inqPcZhpp48\nHX7dYuAgZp5qoXGizQk/N4g5QBL5JfAfxE7t+Zeo59Xmzra5jvNYmbZ5KeaO7QXMSbMGuAvT/rdE\nbUfHeUQu2rwBHefRnDi3rMEcuzXA7Zgei7a47bjuOO/AZImexRwAjzI8SloD7MV0x+wBViR4n7vD\nO3oK+BWxDXMNJnI6GX6PVzDjaPGrcs7ANPxpTON9l8IsKuJUmz/AyL07F2KKirwd/vopMCnuNWrz\niEzbXMd5LCfa/LLwzx3FnFt+w/BphDrOI3LR5jrOYznR5t/AtPdZzJDGnQm2o+NcRERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERE8ur/ANBpVY9jW9RvAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import sys\n", + "import getopt\n", + "sys.path.insert(1,\"/usr/local/science/clag/\")\n", + "import clag\n", + "%pylab inline\n", + "\n", + "from scipy.stats import norm\n", + "from scipy.stats import lognorm\n", + "from scipy.optimize import curve_fit\n", + "import numpy.fft\n", + "\n", + "ref_file=\"lc/1367A.lc\"\n", + "echo_file=\"lc/3471A.lc\"\n", + "\n", + "\n", + "dt = 0.01\n", + "t1, l1, l1e = np.loadtxt(ref_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.005 , 0.01861938, 0.04473305, 0.06933623, 0.10747115,\n", + " 0.16658029, 0.25819945, 0.40020915, 0.62032418])" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "\n", + "fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029, \n", + " 0.25819945, 0.40020915, 0.62032418])\n", + "# fqL = np.logspace(np.log10(0.0006),np.log10(1.2),11)\n", + "nfq = len(fqL) - 1\n", + "fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.)\n", + "\n", + "\n", + "fqL\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.342e-01 5.077e+01 inf -- -5.530e+02 -- 1 1 1 1 1 1 1 1\n", + " 2 7.674e-01 5.065e+01 8.300e+01 -- -4.700e+02 -- 0.653018 0.587019 0.568277 0.567457 0.566281 0.566085 0.565773 0.566163\n", + " 3 3.298e+00 5.043e+01 8.075e+01 -- -3.893e+02 -- 0.414806 0.209135 0.141159 0.13784 0.133393 0.132728 0.131612 0.132761\n", + " 4 1.572e+00 5.010e+01 7.754e+01 -- -3.117e+02 -- 0.322539 -0.0834456 -0.273066 -0.284295 -0.297612 -0.299435 -0.302479 -0.300412\n", + " 5 5.908e-01 4.964e+01 7.386e+01 -- -2.379e+02 -- 0.302357 -0.214604 -0.654658 -0.688754 -0.723838 -0.729279 -0.736418 -0.733888\n", + " 6 3.713e-01 4.877e+01 6.953e+01 -- -1.683e+02 -- 0.284419 -0.200357 -0.96379 -1.05472 -1.13798 -1.15477 -1.17031 -1.16748\n", + " 7 2.709e-01 4.671e+01 6.269e+01 -- -1.056e+02 -- 0.277768 -0.185001 -1.13047 -1.34026 -1.52128 -1.56845 -1.6043 -1.60101\n", + " 8 2.135e-01 4.361e+01 5.281e+01 -- -5.282e+01 -- 0.277012 -0.185189 -1.16375 -1.49463 -1.83211 -1.9477 -2.03737 -2.03476\n", + " 9 1.764e-01 3.767e+01 4.019e+01 -- -1.264e+01 -- 0.282161 -0.184207 -1.17891 -1.53049 -2.01851 -2.24569 -2.46562 -2.46922\n", + " 10 1.508e-01 2.738e+01 2.645e+01 -- 1.382e+01 -- 0.289545 -0.182463 -1.18795 -1.52893 -2.08812 -2.41103 -2.87498 -2.90486\n", + " 11 1.349e-01 1.468e+01 1.390e+01 -- 2.772e+01 -- 0.293547 -0.180898 -1.1897 -1.52803 -2.10944 -2.46526 -3.22702 -3.34288\n", + " 12 1.358e-01 5.365e+00 5.378e+00 -- 3.309e+01 -- 0.295456 -0.179941 -1.19052 -1.52801 -2.11928 -2.48294 -3.46233 -3.79368\n", + " 13 1.868e-01 1.338e+00 1.633e+00 -- 3.473e+01 -- 0.297315 -0.17923 -1.19104 -1.52666 -2.12491 -2.48975 -3.55567 -4.30889\n", + " 14 6.248e-01 2.604e-01 4.517e-01 -- 3.518e+01 -- 0.299091 -0.178645 -1.191 -1.52463 -2.12805 -2.4915 -3.5672 -5.11363\n", + " 15 2.744e+02 2.611e-01 7.022e-02 -- 3.525e+01 -- 0.300248 -0.178286 -1.19075 -1.52307 -2.12961 -2.49161 -3.56337 -8\n", + " 16 2.745e+02 2.782e-01 4.368e-04 -- 3.525e+01 -- 0.300566 -0.178158 -1.19062 -1.52252 -2.13009 -2.49151 -3.5617 -8\n", + " 17 2.745e+02 2.805e-01 6.410e-05 -- 3.525e+01 -- 0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n", + "********************\n", + "0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n", + "0.238931 0.202434 0.232634 0.177249 0.153039 0.132988 0.297259 3285.23\n", + "-0.000915535 -0.00131061 -0.00195128 -0.00497899 -0.0226059 -0.0776175 -0.280541 -0.000206646\n", + "********************\n" + ] + } + ], + "source": [ + "P1 = clag.clag('psd10r', [t1], [l1], [l1e], dt, fqL)\n", + "p1 = np.ones(nfq)\n", + "p1, p1e = clag.optimize(P1, p1)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 3.525e+01 3.480e+01 3.006e-01 5.395e-01 0.891 +++\n", + "+++ 3.525e+01 3.431e+01 3.006e-01 6.590e-01 1.87 +++\n", + "+++ 3.525e+01 3.458e+01 3.006e-01 5.993e-01 1.34 +++\n", + "+++ 3.525e+01 3.469e+01 3.006e-01 5.694e-01 1.11 +++\n", + "+++ 3.525e+01 3.475e+01 3.006e-01 5.545e-01 0.997 +++\n", + "\t### errors for param 1 ###\n", + "+++ 3.525e+01 3.476e+01 -1.781e-01 2.430e-02 0.973 +++\n", + "+++ 3.525e+01 3.421e+01 -1.781e-01 1.255e-01 2.07 +++\n", + "+++ 3.525e+01 3.451e+01 -1.781e-01 7.491e-02 1.48 +++\n", + "+++ 3.525e+01 3.464e+01 -1.781e-01 4.961e-02 1.21 +++\n", + "+++ 3.525e+01 3.470e+01 -1.781e-01 3.696e-02 1.09 +++\n", + "+++ 3.525e+01 3.473e+01 -1.781e-01 3.063e-02 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.781e-01 2.747e-02 1 +++\n", + "\t### errors for param 2 ###\n", + "+++ 3.525e+01 3.511e+01 -1.191e+00 -1.074e+00 0.276 +++\n", + "+++ 3.525e+01 3.495e+01 -1.191e+00 -1.016e+00 0.598 +++\n", + "+++ 3.525e+01 3.485e+01 -1.191e+00 -9.870e-01 0.8 +++\n", + "+++ 3.525e+01 3.479e+01 -1.191e+00 -9.725e-01 0.91 +++\n", + "+++ 3.525e+01 3.476e+01 -1.191e+00 -9.652e-01 0.968 +++\n", + "+++ 3.525e+01 3.475e+01 -1.191e+00 -9.616e-01 0.997 +++\n", + "\t### errors for param 3 ###\n", + "+++ 3.525e+01 3.482e+01 -1.522e+00 -1.345e+00 0.865 +++\n", + "+++ 3.525e+01 3.432e+01 -1.522e+00 -1.257e+00 1.86 +++\n", + "+++ 3.525e+01 3.459e+01 -1.522e+00 -1.301e+00 1.32 +++\n", + "+++ 3.525e+01 3.471e+01 -1.522e+00 -1.323e+00 1.08 +++\n", + "+++ 3.525e+01 3.476e+01 -1.522e+00 -1.334e+00 0.97 +++\n", + "+++ 3.525e+01 3.473e+01 -1.522e+00 -1.329e+00 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.522e+00 -1.331e+00 0.998 +++\n", + "\t### errors for param 4 ###\n", + "+++ 3.525e+01 3.481e+01 -2.130e+00 -1.977e+00 0.874 +++\n", + "+++ 3.525e+01 3.429e+01 -2.130e+00 -1.901e+00 1.91 +++\n", + "+++ 3.525e+01 3.457e+01 -2.130e+00 -1.939e+00 1.35 +++\n", + "+++ 3.525e+01 3.470e+01 -2.130e+00 -1.958e+00 1.1 +++\n", + "+++ 3.525e+01 3.476e+01 -2.130e+00 -1.968e+00 0.983 +++\n", + "+++ 3.525e+01 3.473e+01 -2.130e+00 -1.963e+00 1.04 +++\n", + "+++ 3.525e+01 3.474e+01 -2.130e+00 -1.965e+00 1.01 +++\n", + "+++ 3.525e+01 3.475e+01 -2.130e+00 -1.966e+00 0.997 +++\n", + "\t### errors for param 5 ###\n", + "+++ 3.525e+01 3.474e+01 -2.491e+00 -2.358e+00 1.01 +++\n", + "+++ 3.525e+01 3.512e+01 -2.491e+00 -2.425e+00 0.263 +++\n", + "+++ 3.525e+01 3.496e+01 -2.491e+00 -2.392e+00 0.579 +++\n", + "+++ 3.525e+01 3.486e+01 -2.491e+00 -2.375e+00 0.781 +++\n", + "+++ 3.525e+01 3.480e+01 -2.491e+00 -2.367e+00 0.893 +++\n", + "+++ 3.525e+01 3.477e+01 -2.491e+00 -2.363e+00 0.952 +++\n", + "+++ 3.525e+01 3.476e+01 -2.491e+00 -2.361e+00 0.982 +++\n", + "+++ 3.525e+01 3.475e+01 -2.491e+00 -2.360e+00 0.997 +++\n", + "\t### errors for param 6 ###\n", + "+++ 3.525e+01 3.507e+01 -3.561e+00 -3.413e+00 0.363 +++\n", + "+++ 3.525e+01 3.484e+01 -3.561e+00 -3.339e+00 0.814 +++\n", + "+++ 3.525e+01 3.468e+01 -3.561e+00 -3.301e+00 1.13 +++\n", + "+++ 3.525e+01 3.477e+01 -3.561e+00 -3.320e+00 0.962 +++\n", + "+++ 3.525e+01 3.473e+01 -3.561e+00 -3.311e+00 1.04 +++\n", + "+++ 3.525e+01 3.475e+01 -3.561e+00 -3.315e+00 1 +++\n", + "\t### errors for param 7 ###\n", + "+++ 3.525e+01 3.524e+01 -8.000e+00 -6.000e+00 0.0178 +++\n", + "+++ 3.525e+01 3.515e+01 -8.000e+00 -5.000e+00 0.187 +++\n", + "+++ 3.525e+01 3.494e+01 -8.000e+00 -4.500e+00 0.618 +++\n", + "+++ 3.525e+01 3.466e+01 -8.000e+00 -4.250e+00 1.18 +++\n", + "+++ 3.525e+01 3.482e+01 -8.000e+00 -4.375e+00 0.851 +++\n", + "+++ 3.525e+01 3.475e+01 -8.000e+00 -4.312e+00 1 +++\n", + "********************\n", + "0.300605 -0.178131 -1.19059 -1.52241 -2.13019 -2.49148 -3.56144 -8\n", + "0.253864 0.205597 0.228999 0.191096 0.1638 0.131949 0.246154 3.6875\n", + "********************\n" + ] + } + ], + "source": [ + "p1, p1e = clag.errors(P1, p1, p1e)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAGp1JREFUeJzt3X9s4/d93/HnxZaj5dxOi12RZ+98bLhdaBhJDbLSHzrb\n5TIn2IY26dBOIbFsiLTCQdoOuHUrcMMgzZCAYS2G9uqua3FbD9kQjNQNaDYH2LXFUKW5UVqnimm7\nbmadUT+W5kxmTXvr6kSpVnt/UHeR1I9+8I7fL389HwAhivx8vp+3cJ+TXvx+P9/vFyRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvSA/iGwBvwh0AQ+A1zsakWSJKkn3AT+NvA08H7gs8AW\n8K4u1iRJknrQ48BbwHPdLkSSJJ3sHTGONbb39fdjHFOSJPW4M7QON/xqtwuRJEmn83BM4/xz4BmO\nP9Rwbu8hSZLa88beo6PiCAk/DXw38AJw+4g255544onbt28f9bYkSTrGl4EJOhwUogwJZ2gFhI8A\neWD7mLbnbt++zac//WmefvrpCEvqvMuXL3P16tW+HO9BttVu33ban6btSW2Oez/uf7NOca51vr1z\nLcy51vn2Uc611157jY997GNP0tob3zch4WeAIq2Q8CaQ3Hv9DrAT6vD000+TzWYjLKnzxsbGYq25\nk+M9yLba7dtO+9O0PanNce/H/W/WKc61zrd3roU51zrfPuq5FpWHItz2Z4F3AjPA39/3+CLwm4fa\nngM+8YlPfIJz5/pvWcL73ve+vh3vQbbVbt922p+m7Ultjnq/VCpRLBZPXUsvca51vr1zLcy51vn2\nUc21N954g2vXrgFco8N7Es50cmMPIAusr6+v92XqVn/58Ic/zKuvvtrtMjQEnGuKQ7VaJZfLAeSA\naie3Hed1EiRJUh8xJGjo9OvuX/Uf55r6nSFBQ8df3IqLc039zpAgSZKCDAmSJCnIkCBJkoIMCZIk\nKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnI\nkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAg\nSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmS\nggwJkiQpyJAgSZKCDAmSJCkoypDwAvBZ4MvAW8BHIhxLkiR1WJQh4V3AF4Af2vv+7QjHkiRJHfZw\nhNv+xb2HJEnqQ65JkCRJQYYESZIUZEiQJElBUa5JaNvly5cZGxs78FqxWKRYLHapIkmSekepVKJU\nKh147c6dO5GNdyayLR/0FvC9wKtHvJ8F1tfX18lmszGVJElS/6tWq+RyOYAcUO3ktqPck3AW+Iv7\nvn8P8CzwVeBLEY4rSZI6IMqQMAH8yt7zt4Gf2Hv+KWA2wnElSVIHRBkSPocLIyVJ6lv+EZckSUGG\nBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJ\nkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhT0cLcLkKJQKpUolUoA7OzssL29zYUL\nFxgdHQWgWCxSLBa7WaIk9TxDggbS/hBQrVbJ5XKUSiWy2WyXK5Ok/uHhBkmSFGRIkCRJQYYESZIU\nZEiQJElBhgQNrK2tLWZnZ5mengZgenqa2dlZtra2uluYJPUJz27QwGk2mxQKBWq1Go1G497r9Xqd\ner3OzZs3yWQylMtlEolEFyuVpN5mSNBAaTabTE1NsbGxcWSbRqNBo9Hg0qVLVCoVg4IkHcHDDRoo\nhULh2ICwX71ep1AoRFyRJPUvQ4IGxubmJrVara0+tVrNNQqSdARDggbG4uLigTUIp9FoNFhYWIio\nIknqb4YEDYy1tbVY+0nSoDMkaGDs7u7G2k+SBp0hQQNjZGQk1n6SNOgMCRoYExMT99VvcnKyw5VI\n0mAwJGhgzM/Pk0wm2+qTTCaZm5uLqCJJ6m+GBA2MVCpFJpNpq08mkyGVSkVTkCT1OUOCBkq5XCad\nTp+qbTqdZmlpKeKKJKl/GRI0UBKJBJVKhXw+f+Shh2QyST6fZ2VlhfHx8ZgrlKT+YUjQwEkkEiwv\nL7O6usrMzMy9PQvpdJqZmRlWV1dZXl42IEjSCbzBkwZWKpXi+vXrVKtVcrkcN27cIJvNdrssSeob\nUe9J+EFgE/g68OvAcxGPJ0mSOiTKkPBR4CeBReBZ4BZwEzgf4ZiSJKlDogwJPwL8K+A68DvA3wO+\nBHwywjElSVKHRBUSHgGywC8fev2XgamIxpQkSR0U1cLFx4GHgOah178CtHdJPOk+lEolSqUSADs7\nO1y8eJErV64wOjoKQLFYpFgsdrNESep5nt2ggWQIOJ3DYWp7e5sLFy4YpiQBcCai7T4CvAl8P/Af\n9r3+U8D7gb90qH0WWH/++ecZGxs78Ia/pKR43D1VdH193VNFpR61P9jfdefOHW7dugWQA6qdHC+q\nPQl/DKwDH+JgSPgg8JmjOl29etVfTpIkHSH0wfluwI9ClGc3/ATwA8AM8DSt0yH/PPBzEY4pqU1b\nW1vMzs4yPT0NwPT0NLOzs2xtbXW3MEldF+WahBvAY8A8cA74b8Bfo3UapKQuazabFAoFarUajUbj\n3uv1ep16vc7NmzfJZDKUy2USiUQXK5XULVEvXPzZvYekHtJsNpmammJjY+PINo1Gg0ajwaVLl6hU\nKgYFaQh5gydpCBUKhWMDwn71ep1CoRBxRZJ6kSFBGjKbm5vUarW2+tRqNdcoSEPIkCANmcXFxQNr\nEE6j0WiwsLAQUUWSepUhQRoya2trsfaT1L8MCdKQ2d3djbWfpP5lSJCGzMjISKz9JPUvQ4I0ZCYm\nJu6r3+TkZIcrkdTrDAnSkJmfnyeZbO9mrMlkkrm5uYgqktSrDAnSkEmlUmQymbb6ZDIZUqlUNAVJ\n6lmGBGkIlctl0un0qdqm02mWlpYirkhSLzIkSEMokUhQqVTI5/NHHnpIJpPk83lWVlYYHx+PuUJJ\nvcCQIA2pRCLB8vIyq6urzMzM3NuzkE6nmZmZYXV1leXlZQOCNMSivsGTpB6XSqW4fv36vXvS37hx\ng2w22+2yJPUA9yRIkqQgQ4IkSQrycIM0xEqlEqVSCYCdnR0uXrzIlStXGB0dBaBYLFIsFrtZoqQu\nMiRIQ8wQIOk4Hm6QJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAk\nSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElB\nhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUFFVI+EfACvA14A8iGkOSJEUoqpAwAiwB/yKi7UuS\npIg9HNF2X977+vGIti9JkiLmmgRJkhQU1Z4ESeq4UqlEqVQCYGdnh+3tbS5cuMDo6CgAxWKRYrHY\nzRKlgdJOSHgZmD+hzXcC1fuuRpKOsT8EVKtVcrkcpVKJbDbb5cqkwdROSPhp4N+e0Gb7AWrh8uXL\njI2NHXjNTwaSJLXs35t21507dyIbr52Q8NW9R2SuXr3qJwJJko4Q+uB8d69aFKJak/AU8O69rw8B\n3wGcAb4IvBnRmJIkqYOiOrthgdbahJeBs8AXgHUgmqgjaWhsbW0xOzvL9PQ0ANPT08zOzrK1tdXd\nwqQBFNWehI/jNRIkdVCz2aRQKFCr1Wg0Gvder9fr1Ot1bt68SSaToVwuk0gkulipNDg8BVJSz2s2\nm0xNTbGxsXFkm0ajQaPR4NKlS1QqFYOC1AFeTElSzysUCscGhP3q9TqFQiHiiqThYEiQ1NM2Nzep\n1Wpt9anVaq5RkDrAkCCppy0uLh5Yg3AajUaDhYWFiCqShochQVJPW1tbi7WfpG8yJEjqabu7u7H2\nk/RNhgRJPW1kZCTWfpK+yZAgqadNTEzcV7/JyckOVyINH0OCpJ42Pz9PMplsq08ymWRubi6iiqTh\nYUiQ1NNSqRSZTKatPplMhlQqFU1B0hAxJEjqeeVymXQ6faq26XSapaWliCuShoMhQVLPSyQSVCoV\n8vn8kYcekskk+XyelZUVxsfHY65QGkzeu0FSX0gkEiwvL7O1tcXCwgKf//znqdfrpNNpXnjhBebn\n5yM7xFAqlSiVSgDs7Oywvb3NhQsXGB0dBaBYLFIsFiMZW+qmM90uYE8WWF9fXyebzXa7Fkl9oFqt\nksvliPv3RrfGlY5yd04COaDayW17uEGSJAUZEiTpFLa2tpidnWV6ehqA6elpZmdnvZGUBpprEiTp\nGM1mk0KhQK1WO3CjqXq9Tr1e5+bNm2QyGcrlMolEoouVSp1nSJDUNw4vILx48SJXrlyJbAFhs9lk\namqKjY2NI9s0Gg0ajQaXLl2iUqkYFDRQDAmS+kbcZxEUCoVjA8J+9XqdQqHA8vJyxFVJ8XFNgiQF\nbG5uUqvV2upTq9Vco6CBYkiQpIDFxcUDaxBOo9FosLCwEFFFUvwMCZIUsLa2Fms/qRcZEiQpYHd3\nN9Z+Ui8yJEhSwMjISKz9pF5kSJCkgImJifvqNzk52eFKpO4xJEhSwPz8/JF3nDxKMplkbm4uooqk\n+BkSJCkglUqRyWTa6pPJZCK7E6XUDYYESTpCuVwmnU6fqm06nWZpaSniiqR4GRIk6QiJRIJKpUI+\nnz/y0EMymSSfz7OyssL4+HjMFUrRMiRI0jESiQTLy8usrq4yMzNzb89COp1mZmaG1dVVlpeXDQga\nSN67QZJOIZVKcf36darVKrlcjhs3bpDNZrtdlhQp9yRIkqQg9yRI0gnivkW11CsMCZJ0AkOAhpWH\nGyRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUlBUISEF/DywAXwN+J/Ay8BIRONJ\nkqQOi+piSu8FzgAv0QoI7wP+JXAW+NGIxpQkSR0UVUj4pb3HXVvAPwM+iSFBkqS+EOeahDHgqzGO\nJ0mSHkBc925IAz8M/EhM40lSXzt8U6nt7W0uXLjgTaUUq3b3JLwMvHXC4/AN1p8AfhG4AVx/gFol\naWgUi0VeeeUVHn/8cTY2Nnj99dfZ2Njg8ccf55VXXjEgKBZn2mz/2N7jONvAN/aePwEsA6vAx4/p\nkwXWn3/+ecbGxg68YVqWNGyazSaFQoFarUaj0fhT7yeTSTKZDOVymUQi0YUK1S379zDddefOHW7d\nugWQA6qdHK/dkNCOJ2kFhDXgY8Dbx7TNAuvr6+tks4d3REjS8Gg2m0xNTbGxsXFi23Q6TaVSMSgM\nuWq1Si6XgwhCQlQLF58EPkdrr8KPAgkgufeQJB2hUCicKiAA1Ot1CoVCxBVpmEW1cPGDtBYrvgf4\n3X2vvw08FNGYktTXNjc3qdVqbfWp1WpsbW2RSqWiKUpDLao9CZ/a2/ZDe1/fse97SVLA4uJicA3C\ncRqNBgsLCxFVpGHnvRskqUesra3F2k86iSFBknrE7u5urP2kkxgSJKlHjIzc3z3w7refdBJDgiT1\niImJifvqNzk52eFKpBZDgiT1iPn5eZLJ9s4UTyaTzM3NRVSRhp0hQZJ6RCqVIpPJtNUnk8l4+qMi\nY0iQpB5SLpdJp9OnaptOp1laWoq4Ig0zQ4Ik9ZBEIkGlUiGfzx956CGZTJLP51lZWWF8fDzmCjVM\nDAmS1GMSiQTLy8usrq4yMzNzb89COp1mZmaG1dVVlpeXDQiKXFSXZZYkPaBUKsX169fv3cDnxo0b\n3gRPsTIkSFIP2n9L4J2dHS5evMiVK1cYHR0FoFgsUiwWu1mihoAhQZJ6kCFAvcA1CZIkKciQIEm6\np1Qq8eKLL/LUU0/x6KOP8sgjj/Doo4/y1FNP8eKLL947BKLh4OEGSRIAzWaTa9euUavVDtyyend3\nlzfffJPd3V2uXbvGBz7wARKJRBcrVVwMCZIkms0mU1NTbGxsHNmm0WjQaDS4dOkSlUrFoDAEPNwg\nSaJQKBwbEPar1+sUCoWIK1IvMCRI0pDb3NykVqu11adWq7G1tRVNQeoZhgRJGnKLi4sH1iCcRqPR\nYGFhIaKK1CsMCZI05NbW1mLtp/5hSJCkIbe7uxtrP/UPQ4IkDbmRkZFY+6l/GBIkachNTEzcV7/J\nyckOV6JeY0iQpCE3Pz9PMplsq08ymWRubi6iitQrDAmSNORSqRSZTKatPplMhlQqFU1B6hmGBEkS\n5XKZdDp9qrbpdJqlpaWIK1IvMCRIkkgkElQqFfL5/JGHHpLJJPl8npWVFcbHx2OuUN1gSJAkAa2g\n8NJLL/HMM89w/vx5zp49y8jICGfPnuX8+fM888wzvPTSSwaEIeINniRJ9xSLRYrFYrfLUI9wT4Ik\nSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkK\niiokvApsA18HbgP/BjgX0ViSJCkCUYWEXwH+BnAR+D4gDfxCRGNJkqQIRHUXyKv7nn8J+DHgM8BD\nwJ9ENKYkSeqgONYkvBv4m8AyBgRJkvpGlCHhx4A/An4P+HbgoxGOJUmSOqydkPAy8NYJj+y+9j8O\nPAt8CPgG8O+BMw9csSRJikU7f7Qf23scZ5tWIDjsSVprE54DVgLvZ4H1559/nrGxsQNvFItFisVi\nG2VKkjSYSqUSpVLpwGt37tzh1q1bADmg2snx4vpkf55WgPgu4Fbg/Sywvr6+TjabDbwtSZJCqtUq\nuVwOIggJUZzdMLn3+M/AHwDvARaALwKrEYwnSZIiEMXCxa8Bfx34T0AN+Hngt2jtRfh/EYwnSZIi\nEMWehN8G/nIE25UkSTHy3g2SJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ\nkoIMCZIkKciQIEmSggwJkiQpKIp7N0iSdGqlUolSqQTAzs4O29vbXLhwgdHRUQCKxSLFYrGbJQ4t\nQ4Ikqav2h4BqtUoul6NUKpHNZrtcmTzcIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ6rqtrS1mZ2eZ\nnp4GYHp6mtnZWba2trpb2JDz7AZJUtc0m00KhQK1Wo1Go3Hv9Xq9Tr1e5+bNm2QyGcrlMolEoouV\nDidDgiSpK5rNJlNTU2xsbBzZptFo0Gg0uHTpEpVKxaAQMw83SJK6olAoHBsQ9qvX6xQKhYgr0mGG\nBElS7DY3N6nVam31qdVqrlGImSFBkhS7xcXFA2sQTqPRaLCwsBBRRQoxJEiSYre2thZrP90fQ4Ik\nKXa7u7ux9tP9MSRIkmI3MjISaz/dH0OCJCl2ExMT99VvcnKyw5XoOIYESVLs5ufnSSaTbfVJJpPM\nzc1FVJFCDAmSpNilUikymUxbfTKZDKlUKpqCFGRIkCR1RblcJp1On6ptOp1maWkp4op0mCFBktQV\niUSCSqVCPp8/8tBDMpkkn8+zsrLC+Ph4zBXKkCBJ6ppEIsHy8jKrq6vMzMzc27OQTqeZmZlhdXWV\n5eVlA0KXeIMnSVLXpVIprl+/TrVaJZfLcePGDbLZbLfLGnruSZAkSUGGBEmSFGRIkCRJQYYESZIU\n5MJFSVJXlUolSqUSADs7O1y8eJErV64wOjoKQLFYpFgsdrPEoWVIkCR1lSGgd3m4QZIkBRkSJElS\nUNQh4Z3AbwBvAe+PeCzpVO4e+5Si5lxTv4s6JPw48OWIx5Da4i9uxcW5pn4XZUj4q8CLwD+IcAxJ\nkhSRqEJCArgG/C3g6xGN0RPi/qTQyfEeZFvt9m2n/WnantRmED/BOdc63965FuZc63z7fp1rUYSE\nM8CngJ8FqhFsv6f4n6nz7fv1P1PUnGudb+9cC3Oudb59v861dq6T8DIwf0KbCeAS8CjwTw+9d+ak\nAV577bU2yukNd+7coVqNLwt1crwH2Va7fdtpf5q2J7U57v24/806xbnW+fbOtTDnWufbRznXovzb\neeIf7n0e23scZxsoA98DvL3v9YeAPwE+DcwE+p0D1oAn26hHkiS1fJnWB/U3OrnRdkLCaZ0HvmXf\n908CvwR8H/BrwO0j+p3be0iSpPa8QYcDQlxSeJ0ESZL6TlxXXHz75CaSJEmSJEmSJEmSJEmx+xbg\nvwJfAH4b+OHulqMBdh74HPDfgd8Evr+r1WjQfQb4feDfdbsQDazvBmrA68Df6XItkXkHMLr3/M8A\nG8C3da8cDbAk3zwT59uAL9Gac1IUvovWL3FDgqLwMPA7tC4v8CitoPDudjYQ19kND+otYGfv+buA\n3X3fS53UAH5r7/n/pvUpr63/VFIbfhX4o24XoYE1SWuv6Bu05tl/BD7Uzgb6JSQA/Flau3//F/BT\nwP/tbjkaAt9J64Jj3u5cUj96goO/v36XNq9s3E8h4f8A3wF8O/BDwF/objkacI8B/xp4qduFSNJ9\neuBrFEUVEl4APksrwbwFfCTQ5geBTVq3kv514Ll97/1dWosUq8DIoX5fobWw7NmOVqx+FcVceyfw\nC8A/Af5LJFWrH0X1e82LzekoDzrnbnNwz8F5emTP6F8BFoDvpfWDffjQ+x8FvgHMAu8FfpLW4YPz\nR2xvHPjWveffSuuY8Xs7W7L6VKfn2hmgBPzjKIpVX+v0XLsrjwsXFfagc+5hWosVn6B1luDrwJ+L\nvOo2hX6wXwN+5tBr/4PWJ7eQLK0E/ht7j9CdJKVOzLXnaN2xtEprzn0BeKaDNWowdGKuQevmd18B\n3qR1Jk2uUwVq4NzvnPseWmc4fBH4gciqewCHf7BHaJ2dcHi3yVVahxGk++VcU1yca4pbV+ZcNxYu\nPg48BDQPvf4VWueoS53iXFNcnGuKWyxzrp/ObpAkSTHqRkj4PVrHfBOHXk/QuuCD1CnONcXFuaa4\nxTLnuhES/hhY509f9emDwEr85WiAOdcUF+ea4tbXc+4sresYPEtrscXlved3T8uYpnXaxgzwNK3T\nNv6Qk08Vkg5zrikuzjXFbWDnXJ7WD/QWrd0hd59f39fmk7QuALEDrHHwAhDSaeVxrikeeZxrilce\n55wkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVIf+P9cYZ1EAfTlhQAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-4,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"black\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3X98lfV9///HCfkBSQhBDT9MgEAglESckjZCUKnjl67T\ntk4qsbYNY5Ntrq1bN+jW/aCf2z77brltbee6VfnMmar1KLKtte2KmHUqCJoaysqIFYkBSQBzQH4m\nQH6d7x9XrpNzTs7vc13n5/N+u52bkpyc68qV65zrdb3fr/frBSIiIiIiIiIiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjE7CowEeHw7ifskIiIiKexaYJrXYyVG8HB7MndKRERE\n0se3gMPJ3gkRERFJD/nAaeCryd4RERERsU6uja/9KWAK0BLiOTNHHyIiIhKdk6OPhHPY+NovAVeA\nTwb5/szrr7/+xIkTJ2zcBRERkYzVA3yMJAQQdo08zMFIlvx0iOfMPHHiBM888wyLFi2yaTfE3yOP\nPMK3vvWtZO9GVtExTzwd88TTMU+st99+mwcffLAcY/Q+Y4KHDcAHwI/DPXHRokUsWbLEpt0Qf6Wl\npTreCaZjnng65omnY55dcmx6zQ3AdzGWaYqIiEgGsSN4WAVUAP9qw2uLiIhIktkxbbELmGDD64qI\niEgKsGPkQVJYY2Njsnch6+iYJ56OeeLpmGcXO5dqhrMEaG9vb1eSjYiISBT2799PXV0dQB2wP9Hb\n18iDiIiIREXBg4iIiERFwYOIiIhERcGDiIiIREXBg4iIiERFwYOIiIhERcGDiIiIREXBg4iIiERF\nwYOIiIhERcGDiIiIREXBg4iIiERFwYOIiIhERcGDiIiIREXBg4iIiERFwYOIiIhEJTfZOyAikkmc\nB504/9dJz4Ue3r/wPpcHL1OQW8DVoatMypvE7JLZlJeU03hDI42LG5O9uyIxUfAgImKhxsWNrJqx\nis1bN3N632lOnzzNVa4ylDvEddOv48ZbbqR5azNlZWXJ3lWRmCl4EBGxUG9vLw13NdD5kU44C3wC\nhiqGwAHHRo7R0tPC7jt3s2/nPgUQkraU8yAiYqEtX99C582dcBRYCcwCHKPfzDH+3XlzJ5u3bk7W\nLorETcGDiIiF2g60QQXgwvhvIOWjzxNJUwoeREQsNIQxReF5BJIz+jyRNKXgQUTEQrnkgpuxRyAj\no88TSVMKHkRELFR/Uz10A2UY/w2kZ/R5ImlKwYOIiIWatzZT9fMqqAT+CzgOjIx+c8T4d9XPq2je\n2pysXRSJm4IHERELlZWVsW/nPppKm5g9dTb8GHK35cK/wJwfz6GpoEnLNCXtadJNRMRCngqTN/bQ\nX9lP0WCRp8JkX14fvyj5BRtbN6rCpKQ1BQ8iIhZqXKygQDKfpi1EREQkKgoeREREJCoKHkREbOQ8\n6GTt42uZddcsimuLya/Jp7i2mFl3zWLt42txHnQmexdFoqacBxERi5jJkgBXhq5w7PwxZjpm8rNH\nf0b/bf1wC+CAwZFB+nr6KNhWwKp7VyV3p0VioJEHERGLNC5u5IlVT3Dtnms58u0jHP7Hw7Q3txuB\ngxpkSQbRyIOIiEU87bhv7oS7AAdceuZS6AZZrWqQJelHwYOIiEU87bhneX0xBzXIkoyjaQsREYt4\n2nF7U4MsyUAKHkRELOJpx+1NDbIkAyl4EBGxiKcdt7flGA2y3kcNsiRjKHgQEbGIpx23tyJgHdAO\nxd8thmdh7s65apAlaU3Bg4iIRTztuP3bcH8IhZcLqfvjOqq/WM3835/PmVvPsLF1o4pESVqyI1On\nHPhb4E5gEnAY2Ajst2FbIiIpo/VUK1UPVXH1+1c5u+8sA+4B8h35TJ09lZo/rKGpoUlNsyQjWB08\nTAVex5jhuxPoBaqAcxZvR0Qk5Xg6am5K9p6I2Mvq4GELcAxjpMH0vsXbEBERkSSyOufhHqAdeAH4\nAGOq4rcs3oaIiIgkkdXBwzzgd4F3gDXAd4BHgc9bvB0RERFJEqunLXKANuDPRv/9P8ANwO8ATwX6\ngUceeYTS0lKfrzU2NtLYqKQiERERp9OJ0+m7KufcueSmEgaruB6ro8Au4CGvr/0u8DXGF21dArS3\nt7ezZMkSi3dDRCS1BGrXPWfKHCbmTgSg8YZGrcSQiO3fv5+6ujqAOpKwmtHqkYfXgY/4fa0aI6gQ\nEclajYsbWTVjFZu3bubVt16l61wXg6WDrPjoCpq3NqtYlKQVq4OHbwJ7gT/BSJqsB3579CEikrUC\ntevuGumiq6eL3XfuVrVJSStWJ0y+BXwaaAQOYkxXfBlQCTURyWo+7brNCeMcYBZ03tzJ5q2bk7h3\nItGxo8Lkj0cfIiIyqu1AG6wO8s1yaGttS+j+iMRDvS1ERBIgYLtuU87o90XShIIHEZEECNiu2zQy\n+n2RNKHgQUQkAQK26zb1jH5fJE0oeBARSYCg7bqPw6TXJnHixhPc47xHLbolLSh4EBFJgLKyMvbt\n3EdTQROzfzgbHoPcbbnwEkwrmcb1v7ieJ1Y9oUJRkhY0ySYikgBmhcmri6/ietkFn4ChCiOJ8tjI\nMVp6WlTvQdKGRh5ERBKgcXEjLza+yPUHr+fy7ZdV70HSmkYeROKgfgUSLdV7kEyg4EEkDupXINFS\nvQfJBAoeROKgfgUSLU+9h0ABhOo9SJpQzoNIHNSvQKKleg+SCRQ8iMSh7UAbVAT5Zvno90W8hKr3\nUPXzKpq3Nidx70Qio+BBJA6avxYwEmfXPr6WWXfNori2mPyafIpri5l11yzWPr7Wp/BT66lWqh6q\noqKngqIdReQ9n0fRjiIqeiqoeqiK1lOtSfxNRCKjyTWROGj+WgBWTl/Jn2/7c7pv7oZbAAcMjgzS\n19NHwbYCVt27yvPcxsXGChxng5OWvS10fL+Ds++f5YNjH3D20bN0fL+Dlk+10NTQpJU6krI08iAS\nB81fC8SW+7Jy+ko6t3XSXd5N37o+Bu8fpO++PrrLu+nc1smqGavG/YxIqlDwIBIHzV8LxJb7omRb\nSWcKHkTiYM5fX3P0GnKeyYHHMB4vQdeFLj7S+JFxc96SOZwHndzjvIdjF45FnfuiZFtJZ5qQFYmC\n86DvPPWAe4B8Rz4l00soyCng8icuGxcEB4yMjPBhz4fGEPS9GoLORGaRsAVfWxB17ouSbSWdaeRB\nJArB5qlPfniSyyvUryDb9Pb2suzOZZwvOR917osn2TYQJdtKilPwIBIh50EnNz1wU+B56n40BJ2F\nPHkLa4D/Ynzuy/vBc1/CJdteKLmg6S5JWQptRSK0cvpKTh86DbcG+KYDDUFnIU+TKwewDngdeG30\n3yMwZXAK+34WuER589Zmdt+5m87LndAFnB79uQEoHipm165dLFq0KHG/jEgUNPIgEqEtX9/CYOFg\n4CDBjYags5BP3kIRxgjEZ4EHgAdhaPIQG1s3BhxBKCsr48WnX2Ty7slQM/ozDwCfh0trL3H3g3fj\ncrkS9JuIREfBg0iE2g60wQQCBwllqN5DFgqXtzCnZA4vNr4YsNiT86CTtV9Zy8U1F5UrI2lHwYNI\nhIYYCh4kLAdeAt5H9R68RFO2OR3FUySscXEjJRdKlCsjaUnBg0iEcsmFBgInxp2B3Ku5rGc9c3fO\nhWdh7s65NBU0ZXVb7kyvohhvkTAt15R0pYlYkQjV31RPx9mO8YlxbqAQJlRN4HD9YeZ/fD555/OY\nM2UOZ3LPsLF1I403NGZlnwKfKoomc1geY1j+yX96Mlm7FzOz3sdbL7zFuXPn4McYQUM+5EzMoXRO\nqafJVWNZ8L+7eqNIutKZKRIhT3b8zZ2wCuMiOAL0GHeZ+17M3hGGYDyrEQIph7bW9ByWNxthfXjz\nh8bqm9HVFfTA3J/PZZ8zsnOh/qZ6Oro7fIMrk3JlJIVp2kIkQmVlZezbuY+mgqagUxOZPscfrUwd\nlreqL4V6o0i60siDSIScB504/9cJt0LRDUUUnS3iYt5FfsSPeOH/vcC8qfOY6ZjJnm/uof+2/rCt\nmbNBpg7LWzWiYvZGufr9q5zdN1bufOrsqRFNe4gkS3q+c0WSoHGxb96Cy+Vi89bNvPrWq5w+d5pL\npZd4b/A9I3DIsDn+WGXqsLxVIyqec2qTdfsmkggKHkRi0NvbS8NdDcbQ9V2AA7pGuuApQi+9S9M5\n/lh58kTohHLG5Yk070zPYflMHVERiZRyHkRiEHTOO5+MnOOPVSR5IukonvoOIplA4bFIDILOeZtl\nqnVHCvjmicxfmjlLWDN1REUkUtn1SSZikaBz3mYFygyb44+Vf55IplCio2Q7BQ8iMQg6570ceAH4\nVWAqsA/oBUbAccnBS4tfYu3ja2lqaMrIi2q2UKKjZDsFDyIxCLqKoAhogEk/ncSVS1dwf9Ltadns\nHnFzsuckhdsKM37Jpme6ArgydIVj548xZ8ocJuZOBEjb6Qq7mBUrO77fwdn3fUcyaj5Vo2BTUk6w\n1K5EWAK0t7e3s2TJkiTuhkj0XC4Xy+5cZiRNBpjz/thNH+M5x3OBpy+OQ1NBU0ot2bTjYu+9lLXr\nXBdzS+ey4qMraN7anLaJknbxWb1TgU/FyqqfV6V1cqnYY//+/dTV1QHUAfsTvX2NPIjEINyc9+5t\nu+HuID+cgks2Gxc3smrGKp+L/WDpYMwX+2BLWbt6uth9525dDP1kag8QyVwKHkRiEG7Oe+FTC9Nq\nyabVF3tdDKOTqT1AJHOpzoOIDTwJlYGk0JJNsxfH3OVzLenVYGo70Ba6WNYBXQy9ZWoPEMlcVgcP\nWzFm6rwfJyzehkjKS5ciQiunr6RzWyf9Q/2+F/s+YBfwPWA3fPffvhtVc69xF0Pv13sO3u58O2ub\nhQWSLsGmiMmOM/J/MRoWm4Zt2IZISkuXIkKe6YXdjF3sLwE7gJX4rBTp7umOuLmXz1JWC14vVdi1\niiRTe4BI5rJj2mIYY2W7+ThjwzZEUpqZUFnRU0HRjiLyns+jaEcRFT0VniJCqcAzvWBWxuzDqFOx\nkrimMHxGXvbG/3qponFxI0+seoJr91zLkW8f4fA/HubIt49w7Z5reWLVEzEvp1Rrbkk3dow8LAB6\ngKvAm8CfAl02bEckZaVqESGznsBbL7zF+ePnGb44bFzQy4B3MS70DuJu7uUz8tJLxiQD2rWKRBUr\nJd1YHTy8AXwOOAzMAP4M4+OoFvjQ4m2JSJRWTl/Jn2/7cz68+UO4GSMHwY1RGbMFuAffKQx/ESbv\neV8Me/p6cDuCTOjHkQyYjMJKdq0iSdVgUyQYq4OHnV7/fwijOG8n8AXgmxZvSySlpWLVQM/FbypG\nHsI0xnpxlOA7hRFHcy/vi2Ht8lo63B3G6/UBrwMuPIWQ3ut7L6qS3eZxPfj8QU4dPGVU8bzFeL3B\nkUH6evpsy6XQkkoRg90pvP3AQWB+sCc88sgjlJaW+nytsbGRxkYN0Ul6M+/yu2/uTtjFLRzPxe9l\njDyEaxjLcZjA2BSGhc29PMmAZsDilTjJCAz1DNG5rTPi42Ee15PDJ+GTJLSWhJZUSjI4nU6cTt9V\nSefOnUvS3hjsLk9dgDHy8BjwV37fU3lqyWgbHt5Ay9WWlCpRvXD5Qg6vOWxMVzyA72jAEeB3MUJ+\nM6DwXinSDVUHoi+V7CnlPdwJHyXu4+E5rq95/Q7+RqCmtYZDrx+KeD8jUbu8lo7VHQndpkggyS5P\nbfVqi78DbgfmYtxr7QCKge9avB2RlJeKhZJ8llCaF8AiYA3G+GD36L/XAW8DTuBZ4CkofK0wppUi\nZv5D7plc43h413x4dvS/HfDCf70QUc0Hz3H1/h382TQKkC71O0TsZvW0RTnGx811GLOa+4ClGAuQ\nRLJKqg1xOw86OTvprHHxC5TX4N1OvAIjoLCgOZOZ/7DwqYUc7jsccOqCHhj40QCrZoSfuvAcVwty\nM6KVLvU7ROxm9chDI8ZbqgDj42cd8EuLtyGSFlKtauDK6Ssp6C2Al4BJjL+DNkcc2iH3iVzLa1Pk\nkmtMjwSp+TD4icGIaj54jquZmxGITaMA6VK/Q8RuqnmagVIxyz8bpVrVwC1f38LR+qNGkuQrwA8w\nlmZWMHYH/SFUTahi38+t73pZf1M9Hf/ZYYxoBFIR2WoFz3E1R0qC5GbYMQqgJZUiBrsTJkNRwqRN\nfArZmHPDFgw/S3Q8iYI3Bx7iTvTfYVyyn9+yScd5B+U3l9sWYLpcLspvLmfwtweDPqd6VzXvvP5O\n2NfxHNdSjMnRXmAEci7lcN3C65iQP4ELJy9wZeQK7gG3MVIxARy5DibmTIw6kFZALqkm2QmTGnnI\nQOEK2fzK+l9hQv4EfQjaLNWqBo7LwTATJUct2LWAd34S+sIdj9ZTreSX5DPoHowrT8E8rmdfOMv5\n4+cZcYzgyHGQMyOH4luKOfeDcwysGIBbMQIkM8diNJDuG+mLerlsKi67FUkmjTxkoJDLyS5C3jN5\nDP76oLHufi+euzbHJQczFs9g8brFCiIyUCosM7R7+eq4198FLMK65aEptOzWpFGR7JTskQc7GmNJ\nkoXM8n+NscBhB8YH62eBz4P7d9ycrDxpFOyJIOtd0ksqLDOMtAGU86CTtY+vZdZdsyiuLSa/Jp/i\n2uKwbbzHLY91Ycly2VRcdmsy26p3l3fT92t9DE4dpG+gj+7D3bz8Fy/zlT/4ilqfi+UUPGSgoFn+\nl4CjGB+CGdTpUCKTCp0bI12t4HNBXNfH4P2D9N3XR3d5d8jgdlzgbEEtCOdBJ0fPHU2pZbfexpUc\n1w2BJIByHjJQ0Cz/vcBkjA9BF6rRn2XKysrYt3Mfm7du5tWdr9J1rou5pXNZ8dEVNO9sTkjyZqSr\nFWJtQOVTBAuiqgURbPi/ZHoJl12XE15TIlLjSo4nsFx3MmiaJjVo5CEDBb3DPIHRv8C/wqA/1ejP\nSM6DTja2buTMrWeY//vzqf5iNfN/fz5nbj3DxtaNKTWsHc00gfcUx+Guw75TM1HUggg22nHyw5O4\nr3cHf53u5FaW9Iy2WDRFk+piHZUSa2nkIQMFy/K/MnKF4bLh4BUGTSPQd6WPtY+vVXRvgVS5U/Lc\n9aeBaKpz+qyEuAFj6N6skulfNTNERcigox39GA24zFUbfjUl8n6cR/PB5FWWDFhy3F8G3RDY1RZd\noqPgIQMFGxquXV5LR0OH8SE4hZCdE2+98Vbe2vaWlqZZQMv8oue5IPbj28LbDVwHPR/24DzopHFx\n4/iLybrRn9kNDMOEKxMoeK0Ad66byyOXg07VBG237cDo0GO+7mte+1IGeVPzEr7s1ptnmjIJ5bqT\nQW3RU4OmLbJI/U31cBbjQzAfo8Lg+wRMnnPkOMY+kJVQGRefi1uaHctYVz3Eq/6mengXY9RgEUb3\nzAcwCuDXQE5/jmd42jPFYTbc+j5wGhgChmF4eJj+Cf1cHblK7rRczt95nl/c+ItxUzVBRzvMi7JZ\nF+Ozo/vyWWAVVF5TmdQRHc80ZSFJX02TCKnWMyZbZUYoKmG5XC6uXL5C3n/mMfiJQbgLuAzsAX4K\nXIHC0kKuqbyGqoeq2L1tN9wd5MUU3Uclne+U7Bo1CTeVc+9n7mXHgzu4tPZSwOHpi2sueoanhxjy\nLQa1mrF/r8JTHGpkZISRnhGm/mgqO3fuHJcgOi7Z0mTmTaRImXF/5jRl//Z+Tv3gFO573GGnaNJZ\n0L8TZNQIS6rTyEOGc7lcLPv0MqbXTOe5nOcY/Nyg0arsWeDfgCNQOruUNVvX8C/b/4XjPznOS5te\nomhikaJ7i6TrnZLzoJObHrjJllGTcElvAO7J7ogSAAM23IphKXLQOhjLMZqJBRmls3KJaywjPY2L\nG3lp00v8/bf+ntV/tZqKE5ndtCsV6pWIRh4y2mOvPMZXNn2F/kn9RsKXeefk3ZjoOHyq4FOsaVhD\ny94WNm/ezNn3z9J3um+sZbI/RfdRSdc7pZXTV3L60GmjzHMgcYyahEt6e2P7G5RPLeew43DgF/AK\nugI23IphKbJPu22/nhlchpz/yoE83/4YVpcZj2ekJ1uadqktemrQyEMGe/OFN+m/rd9IOgtzB+d/\nJ8h8si66t2t+P13vlLZ8fQuDhV59KMycgu9hjFw9DR3vdDBhwQRyF+VGdaxCLsUshWf+4xne7Xw3\nopbmzVubyRvMi7s4lDn8P/O9mTi+6/AptsTDMLJqhLklczn52kkuHbrkGaWzMt8hnfNjEkVt0VND\nat7ySEz855H7TvfB7xLRB+m4O8Fg7Y4zOLoft+RvLwz2DtJ3uI+ev+jh4OKDtKxriXppZbLvlGJd\nKtp2oG2sLkiwnIJPwUjFyFjDqSN9nNx6kj2le/iC4wtBtxN0KucS8G8w9GtD0EFEuQYBG27FsPLA\nvHPf8IsNtMxrScpSwHTOj0mUbBlhSXUaecgg40YPShlbUhbmDm7cnWARxqqMtzHuMh8n46N7u8r8\nJvtOKa5Sz2ayoH8OQaCcgn7j68OfGKb//v6Q2wlaQt37dW8F/ouw5bQbFzey7o51MReH8pfMPhaJ\nyI9J1gqaVNsHiY9GHjLIuNEDM2iIIFt874G94z+0vFo2V++q5p3X7WvXnArsKvOb7DuluEo9N2AE\nUuB7Rxwop8D7wh9mO0FLqHu/rhnAetVWcJx3UH5z+bhcg3GjO1EUh/KXzATXROTHpELdkVTYB4mP\ngocMMm7I0wwagk1BdEPVAeOD9OOf+vjYh1YfvoV5RuC9vvdY+/jajK4s6VPmN4OGjmMdCq+/qZ6O\nsx3GBdxJ+JyCKI5b0KmcYb/X9QpgARbsWsA7PxkfxPpXVb0ycgV3jhv+G5hgJDnmkgul0F3Qzazb\nZzHiGCHfkU/BzAIcNztw/9zN1ZNXx5KFgxSosnNxTNCgCizLjwkYTF4G3obODzuZXjedwsmFtlZA\nVZXI9KfgIYOMu2PyDhp+AyN7/FVgBByXHMxYPMNzB+f50DKH7M257dHgYahnyBh6zuA7gkwt8xvr\nnbTnAn9zJ0wkfMOpKI5bsBLqVweuMuQOsr8h7rwjGd3p7e2l4a4G4/cZrf0wODJI35E+cr+by9A9\nQ8ZUycsYBarMkRSv9wE90PnjTh5/9XE2rbB+KMmK/Bj/HJcrI1dwD7hxj7hx44aLwO97/cAlfN7z\nbofbyF+xcRRAuR3pTzkPGcLlcvHByQ9855G98xZ+AHRBUX4RFdUVrP4/q/n7b/69J1vcU6XOe8g+\ny7K9PasiIsgRSSdB8wsg5O/jnauR25c7lkPQBwwwPqcgiuNm1iY4/pPjXDp0iYGOAS4dusSD9zxo\n28qUoCsZjmIEDubXlxPyfTD8iWHe2P5GzPsRihX5MSunr+TAtw/QfU03fVP6GO4fZuTcCO6G0T/O\nFK/fqY+xG4wEvufTtfaJjEmvT0EJyFPPoaR/fG6DOex7HJoKmoIOBZofWsf+6hhDFUHeuBl+R+C5\n6yvsTOmKgtGKdSjc+27e5XKx7M5ldF7uNO7Il2MkM3pPhV1H3Mct1J33tDencfQLR5l116yYGowF\nvdv1n24pAkoInTRp0/vAivyYLV/fQu+NvcbfqQE4Anwa4yZiJUb+iPcKGgcJ/13TtfaJjNFfKAN4\n6jlcQ9jchmDMD62FTy2MqDBPJsrUMr9WDIWbx+bk352kf2W/ESCU49so6jI43nXg/qQ77u34T2dM\nnT2Vqs9X0fHdDnpv6Y0pyS7o3W6g6ZYJAb5mStD7IK4ltm6Mz4G3MYKhCoy/02rGcqHMYGI3Cf9d\nfQJa/xyrATiaezTjc6zSnYKHDOC5o3IwvvPfCOT25VL1l5FVwsvmOwIzgHI2eH1ov+F3AbO4omAi\nhLwgR/j7mMem9qlaOio6jC/6JTMyAoXPFzK1Z2rc2wl0573h4Q28esurMSfZBT23A+VvJLlDpfOg\nk8d3Ps6eb+xh+BPD44KlC9+6wMDFAU9FWO9j/eG5D2GQsYAhn7EAyZyWeWF0Q6uT87t6AlpzJMsv\nt6S/pz/jc6zSXeZeCbKIzx2V/wc6MG/XPF7a9FJEr5WIbO9Ul+yllVaz8vcZd/fud9fYf76fqUxl\n+ZeWW3bXaN6B//TFn8LGIE+KYHg96LkdaClzkpthrZy+kocefcgIHAIESxeWXKD90XYurrk4LrDI\nO5BnTLuYwYLb72HmQpkraJLwuwYcyfL7HbXqIrUpYTIDxJoQF4gncTJMYR7JTj7n2iXGtcx2b3KH\nLT7lLZJiQWaRq6H8+JLsfM7tixiltr8LHAb+Hd/GV8tIWDOsQLZ8fQuXci8Fz0XoMjqLBkpyHJw+\naCS0msGCmYviXTirCJg0+n0zf8X/Pf++Pb+ry+Vi12O76H6qm6G+oagKcrlcLjY8vIHa5bUsXL6Q\n2uW1bHh4Ay6Xy9J9lPAUPGQAK3sn+Gd7T3huAjnP5JDz0xy6LnQx8/aZqgSXxXzOtRg6V/qLpPql\nZ5WEWSo7kAiC5HG9KypHX++TGCMaZrfZp4xH/ox8Ct4uoGB7QcKrgrYdaBubbgjkNMEvuqvAccEx\nFjDMxQgOKvENEsxgwntVlhPPMSh8rdDy3/WxVx6j8tZKWq620LG6g4HJAxEHhP4/e3jNYTpWddBy\ntYXKWyt5/NXHLdtPCU/TFhnAyt4J/kPcgdbG270GXFKXz7nWS9xr9SMpFuTJ6YlzeH1c7wozYTBI\nt9kHCh5I2pD5EEOhcxFC1dSYDBOvmcjAjwcYvmN4bNVF1+jP/BijGJcbeAcjeKrA+P1HPzcKdxfy\njW3fsLyWhSe5278KbgT5FuN+FjznSv9t/byx/Q1bam9IYAoeMoAVCXHBqBKcePM+13r6enA7ggwF\nRJil77N8MkBl02f6niF/ar5vol+A1USFewpZum1pRL+DZ5vm6oNAkrwsOZfc0EtfzWmJIBfda0qu\nofaPannrhbc4l3OOkZ+OGMcqH3KKcyidU8pH132Uez9yL29sf4O21jaGGCKXXOpvqqd5TzNlZWWW\n/15Bq+BGEBCqsFRqUfCQAexM8NMbVrx5n2u1y2vpcHfElaXvScD0q3LoXdnU8WOHb6Kf32qiKYNT\nePdn70apk+TTAAAgAElEQVR8sfNsM4UridbfVE/HuY7xtTRGg6XcS7kMdQ8FveiuXrqaJzc9GdFn\nQiLv1kNWwQ0zaqrCUqlFwYOElC1v2FjX1GczK1bmeBIwQzTVGpw+OHZ36r+a6Dh8uuDTUd0le7aZ\n5OWYoTRvbeY/f/U/6W3oNVqTm8HSAEy4MoH6h+s58m9H6KU3KW3eYzVuuax3QPgq0AdFU4sCjppm\n8zLyVKSjLSFlyxtWXf6iZ0WujScACdVUaxU4vhu4+FTh7sinK8ZtM8nLMUNpPdXKTb9/kxHMnj/L\nQO5oMDvPCGarZ1VTPLPY+L4FU5WJCp4DBpwRVsHVMvLUkhmf/GKbbHnDKrcjelbk2ngCkOHOkAmA\nc+fO5faC2y2Zm1/6maVsf2g7/R/tDzwtEGNQYiXv6SH/C/t//8N/87rjdUsv7IkKnuMJOK1MDJf4\nKXiQkLLlDavcjuhZkWvj01MlRDfNiXkTLQveNq3YxL177mXz1s3sLdvLqdZTXBm4wsTCicy4dgYN\nH22wLWEwFom4sCcqeI4n4LQzMVyip+BBQsqWN2y25HakGp/lk90tCRvhKisrS5uRpIAX9svA29D5\nYSfT66ZTOLkwrpGIRAXP8QScmVb5Nd2pSJSE1Li4kaaGJmo+VcPU2VPJd+Qz4B7g7Ptn6fh+By17\nWzKiUJSVVTpTRSTVG60Sb+W/pZ9ZSuHuwoCVTQt3F7L0M8mbQki2tgNtvgWhvCt7fgHcG93jCmtF\nS8GzREvBg4QVSRXAdGdllc5Ukai/mxWV/zat2MTRPUdpKmiiprWG6l3V1LTW0FTQxNE9R7O6+M+4\nC7sFlT39ZWLwLPZS8CBh+QybWvRhlWoysadHov5uPpX//LZjVv6LhDmVcOj1Q7zz+jscev0QT/7T\nkymTe5AsPhf2PoxKkVH0g4hEwOC5D6P/x1Pw9vG3k1aWPpEjaBI5hZNpLFHLq7IhmTARuR2J+ntZ\n1YUyUtlwfiSTZ8XTVIxCWpOwfIrBswLltn4oxai5cBSjdPVqcDvctpeld7lcnnLk3itq/vjhPzZG\n0LSMOqUEOwUTYQnQ3t7ezpIlS5K4G+krUN8J75UQ+3bus+SubeHyhRxeczjo96t3VfPO6+/EvZ1M\nl6i/l2c75zrh88GfZ9XfTeeHvVwuF8vuXGYsZ/0oRsGoBwi6MqWmtYZDrx+KaTv3PHQPb+55E3e5\n29hWoATWMPUYYvHYK4/xlU1fMYIXv/fGhB9PGN+a3MZ9SRf79++nrq4OoA7Yn+jta9oijSVqWFrz\nodaw6+/ln6xYXV9tSRfKSOn8sJc5KpZ7Jte4sHq31vYXR35OWVkZH7n+I0Yxrn4snxoJxWfqqx9j\nusQJ7Ibh4eGE7otExs7g4asYseM3bdxGVhuXhe3NwjdVJiYTJoMdf69AyYrn887bepHxp/PDXo2L\nG3lp00vMmz1vrEGYd2ttRv/7fvwrUzznqHffDzP34XsY7bqdcPjoYUvzDTzb9V5J8sDoYypaCZKC\n7Lol+BjwEPALgt+TSJwStbwqWwpF2c2Ov1fQNsVhulBWHbDu76bzIzE8IzwWNQgLxHOOmn0/+gja\nsKxzW6dl+Qae7QbqcZLCPUiymR0jD8XAM8BvAWdteH0ZlajhYnPYtKKngqIdReQ9n0fRjiIqeio8\nyYTpKpGZ3Hb8vQKOZpgftuZF5m2MIeBnjUfuT3It/btl8vmRSnxGeMx+EJ/FuDtfAZ/+RHQNwgLx\nnKPmqJUNy0JDbteFcT57j3ZcRCNbKciOkO2fgB8BPwX+wobXl1GJ6juRyZXdEtkQy46/V8DRDO+G\nTwG6UD5Y8KDRrtkimXx+pBKfFRE29eLwnKPmqBUkZCWNZ7sOxo929I/uy69iBBYa2UoJVo88rAdu\nAv5k9N+asrCRqvLFL5E1LOyoJTFuNKMPGAR+ALxv3XYk+RJRSMtzjn4I/AYwRMKmRqt+XgUDGNMx\n3qMd5gjaL4GnwPGEQyNbKcDKkYdZwD8AqzBOAfBNuwnokUceobS01OdrjY2NNDamf78Eu3k3+LGi\n22A2SmSNAqtqSXjXizjVdWpslOESY3dsKzCGnF/DCBwuQumi0ozqR5KN7O7J4X+O9g30JSTfwNzu\nyb87Sf/Jft/RMhgbQRuBRa2LYlqKms6cTidOp+8U6rlz55K0NwYr6zx8Cvh3YNjra+ZisWGgAN97\nJNV5kKRLtxoFzoNOHt/5OHu+scdY+24WDvpVjNyGGrQeXiyz4eENtFxtSdg55XK5KL+5nMHfHgz6\nnFR7TyZLJtV5aAVuAH5l9HET8BZG8uRNaApDUlA61ShwuVz84Bs/4LW/eW2saE4xY0O6nWg9vFjK\nZ2r0IkYS4zMY0wc/dPDOqXcibn4WidZTreSX5KfNezKbWRk8XAI6vB6HMFJdPhz9t0jKSZcaBWY9\nh+d//jzuErdvkGAO6Zai9fBiKTPPYumZpTi+6zDqL3wW+Dy4f8fNvqn7Im5+FonGxY2su2NdWrwn\ns53dFSbNRWMiKSldGmJ56jn0A/kEDhJCvdt0xyYx8qk8GWfzs0iky3sy29kdPNwB/KHN2xCJWbrU\nKPCp/BcoSOjDSFPWHZvYIFHVbCF93pPZTrciaShY97nmrVphEa10qVHgU/nvOsZWWMDYKguzbLF/\nRUmth5c4JaqaLaTPezLbqTFWmgnUy6BjVQctV1ssnXvMBv4NpWqX17Lh4Q2WJoBZxafy31x8exuY\nVQCrGV9R8ikofLVQd2wSF8/559/n4nvAS9BzpidsNdZEVnMV+2nkIY24XC7+/g//PnAvA6+5RyuK\nxYTah0wY9fBpAexVs7+jp4Ptt27nG9u+YetxjNa4yn8NGGnIrwHnGatV4V9RcgQqWyt5adNLCd1f\nySz1N9XT8W7HWKDq9Z6hB3J25bBqRuhqrIms5ir208hDmjBHHI6cPZK05XiZNOrh01DK5gQwK4yr\n/HcUow+AWVVFqyzERs1bmyl+rThon4uLay6GrcaayGquYj8FD2nCc7ELlmkPtl8o0u2CG0oiE8Cs\n4JNE9pMi8s7mUZRfREV1BUXXFmmVhdiq9VQr7snuuN4z0b7nNM2R2hQ8pAnPGy+Jy/HS7YIbSiIT\nwCIR7oMS4KVNL3H8J8e5dOgSAx0DXDp0ieM/Oa518WK7xsWNlE8tH3vP+Oc+OKG7pztkvlC077mV\n01fSua2T7vJu+tb1MXj/IH339dFd3m20Aw8zTSL2UvCQJjxvPLNjYiA2XyhS7YIbj1SrLBnPB6XW\nxUsieN4zlzDybhZhtAN/AGiEC6suhJy+jPY9p2mO1KbgIU143njmcjz/C8X79l8oUu2CG49UqywZ\nzwel1sVLInjeM2bSZJTTl9G+5zJppDMTKXhIE543ntme1n853mv2L8dLtQtuPFLtbj2eD8rGxY1B\npzRe2vSSsWZeJE6ePhcniOlc9emT4feeK9xdyNLPLPV5fiaNdGai9LlVzHLNW5vZfeduOuk0CgCN\ntqc1CwDt27nP9qWS4/YhjYsQWdUe2yr6oJRUt2nFJu7dcy/zl83nguNC4CeFOFfNn9+8dTNtrX5L\nvfeMX+rtGem0uR24xEZHP02kwsUuFfbBKsmuYudfL+No11F9UErKKysro2J6BR3ujpjO1bKysohb\neHtqmwRqB55mI52ZSJ9IaSLZF7tU2YdMELBA1Uv4lpz2pg9KSSGJuqgv/cxStj+03Xif+I10Fu4u\nZOm2pWFeQeyknAfJOskuSx2wXsatGImw7zM2H3wR+A/gRXi69WmtcZeUkKh8IbMdeFNBEzWtNVTv\nqqamtYamgiaO7jmaUhVgs1GwWdZEWAK0t7e3s2TJkiTuhmQTn7t+s0ul191MIspS1y6vpWN1gGHf\nPmAP5B/Np6K8guPHjzP464MwFSPDvdfYV8clBzMWz2DxusU0NTQpIVISynnQScveFjq+38GH733I\n5YuXYQRyCnKYWDSRul+pY8ejO9KqXH062r9/P3V1dQB1wP5Eb18jD2kg2XfKmSQVqmQGTI7sA14H\nToN7gpszrjNjgcMOjDX1nwU+D+7fcXOy8qQK5UhSmKt7vrblawC4f82N+3fcDP/mMH3r+nit6LW0\nK1cv0VPwkOJStZ+Ef0CzsH4hC5YsYOEtC1M6wEmFtePj6mX4Fd0Z/K1BzuedN/YzxJp6FcqRZEqF\nQFySR8FDikvFN+i4gKbhMIddhzmy5AiH7zqcMgFOIKmwJHJcvYxgAYIDo/mVCuVICkqFQFySR8FD\nikvFN+i4gCbGinPJkApVMsclnAUKEMweJg6SHuyIBJIKgbgkj4KHFJeKb1CfgKYP6CLlApxgUqFK\npn85aS4x/m9s9jBJYiM0kVCiCcSVt5V5FDykuFS4U/bnCWjMufpJxNVtL5FSoSy1dznprle6mDJx\nyvi/sdnDZBJJD3ZEAok0EE/VvC2Jj4KHFJcKd8r+PAGNOV0xgbi67SVSKjWRMj9Uz5ecH/83NnuY\nDGPUevCu/xCiH4BIovgE4hcxbhqeAZ6C3B/m8sqeV1h4y0K2NG1JubwtiZ/GPFNcKlZZ81SYc2FU\nSDSH2N9mLPfB5PchkezCLqlUJdOTO3INRtC1Et+/8RkoHCzk6//6dQ7tOhRRPwCRRDED8TPfO8O5\nt8/BJzE+D/pgaMcQRz921JjOfJbQ05qtqTOtKZFT8JDiom0mkwiegGa437iTWI5x8QPjwyMQfUiM\n03agbaw89TqMOg+v4SlcNWVwCu/+7F3jb/zJZO6pyHhmIL7hFxtoqW4Zu2nwTqAGJf1mKAUPaSCa\nZjKJYAY0C25ZwHn3+bEhdif6kIiCTzJsEUanVC/Td03XyIKkPE8QDGMJ1N43Ed4rh/wp6TdtKedB\nYlJWVsan7/r02Fx9EUZyX4old6ayVEyGFYlWyARqGJvWDERJv2lLwYPEbOlnllK4u3Bs5YI+JKKS\nismwItEKmkANxkjEIPADAib9JmqFk1hPwYPEzL/r3bRL03D8wKGVAREaF3yBjpekHU8QbBY7M28i\nzJGIG4Em4JcYyZNPAd+B0ndLE77CSayjcVGJi38+hsvlSqnkzlSWismwItEKmkA9Bd/ESe+cnuPw\nqYJP8eSm1MnlkuioJbeIiMTF5XIZCdSfP29cVfowaj48RNBEyZrWGg69fiih+5lJ1JJbRETSWsAE\n6slo9VUGU/AgWcN50Mnax9cy665ZFNcWk1+TT3FtMbPumsXax9fiPOhM9i6KpK1xOTzqy5LRFDxI\n1lg5fSWd2zrpLu+mb10fg/cP0ndfH93l3XRu62TVjFXJ3kWRtOWfQF0yUKLVRBlMwYNkjS1f30Ln\nzZ0Ba+x33tzJ5q2bk7h3IunPTKA+9PohjvzsSNKb0Il9FDxI1vBpJe4vxVqHi6S7VGpCJ9bTpJNk\nDZ9y0P6UwCViqVRqQifW08iDWCqVkxJVDlpExBoKHsRSqZyUqHLQIiLWUPAglkrlpESVgxYRsYbG\nacVSPu15/ZVDW2vykhJVDlpExBoKHsRSPkmJfcDrGA1zHIAbuge6cblcSbtQ+/fiEBGR6GnaQizl\nSUo0O+otAh4YfTTChVUXqLy1ksdffTyZuykiInGwOnj4XeB/gPOjj73AnRZvQ1KYJylxL2Md9fxy\nH/pv6+eN7W8kaxdFRCROVgcPx4EtGB0z64CfAi8CtRZvR1KUJynxBCrIJCKSoawOHn4E7AQ6gSPA\nnwEXAa2ByxJmffuSCSUqyCQikqHsTJicAKwDCoDdNm5HUkxZWRkV0yvocHdAP+OSJrkOFDuIiKQv\nOxImF2Oky10BtgGfwRiFkCxSf1M9vEvApElqoPN4p5ImRUTSlB0jD78EbgSmYIw8PAd8HNgf6MmP\nPPIIpaWlPl9rbGyksbHRhl2TRFn6maU8vf5phj8xbCRNmkaTJoc/Mcwb299g0woVvhcRCcXpdOJ0\n+pb2P3fuXJL2xhBsVtpKLwNHgd/2+/oSoL29vZ0lS5YkYDck0RbespDDdx0OfJaNQE1rDYdeP5Tw\n/RIRSXf79++nrq4OjMUJAW/O7ZSIOg85CdqOpJpclDQpIpKBrJ62+P+A/8RYsjkZWA+sAP6vxduR\nNOApGBVk5EFdLEVE0pPVIwJlwFMYeQ+twMeAtRj1HiTLqIuliEhmsjp4+C1gLjARmA6sAf7L4m1I\nmlAXSxGRzKRxY7GNuliKiGQmBQ9iK3WxFBHJPFoFIVnB5XKx4eEN1C6vZeHyhdQur2XDwxtwuVzJ\n3jURkbSj4EEy3mOvPEblrZW0XG2hY3UHh9ccpmNVBy1XW9QeXEQkBgoeJOO9+cKb9N/Wr/bgIiIW\nUfAgGa/tQJvag4uIWEjBg2S8IYZU6VISzuVysWHDBmpra1m4cCG1tbVs2BA4zyaa54qkAq22kIRy\nuVzG0s0Dfks3t9q3dFOVLiXRent7aWhooLOz0+frHR0d7N69m3379gGwefNm9u7dS1dXF4ODg0Gf\nq2XNkmr0qSke3p3brly5wrFjx5gzZw4TJ04E4u92+tgrj/GVTV8x8g9WY1zMR6Cjp4Ptt27nG9u+\nYUuXzfqb6uno7vDt7mlSpUuxwZYtW8YFDqbOzk7q6+vp6ekZFzAEeu7mzZt58kktd5bUouBBPLyD\nA7Njm9PptKzrqU/ioskvcdGO4GHpZ5ay/aHtxrbLR7c5AvSMVrrcpkqXYq22ttB5NEePHrXstUSS\nQcGD+HC5XGzevJlXX30VgPvuu48VK1bQ3Bz/tELbgTZjxCGQcmhrtedDUpUuI2P3yFO2cLlcvPvu\nu5a93pEjR5g1axZnz55lYGCA/Px8pk6dSk1NDU1NTfqbSFIESyNLhCVAe3t7u2V3thKfYPO0AFVV\nVXHPvS5cvpDDaw6PfaEPeB1wAQ7Iv5jPA59+wNb8B4mMOfKk92d0Qr2HYjVhwgSGh4fHfd2K96Sk\nL/M9CtQB+xO9fa22EI9w87SbN2+O6/U9iYsAl4AXgEXAA8Zj4LcHVLhJ0lqo91CsAgUOYM17UiRW\nmrYQj3Bzq/HOvfokLu4FVpLw/AcraZhf/Fmdn5CXlxcyqVL5EJIsCh6ylNPp5O/+7u/o6elheHiY\n/v5+Ll++HPJnhobiq4fgk7jYS1LyH6xkd4KppJ8TJ06E/L7D4cDtdod9Tl5eHhMnTrT9PSkSK01b\nZBmn08k999yD0+nk2muvZcqUKVRVVdHf3x/2Qy03N75Yc9OKTRzdc5Smgibyr+RnROEms7jPfffd\nBxgJpioElL2mTZsW8vsLFiygqqoq4Pdyc3MpLi7G7XYzMDDAhQsXwi7ljPc9KRIrnXlZJtDd8jPP\nPMObb74Z9mfr6+Ovh2C26G470EaHu8P2wk12FqUKlBzX1dVFV1fXuOI+kRQNUuJbeuvt7Q078tDQ\n0EBzczObN2+mra2NoaEhcnNzqa+v58qVKzz33HNRbdOK96RILBQ8ZLGzZ88C8NBDD3m+FmxYtaqq\niubmZsu2nYjCTXYXpQqXYLpkyRIWLVrEsWPHuHjxIidPngz63HQqBKRcjzHm0uZgVSK9TZ482bPk\nOdDfura2Nqptm68nkgwKHrJUb28vn/vc5wDo7+/3fN0MHHJzcxkaGmLu3LmW1XnwZmXhJv/RBQZh\nZGiE3jO99K+2riiV/0XTrIURTElJCX/zN39DXV1d2GO3fft2y4+xXbyDg7/+67/ma1/7GjNmzADg\n2LFjPPnkk57jlCmBhBkkmKMFAAMDAxFViTQVFRWF/Pt2d3dHtU8OhyPgvpkjGelyPolEawngbm9v\nd0viNTU1uTEWTgZ9lJSUuFevXu2+++673Xfffbf72WeftXQfent73U2/1+SuaahxVzdUu2saatxN\nv9fk7u3tjfg1PvjgA3fVkio3G3Hzl7j5I9xU4uYB3Mwc/drWAI+/wF3TUBPdvjY1uWtqatzV1dXu\nuXPnRnT8zOdNmDAh7POrqqrcHR0dPtupqalxNzVFd0ziYf6e5n7PnTs35Pbb29vd5vvY+/8zyQcf\nfOCuqqoK+/cL95gxY0bI7RQWFsb0ug6HI+DX8/Ly3OvXr0/YuSOJZb7fRq+lCaciUVnI5XKxYMEC\nzp8/H/J5NTU1HDp0KEF7FZsVjSt4reg1Y3ShD9gOLMdYCpoDfD74z1bvquad198Juw07Cv8EM3ny\nZC5evDju65MmTWLmzJlUVVXZNj3Q29vLLbfcErB0clFREdOnT+f06dNcuXKFiRMnct111zEwMEB3\ndzezZ89mwoQJdHV10draysqVK4HMuCvesGEDLS0tcb9OuPdTaWlp2PdkLPLy8viN3/gNHn300XHH\nPBP+Ptkq2UWikkkjD0kQzV1UdXV1snc3rJqGGt8Rh0rcLMMYiVhgzchDJKM0iXrY+X65//77LdnH\niooKd0dHh/v+++935+XlBR1lSZc74vLyckuOS1NTU8jtzJs3z9Zzx/+Yh/osSKe/T7ZK9siDlmpm\nmWgq4CViGZjL5WLDwxuoXV7LwuULqV1ey4aHI1u+6HK56P6g2xg/M4tO5QOngQqgDAg2jRxFUmaq\nFuIxl93ec889rFmzhoULF7JmzRrP18y8g0DMZaMVFRUUFxczefJktm/fbsl+dXd3c+ONN/L8888H\nzQfo7OykoaEh5mWqkS57jWZ5rPnchQsXMmXKFPLz88nLy6OnpyemffQWScKxOaJkF/+KlHZXlBWx\ni0YekqCmpiaqO8jVq1e7q6urbcl9GJevMDoiwEbcVUtC3/l857+/4y6sLjRGGv7Sa5RhAW6qR1/r\nj0dHIjaOvq75+r+Ju7C60P3YK49FtJ+lpaURH7O5c+e6S0pKbLt7DJaDEE2+gVVz+FY8YrnDDbX/\neXl57qqqKnd1dbW7srIy4pEPO4/J/PnzI/odEzHCVVMzNtoW7rPA+7mSepI98qDVFhkkkiV0kVak\nmzhxIlOnTqW9vZ0PP/yQqVOnel7P3E68c+7rvryOzps7A66G6KST+750H686A69o8LT3fhtjdMEx\n+igDTmC8pYqAdRjNt17Ds1RzyuAU3v3ZuxHP6V5//fWcO3cuoufu2LGDz33uc3R0dET0/Gj515EA\nou6Cakf/hViZIxB79+6N+O8Rav8HBwcj+t06OztZsGAB06dPJzc3l4GBAVuOSVVVVcS/29KlS9m+\nfbvP6iernT59mg0bNtDW1sYvf/nLkM/95S9/SW1trXIgJOVo5MFGZlR69913+2TuT5kyJaI7lDlz\n5ribmprcra2tbsD9zDPPRHxnGylPvsLWAI8wOQmenzVHFyoZ+3cZxmhDoNfdiLvp90LPPfuL5o5w\n9erV7oqKipDPmTx5csCvFxcXR3UXef/998c0Zx3N6FOiHtGMQKTi/vv/faurq2NaJeO/qqempsa9\nfv16d2VlpSX7Fsmqn0APc0Qn0at/JLhkjzwkk4IHG7388suWfNiYF0I7gofqhurAF/jRR3XDWMKm\n97LOeR+b586ZkTP23D/GzRzGAoaHcTMdN7+J73TFxuimK7y3HcmQ9pQpUzzPDxZAeC/HrK6udpeU\nlLjz8/PdJSUl7mnTpkX14R4uEAyUoNfb2+ueNGlS0i+wke6v52/vdUGN9QJo9yPS6YlY9Pb2utev\nXx90GibRDyVUJl+ygwdNW2Qgl8vFunXrLHmtQIVrAk2P5Ofne5LQpk2bxtWrV8NWHfS06A5Torq3\nt5eGuxqMKY4GYAcwkbGfLQI+g9HieyVG0anPA3uAn4LjqoMZ02awdvlamveEH371Xr525coVzpw5\nw8jISNimRlOnTvX8bE6OkYtsFtuaM2cOd9xxh2f492//9m9paGjgwoULAJ5eBgDFxcVcf/31YSsW\nhmua5J3o6XK5+OIXv8i///u/R1zUKNFefvnlcV9L5DLZeEQzPRGLsrIynE5nwHMT4LrrrmPChAkM\nDg7S3d0d8G8crkNnNNKtKqpkFo082MCuxK/c3Fw3jE1nmHcdgRL1Ik3ea/q9poimF25ff7vxPO8R\nhgbG/+wfj369EvekykkxFZ36zne+E3OxnkmTJgU99hUVFT77EW4qxLzTDvWc/Pz8kN83l9qmUoJk\nqEegIkqptEzW/1FSUpKSw/iBpj6amposPwfKy8uT/atmNY08iKW+/OUv23KXZiZaHjt2jJaWFr73\nve/R0NDguRPfuXNn1MW+Ii1Rffr908aIwwsYIw0VwDX4jjTkAJOAj0DVlSr27Yyt0dSbb74Zc8La\n0NBQ0GPf3d3tc6cW6C7b28svv8zq1atDJl5OmjSJgYGBoN83l9rGkyA5Z84cCgoKfIoHHT58mI9/\n/ONhk2/NEZShoSGOHz8e9q73mmuuGfe1cMcpWSorK2lra0vJJMJgvTMqKipC/pw5Shap4eHhqPdN\nxAoaebDYoUOH3Dk5OQm785o+fbr79ttvdwPu2bNne5Zzml+L5G9r5jJUf6zaXTKnxJ0/M99dUlXi\nrq6v9owaVDdUj400mMswtzI20mAuz1yAu2ROSVx3gfEk44Wbjy4uLvYsdZ0xY0bYu/BQuRaFhYXu\nmTNnhnyN3Nxcd0VFRVRLTf0fd999d9BzLVjiZ25u7riyyL29ve758+eH3FagnIdwxykRD4fD4c7J\nyXHn5eW5p0yZkrYln8ON4oT7+/g/8vPzbRl1CTZyYm4n3PezRbJHHpJJwYOFPvjgg6iz9eN9OBwO\nz3QG4F6zZo27t7c36h4H4eo9VNdX+9ZxsKhfRSDxXGjDJfJ5V+wMF6SYzw3VayJUYmY0+xXqMXfu\n3IDHKZJpF3+hgqFgCXjJXlmRSUPz4Y5/R0dHTFMb8SRP+gcC1dXVQYPSqqoq96FDh1QVc5SCBwUP\nlkiVuWHzbhfCN1UyeXIatjJ+NKES98SZE93MG/1+oFwH8xHDMkx/8Vyswq1+8C66E8nfa/r06e7H\nHjNWhgQKyHp7e91r1qyx9e85e/bsmI5TsAJD0d41Rnter1+/PqqljsGaSpmPcCWl0000d/Xz5s2L\neDXC5msAABKLSURBVHVHLMcpllycYIFFpv69QlHwoOAhJv5v8kROV0T7CHdHMK4/hf8IxAO4uQbf\nug5xVo0MJtYgrKqqyr1+/fqIP9h6e3sjGimqrKz0Gc1pbW31LPNMxLK9YCMP1dXVIX/Oqr4okS6T\nDXeeBbtohrrbzrY72UDM4xYuOTeWapR23PBk0khROAoeFDxEze7seTsuSqHuCDz1HkKNKtQScnRi\nes10Sz7oI71YmXes/tMI0VyIwl2AzYdZJnzevHkx12gIFlyGu/MOlPPw7LPPhg18rCxtHK7GQbyt\npzWHHl646bzS0tKoX9OqhmPej3BtzzOJggcFD1Gzc4oinrnPUI9QFxPPyEOofIav4M6bnjd+xCGC\nPhjRMi9WwXIFioqK3Dt27HAHOn9D5Sj4izS/wjx28fzdzYqH0dx5gzHSEUi4famoqLC0D4r3sdVF\nPvHs6INhRzJsNvXjUPCg4CFqsczLmyVzQz1nypQp4+Y+Z8+ebcmburi4OPi8tlnvwXslRYDHvI/N\n81SZrG6ojqmOQ6Q++OCDoKsZKisrPWW7g52/kSSNRvp3NO+m4snHCDXyY/6ty8rK3DC2kmPevHlB\nG6LFkvwo6SuWBNlw7EiGVc5DdlDwEKNoVwQUFxd7SiKHel6gN555gloxxBjsovLYK4/5dsgMFDxY\nsJIiUpEsK5w5c2bIbqORBA+RjiSY87ix3qnl5eVFdDGPdpVMNKMskt7sCBatHkHNtqBVwYOCh6hF\nE7F73/HH8gFgnqC33XabrXcGvb297vk3z7d1JUUkIs0nCTc8GsmFONKkSfOYxRrAzZs3L6LfPdrg\nId6fk/Ri9bRRNMmw4R529hVJVckOHnKSsVGJT319fcTPveOOOzxV8MrKyti3bx9NTU3U1NRQXV1N\nTU0NTU1N7Ns3viKj0+nkD/7gDwDo6+sjLy8v7n337rfgraysjD/65h9RuLsQjmNUmmT0v8dHK05+\nZmnc2w/E5XKxYcMGamtrWbBgQUTVGKOpxBdMWVkZbW1tFBUVBX1OZWUlzc3NAKxevTqm7Zj9RUTi\nYVauPHToEO+88w6HDh3iySefjLnKpvfn0ZQpU2LeL7v7ikhgVpen/hPgXmAhcBnYC2wBDlu8nazW\n3NzMjh07uHTpUtjnfvnLX/b5d7DStd68G18VFBRQXV3Ntddeyx133EFHRwdXr17F5XJFXc4W4PDh\nw9xzzz0BG2VtWrGJe/fcy+atm2lrbWOIIXLJpf6m+ogaWsUi1sZLZulnb/4Nw6qrq/nqV78asjnY\ngQMHWL58OQcPHsTlcjE0NITD4WDChAmUlZXx1a9+1fN7Nzc3s3v37qj3NZpgUySRzM+j5uZmli1b\nFvW5PX/+fAUOGeInGP0MFwE3Aj8EjgKFAZ6raYs4dHR0BC2YkpeX5ykeZMfx9a45cPfdd0c1vJiT\nk5NS5X1jnXdNVmJWJPkY3o9o5oE1bSHJ5D0tUlJSYum5nYmSPW0RqBmyla4DeoHbMRoke1sCtLe3\nt0fdUEkM3u15h4aG6Ovrw+FwUFNTg9vt5tixY2HbYsdi//791NXV0d7eDkBdXR1gNN4J1MI7kFRp\nLFRbWxuy+VQgVVVVAad5EsXlcgW9SzNHg+bOncuKFSs8LcCDCdRePZJzJtafE4lERUUFPT09Qb9f\nWFjI0aNHk/75kUzm5zBQB+xP9PbtDh7mY0xZ3AD4f0IreEgj3heLrq4uurq6mDRpEmDkQ1y+fJml\nS5dy7NgxPvjgA0ZGRkK9HABNTU1hp1DsYP4uV69e5eWXX/Z0Bo1EqgyTmoHjq6++SldXlydYePDB\nB1m1ahV6X0k6mzlzJqdOnQr6/RkzZnDy5MkE7lHqyeTgwQG8CJQAKwJ8X8FDGgt15+lyuXjjjTfC\nvsaUKVN49913k3Ih7ujoYOnSpVy8eDHin6moqGD//v1JDxy8eY8CLVmyZNy/RdJRuBHBmpoaDh06\nlMA9Sj3JDh7sXG3xbaAW0NhlBmpsbOTFF1/kxRdfZNeuXWzdutUzZD158uSIVmacP3+eZcuW4XK5\n7N5dH729vdxyyy0RBw7l5eUAtLS0pFTgIJKpwiX5Kgk4+ewaefhH4B6MXIdjQZ6zBGi/7bbbKC0t\n9fmG5kvTXzS5BImevtiwYQMtLS1hn2fmcDzzzDM8+OCDKXk3b9593H777UyZMkX5B5IRQuX1JDvn\nKBm8R3pN586dY/fu3ZCkkQerl2o6MAKHTwIfJ3jg4PGtb30r5T6QJX719fURBw9PP/00bW1t1NfX\nh03ws8LevXvDPicvL4+WlhZWrVpl677EItCS0IKCAsCo6bB161YFC5LWzBoQ3gnhubm5CfuMSDWB\nbgC8pi2SwuqRh3/GmKb4JL61Hc4BV/yeq5yHDOZyuaivr+fo0aNR/ZzddxW9vb1UVFQwODgY8nnl\n5eVUVVXx2muvccstt3D27FndzYtIykh2zoPVIw+/g7Hu9BW/rzcBT1m8LUlhZvXEL33pSzz//PMR\nr2jo7Oxk8+bNtk1jbNmyJWzgAEY1xy9+8YvU1dXxz//8zwpwRUS8WJ0wmQNMGP2v90OBQxYqKyvD\n6XTy67/+61H9XLAS1lZ4+eWXwz5n8uTJnpLQIiIyntUjDyKA77z8hQsXyMvLi+iOH+DEiRO27dfw\n8HDY57z55puUlZVx/Phx2/ZDRCSdKXgQW/jnBLhcLsrLyyMKIK6//nrb9uuaa64JWXymurqaRYsW\n2bZ9EZFMoK6akhBlZWUsWLAgoufatYbb6XRy4cKFkM9paGiwZdsiIplEwYMkTCRBQVVVlW35Bo2N\njezfv59p06YF/H5hYSEnTpwYt55aRER82d3bIhQt1cwy4Ro6VVRUkJ+f7/m3XWu6XS4XGzdu5Ic/\n/CGzZ8+muLjYs63W1lY1fBKRlJfspZoKHiRhXC4XX/rSl/jRj37EpUuXyM3NpaioiDvuuIMDBw4E\nrAkRad2HaLs8qgeEiKSzZAcPmraQhOjt7WXZsmU899xzXLp0CYChoSHOnz9Pa2tr0GJSnZ2dfOlL\nXwr7+o2NjTzxxBNce+21HDlyhMOHD3PkyBGuvfZannjiCY0WiIhYSKstJCG2bNkScLoC8AQTwTz3\n3HMAPProo0FHIAJ1yTRbhz/99NMUFBQwODjoadhlFq267777WLFiRVaWvBURiZVGHiQh4i389Nxz\nz/l04HS5XGzYsIHa2lqqqqq44YYbgnbJHB4epr+/n8HBQfr7++nv7+fy5cuAEWC0tLQkpbuniEi6\nUvAgCTE0NBT3a5ilq80pkJaWFjo6OnjvvfciLn8d7rVFRCQ8BQ+SELm51syQPfvss1RXVwedAomH\nnWWxRUQyiYIHSYhwNR5yciI7FQcGBjh//rwVuzSOFaMjIiLZQMGDJERzczNVVVUBv1dVVcU999yT\n4D0az6rRERGRTKfgQRKirKyMffv20dTUxNy5cwGYO3cuTU1N7Nu3j23btgUNLhLFrrLYIiKZRsGD\nJExZWRlPPvkkO3bsAGDHjh08+eSTlJWVeYKL9evXe5ZTJpKdZbFFRDKNggdJGWVlZTidTnp6emhq\naqKmpoYJEyZYvh2Hw0FFRQXgO/qhOg8iIpHRJK+kHHOEAmDDhg20tLRY9trFxcW0tbVx+fJl6urq\n2LFjh8pTi4hESSMPktJCJVpWVlZSWVkZ9Hvr16+npqaG6upqampqaGpq4r333mPRokU27rGISObT\nyIOkNDMXYvPmzbS1tTE0NOTTcRMI+j1NQ4iI2EPBg6Q872mMQEJ9T0RErKfgQRLCv2V2dXU1X/3q\nV4O2zM7UfRARyQSOJG57CdDe3t6uhDUREZEo7N+/n7q6OoA6YH+it6+ESREREYmKggcRERGJioIH\nERERiYqCBxEREYmKggcRERGJioIHERERiYqCBxEREYmKggcRERGJioIHERERiYqCBxEREYmKggcR\nERGJioIHERERiYqCBxEREYmKggcRERGJioIHERERiYqCBxEREYmKggcRERGJioIHERERiYqChyzj\ndDqTvQtZR8c88XTME0/HPLvYETzcDvwQ6AFGgE/asA2Jkd7giadjnng65omnY55d7AgeCoGfAw+P\n/tttwzZEREQkSXJteM2dow8RERHJQMp5EBERkajYMfIQlbfffjvZu5BVzp07x/79+5O9G1lFxzzx\ndMwTT8c8sZJ97XTY/PojwKeAFwN8bybwM6Dc5n0QERHJRD3Ax4CTid5wMkceTmL80jOTuA8iIiLp\n6iRJCBwg+dMWSfvFRUREJDZ2BA9FwAKvf88DbgLOAMdt2J6IiIikuY9j5DqMAMNe//+vSdwnERER\nERERERERERERERERyV5bGctfMB8n/J6zCKOmwzngArAPmOX3nGXAT4FLwFngv4GJXt8/GmA7f+33\nGrMxmm9dAlzAPwB5Mf5eqWwr8R3zygA/bz5+w+s1pgJPj77GOeApYIrfdnTMx1hxzI8G+L7O89g/\nW64HngVOYRyv/fgeb9B57m0riTnmRwNsR+d57Me8CvgPoBc4DzwPTPN7jZQ7z7cCvxjdUfNxrdf3\nqzBWVPwN8CsYH6J3AWVez1mG8ctsxjhIVcC9QL7Xc7qAr/ltp8jr+xOAg0Dr6HZWAt3Ao/H+gilo\nK/Ed8xy/n50G/DnGSVfo9To/Af4HuAVYOrpN78JeOuZjrDrmOs/HbCX+z5b/Bt4APjr6/a8BQxgr\nvUw6z8dsJTHHXOf5mK3Ed8yLgE5gB1AL3IARSLyJb8HHlDvPt2J0ywzmOeC7YV7jDeDrYZ7TBXw5\nxPfvwjhBZ3h97X7gMlAc5rXTzVbiP+b+fg78P69/L8KIgD/m9bVbRr9mLrnVMR9jxTEHnefethL/\nMb8IfNbva6eBDaP/r/Pc11bsP+ag89zbVuI75mswjpX3cSnFOIdXjv47Yed5tI2xFmCUw3wPcAJz\nvV7n14B3gZeADzAChU96/ew0oB5jiGQvxlDXK8DyANvZgnES/hz4U3yHU5ZhRE2nvL62CygA6qL8\nfdJBPMfcXx1GpPmE19eWYdwV/8zra2+Ofq3B6zk65tYdc5PO8zHxHvMfAesxhmxzRv8/H+MzBnSe\nB2L3MTfpPB8TzzEvANzAgNfXrmIEBuZ1NCXP8zuBT2MMl6zEGLI6CVyDEcGMYMyffBm4EeOEGQZu\nH/35paPPOQ18AeMD9RvAFWC+13YeAW7DGJLZiDG3433Xto3ALb+vYERPmSTeY+7vn4H/9fvanwLv\nBHjuO6OvBzrmVh9z0HnuzYpjPgljGHYE48P1HGN3Y6Dz3F8ijjnoPPcW7zG/DuMYfxPj2BcB3x79\nue+MPictzvNCjF/8DzD6U4wAz/g95wcYCTVgRD0jwF/5Ped/GJ9A4+3e0Z+bOvrvbRiRmb9MPNn8\nRXvMvU3COPH+wO/rkZ5sOubWHfNAdJ6PieWY/ztGctkdwGLgLzASsm8Y/b7O89DsOOaB6DwfE8sx\nXw0cwQgqBjGmOd4C/mn0+wk7z6OdtvDWjzH0MR9jNGEI6PB7zi8xsjphrIeF/3Pe9npOIG+O/tcc\nnTgFTPd7zlSM4bJTZLZoj7m3+zAuZk/5ff0U47N1Gf3aKa/n6Jhbd8wD0Xk+Jtpjvgije+9GjLu5\ng8D/wfhQfXj0OTrPQ7PjmAei83xMLJ8tL48+vwwj2fILQAXGNAgk8DyPJ3goAGowgoJBjDmWj/g9\npxpjqQ6j/z0R4DkLvZ4TyM2j/zWDj70Yka33L78GY+6nPcJ9T1fRHnNvGzGi2DN+X9+HsYzHP8Fm\nCsaxBh1zq495IDrPx0R7zM3PsWG/54wwloWu8zw0O455IDrPx8Tz2fL/t3O/KhFEYRjGH7SYxBsw\n6N6ANrVusQiCYLIsGAUFgxcgaNDgNVgMBhHBYhLMahOMFpsiuGGDYPjOMn92sexhXZbnB1t2Zs4Z\nXj6G2TPz7QfRytkkbiS63RQjWeenxLOXuXQyN8SSbLcHdT1Nvk3cGe0QgayUxthNx2ykfQ6BNsVL\nI0vEEs5C+m6TaCG5Ko0xQbSe3KX9msAb0ac6bnJkTtr2QxRIP7fAM9XWnuvSdjPPm7l1XjVo5pPE\nL7Z74qLZAPaJ/FdL81jnhWFkvox1Xpbj2tIiarcBbBErFie1eUauzi+It0Q7RAFc0nuX1AJeieWY\nR2CtzzgH6US/gQeqwSwSd06faYwX4jnaVG2MWSL4NhHeGeP5pyK5Mj/i79WdGeJPRb7S5xyYru1j\n5oVBM7fOq3JkPp+OeyeuLU/0thFa54VhZG6dV+XI/JjIu0M80tjrM491LkmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSpH/1C863ay+wNtbwAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t2, l2, l2e = np.loadtxt(echo_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o', color=\"green\")\n", + "errorbar(t2, l2, yerr=l2e, fmt='o', color=\"black\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.362e-01 5.425e+01 inf -- -3.468e+02 -- 1 1 1 1 1 1 1 1\n", + " 2 7.747e-01 5.347e+01 7.019e+01 -- -2.766e+02 -- 0.58045 0.569962 0.564602 0.563764 0.567626 0.565054 0.565279 0.564008\n", + " 3 3.447e+00 5.213e+01 6.905e+01 -- -2.076e+02 -- 0.198681 0.140203 0.130333 0.127063 0.134237 0.12998 0.131082 0.127044\n", + " 4 1.448e+00 4.998e+01 6.682e+01 -- -1.408e+02 -- -0.0825582 -0.283347 -0.300715 -0.310826 -0.299703 -0.304649 -0.30132 -0.310849\n", + " 5 5.884e-01 4.684e+01 6.330e+01 -- -7.746e+01 -- -0.194194 -0.676998 -0.726162 -0.750752 -0.733583 -0.738758 -0.729946 -0.74976\n", + " 6 3.739e-01 4.258e+01 5.850e+01 -- -1.895e+01 -- -0.203226 -0.953186 -1.14229 -1.19152 -1.16459 -1.17342 -1.15279 -1.19094\n", + " 7 2.741e-01 3.740e+01 5.292e+01 -- 3.397e+01 -- -0.205901 -0.9956 -1.54459 -1.63073 -1.58521 -1.61127 -1.5669 -1.63629\n", + " 8 2.128e-01 3.180e+01 4.679e+01 -- 8.076e+01 -- -0.180502 -0.943953 -1.92935 -2.06126 -1.98071 -2.05288 -1.97074 -2.08385\n", + " 9 1.675e-01 2.595e+01 3.791e+01 -- 1.187e+02 -- -0.15428 -0.934563 -2.26437 -2.45352 -2.31988 -2.48374 -2.35707 -2.52729\n", + " 10 1.286e-01 2.002e+01 2.537e+01 -- 1.440e+02 -- -0.13956 -0.939381 -2.49352 -2.71726 -2.56371 -2.84902 -2.70919 -2.95055\n", + " 11 9.197e-02 1.277e+01 1.299e+01 -- 1.570e+02 -- -0.130332 -0.946187 -2.57446 -2.74449 -2.69402 -3.05697 -3.00449 -3.33007\n", + " 12 5.076e-02 6.047e+00 5.021e+00 -- 1.621e+02 -- -0.124515 -0.945944 -2.55165 -2.71422 -2.73704 -3.10737 -3.209 -3.63633\n", + " 13 1.434e-02 1.485e+00 1.060e+00 -- 1.631e+02 -- -0.12047 -0.945369 -2.54157 -2.70197 -2.76441 -3.10602 -3.30159 -3.8209\n", + " 14 4.769e-03 3.557e-01 7.280e-02 -- 1.632e+02 -- -0.119516 -0.946002 -2.53635 -2.69518 -2.78858 -3.10381 -3.32152 -3.8757\n", + " 15 2.150e-03 1.530e-01 4.222e-03 -- 1.632e+02 -- -0.119506 -0.945491 -2.53265 -2.69429 -2.80187 -3.10094 -3.32488 -3.87969\n", + " 16 1.017e-03 7.109e-02 8.430e-04 -- 1.632e+02 -- -0.119394 -0.945124 -2.53033 -2.69448 -2.8079 -3.09858 -3.32603 -3.87983\n", + " 17 4.817e-04 3.356e-02 1.918e-04 -- 1.632e+02 -- -0.119311 -0.944963 -2.52941 -2.69447 -2.81076 -3.09727 -3.32654 -3.87984\n", + " 18 2.335e-04 1.618e-02 4.417e-05 -- 1.632e+02 -- -0.119282 -0.944891 -2.52886 -2.69454 -2.81211 -3.09664 -3.32676 -3.87987\n", + "********************\n", + "-0.119282 -0.944891 -2.52886 -2.69454 -2.81211 -3.09664 -3.32676 -3.87987\n", + "0.233661 0.204163 0.319993 0.254151 0.198248 0.179386 0.161786 0.221522\n", + "0.000372164 0.000983332 0.00164575 -0.000696472 -0.0161795 0.00744155 -0.00415795 -0.000828998\n", + "********************\n" + ] + } + ], + "source": [ + "P2 = clag.clag('psd10r', [t2], [l2], [l2e], dt, fqL)\n", + "p2 = np.ones(nfq)\n", + "p2, p2e = clag.optimize(P2, p2)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 1.632e+02 1.627e+02 -1.193e-01 1.144e-01 0.905 +++\n", + "+++ 1.632e+02 1.622e+02 -1.193e-01 2.312e-01 1.9 +++\n", + "+++ 1.632e+02 1.625e+02 -1.193e-01 1.728e-01 1.37 +++\n", + "+++ 1.632e+02 1.626e+02 -1.193e-01 1.436e-01 1.13 +++\n", + "+++ 1.632e+02 1.627e+02 -1.193e-01 1.290e-01 1.01 +++\n", + "+++ 1.632e+02 1.627e+02 -1.193e-01 1.217e-01 0.958 +++\n", + "+++ 1.632e+02 1.627e+02 -1.193e-01 1.254e-01 0.985 +++\n", + "+++ 1.632e+02 1.627e+02 -1.193e-01 1.272e-01 0.999 +++\n", + "\t### errors for param 1 ###\n", + "+++ 1.632e+02 1.627e+02 -9.449e-01 -7.407e-01 0.961 +++\n", + "+++ 1.632e+02 1.622e+02 -9.449e-01 -6.386e-01 2.04 +++\n", + "+++ 1.632e+02 1.625e+02 -9.449e-01 -6.897e-01 1.46 +++\n", + "+++ 1.632e+02 1.626e+02 -9.449e-01 -7.152e-01 1.2 +++\n", + "+++ 1.632e+02 1.627e+02 -9.449e-01 -7.279e-01 1.08 +++\n", + "+++ 1.632e+02 1.627e+02 -9.449e-01 -7.343e-01 1.02 +++\n", + "+++ 1.632e+02 1.627e+02 -9.449e-01 -7.375e-01 0.989 +++\n", + "+++ 1.632e+02 1.627e+02 -9.449e-01 -7.359e-01 1 +++\n", + "\t### errors for param 2 ###\n", + "+++ 1.632e+02 1.630e+02 -2.529e+00 -2.369e+00 0.307 +++\n", + "+++ 1.632e+02 1.629e+02 -2.529e+00 -2.289e+00 0.681 +++\n", + "+++ 1.632e+02 1.627e+02 -2.529e+00 -2.249e+00 0.919 +++\n", + "+++ 1.632e+02 1.627e+02 -2.529e+00 -2.229e+00 1.05 +++\n", + "+++ 1.632e+02 1.627e+02 -2.529e+00 -2.239e+00 0.984 +++\n", + "+++ 1.632e+02 1.627e+02 -2.529e+00 -2.234e+00 1.02 +++\n", + "+++ 1.632e+02 1.627e+02 -2.529e+00 -2.236e+00 1 +++\n", + "\t### errors for param 3 ###\n", + "+++ 1.632e+02 1.630e+02 -2.695e+00 -2.567e+00 0.306 +++\n", + "+++ 1.632e+02 1.629e+02 -2.695e+00 -2.504e+00 0.681 +++\n", + "+++ 1.632e+02 1.627e+02 -2.695e+00 -2.472e+00 0.922 +++\n", + "+++ 1.632e+02 1.627e+02 -2.695e+00 -2.456e+00 1.05 +++\n", + "+++ 1.632e+02 1.627e+02 -2.695e+00 -2.464e+00 0.988 +++\n", + "+++ 1.632e+02 1.627e+02 -2.695e+00 -2.460e+00 1.02 +++\n", + "+++ 1.632e+02 1.627e+02 -2.695e+00 -2.462e+00 1 +++\n", + "\t### errors for param 4 ###\n", + "+++ 1.632e+02 1.629e+02 -2.813e+00 -2.614e+00 0.665 +++\n", + "+++ 1.632e+02 1.624e+02 -2.813e+00 -2.515e+00 1.57 +++\n", + "+++ 1.632e+02 1.627e+02 -2.813e+00 -2.565e+00 1.07 +++\n", + "+++ 1.632e+02 1.628e+02 -2.813e+00 -2.590e+00 0.853 +++\n", + "+++ 1.632e+02 1.627e+02 -2.813e+00 -2.577e+00 0.956 +++\n", + "+++ 1.632e+02 1.627e+02 -2.813e+00 -2.571e+00 1.01 +++\n", + "+++ 1.632e+02 1.627e+02 -2.813e+00 -2.574e+00 0.983 +++\n", + "+++ 1.632e+02 1.627e+02 -2.813e+00 -2.573e+00 0.997 +++\n", + "\t### errors for param 5 ###\n", + "+++ 1.632e+02 1.628e+02 -3.096e+00 -2.917e+00 0.837 +++\n", + "+++ 1.632e+02 1.623e+02 -3.096e+00 -2.827e+00 1.87 +++\n", + "+++ 1.632e+02 1.625e+02 -3.096e+00 -2.872e+00 1.29 +++\n", + "+++ 1.632e+02 1.627e+02 -3.096e+00 -2.895e+00 1.06 +++\n", + "+++ 1.632e+02 1.627e+02 -3.096e+00 -2.906e+00 0.947 +++\n", + "+++ 1.632e+02 1.627e+02 -3.096e+00 -2.900e+00 1 +++\n", + "\t### errors for param 6 ###\n", + "+++ 1.632e+02 1.627e+02 -3.327e+00 -3.165e+00 0.992 +++\n", + "\t### errors for param 7 ###\n", + "+++ 1.632e+02 1.631e+02 -3.880e+00 -3.769e+00 0.278 +++\n", + "+++ 1.632e+02 1.629e+02 -3.880e+00 -3.714e+00 0.631 +++\n", + "+++ 1.632e+02 1.628e+02 -3.880e+00 -3.686e+00 0.862 +++\n", + "+++ 1.632e+02 1.627e+02 -3.880e+00 -3.672e+00 0.991 +++\n", + "********************\n", + "-0.119263 -0.944854 -2.52866 -2.69453 -2.81277 -3.09632 -3.32687 -3.87987\n", + "0.246439 0.208948 0.29245 0.232296 0.24017 0.196142 0.161799 0.207668\n", + "********************\n" + ] + } + ], + "source": [ + "p2, p2e = clag.errors(P2, p2, p2e)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X9w1Pd95/EnBtk0ITHBlF071Gy1LV3SyM5JFjUo5kTO\n7TS+JO01V1c7yd0U1ec0dY/h7uwp1w46j7hpk4ZpXJpeO9SWe3eJV3DT5s6+MY3bVBRXyKkiObY5\n2Dq30mITs0sxwU2dwsnA/bESFvirHyvtd38+HzM7knY/3/18iD/RvvT9fr7vD0iSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJGmR/iMwDPw9kAe+Cqyv6IgkSVJVOAj8a2ADcBvwFJAF3lXB\nMUmSpCq0GrgEfLjSA5EkSXO7rox9rZz8eraMfUqSpCq3hMLlhr+q9EAkSdL8LCtTP18CfpzZLzXc\nPPmQJEnFOTX5KKlyhITfAz4GbAFem6HNzbfccstrr70208uSJGkW3wHaKXFQCDMkLKEQEH4G6ARO\nzNL25tdee40vf/nLbNiwIcQhld6OHTt45JFHarK/xbxXsccW034+bedqM9vr5f5vVirOtdK3d64F\nc66Vvn2Yc+348eN8+tOffj+Fs/E1ExJ+H0hSCAlvAtHJ588B54MO2LBhA62trSEOqfRWrlxZ1jGX\nsr/FvFexxxbTfj5t52oz2+vl/m9WKs610rd3rgVzrpW+fdhzLSxLQ3zvp4AbgG3Af5j2+DbwwjVt\nbwY+85nPfIabb669ZQktLS01299i3qvYY4tpP5+2c7WZ6fVUKkUymZz3WKqJc6307Z1rwZxrpW8f\n1lw7deoU+/btA9hHic8kLCnlmy1CKzAyMjJSk6lbteUTn/gETz75ZKWHoQbgXFM5jI6O0tbWBtAG\njJbyvctZJ0GSJNUQQ4IaTq2e/lXtca6p1hkS1HD8xa1yca6p1hkSJElSIEOCJEkKZEiQJEmBDAmS\nJCmQIUGSJAUyJEiSpECGBEmSFMiQIEmSAhkSJElSIEOCJEkKZEiQJEmBDAmSJCmQIUGSJAUyJEiS\npECGBEmSFMiQIEmSAhkSJElSIEOCJEkKZEiQJEmBDAmSJCmQIUGSJAUyJEiSpECGBEmSFMiQIEmS\nAhkSJElSoDBDwhbgKeA7wCXgZ0LsS5IklViYIeFdwPPAA5M/Xw6xL0mSVGLLQnzvP5t8SJKkGuSa\nBEmSFMiQIEmSAhkSJElSoDDXJBRtx44drFy58qrnkskkyWSyQiOSJKl6pFIpUqnUVc+dO3cutP6W\nhPbOV7sE/Czw5AyvtwIjIyMjtLa2lmlIkiTVvtHRUdra2gDagNFSvneYZxLeDfzotJ+bgQ8BrwOv\nhtivJEkqgTBDQjvwl5PfXwZ+Z/L7Pwa6Q+xXkiSVQJgh4RAujJQkqWb5IS5JkgIZEiRJUiBDgiRJ\nCmRIkCRJgQwJkiQpkCFBkiQFMiRIkqRAhgRJkhTIkCBJkgIZEiRJUiBDgiRJCmRIkCRJgcLc4Emq\nmNRLKVJHUwCcf+s8J944wbob17F82XIAkh9MkmxJVnKIklT1DAmqS8mWt0PA6KlR2va1kfpkitab\nWys8MkmqHV5ukCRJgQwJqlvZbJbuB7q59+fuhSfg3p+7l+4Huslms5UemiTVBC83qO7k83m67usi\nfTZN7gM5+OnC8xkyZE5mOPipgyRWJeh/tJ9IJFLZwUpSFTMkqK7k83k237OZsTvH4I6ABmshtzZH\n7nSOjns6GHx60KAgSTPwcoPqStd9XYWAsGaOhmsgc2eGrvu6yjIuSapFhgTVjfHxcdJn03MHhClr\nIH027RoFSZqBIUF1Y/ee3YU1CEXIbcjRu6c3pBFJUm0zJKhuDL84DGuLPGgtDL8wHMp4JKnWGRJU\nNyYuThR/0BKYuLSA4ySpARgSVDealjYVf9BlaLpuAcdJUgMwJKhutN/WDieLPOgkbLx9YyjjkaRa\nZ0hQ3eh5qIfosWhRx0SPR9n14K6QRiRJtc2QoLoRi8VIrErA6XkecBoSqxLEYrEwhyVJNSvskPAr\nwDjwj8A3gQ+H3J8aXP+j/cSfi88dFE5D/Lk4+x/bX5ZxSVItCrMs8y8AXwQ+CwwCvwwcBD4AvBpi\nv2pgkUiEwacH2frRrYxlx7jwnguwfFqD83DD926gOdbMoT87xJo18628JEmNJ8wzCf8eeBToA/4W\n+HcUwsFnQ+xTIhKJcGz0GOnRNNs+vo21P7AWzsDaH1jLto9vIz2a5tjoMQOCJM0hrJBwPdAKPHPN\n888Am0PqU7pKLBaj70t9fO7zn4Oz8LnPf46+L/W5BkGS5imskLAaWArkr3n+NFDc8nNpgbLZLN3d\n3ez8zE4Adn5mJ93d3e7VIEnz5FbRqjv5fJ6tH9vK2LfHuPDGhSvPnzxxkscff5wn/vQJmn+0mYH/\nPdDw20SnXkqROpoC4Pxb5znxxgnW3biO5csKCzmSH0ySbElWcoiSKiiskHAGuAhc+xs4Apya6aAd\nO3awcuXKq55LJpMkk/6S0vzk83k2b97M2NjYjG0uvHGB4988TkdHB4ODgw0dFJItSTa9ZxO9X+jl\n8OhhMmczXFx1kS2tW+h5qMdLM1KVSaVSpFKpq547d+5caP0tCe2d4TlgBHhg2nPHgK8Cv3FN21Zg\nZGRkhNbW1hCHpHq3detWDh06NO/2nZ2dDAwMhDegKpbP5+m6r4v02XRh98zpm2OdhOixKIlVCfof\n7W/oICVVu9HRUdra2gDagNFSvneYlxt+B/jvFOojPAfcT+HX0B+G2Kca2Pj4OOl0uqhj0uk02Wy2\n4f5izufzbL5nM2N3jsEdAQ3WQm5tjtzpHB33dDD4dGOfcZEaVZi3QB4AdgA9wPMUCindgzUSFJLd\nu3eTy+WKOiaXy9Hb2xvSiKpX131dhYAw112gayBzZ4au+7rKMi5J1SXsiot/APwwhXI27cBfh9yf\nGtjw8HBZj6tV4+PjpM+m5w4IU9ZA+mzau0KkBuTeDaobExMTZT2uVu3es7uwBqEIuQ05evc03hkX\nqdEZElQ3mpqaynpcrRp+cfjqRYrzsRaGX2isMy6SDAmqI+3t7Qs6buPGjSUeSXWbuLiAMydLYOJS\nY51xkWRIUB3p6ekhGi2uoGc0GmXXrl0hjag6NS1dwJmTy9B0XWOdcZFkSFAdicViJBKJoo5JJBIN\nd/tj+23tcLLIg07Cxtsb64yLJEOC6kx/fz/xeHxebePxOPv37w95RNWn56EeoseKPONyPMquBxvr\njIskQ4LqTCQSYXBwkM7OzhkvPUSjUTo7Ozly5EhDbhcdi8VIrEoUtlubj9OQWNV4Z1wkGRJUhyKR\nCAMDAwwNDbFt27YrZxbi8Tjbtm1jaGiIgYGBhgwIU/of7Sf+XHzuoHAa4s/F2f9Y451xkeQukKpj\nsViMvr6+K3XNDxw44N4gkyKRCINPDxb2bvhWmtyGyb0blgCXKezdcLywd8P+g/sbOlBJjcyQIDWo\nSCTCwFMDZLNZevf0cvhrhV0g46vibGnbQs9X3AVSanSGBNWl6dupnj9/nvXr17Nz506WL18OuAX5\nlNRLKVJHU9ABzT/RzNI3lrLuxnWcWXaG7UPbSX4vSbLF/52kRhXmVtHFcKtoSZIWIMytol24KEmS\nAhkSJElSIEOCJEkKZEiQJEmBDAmSJCmQIUGSJAUyJEiSpECGBEmSFMiQIEmSAhkSJElSIEOCJEkK\nZEiQJEmB3AVSamDX7pZ54sQJ1q1b526ZkgDPJEgNLZlMsnfvXlavXs3Y2Bgvv/wyY2NjrF69mr17\n9xoQpAbnmQSpQeXzebq6ukin0+RyuSvPZzIZMpkMBw8eJJFI0N/fTyQSqeBIJVWKIUFqQPl8ns2b\nNzM2NjZjm1wuRy6Xo6Ojg8HBQYOC1IDCutzwG8AR4PvAd0PqQ9ICdXV1zRoQpstkMnR1dYU8IknV\nKKyQ0ATsB/5LSO8vaYHGx8dJp9NFHZNOp8lms+EMSFLVCiskPAz8LnA0pPeXtEC7d+++ag3CfORy\nOXp7e0MakaRq5d0NUoMZHh4u63GSapchQWowExMTZT1OUu0q5u6Gh4GeOdrcAYwueDSSQtfU1FTW\n40op9VKK1NHJ4k9vnefEGydYd+M6li+bLP70wSTJFms7SKVSTEj4PeCJOdqcWMRY2LFjBytXrrzq\nOSu+SaXV3t7O0aPFLxfauHFjCKMpTrIlyab3bKL3C70cHj1M5myGi6susqV1Cz0P9RCLxSo9RClU\n06ukTjl37lxo/S0J7Z0LfhH4IvC+Odq1AiMjIyO0traGPCSpsWWzWTZt2lTU4sVoNMrQ0FBFP4Tz\n+Txd93WRPpsm94EcrJ324kmIHouSWJWg/1GLP6mxjI6O0tbWBtBGic/mh1VM6VZg1eTXpcDtFALJ\nt4E3Q+pT0jzEYjESiURRISGRSFQ8IGy+ZzNjd44VLmpeay3k1ubInc7RcU8Hg09b/EkqhbAWLvZS\nSDMPA+8GngdGKKQcSRXW399PPB6fV9t4PM7+/ftDHtHsuu7rKgSENXM0XAOZOzN03WfxJ6kUwgoJ\nvzj53tdROJMw9fVwSP1JKkIkEmFwcJDOzk6i0Whgm2g0SmdnJ0eOHGHNmrk+ncMzPj5O+mx67oAw\nZQ2kz1r8SSoFb4GUGlQkEmFgYIChoSG2bdt25cxCPB5n27ZtDA0NMTAwUNGAALB7z+7CGoQi5Dbk\n6N1j8SdpsQwJUgNLpVJs376dM2fO0NzczPr162lububMmTNs3779HauoK2H4xeGrFynOx1oYfsHi\nT9JiuQuk1MBq4RbjiYsLKOK0BCYuWfxJWizPJEiqak1LF1DE6TI0XVf54k9SrTMkSKpq7be1w8ki\nDzoJG2+vfPEnqdYZEiRVtZ6HeogeC74DYybR41F2PbgrpBFJjcOQIKmqxWIxEqsScHqeB5yGxKrK\nFn+S6oUhQVLV63+0n/hz8bmDwmmIPxdn/2OVLf4k1QtDgqSqF4lEGHx6kM5XOok+E4VXgcuTL14G\nXoXoM1E6X+nkyMHSF39KvZTi7r13c+tHb2VFywqu/8D1rGhZwa0fvZW7995N6qXK3yoqhcFbICXV\nhEgkwsBTA2SzWXr39HL4a4VdIOOr4mxp20LPV8LZBTKfz7Pv1/e9vbHUnYXnJ5jgzZNvMrF/gn1/\nvo+PPPoR94tQ3TEkSKopsViMvi/1MXpqlLZ9bRy4/wCtN4eze6wbS6nRGRIk1YzUSylSRwun9s+/\ndZ71N61n51/sZPmy5QAkP5gk2VK64lAL2Vhq4KmBkvUvVZohQVLNSLaUNgTM5srGUkFnEIKsgfS3\nChtLeWeF6oULFyUpgBtLSYYESQrkxlKSIUGSArmxlGRIkKRAbiwlGRIkKZAbS0mGBEkK5MZSkiFB\nkgK5sZRkSJCkGbmxlBqdIUGSZlDpjaWkSrPioiTNolIbS0nVwJAgSXO4smdEBzT/RDNL31jKuhvX\ncWbZGbYPbSf5vfKVi5bKyZAgSXMo554RUjVxTYIkSQpkSJAkSYEMCZIkKVBYISEGPAaMAd8H/i/w\nMGBRc0mSakRYCxd/DFgC3E8hILQAfwS8G3gopD4lSVIJhRUSvjb5mJIF9gCfxZAgSVJNKOeahJXA\n62XsT5IkLUK5QkIc+FXgD8vUnyTVvGw2S/cD3bTc1UJic4KWu1rofqCbbDZb6aGpQRR7ueFhoGeO\nNncAo9N+vgX4M+AA0Fdkf5LUcPL5PFu7tjL292NcaL0Ad7/92tGTR3nik0/Q/N5mBvoHiEQilRuo\n6t6SItvfNPmYzQngwuT3twADwBDwi7Mc0wqM3HXXXaxcufKqF5LJJMmklc4kNYZ8Ps/mezYzducY\nzLZf1OTOk4NPDxoUGkgqlSKVSl313Llz53j22WcB2rj6j/RFKzYkFOP9FALCMPBp3t47LUgrMDIy\nMkJra2uIQ5Kk6rb141s5dOuh2QPClNPQ+UonA08NhDwqVbPR0VHa2toghJAQ1pqE9wOHKJxVeAiI\nANHJhyQpwPj4OOmz6fkFBIA1kD6bdo2CQhNWSPhJCosVPwKcBF6bfHwnpP4kqebt3rOb3AdyRR2T\n25Cjd09vSCNSowsrJPzx5Hsvnfx63bSfJUkBhl8chrVFHrQWhl8YDmU8kns3SFKVmLg4UfxBS2Di\n0gKOk+bBkCBJVaJp6QK2t7kMTde5LY7CYUiQpCrRflt7YRVXMU7Cxts3hjIeyZAgSVWi56EeoseK\nuwksejzKrgd3hTQiNbqwNniSpJKbXkjm/PnznDhxgnXr1rF8+XKg9ouvxWIxEqsS5E7n5l0nIbEq\nQSwWC3toalBhFlMqhsWUJBVlqoBMvf3eyOfzdNzTQebOzLwqLh45eIQ1a+ZbWEH1qBaLKUmSFiAS\niTD49CAbjm3ghidvgFd5u17tZeBVuOHJG9hwbIMBQaHzcoMkVZlIJMKxgWNks1l69/Qy/PVhJi5N\n0HRdE+23t9PzJz2hXmLIZrP0fqGX4ReHmbg4QdPSJtpva6fnoXD7VfUxJEiqKdlslt7eXg4fPgzA\nvffey5YtW+jpqb8PsFgsRt+Xyrd5bj6fp+u+LtJn04XKj9fsPnnwUwdJrErQ/2i/m0o1CEOCpJqQ\nz+fp6uoinU6Ty71dujiTyZDJZDh48CCJRIL+fj/AFuKq3SfvCGiwFnJrc+RO5+i4p8PdJxuEaxIk\nVb18Ps/mzZs5dOjQVQFhulwux6FDh+jo6CCfz5d5hLWv676uubenBlgDmTszdN3XVZZxqbIMCZKq\nXldXF2NjY/Nqm8lk6OryA6wY7j6pmRgSJFW18fFx0ul0Ucek036AFcPdJzUT1yRIqmq7d++e8RLD\nTHK5HL29vfT1lWbRX70XcRp+cfiqRYrzshaGv+7uk/XOkCCpqg0PL+yDaKHHBZkeAqYK16RSqbop\n4uTuk5qJlxskVbWJiYV9EC30uJlks1m6u7u59957gcKtl93d3XVxWcPdJzUTzyRIqmpNTQv7IFro\ncddqhFsv229r5+jJo7C2iIPcfbIhGBIkVbX29naOHj1a9HEbNy7+A2zq1svZ7qzI5XLkcjk6OjoY\nHCxd7YByroPoeaiHg586SG7t/Nd+RI9H2fUVd5+sd27wJKmqZbNZNm3aVNTixWg0ytDQ0KIrMG7d\nupVDhw7Nu31nZycDAwOL6jNIOTaz2vrxrRy69dC8d5/sfKWTgadK/29V8dzgSVLDisViJBKJoo5J\nJBa/fXI13HpZznUQ/Y/2E38uDqfnaDi5++T+x/aXfAyqPoYESVWvv7+feDw+r7bxeJz9+xf/AbaY\nWy8XK5/Ps3XrVjZt2sTjjz9OJpMBCusgHn/8cTZt2sTWrVtLWllyavfJzlc6iT4TDdx9MvpMlM5X\nOt19soG4JkFS1YtEIgwODgYuIJwSjUZJJBLs37+/JB9glbr1spLrICKRCANPDcy8++RX6m8TLc3O\nkCCpJkQiEQYGBq7aBTKTyRCPx0PZBbJSt14upAR1qddBlHv3SVUvQ4KkmhKLxejr67uyWOvAgQOh\nLOarxK2Xi1kH4V/4CoNrEiQpQHt7+4KOW8ytl5VcByEFMSRIUoCenh6i0WhRx0SjUXbtWnjtgGoo\nQS1NZ0iQpACVuPWyWkpQS1NckyCpZlxbhXD9+vXs3LkztN0Y+/v76ejouHIL4mxKcetlpUtQS9cK\nKyQ8CdxOoXbXd4G/AH4NOBVSf5IaQLm3ZC73rZeVLEEtBQnrcsNfAj8PrAc+CcSBPw2pL0kKzdSt\nl0NDQ2zbtu1KUad4PM62bdsYGhpiYGCgJLUZKrEOQppNWCHhEeBvKNTsGgI+D2wElobUnySFaurW\nywMHDgBw4MAB+vr6SnrrYaVKUE+XSqW4++67ufXWW1mxYgXXX389K1as4NZbb+Xuu+++crlHjaEc\naxJWAZ8CBoCLZehPkkqqnGshyr0OYrp8Ps++ffvecWllYmKCN998k4mJCfbt28dHPvKRmt0WW8UJ\ncxfIzwMPAO8Cvgl8FHh9hrbuAilJk/L5fFlLUE/1OVc56CnxeLyk5aC1ONWyC+TDwKU5HtM/4X8b\n+BDwU8AF4H9SPVtTS1LVKuc6iCkLKQet+lfMh/ZNk4/ZnKAQCK71fgrrEz4MHAl4vRUYueuuu1i5\ncuVVL5R7NbMkVZupvxTDOts6Pj7O5s2bi6r2GI1GGRoashx0mU2/9DXl3LlzPPvssxDCmYRi1iS8\nzsyXC+YydcZi1oWLjzzyiJcbJKnMFlMOuq/PjaDKKegP52mXG0oujIWLGycff02hRkIz0At8m8Kd\nDpKkOZRzsaTloDWTMELC94F/QWENw7spFFA6COwG3gqhP0mqO+W81Go5aM0kjJBwFPhnIbyvJCkE\nloPWTNzgSZIaXCW2xb5WNpulu7ublpYWEokELS0tdHd3k81mS9aHilcttyRaJ0GSKiSbzbJp06aK\n3N2Qz+fZunUrY2NjXLjwzpvjbrjhBpqbmxkYGLAuwwyqpU6CJKkOVaoc9FQBp+PHjwcGBIALFy5w\n/PhxOjo6yOfzi+pPxTMkSJLo7++/UrRpLqUqB20Bp+pnSJAkXdkWu7Ozc8adKKPRKJ2dnRw5cmTR\n1R7Hx8dJp9NFHZNOp12jUGaGBEkSUN5y0Isp4KTyMSRIkq5IpVJs376dM2fO0NzczPr162lububM\nmTNs3769ZFtFW8CpNpRjq2hJUo0oVxEnCzjVBs8kSJLKzgJOtcGQIEkqu2oo4KS5GRIkSWXX09Mz\n410UM4lGo+zatSukESmIIUGSVHaxWIzm5uaijmlubl50AScVx5AgSaqMdwPvnWfb9062V1kZEiRJ\nZTc+Ps7Ym2NwP7AOWDFDwxWTr98PY2+OWUypzAwJkqSy271nN7kP5Aoh4A7gBymcLbgeaJr8+t7J\n5+8AVkBuQ47ePRZTKifrJEiSym74xWG4e/KHlsnHXNbC8NctplROnkmQJJXdxMUFFEVaAhOXLKZU\nToYESVLZNS1dQFGky9B0ncWUysmQIEkqu/bb2uFkkQedhI23W0ypnAwJkqSy63moh+ixIospHY+y\n60GLKZWTIUGSVHaxWIzEqgScnucBpyGxKmExpTLz7gZJUkX0P9pPxz0dZO7MwJpZGp6G+HNx9h/c\nX9L+U6nUla2vz58/z4kTJ1i3bh3Lly8HyrcjZjXzTIIkqSIikQiDTw/S+Uon0Wei8CpwefLFy8Cr\nEH0mSucrnRw5eIQ1a2ZLEsVLJpPs3buX1atXMzY2xssvv8zY2BirV69m7969DR8QwDMJkqQKikQi\nDDw1QDabpXdPL4e/dpjM2QzxVXG2tG2h5ys9oVxiyOfzdHV1kU6nyeVyV57PZDJkMhkOHjxIIpGg\nv7+fSCRS8v5rhSFBklRxsViMvi/1MXpqlLZ9bRy4/wCtN7eG0lc+n2fz5s2MjY3N2CaXy5HL5ejo\n6GBwcLBhg4KXGyRJDaWrq2vWgDBdJpOhq6sr5BFVL88kSJIqKvVSitTRyQWEb51n/U3r2fkXO1m+\nbHIB4QeTJFtKsz5gfHycdDpd1DHpdJpsNtuQd1YYEiRJFZVsKV0ImMvu3buvWoMwH7lcjt7eXvr6\n+kIaVfUK+3LDDcC3gEvAbSH3JUnSrIaHF7ZB1EKPq3Vhh4TfBr4Tch+SJM3LxMTCNoha6HG1LsyQ\n8FEKG4E+GGIfkiTNW1PTwjaIWuhxtS6skBAB9gH/CvjHkPqQJKko7e3tCzpu48bG3FgqjJCwBPhj\n4A+A0RDeX5KkBenp6SEaLXJjqWiUXbsac2OpYu5ueBjomaNNO9ABrAA+d81rS+bqYMeOHaxcufKq\n56ydLUkqlVgsRiKRKOoOh0SiejaWmr7fxJRz586F1t+cH9zT3DT5mM0JoB/4OG9X4AZYClwEvgxs\nCziuFRgZGRmhtTWcCluSJEGh4mJHRweZTGbOtvF4nCNHSr9vRCmNjo7S1tYG0EaJz+AXcybh9cnH\nXLYDvzHt5/cDXwPuBb5RRH+SJJVcJBJhcHAwcO+GKdFolEQiwf79+6s6IIQtjGJKr17z8/cnv2aA\n10LoT5KkokQiEQYGJjeW6u3l8OHDZDIZ4vE4W7ZsoacnnI2lak259m64PHcTSZLKJ5VKsX37ds6c\nOUNzczPr16+nubmZM2fOsH379ndc+29E5SjLnKWwJkGSpKrhwvi5uQukJEkKZEiQJEmBDAmSJCmQ\nIUGSJAUyJEiSpECGBEmSFKgct0BKklR1Ui+lSB0t1EI4/9Z5TrxxgnU3rmP5suUAJD+YJNnS2LdI\nGhIkSQ0p2fJ2CBg9NUrbvjZSn0zRerN7CE3xcoMkSQpkSJAkSYEMCZIkKZAhQZIkBTIkSJKkQIYE\nSZIUyJAgSZICGRIkSVIgQ4IkSQpkSJAkSYEMCZIkKZAhQZIkBTIkSJKkQIYESZIUyJAgSZICGRIk\nSVIgQ4IkSQpkSJAkSYEMCZIkKVBYISELXLrm8Zsh9SVJkkKwLKT3vQzsAv5o2nNvhtSXJEkKQVgh\nAeAfgNMhvr8kSQpRmGsSfg04AzwP/DrQFGJfkiSpxMI6k/C7wAjwXeAngN8Cfhj4NyH1J0mSSqyY\nMwkP887FiNc+WifbPgI8CxwFHgN+Gfgl4H2lGLQkSQpfMWcSfg94Yo42J2Z4/huTX38EGJ7p4B07\ndrBy5cqrnksmkySTyfmOUZKkupVKpUilUlc9d+7cudD6KyYkvD75WIh/Mvn11GyNHnnkEVpbW2dr\nIklSwwr6w3l0dJS2trZQ+gtjTcKdwCZgAHgDaAd+B/hfwMkQ+pMkSSEIIyRcAO4FeoAbKFyC2Af8\ndgh9SZKkkIQREp6ncCZBkiTVMPdukCRJgQwJkiQpkCFBkiQFMiRIkqRAhgRJkhTIkCBJkgIZEiRJ\nUiBDgiRJCmRIkCRJgQwJkiQpkCFBkiQFMiRIkqRAhgRJkhTIkCBJkgIZEiRJUiBDgiRJCmRIkCRJ\ngQwJkiQpkCFBkiQFMiRIkqRAhgRJkhTIkCBJkgIZEiRJUiBDgiRJCmRIkCRJgQwJkiQpkCFBkiQF\nMiRIkqRsfGo2AAAEgklEQVRAYYaEfw58A/g+8HfAn4TYlzRvqVSq0kNQg3CuqdaFFRI+Cfw34DHg\nNmAz8JWQ+pKK4i9ulYtzTbVuWUjv+bvAg8Dj057/dgh9SZKkkIRxJqEVuAW4DDwPvAY8Dfx4CH1V\nXLn/Uihlf4t5r2KPLab9fNrO1aYe/4JzrpW+vXMtWKPONV4Kr69anWthhITmya8PA73Ax4DvAoeA\n94XQX0U16v+Z/MVdfs610rd3rgVr1LlmSHinYi43PAz0zNGmnbeDx38Gvjr5/TbgJPDzwL6ZDj5+\n/HgRw6kO586dY3R0tCb7W8x7FXtsMe3n03auNrO9Xu7/ZqXiXCt9e+dasEaca8f/7jich+MvHodT\npe8rzLkW5mfnkiLa3jT5mM0JCosUvw58GDgy7bXngD8HdgUcdzMwDLy/iPFIkqSC71D4Q32eEWd+\nijmT8PrkYy4jwAUgwdshoQmIUQgRQU5R+MfdXMR4JElSwSlKHBDC9EXgVeAngR8DHqUw+BsrOShJ\nklR5y4AvADngDeBrwIaKjkiSJEmSJEmSJEmSJOmd3gP8DYUKjkeBX63scFTHfohC4a//A7wA/MuK\njkb17qvAWeB/VHogqlsfA9LAy8AvVXgsobkOWD75/Q8AY8APVm44qmNRCpuSQWGOvUphzklh+KcU\nfokbEhSGZcDfUigvsIJCUFhVzBuEuVV0KV0Czk9+/y5gYtrPUinlgBcnv/87Cn/lFfV/KqkIfwX8\nQ6UHobq1kcJZ0VMU5tnTwE8V8wa1EhKgUGPhBeAVCrtMfq+yw1EDuINCVdLvVHogkrQAt3D176+T\nFFnZuJZCwhvA7cAPAw8AP1LZ4ajO3QT8V+D+Sg9Ekhbo8mLfIKyQsAV4ikKCuQT8TECbXwHGgX8E\nvklhr4cp/5bCIsVRCiWdpztNYWHZh0o6YtWqMObaDcCfAr9JYc8RCcL7vbboX+SqW4udc69x9ZmD\nH6JKzoz+NIVton+Wwj/sE9e8/gsU9nfoplC2+YsULh/80AzvtwZ47+T376VwzfjHSjtk1ahSz7Ul\nQAr4T2EMVjWt1HNtSicuXFSwxc65ZRQWK95C4S7Bl4H3hT7qIgX9w74B/P41zx2j8JdbkFYKCfxb\nk49tpRyg6kYp5tqHgYsU/tp7fvLx4yUco+pDKeYaFErWnwbepHAnTVupBqi6s9A593EKdzh8G7gv\ntNEtwrX/sOsp3J1w7WmTRyhcRpAWyrmmcnGuqdwqMucqsXBxNbAUyF/z/GkK96hLpeJcU7k411Ru\nZZlztXR3gyRJKqNKhIQzFK75Rq55PkKh4INUKs41lYtzTeVWljlXiZDw/4AR3ln16SeBI+UfjuqY\nc03l4lxTudX0nHs3hToGH6Kw2GLH5PdTt2XcS+G2jW3ABgq3bfw9c98qJF3LuaZyca6p3Op2znVS\n+AddonA6ZOr7vmltPkuhAMR5YJirC0BI89WJc03l0YlzTeXViXNOkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiSpBvx/61GKXj4iGQUAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-6,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"green\")\n", + "errorbar(fqd, p2, yerr=p2e, fmt='o', ms=10, color=\"black\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 2.664e+02 1.060e+01 inf -- 2.187e+02 -- -0.209329 -0.861493 -2.15962 -2.40847 -2.77148 -3.0939 -3.74416 -6.23993 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1\n", + " 3 2.987e+01 1.264e+01 2.257e+00 -- 2.210e+02 -- -0.16831 -0.824919 -2.12464 -2.39488 -2.7608 -3.0706 -3.74724 -5.93993 0.0804747 0.16472 0.155918 0.19816 0.150032 0.148466 -0.0426696 2.76354\n", + " 5 3.330e+01 1.479e+01 2.062e+00 -- 2.230e+02 -- -0.134691 -0.793404 -2.09481 -2.37915 -2.74942 -3.04926 -3.74185 -6.23993 0.0666414 0.2131 0.199386 0.281712 0.193626 0.185727 -0.170109 -2.41599\n", + " 7 4.032e+02 1.707e+01 1.889e+00 -- 2.249e+02 -- -0.106698 -0.766368 -2.06929 -2.36269 -2.73774 -3.02999 -3.73105 -6.53993 0.0565128 0.250258 0.234434 0.352126 0.231411 0.214451 -0.279352 -0.654819\n", + " 9 1.006e+02 1.948e+01 1.734e+00 -- 2.267e+02 -- -0.0831017 -0.743148 -2.04735 -2.34643 -2.7261 -3.0127 -3.71739 -6.23993 0.0489265 0.27947 0.263536 0.411371 0.264011 0.236678 -0.370557 0.617417\n", + " 11 5.264e+01 2.201e+01 1.603e+00 -- 2.283e+02 -- -0.0630157 -0.723142 -2.02838 -2.33091 -2.71472 -2.99725 -3.70277 -5.93993 0.0431576 0.302888 0.288287 0.46139 0.292059 0.253914 -0.445773 0.691506\n", + " 13 3.251e+00 2.467e+01 1.448e+00 -- 2.297e+02 -- -0.0457823 -0.705838 -2.0119 -2.31642 -2.70374 -2.98344 -3.68838 -5.63993 0.0387303 0.321962 0.309779 0.503862 0.316158 0.267284 -0.507655 -2.9489\n", + " 15 5.697e+00 2.744e+01 1.389e+00 -- 2.311e+02 -- -0.0308979 -0.690819 -1.99751 -2.30307 -2.6933 -2.97112 -3.67473 -5.93993 0.0353185 0.337702 0.32866 0.540271 0.336854 0.27759 -0.559235 -3.12456\n", + " 17 9.962e+01 3.030e+01 1.295e+00 -- 2.324e+02 -- -0.0179753 -0.677732 -1.9849 -2.29088 -2.68339 -2.9601 -3.66228 -6.23993 0.0326949 0.350836 0.34562 0.571642 0.354613 0.285527 -0.602072 1.49229\n", + " 19 8.259e+01 3.325e+01 1.196e+00 -- 2.336e+02 -- -0.00670527 -0.666291 -1.97381 -2.2798 -2.67406 -2.95025 -3.6511 -5.93993 0.0306947 0.361894 0.361049 0.598897 0.369841 0.291591 -0.63793 -0.807155\n", + " 21 5.466e+01 3.625e+01 1.126e+00 -- 2.347e+02 -- 0.00316205 -0.65626 -1.96403 -2.26977 -2.6653 -2.94143 -3.64118 -5.63993 0.0291917 0.371274 0.375204 0.622756 0.382913 0.296138 -0.668602 -0.4239\n", + " 23 9.811e+00 3.926e+01 1.030e+00 -- 2.358e+02 -- 0.0118288 -0.647441 -1.95537 -2.26071 -2.65711 -2.93352 -3.63242 -5.33993 0.0280965 0.379279 0.388328 0.643807 0.394112 0.29949 -0.69488 1.89304\n", + " 24 1.540e+02 1.799e+03 6.966e+00 -- 2.427e+02 -- 0.0881649 -0.569745 -1.87911 -2.17878 -2.58105 -2.86227 -3.55241 -6.66644 0.0206511 0.447973 0.510379 0.832388 0.489337 0.32364 -0.914155 2.17049\n", + " 25 6.954e+03 5.225e+01 3.722e+00 -- 2.464e+02 -- 0.0820074 -0.577455 -1.8985 -2.17524 -2.54532 -2.85023 -3.57378 -8 0.0966827 0.412543 0.647274 0.885367 0.477195 0.280838 -0.833819 0.980251\n", + " 26 6.093e+00 2.044e+01 2.548e-01 -- 2.467e+02 -- 0.0836413 -0.576897 -1.8864 -2.18141 -2.55069 -2.85268 -3.54966 -5 0.0710854 0.434328 0.591545 0.904499 0.417485 0.266475 -0.938934 1.34469\n", + " 27 1.995e+00 5.009e+00 1.592e-01 -- 2.469e+02 -- 0.0831948 -0.576805 -1.88848 -2.17663 -2.54734 -2.85305 -3.5567 -4.22205 0.0761925 0.426631 0.625953 0.910649 0.424127 0.266244 -0.891405 -0.565813\n", + " 28 1.248e+00 1.375e+01 4.599e-02 -- 2.469e+02 -- 0.0833105 -0.576655 -1.88396 -2.17799 -2.5475 -2.85314 -3.57374 -4.03476 0.0730522 0.429262 0.625062 0.905512 0.418149 0.264942 -0.967314 0.563133\n", + " 29 2.171e+00 9.396e+00 3.382e-01 -- 2.472e+02 -- 0.0829995 -0.576375 -1.88776 -2.17599 -2.54493 -2.85329 -3.58608 -4.02931 0.0763743 0.428086 0.638377 0.920493 0.411594 0.274496 -0.815157 -0.139608\n", + " 30 9.841e-01 1.149e+01 1.388e-01 -- 2.474e+02 -- 0.0832295 -0.57636 -1.88467 -2.17976 -2.54698 -2.8543 -3.58978 -3.89975 0.0738415 0.429686 0.629413 0.910992 0.412336 0.271501 -0.957932 0.163421\n", + " 31 2.338e+01 3.752e+00 6.030e-02 -- 2.474e+02 -- 0.0829583 -0.576172 -1.88634 -2.17783 -2.54432 -2.85466 -3.60447 -3.874 0.0761271 0.428633 0.633503 0.910755 0.410289 0.277401 -0.858061 0.00260138\n", + " 32 3.920e-01 3.182e+00 1.581e-02 -- 2.475e+02 -- 0.0830523 -0.576117 -1.88559 -2.18042 -2.54532 -2.85537 -3.60659 -3.85372 0.0749087 0.429912 0.628364 0.908088 0.410987 0.278401 -0.917876 0.0634286\n", + " 33 3.181e-01 1.292e+00 4.081e-03 -- 2.475e+02 -- 0.0829733 -0.576083 -1.88614 -2.17987 -2.54423 -2.85554 -3.60968 -3.84594 0.0757541 0.429324 0.627903 0.906455 0.410964 0.280705 -0.882158 0.0385634\n", + " 34 9.740e-02 4.768e-01 1.118e-03 -- 2.475e+02 -- 0.0830058 -0.576059 -1.88614 -2.18078 -2.54437 -2.85582 -3.61078 -3.84115 0.0755814 0.429797 0.625777 0.906066 0.411713 0.281667 -0.897167 0.0508303\n", + " 35 6.139e-02 4.667e-01 3.378e-04 -- 2.475e+02 -- 0.0829936 -0.576051 -1.88632 -2.18077 -2.54398 -2.85585 -3.61168 -3.83901 0.0759106 0.429622 0.624827 0.905205 0.411841 0.282606 -0.888007 0.0458794\n", + " 36 2.074e-02 6.100e-02 1.146e-04 -- 2.475e+02 -- 0.0830052 -0.576043 -1.8864 -2.18106 -2.54393 -2.85595 -3.61204 -3.83759 0.0759487 0.42976 0.623936 0.905027 0.412248 0.283153 -0.891435 0.0486959\n", + " 37 1.454e-02 1.834e-01 4.331e-05 -- 2.475e+02 -- 0.0830055 -0.57604 -1.88647 -2.18112 -2.54378 -2.85597 -3.61236 -3.83689 0.0760799 0.429719 0.623352 0.904662 0.412343 0.283555 -0.889115 0.047686\n", + "********************\n", + "0.0830055 -0.57604 -1.88647 -2.18112 -2.54378 -2.85597 -3.61236 -3.83689 0.0760799 0.429719 0.623352 0.904662 0.412343 0.283555 -0.889115 0.047686\n", + "0.00496524 0.0080639 0.0332817 0.053869 0.0497847 0.0510814 0.188809 0.22006 0.0806462 0.0938084 0.215752 0.243886 0.211727 0.201233 0.481882 0.380625\n", + "0.183432 0.0383088 -0.0465819 -0.037514 0.0169821 -0.0145299 -0.00365015 0.00975964 0.0073746 0.00371696 -0.00866648 -0.0017458 0.00395749 0.0070437 -0.00320102 0.00463012\n", + "********************\n" + ] + } + ], + "source": [ + "Cx = clag.clag('cxd10r', [[t1,t2]], [[l1,l2]], [[l1e,l2e]], dt, fqL, p1, p2)\n", + "p = np.concatenate( ((p1+p2)*0.5-0.3,p1*0+0.1) ) # a good starting point generally\n", + "p, pe = clag.optimize(Cx, p)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "ERROR:root:Line magic function `%autoreload` not found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 2.475e+02 2.473e+02 8.301e-02 8.549e-02 0.306 +++\n", + "+++ 2.475e+02 2.470e+02 8.301e-02 8.673e-02 0.912 +++\n", + "+++ 2.475e+02 2.467e+02 8.301e-02 8.735e-02 1.46 +++\n", + "+++ 2.475e+02 2.469e+02 8.301e-02 8.704e-02 1.16 +++\n", + "+++ 2.475e+02 2.469e+02 8.301e-02 8.689e-02 1.03 +++\n", + "+++ 2.475e+02 2.470e+02 8.301e-02 8.681e-02 0.969 +++\n", + "+++ 2.475e+02 2.470e+02 8.301e-02 8.685e-02 0.999 +++\n", + "\t### errors for param 1 ###\n", + "+++ 2.475e+02 2.473e+02 -5.760e-01 -5.720e-01 0.399 +++\n", + "+++ 2.475e+02 2.469e+02 -5.760e-01 -5.700e-01 1.13 +++\n", + "+++ 2.475e+02 2.471e+02 -5.760e-01 -5.710e-01 0.698 +++\n", + "+++ 2.475e+02 2.470e+02 -5.760e-01 -5.705e-01 0.897 +++\n", + "+++ 2.475e+02 2.470e+02 -5.760e-01 -5.702e-01 1.01 +++\n", + "\t### errors for param 2 ###\n", + "+++ 2.475e+02 2.473e+02 -1.887e+00 -1.870e+00 0.291 +++\n", + "+++ 2.475e+02 2.470e+02 -1.887e+00 -1.862e+00 0.915 +++\n", + "+++ 2.475e+02 2.467e+02 -1.887e+00 -1.857e+00 1.53 +++\n", + "+++ 2.475e+02 2.469e+02 -1.887e+00 -1.859e+00 1.18 +++\n", + "+++ 2.475e+02 2.469e+02 -1.887e+00 -1.860e+00 1.04 +++\n", + "+++ 2.475e+02 2.470e+02 -1.887e+00 -1.861e+00 0.971 +++\n", + "+++ 2.475e+02 2.470e+02 -1.887e+00 -1.861e+00 1 +++\n", + "\t### errors for param 3 ###\n", + "+++ 2.475e+02 2.473e+02 -2.181e+00 -2.154e+00 0.29 +++\n", + "+++ 2.475e+02 2.471e+02 -2.181e+00 -2.141e+00 0.808 +++\n", + "+++ 2.475e+02 2.468e+02 -2.181e+00 -2.134e+00 1.25 +++\n", + "+++ 2.475e+02 2.470e+02 -2.181e+00 -2.137e+00 1.01 +++\n", + "+++ 2.475e+02 2.470e+02 -2.181e+00 -2.139e+00 0.905 +++\n", + "+++ 2.475e+02 2.470e+02 -2.181e+00 -2.138e+00 0.957 +++\n", + "+++ 2.475e+02 2.470e+02 -2.181e+00 -2.138e+00 0.984 +++\n", + "+++ 2.475e+02 2.470e+02 -2.181e+00 -2.138e+00 0.997 +++\n", + "\t### errors for param 4 ###\n", + "+++ 2.475e+02 2.470e+02 -2.544e+00 -2.494e+00 0.973 +++\n", + "+++ 2.475e+02 2.459e+02 -2.544e+00 -2.469e+00 3.08 +++\n", + "+++ 2.475e+02 2.466e+02 -2.544e+00 -2.482e+00 1.78 +++\n", + "+++ 2.475e+02 2.468e+02 -2.544e+00 -2.488e+00 1.32 +++\n", + "+++ 2.475e+02 2.469e+02 -2.544e+00 -2.491e+00 1.14 +++\n", + "+++ 2.475e+02 2.469e+02 -2.544e+00 -2.492e+00 1.05 +++\n", + "+++ 2.475e+02 2.470e+02 -2.544e+00 -2.493e+00 1.01 +++\n", + "+++ 2.475e+02 2.470e+02 -2.544e+00 -2.494e+00 0.993 +++\n", + "\t### errors for param 5 ###\n", + "+++ 2.475e+02 2.473e+02 -2.856e+00 -2.830e+00 0.277 +++\n", + "+++ 2.475e+02 2.471e+02 -2.856e+00 -2.818e+00 0.713 +++\n", + "+++ 2.475e+02 2.469e+02 -2.856e+00 -2.811e+00 1.04 +++\n", + "+++ 2.475e+02 2.470e+02 -2.856e+00 -2.814e+00 0.867 +++\n", + "+++ 2.475e+02 2.470e+02 -2.856e+00 -2.813e+00 0.953 +++\n", + "+++ 2.475e+02 2.470e+02 -2.856e+00 -2.812e+00 0.993 +++\n", + "\t### errors for param 6 ###\n", + "+++ 2.475e+02 2.473e+02 -3.612e+00 -3.518e+00 0.392 +++\n", + "+++ 2.475e+02 2.469e+02 -3.612e+00 -3.471e+00 1.06 +++\n", + "+++ 2.475e+02 2.471e+02 -3.612e+00 -3.494e+00 0.67 +++\n", + "+++ 2.475e+02 2.470e+02 -3.612e+00 -3.483e+00 0.845 +++\n", + "+++ 2.475e+02 2.470e+02 -3.612e+00 -3.477e+00 0.947 +++\n", + "+++ 2.475e+02 2.470e+02 -3.612e+00 -3.474e+00 1 +++\n", + "\t### errors for param 7 ###\n", + "+++ 2.475e+02 2.474e+02 -3.836e+00 -3.727e+00 0.218 +++\n", + "+++ 2.475e+02 2.471e+02 -3.836e+00 -3.672e+00 0.684 +++\n", + "+++ 2.475e+02 2.469e+02 -3.836e+00 -3.644e+00 1.16 +++\n", + "+++ 2.475e+02 2.470e+02 -3.836e+00 -3.658e+00 0.894 +++\n", + "+++ 2.475e+02 2.470e+02 -3.836e+00 -3.651e+00 1.02 +++\n", + "+++ 2.475e+02 2.470e+02 -3.836e+00 -3.654e+00 0.955 +++\n", + "+++ 2.475e+02 2.470e+02 -3.836e+00 -3.653e+00 0.988 +++\n", + "+++ 2.475e+02 2.470e+02 -3.836e+00 -3.652e+00 1 +++\n", + "\t### errors for param 8 ###\n", + "+++ 2.475e+02 2.470e+02 7.613e-02 1.568e-01 0.869 +++\n", + "+++ 2.475e+02 2.465e+02 7.613e-02 1.971e-01 1.9 +++\n", + "+++ 2.475e+02 2.468e+02 7.613e-02 1.769e-01 1.35 +++\n", + "+++ 2.475e+02 2.469e+02 7.613e-02 1.668e-01 1.1 +++\n", + "+++ 2.475e+02 2.470e+02 7.613e-02 1.618e-01 0.98 +++\n", + "+++ 2.475e+02 2.469e+02 7.613e-02 1.643e-01 1.04 +++\n", + "+++ 2.475e+02 2.470e+02 7.613e-02 1.630e-01 1.01 +++\n", + "\t### errors for param 9 ###\n", + "+++ 2.475e+02 2.473e+02 4.298e-01 4.767e-01 0.29 +++\n", + "+++ 2.475e+02 2.471e+02 4.298e-01 5.001e-01 0.641 +++\n", + "+++ 2.475e+02 2.470e+02 4.298e-01 5.118e-01 0.863 +++\n", + "+++ 2.475e+02 2.470e+02 4.298e-01 5.177e-01 0.985 +++\n", + "+++ 2.475e+02 2.469e+02 4.298e-01 5.206e-01 1.05 +++\n", + "+++ 2.475e+02 2.470e+02 4.298e-01 5.192e-01 1.02 +++\n", + "+++ 2.475e+02 2.470e+02 4.298e-01 5.184e-01 1 +++\n", + "\t### errors for param 10 ###\n", + "+++ 2.475e+02 2.471e+02 6.230e-01 8.388e-01 0.802 +++\n", + "+++ 2.475e+02 2.466e+02 6.230e-01 9.467e-01 1.77 +++\n", + "+++ 2.475e+02 2.468e+02 6.230e-01 8.928e-01 1.25 +++\n", + "+++ 2.475e+02 2.470e+02 6.230e-01 8.658e-01 1.02 +++\n", + "+++ 2.475e+02 2.470e+02 6.230e-01 8.523e-01 0.906 +++\n", + "+++ 2.475e+02 2.470e+02 6.230e-01 8.591e-01 0.96 +++\n", + "+++ 2.475e+02 2.470e+02 6.230e-01 8.624e-01 0.988 +++\n", + "+++ 2.475e+02 2.470e+02 6.230e-01 8.641e-01 1 +++\n", + "\t### errors for param 11 ###\n", + "+++ 2.475e+02 2.470e+02 9.046e-01 1.149e+00 0.88 +++\n", + "+++ 2.475e+02 2.465e+02 9.046e-01 1.271e+00 1.88 +++\n", + "+++ 2.475e+02 2.468e+02 9.046e-01 1.210e+00 1.35 +++\n", + "+++ 2.475e+02 2.469e+02 9.046e-01 1.179e+00 1.1 +++\n", + "+++ 2.475e+02 2.470e+02 9.046e-01 1.164e+00 0.989 +++\n", + "+++ 2.475e+02 2.469e+02 9.046e-01 1.171e+00 1.05 +++\n", + "+++ 2.475e+02 2.470e+02 9.046e-01 1.168e+00 1.02 +++\n", + "+++ 2.475e+02 2.470e+02 9.046e-01 1.166e+00 1 +++\n", + "\t### errors for param 12 ###\n", + "+++ 2.475e+02 2.471e+02 4.125e-01 6.242e-01 0.737 +++\n", + "+++ 2.475e+02 2.467e+02 4.125e-01 7.300e-01 1.59 +++\n", + "+++ 2.475e+02 2.469e+02 4.125e-01 6.771e-01 1.13 +++\n", + "+++ 2.475e+02 2.470e+02 4.125e-01 6.507e-01 0.924 +++\n", + "+++ 2.475e+02 2.469e+02 4.125e-01 6.639e-01 1.02 +++\n", + "+++ 2.475e+02 2.470e+02 4.125e-01 6.573e-01 0.974 +++\n", + "+++ 2.475e+02 2.470e+02 4.125e-01 6.606e-01 0.999 +++\n", + "\t### errors for param 13 ###\n", + "+++ 2.475e+02 2.470e+02 2.838e-01 4.851e-01 0.854 +++\n", + "+++ 2.475e+02 2.465e+02 2.838e-01 5.857e-01 1.84 +++\n", + "+++ 2.475e+02 2.468e+02 2.838e-01 5.354e-01 1.31 +++\n", + "+++ 2.475e+02 2.469e+02 2.838e-01 5.103e-01 1.07 +++\n", + "+++ 2.475e+02 2.470e+02 2.838e-01 4.977e-01 0.96 +++\n", + "+++ 2.475e+02 2.470e+02 2.838e-01 5.040e-01 1.01 +++\n", + "+++ 2.475e+02 2.470e+02 2.838e-01 5.008e-01 0.987 +++\n", + "+++ 2.475e+02 2.470e+02 2.838e-01 5.024e-01 1 +++\n", + "\t### errors for param 14 ###\n", + "+++ 2.475e+02 2.470e+02 -8.899e-01 -4.078e-01 0.957 +++\n", + "+++ 2.475e+02 2.465e+02 -8.899e-01 -1.668e-01 1.91 +++\n", + "+++ 2.475e+02 2.468e+02 -8.899e-01 -2.873e-01 1.41 +++\n", + "+++ 2.475e+02 2.469e+02 -8.899e-01 -3.476e-01 1.18 +++\n", + "+++ 2.475e+02 2.469e+02 -8.899e-01 -3.777e-01 1.07 +++\n", + "+++ 2.475e+02 2.470e+02 -8.899e-01 -3.928e-01 1.01 +++\n", + "+++ 2.475e+02 2.470e+02 -8.899e-01 -4.003e-01 0.984 +++\n", + "+++ 2.475e+02 2.470e+02 -8.899e-01 -3.965e-01 0.998 +++\n", + "\t### errors for param 15 ###\n", + "+++ 2.475e+02 2.471e+02 4.838e-02 4.285e-01 0.661 +++\n", + "+++ 2.475e+02 2.470e+02 4.838e-02 6.186e-01 0.961 +++\n", + "+++ 2.475e+02 2.469e+02 4.838e-02 7.136e-01 1.07 +++\n", + "+++ 2.475e+02 2.470e+02 4.838e-02 6.661e-01 1.02 +++\n", + "+++ 2.475e+02 2.470e+02 4.838e-02 6.424e-01 0.991 +++\n", + "********************\n", + "0.0830101 -0.576037 -1.88651 -2.18123 -2.54372 -2.856 -3.61248 -3.8364 0.0761257 0.429759 0.622953 0.90456 0.412522 0.283831 -0.889856 0.0483793\n", + "0.00383825 0.00579502 0.025767 0.0436043 0.050153 0.0439107 0.138708 0.1845 0.086924 0.0886716 0.241158 0.261188 0.248061 0.218563 0.493323 0.593987\n", + "********************\n" + ] + } + ], + "source": [ + "%autoreload\n", + "p, pe = clag.errors(Cx, p, pe)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "phi, phie = p[nfq:], pe[nfq:]\n", + "lag, lage = phi/(2*np.pi*fqd), phie/(2*np.pi*fqd) \n", + "cx, cxe = p[:nfq], pe[:nfq]" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1.25569486, 2.37000041, 1.7802513 , 1.66775218, 0.49069246,\n", + " 0.21781609, -0.44057362, 0.01545348])" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAFrCAYAAACE+GArAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAFRlJREFUeJzt3XGMXdddJ/Bv2jg12LAuLZ1xihM3hjAmMpudqQuOqzLu\nphF/sCkSKHikrsABEgG7kXdXC1VXHbLpipVWQM0fu4u8Kwekap8T0KIWgaH8YVesbXbNTIA6xAGc\nOGtiz6Tu1oW6uLWa7h93Jh2PZ+x5Z+579715n4/0NG/uO+/e39hnZr5z7rnnJgAAAAAAAAAAAAAA\nAAAAAAAAAAAAAACwZrwvye8meTXJ60k+uESbJ+de/3KSo0m+p1vFAQCr96YO7vubkzyX5OfmPv/6\notd/Icn+udd3JplJ8kdJNnawJgCgD72e5OEFn9+W5GKSf7tg2x1JvpDksS7WBQCsQidHJG7mXUmG\nknx6wbavJvlMkgcaqQgAaFtTQWJ47uPsou2vLXgNAOhxtzddwBIWz6WYt3nuAQC05+Lco3ZNBYmZ\nuY9DC54v9fm8zXfeeeeFCxcudLwwAFiDXk11YUPtYaKpIPFyqsDwUJI/n9t2R5IfyPUTMOdtvnDh\nQj7xiU9k+/btXSqxPvv378+BAwf68lir2V+7711p+5W0u1Wbm73ezf+vuulr9bbX15anr9XbvpN9\n7YUXXsiHPvShd6Ya1e+rILEhyXct+PyeJPcn+XyS80kOJPlIkr9O8jdzz7+U5H8st8Pt27dndHS0\nU/V2zKZNm7pWd93HWs3+2n3vStuvpN2t2tzs9W7+f9VNX6u3vb62PH2t3vad7mud9OYO7nt3khNJ\nHk817+EH556/NcknkxxPsj7JLyZ5IskXk0wkWer8xeYkjz/++OPZvLk/p0ns2LGjb4+1mv21+96V\ntl9Ju1u1We71VquViYmJFdXRi/S1etvra8vT1+pt36m+dvHixRw8eDBJDqYDIxK31b3DDhlNMjU1\nNdW36Z3+8fDDD+dTn/pU02UwAPQ1umF6ejpjY2NJMpZkuu79N3X5JwCwBggSsEg/DzXTX/Q11gJB\nAhbxw51u0ddYCwQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQT\nJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUEC\nACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACA\nYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgm\nSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIE\nAFBMkAAAigkSAEAxQQIAKNZkkHgyyeuLHhcarAcAaNPtDR//dJIHF3z+taYKAQDa13SQ+FqS1xqu\nAQAo1PQcie9K8mqSl5K0kryr2XIAgHY0GST+JMk/T/JQkp9OMpzkRJJva7AmAKANTZ7a+IMFz59P\ncjLJ2SQ/nuTjjVQEALSl6TkSC305yWeTfOdyDfbv359NmzZdt21iYiITExMdLg0Ael+r1Uqr1bpu\n2+XLlzt6zNs6uvf2vCXViMSvJ/kPi14bTTI1NTWV0dHRrhcGAP1qeno6Y2NjSTKWZLru/Tc5R+KX\nk7wv1QTL70vy20k2JvnNBmsCANrQ5KmNd6a6UuPtST6Xao7E9yc532BNAEAbmgwSJjYAQJ9reh0J\nAKCPCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkA\noJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACK\nCRIAQDFBAgAoJkgAAMUECQCgmCAB3FSr1cqDDz6Yu+66Kxs3bswdd9yRjRs35q677sqDDz6YVqvV\ndIlAg25vugCgd83OzubgwYM5c+ZMZmZm3th+7dq1XLlyJdeuXcvBgwfz/ve/P0NDQw1WCjRFkGBg\ntVqtN/6avnr1al555ZXcfffdWb9+fZJkYmIiExMTTZbYqNnZ2TzwwAN56aWXlm0zMzOTmZmZ7N69\nO8ePHxcmYAAJEgyshUFheno6Y2NjabVaGR0dbbiy3rB3796bhoiFzp49m7179+bo0aMdrgroNeZI\nADd4+eWXc+bMmbbec+bMmZw7d64zBQE9S5AAbvCxj33sujkRKzEzM5OnnnqqQxUBvcqpDeAGp06d\n6ur76mTuC3SXIAHc4Nq1a119X53MfYHucmoDuMG6deu6+j6gfwkSwA127txZ9L73vOc9NVdS5ty5\nc3n00UfzyCOPJEkeeeSRPProoyaDQgc4tQHcYHJyMkeOHGlrwuXw8HA++tGPdrCqW5udnc3evXtv\nWEDr7NmzOXv2bI4cOZKRkZEcPnzYmhdQEyMSwA22bt2akZGRtt4zMjKSrVu3dqagFZhfQOvYsWPL\nBqCZmZkcO3Ysu3fvzuzsbK3Ht5Q4g0qQAJZ0+PDhbNu2bUVtt23blmeeeabDFd1cyQJadZlfSvz5\n55/P+fPn31g+/MqVKzl//nyef/75HDx4sPbwAr1AkACWNDQ0lOPHj2d8fDzDw8NLthkeHs74+HhO\nnDiRd7zjHV2u8BuaXECr6ZEQaJogASxraGgoR48ezcmTJ7Nv3743Rii2bduWffv25eTJkzl69Gij\nISJpdgGtJkdCoBcIEsBNtVqtPPHEE7l06VLuueee3Hvvvbnnnnty6dKlPPHEEz1x7r+pBbQsJQ6u\n2gBuoR9WgmxqAa3VjIQcOnRoVceGXmFEgoFmvYG1oakFtPp5KXGoixEJBpL1BtaWnTt35vTp022/\nb7ULaPXzUuJQFyMSDByz7NeeycnJZa8sWU4dC2hZShwECQaQWfZrT1MLaPX7UuJQB0GCgWKW/drV\nxAJaTY2EQC8RJBgoTa43QGc1sYBWPy4lDnUTJBgoZtmvbU0soNVvS4lD3QQJBopZ9oNh69atOXTo\nUJ599tkkybPPPptDhw51ZCSgn5YSh04QJBgoZtnTCUNDQ3nsscdy3333ZcuWLdmwYUPWrVuXDRs2\nZMuWLbnvvvvy2GOPCRGsSdaRYKA0td4Aa18/rAAKnSBIMFAmJydz5MiRtiZcmmXfX1qt1hv3/7h6\n9WruvffefPjDH8769euT+IUPdRMkGCjzs+zbCRJm2fcXQQG6yxwJBo5Z9qwl8/eL2bFjR0ZGRrJj\nxw73i6GrjEgwcOZn2S91r415w8PDGRkZyTPPPGOCHD1pufvFJMnp06fdL4auMSLBQGpivQGoi/vF\n0EsECQZaN9cbgLq4Xwy9RJAA6CO9cr8YczOYZ44EQB9Zzf1iDh06tOrjm5vBYoIEQB9p8n4x83Mz\nbnZaZWZmJjMzM9m9e3eOHz8uTAwApzYA+kiT94sxN4OlCBIAfaSp+8X0ytyMJpgPcnO9ECR+NsnL\nSf4hyZ8meW+z5QD0rp07dxa9b7X3i1nN3Ix+NTs7mz179mTXrl15+umnc/r06bz44os5ffp0nn76\n6ezatSt79uwZ+Mtrmw4SP5bk40k+luT+JH+c5EiSLU0WBdCrJicnl71d+XLquF9Mk3MzmmCtjpVr\nOkj86yT/PcmhJC8m+VdJzif5mSaLAuhV8/eLaUcd94tpcm5GE8wHWbkmg8QdSUaTfHrR9k8neaD7\n5QD0hybuF9PU3IwmDPJ8kBJNBom3J3lzksXjQa8laW/cDmCAzN8vZnx8fNnTHMPDwxkfH8+JEydq\nWeq9qbkZTRjE+SCrYR0JgD40f7+Yc+fO5amnnsqpU6dy7dq1rFu3Ljt37szk5GStS71PTk7myJEj\nbf2CrWNuRhMGbT7IajUZJC4l+VqSxauVDCW5uNQb9u/fn02bNl23bWJiIhMTEx0pEKDXzd8vphvH\nGRkZaStI1DE3Y6FuhaZ+ng/SarXSarWu23b58uWOHrPJIPHVJFNJHkryyQXbP5Dkd5Z6w4EDBzI6\nOtqF0gBY7PDhw9m9e3fOnj17y7Z1zc1Iur8sdz/PB1nqj+vp6emMjY117JhNX7Xxq0l+Ksm+JNtT\nXQr6HUl+vcmiALhRE3MzmrgMc5Dmg9ThtqYLSHWp588n2Zzks6kuAf1fi9qMJpmampoyIkFtFg4B\nXr16Na+88kruvvvurF+/PonTZnAz3TrNsGfPnhw7dmzF7cfHx3P06NFVHfPcuXPZtWtX2/NBTp48\nWevXXpcFIxJjSabr3n8vTLb8r3MP6CpBAcp1Y27Gai7DXM0v9F6YD9JPmj61AQBLavIyzCbW6uhX\nggQAPanJyzCbmA/Sr3rh1AYA3KDpyzC7vVZHvxIkAOhJvXIZZrfW6uhXTm0A0JNchtkfBAkAelJT\nt0ynPYIEAD2pqVum0x5BAoCe5TLM3idIANCzXIbZ+1y1AUBPcxlmbxMkAOgLLsPsTU5tAADFBAkA\noJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACK\nCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJgg\nAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIA\nQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAU\nEyQAgGKCBABQTJAAAIoJEgBAMUECACjWZJA4l+T1RY9farAeAKBNtzd47K8n+WiS/7Zg25WGagEA\nCjQZJJLkS0lea7gGAKBQ03MkfiHJpSTPJflIknXNlgMAtKPJEYlfSzKV5AtJvi/Jf0zyriQ/3WBN\nAEAb6g4STyaZvEWbdyeZTnJgwbbTqQLFbyf5+bnnN9i/f382bdp03baJiYlMTEwUlgsAa0er1Uqr\n1bpu2+XLlzt6zNtq3t/b5h4380qSryyx/Z1JzqcanTi16LXRJFNTU1MZHR1ddZEAMCimp6czNjaW\nJGOp/pCvVd0jEp+fe5T4J3MfL9ZUCwDQYU3Nkfj+JLuSHE3yxSQ7k/xqkk8m+duGagIA2tRUkPhK\nkkdSzad4S6rTHQeT/KeG6gEACjQVJJ5LNSIBAPSxpteRAAD6mCABABQTJACAYoIEAFBMkAAAigkS\nAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEA\nFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAx\nQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMk\nAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIA\nKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFOtUkPh3\nSU4k+XKSLyzT5q4kv5vkS0k+l+TXkqzrUD2wYq1Wq+kSGBD6GmtBp4LEuiTPJPkvy7z+5iS/l+Sb\nkuxOsjfJjyT5lQ7VAyvmhzvdoq+xFtzeof0+OffxJ5Z5/aEk25N8IMnM3LZ/k+Q3knwk1SgFANDj\nmpojsSvJZ/ONEJEkn07yliRjjVTUQd38q6PuY61mf+2+d6XtV9LuVm3W6l+C+lq97fW15elr9bbv\n577WVJAYTjK7aNsXknx17rU1xTdcve37+Ruu0/S1etvra8vT1+pt3899rZ1TG08mmbxFm3cnmV7h\n/m5r49hJkhdeeKHdt/SEy5cvZ3p6pf8svXWs1eyv3feutP1K2t2qzc1e7+b/V930tXrb62vL09fq\nbd/Jvtbp353t/DJ/29zjZl5J8pUFn/9Eko8neeuidv8+yQeT3L9g21uTfD7JniSfWdR+c5JTSd7Z\nRr0AQOXVJDuTXKx7x+2MSHx+7lGHk6kuER3KN05xPJQqhEwt0f5iqn+AzTUdHwAGycV0IER00l2p\nRhsmk/xdkn889/mGudfflOQvkvzR3PZ/muT/plpLAgAYcL+R5PW5x9cWfHzfgjZbUi1IdSXJpSQH\nYkEqAAAAAAAAAIBb+ZYk/yfJc0lOJ/kXzZbDGrYlybEkzyf58yQ/2mg1rHW/k+T/Jfmtpgthzfqh\nJGeS/FWSn2y4lka9Kcn6uefflOSlJN/eXDmsYcNJvnfu+bcnOZ+qz0En/ECqH/SCBJ1we5IXUy2v\nsDFVmPi2dnbQ1BLZnfB6kqtzz785ybUFn0OdZlJdvpwkn0v112Jb33jQhs/EjQzpnPekGl29mKqf\n/X6qdZ1WbC0FiST5R6mGmufXpPj7ZsthALw71QqxrzZdCECBO3P9z6+/TZurSK+1IPHFVItfvSvJ\nzyX5zmbLYY17W5LfTPJY04UAFPr6anfQZJB4X6oFqV5NdVrig0u0+dkkLyf5hyR/muS9C177l6km\nVk7nxoWsXks1Ge7+QGf62luS/M8kv5TkTzpSNf2oUz/XVv3DnjVrtX3uQq4fgdiSPhph/cEkTyX5\n4VRf/MOLXv+xVPfeeDTJd6e6+dffp/oil/KOJN869/xbU53D/u56S6ZP1d3XbkvSSvKLnSiWvlZ3\nX5s3HpMtWdpq+9ztqSZY3pnq6se/yo032uwLS33x/zvJf1607S9T/QW4lNFUSf7P5h776iyQNaOO\nvvbeVEu+T6fqc88lua/GGlkb6uhrSfKHqUZZr6S6QmisrgJZc0r73D9LdeXGXyf5qY5V12GLv/g7\nUl11sXiI5kCqUxZQSl+jW/Q1uq2RPterky3fnuTN+cYtxue9luoafqiLvka36Gt0W1f6XK8GCQCg\nD/RqkLiU6hz00KLtQ6kWzYC66Gt0i75Gt3Wlz/VqkPhqkqncuLrWB5Kc6H45rGH6Gt2ir9Fta77P\nbUi1zsP9qSaI7J97Pn9JyiOpLlnZl2R7qktW/i63vkwKFtPX6BZ9jW4b6D43nuqLfj3V0Mv880ML\n2vxMqkU0riY5lesX0YCVGo++RneMR1+ju8ajzwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA\nj/r/GjGpMEGJgxMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "\n", + "xscale('log'); ylim(-10,10)\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=10,color=\"black\")\n", + "\n", + "lag" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGYCAYAAAC3YWNyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd8U/X+x/FXyypLsSiIikhVtgpUwYmoOHD9ROuochHr\n3mit8hO5TtQLVnFcNxXHtWiv4kLBvTd1gMLPVXGDUkFEK6u/Pz4nNg1Jm+Sc5GS8n4/HeZzkzE+T\npvn0O0FERERERERERERERERERERERERERERERERERERERERERERERERERERERERExK2BwCxgEfAH\nsBR4EzguyvO7ANOBn4GVzrl7ex6liIiISAR7ArcBxzqPDwIeBNYBE5o5tw0wD0uEioF9gJnAKmBY\nguIVERERicpbWJLSlDOwpGdo0LYWwHzg7QTFJSIiIhKVp4AvmznmOeDTMNvHY0lON6+DEhERkebl\n+h2AT3KAlsAmWInL/sB1zZwzAPg4zPZ5zrq/Z9GJiIiINON2rDRlHbAaODeKc/4Cbg2zfRfnOkd7\nFp2IiIhEraXfAfhkEnAn1jvpUOB6IA/4VwLu1Q1VQYmIiMTjR2dpUrYmM986C8BsZ30lUIF1uw5n\nKZAfZnt+0P5Q3TbbbLMffvjhh3jjFBERyWYLsN7DTSY02ZrMhHoPOA3oSeRkZh6wfZjt2znr+WH2\ndfvhhx944IEH6Nu3b1SBjBs3jqlTp0Z1rJh0e838jjcZ9/f6Hl5cz8014jk31nP8/r1IN+n4evkd\nc7p99hcsWMDo0aP7YrUbSmaisBewlqZ7NM3E2swMAd51trUERmNds3+KdGLfvn0ZPHhwVIF06tQp\n6mPFpNtr5ne8ybi/1/fw4npurhHPubGe4/fvRbpJx9fL75jT8bMfrWxLZu4ElmMlMYuBjYEjgaOA\nyTRUFU0DxgAFNFRHVQBnAlVYd+yfsZ5Q2wIjkhO+hFNcXOx3CDHxO95k3N/re3hxPTfXiOdcv9/n\nTJeOr6/fMafjZz9aOb7c1T9jgROAvkAn4HfgQ+BubCTggHuwZKYn8E3Q9i5Y0nMw0A74AJgIvBjh\nfoOBuXPnzo06Uz300EN54oknovtpRCRj6LMv0lh1dTWFhYUAhUB1U8dmW8nMdGdpzgnOEmoJlhCJ\niIhIisjWQfNSlt/FkCLiD332ReKnZCbF6A+aSHbSZ18kfkpmREREJK0pmREREZG0pmRGRERE0lq2\n9WYSSbjKykoqKysBqKurY9GiRfTo0YO8vDzA2kaofYSIiHeUzIh4LDhZCYyTUFlZmXajlYqIpAtV\nM4mIiEhaUzIjIiIiaU3JjIiIiKQ1JTMiIiKS1pTMiIiISFpTMiMiIiJpTcmMiIiIpDUlMyIiIpLW\nlMyIiIhIWlMyIyIiImlNyYyIiIikNc3NlGSahFBERMRbSmaSTJMQioiIeEvVTCIiIpLWlMyIiIhI\nWlMyIyIiImlNyYyIiIikNSUzIiIiktaUzIiIiEhay7ZkZh/gXuAzYCXwHfAYEE2/6LHAughLlwTE\nKiIiIlHItnFmTgU2AW4APnEelwJvA/sDL0VxjbHAwpBttd6FKCIiIrHItmTmLGBJyLbZwBfAxUSX\nzMwHqj2OS0REROKUbdVMoYkMWHXTAmCLKK+R4104IiIi4la2JTPhbIi1mfkkyuOfAtYAS4FHgP4J\niktERESikG3VTOH8G2gLTGrmuB+Bq7D2Nb8B2wPjnee7AvMSGKOIiIhEkO3JzJXAsVhbmg+aOXaO\nswS8DszCkpgrgFGJCFBERESals3JzKXABKzh761xXmMR8Aawc1MHjRs3jk6dOjXaVlxcTO/eveO8\nrYiISOaorKyksrKy0bZly5ZFfX62JjOXBi3XenC9+qZ2Tp06lcGD1x/KprpanaJERESKi4spLi5u\ntK26uprCwsKozs/GZGYilsRc6SxuFAB70Lj6SUSaEfxfWF1dHYsWLaJHjx7k5eUB4f+wiYhEkm3J\nTClwOTa2zNOsXz30trOeBozBkpVvnW3PAS9ivZ5+B7YDLsR6Nk1MaNQiGSY4WQn891VZWRm2BFNE\npDnZlswcjFUJHeAsweqBFs7jXGcJHlNmHnAc0B3r/bQEeB4r3fkicSGLiIhIU7ItmdkryuNOcJZg\n53sci4iIiHhAg+aJiIhIWvOiZKY9sBswFOiKTd64IbAM+Bn4CXgHeBP4w4P7iaSFiooKrrrqKgCK\nioq45JJLKCkp8TkqEZHME28yswkwGjgKmwqgJc3PWbQamAs8DPwHS3REMlJFRQVlZWXU1tqE6jU1\nNZSVlQEooRER8Vis1UxbAxXAN0A5VhrTisaJzO/AD9gEjsFaYb2HrscGm5vmXE8k45SXl/+dyATU\n1tZSXl7uU0QiIpkr2pKZzti8RCcGnfMX1lX5bawa6SOgFiuBCWgFbAwMBIZgyc/eQB7WwHY0lhxN\ncM4VyQhr1qyJabuIiMQv2mTmM2Aj5/ErwANAFTbhYlNWYxM0/gg842zbEDgS6+a8J3Cq83zjqKMW\nSXEtW4b/aEXaLiIi8Yu2mmkjbFLFnbDuzdNoPpGJZDlwt3OdnZzr5sd5LZGUVFpaSn5+41/r/Px8\nSktLfYpIRCRzRftv4hDg/QTcfy5wCLBjAq4t4ptAI99Jkybx1VdfUVBQwIQJE9T4V0QkAaJNZhKR\nyCTz+iJJV1JSwsCBAyksLKSqqkpD9YuIJIgGzRMREZG0pmRGRERE0prbZKY10M9Z8sLsb4uNK/Md\n8CfwKXC2y3uKiIiI/M1tP9HDgBnYaL7dw+x/FNg/6Hkf4EZgW+Acl/cWERERcV0yE0hUZgKrQvYd\nFLT/O+AxbGRggDOBXVzeW0RERMR1MlPorF8Ns+8EZ/0Z0B843FkvxKY/OMnlvUVERERcJzNdgHrg\nyzDX3dd5fAuwwnm83HkOsKvLe4uIiIi4TmYCUxDUhWwfCHTEEp1ZIfvmO+twbWxEREREYuI2mQm0\nkwmdV2mYs/4OqAnZFyilaeHy3iIiIiKuk5mvsfYvO4dsP8RZvxbmnMCENT+7vLeIiIiI62TmJWd9\nFjbWDMChwHDn8dNhzunvrH90eW8RERER18nMzcBqoCswD/gF64KdA3wPPBLmnP2c9TyX9xYRERFx\nPWjeZ8Bo4B6gHQ1VSMuAYuCvkOM3pSGZedHlvUVEfFFZWUllZSUAdXV1LFq0iB49epCXZwOhFxcX\nU1xc7GeIIlnFbTIDUIWNM3MQlqz8ADwB1IY5dnvgQayXU7gqKBGRlBecrFRXV1NYWEhlZaVmRhfx\niRfJDMBioCKK4551FhERERFPaNZsERERSWtuk5mFwIVYA2ARERGRpHObzPQCrgW+BR4H/ofUHQxv\nH+BerNHyShomv4y2krsLMB0bH2cl8Cawt+dRioiISEzcJjMfOOuW2EB5M7EkYQrQx+W1vXYqsCVw\nAzASOBdLUN4G9mrm3DbAC85x52Bj6SwGZtMw2rGIiIj4wG0D4EKsh9IJWBftzliVUylwPvAO1jB4\nBvC7y3u5dRawJGTbbOAL4GIaBgAM50RssL9dsJ8J4GXgI2Ay64+ALCIiIkniRQPgj4HzgM2AImxi\nybU0THNwJzba7z3AHh7cL16hiQxYddECYItmzh2FtQ96J2jbWuABYAjQzYsARUREJHZe9mZaDTyK\nVTd1B8YD/+fsaw8cD7yCtVkZT2okABtibWY+aea4AVjSFiowinH/MPtEREQkCRLVNfsnrPqlL7Ar\ncDcNs2VvA1wNLAKewko9/Go0/G+gLTCpmePyCT8IYGBbZy+DEhERkeh5NWheU952liewKqdNg+59\noLP8AJRjcz2tSUJMAFcCx2JtaT5o5lhXxo0bR6dOnRptKy4upnfv3om8rYiISFoIniIkYNmyZVGf\nn+hkpgcwFhgDbIW1owFLWJ7Hqme6Y+1tyrFGxCOAXxMc16XABKzh761RHL+UhnmnguUH7Y9o6tSp\nYYc5r66ujuLWIiIimS3cfGaBqUKikYhqprZYUvIC8CWWOPTEEpnPsfYyW2AlMj2B/bHEBmAQcFkC\nYgp2adBybZTnzMN6bYXazlnP9yAuERERiYOXycwuNPRcug8bkyUXqAP+AwwHemNtaQI9i9YBz2Ez\nad/sbDvEw5hCTcSSmCudJVozsXFzhgRta4klbW9jbYRERETEB26rmTYD/oFVJYU2APkIa/j7ALA8\nimvdC5yNVTslQilwOTa2zNOsPzbM2856GlYtVoCNbAw2Vs6Z2Azh47FRgM8AtsWqxURERMQnbpOZ\nb2hcurMCqMSSmPdjvNZvzjpRPZsOBuqBA5wlWH3QfXOdJSdo/ypsOoTJWAlSO6zR8EjgtQTFKyIi\nIlFwm8wEEpm3gLuAh4E/4rzWT0AJllgkQnNTFgSc4CyhlmAlUCIiIpJC3CYzU7EkZoEHsfyOTeQo\nIiIiEjW3ycz5nkSRpU4/fRtgHqNH9yQ/H9q2hby89dfhtsVyTF4e5CZqeEQRERGfJWPQPIlgyJAV\nvPvuc/TrN5oOHdrz559QVwfLltm6ro6/twWv//wT6mOsjGvd2l0yFO++Vq0S89qJiIgEKJnx0Qkn\nLOaWW87n4ov3ZPDgTaI+r74eVq9uOuFpbl+4Y/74A2prmz5/9erYfsYWLfxJotq0gZyc5uNLhOCR\nLOvq6ujVqxfjx48nLy8PCD84lIiIxM/LZGZv4DBscLmNscHzmvs6KfDw/lkjJ8dKWlq3hg02SO69\n166NPmGKJZn65Zemz6+riz3WZCdRgbWSFRGR5PIimekKzAD29OBakuJatID27W1JpnXrYNWq2BKm\naJKp336DxYubPn/duthibdWqcYKTnw99+0K/fg3rrbdWFZyIiFfcJjOtsAHoBjnPP8QmjTzQeX4/\nNn/RYKCbs60aG/4/UV2wJQPl5jaUjCRTfT2sWRNfwhR4vHgxLFgAzzwDvzqzjrVqBdtu2zjB6dsX\nevdO/s8oIpLu3CYzY2lIZEqwrtUDsGSmHjje2ZcDHIpN6tgXuAZ4xOW9RRIuJ8cSj1at3Ffp1dfD\nkiXw6aeW3ATWd90FPzkTYuTmQs+eltwEJzp9+kDHju5/nlRTUVHBVVddBUBRURGXXHIJJSUlPkcl\nIunGbTJzhLOeTdNjxNQDj2MlMnOxqQvmAZ+5vL9I2sjJga5dbdkrZAjHX39tnOB8+inMmAGLFjUc\n0737+iU5/fpZNVY6qqiooKysjNraWgBqamooKysDUEIjIjFxm8wMdNYPRNifQ+PqpC+xgfb+CZyL\nzXckkvU22gh23dWWYL//DgsXNk50Zs2Cm25qaMvTpcv6JTl9+8Kmm/rXoysa5eXlfycyAbW1tZSX\nlyuZEZGYuE1m8rFk5augbauCHrcDVoac8yKWzGiCRpFmdOgAO+5oS7C6Ovj884Yk59NP4dVXrcoq\n0H2+U6eG5CY40enePTUGUVyzZk1M20VEInGbzKzCumAHJzC/BT3enPWrkuqC9olIHPLyYLvtbAm2\nZg189VXj6qoPPoDKShtHCKBdO0tsQhOdggJomcSRp1pGuFmk7SIikXgxa3YfrHt2wGJsnqUOwFDW\nT2b6OWv1ZhLxWMuW0KuXLYcd1rB93Tr45pv12+U8+SQsX27HtG5t5wWX4vTrZ72u2rTxPtbS0tJG\nbWYA8vPzKS0t9f5mIpLR3CYz1VgyMwh4xtlWD7yK9Wgah82k/ZezrxNwofPYi8kpRSQKubmw1Va2\njBzZsL2+3npShfawevll63kFNrbQ1luvX5LTp4+78YYC7WImTZrEV199RUFBARMmTFB7GRGJmdtk\n5gXgWOBg4Oqg7bdhycwgrNfS40B74BAaqpfuc3lvEXEpJwe6dbNln30a71u6dP2SnAcegG+/bTim\nR4/1Gx737WsNmqNRUlLCwIEDKSwspKqqisGDB3v3w4lI1nCbzDwGXApsAWyN9VYCmAVUYGPPbAOE\nlhs/iyU8IpKiOneG3Xe3JdiKFdbDKjjJefxxuOGGhglQu3Vbvwt5v36wySap3cNKRNKT22TmV2Cr\nCPtOBt5y1v2de32GlcjcCKx1eW8R8UHHjrDTTrYE+/NP+OyzxqU5L74It99uDZPBxsQJLclZuzZ9\n53XQoH8iqSGR3QbqgWnOIiIZrm1b2GEHW4KtXg1fftm4JOf99+H++wMTiG4HLOShh9qx7bbpM9Kx\nBv0TSR0pMNqEiGSyVq2ssfDhh8OECfCf/0B1Naxcad3Ir7/+S+BDysu3YIst4LzzLPlJdU0N+ici\nyaVkRkR8EZiHas89lwPH8OST8znzTCux2XZbOOQQeP75hnY4qUaD/omkDiUzIpISunZdzdVXW2+p\nu++2cXH23RcGDLB2NytDxxL3mQb9E0kd0SYzNdiUBV4vIiKNtG0LJSXw4Yc23k2fPnDmmbDFFlBW\nBl9/7XeEprS0lPyQWT416J+IP6L9F6JHQqMQEQmRkwN77mnLokXw73/b3FPXXw+HHgrnnAPDh/vX\n1VuD/omkjmiTmeYGuNvBWQCWAR8AzvihdMVm1+7kPP8I+DCGGEUky/XoAZMnw6WXWgPim26Cvfe2\nuanOOQeOPdbmnEo2DfonkhqirWYa28TyCjbf0nfA0UAXYB+g2Fn2drYdDXzrHPsacILr6EUkq7Rv\nD6ecAvPmwQsvWAPiU06xmcDHj7d2NiKSfdw2AN4RuANYCuwMVAHhmvKvcfbt7Bx7G7BTmOMSrQMw\nGRuB+GdgHTaCcTTGOseHW7p4HaiIRJaTYyUzjz8OX3wBY8daI+GCAjjySHjttdTtBSUi3nObzJyH\nVVVdDfwQxfE/Ose2As53ee94bIyNSNwKmOlsi/VP3lgsKQteaps6QUQSp6AAysvhu++s+mnePBg2\nDAYPhnvuCQzMJyKZzG0yMwxLBt6O4Zx3nPVuLu8dj6+BjYC9gP+N8xrzgXdDFg0sIeKzDh3gjDNs\nhOE5c2Dzza1XVPfucMkl8P33fkcoIoniNpnZxFm3ieGc1iHn+iXePhCaJk8kheXmwn77wVNP2VxR\nxx5rJTZbbQXHHANvvaUqKJFM4zaZ+Rn7cj8whnMCx/7i8t5+eQoriVkKPIJNoikiKWjbbeHGG60K\n6vrrbRqFXXeFIUNspOG//vI7QhHxgttk5kVnfR6wexTH7+YcG3xuuvgRuAo4ERgOTMQaMb+NzZQn\nIilqgw3g7LNh4UKYNQs6d4YxY6zL92WXwY8/+h2hiLjhNpn5F7AayAOeB27ExpQJrorJAQYBU7EE\nJg9YBVzr8t7JNgf4J/A08DpwK7AH1mboCh/jEpEo5ebCgQfC7Nk2g3dREVx3nSU1o0fDu+/6HaGI\nxMPtJCKfAscD92NtYc4GzsKSlVrsi76zsy+Q4KzBegQtcHnvVLAIeAPr0RTRuHHj6NSpU6NtxcXF\n9O7dO4GhiUhT+vSBW26Bq66yXk8332wD8u28sw3Ed8QR0Lp189cREfcqKyuprKxstG3ZsmVRn+/F\njGgzsLmb/g0MxpKWNkC3MMdWA2dgPYAySZPNCadOnRp2ZNDq6uqEBSQi0enUCc47zxKYp5+2NjbH\nHgvdusHpp8Opp0IXjSQlklDFxcUUFxc32lZdXU1hYWFU53s1a/Y72AB6OwOXAA9hA9M9iyU7E4Ch\nzjGZlMgUYFVNb/kdiIi406IFHHIIPP88zJ9v8z9dc4117R471hoPi0hq8nqu+sC4K6lsJNAe6Og8\n7w8UOY9nAX8C04AxWLLyrbPvOazNzyfA71ij3wuxarOJyQhcRJKjf38bUfjqq2HaNKuOuvde2G03\nK8EZNQpatfI7ShEJ8KpkJp3cCjyMJSz1wJHO84doGPsm11mCGzLPA47D2gfNBsqwRs87Ym2HRCTD\n5OdDWRl8+SU8+qglMEcfbaMOX3MN/JKuA0yIZBivS2bSQc8ojjmB9SfC9GP6BRFJAS1bWmnMqFHw\n0UfWWPiKK+Dyy+GAA7YEtvc7RJGsFm3JTKInhfRj0kkRkZjtsAPcfTd8+62NUfP22xsAHzF9eleN\nLCzik2iTmXeAJ7AxZLw0GBtRN5a5nUREfLfxxjB+PDz++HzgKm6+eXNOOQVWr/Y7MpHsE20y8ytw\nMDAXawg7BmtEG48NgBKsMe372PQGv8Z5LRERX1lD4IlceunX3HuvDcq3fLnfUYlkl2iTmV7AHcA6\nYB9gOrAYeAybfXofrPFs6PVyga7A/liPn1nYtAB3Y1MCrAFud64vIpK2Dj20ljlz4P33bf6nr7/2\nOyKR7BFtA+ClwOlAOTZmzLFAO+BQZwmuKf4NWIGVwAS6P4fONP0X8B/gGuDLeAIXEUk1e+1ls3If\neCAMHQpPPmmTWopIYsXaNfsLrJfPlljX5Pew0pqcoGVDYAssmQlswznuXeAC5/yTUCIjIhmmTx94\n5x3YemvYc0945BG/IxLJfPF2zV6MldKUY6UvuwFDsCkMNsESmmXAz8APWBLzBrDSZbwiIilvk03g\nxRdt5OCiIpg8GS64AHJCy6hFxBNejDOzAhtEbrYH1xIRyQh5efDgg1ZCc+GF8MUXNpKwRg4W8V42\nDponIpIUubkwaRJssw2ccgrU1EBVFWy4od+RiWSWbJzOQEQkqU44AebMgXfftfmdFi3yOyKRzKJk\nxicVFRUUFdn8lkVFRVRUVPgckYgk0t57W0+nlSutp9N77/kdkUjmUDLjg4qKCsrKyqipqQGgpqaG\nsrIyJTQiGa5vX+vp1LOn9XSaOdPviEQyg5IZH5SXl1NbW9toW21tLeXl5T5FJCLJ0qWL9XQ6+GA4\n4ggoL0dzOom4pGTGB2vWrIlpu4hklrZtYcYMm9vpggvg9NNBH3+R+Kk3kw9atgz/skfaLiKZJzcX\nrr7aum6fdppNf/Dww7DBBn5HJpJ+VDLjg9LSUvLz8xtty8/Pp7S01KeIRMQvJ54IzzwDb78Nu+8O\n33zjd0Qi6UfJjA9KSkqYMmUKBQUFABQUFDBlyhRKSkp8jkxE/DBiBLz5JqxYYT2d3n/f74hE0ouS\nGZ+UlJRQVVUFQFVVlRIZkSzXr5+Vzmy5JQwbBo895ndEIulDjTRERGJUWVlJZWUlAHV1dfTq1Yvx\n48eTl5cHQHFxMcXFxTFft2tXeOklGDMGDj/cejqNG6c5nUSao2RGRCRG8SYr0WjXzhoCX3wxnH8+\nfP453HQTqH+ASGRuPx6XArGOkFAP1AHLgc+BucBvLuMQEckYublw7bXW0+n0021Op4ceUk8nkUi8\nSGbcWgU8AVwMfOHB9UREMsLJJ8NWW0FREeyxBzz1FHTv7ndUIqknFRoAtwaKgA+BET7HIiKSUvbd\n13o6LV9uPZ3mzvU7IpHU4zaZyQV6Au86z2cCo4DuQFtn2RI4HAi0zX8H2AbIB4YBtwHrgHZAFdDZ\nZUwiIhmlf3/r6bTFFtbT6Ykn/I5IJLW4TWY6As8ChcCRwBHA48D3wF/O8h2WyBzuHLOjc0498Dpw\nJnAQltBsCJzlMiYRkYyz6abw8suw//5w2GFw442a00kkwG0yMw7YFitdeSSK4x8BbgcKgAuCts8B\nHnAeH+AyJhGRjNSuHfz3v1Baal22zz5bczqJgPsGwEc561gmsn8UK40ZBUwM2v4EMAargkqUDsA/\ngYHAIKxK63JniUYXYDJWktQO+Ai4BHjR80hFMliixmnJBrm5MGUKbLMNnHmm9XSaMQM6dvQ7MhH/\nuE1memLVRctjOCfQDbtHyPZFzjqRnQ83Bk7GGhvPBE4i+q7lbYAXsPjOAZZgVWKzsYbLr3odrEim\nUrLi3qmnWk+nI49s6Om0xRZ+RyXiD7fVTKuBHGC7GM4ZEHRuuFiWuYypKV8DGwF7Af8b47knAv2x\n0qhKLLEpAj7DSmtERJJq//3hjTfg11+tp9MHH/gdkYg/3CYz85z1BUBeFMe3Bcqcx/ND9hU4659d\nxhStWAcIHwUsxHpjBazF2voMAbp5FJeISNS22856Om22mZXQPPmk3xGJJJ/bZGaas+4PvERDqUs4\n2znH9As5NyAwxsw8UtMA4OMw2wPx9k9iLCIif+vWzXo67buv9XS66Sa/IxJJLrdtZu7DqloOAoZi\nDWI/xKYoWOIc0xXrjr1D0HlPAfcGPe9EQ2PiZ1zGlCj5QG2Y7YFtGh9HRHzTvr31dLroIjj3XPji\nC7jhBmjRwu/IRBLPbTJTj40tczPWsDYH6yU0qInj7wLODtneAvgfZ//7LmMSEclKLVrAdddZT6ez\nzrKeTpWV0KGD35GJJJYX87CuAk4F7gBOAfYBtg455kusweydQHWYaywFXvYglkRaipXOhMoP2h/W\nuHHj6NSpU6NtxcXF9O7d27voREQcp51mPZ2OOqqhp9Pmm/sdlUhkwcM1BCxbFn1/IC8nla8GTnMe\n52FVR2C9k+o8vI9f5gHbh9ke6MkV2qD5b1OnTmXw4MHrba+uDpfXiYi4d8AB8PrrcPDB1tPpqadg\n4EC/oxIJL9xwDdXV1RQWFkZ1fqImmqwDfnKWTEhkwMal6YP1XApoCYwG3sZ+VhGRlLH99vDOOzYV\nwu67w6xZfkckkhipMGt2so3EGi0f4jzv7zwvwrqOg/W0Wo1NmBlQAXyCTYZZjPW+ehibzuGihEct\nIhKHbt3glVdgxAg49FC45Ra/IxLxnpfVTOniVhpGH67HJr880nncE/gGS/JyaTwWzSqsPdBkrMFz\nO+ADLDl6LRmBi4jEo317eOQRKCuz+Zy++ALKy9XTSTKHl8nM3sBhWLuSjbFSjuYGpitoZn8i9Izi\nmBOcJdQSYKyn0YiIJEGLFnD99dbT6eyz4auv4MEH1dNJMoMXyUxXYAawpwfXEhGRBDrjDOvpdPTR\nMGyYNQzebDO/oxJxx22bmVbA0zQkMh86zwPuB2YBPwZtq8YG2wseNE9ERJLkwAOtp9OSJdbT6aOP\n/I5IxB23ycxYGgbIKwEGA+Od5/XA8VhD2y2wuY1+BPoCTxK+GkdERJJghx2sp9Mmm1hPp2ef9Tsi\nkfi5TWaOcNazgelNHFcPPA4Mw3oJ3Qv0cnlvERFxYfPN4dVXLZk54ghYuNDviETi4zaZCQzB9ECE\n/aENgL8liRaNAAAgAElEQVQEpmI9gc51eW8REXGpQwd4+GHo3h1GjYIVK/yOSCR2bpOZfKzU5aug\nbauCHrcLc86LznpEmH0iIpJkHTvCzJnw/fcwdizU1/sdkUhs3CYzq0LWAL8FPQ43G0hdE/tERMQH\nvXvDfffBo4/C5Ml+RyMSG7fJzDdYVVLXoG2Lgd+d7UPDnNPPWSv3FxFJIYcdBhdfbMvzz/sdjUj0\n3CYzgZkSBwVtqwdedR6PA9oE7esEXOg8XuDy3iIi4rErrrCpD445BhYt8jsakei4TWZecNYHh2y/\nzVkPwmabnoJNIzAPm6wRbKwZERFJIS1a2MjAHTvC4YfDn3/6HZFI89yOAPwYcCk2jszWWG8lsIHy\nKrCxZ7YBSkPOe5aGhEdERJKssrKSyspKAOrq6li0aBE9evQgLy8PgJNPPoMrrzyAM8+EadMgp7nJ\naUR85DaZ+RXYKsK+k4G3nHV/516fYSUyNwJrXd5bRETiVFxcTHFxMQDV1dUUFhZSWVnJ4MGD/z5m\n882td9PQoXDqqT4FKhKFRM6aXQ9McxYREUkzxx8P775rE1PusAPsvLPfEYmE57bNTDy6YnM5DfPh\n3iIiEoMbboAdd7QRghcv9jsakfD8SGYOAF5yFhERSWGtW8N//wtr19pM26tX+x2RyPr8SGbUjExE\nJI1sthlUVcEbb8BFF/kdjcj6/EhmREQkzeyxB5SXW7WT0wlKJGUomRERkaicfTYcdxycdBLMm+d3\nNCINlMyIiEhUcnLgzjth221thu1ly/yOSMQomRERkai1awePPAJLl8I//gHr1vkdkYiSGRERidHW\nW9uUB7NmwVVX+R2NiJIZERGJw8iRcPnlcNllltSI+EnJjIiIxGXCBDj4YBg9Gr74wu9oJJvFMp3B\n8dgUBW7t5sE1RETEZ7m5cN99sNNONsP2W29B+/Z+RyXZKJZk5h4smdGgdyIiAkCnTjBzpk1Gecop\n8MADmmFbki/WaiYvf0X16y4ikgEGDICKCmsUfNNNfkcj2SiWkpkSj+/tRZVVPDoAVwFHAvnAQuBa\n4KFmzhsLVETYtymwxKP4RETSztFH2wzbpaUwaBAM01TCkkSxJDPTExVEkj0K7AhcBHwGHAdUYqVU\n0QzSPRZLgILVehifiEha+te/oLoajjoK5s6FzTf3OyLJFrEkM5ngQGAEUExDScwrQA9girOtuSGg\n5gPViQpQRCRdtWwJDz0EgwdDURG8/DK0aeN3VJINsq1r9ihgBVAVsv0eYDNgaBTXUFsfEZEIunSx\nEYKrq+G88/yORrJFtiUzA4AFrF/6EpgyrX8U13gKWAMsBR6J8hwRkZRUUVFBUVERAEVFRVRURGoa\nGL2hQ+Hmm+G222D6dNeXE2lWtlUzdQbCDe1UG7Q/kh+xhsNvA78B2wPjnee70pAQiYikhYqKCsrK\nyqittT+BNTU1lJWVAVBS4q7Px8knW4Pg006D7be3qieRRMm2khk35gD/BJ4GXgduBfbAemVd4WNc\nIiJxKS8v/zuRCaitraW8vNz1tXNy4JZbYLvtbEC9pUtdX1IkomwrmVlK+NKX/KD9sVgEvAHs3NRB\n48aNo1OnTo22FRcX07t37xhvJyLinTVr1sS0PVZ5edZ+prAQiovhmWegRQtPLi0ZprKyksrKxh2K\nly1bFvX52ZbMfIz1ZMqlcbuZ7Zz1/Div2+SYOVOnTmVwmDLW6mp1ihIR/7RsGf4rINL2eGy5JcyY\nAfvtBxMnwtVXe3ZpySDFxcUUFxc32lZdXU1hYWFU52dbNdNMbNC8opDtY4HvgXdivF4BVtX0luvI\nRESSrLS0lPz8/Ebb8vPzKS0t9fQ+++wD114L11xjUx+IeC3bSmZmA88BtwEbAF9iJTX7YYPnBUpY\npgFjsGTlW2fbc8CLwCfA71hpzoVYz6aJyQlfRMQ7gUa+kyZN4quvvqKgoIAJEya4bvwbzgUXWIPg\n44+Hvn2hTx/PbyFZLNuSGYDDgUlYo918rKv2McDDQcfkOkvwmDLzsISnO9AWm77geeBKwveQEhFJ\neSUlJQwcOJDCwkKqqqrCVol7ISfH5m8aOhRGjbLEpmPHhNxKslC2VTMBrATGYYPk5QGDaJzIAJwA\ntAC+Cdp2PjZOzYZAa2AL4HiUyIiIRKVjR6tm+v57GDsW6v2aoU8yjtfJzNbAaOACrOplE4+vLyIi\naax3b7jvPnj0UZg82e9oJFN4lcwMxOY4+gy4F5gMXMb6yczZwM9YaUYrj+4tIiJp5LDD4OKLbXn+\neb+jkUzgRZuZkdhM1KHTiYWbw+g+4FpsrJeDsd5FIiKSZa64At5/H445xmbY7tEj9msEj01SV1fH\nokWL6NGjB3l5eUD47r6SmdwmM12BGVgiswCrXnoNG+4/XG3ocuBJ4CgsCVIyIyKShVq0gAcfhB13\nhCOOgNdft0H2YhGcrATGJKmsrExYI2ZJXW6rmcYBHYHvgN2BZ7Buy0152VlHNxKOiIhkpM6dre3M\nJ5/AGWeoQbDEz20yM9JZ3wD8GuU5C5z1Vi7vLSIiaW7QILj9drjnHrjzTr+jkXTltpqpJ1ad9GYM\n5yx31hphQEREOP54eO89OPts2GEH2LnJ2e5E1ue2ZKa1s/4rhnM6OOuVLu8tIiIZ4vrrYaedoKgI\nFi/2OxpJN26TmcVYr6UtYzhnkLP+3uW9RUQkQ7RuDVVVsGYNHH00rF7td0SSTtwmM4EJFg+O8vgc\n4CTn8Wsu7y0iIhlks80soXnjDbjoIr+jkXTiNpl5wFkfDwyJ4vjrsQkaAaa7vLeIiGSYPfawKqcb\nboAZM/yORtKF22RmFvAsNprvs8C5wKZB+1sBm2Pjyrzu7Ad4CHjH5b1FRCQDnXUWHHccnHgizJvn\ndzSSDryYzuBoYC6wAdZFO9AWJgeoxiZrnAHs6mx/i4aqJhERkUZycqyb9rbb2gzby5Y1fXxFRQVF\nRUUAFBUVUVFRkYQoJZV4kcwsB3YDJmEj/wZPY5AT9HwlNpXBcNSTSUREmtCunQ2ot3Qp/OMfsG5d\n+OMqKiooKyujpqYGgJqaGsrKypTQZBmvJppchc2SvQVwCHA5cBtwJ5bkFDn7LgbURl1ERJpVUGBT\nHsyaBVddFf6Y8vJyamtrG22rra2lvLw8CRFKqvBioslgv2PtaGZ5fF0REclCI0fC5ZfDpZdCYSEc\ndFDj/WvWrAl7XqTtkpm8TmZEREQ8NWGCjRA8erTNtL311g37WrYM/zUWabt4K1VmLte7LSKShUK/\nhHr16sX48eOT/iUUjdxcuP9+GyF41Ch46y1o3972lZaWUlZW1qiqKT8/n9LSUp+izS6pMnO5l8nM\nxsAu2HxNHYEWUZxzhYf3FxGRKKVSshKNDTe0BsFDh8Ipp8ADD1ivp5KSEgAmTZrEV199RUFBARMm\nTPh7u2QHL5KZbthgeEdgCUxO04f/rR4lMyIiEqUBA6CiAo45BoYMgXOdkctKSkoYOHAghYWFVFVV\nJb1UQPznNpnZBJsxu0cc50ab9IiIiAA2b9N778EFF8CgQTBsmN8RSSpw2zX7choSmSpgb6y6qaVz\n7eYWERGRmFx7Ley+Oxx1FHyvKYsF9wlFYILJ+7GRgF8GaoEIwxuJiIi407IlPPSQrYuKYNUqvyMS\nv7lNZrpgbV801KKIiCRNly7wyCNQXQ3nned3NOI3t21mfsCqmX73IBYREZGoDR0KN98Mp54Km2yS\n73c4Wa2mBsaP74k1pU0+tyUzr2ANebf3IJZk6ABMxSbD/BP4AKsei0YXYDrwMza31JtYGyEREfHJ\nySfb7NrXXLMlcFrEOZwkMdauhRtusJ5mH3/cHtjSlzjcJjPl2FxLpUCe+3AS7lFgDHAZcADwHlAJ\nNDfYQhvgBWAv4BzgUGAxMBtQW3oREZ/k5MAtt8CBB9YCt1FS0ot58/yOKjt8/DHssguUlsJJJ0FV\n1afAXF9icZvMzAdOBPoAzwG9XUeUOAcCI4DTgbuwUqVTsLin0PRrcSLQHzgKS35ewCbP/AyYnLiQ\nRUSkOXl5MHHiN8Ae/P57CwYPhvHj4Y8//I4sM9XVwSWX2FxZK1fCG2/AjTdC+/b+FYt5MWjeA0AN\n8CTwCfAx9iUfza9RModoHAWswLqQB7sHeBAYCrzVxLkLgXeCtq3FfvarsYEDf/QyWBERadr6UzIs\noXv3I2jd+limTDmKiopV3HdfBw44wOdAM8irr1rV3tdfw8SJljS2bg0VFRVc5UxtXlRUxCWXXJLU\nUZi9SGa2w0YA7uQ8H+gszaknucnMAGAB63cbDxRI9idyMjMAK8kJFXyukhkRkSRqakqGzz+H005r\nzciRNmLwDTfAppsmOcAMsnw5XHQR3HEH7LorzJwJ/frZvoqKikbzY9XU1FBWVgaQtITGbTVTT+Al\nYKegbb8D3wHfRLEkU2dsDJxQtUH7I8l3ca6IiCTZttvC88/DfffZum9fuPNO1EA4Do89Zq/fgw/C\nv/8Nr73WkMgAlJeXN5roE6C2tpby8vKkxeg2mZmIfdHXY+1OegIbYM2Zt2pm6eny3iIiIhHl5MA/\n/gELF8Lhh1sX7j32gPnz/Y4sPfz4ow1KOGqUtY/55BM44wybxTzYmjVrwp4faXsiuK1m2sdZTwUu\ncnmtRFtK+BKU/KD9TZ0bbhCDaM5l3LhxdOrUqdG24uJievdO5fbSIiKZoXNnmDYNxoyxhGbQILjw\nQmvE2rat39Glnvp6e70uuADatLHRlo880pLDcFq2DJ9KRNoeTnD7p4Bly5ZFfb5bf2INYXdN2h3j\ndwfwG+uXRh2DtaPZuYlz5wCfhtk+3jk3Uk3sYKB+7ty59eHMnTu3vqn9IiLirbq6+vrLL6+vb926\nvr6goL7+2Wf9jii1fPZZff3w4fX1UF9/wgn19UuXNn/OtGnT6vPz8+uxWpp6oD4/P79+2rRprmIJ\nfEc636VNclvNFGj0mg4zY8zEBs0rCtk+FhtE753QE0LO7QMMCdrWEhgNvA385FmUIiKSMG3awD//\naWOkbLkl7LcfHHccLFnid2T+Wr3aJvDcfnv45ht47jmoqID8KAZWLikpYcqUKRQUFABQUFDAlClT\nktqbyW0yMwcbAXhIcwemgNnYmDK3ASdhA+DdCewHXIhlfwDTsIEAuwedW4F1O6/CBtgbATwMbEvq\nV6+JiEiI3r3hxRdh+nSYMwf69IG7787OBsJz58KQITBhApx9NsybByNGxHaNkpISqqps5JOqqqqk\nJjLgPpm5Dhu75ULSo0fP4dgM31cAz2C9sI7BBsILyHWW4NrBVVj7oJeAm4EngK7ASOC1hEctIiKe\ny8mB44+3BsKHHmrjpwwfDp+Ga1SQgf74A8rKLJEBePddmDwZ2rXzN654uE1mvgSOwHowvYGVcqSy\nlcA4YDNs+oVBWAlLsBOAFqzfdXwJViW1MdAO2A14MYGxiohIEmy8sZXQvPgi/PQTDBxoA8LV1fkd\nWeI8/7zNp3TLLXD11ZbIFBb6HVX83PZmegmrnvkZ6IVV5fwKfE50IwBrokYREUkJe+1lbWmuucaW\nGTPg9tthn32aPzdd1NbaXErTp1sp1Jw5NiZPunObzOwZZttGRNeGpr75Q0RERJInLw8uvxyKi60b\n94gRNlZNeTlssonf0cWvvh4efhjOOQf++svaB5WURO5unW7cJjOvujhXyYyIiKSkPn3gpZesBOOC\nC2DWLLjuOhg7Nv0SgG+/tcHunnrKBsG76Sbo1s3vqLzlNpkZ7kUQIiIiqSY310ovDj7YEpqSErj3\nXqt66tPH7+iat24d3HabTQa5wQY2n9Jhh/kdVWK4bQAsIiKS0bp0sTmennsOvv8edtgBLrsstRsI\nf/qpTd1w1lkwerQ9z9REBpTMiIiIRGXECGsgfOGF1gNohx2sKiqV/PWXtfkZNAh++QVefdVKZzbc\n0O/IEkvJjIiISJTatoUrr4QPP7QGwXvvbe1ofvnF78jgrbdg8GC46iobP+ajj6x0JhtE22Zmy6DH\n30TYHo/QsVxERERSXr9+VupRUWGJw1NPWY+nMWOS30B4xQobvfeWW2DHHW1E3+23T24Mfov2JV9H\nQ++jFhG2x3rf+pBrZaLBwNy5c+cyeLDNkxU8M2hdXR2LFi2iR48e5OXlATabdnFxsV/xiohIjBYv\nhvPPhwcftLFqbr8devVKzr1nzYLTT4elS2HSJJuOoEUSv1kT+Z1WXV1NoY3kVwhUN3VsLMlMQG6E\n7fHI9Gqu9ZIZERHJTM8+a4nFd99ZSclFF9nElomwZAmMGweVlbD//pZAbbVVYu7ll1iSmWirmUoI\nXwLjZiYpjTMjIiIZY7/9YP58a1Nz5ZWWaNxxBwwbFv74eEo16uvh/vvhvPOsOuv++23W73Qb+8Zr\nsfz4gSql7YAsmYbLNZXMiIhkofnzbQThN9+08WkmT4bOTUzHHCiFaOr7oqbGrvncc3DssTB1anqP\nStycWEpmYq3myfLcT0REpHkDBsBrr1n1zyOP2CB7999vJSuxWrsWrr/ervl//wdPPw3/+U9mJzKx\nijWZUdWQiIhIFHJzrSRl4UIbo2bMGNh3X/j88+iv8dFHsMsuNgLxSSfBJ5/AyJGJizldZXoDXBER\nEV9tuqm1n3n6afjyS9huO+t5tGpV5HPq6qwR8Y47wh9/WHXVjTdChw7JizudKJkRERFJgpEjrWRl\n3Di49FIYOBBef3394155xUYXvu46+Oc/oboadt45+fGmEyUzIiIiSdKuHVx7rSUoG2xgI/SefDIs\nX94C2JBJk7ozfLi1h/nwQ5g4EVq39jvq1KdkRkREJMm23x7eeANuvRUefhiKivoBnzJnTj633mqj\nC/ft63eU6SPacWYCcoA5wGqX9w2MAFzg8joiIiJpqUULG2Tvf/4HTjxxBbNnv0FVVR9GjtzO79DS\nTqzJDMDmHt1bPaNERCTrbbYZTJr0NbNnH0XXrnP9DictxZPM/ACs8eDeSmZERETEtViTmXpgf+CT\nBMQiIiIiErN4GgCrREVERERShnoziYiISFpTMiMiIiJpTcmMiIiIjyoqKigqKgKgqKiIiooKnyNK\nP9mWzHQApgLfA38CHwBHR3nuWGBdhKWL14GKiEjmq6iooKysjJqaGgBqamooKytTQhOjWJOZnIRE\nkTyPAmOAy4ADgPeASqA4hmuMBXYOWWq9DFJERLJDeXk5tbWNv0Jqa2spLy/3KaL0FEvX7MBovd8l\nIpAkOBAYgSUuDznbXgF6AFOcbeuiuM58oDoRAYqISHZZsyb8sG2Rtkt4sZTMfO0s6foKjwJWAFUh\n2+8BNgOGRnmddC+dEhGRFNGyZfgyhUjbJbxsajMzAFjA+qUv85x1/yiv8xSW0C0FHonhPBERkUZK\nS0vJz89vtC0/P5/S0lKfIkpP2ZTMdCZ825baoP1N+RG4CjgRGA5MBHYC3gY0K5iIiMSspKSEKVOm\nUFBgLTkKCgqYMmUKJSUlPkeWXtK1HGs48GKUxw4EPvbgnnOcJeB1YBZWsnMFVo0lIiISk5KSEgYO\nHEhhYSFVVVUMHjzY75DSTromMwuBk6I89htnvZTwpS/5QftjtQh4A+vRFNG4cePo1KlTo23FxcUU\nF8fSiUpERCQzVVZWUllZ2WjbsmXLoj4/XZOZn4BYO+F/jPVkyqVxu5lAFdF8F/E0OV/V1KlTlWmL\niIhEEO4f/OrqagoLC6M6P5vazMzEBs0rCtk+FhtE7504rlkA7AG85SoyERERiVu6lszEYzbwHHAb\nsAHwJVZSsx9wHI1LV6Zhg+sVAN86257D2ul8AvyOlehciPVsmpj48EVERCScbEpmAA4HJmENdvOx\nrtrHAA+HHJfrLMFjyszDkp7uQFtgCfA8cCXwRUKjFhERkYiyLZlZCYxzlqac4CzBzk9IRCIiIuJK\nNrWZERERkQykZEZERETSmpIZERERSWtKZkRERCStKZkRERGRtKZkRkRERNKakhkRERFJa0pmRERE\nJK1l26B5IiIiKSF4pui6ujp69erF+PHjycvLA8JPvijhKZkRERHxgZIV76iaSURERNKakhkRERFJ\na0pmREREJK0pmREREZG0pmRGRERE0pqSGREREUlrSmZEREQkrSmZERERkbSmZEZERETSmpIZERER\nSWtKZkRERCStKZkRERGRtKZkRkRERNKakhkRERFJa0pmREREJK0pmREREZG0lk3JTAdgMvAs8DOw\nDrg0xmt0AaY7568E3gT29i5EERERiVU2JTMbAycDrYCZzrb6GM5vA7wA7AWcAxwKLAZmA8O8CrKy\nstKrS4lIGtFnXyR+2ZTMfA1shCUj/xvH+ScC/YGjgEossSkCPsNKfDyhP2gi2UmffZH4ZVMyEywn\njnNGAQuBd4K2rQUeAIYA3TyIS0RERGKUrclMPAYAH4fZPs9Z909iLBIk3f6j9TveZNzf63t4cT03\n14jnXL/f50yXjq+v3zGn42c/WkpmopcP1IbZHtjWOYmxSBC//0DEyu940/EPmpIZCZWOr6/fMafj\nZz9aLX25q3vDgRejPHYg4UtUkmbBggVRH7ts2TKqq6sTGE3mSbfXzO94k3F/r+/hxfXcXCOec2M9\nx+/fi3STjq+X3zGn22c/lu/OeNqOpIJNgQOjPHYm8GvIto2BJcBlwBVRXucH4FXgmJDtBwFPAvsB\nz4fs6wa8B2we5T1ERESkwQJgH+DHpg5K15KZn4CKJN9zHrB9mO3bOev5Yfb9COyEGgeLiIjE40ea\nSWSy2cbYoHn/jOGc05xzhgRta4klMW96F5qIiIhIZCOxsWFOwBKTh5znRUDboOOmAauB7kHbWmOl\nM4uAYmAE8CjwF7BHogMXERERAajBkph12BgxwY+3DDrunjDboGE6g1+AP4A30HQGIiIiIiIiIiIi\nIiIiIiIiIiLJ0Bpr1/MNsBx4C9jF14hEJFlOB6qBVcClPscikhI0nUF6agl8BewKbAjcBjxB4x5Z\nIpKZfsCGlXgMqPc5FhERTy2lYQA/Ecl8d6GSGRFAJTOZog9WKvOl34GIiIgkm5KZ9NcOuB+4Ehv7\nRkREJKsomUkPxwErnGVW0PZWQBU2pcI1PsQlIokV6bMvIpJwHYDJwLPAz9gow5HqtjsAU4HvgT+B\nD4Cjo7hHLjADmxVcSalIakjGZz/gLmKbX04kY+lLMDE2Bk7GSk5mOtsi9Tp4FBgDXAYcALwHVGLz\nPzXlDqArcAz2B1NE/JeMz34LIA/r1djKeay/5SKSUJ2JPEP3gc6+0P/G5gDfEfkPVA/nvJU0FEGv\nAHbzIF4R8UYiPvtgyc+6kGWMy1hFRJq0MZH/oN2FDXoX+ocrUNqigfBE0pc++yJJoqJJfw0AFrB+\nNdE8Z90/ueGISJLosy/iISUz/uoM1IbZXhu0X0Qyjz77Ih5SMiMiIiJpTcmMv5YS/j+w/KD9IpJ5\n9NkX8ZCSGX99DPRl/fchMMfS/OSGIyJJos++iIeUzPhrJjZwVlHI9rHYQFrvJDsgEUkKffZFPNTS\n7wAy2EigPdDRed6fhj9cs7ARP2cDzwG3ARtgE0UWA/thw5hHGmxLRFKXPvsikjFqaBjQam3I4y2D\njmuPDWn+A1CHDWl+VFIjFREv6bMvIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiKSgbYC/ut3EKku1+8AREREJKx9gVeAfL8DSXUt/Q5AREREGikE\nrgS+Af70ORYRSTNjgXXOsqW/oYikvNbA/2Gfl6I4rzEWfeaa8zLwYgzH34K9nvclJJoUpWomiWQ4\nDX9kolmO9yXKxKj3O4AYDSd73yvxz3nAtsDHuG/TkW6fuVR2NfAXcByws8+xJI2SGYlWfRRLusuE\nnwGy470Sf3UCxmO/S5f6HIs09gNwF5ADXONzLEmjNjMSjVudpSnfJyOQBLvXWdJZtrxX4q9zgQ2B\nL4DHfY5F1nc9cBawJzAMeNXfcBJPyYxEYwnwqd9BSFT0XkmitQHOcB4/4GcgEtHXwBvAbsA4siCZ\nUTWTiIjE4mBgE6yKSclM6gq8Nwdh71dGUzIjidQa+w/uJeBnYBXwEzALa5yW08S507HGqjXN3GMs\nTfeGuCxoP1jR+ETgA2AZjRvENnetYLsDFVgx+0rgd2ABcBNQ0MR5scSTLPHGFO9rELARcC2wEOt+\nugR4joaeMWNp+v2Yjje/IwFevad5QBlQDaxwlneAM4EWzcQasBtwN9Zb6Dfss/Md8CT2mdrQOa4V\n9plaBzwTxXUHBMU6PspYQh3lrOcBXzVzbHPvcTQGAJcAc7DX4C/svfkc+x0YGuE8L1+bzbCfoxpY\nTsPfsnnAg9jno2PIOUOAt2JYDo4ixlg86qxbAYd7fG2RtDGchg/2P+M4fyvsiyC4F83akOevYn/s\nwpnuHNPcH8uxQdduKplZC2yDffGFxjQmymuBFbHfG+YawT/bX8AJEc6PJZ5oDcfdexVrTG5fA4B+\nWEPFSOffjX1BNPV+TMeb3xEv39MuwIch1wm+7uM0ncS3xb4cm4plHY0b3f7L2bYa+9JtyvXOsauA\nbs0cG0kgQbijmeOieY/H0vR7M5zGP3ek1+PqCDF48drsgSUwzcVwUDPXj9fLxNY1O9iXWGyVnkWT\notRmRhKhA/AC0NN5PhP7j/cH7D/cQMO03bH/NIfR8F9touQAj2B/pG4CngB+xbqWLorhOg8Dh2Dx\nPgJUYV+mucBgrH66D/aHejHwdBzxfBNDPF6KNia3r8GG2H/ZmzrPZ2DJxBKgN3A+UAJs5+UP1wQv\n39OZzrE3Yr/btc7ziUBf5z4nA3eGOT8XS3ZGOM8/wxpzvw/8gX0Z7wocSeMeaXdjJUEtsKTz2gjx\ntQJGO4+fBX6McFxT+mAJG8C7TRzn1XvcEislewr7Ql+IlVR1wUpSzgF6YCUpn2EJbjC3r00bJ/aO\nzlr41GwAAAnOSURBVH1vw0qalzjnbAXsgpV8pGIvwXewv8PD/A5ExC/DafiP499Af+yPR7gltD52\nStC5l0e4/v1Bx5wWZv90vC2ZCfx3NiLMMdFe60Qa/ks/JMI18rA/duuw/4pCq3JjiSdaw4n/vYo1\nJi9eg/Kg+10U5vyWwOygYxJZMuP1e1pH+C+OjbAvyHVYyU045wZd57/Yl2U4OaxfqvKyc97CCOcA\njAq6/qgmjmvKGBpey52aOM6r97gzsEET92mFJU3rsBLFcE0nXib+12bvoO0HNnF+C9avZvLK21hS\nEo+LaHh9u3sWkUgaGc76xbuRluAi7zbYf/PrsPrkSEXqHbF2NOuA+WH2T8f7ZOYuF9fKwero1wE3\nNHOdvkHX2cdFPNEaTnzvVawxefEatMFKK9ZhbXIi2RxLMBKZzCTiPZ3SxDWudo5Zw/pf0LlYe5B1\nWClYu2biCTU6KIZdIxzzhLN/MdG33QkV/OXYM8IxXr7H0dg+6BqDw+x389ocG3TtDnHGF48tsSQt\nMMLyWqwt1xysNChaJwWdv6O3IaYWNQCWaEU7CFshDY0TpxO56HUFVrwP9kWxaYTjvPQfF+f2A7bG\nfp6Hmjl2AfbHPAcrgk5EPE1xM2BeUzF58RoUYgOuQdNj+nyPFfcnktfvaT1Nv35znXUO638hDaSh\nTcddWLVSLP6LNdaG8G17ugIjnccPYF9u8Qgu2auNcEwi3+M22Bd9P6yksT8N32M5wA5hznHz2vwQ\ndO2SGGN14xtgf6xKLhdLsLZxtn0dw3UC71EOGd6jScmMROMy7MMUabki6NgBzrqe5otGg/cPiHiU\nN+qxYdfjFfivJgd4k+ZLQAKz3EZK0tzGE8llRP9exRqTF69BoI1EPfBeMz9LU20yvOD1ewpNV2X8\nGvQ4tEpikLOuJ74xQeqwhsNgvY3ahuz/B/b+12Pt1+K1YdDjFRGO8fo9bg/8L/AR1n7ma6w092Os\n9Lc66NjOYc5389q8TkPJ31Tsb9Z4LKGNVA2YSn4LerxhxKMygJIZ8VrwVPWLmzk2sD+HyL2avPRr\n84dE1CXocbTTBdSz/h9Or+JJlP9v7+xCpaqiOP6bUBFMK6kULbwvZdFDdSUrKO5AEFGIUA8VEV4h\n6OMhyMqXPrSH3i1ub4WU6EskvdhToJYSFbeyMCkyg0BMiyLwIz9melhns7dzZ5+POWdmjnf+Pxhm\n7px9991nrX3P3nvttdZOa1MVMgj1fDyjLVnXy9IPnZ5JudYKPndu81wdfO7FMRf8FuFCZoY+O4vE\n18DBHusHb+GAuC9LlToewyYsb2KTpAbp1saYbnqVzXnMl+pQ8vMd2HbhfizC6RPgceo7loYTmH+i\npWYBimYSo0SZaINw8FlDflNv2gOkjtEPaW2qWgbDvv9+6HSYHMC2slZhA/S25Ps7sa1cKGeVAfNz\ncywmWxZldbwNm9C0gK1YZNGhpB3nkjIN/NZQzEevjGwOYROpNclrAovKnA88kLw2YA7CJyJ1DAu3\nuGxTv7ZViiYzomr+Cj4vxRwsY4Tm+s79d7eKzVrxLMjZrrK4B0EbW5GN4pEBVcgg1PNSzKkxxpKM\nusr2kTrpNBxolmFhxr3wLjZgT2CTgN/wlodTlM83cjT4fA3dna+r0vFNWPJAsAMTX4uUWxz5vpMy\nsmlhYfPuHKqlmJ/Nc0mdq7C8O3VLThda/I4NrRUDoK6mMXHp4iKTGsQzczpWJ+9tZkY0uf34K0ln\nZf6mlcJFZTTwD9hRowoZ/BDUkRbaS47rZftInXTq/D4alMsJsgMbmBtYFNd84LHk2k7ifi55cT4u\nDcxpuRtV6fiW5L2NWWRi5I3SqVI2xzBL0d143T2EOSjXCaejo8zyA2Y1mRFVM403Pa8j3scW4tOi\n/8hM/5pfg3I3RuqYBzzSWzML8y3we/L5aer30BoEVchgGu+X82RKueXA/Rl1le0jddLpgaAtT9G7\nxTGMElyHJdhbhE0I3ivTwISf8f+rqyNlqtJxuHOQJo9ueaq60Q/ZnMc7bM8he2I9aJyOPh9qKwaA\nJjOias5i5lywlVW3vCYNYAofeTDVpczeoOyLkTreoveU7EVpY06IYPk1tpE++M3HMh3PpklPFTI4\ni61owVaNL3f5vTmYw2ZWtEjZPlInnbbxOWquAz4gfv+Xkd7v3f/fCiydP9jEb2/34oVx9dwVuV6V\njt1WW4P4eWXPAmtT6uikqGzuwcL3Y8zDtq3Azouqk1/KEuw+wRIHCjGSNPEhqa8X/N3LsX1y9/sf\nYSbYcWyVvDu4to+4097+oNzWpE3jwKNBHa5MnrOZspjMqAtsZefadBjYiD3MbsMefOsxR0KXOLAz\n+VmR9uSlSe+6guJtKiuDRVgeDVfHdix/xjhm9v8q+f5LsvVRRR8ZlE6bQbluW0kNfDbbFhbm/Ty2\nBXY75qPxBjbId1skhBwM6mkBr2SUL8LD+PuIWcSq0vH3HXU8mNSxFjt2ooVZRor0/yKy2Zy0bTfw\nEmZJGsd0sj5ofwvLelwnnsHa9R8X+84IMVI0KTdArsC2j9LydnxGull2Jf5Qu87XBWwluy74rqrJ\nTKwusAiYLZh5OSsvyb/MXMUXaU9empTT1WaKtamsDGDmIYSdus1z0CRU00cGpdNmUE+3yQxYaHE4\nuYrdV5aeNwTlz2FbOlUxF380Q1reoiI6junmViyoICaL7zBn3CL9v4hsNqX87fBePsSsNHViH9a+\nnVkFhZjNTJD/wRljLubt7w5mO4M93HZhacLzsAw7b+gIcBobuHZh4ZCQPeBtCq5nkWfwdNyMnbI7\nDfyJmdb/xlaS7wNP0H2fv0h78lJWV722qVcZOK7CDv77CXPM/AP4FLOqQD5LGZTvI2XvJ6/8Qj3F\nJjOOZvI3f8G2L05j0Tcfk8+n5lr8YBs7GLMMryZ1H84ol6XjPLq5Hjtw8wj2DDkBfAG8gJ9AFOn/\nRWSzADur6R3MwncES9x3Erv3Hfh+VifG8DK5d7hNEUKI0WaS/JNLcTH34QfsziRxVXAF/vyluoUj\nZ9Fv2dSBt7H72z3shgghxKgziSYzvbIdk91x+pd2f2PyN/pxLEc/GYRshslyzIJ1gbiTthBCiAEx\niSYzvTCGbZG18BE7/WAutn10AQtzvhQYYzCyGSZTmE7SDvkUQggxICbRZCYvy4EbsGibbzC5nWRw\nqQvqjGQjhBBiaEySHV0mjD3MjLDplntnFNmDZDPr0dlMQoi60u54F3Hc6dGnsDw0W/CHKY46ko0Q\nQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII\nIYQQQgghhLik+B/9AXC8Mr0B8wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from scipy.optimize import curve_fit\n", + "\n", + "# Define model function to be used to fit to the data above:\n", + "def tophat_time(x, *p):\n", + " mean, width = p\n", + " if x>(mean+width): y=0\n", + " if x<(mean-width): y=0\n", + " if x==(mean+width) | x==(mean-width): y=5\n", + " return y\n", + "\n", + "def tophat_freq(f, *pars):\n", + " A,T,t0 = pars\n", + " #return A*T*sinc(pi*f*T)*exp(-i*2*pi*f*t0)\n", + " return A*T*sinc(pi*f*T)*cos(2*pi*f*t0)\n", + "\n", + "x=np.logspace(fqd[0],fqd[-1],200)\n", + "\n", + "# p0 is the initial guess for the fitting coefficients\n", + "p0 = [3, 3, 3]\n", + "coeff, var_matrix = curve_fit(tophat_freq, fqd, lag, p0)\n", + "fit = tophat_freq(fqd, *coeff)\n", + "\n", + "\n", + "mpl.rcParams['xtick.labelsize']=12\n", + "mpl.rcParams['ytick.labelsize']=12\n", + "xscale('log'); xlim(.009,.6)\n", + "xlabel(\"Fourier Frequency (days$^{-1}$)\",fontsize=20)\n", + "ylabel(\"Time Lag (days)\",fontsize=20)\n", + "\n", + "\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=5,color=\"black\")\n", + "plot(fqd,fit)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAGJCAYAAACZwnkIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XeYVOXdh/F7AVERAUFQxBi7IooKiBW7xt4bscSaxJYY\nY6LGGo3GaIotmMRYokbUxBqNLcaCxgo2jCUaUcGGDSMqCOz7x+/MO7PL7OzMnrM7uzP357rmOrOn\nPc+O4Hx5zlNAkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiSpK9oC+BPwCjATmArcAowo\n8/pBwJXA9OT6fwGbZ15LSZKkMtwA3A8cDmwM7E6Ek9nAZq1cuyDwPPAGMJYISTcn127cTvWVJElq\n0aAi+xYB3gHubeXaI4B5wLoF+7oDk4HHMqmdJElSBv4JvNjKOfcC/y6y/wQi8AzOulKSJKly3apd\ngSrrS/SxeaGV81YHniuy//lkOyzLSkmSpLap92DzW2Bh4KxWzusPfFRkf27fgCwrJUmS2qZHtStQ\nRWcC3wSOAp6ucl0kSVIG6jXYnAacBPwEGFfG+R8SrTbN9S843pLB2AdHkqS2eCd5la0eg81pBa9z\nyrzmeWB4kf1rJNvJLVw3eKmllnr77bffrqyGkiQJYBqwDhWEm4b2q0undArwU+Ix1GkVXPddomVn\nPeCJZF8P4BngU2CDFq4bAUy85pprGDp0aJsqXCuOOeYYzj///GpXo1NYf/31mT17NgMHDuSuu+6q\ndnWqxj8Twc8hz88i+DmEF198kf322w9gJDCp3OvqqcXmh0SouQv4OxFSCuXmo7kMOABYHngr2Xc5\ncCTwF2KI93RibpuVgC1bK3jo0KGMGFHuBMe1qV+/fnX/GeR06xZ99nv27FnXn4l/JoKfQ56fRfBz\nSKeegs0OQCOwTfIq1EhMuAcxUqwbTVuzZhOzDZ8LXAT0IjocbwtMaL8qS5KkStRTsGlt2YScg5JX\nc+8DB2ZWG0mSlLl6n8dGkiTVEIONOsTYsWOrXYVOY+GFF652FToF/0wEP4c8P4vg55BOvY2K6mgj\ngIkTJ060I5j+39JLL820adMYMmQIU6dOrXZ1JKlTmjRpEiNHjoQKR0XZYiNJkmqGwUaSJNUMg40k\nSaoZBhtJklQzDDaSJKlmGGwkSVLNMNhIkqSaYbCRJEk1w2AjSZJqhsFGkiTVDIONJEmqGQYbSZJU\nMww2kiSpZhhsJElSzeiR0X1WBtYFlgAGAn2BT4DpwLvA48CrGZUlSZJUVFuDzQLADsBewMbAkkBD\nifMbiYDzIHADcDswp41lS5IkFVVpsOkLfB84nGidKVcDMBjYJ3m9B4wDLgRmVFgHSZKkosoNNj2B\nHwDHA/0K9r8IPEY8anoW+BD4CPiUCEH9gcWBtYDRxOOqVYlQ9NPknr8Afg18le5XkSRJ9a7cYDMZ\nWDF5/zpwLXAN8HKJaz5MXv8BHgUuSfavCuwHfBNYFvg5cAjRT0eSJKnNyh0VtSLwPLAHsAJwCqVD\nTSkvAScn99kjue+KJa+QJEkqQ7ktNnsBf8247EbgJuBmYPeM7y1JkupQuS02WYeaQo3tfH9JklQn\nnKBPkiTVDIONJEmqGVnNPAzQB9gTWI+Ys2Zh4GDgjYJzhhDDwL8E/pth2ZIkSZkFm8OJYdt9CvY1\nAos0O28z4CpgFhFyPsqofEmSpEweRZ0M/JYINbOASSXOHU/MOrwgjoSSJEkZSxts1iRmEIYILYOB\nUSXOn0sM8QbYMmXZkiRJTaQNNkcT60A9AexPrOjdmn8l2+Epy5YkSWoibbDZNNleDMwr85rXk+1S\nKcuWJElqIm2wWYroJPxCBdd8nmwXSlm2JElSE2mDzZxk272CawYk2xkpy5YkSWoibbCZSvSxWbWC\na8Yk29dSli1JktRE2mBzf7Ldv8zz+wHfSd7fl7JsSZKkJtIGm98RfWy2JCbpK2Vx4FZgCWA28PuU\nZUuSJDWRNtg8D5xHPI66GLgZ2Cc51gBsAOwLjANeJf8Y6nTgrZRlS5IkNZHFkgonAr2Ao4Cdk1fO\nH4qc/yvgnAzKlSRJaiKLJRUage8BWwP/pOX5bB4BtgF+lEGZkiRJ88lyde9/JK8+wNrAIGIY+HTg\nWeCDDMuSJEmaT5bBJudT4MF2uK8kSVJJaR9FLZZJLSRJkjKQNti8Swzh3guXSJAkSVWWNtgsAOwI\nXAe8B1wJbEUM9ZYkSepQaYPNJcCHyftFgQOAu4BpwG+AUSnvL0mSVLa0weZIYDDRajOeWLm7AVgS\n+D7wOPAycCqwQsqyJEmSSspiHps5wB3EDMNLAPsBdwJziZCzEjHT8CvAY8DRwMAMypUkSWoii2BT\naCZwLbA90ZJzFPBocqwBGA1cQDyqujPjssvRGzgXuIeYX2cecFqZ1x6YnF/sNSjrikqSpMplHWwK\nfUCsEbUhsDxwMvDv5FgPYqbijrY4cBjR6fnmZF9jhfc4EFiv2eujjOonSZJSaI8J+oqZAtwELAws\nBfTroHKL1SM3984A4NA23GMyMCmrCkmSpOy0d7BZChgLfBNYi6bDwGe1c9mtaeuQdIeyS5LUSbXH\no6i+wCHEgphvAOcRa0c1EI997gMOJjoad0W3Ex2mPwRuBIZVtzqSJCknqxabBYEdiJFR2yY/F3oa\n+DMxJPydjMrsaO8APyNGdn0KDAdOSH7eAHi+elWTJEmQPthsSTxm2o1Y1bvQ68QIqT8DL6UspzO4\nO3nlPEwMc38eOAPYtRqVkiRJeWmDzT3Nfv4QuIEIM/9Kee+u4A3gEWJklCRJqrIsHkV9AdxGhJm7\niP4n9abkkPFjjjmGfv2aDgQbO3YsY8eObddKSZLUFYwfP57x48c32ffJJ5+06V5pg82BxDDuz1Le\np6taHhhD00dU8zn//PMZMWJEx9RIkqQuptg/9idNmsTIkSMrvlfaYHNVyuurYVtgEWLRTohRTXsk\n7+8gWqAuIxb0XB54Kzl2LzHS6wUiyK0B/JhooTqlIyouSZJK66gJ+jqTccDXk/eNwJ7JqxFYDniT\nGAbfjaZz1jxPjPr6GjHR4PvAP4AzgVc7ouKSJKm0egw2y5VxzkHJq9Cx7VAXSZKUoXKDzTzyHWS7\nt7C/Lbq3fookSVJ5KmmxaWkpAZcYkCRJnUK5weaMZNu8deaM5idWIE1LjyRJ0nzKDTanV7hfkiSp\nw7XHIpiSJElVkXZU1CbEI6WngM/LvGYhYN3kuodSli9JkvT/0gab+4mAsgbw7zKvWbrgOkdFSZKk\nzPgoSpIk1YxqBJtcmXOrULYkSaph1Qg2ueUMZlShbEmSVMMq7WOzTMH7won5lqL1Fb4XBFYk1laC\n8vvkSJIklaXSYDOF+SfWawDuruAeuUDUFVcGlyRJnVhbRkUVW0KhkmUVvgQuBC5rQ9mSJEktqjTY\nHJxsG4kwc3ny88nA2yWuayQCzdvA07T+2EqSJKlilQabK5v9nAs2twIvpK6NJElSCmkn6NucaI15\nPYO6SJIkpZI22DyQRSUkSZKy4MzDkiSpZqRtsSnUDVgLWBMYACxM66OlzsiwfEmSVOeyCjYHAqcR\nE/iVO/S7EYONJEnKUBbB5mzghDZcV8ncN5IkSa1K28dmXfKh5l7iUdSI5OdGoDswENiWGBIO8DCx\nBIP9eyRJUqbShovDk+0bwA7Ac8BXBccbgQ+JJRd2BY4ENgLuAnqmLFuSJKmJtMFmw2R7IflAU+oR\n0yXAjcBwIuRIkiRlJm2wGUy0ykwu2Dev4P0CRa65JtnulbJsSZKkJtIGm1xweb9gX+E6UAOLXPNW\nsl0xZdmSJElNpA0204lHT30K9r1HvtVmaJFrlky2i6YsW5IkqYm0wSa38OWqBftmJfsbgH2KXLNv\nsn0nZdmSJElNpA02E5Lt5s32X5dsDwLOBIYBo4HfAmOTY3emLFuSJKmJtMHmlmS7A00fR10ITEnu\nfxIxDPxR8sPDPwZ+nrJsSZKkJtIGm8lEa82uNB0BNTPZ/0jycwP5YeC5a95CkiQpQ1ksqfBAC/un\nAGOI/jfDkrJeAZ7OoExJkqT5ZLm6d0teSl6SJEntyvWaJElSzTDYSJKkmlHuo6hvEUsnZO2qdrin\nJEmqU+UGmyuIYFNqgctKNWKwkSRJGarkUVSWoaY97idJkupcuS02y7drLSRJkjJQbrCZ0p6VkCRJ\nyoKjoiRJUs0w2EiSpJqR5czDfYA9gfWAwcDCwMHAGwXnDAH6Al8C/82wbEmSpMyCzeHEat2FK3w3\nAos0O28zYoj3LCLkfJRR+ZIkSZk8ijoZ+C0RamYBk0qcOx54D1gQ2D2DsiVJkv5f2mCzJvDT5P14\n4hHUqBLnzwVuSt5vmbJsSZKkJtIGm6OJifaeAPYHPinjmn8l2+Epy5YkSWoibbDZNNleDMwr85rX\nk+1SKcuWJElqIm2wWYroJPxCBdd8nmwXSlm2JElSE2mDzZxk272CawYk2xkpy26L3sC5wD3AdKKV\n6bQKrh8EXJlcO5N4rLZ5tlWUJEltlTbYTCX62KxawTVjku1rKctui8WBw4AFgJuTfY1lXrsgcB8x\nZP17wE7ECK+7gI2zraYkSWqLtPPY3E+Emv2Ba8o4vx/wneT9fSnLbospwGLJ+wHAoRVcewgwDFgf\neDzZ9wDwLNEKtF4mNZQkSW2WtsXmd0SLx5bEJH2lLA7cCiwBzAZ+n7LstBoqPH9X4CXyoQZi+Po1\nwGhiqLskSaqitMHmeeA8IiRcTDze2Sc51gBsAOwLjANeJf8Y6nTgrZRld7TVgeeK7H8+2Q7rwLpI\nkqQislhS4USgF3AUsHPyyvlDkfN/BZyTQbkdrT/Fl4DI7RtQ5JgkSepAWSyp0Eh0pt0a+Cctz2fz\nCLAN8KMMypQkSZpPlqt7/yN59QHWJoZGdyeGRj8LfJBhWdXwIdFq01z/guOSJKmK0gabK4gWmzuB\nvyT7PgUeTHnfzuh5ii8DsUayndzShccccwz9+vVrsm/s2LGMHTs2u9pJktRFjR8/nvHjxzfZ98kn\n5azSNL+0weZbRLC5IeV9uoKbiU7Qo4m1sSA+v/2Ax4B3W7rw/PPPZ8SIEe1eQUmSuqJi/9ifNGkS\nI0eOrPheafvYTCdGP7X4pd4JbQvsAeyY/Dws+XkPYOFk32XAV8DXCq67nFg64i/AWGKI+w3ASsDx\n7V5rSZLUqrQtNv8GNgG+DjyTvjodYhxRX4jWpj2TVyOwHPAmEfi60XSum9nAFsRkfBcRI8GeJoLS\nhI6ouCRJKi1ti83VyfbAlPfpSMuRDy7dm71/MznnoGY/57xP/K6LE8FmQ2IkmCRJ6gTSBpsriaUR\ndgZ+SuWz+UqSJGUm7aOojYBfAgOBU4C9gOuJGXo/JpYcKOWhlOV3CfNamtlHkiRlKm2weYDom5Jr\nqVkFODV5X2rV7IbkePeU5XcJRxwBN90ESy9d7ZpIklTbsph5uKXHTw0lXqWuqzlTpsAaa8AN9TAo\nXpKkKkrbYrN5imtLtejUlOuvh9/9DvbeG26/HS66CPr2rXatJEmqPVk8ilIr+vaF666DHXeEI4+E\nhx6Cq6+GMWNav1aSJJUvi0dRKkNDA+y3Hzz7LCyzDGyyCfzkJzB7drVrJklS7TDYdLBll4X774ez\nz4bzzoP114eXXqp2rSRJqg0Gmyro3h1OOAEefxw+/xxGjIBx46CxbnodSZLUPsoNNrcD7bWK4yjg\njna6d6c2YgRMnAgHHxx9b7bfHt7tSqtuSZLUyZQbbLYDniRWuN4wo7I3Bm4jVsreNqN7djm9esHF\nF8Mdd8CkSTEs/NZbq10rSZK6pnKDzRnEIpA7E7MFv0YsobBWBfdYAFgHOBuYAtwP7AB8mdyrrm23\nHTz/PGy4IeyyCxx2GHz2WbVrJUlS11LucO/TiXWhTgf2IxaSPAU4GfiCWOX6OeAD4CPgf0AfoD+x\nYOTawJrAguQn5ptLLKJ5OvMvNlmXBg6Em2+Gyy+H738fHngghoWvt161ayZJUtdQyTw2U4iVrc8A\nvgfsDyxGfpXrch9RfUgEmguTe6pAQwMcckgMB99vP9hoIzjlFDjpJOiRdtYhSZJqXFtGRf0XOAYY\nDGwPnEf0k5nTwvlzgMeAc4m+OksBx2KoKWnFFeHhhyPUnHlmBJxXX612rSRJ6tzStAHMBu5MXhAL\nWi5OrPTdF/gEmE600LS2yreK6NEDTjsNvvGNaL1Zay244IIYRdVQNyttSZJUviznsZkLvAdMBh4B\nXgDex1CT2nrrwTPPwNixcOihsNtuMH16tWslSVLn4wR9XUTv3nDppdG5+OGHY1j4nXe2fp0kSfXE\nYNPF7LJLDAsfMSKGiB91VMxeLEmSDDZd0pJLxoR+v/0tXHYZjBwZk/tJklTvDDZdVEMDHHFEBJpe\nvWDddeGcc2CuPZokSXXMYNPFDR0Kjz4KP/oR/OQnsNlmMGVKtWslSVJ1GGxqQM+ecPbZ8OCD8Oab\nsOaacM01rhYuSao/BpsaMmYMPPss7Lwz7L9/DA//+ONq10qSpI5jsKkxffvCVVfBddfB3XfHsPD7\n7qt2rSRJ6hgGmxq1994xLHzVVWHLLeG442DWrGrXSpKk9mWwqWFLLw333AO//jVcdBGss06EHUmS\napXBpsZ16wY/+AE8+WT8PGoU/OY3MG9edeslSVJ7yDLYbAZcDfwH+IxYI2q1ZudsDBwB7JdhuSrD\n8OHwxBMxU/Gxx8LWW8PUqdWulSRJ2coi2PQCrgfuA/YFVkj2FVt/uhG4GPgTsFIGZasCCy0Ev/oV\n/OMf8NJLEXZuuKHatZIkKTtZBJtrgT2T908Cv07eF5tFZQLwbyL07JZB2WqDLbaA556LTsV77w0H\nHAAzZlS7VpIkpZc22OwM7JS8PwJYFziulWtuSbabpCxbKfTvD9dfH0PDb7klJvWbMKHatZIkKZ20\nwebAZHsd8Lsyr0m6sTI0ZdlKqaEhJvJ77jlYZhnYdFM46SSYPbvaNZMkqW3SBpt1k+34Cq55J9kO\nSlm2MrLssnD//XDWWXDuubD++tEHR5KkriZtsFmc6EvzZgXX5Nafdqh5J9K9O5xwAjz2GHz+OYwY\nAePGud6UJKlrSRsu/pdse1dwzdLJ9sOUZasdjBwJEyfCwQfDkUfC9tvDu+9Wu1aSJJUnbbB5lRjh\nNLKCa7ZNti+kLFvtpFcvuPhiuOMOmDQp1pu69dZq10qSpNalDTZ3JtvvAN3LOH8Y8K3k/R0py1Y7\n2267WIJhww1hl13gsMPgs8+qXStJklqWNtj8lphleChwJbBgiXO3Bu5JzvkAuCxl2eoAAwfCzTfD\nH/8I48fD2mvD449Xu1aSJBWXNthMBw5N3u8L/Be4JPm5Afg+cCkxKd9dwGBgHrA/MDNl2eogDQ1w\nyCHwzDMwYEC04JxxBsyZU+2aSZLUVBYjk24gZh7+lAgu3yk4dhhwCLBq8vOnxIzDd2dQrjrYiivC\nww/DySdHsBkzBl59tdq1kiQpL6sh1zcSa0SdCkwkP6Q7ZzJwFrAicFtGZaoKevSA00+PgDN9Oqy1\nFlx2mcPCJUmdQ5ZzyXwI/AxYB1gIWAJYiuhTMxw4hehboxqw3nrxaGrsWDj0UNhtN/jA/7qSpCpr\nr0ny5hL9b94FvmqnMlRlvXvDpZdG5+IJE2JY+J13tn6dJEntxdl/ldouu8Sw8LXWiiHiRx0VsxdL\nktTR0gabnsBqyWuhIscXBn4NTAW+IEZHHZ2yTHVCgwfD3/8Ov/1t9LkZNSom95MkqSOlDTa7EB2D\n7yeGcTd3E3AM+b42qwIXABemLFedUEMDHHFEBJqFF45+OL/4Bcxt3pVckqR2kjbYfCPZ3gzMbnZs\n+4LjU4FbgLeTn48E1k9ZtjqpoUPh0UfhuOPgxBNhs81gypRq10qSVA/SBpvcGlEPFTl2ULJ9hVhK\nYbdk+xIxed+hRa5RjejZE84+Gx58EN58E9ZfH956q9q1kiTVurTBZhDQCLxW5L5bJe8vJr8K+Izk\nZ4ANUpbdFr2B84FpRJ+fp4G9y7juQOJRW7HXoPaoaK0YMwaeeAIWXBB23NG1piRJ7atHyusXT7Zf\nNtu/FrAoEXqaL3Y5Odl+LWXZbXETMAo4nmhJ2hcYTwSx8WVcfyDR4lToowzrV5MGDYK//Q022AD2\n2w9uugm6OR5PktQO0gab2cTIp8Wb7d842U4FXm92LNd6U85q4FnaDtgSGAtcn+x7EPg6cF6yr1gH\n6EKTAcf6tMEaa8B118FOO0W/m1/8oto1kiTVorT/bp5C9JdZr9n+HZPthCLX9E+201OWXaldiVD1\nl2b7ryBGba1bxj0asq5UPdl+e/jlL+Hcc+HKK6tdG0lSLUobbO5PtkcRc9kA7ARsmrz/e5FrhiXb\nd1KWXanVgReZv1Xm+WQ7jNbdDswhlo+4scxrVOCYY+Cww+Db34aHinU5lyQphbTB5iJiyYQliIDw\nATGsu4HooHtjkWu2TrbPFznWngZQvD/MRwXHW/IOsQ7WIURoO4VYE+sxYI3sqlj7GhpiEr+NNor1\npV5r3u1ckqQU0gabV4D9gM+JMJN7zPQJ0ZdlVrPzlyQfbP6ZsuyOdDexcvnfgYeBccAYonP0GVWs\nV5e0wALw179C//4xUmrGjGrXSJJUK9J2Hobos/IQMSHfksQkfLdRvHVkOHAtEQiKPaZqTx9SvFWm\nf8HxSrwBPML8/YtUhv794fbbYd11Ya+94I47oEcWfxolSXUtq6+S94DLyzjvnuRVDc8RrUjdaNrP\nJvcoafJ8V5SnsbUTjjnmGPr169dk39ixYxk7dmwbi6wNK68cLTff+AYceyxc6EIbklSXxo8fz/jx\nTWdd+eSTT9p0r3oa5bMN0Uq0D3BDwf67iE7Ay1BGSCmwPBGW7gZ2b+GcEcDEiRMnMmLEiIorXC9+\n/3v47ndh3Dg4/PBq16b9Lb300kybNo0hQ4YwderUaldHkjqlSZMmMXLkSIhVDsqeaqWeGv/vAu4F\nLgH6ELMljyX6/OxLPtRcBhxABJfcIgD3En2CXgA+I1p5fkyMkDqlY6pfu77zHXjxRTj6aFhxRdhq\nq9avkSSpmCyDzeLEwpbLEbMOlzMBX0d3vN0NOCsptz8x/Lt5C0635FXYmvU8EX6+RkxI+D7wD+BM\n4NV2r3Ud+NWv4JVXYM894bHHYNVVq10jSVJXlEWwWQL4DbAHEWbKfbxVjRFFM4FjkldLDiK/gGfO\nse1WIwHQvXvMTLzBBrDDDvD44zCg1AB8SZKKSDvcezFiduF9iJBUSZ+deurfozL06RNrSs2YAbvv\nDrNnV7tGkqSuJm2wOQFYMXl/D9FBdxARcrqV8ZKaWG45uPlmePRROOIIaKykO7ckqe6lfRS1c7K9\ng/z6UFIqG20El14K3/oWDB0KP/xhtWskSeoq0gabrxN9ZX6bQV2k/3fAATFS6kc/ivludjQ2S5LK\nkPZx0GfJ9t20FZGaO+ss2GUX+OY34bnnql0bSVJXkDbYPEd0Av56BnWRmujWDa6+GlZaKVps3nuv\n2jWSJHV2aYPN75PtAWkrIhWzyCJw223w1VfRevPll9WukSSpM0sbbG4AxgO7Aiemr440v6WXhltv\nhWeegYMPdqSUJKllaTsPb0wsQbAsMaPvrsTq3S8Bn5dx/UMpy1edWGcduOqqWAl86FA4xYUsJElF\npA02DxCjonKT7Y1KXlB6QcmG5Hg5yy5IQCy3cMYZcOqpsMoqEXIkSSqUxZIKLc0g3NrMws48rIqd\nfDK89FLMcbPcctGSI0lSTtpgs3mKa+0poYo1NMBll8F//ws77wxPPBF9cCRJgmweRUkdaqGF4JZb\nYPRo2GknmDAhRk9JkuR6TeqSllgiFsz8z39gv/1g3rxq10iS1BkYbNRlDR8O114bQ8FPOqnatZEk\ndQZZdB4uNArYEhgG9E/2fQRMBv4BTMy4PNW5HXeE886D446DVVeNTsWSpPqVVbAZDvwBGF3inLOB\nJ4DvEEsxSJk49thYMPOww2CFFWJ1cElSfcriUdSWRGApDDVzgPeS15xkXwOwLvB4co2UiYYGGDcO\nNtgAdt01RkxJkupT2mCzOPAXoCcwD/gjEV4WAQYnr17JvkuTcxYklmIYkLJs6f/17Ak33gj9+sXj\nqRkzql0jSVI1pA023wf6Al8B2wPfBp5Mfs6Zk+z7DrBd8nM/4JiUZUtNDBgQI6WmTYN99oE5c1q/\nRpJUW9IGm+2T7cXA3WWcfw9wYfJ+u5RlS/NZdVX4y1/g3nujQ7Ekqb6kDTbLEzMI31bBNX8ruFbK\n3FZbwYUXwgUXwO9/X+3aSJI6UtpRUQsl288quCa36veCKcuWWnTEETFS6sgjYcUVYYstql0jSVJH\nSNti8y4x2mlEBdeslWzfS1m2VNJvfgNbbgl77AEvv1zt2kiSOkLaYDMh2R4P9Cnj/D7JuQAPpyxb\nKqlHD7j+ehg8OEZKffRRtWskSWpvaYNNrgfD8kTIKTVB3+jknFzfGns/qN317RsjpT76KFpuvvqq\n9WskSV1X2j42DwPjgCOANYBHgX8Tk/DlHjUtScxjs1rBdeOwxUYdZIUV4Oabo5/NkUdGh+KGhmrX\nSpLUHrJYUuF7RIfgHxL9bYYlr2LmAb8CTsigXKlsY8bAH/4ABx0EQ4fCD35Q7RpJktpDFsFmHvBj\n4GrgcGK5hBWbnfMfYhHMS4gFMaUOd+CBMVLqhz+ElVeG7bdv9RJJUheT5erezxOPpCCGci+WvP8Y\nmJVhOVKb/fznMUJqn33gX/+CNdaodo0kSVnKYhHMYmYRQ8HfxVCjTqRbN7jmmuh3s+OO8P771a6R\nJClL7RVspE6rd+8YKTVrFuyyC3z5ZbVrJEnKSpbBZgFgD+B3xLDuF5LXBKJvze5k++hLarOvfQ1u\nvRWefhoOPRQaG6tdI0lSFrIKGrsCFwFLtXB8Q2J177eBo4GbMypXarPRo+HKK6O/zdChcNJJ1a6R\nJCmtLILND4gh3IVeB3K9F5YAlk3eLwX8FTgO+E0GZUup7L03vPQSnHwyrLJKTOInSeq60j6KWg84\nL3n/KbGblUTNAAAf2klEQVRcwiBgBWD95LU8EW6OT85pAM4lJu2Tqu7UU6PV5oAD4Kmnql0bSVIa\naYPNsck9PgU2IELOB0XOm54cWz85tzsxoZ9UdQ0NcPnlMHw47LwzTJtW7RpJktoqbbAZk2x/QSyl\n0JoXgXOaXStV3cILwy23QPfusNNOMHNmtWskSWqLtMFmMaAR+GcF1zyQbPulLFvK1JJLxjDwl1+O\nx1Lz5lW7RpKkSqUNNu8QfWbaeq3Uqay5Jvz5z7Fo5imnVLs2kqRKpQ029ybbTSu4ZpNke3/KsqV2\nsfPOcM45cPbZcPXV1a6NJKkSaYPNr4iVvY8HVinj/JWTcz8nP5pK6nR+9KNYCfzQQ+GRR6pdG0lS\nudIGm5eBPYnHUY8Sc9r0L3Jef+CY5JwGYC/gpZRlS+2moQF+9ztYd13YdVeYMqXaNZIklSPtBH33\nE52H3wdWIlpwziM/QV8jMYfNcuRD1KvEBH3Hlbjv5inrJaXWsyfcdFOEmx12iNXA+/Spdq0kSaWk\nDTabFNnXjZigb4UWrlkxebXEVXvUaSy+eIyUWn99GDsWbrsthoRLkjqntMHmoUxq0ZTBRp3KaqvB\nDTfAdtvBccfBb1wMRJI6rbTBZtMsKiF1dt/4BlxwARx9dCyY+e1vV7tGkqRislrdW6p5Rx0FL74I\nRx4JK60Em21W7RqpK2psjEkgJ0yI18svw7Bh0Zdr3XVh9dWhh/9nltrMvz5SBS64AP7zH9h9d3js\nMVh55WrXSJ3dV1/B00/Dww9HkHn4YfjgA+jWDdZeO1oAn34arroK5s6N5T1GjoTRo/NhZ5llYqSe\npNZ1RLBZCNgIGECMlnqiA8psSW/gZ8QQ9f7EkPNzgOvLuHYQsSr59kAv4FngZCpbTkJdXI8e0d9m\n/fVhxx0j3Cy2WLVrpc5k5sz4c5ELMo89FvsWWgjWWw8OPxzGjIn3iy6av+7zz2HSJHjiCXj8cbjx\nRvj1r+PYoEERcHJhZ511oJ+L0khFpQ02XweOIjr8/hz4uNnx9YAbgSWJ+WsagaeB3YA3U5bdFjcB\no4hJAl8B9gXGEyO5xpe4bkHgPqAP8D1iKPtRwF3AlrRPJ2p1Uv36xUipddeFPfaAu+6CBRaodq1U\nLR98ECEmF2QmTYI5cyLwbrQRnHZaBJkRI2IKgZb06hXnb7RRft9770XQyYWdX/4SZsyIY6us0jTs\nDB9e+v5SvUgbbHYDfghMAn7c7NiiwC1ES0dOAzAC+DuwFjAnZfmV2I4IIWPJt9A8SISz85J9LS17\neAgwDFgfeDzZ9wDRanMuEeBUR1ZcMea42Wqr6FB8ySU+KqgHjY3wxhv5R0oTJkS/K4CvfS0CzEEH\nxXbo0HjclMYSS0TL4I47xs/z5sWj0Mcfz4ed8ePjcdeCC8ajrcKws/zy/rlU/UkbbLZKtrcWOfZt\n8qHmQuKRzdbAEcBqwIHAH1OWX4ldgf8Bf2m2/wrgWmBdYmbklq59iXyoAZgLXAOcDQzGRT3rziab\nxOzEhxwSX2Lf/361a6SszZsHL7yQ7+j78MMwdWocGzYMNt4YTjopgswyy7R/fbp1i5aaVVaJFegB\nvvwSnnkmH3Zuvz36ggEMGBAhJxd0Ro+Ofeoc/vc/eO01ePXV2Obef/wxLLkkLLUUDBkSr9z7pZaK\nR5NpQ3MtSxtslk+2TxU5tleyvZlYTgHgNmAg0cdldzo22KwOvMj8rTLPJ9thtBxsVidad5orvNZg\nU4cOPjj+xX7ssdGReNttq10jpTFrFkycmA8yjzwCn3wSfatGjYJ99okQs+GGnScg5PrurFfQbvzh\nh/kWnSeegIsugp/+NI6tsELTVp211op7KHuNjTB9etPQUvh++vT8uX37xn+bFVaI4PreezB5Mtxz\nD7zzTnQsz+nRI4JPsdBTuK3XmdLTBptBRL+Z95rt7wOMTI5d0ezY9USwWTNl2ZUaQCzn0NxHBcdb\n0r/gvEqvVY075xx45RXYe+9YdmH11atdI5Xr00/h0UfzQeaJJ6IFZJFFYIMNIrButFEEgF69ql3b\n8g0YECE7F7QbG+G//42gkws7N94YQW6BBWDNNZuOwlppJVsEyjVvXrTiNQ8tuff/+1/+3CWWiMfY\nK60E22wT73NhZsCAlh8bzp0L778Pb78N06bNv33ggXj/UbNvqd69Ww49ufeDB9de36y0wSbXp7/5\nJPMbEh1y5xB9UQq9lWyLLZYpdTndu8Of/xz/it9xx/jiGDSo9evU8d59N983ZsIEePbZ+GIaODBa\nYn7+8wgya61VW3PJNDTkv0C/+c3YN3s2PPdcPuzcdx+MGxfH+vWLkVeFYaee/0zPmhUL4TYPLq++\nCq+/Hp8lRBhcZpn4nEePjs8697mvsEIEjbbo3j0CyODBMRVAS774Ilp3pk2bPwC9+WaM0Js2LcJ7\noYEDi4eewu2AAV0n7Kb9qzuDCChLNdu/abJ9DvishWu/bGF/e/mQ4i0r/QuOl7q2pVXLW7tWdaB3\n7xgpNXo07LZbfEksuGC1a1XfGhvji6cwyLyatNkuv3wEmSOPjCCz8sr118m2Z894vDZqVHwOEH07\nnnoq36pz6aVw1llx7Otfb/oIa8SIrtWK1ZrPPiv+uOi11+CttyIAQ3xuyy8frS3bbBOBJdfysuyy\n1W39WHjhqNvyy7d8TmNj/Hdu3uqTez9pUvTTevfdODdngQUi5JQKP0OGRGtntaUNNpOBjYnRUbkO\nxN3J96+5v8g1uRDU/PFVe3uOGBHVjab9bNZItpNLXPs8MLzI/nKu5ZhjjqFfs0knxo4dy9ixY0td\npi5mmWXglltg003hsMPgT3+qvy/Lapo7N1pgCifCe/fd+G8wfHh8CY0ZE0Fmqeb/FBMQQ9S32ipe\nkB8FVthf55RTomWge3dYY42mYWfVVTvvIrGNjTE0v6X+Lu+/nz930UXzYWWddZo+MhoypPP+juVo\naID+/eNV6rH5nDnx96elx18vvBDvc9MP5PTpU7rfz5Ah8Uiu+RQZ48ePZ/z4prOufPLJJ237Hdt0\nVd73gPOJvjS/IuZzOQDYIzm+LvBks2vOBE4iRkltmbL8SmxDDDPfB7ihYP9dROffZWh5Ac7vAuOI\nYd25CQZ7AM8AnwIbtHDdCGDixIkTGTFiRKrKq+u49lrYd184+2w48cT5jy+99NJMmzaNIUOGMDU3\nxEYV++KL+KLNhZh//Sv6M/TsGV+0Y8bEa4MNomOmsvHVV9GptTDs/PvfERwWXTRagArDTkeGyHnz\n4ku3+eOiXID59NP8uYMG5cNKLrjktosv7j9KyjVz5vytPs23b7+df1wH8dkusUTL/X5y2ylTJjFq\n1EiIPruTyq1T2v90CwETgaHJz40F9/wbsHORayYTw71/TgScjnQ3+Qn6XiNacA4lP1EfwGVEOFue\nfH+gnsTv2Qc4AZhODFvfnghnE1ooz2BTp049Fc48Mzpo7rZb02MGm7b5+OMYpZR7rPTUU/El26dP\n9G/KBZlRoxzl09E+/TT+e+TCzuOPR18PiC+pwqAzalTb+5pAfEEW6+/y2mvRQXrWrDivoSHmFips\nbSl8Xzjrs9pXrrWspcdfuW1hqxlAjx6TmDOn8mCT9lHUl8QX+0XATsn9ZhMjn44qcv4mRKiBCBkd\nbTfgLOAMon/Mi8zfgtMteRWGvtnAFsRkfBcRSyo8DWxLy6FGdez00+Gll2D//eO5u7m2clOn5kPM\nhAnRSgDRgXLMmOiYOWZMNKd35UcDtaBPH9h883jlTJ3aNOiceWb8675bN1httaZhZ9iwpp21Z84s\n3lH3tdeiE2yuv8sCC0R/khVWgC23bNrysuyy9nPrLBoaooPywIExAq8ls2dHIM6FnSefhHPPbUN5\nba/qfBYiwsKHwKwWzlmOmOm3kQgELc30Wytssaljn38ek/i9/Xb8Bc01ydtiM7/GxgiChUHmjTfi\n2Cqr5PvGjBkDyy3nY4KuaO7ceGRVGHYmT46Q0qtXhP/Gxggv776bv65375YfGS29tKG2lk2aNImR\nIzu+xabQl8DbrZzzevKSal6vXnDbbdH5cKed4KGHamsUSVs0Nsa/yr78El5+uemMvh9+GF9Sa68d\nj+9yE+HV8zDjWpLrbLzGGjFbN0TLzMSJEXaefDJaYLbYoukjo0GDDLKqTA3N1CB1PoMHxzDwjTaC\nb30Lri9nHfl2UhgqZs2Kbe6V9c+lzim08MIxY+6RR+ZXvE7T/0JdyyKLxLIUG29c7ZqolmQZbPoQ\nMwqvR6ydtDBwMPBGwTlDgL5E685/Myxb6rTWXhuuuSZaIU45Jd8/YM6cmCCtklCQ9ue2WHDBeC20\nUP5V7Oc+feJf1y0db/7zMsu0vuK1JFUqq2BzODHKqXBlikag+VQ9mwFXEX1whlB8mQKp5uy6a8xq\nWzj8+733Snekg3wgaC0oFIaKcoNFOT/37Nl1ZhuVJMgm2JxMjDKCCCwvEJ1mixkPnAcsQSyCeWkG\n5UtdwvHHxwiQPfeM/iQDB8YMny0FC0OFJFUubbBZE0jWjGU8cCTwCS2PdpoL3ES08GyJwUZ1pKEB\nNtssP8dKbiI5SVJ20v578GhiyPgTwP5EqGnNv5JtsSUKJEmS2ixtsNk02V5M+XPS5IZ7u1qLJEnK\nVNpgsxTRSfiFCq75PNk66bkkScpU2mAzJ9lWMvfjgGQ7o+RZkiRJFUobbKYSfWxWreCaMcn2tZRl\nS5IkNZE22NyfbPcv8/x+wHeS9/elLFuSJKmJtMHmd0Qfmy2JIdylLA7cSsxhMxv4fcqyJUmSmkgb\nbJ4nJtxrIEZG3QzskxxrADYA9gXGAa+Sfwx1OvBWyrIlSZKayGLm4ROBXsBRwM7JK+cPRc7/FXBO\nBuVKkiQ1kcWE7Y3A94CtgX/S8nw2jwDbAD/KoExJkqT5ZLm69z+SVx9gbWAQMQx8OvAs8EGGZUmS\nJM0ny2CT8ynwYBnn7Q7c2A7lS5KkOtXRawc3EJ2Lnwdu6OCyJUlSjWuPFptiugPfBH4CrNJBZUqS\npDrTlmDTCziU6Cz8tWTfG8DfgKuAWc3O3wc4E1ihYN9s4E9tKFuSJKlFlQab1YG/A0s3278GsAPw\nfWAL4D1gGeBq8nPXAHwJXAb8gliOQZIkKTOVBJtexMzBzUNNodWAa4BDiOHdQ5L9M4mZhs8jQo8k\nSVLmKuk8fACwXPL+n8DGwKJE4BkFXJcc24IIQEOIOW3GAcsDx2GokSRJ7aiSFpudku0rwLbAVwXH\nJhGdg/sRk/CtmRzflXh0JUmS1O4qabEZnmx/TdNQU+jsgveXY6iRJEkdqJJgM4BYPuGlEue8mGwb\ngdvaWilJkqS2qCTYLJhsSy2N8GHB+2mVV0eSJKnt2nPm4TnteG9JkqT5dPSSCpIkSe2m0gn6GoAj\ngPdLHC/nvJwzKixfkiSpRW1ZUuGIjM5rxGAjSZIyVM1HUQ2tnyJJklS+SlpsNs+47MaM7ydJkupc\nJcHmgfaqhCRJUhYcFSVJkmqGwUaSJNUMg40kSaoZBhtJklQzDDaSJKlmGGwkSVLNMNhIkqSaYbCR\nJEk1w2AjSZJqhsFGkiTVDIONJEmqGQYbSZJUMww2kiSpZhhsJElSzai3YNMbOB+YBnwBPA3sXea1\nBwLzWngNyrqikiSpcj2qXYEOdhMwCjgeeAXYFxhPBLzxZd7jQOClZvs+yqh+kiQphXpqsdkO2BI4\nHLgUeBD4NnAvcB7lfxaTgSeaveZkXdlaM358ubmx9n3++efVrkKn4J+J4OeQ52cR/BzSqadgsyvw\nP+AvzfZfASwFrFvmfRqyrFS98C9q3hdffFHtKnQK/pkIfg55fhbBzyGdego2qwMvEn1iCj2fbIeV\neZ/biRaaD4EbK7hOkiS1s3rqYzMAeLXI/o8KjpfyDvAz4DHgU2A4cELy8wbkA5IkSaqSrhpsNgX+\nWea5awHPZVDm3ckr52HgDiLQnEE86pIkSVXUVYPNS8ChZZ77ZrL9kOKtMv0LjlfqDeARYL1SJ734\n4ottuHVt+eSTT5g0aVK1q9EpzJsXT0Nnz55d15+JfyaCn0Oen0Xwcwht/e6sp46wvwfGAv1o2s9m\nH+Ba4nHSY224753AmkQH5OYGA08CQ9pwX0mS6t00YB2iO0hZ6inYbAP8nQgyNxTsv4voALwM0Fjh\nPZcnHnPdDezewjmDk5ckSarMO1QQaurR3cQjp0OBzYA/EK03Y5uddxnwFfC1gn33AicCOwGbA98n\nkuQnwGrtWmtJkqQiFiGWVHgb+JJYUmGvIuddAcwlWnFyfk1MzjcDmA1MBf4ErNiO9ZUkSZIkSVJW\n0iy2WUt6A+cC9wDTicd+p1W1RtWxBdG69wowk2jtuwUYUc1KVcFaxBQJbwCfE4+F/0Ws2VbvDiX+\nfvyv2hXpYJvS8uLCo6tXrarZiOgL+hHxd+QV4OSq1qjjXUnLfybK+nPRVYd7d3ZZLLZZCxYHDgOe\nAW4m/uddaQftWvAdYCDwG+CF5P0PiVF43wDur17VOlRfYvqFPxOhvzfxd+NqYFngrKrVrLqGAL8k\nHpH3qXJdquVE5v978EI1KlJF3wSuAq4H9gc+I7o61NvgkzOAcc32NQB/IxoKnuzwGontiFTZvIXm\nbuJf6vW0jEWhAcTncmq1K1IFg4rsW4To6X9vB9elM3qUaMWpV38jgv8V1G+LzW5Vrke1DSGCzMXV\nrkgntQnx5+Sn5Zxcr1+y7SmrxTZrTT1NLdDc+0X2zSTWLlu6g+vSGX1IrL9Wj/YDxgBHUt9/R+r5\nd4doze4F/KLaFemkDiGCzWXlnGywyV5Wi22qtvUl+tjUW3M7xJdYD+KR3BHE47hfVrVG1bEE0Rfv\nBOIxVD37LTHFxgxibrENq1udDrcxEfBXIx7dfwW8B1wCLFrFenUGfYE9gPvIrySgDvYK0fmrucFE\n2Dm+Y6vTaSxO/T6KKuYaYBawdrUrUgW/I98R8CtiTqh69FfgoYKfr6T+HkWtRUylsRMRZg4kwv5X\nwNbVq1aHe4noLDyD+I7YGDiOaNmdUMV6dQbfJf5fUWxqFnUQg01xBpu8M4nP4ohqV6RKvka0Vm1D\ndBKcS/39vdiDmEtrlYJ9V1J/waaYXCfzp6tdkQ70CvH/hB832/+9ZP/mHV6jzuNJ4nH+AtWuSD17\nFHi8yP5hxB/QchfvrDUGm3Aa8TmcUO2KdCLjiEkvB1a7Ih2kN/AuMRVCv4LXtUSw6Ut0Lq9nlxB/\nTxasdkU6yKPE77tms/0rJ/t/2OE16hyGE7//ryu5yD422XsOGMr8n+0ayXZyx1ZHnchpBa9zqlyX\nzuRJos/NctWuSAdZnBgpdxwxX0nutQ8RaD4mhsCrfqaHeKaV4/XyOTR3SLL9Y1VrIbah+PPAu4C3\nqN/e//XeYnMKFQxXrDNXEX0qBlS7Ih1kQWL46sYFr02AO4l+FhtT3+vPLUZMjTGx2hXpQFsS/384\nsdn+HyT7660zNcTfkw+J1qyKOEFf9u4i5ia5hJhs6zVikc2ticnI6i15b0v8KzTXs38Y0b8AYhba\nL6pRqQ72QyLQ3EX0v1qv2fHHOrxG1fEHonPkk8SIj8WBPYl/BJxL/E+sHswCHiyy/yCiv9FDRY7V\nqj8DrwOTiFarlYi/LwOBA6pYr472D+B24h9+3YjuDKOSn/8GPFK9qlXNLkTItbWmkyh3sc168Dr5\nETBzm71fpsR1teR+mv7uha+5VaxXRzuQ+EJ/n+hT8xHwT2LGVcVcV59WuxId7Hgi1HxMfojzX4GR\n1axUlSwE/JyYrHI28f/On1G/nWbvJv4+1Ht/M0mSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJKnOHUh+iYd6Weai0ABinap5wDop7nNlco/XM6hTZzOK+N0+pH4WK1UX1a3aFZDUZstSfP2p\nSl+5hVnrbYHWnJ8Ri+3dTizQmVYtfo5PEYvWLkZ8XpIkZW5Z8gtpFns1X2yz2PG5wLcK3tdbi82K\nxOKLc4G1Ut7rSuJz/G/K+3RWI4nfbzawQpXrIrWoR7UrIKnNpgKrt3CsgVgddylgGvCNEvf5N/Cn\nbKvWZZwEdAfuA56pcl06u4nE6uybEJ/bwdWtjiSp3kyhtlsQ0loCmEV8RgdkcL8rqf3P+xDid/wC\nGFjlukhF2cdGUr3aD1gA+By4scp16Sr+QoTBBYnPT+p0DDaSDqT0qKgHkmP3Jz+vAFxCtEx8AbwB\nXA4s1+y61YErkvO+BN4ExlH+v/S3B8YTLU9fADOIx0U/J1pb0tor2f4DmFnG+asRj+zeIn6ft4A/\nEyOGyrEYcBBwDfH47zOiv8q7wF3AYUTQKubXxH+DOcTjxdZMTM5/qcixlYGLgMkFdXib+GwvIz6X\nni3c91Pgn8n7vVo4R5KkdjGF8h6NHEjpzsMPJMf/CWxJBIzCDsm5UPQBsEZyzX7kH/M0P+91YHCJ\n+vQlvuiLdX7O/TwD2LaV36uURYmQMA84sYzz9yH/+zSvz2wisFxJ6c97CqV/p3lEICkW2oYWnHN8\nK3UdXnDuj5sd27OF36N5PVYrcf9TknNmAYu0UhdJkjIzhWyDzcvAR8l9jyBaKjYAfkX+i/FxYEMi\nNEwmvvBHEh1O/0T+i3N8C3XpSQy5zn1x/gHYiRixtC7wA6LlJ9fPo60jmbYh/ztv0cq56xIjp+YR\nj63OIn7HUcBRRGvHLOBpSn/ebwL/An5ChLIRwHrAN4G/k/9s7m/h+keS4y+2Ut/fkA9chSFpCaKF\nZh7wDtEBeAtgzeR3/CbwO+A9Sgebrcl/dlu3UhdJkjIzhWyDTe7RRrEJ2n5RcM5HwARgoSLnXU/+\nS3fxIsfPTI5/Aoxuob6LAS8k5z3YwjmtOZX879zao7GnknO/BDYqcnwp8mGr1Ofd2hDpAwvusXkr\nx9dv4R4LANOTc25tduxg8r9zqeDSk+L/7XKWKKjHKSXOkyQpU1PIPti09C/0rxecMwdYpYXzNi0o\na8dmx3oTgWYe8P1W6rxtwX3aMqfKJQXXl+prOJr873VBifP2pPVgU45JyT0uLHKsF/nHgH9o4frd\nCuqxc7NjPyH/yDCNBQrKuDjlvaTM2XlYUrk+Bu5p4dgbxGMOgOeIx1bFPJdsG5i/s/EmQB9i5t7r\nW6nLhIL3LbVelJJrpfmU+IJuyZbJtpHoCN2Sm4lQVq4GYEmiI+/qBa+3k+PDi1zzOflHeHsBCxc5\n56Bk+x4xk3Kh3L37E4/32uor8v+tHfKtTsdgI6lc/2nleO6L/ZUyzoHowFsoN7qogfgSnlfi9WnB\nuUu2Uq9i+ibb/7VyXq4z9Gzg2RLnzSH62LRmeyJwzCB+x5eIsJd7bZecV+wxHcAfk20fYPdmx5Yk\n+g5BjLya2+z4beQ//5uJSQmPIfr6VPpdkPv8+5Y8S6oCg42kcn3eyvFcy0ep8wpbR7o3Ozao4H1j\nGa/cecVaLlqT+4Lv08p5iyXbj2h9Daj3SxxrIELJ34jw0puWfydo+Xd6inzAOqjZsQOIz7SRGLbd\n3EdES820pD6bEcPInyJa4/5KBK9y5AJNJa1UUodwSQVJnUUu6DQSrQhflXnd9DaUlbtmUeIfeKUe\nR+XqlMbB5JcgeBo4nxhBNo0Igrn7/wnYnwgeLfkjMQ/NJkTfpjeS/bmg8zjF568BeJhYH2t3ImCN\nAZYmPofdktfdyfaLFu6xAPlh3m357KV2ZbCR1FkUfkl+QHzpt5e3C94PJPqkFPNRsh1AhI1SAafU\npIGHJdtXiSHys1o4r3+Je+RcA5xHjFw6EPgpMWw812H78launwVcm7wg+jptTwxdX5lYV+ws4NgW\nri98TPZuGfWVOpSPoiR1Frk+Kg3EPDHt6YmCskrNhfN8su3Zynk9Wjk+LNneSsuhpoFoqWrNDPJL\nQByQbHOtQTOB68q4R6HXidFN6xALq0LpWYULf8/HKyxLancGG0mdxX3klzb4XjuXlZvsDlqeLwdi\nuQWI0PGtEuftCvQrcTzXOl5qpt6dKD0jc6FLk+2ywA7A3snPfyU/YqlS/yP620DxuYpycp/XV8SE\ng1KnYrCR1FnMIPqOQDyu+Q2l+5r0BY5uY1kzyX+Jr1fivCeJuWUADqd4S9Jg4JetlJcbKbYjxQPQ\nCsQ6WuV6iBil1kDMaZMbYVbqMdTWlB5B1pd8aHm9xHnrJtuJtN6hXJKkzEwh+7WiyimvtT4euSHb\npxY5tgD51pR5xAigo4kZf9ciOsx+l3jcMpN0nVePTcqYSenRUaOJ4d7Nl1RYh/KXVPhhwe/0b+Iz\nHw1sDJxOjC7Kha1yJ/n7MU2HwJcaZg+xltVsYrj594jlFNZO6nBEUq/cvVoKjH2JGZjnEUPFJUnq\nMFPILzpZyoHkv9CqHWwgHteMp+mXdkuvV1spq5SBxMifeeT7qLRkH/Jf6M1fs5Lrr6DlUNKD+Rf2\nLHx9RoxUurLEPZobRD5wzQNOaOX8K2j985xL8VmPcw4lH/CcnE+dko+ipNpVbH6Uls4r3LZ0n3LL\nK0ep82YCY4kZhX9PtCTMICbB+5hoGfkjEQSGllleMdOBPyfv92vl3OuI1o2ridFas4iOttcTrUmt\nhbk5xMij7xGtMjOJcPAfYnmHEUSH4EqGlb9Pvg/QHGKoeCk/IH7Py4lHbFOT3+NzYqboK5LfpVT/\npn2T7Xgc6i1JUqezAvlWj3JGJHUm3Yg5bOYx//IJ7WEk+RaqtqzPJUmSOsA4Oi4cZGkr8o+Qdu2A\n8v6WlHVJB5QlSZLaqD8xIeBcokNwV3EPETSmMv/yFFkbRX5l8HImEZQkSSqpN7EcwgjgAvKtNT+o\nZqUkSZLa4kDmH8U0EZfGkZpwVJQkdQ25EVNziaH1FwFbEiOiJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSpBr0f5d9jqaM3twBAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "time_fit = irfft(fit)\n", + "\n", + "mpl.rcParams['xtick.labelsize']=12\n", + "mpl.rcParams['ytick.labelsize']=12\n", + "ylabel(\"Response (relative)\",fontsize=20)\n", + "xlabel(\"Time (days)\",fontsize=20) \n", + "\n", + "ylim(-0.5,2)\n", + "xlim(0,7)\n", + "\n", + "plot(time_fit)\n", + "plot([2.02,2.02], [-50, 50], color='k', linestyle='-', linewidth=2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lag/data/clag_analysis-origbins-6175A.ipynb b/lag/data/clag_analysis-origbins-6175A.ipynb new file mode 100644 index 0000000..a073f9d --- /dev/null +++ b/lag/data/clag_analysis-origbins-6175A.ipynb @@ -0,0 +1,816 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X18VPWd9/9XSAKSRBRwbFEoxFBYg1pNKhD6s+qCqFBy\n1UI35PGzbbjorle73V2vSzK22u7P31W07aRre117tbXXlpL21zWmWnYXoevderNU7mro9sb4kxID\nyO2MiDcQhNyc64/vHOcmM8lM5szMOTPv5+ORR2BmMufkmzPnfM73+/l+viAiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjJm+4GhBF//K4/7JCIiIi42Fbg46msxJnj4\neD53SkRERLzju8DefO+EiIiIeMN44A3gy/neEREREXFOWRbf+5PABUD7CK+ZFv4SERGR9BwNf+Vc\nSRbf+0ngPeA/JXl+2iWXXHLkyJEjWdwFERGRgnUYuJY8BBDZ6nmYiUmWvG2E10w7cuQIP/vZz7j8\n8suztBsS78477+S73/1uvnejqKjNc09tnntq89x65ZVXuP322y/F9N4XTPCwBjgObB3thZdffjl1\ndXVZ2g2Jd+GFF6q9c0xtnntq89xTmxeXcVl6zzXATzDTNEVERKSAZCN4WAJMB36chfcWERGRPMvG\nsMVTQGkW3ldERERcIBs9D+Jizc3N+d6FoqM2zz21ee6pzYtLNqdqjqYO6Orq6lKSjYiISBr27NlD\nfX09QD2wJ9fbV8+DiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiI\npEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIik\nRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpKUs3zsgIlJIOjrMF8B778GBAzBzJpx3nnmsudl8\niXiZeh5ERBzU3AybN5vvZ8/C3r3wzjvw6qsmmOjogMbGSIAh4kXqeRARcVgoFOKppwK8/no3UMqh\nQ4McPlzL97/vZ/FiX753TyRj6nkQEXFQMBikoaGJ9vaV9PZuBOZy+LAF/Ae33HIDzc1/RSgUyvdu\nimREwYOIiIPuvruNnp4HgMuA1cBKYCvwNAMDv+eRR5ppaGhSACGepuBBRMRBu3d3AwuANuABYCFQ\nEn52HLCInp778fsDedpDkcwpeBARcdDAQCkmWLCDiEQWhIMMEW9S8CAi4qCyskHAAuwgIpFx4SBD\nxJsUPIiIOGj+/FpgF2AHEYkMhYMMEW9S8CAi4qBAwE9NzT3ARcDOJK/aFQ4yRLxJwYOIiIN8Ph87\ndnSyenUVZWX/GXgRGAo/OwTsoKbmXgIBf/52UiRDCh5ERBzm8/no6PgeTzzx78A/c+mlK4BGqqtX\n0NKyiR07OvH5VCxKvEsVJkVEHBS7toWPOXPamDwZDh+GGTNg6VJQ3CBep54HEREHRa9tcd55MHcu\nTJoEc+bAhAla20IKg3oeRESyQKtnSiFTz4OIiIikRcGDiIiIpEXDFiIiWRSbQAkHDsDMmSYfAjS8\nId6k4EFExCGjBQo33AD33mteU1eXt90UyZiCBxERh0T3IuzZA/X1JlCYMSOE3x/gRz/qBkpZtWqQ\n66+vJRDwq96DeJKCBxERB4VCJlB44QUTKNx2Wx8nT4Z4990fAgGghN7eIXp7d7NtW5MKRoknKWFS\nRMQhwWCQhoYm2ttX0tu7BdjMwYNX8+67DwELiayyOQ5YSE/P/fj9gbztr8hYKXgQEXHI3Xe30dPz\nALGBwivh/yeygN27u3OybyJOUvAgIuIQEwgsiHu0lEggEW8cAwOl2d0pkSxQ8CAi4hATCMQHCoOA\nleQnhigrG8zuTolkgYIHERGHmEAgPlCoBXYl+YldzJ9fm92dEskCBQ8iIg4xgUB8oOAH7gG2A0Ph\nx4aAHdTU3Esg4M/hHoo4Q8GDiIhDAgE/NTX3ADuIBApTgXVUVd3BzJm3Ao1UV6+gpWWTpmmKZ6nO\ng4iIQ3w+Hzt2dIbrPKynt7eU6mq7INSzvP66j/p6eOwxVZgUb1PwICLiIJ/Px8aNbe9XmPz852Hn\nTli71pSsnjMHvvxlrW0h3paN4OFS4FvALcBEYC+wFtiThW2JiLhG/NoWc+bA889HAoU1axQoSGFw\nOniYDLwI/BsmeAgCNcBbDm9HRMR11IsgxcLp4OFu4ACmp8F20OFtiIiISB45PduiEegCHgWOY4Yq\nPu/wNkRERCSPnA4eLgO+ALwKLAV+APxP4LMOb0dERETyxOlhi3HAbuCr4f//FrgC+C/ATxP9wJ13\n3smFF14Y81hzczPNGjgUERGho6ODDjsTN+ytt/KbSphstZax2g88BfxF1GNfAO4Fpse9tg7o6urq\nok4TnkVERFK2Z88e6uvrAerJw2xGp3seXgT+JO6xOZigQkSkaMVP4zxwAGbOVL0H8Sang4fvYAq4\nfwWTNDkf+PPwl4hI0WpuhiVLQuHqk9309pbS329Xn/SrTLV4itPBw0vAbcA3gL8FXgP+BugY6YdE\nRApdMBhk0aLV9PQ8AASAEnp7h+jt3c22bU1a50I8JRsLY20FrsJUl5wHbMjCNkREPOXuu9vCgcNC\nIulm44CF9PTcj98fyN/OiaRJq2qKiOTA7t3dwIIkzy4IPy/iDQoeRERyYGCglOQT3MaFnxfxBgUP\nIiI5UFY2CFhJnh0KPy/iDQoeRERyYP78WmBXkmd3hZ8X8QYFDyIiORAI+KmpuQfYAQyFHx0CdlBT\ncy+BgD9/OyeSJgUPIiI54PP52LGjk49/fBMVFSuARiZOXMGkSZuYPr2TtWt9NDZGCkmJuJnTdR5E\nRCQJn8/HCy+0sWcP1NfDP/wD3H47PPggqEq/eImCBxGRHIguT/3OOyEmTQrw53/eDZRy3XWDfPSj\ntTz2mCpNijdo2EJEJAeam2HzZvjRj4IcOtTEO++s5MyZLcBm+voe59//fSUNDU2EQqF876rIqBQ8\niIjkkCpNSiHQsIVIBrRSoqTLVJJMFiAsYPfu9bncHZExUfAgkoHo4MBOguvoUPKbJKdKk1IINGwh\nkqFQKMSaNa2sWrUcaGTVquWsWdOqsWtJSJUmpRCo50EkA1pmWdI1f34t3d27MDkP8VRpUrxBPQ8i\nGVDym6RLlSalEKjnQSQDSn4TSC9x1q406fcHeOGF9fT2llJdPcj119cSCKinSrxBwYNIBpT8JpBe\n4qwJNHxAG7NnQ3m5CTROnIC1azVDR7xBwxYiGVDym9hSTZy1i0U1N5ueiblzzeOvvmp6LTo60BoX\n4nrqeRDJgJLfBMaWONvcDEuWhMLDF9309pbS328PX6hMtbibeh5EMqDkN4GxJc4Gg0EaGppob19J\nb68pU93b+zjt7SpTLe6n4EEkA1pmWcBOnF2Q5NkF4edjaaaOeJmGLUTSEJ9V//vfw8CAj9LSNioq\nYNIkk/y2axdYlpLfCp19PBw4kH7irGbqiJcpeBBJQ6Ks+q4uk1UfCkXGr6GU118f5KmnalmyROPX\nhcrOW/jwh49gEmcTBRCJE2c1U0e8TMGDSJrig4RVqwaZP38mu3a9zP7930KVJouHnSj59tvzgJ1A\nQ4JXJU6cjczUST3gEHEL5TyIpKijA26+OcisWcOT3Do7T7N//zfQ+HVxieQtfBu4l+GJsy8mTZw1\nAcWuJO+smTribgoeRFLU3AxTpnydvr71DA8S3iDxXSckS5gT74skSvqATmATYBJn4RNccMFfJu11\nCgT8XHxx4pk6FRX3cuSIX4m24loKHkRSFAwG+cUvniVxkKDx62IUm7dgqkbCVmAz8EsGBj7E2rW+\nhEGAz+fjD3/oZPXqn1FVVQdcCXyUqqq/orFxHj/7mZJtxb2U8yCSorvvbqO//xISBwkavy5Go+Ut\nzJw5yObNyX/esix+/etXOHXqIUwPRgmnTg3xyCO7+fWvlSsj7qWeB5EUmS7q8SQuR12LSZhLROPX\nhSqTvIWODqivV60H8SYFDyIpMl3UyS4WfuAu4EVUaTLCXqehsRGWLjXrOCxdGnnM62P6mVQYbW6G\nSZPSLy4l4gYKHkRSZLqoW4FEF4s/UlYWYvXqR6iuNglz1dUraGnZVNRdz83NsGFDiKlTW9m3bzl7\n9zayb99ypk5tZcOGkOfH9O0Koy0tm8b0d1etB/Eq5TyIpMgsgvUaJqs+AKzHJEoOAhfh8y3l9Om/\n1zLLUcayYJQXxFYa9XHgQBsXXwy9vTBjhuldSeXXUq0H8SoFDyIpCgT8/PKXTQSD9wPfwnTcDQG7\nqKi4lyuv7CzaICGZ2PUbbLFj+hs3tuVp78bOriy5alWAl17qpq+vlIkTB5k0qZaSEj8dHWaGxWjH\ng1ZlFa9S8CCSIntqnakuuZ7e3lKqq+0llL15B51thbp+Q6IelTNnhjhzZjeHDqXeoxII+Nm2rYme\nnvsxuQ+RgNTkTHRm9fcQGSsFDyJp8Pl8bNzY9v66Fo89Zta1sMUvnHXggBm+OO8881ix9UwU6pi+\nUz0qds6EAlLxGgUPIimKDgx6e6GyEm6+2fz/zBm47DKYNQvOng3x3nsBXn+9m97eUvr77YtB8S2Q\nVahj+k71qJhjyhSXUq6MeImCB5EUJTuR270Q7e0wfXphJgiOVaGO6TvVo6LgQLxKUzVFxigUCrFm\nTSurVi0HGlm1ajkf+9ifhcevVfQHMquD4GaRHpVEvNujIpIqBQ8iYxAMBmloGL665r59JlBIrPiK\n/mRaB8GttCKmFDsNW4iMQfKEuSoKMUEwE6MlmXqRZklIsVPwIDIGyRPmCjNBcKziZ5/MmQNf/rL3\nZ59oloQUOwUPImOQPGHO7s4urATBsfJqcJCKQuxREUmVggeRMUg+BdEPNAFfBxqI7s6eOPFejhzp\npLGxsC+qxaBQe1REUqXgQWQMkk9B9AHrmD37Xs6dK+PgwROUlQ0wMFDFxRdP4pJLAkVZ76HQOB0c\nqLiYeI2CB5ExGClhrqLi21x66ffZvftLwA8YGFgAlHDgwBDt7cVR70EXw/TYa2WYHAoVFxP3S5YW\nngt1QFdXVxd1GigUDwqFYk/2kYQ5P35/gPb2lSTOfdhBS8smVy0IlY2L/Ujto4thrNi1MkywaYLR\n3dTU3FPwwaakb8+ePdTX1wPUA3tyvX0FDyJjMNrFds+e5Rw+vIVksy5qa1fw8stbc7W7KXHyYq+L\nYXrWrGn1VLAp+Zfv4EHDFiJjMNqd+Ny53loQKtEqkZmU1S7UpbizpVBXH5XCpQqTIlnglfLFHR3Q\n2Aj19dEX+8zLapuL4YIkzxZfpc3RFOrqo1K4FDyIZIFXyhc3N8OGDSHeffc5RrrYP/poN42NJtCw\nh2tGMtrFcP/+0rTer9B5JdgUsSl4EMkCrywIZa/R8fbbk4m92IeAVmA58EnOnj3I1KmtbNgQSilx\ncvjFMPr9Gunv703r/QqdV4JNEZvTwcN9mDNk9NcRh7ch4npeWRAqkpswnsjFPogpdLUSMIt+DQz8\nlvb2lTQ0NBEKhUZ939iL4fD36+9P7/3cwh7maWyEpUth7lzzPdNeFK8EmyI2p2db3Ad8ClgS9dgg\ncCLBazXbQgqWV+oczJu3nO7uLZjKmCuBGuDTwAPAogQ/kVrmfygUoqHBroPxC2AVhTKTIFtTUDW1\nVdJRiLMtBjG3GiJFyy3BQbz4oOaPf7RzE/zAbZi73fMwpbUTSS3zP3rhqH/8xyfp708WHHhrJoHT\ns1Js5u/iA9qYPRvKy02weeIErF3r3uNJilc2gocPA4eBs5h+y3uA3ixsR0TSZFcyXLUqwEsvddPf\nfxAzXOEDrgGagW+SaeZ/9MWwvPxV+vsLYyZBtqagKjgQr3E6eNgJfAbYC3wQ+CqwHZgHvOnwtkRc\nzY1DF7F3zq3An2HG2RcBr2F6HDJfVjz6d5s3b5Du7uTvd+TIYFqLhdntevgwHDwIZ87AhAlw9ixM\nnAgf+hBceml22lf1GEQMp4OHJ6L+/TLmrNQDfA74TqIfuPPOO7nwwgtjHmtubqZZYbh4nBvXK4jc\nOV8GrAbuxsT49wP2EIazy4rHLiIWwlx8u8Pbe5cPftBiw4ZQyu0R3a5vvPEb3njjBGfPmsXHLrpo\nEldddVXW2lf1GCQfOjo66IjLxn3rrbfytDe58xTwvQSP1wFWV1eXJVKIjh8/btXU3GjBDguGLLAs\nGLRgh1VTc6MVDAZzvk+1tcvC+7IuvF+WBcHw/68IPxe04EYLtof3197vX41pv4PBYLgdtoTfN749\ntqf1vpF23erI+6Uj0n5Wgq9Bq7Z2mePbFEmkq6vLwnQR5mXGQbbrPEzA3MYczfJ2RFwndnw886qN\nTojcOUdXgDS5CXALpsfBB3QCmwAzzRQWM3v2vWNKCLSTJ2fPbgPWM7w9GtJqj0i7PoeZFZLZ+6VD\n9RhEDKeDh28DHweqMWemx4Aq4CcOb0fE9dxYojlSvClR97sfk9+8A5iKCSgeB77CxIklXHbZo6xd\n60u7lkFHB6xd6+PYsUpGmsXx2GPdKb13pF1z376qxyBiOJ3zcCnQAVyEGdzcgbkteN3h7Yi4nhvH\nxyP5B4mSIu0eh29RXv4X9PdXR9UaGHthKztxce7cUvbuLWF43sMgUMvFFw+klOAYadfct2/0FNQX\nXlgfV4/BPcW/RLLN6eBBWY4iYZG7/LHPWnBSRwccOeKnoqKJvr4ZmMlR8T0BPmAlF11Uwvnntzla\na8D8vscxp4lInQRz576L11/fQig0euJkpF1z376qxyBiaEnuAuTGKYLFKHaWQbzcj4+bWQrw1399\nOY8//gKnT38GM6LYgBnBNBfxmho7t8HZ7Zv28BPJU7CZPIX+/h+lVCch0q7OzgpJhT47IobT5anT\nofLUWaRSt/kXW6J5AYkv0Ln7WwSDQa68cjXB4APh/XkD+Bamsu1JJk68mGuvvYrHHsvOMRIKhbj0\n0hvo7/8DyXoLamtX8PLLW0d9H9Ou6zBpVvHtu5OKiq9y7bWdHD3qcyRwVkAubpPv8tQKHgpQbCGg\nBUS6hndTU3OPqxZmKnRuCuLWrGmlvX0lydaYmDZtEx/9qLnrz9bFcPbs5fT0JA8O5sxp5NVXN4/6\nPna7Pvvsbzh48ARlZabOw8yZk2homA2MY9eu1+jtLaWiYpApU2qpqfFnFEy46W8pku/gQcMWBShb\nJXQlPW4bHx+tOuLkyevZPPp1e8w6OuD4ccg0T8Fu18OH2+jrg8rKSIXJd98NsmnTas6diwTOfX3H\n6evzc+zYDQwMzKK/n7Qv+tla00JE0qciUVkyWiGbysrF1vTp66zKymVWefkKq7JymTV9+jpr6dKg\n9fDD+d57yZY5c1YkOSbM15w5K7K+Dy0t0cWp4r+2Wy0t6xx+/+NJCkmlV6gr2/udiYcftqwVK8zX\nTTdZ1pw55rv9mD7ThanQi0RJHow8RfAN+voOc+jQSk6f3kJ//2ZOn36cQ4dW8vzzTbS3h2hsJO25\n/OJ+kVkKieRm9ke26yQMr63RRuJCUukV6nJjzQ5bczNs2BBi6tRW9u1bzt69jezbt5ypU1vZsCGk\nXAzJCg1bFKCRpwj+dyxrA4nWGTh3zuK11z7N9u2Pqgu2ALlh9keqdRLGmqA4PHB2ZiErN9bssI00\npNLZ2cR113UyYYJPSZ3iKAUPBSj5RSIIPAv8ffjfq4mfb79v304aGjSGW4gCAT/btiWf/REIdGZ9\nH1LNAxnromLDA+fML/qmPoa7anZEi81xir0hOHNGNwSSHQoeClDyi0QrpghoCbHdubZxwCIlVRYo\nN1RHTPXud6wJisMD59Qv+iP1dpx//mWcOmUvXR4vv2taRBJhi+OGQNNm3UE5DwXIvki0tGyiutos\nbFRdvYILLngZGI85mbp3DFeyw15j4sSJNmbP3sqcOZuZPXsrJ060jWnNimxKZ1Gxjg5obDRfvb1+\nysujcypqMZU0E4m96CfLHaio+CJlZS8B64DtxOZqvMisWV/O65oWkSGVZPkdi/K2EFs2KMfDHdTz\nUICSdQ1v394IzMVU5Ru5O/fNN0tpbDT/U3SfGbfcKXnpbzbatNLoXIXoIY4//KGb/v5yqqq+AJRx\n6tSFlJVtYWDgRySqpBk9VJO8t2MN8HfAh8OP309kTY6LWLjwirze0UeGapzJ73A7TZsVTdXMMTOF\n0566dsOI0zlra5dZwWDQamlZZ1VXL7NghVVdvcxqaVmX8vQ2iVBbpiedaaXHjx+3amoST8csL7/R\namjotqZPX2dVVIzc9smnY4489bmqallep0NG9jv/U3Fzwc3TZnMp31M180nBQ45FPnRBC6634MWk\nH8Cmpi8kPSGnMz9eRr64ub0t81VDYLRaJdEX7NEuJhMmrLMqKy1ryhTLqqy0rIsusqy6uuH7n3yb\n7r4oB4PB8PE1+g1BIRjt2CiU33M0+Q4elPNQRAIBPxdffA+wD7P08lcZPoZr5tuXlJSmPOYsI0tn\n/N5t8jW+bHIRdmFmD7QCy4HG8Pc1fOITs97fdvIaDCHgF5w79wSnTzdywQXL+fSnW+nuDtHVBZs3\nxw7jJJ+Omf/6GCOxc5xmz7YwuR6J5Dep00lunjZbTJTzUER8Ph9/+IPJtt+6tZtQqJzS0i9SUlIG\nfIAJE2Dy5FpqajrZtq2FkRMqC2P8NBfSGb93m2yNL4+WB7J8uZ/nnruNAweGgAeJXb57Jzt3fuX9\n5bsjF5PoaYoDwEFgI5bVltJ+J6+PYiddxi9fDm64KNs5Tpdd9iiHDzdx5kz+puLmgtuWupfc07BF\njjz8sGUtXRq0pkxZZ5WWLrNKSlZY48Yts8rK1llTpgQTduG6oZRxofBqWz78sGVNm/alEYe3Mhlf\nHikPJJ1tm27sY1ZsGep1FmxPa7+TD38ELWiw4Ffh4SZ72Gm748NOmQ4TFUNujXIejHwPW+STgocs\ns4OGadO+YJWU/MmIY+7xJ63x4zWu6BSvjtEeP37cKi+vzcq+p5IHkmq7mYvJZ+MuKOm3eSR3YPuw\nIOG88z5mTZv2pVGTLp0w1gCgWNa4GOnv5PYcIiflO3jQsEUBW7w4yNe+tpqjR2cAP2a0VTajK/qd\nO3cEM37qvqI4XuOGstBjcffdbfT3X8JI48sHDpSydGn6009HW/m1ri7Am2+mNrYdCPj5x3+8gf7+\n6GG29MfFn3nGR01NJ2fPBnjzza9x5swJYADLquLcuUmcPXse117b/v6y3tlYHTWTYSIvTcXNRPTf\n6eTJ9Zw7V8r48YPvD7k+84yvKNqhmKnnIcsi3Xuj34UNvxMMhruBXyya6D5bd25evVMyd/4jHTvH\nrLKyj4zpbnzkXoVj1gUXfMQqL78ipd6Dhx+2wvsQ/fzYe3vyOTtGXfKSKvU8iGPik9BeeMFO1Bv9\nLmz4naAPMyMjANwLvEd19ZScljLONbvY0KpVAV56qZu+vlJef32Q8vJarrnGT0eHqcKY7h1evstC\nZ7bIlF1ULH7dhAFgPwMDP2FgYAHRd8g//3kT117b+f4deqLtJM+YDwLNvP32Q8BjUduOF+mxaW6G\n9euhu9uKes/alH42kdF6RbJZuj0XybVuKVomMlbqeciC2PHSupTvwkYbXx4/fllBjp9Gi73jPG6Z\npLtbLVhilZXVWqtXf2lMd51uGIseyzh6bFGxLVZqCYlBCz5rVVXVj7id5Mdb9PvavV+j99gMv2NP\n/WcT/975yVHJVXJtvhMr3fCZ8Lp89zzkk4IHhw3vbrVPgqN3hXp1RoCTIhcg+4IZ3239oquHGZIZ\nazf8yEXFEl1gk7Xb8O2kXs0xGD5+zUWupOQKa/r0ddbSpcGYC0zioaFjFnzWKiurtWBZyhfIfH4W\nchG4uKVoWb4DGK9T8KDgwTHDT8jRJ/9Ed2G/SjuzvZBF2qCwxp3HOo4eDAatiy+2j5tb446PRBfY\n1LeTPA9kyZgv3PEXo4qKZdb06eus668PWnPmWNYVV1jWBz5gvq68MnK3W1dnHqury/9Mo1zkPLgh\nr8ItAYyX5Tt4UIXJAjK80p4fsCtKdgCbgE8AN1FWdiWrVz/yfvZ2pKIfDK/qt5j9+09z880hV628\n6LTIOHxhrTiavAIjjPT72EXFWlo2UVZ2jNgchURVF1Pfjp0xP336JiorV1Be3khl5QrKyk4meF9b\n8gJAiVYM/djHtnLNNW1MmuTjvvvg97+H3/8+xK23tnLqVKRa5lVXtfLcc69w1VWmimZkplEiu3jn\nndqsfQ4CAT81NdGrgkJ05VcnVu9MfDzYn/mv097+b1RVLWfGjNasfea9XHVV8k89Dw5L3N0a3e1b\nZ02cuMyaNMncjUWPL0buBOPHtlMfK/a6SM9DYQ3hjLUbPnpcurIy/m480d1r5u2Wzbvi5He7W62y\nsrlRj9s9dVssuMuyh0zgBquq6gqru7t7zPuQiky78+36LtOnr7MqK5dZpaUrrNLSZVZ5+TqrvDyY\n4O+U+nCTU9TTmbl89zzkk4IHh9gn+aqqsSc92iecior4sW1vd9mnI52prV7ixIk6tYTE+KGN9LeT\nzWmtyQOTRMmfL1twVYILanaDaCcSCY8fPx4ebored5P/AXMsmBv1+OiL5GXjM68cq8wpeFDw4Ihg\nMGjNnp35SaCY7wgiF67PJriYeDeAcuJuPvaifix8wf1TC64MX5DmW5WVVzlyEUp25/3QQ8GYO+ry\n8hVWZeWyhAmUiSQ/thM9nv+8gLGKTXRdZ8F1Fsy2YKtlAj77+LZ7HG7M+We+mM8zTlHwoOAhY5Hu\n2F9aiRMjU58lUMx3BJFy3l8Ml/PO/loGueDE3Xwqpc7PO+9j1sSJH894O8nuvJcuTXRHnXr3evJj\nO9Hj+b+4jbUXInatj60WXBH+m8QnUNtBRO4/825I2vQ6BQ8KHjIW+0GMndoGN1gVFdendGdmWboj\nsBXSNLL4MfB079ijjXbSnzbti45sZyzbHu2Ck17PgzuC6JF6YZIFFpWVK6IChXVWpGch+vcMWlCf\n4PHcfOar2oiKAAAgAElEQVQT92SZmiolJbXWtGlfcuSYKWT5Dh5UYbIAxFal8wHR1e+GmDVrBU8+\nmVoVQ6+uw+Ake4ljaGP2bCgvJ2trGeSC2d/442JsRquAOHnyel5+eWvG24lmV0R87rnMqi8mP7YT\nLbmd32WfOzrghz/s5le/amZw8IfErnOxi1/+sonnn/8egcCPeeGFbnp7S+nvN1VLL730LHv32m31\ndaAq/HtEV/X0Afa6JWOvxjlW9mybvr7/h2PHnsOyNr7/O1rWEEeP7qaiooklSzrD+yoSoZ4Hhzg5\n1ODVdRgkN0Y71ioqVmSlSmAwGLQmTVqY0XGe/Njeapkkwuh1XO6y8pn3cvz4cauq6ooR9mGLdf75\niRI6d4R/zq6XsSKqZyG+h8H+/+h1YLJFwxdjp54HyZi5C3LmLinf6zCIuw0/1qLXuyilv7+XqVNb\nCQT8KR0rqayzsHixWWnynXcmkslxHn1sP/vs1zh48ASlpe8xOGi/3+cpKRkHnM95553HuXNPMzj4\nA8wd+ThMvYVd4XoLnaP+bpm4++42Tp3ykbg3AOA53n33ByRaf+PUqW8xbtx/Y2jIwvSgXI7pWYjv\nYYj+v72OzXpMD8W7zJ5tsX37o45+5pOvv5NIbG+S1uRwFxWJKgCxBZ7ipdftGF9s54Mf3Mzbb7fz\nyCMwbVoLZWWNWS8gI+4Ve6wFgSZgJbAF2Ex//29pb19JQ0MToVBo1PdrboYNG0JMnWoKNNmFm6ZO\nbWXDhhDNzdEFherJ5Di3j+0jR1oJhYaA+xkcnIZZrv4VoBvL+h2W9SDnn1/Cddc9wvTp/xRTxGr6\n9E3vL/ucTWZ4yB5uSOQVYodZot1CVdV4TKGpWmAxpljcjeHvdgEqu4jcdmAqZljrceArTJxYwmWX\nPcratT5HP+Pxf+9z5+KLj0WLXTo9lWNFioOGLRySzaEGlZGVaLHH2l0ZdzmncnxFEh2d6V6PdJW7\nt8vcDA+NlMg42vDRUquiwp5tYX+/y4LFFlxtQa0FV1olJddZ48dfb02cuNTKRWJw8vV3Rk/W1Lko\nVr6HLfJJwYODsjU7QGOSEi165kZJyRUpn/iTGe34MjM3oi+U8bOJllmTJl2d1nEeCUbcO7PI7ONI\nwdkNI+77pZcus5YuDVpTpqyzxo2zA4YrLFhojRu31JoyZZ115ZVBq64utytbJl9/Z/Tzi85FsfId\nPCjnoQBkc3bAaNn1o2W4S2GJnrkxd+6r7N2bWpdzMrHHV2z+BAzw7rtHuPTSD7B3r4Xp3h4+m2ho\naAVr1/pSPs4ja5hEzz4Y2/5ni5kZ8qeYYYX7MWtR2HkXOykrO8zAQPwMEdsubrqplo0bnZlh46Th\n5xM/Zugr/nccnluic5G7KHgoANlMFIqcaBPJ7wlW8suJRN3I8RUEVgMPYE/ZgyHefnsng4N3MHwq\npW0Xq1bVsnHjWPY7v9MxRxII+Nm2rYmennXAL4hOZKyqeoMnntjI5z53Lz09o1903WT4+cRHbLLm\nMaqrP5gwQVvnIndRwqSMKHKiTSS/J1gndXTAzTeHmDGjlaqq5Ywfr8TQ0TiRqBs5vtowgUP8KouL\nOHXqW5x//n/BqZUmI/vtXKKx03w+H62tnUyf/hwVFa8ApZSVDTJt2kdZtOhZ/vqvP0ZFxfBVSXOV\n0DlWic8ndg/J44wf/0Fmz97KiRNtw5I1i+VcJKNTzoMHFMs4o5Kx0udEom6qi5FVVi52rHJlZL/t\nZMKxl3PPFicWyEp3e05VIR1JJueTYjkXpSrfOQ/5pODBA4qlaJROTOlz4oITOb6WJGl78+V0OWg7\nwfhDHzLJhGVlJplw5sylritDnotAIlfBcybnk2I5F6VKwYOCB9crpHUektGaHvlhByBlZfU5a3/7\nYlxXZ1kXXWRZlZWWNWWK+X7RRdb7MxDctK5Ctj+DuQyeM/ldiuFclKp8Bw/Jsk9yoQ7o6urqoq6u\n6AInzyiWqm5z5zayd+/mpM/PmdPIq68mf14ys2ZNK+3tK0lcUXEHLS2b2LjRXTMHciUYNBU2TaGs\nBdjJpLCbiRPvYdq0TmpqfBl9JufNW0539xaSJY/W1q5wZM2STM4nxXIuStWePXuor68HUz1tT663\nr9kWMqJi+UA6WeJb0heZXeCt2QO5EKmwGR1YnQB+wZkzFq+91ohlTQnPUEitLHi8XM1kyOR8Uizn\nIq9Q8CCjKoaIvxBXE/XS381eZfHs2QAnT67n3LlSxo8fZPLk2vdnD7hlX3NteH2D4dNazWqbu9m2\nrYkdO9Jfg0bBs3iJch48pNDHGgs1GSsXf7dcZeoXq+ErmTqfn6CEYe/Jd85DPil48IhimcZYaAFS\nrv5uxXJ85MvwZF7nk3sLNXguZPkOHlQkysM6OqCx0XwtXQpz55rv9mNOFTaKHXONLuCzkJ6e+/H7\nk5WM9Y741UTnzNmctFiNV+Tq71YMx0c+xRbjCgFv4nR+gr1ceUvLJqqrVwCNTJy4lIqKr3D0aDmX\nXro2b0XTVMBN4qnnwQG5uFvWNEZn5Kp7P9fTH3V8ZFekV2CLZYpa3eh4e0dPX50yJWiVln7Bgj/J\nWW/SSLUsli49bl18sXq24qnnQcYsGAzS0NBEe/tKenu3AJvp7X2c9vaVNDQ0EQqFHNmOaso7Y/Hi\nID09TRw6tJLTp7fQ37+Z06cf59ChlfT0NLFkiTN/L3s7AwOTycXfTcdHdtnJpBUVbZj1H+pxuqx2\nczNs3gz/+q9BJk9uYnDwNPBjctWb1NwMGzaEmDq1lX37lrN3byP79i1n6tRWpkz5OsGgerYkQj0P\nGcpVkpPuLJ2Rjb9Xoju2adNSK/msngdvibRz0EpcVvtXGd+Jp1ou3Om/6Uh5MyUltTq+ElDPg4yZ\nmcK1IMmzC8LPZ86JBZAkO3+vRHdsb7zxRHg7ufm76fjIjUgPj70S5SbA5CfACsrKvpTxoliRYzS6\nNykEtALL39/W3r1HHM03iM2beSO8vRXAA1jWeNSzVVy+jKny8p0kz6vnIUPDp3BlZz0AZWI7Ixt/\nr8R3bPZ2sneHGk3HR27koocncoza2zoePobiewScXTws8rsl2t6t6nlIoFB7Hq4F/gL4HSRdQ1Uy\nlKslau0xV68t/+s22fh7JZ7pYG8n0R3qJygr+0tH/26JMvWrq1fQ0rJpTAWLJLFc9PBEjlF7W8mX\nSncy3yDSq5Joe/NQz5b7ZKPCZBXwM+DzwNey8P4SlquqiKYSoQ/zwS4sHR3Q3h6iuzvAyZPdMZUN\na2v9tLQ4V9kwG3+v4dUHIXLiX4gJIKL/bju4/fZNbNzo3AXdVLI025k9G8rLTSXLEydg7Vp3VbL0\nslyU8I4co36gCRNIJAsQFrB79/qMtwnRQYt9PIfC37uBAWAL8COgAZUuL1w/Af4u/O/ngQeTvE7D\nFhlSd3HmclngKBt/r8RDIcmGK3RceFkupvrGHqPHLFiYk6HRSKLmiiRDF8cs+KwFc6yysmWqYGrl\nf9jC6Z6H1cDVmGEL0JBFVmk9gMwlXnQodhqYU6s5ZuPvlXhNAnu44luUlPwFllVNRcUgH/1oLY89\npmEEr8pFD6A9BOX3B3jhhW56e08x/PiyOTc0GulVsXs64j+TH8Dcl77I7bf/c9GusOomTgYPM4D/\nASwBzoUfK2GUZb/vvPNOLrzwwpjHmpubadZVb1SFPJyQK4m7/W3OdcuCc3+v6AWvTp6MHqKA2O7e\nc4wbN4HKyrlcc42fSZN8GkaQEcUPQZ040co772R/aNQOrI8e/TR9fV0k/4w0sHv3A45s00s6Ojro\niJva8tZbb+Vpb5z3ScxAVH/U1xAme+scw4MIDVtI3uVqxorT7MqiH/rQYstUAvyVBUeTZMYXdyU+\nGbtcD40Gg0GrvPxqT34mcy3fwxZOzrZ4BrgC+Ej462rgJUzy5NVoCENcKFczVpzS0QE33NDNtGlL\naG9fycGDTwP/DvwTptNvParEJ07J9UyaZ57xMX78xXjpM1msnAweTmH6Su2vl4E+zCouzlQrEnGY\nVwoc2YsD3XXXF3nhhUYGBx8iEiT4gG8DMzHZ6Ik4VzRMioe9YNzvftfG22+3U1Y2lwMH4Cc/eZVp\n01qYOtXZxamam+HTn74KL3wmi122K0za3SoirhQI+KmpuQfYgRllI/x9R3gamD9/OxfFXq/i6NHT\nmPSiRGPQWmNCnBW/5sXAwEqGhrZgWZsZHHycN990dl0W8M5nsthlO3i4EfhvWd6GyJh5pQBWZFbI\nG8D5JA4SvDUEI96Ry2XXVXTMG7JRJErEM7wyYyUyK6SUSJAQH0DUAjtJPHSh7l4Zu1zOSlLRMW9Q\n8CDiAZHyvYPA5cROzwQzRbMPaMEspaxKfOKcXC67ruDAG7SqpsfYiXMzZrRSVbWc8eMbqapazowZ\nziYuibvErjmwGIgeEw5iSgl/BtgG/DPwCeAmSkquZNq0h101BCPe47VZSZJ96nnwmMWLg3zta6s5\ndOgBTDdiCf39Q5w+vZsJE5pYsqQTk30vI4kutPTee3DggOkaPe8885jb7n6GrzmwDvgFZmrmEeB7\nRHoiIkMwlrWDm292di0LKT6R46+GSBEyewjtIk6enEVHx8ifmVyuIyOFTUWi0vDww5a1YoVlTZ9u\n14BPVEBlu9XSsi7fu+oZdqGl6uplFqywqquXWS0t61xZTGn4mgPrwksVL7FgjpYslqwKBoPWzJkf\ns6AhQRGyF61Zsz4+6ucml+vIFINCKhIlWdTcDBs2hHj33ecwK+olkt25/IU0ZBIMBmloaKK9fSW9\nvVuAzfT2Pk57+0oaGpoIhZybeuaE2Az0/wy8SnV1CS0tV1NTMxtN0ZRs8vl8NDRcg6knMnx57v37\nvznqjItcztiQ7NOwhUcEg0EWLVrN229PJl8XikIaMsnlglhOGCkD/fjx5eRi8SIpXh0dsGXLa4xc\nhGzkGRfpztjw2tBisVHPg0dELnbjyVfiUiHdOZgTWX56cBIZrVcHTLGezZvhqafg1VfN982bYdUq\nb1TJFO9qboZLLslsxkW6Mzbs3tapU1vZt285e/c2sm/fcqZObWXDhpAChzxT8OARkYtd/i4Ubrvg\nZiKXU89SYVeQPHRoJadPb6G/fzOnTz/OoUOjV/BTRT7JhdgZFyGgFVgONALLeO21gyMOX6Y7Y8Nr\nQ4vFRsGDR0Qudn5ip+kR/v5i1i8UbrvgZsJtU88y6dXxSpVM8bbIOjD21OCVgLmowxYGBr4/YqCb\n7joyhdTTKc7SbIs01NYui8pQDoaz7c0sAbjVKiv7iLV0adB6+OFc7YO3s/pbWtw1a6WQ2lYKU2TG\nz2fDs37S++yku7y3PhMj02wLSUls1G6XU96Kifq/xu2338STT2Z3nrRXVqBMhdu6+gupV0cKk93D\nVVb2MokXZoORhi/T7SHTZ8LdNNvCIwIBP9u2NdHTcz8m7yD3pYfdsA9OsU9kZ88GOHlyfUzBGvtE\nlsuErMgwimZMiDvZ68DMnXsJe/emf1FPdx0ZfSbcTcGDR7jhYueGfXCK2xbEilTwS3RH561eHSls\nubqo6zPhbgoePMINFzs37EMhSFSmt7y8j9LSpxgc/AHmZOndXh0pbLm6qBdST2chUs6DSI4lmpbZ\n1/cUg4PfpKrqDmbOvBVopLp6BS0tm9ixoxOfTzMmxB1ylS+kWUTulmzgKhfqgK6uri7q6vKSLCqS\nF2vWtNLevpLEd247mDZtE5bVxrlzIfr6AvT3m0WIzjtPiwiJO4RCIfz+AC+80E1vbynV1YNcf30t\ngYBfgW6O7Nmzh/r6eoB6YE+ut6+eBykqblifY7RiW5Mnd/Pb3waZPLmJ995byeDgRgYH53L6tMWh\nQ//B00/fwF13/ZXn1hORwtDRAWvX+jhxoo3Zs7cyZ85mZs/eyokTbaxd69MxWSSU8yBFxQ3rc6Qy\nBS1SIOcyYDUQ2V/LGuLo0Z1UVHhrPREpDPaaEnbuTl9fgO3bI0ts/+Y3tbS3q3es0KnnweXccKdc\nSNxQtS5xdUu73O8y9u49xE9+8gSmd6INEzgMX8lQVfYknzIpqS7ep+DB5dz4AY0PaMrKGiktXUJp\n6Q2Ult5MWZl7Axw3rM8xvNhWdLnfrcAeLKsaEyzkf39FEnFDIC75o+DB5dz4AY0PaAYHf8TQ0BBD\nQ99kaOgJBgfzH+Ak44aqdcOz1duA+4n9G9u9E/nfX5FE3BCIS/4oeHA5N35Ahwc0ybrW3XcH4oYF\nseKnoMETDJ95YfdO5H9/RRJxQyAu+aPgweXc+AGNDWhCwHO4LcBJxg3rczQ3w5NP+nj99TZOndrK\nnDn2EEU0e/XUi4CdSd5JVfYkf9wQiEv+KHhwOTd+QCMBjT1WPxm3BTjJuG1BLEj2N/YBnUAl8Bng\nRdyyvyKQeiCupO/CpODB5dxwpxwvcrGzhyvGE7n42bMGlgONwDJee+2ga04SbqpaZ59U9+8/jQlm\n4vmAzzBt2s1Mn/7Ped9fkWipBuJuTPoWb6sDrK6urnwvi+5qwWDQqqm50YLtFgy+v5Y9bLdqam60\ngsFgzveppWWdBTssWGbBkAX2/49bcGP430NR+/pi3vbVzY4fPx7+2/4y3G7xf2O1m7jXww9b1tKl\nQWvKlHXWuHGLLbjagissWGjBDVZJyfXWuHFLw4+/GD6u47+2Wy0t6/L9q3hSV1eXhblry0uJZvU8\nuJyb7pRtkTuOc5jhCnt8vpXhswZUkyCZSOLprZghik3ACkyPzWIqKu5R74K4lp2788orrVRXDwE/\nAH4H/AummJmZfQWXAA1J3sVdOVGSOlWYdDk3rmRpBzQHDtzKwIBFZHz+VhKv1wDmJLE+Z/voBeak\naQdU8X/jIWbNWsGTTypwEHeLnX0FsbOvQNONC5N6HiRt9h3H7bffSCQfw4e5w9BJIlVunEkjkq7R\nZ1+5L+lbMqfgQcZseMKUThLpcONMGpF0jT77yn1J35I5BQ8yZvH5GCUlR0g8awB0khjOjTNpRNI1\n8uwriOREuWd6tGROwYOMWXyxo+PHn6Km5qvoJJEaN9acEElXJAi2hy+ig+IQJq9nHPBF4ErgGsaN\nu5UpUzTd2MuUMCmOsXsizp4NcPLk+veX6J08ufb9k4SW6I1Qe0khCAT8bNvWRE+PPXzhxwxf3AX8\nHdHLyZvgeBfV1feyY4cfn0+Bg1cly9bKhTqgq6uri7q6vExTFRGRDHV0QHt7iGefvZWBgV9jLish\n4NOYwGFRgp/aQUvLJjZudM8sMq/Zs2cP9fX1APXAnlxvX8MWIiIyZslnX1Wi+g6FS8GDiIhkbHgO\nj6YiFzIFD1JUQqEQa9a0Mm/ecubObWTevOWsWdNKKKT6+iKZGL7UfC+aily4FDxI0XjooSCzZjXR\n3r6S7u4t7N27me7ux2lvX8msWU388IcKIETGKn72VUvLLWgqcuFS8CBFY9euNvr67LK50WtvLKSv\n73527tTaGyJO0VTkwqbgQYpGbBndeErgEnGSGxf1E+eozoMUDa0lIZI7blzUT5yjngcpGlpLQkTE\nGQoexHFundGgtSRERJyh4EEc5eYZDUrgEhFxhoIHcZSbZzQogUtExBlKmBRHmRkLyQKEBezevT6X\nuxNDCVwiIs5Qz4M4SjMaREQKn4IHcZRmNIiIFD4FD+Ko2BkNIaAVWA40AovZv/80N98coqMjX3so\nIiKZUvAgjorMaNgKNAErgS3AZuDf6Ov7Bj09TSxZonUkRES8yung4QvAb4G3w1/bgVsc3oa4mD2j\noaKiDVjP8FkXDfT03I/fr3UkRES8yung4XXgbqAOqAeexdxyznN4O+JS9sp6s2ZVAg1JXqV1JERE\nvMzpqZpb4v7/VUxvxHzgZYe3JS6mWRciIoUrm3UeSoFPAxOAbVncjrhQZNZFogBCsy5ERLwsG8HD\nlZj6vxOAM8CfAfuysB1xsfnza+nu3gXUYIpGdWPiyUHgIk6enEVHhxnmEBERb0nWr5yJcmAGcAGm\n5+FLwA3AnrjX1QFd1113HRdeeGHME83NzTTrquJpoVCIa6+9jQMHhoAHgQWYw20I2MmsWV9h9+7H\n8PlUElpEZCQdHR10xM1vf+utt9i2bRuY/ML462vWZSN4iPc0sB/487jH64Curq4u6urqcrAbkksd\nHXDXXX/F0aPNwKIEr9hBS8smNm5UqWgRkXTt2bOH+vp6yFPwkIs6D+NytB1xkeZmmDz5NTTjQkSk\n8Did8/AN4JeYKZvnA6uB64H7Hd6OeIBmXIiIFCangwcf8FNgGqZI1G+BmzH1HqTIaMaFiEhhcjp4\n+LzD7yceFplxsTDBs7vC62CIiIjXKBdBsmbhQj8VFfdgZu4OhR8dAnZQUXEvCxf687dzIiIyZtks\nEiVF7o47fHzqU534/QF2717PwEApZWWDzJ9fSyDQqWmaIiIepeBBssrn82k6pohIgdGwhYiIiKRF\nwYOIiIikRcMWUhRCoVA496I7LvfCr9wLEZE0KXiQgvfQQ0Huums1fX0PYBbpMmtsdHfv5uc/b+LB\nBzu54w4FECIiqdKwhRS8XbvawoHDQiIFq8YBC+nru5+dOwP52zkREQ9S8CAFz6yhsSDJs1pjQ0Qk\nXQoepOBpjQ0REWcpeJCCF1ljIxGtsSEiki4FD5IzHR1w880hZsxopapqOePHN1JVtZwZM1q5+eYQ\nHR3Z2a5ZQ2NXkme1xoaISLoUPEjOLF4cpKeniUOHVnL69Bb6+zdz+vTjHDq0kp6eJpYsCWVlu4GA\nn5qaxGts1NTcSyCgNTZERNKh4EFy5u672+jpSTzroafnfvz+7Mx6eOYZHzU1nUyfvonKyhWUlzdS\nWbmC6dM3UVPTyTPPaJqmiEg6VOdBcsbMakgWICxg9+71WdluczM0N/sArbEhIuIE9TxIzgyf9RAC\nWoHlwCfZt+8ga9a0EgplZ/hCREScoeBBciZ21kMQaAJWAluAzZw791va21cya1YTP/yhAggREbdS\n8CA5EzvroQ1Q1UcRES9S8CA5s3Chn4oKe9bDy6jqo4iINyl4kJy54w4f+/d30tKyifHjj6GqjyIi\n3qTgQXLK5/OxcWMbs2dPQ1UfRUS8ScGD5IWqPoqIeJeCB8mLXFR9zFc5bBGRQqciUZIXdtXHs2cD\nnDy5nnPnShk/fpDJk2vfr/rY3Dy29w6FQvj9AbZv/w29vYfp79+IKU5VQn//EKdP72bChCaWLOkE\nVF1SRCRdCh4kL5ys+mgHC7t3dxMKDfDGGwexrI2YnIr1mOmgtthy2Bs3quqkiEi6NGwhnvbQQ0Fm\nzWqivX0l3d1bCIWuwrJ+DNQAz6PpoCIizlPwIJ62a1cbfX12sak3gOeAyzDVKyej6aAiIs5T8CCe\nZnoPFhApdz0Z+DameuV4NB1URMR5Ch7Es0KhEIcOvYnpXbDLXY8H7IBC00FFRLJBwYPkVSgUYs2a\nVubNW87cuY3Mm7c8pZU17VyHd96ZiOldiA4YzmECCj+QaDroi1RU3MvChZlPBxURKUaabSF589BD\nQe66a3U4Z8FMpYQhurt38/OfN/Hgg53ccUfiqZSRXIdfYHoX7OW+/cANmIDCB3SG33t9+DUDXHDB\nEf74x6fx+TRNU0RkLNTzIHkTm+yY3sqakVwHu3fhXSIBw59iehsI/78N2ApsBr7GbbfdpMBBRCQD\nCh4kbyIBQCIjT6U0MyVKiPQuWEQChr8Fvko2q1eKiBQzBQ+SN5EAIJHkUylDoRDHjx8hMpPCBzxK\nJGCYigkofgEsBq6houJWpk/f9H71ShERGTvlPEjemKmSFokDiNiplHYVySee+A3Hjx/GsuYDO4GG\n8Cui8xvuoaTkPSoqpjB58keprfXT0jL2ctciIhJLwYPkzfz5tXR37yK2fLQtMpUyNrHSLjldg6nr\ncD9m6GMcpsfhk1RUdPHgg5uTJluKiEhmFDxI3ixc6OfnP2+iry86ABgCdoWnUnYC0YmVdsnpNkxv\nhWZSiIjkg4IHyZs77vDxqU91hhe1Ws/AQCllZYPMn19LIND5fgBgEifXMbzk9PCFtT7wgUYFDiIi\nWaaESckrn8/Hxo1tPP98O4sWzQVg+/ZXueGGlveLRZnESZWcFhFxC/U8SN6NVizqggvKMRUkA0RK\nTo+cJyEiItmjngfJu9GKRVVWniWVktOq4SAikhvqeZC8MzkNdjXJUPjf3dhJkIcPv0FJiYVlJS85\nXVZ2hJqap3nmGU3JFBHJNgUPkneRYlFBYDUmtyEyfHHmzE5KSz/P4OAOYBHDEyV3cPvtm9i4UYmS\nIiK5oGELybtIsSh7We344YtFDA5+m9LSL5Co5LRWyBQRyS31PEjeRYpFRQ9fxLuFmpoHWbRo04jT\nOkVEJPsUPEjeBQJ+tm1roqdn5LUuoIKNG9uSPC8iIrmiYQvJu2ee8VFT00lZ2UlUw0FExP0UPEje\nNTfDk0/6uP32GzE1HBJRDQcREbdQ8CCusXChn4qKRDUclBQpIuImynkQ10h1rQsREckv9TwUmY6O\njnzvwojstS5efnkrr766mZdf3srGjW2eDhzc3uaFSG2ee2rz4uJ08PAV4NfAO8Bx4J+AOQ5vQzKg\nD3juqc1zT22ee2rz4uJ08PBx4O+BBcBNmGGRp4AKh7cjIiIieeJ0zsOtcf9fg6k5XAf8yuFtiYiI\nSB5kO+fhwvD3N7O8HREREcmRbM62KAG+A2zD1B1O6JVXXsniLki8t956iz179uR7N4qK2jz31Oa5\npzbPrXxfO5PVAnbC9zDDGP8XcCTB89MwyZWXZnEfRERECtVh4FrgaK43nK3g4e+BRkwC5YERXjct\n/CUiIiLpOUoeAodsKAH+F/A6UJPnfREREREP+D5wEtPj8MGor/PyuVMiIiLiXkPAYPh79Ndn87lT\nIiIiIiIiIiIiIiIiIiIiUtTuY3guQ3z9hsuBzcBbmMWxdgAz4l7TADwLnMIkVz5HbELl/gTbeSDu\nPaAc+f8AAAV6SURBVD4EPB5+jxDwP4DyMf5ebnYfmbX5rAQ/b3+tjHqPycD/F36Pt4CfAhfEbUdt\nHuFEm+9P8LyO87GfWy4BHgaOYdprD7HtDTrOo91Hbtp8f4Lt6Dgfe5vXYBacDAJvA53AxXHv4brj\n/D7gd+Edtb+mRj1fA5wAvgl8BHMSvRWIXku5AfPL+DGNVAN8Chgf9Zpe4N647VRGPV8K/B54Jryd\nxcAh4H9m+gu60H1k1ubj4n72YuBrmIMuerGyfwV+i1nQbGF4m5ujnlebRzjV5jrOI+4j83PLc8BO\n4KPh5+8FBoCro16j4zziPnLT5jrOI+4jszavBHqAx4B5wBWYQGIXsTWbXHec3wf8ZoTnHwF+Msp7\n7AT+31Fe0wv8zQjP34o5QD8Y9VgTcAaoGuW9veY+Mm/zeL8B/iHq/5djIuBrox5bEH7sw+H/q80j\nnGhz0HEe7T4yb/N3gf877rE3MIvzgY7zePeR/TYHHefR7iOzNl+KaavodrkQcwwvDv8/Z8d5ugtj\nfRhTDvM1oAOojnqfZcAfgSeB45hA4T9F/ezFwHxMF8l2TFfX88DHEmznbsxB+BvgHmK7UxowUdOx\nqMeeAiYA9Wn+Pl6QSZvHq8dEmhuiHmvA3BX/OuqxXeHHFkW9Rm3uXJvbdJxHZNrmW4DVmC7bceF/\nj8ecY0DHeSLZbnObjvOITNp8AmAB56IeO4sJDOzrqCuP81uA2zDdJYsxXVZHgSmYCGYIM37yN8BV\nmANmEFMwCkz3yRDmIPoc5oT6IPAeMDtqO3cC12G6ZNZixnai79r+N/BEgv17DxM9FZJM2zze94E/\nxD12D/Bqgte+Gn4/UJs73eag4zyaE20+EdMNO4Q5ub5F5G4MdJzHy0Wbg47zaJm2+UWYNv4Opu0r\nMRWdh4AfhF/jieO8AvOL/1fM+hRDwM/iXvMvmIQaMFHPELA+7jW/ZXgCTbRPhX9ucvj//xsTmcUr\nxIMtXrptHm0i5sD7r3GPp3qwqc2da/NEdJxHjKXNN2GSy24ErgT+FpOQfUX4eR3nI8tGmyei4zxi\nLG1+E7APE1T0Y4Y5XsIsRAk5PM7THbaI1ofp+piN6U0YYPjS2/8/JqsTIot3xL/mlajXJLIr/N3u\nnTgGfCDuNZMx3WXHKGzptnm0VZiL2U/jHj/G8Gxdwo8di3qN2ty5Nk9Ex3lEum1+OfBJzJ3tc+Gf\n/e+Yk+pfhl+j43xk2WjzRHScR4zl3PJ0+PU+TLLl54DpmGEQyOFxnknwMAGoxQQF/Zgxlj+Je80c\nzFQdwt+PJHjN3KjXJHJN+LsdfGzHRLbRv/xSzNhPV4r77lXptnm0tZgo9kTc4zsw03jiE2wuwLQ1\nqM2dbvNEdJxHpNvm9nlsMO41Q0Sy0HWcjywbbZ6IjvOITM4tb2Kmci7GBBL2bApXHuffxoy9VId3\n5nFMl6w9B/WT4Y1/HhMZfQnTIIui3uNvwj+zMvyarwOniSSNLMR04VwdfuzPMFNI/inqPcZhpp48\nHX7dYuAgZp5qoXGizQk/N4g5QBL5JfAfxE7t+Zeo59Xmzra5jvNYmbZ5KeaO7QXMSbMGuAvT/rdE\nbUfHeUQu2rwBHefRnDi3rMEcuzXA7Zgei7a47bjuOO/AZImexRwAjzI8SloD7MV0x+wBViR4n7vD\nO3oK+BWxDXMNJnI6GX6PVzDjaPGrcs7ANPxpTON9l8IsKuJUmz/AyL07F2KKirwd/vopMCnuNWrz\niEzbXMd5LCfa/LLwzx3FnFt+w/BphDrOI3LR5jrOYznR5t/AtPdZzJDGnQm2o+NcRERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERE8ur/ANBpVY9jW9RvAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import sys\n", + "import getopt\n", + "sys.path.insert(1,\"/usr/local/science/clag/\")\n", + "import clag\n", + "%pylab inline\n", + "\n", + "from scipy.stats import norm\n", + "from scipy.stats import lognorm\n", + "\n", + "ref_file=\"lc/1367A.lc\"\n", + "echo_file=\"lc/6175A.lc\"\n", + "\n", + "\n", + "dt = 0.01\n", + "t1, l1, l1e = np.loadtxt(ref_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.00964867, 0.02886003, 0.0556922 , 0.08632291, 0.13380051,\n", + " 0.20739079, 0.32145572, 0.49825637])" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "\n", + "fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029, \n", + " 0.25819945, 0.40020915, 0.62032418])\n", + "# fqL = np.logspace(np.log10(0.0006),np.log10(1.2),11)\n", + "nfq = len(fqL) - 1\n", + "fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.)\n", + "\n", + "\n", + "fqd\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.342e-01 5.077e+01 inf -- -5.530e+02 -- 1 1 1 1 1 1 1 1\n", + " 2 7.674e-01 5.065e+01 8.300e+01 -- -4.700e+02 -- 0.653018 0.587019 0.568277 0.567457 0.566281 0.566085 0.565773 0.566163\n", + " 3 3.298e+00 5.043e+01 8.075e+01 -- -3.893e+02 -- 0.414806 0.209135 0.141159 0.13784 0.133393 0.132728 0.131612 0.132761\n", + " 4 1.572e+00 5.010e+01 7.754e+01 -- -3.117e+02 -- 0.322539 -0.0834456 -0.273066 -0.284295 -0.297612 -0.299435 -0.302479 -0.300412\n", + " 5 5.908e-01 4.964e+01 7.386e+01 -- -2.379e+02 -- 0.302357 -0.214604 -0.654658 -0.688754 -0.723838 -0.729279 -0.736418 -0.733888\n", + " 6 3.713e-01 4.877e+01 6.953e+01 -- -1.683e+02 -- 0.284419 -0.200357 -0.96379 -1.05472 -1.13798 -1.15477 -1.17031 -1.16748\n", + " 7 2.709e-01 4.671e+01 6.269e+01 -- -1.056e+02 -- 0.277768 -0.185001 -1.13047 -1.34026 -1.52128 -1.56845 -1.6043 -1.60101\n", + " 8 2.135e-01 4.361e+01 5.281e+01 -- -5.282e+01 -- 0.277012 -0.185189 -1.16375 -1.49463 -1.83211 -1.9477 -2.03737 -2.03476\n", + " 9 1.764e-01 3.767e+01 4.019e+01 -- -1.264e+01 -- 0.282161 -0.184207 -1.17891 -1.53049 -2.01851 -2.24569 -2.46562 -2.46922\n", + " 10 1.508e-01 2.738e+01 2.645e+01 -- 1.382e+01 -- 0.289545 -0.182463 -1.18795 -1.52893 -2.08812 -2.41103 -2.87498 -2.90486\n", + " 11 1.349e-01 1.468e+01 1.390e+01 -- 2.772e+01 -- 0.293547 -0.180898 -1.1897 -1.52803 -2.10944 -2.46526 -3.22702 -3.34288\n", + " 12 1.358e-01 5.365e+00 5.378e+00 -- 3.309e+01 -- 0.295456 -0.179941 -1.19052 -1.52801 -2.11928 -2.48294 -3.46233 -3.79368\n", + " 13 1.868e-01 1.338e+00 1.633e+00 -- 3.473e+01 -- 0.297315 -0.17923 -1.19104 -1.52666 -2.12491 -2.48975 -3.55567 -4.30889\n", + " 14 6.248e-01 2.604e-01 4.517e-01 -- 3.518e+01 -- 0.299091 -0.178645 -1.191 -1.52463 -2.12805 -2.4915 -3.5672 -5.11363\n", + " 15 2.744e+02 2.611e-01 7.022e-02 -- 3.525e+01 -- 0.300248 -0.178286 -1.19075 -1.52307 -2.12961 -2.49161 -3.56337 -8\n", + " 16 2.745e+02 2.782e-01 4.368e-04 -- 3.525e+01 -- 0.300566 -0.178158 -1.19062 -1.52252 -2.13009 -2.49151 -3.5617 -8\n", + " 17 2.745e+02 2.805e-01 6.410e-05 -- 3.525e+01 -- 0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n", + "********************\n", + "0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n", + "0.238931 0.202434 0.232634 0.177249 0.153039 0.132988 0.297259 3285.23\n", + "-0.000915535 -0.00131061 -0.00195128 -0.00497899 -0.0226059 -0.0776175 -0.280541 -0.000206646\n", + "********************\n" + ] + } + ], + "source": [ + "P1 = clag.clag('psd10r', [t1], [l1], [l1e], dt, fqL)\n", + "p1 = np.ones(nfq)\n", + "p1, p1e = clag.optimize(P1, p1)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 3.525e+01 3.480e+01 3.006e-01 5.395e-01 0.891 +++\n", + "+++ 3.525e+01 3.431e+01 3.006e-01 6.590e-01 1.87 +++\n", + "+++ 3.525e+01 3.458e+01 3.006e-01 5.993e-01 1.34 +++\n", + "+++ 3.525e+01 3.469e+01 3.006e-01 5.694e-01 1.11 +++\n", + "+++ 3.525e+01 3.475e+01 3.006e-01 5.545e-01 0.997 +++\n", + "\t### errors for param 1 ###\n", + "+++ 3.525e+01 3.476e+01 -1.781e-01 2.430e-02 0.973 +++\n", + "+++ 3.525e+01 3.421e+01 -1.781e-01 1.255e-01 2.07 +++\n", + "+++ 3.525e+01 3.451e+01 -1.781e-01 7.491e-02 1.48 +++\n", + "+++ 3.525e+01 3.464e+01 -1.781e-01 4.961e-02 1.21 +++\n", + "+++ 3.525e+01 3.470e+01 -1.781e-01 3.696e-02 1.09 +++\n", + "+++ 3.525e+01 3.473e+01 -1.781e-01 3.063e-02 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.781e-01 2.747e-02 1 +++\n", + "\t### errors for param 2 ###\n", + "+++ 3.525e+01 3.511e+01 -1.191e+00 -1.074e+00 0.276 +++\n", + "+++ 3.525e+01 3.495e+01 -1.191e+00 -1.016e+00 0.598 +++\n", + "+++ 3.525e+01 3.485e+01 -1.191e+00 -9.870e-01 0.8 +++\n", + "+++ 3.525e+01 3.479e+01 -1.191e+00 -9.725e-01 0.91 +++\n", + "+++ 3.525e+01 3.476e+01 -1.191e+00 -9.652e-01 0.968 +++\n", + "+++ 3.525e+01 3.475e+01 -1.191e+00 -9.616e-01 0.997 +++\n", + "\t### errors for param 3 ###\n", + "+++ 3.525e+01 3.482e+01 -1.522e+00 -1.345e+00 0.865 +++\n", + "+++ 3.525e+01 3.432e+01 -1.522e+00 -1.257e+00 1.86 +++\n", + "+++ 3.525e+01 3.459e+01 -1.522e+00 -1.301e+00 1.32 +++\n", + "+++ 3.525e+01 3.471e+01 -1.522e+00 -1.323e+00 1.08 +++\n", + "+++ 3.525e+01 3.476e+01 -1.522e+00 -1.334e+00 0.97 +++\n", + "+++ 3.525e+01 3.473e+01 -1.522e+00 -1.329e+00 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.522e+00 -1.331e+00 0.998 +++\n", + "\t### errors for param 4 ###\n", + "+++ 3.525e+01 3.481e+01 -2.130e+00 -1.977e+00 0.874 +++\n", + "+++ 3.525e+01 3.429e+01 -2.130e+00 -1.901e+00 1.91 +++\n", + "+++ 3.525e+01 3.457e+01 -2.130e+00 -1.939e+00 1.35 +++\n", + "+++ 3.525e+01 3.470e+01 -2.130e+00 -1.958e+00 1.1 +++\n", + "+++ 3.525e+01 3.476e+01 -2.130e+00 -1.968e+00 0.983 +++\n", + "+++ 3.525e+01 3.473e+01 -2.130e+00 -1.963e+00 1.04 +++\n", + "+++ 3.525e+01 3.474e+01 -2.130e+00 -1.965e+00 1.01 +++\n", + "+++ 3.525e+01 3.475e+01 -2.130e+00 -1.966e+00 0.997 +++\n", + "\t### errors for param 5 ###\n", + "+++ 3.525e+01 3.474e+01 -2.491e+00 -2.358e+00 1.01 +++\n", + "+++ 3.525e+01 3.512e+01 -2.491e+00 -2.425e+00 0.263 +++\n", + "+++ 3.525e+01 3.496e+01 -2.491e+00 -2.392e+00 0.579 +++\n", + "+++ 3.525e+01 3.486e+01 -2.491e+00 -2.375e+00 0.781 +++\n", + "+++ 3.525e+01 3.480e+01 -2.491e+00 -2.367e+00 0.893 +++\n", + "+++ 3.525e+01 3.477e+01 -2.491e+00 -2.363e+00 0.952 +++\n", + "+++ 3.525e+01 3.476e+01 -2.491e+00 -2.361e+00 0.982 +++\n", + "+++ 3.525e+01 3.475e+01 -2.491e+00 -2.360e+00 0.997 +++\n", + "\t### errors for param 6 ###\n", + "+++ 3.525e+01 3.507e+01 -3.561e+00 -3.413e+00 0.363 +++\n", + "+++ 3.525e+01 3.484e+01 -3.561e+00 -3.339e+00 0.814 +++\n", + "+++ 3.525e+01 3.468e+01 -3.561e+00 -3.301e+00 1.13 +++\n", + "+++ 3.525e+01 3.477e+01 -3.561e+00 -3.320e+00 0.962 +++\n", + "+++ 3.525e+01 3.473e+01 -3.561e+00 -3.311e+00 1.04 +++\n", + "+++ 3.525e+01 3.475e+01 -3.561e+00 -3.315e+00 1 +++\n", + "\t### errors for param 7 ###\n", + "+++ 3.525e+01 3.524e+01 -8.000e+00 -6.000e+00 0.0178 +++\n", + "+++ 3.525e+01 3.515e+01 -8.000e+00 -5.000e+00 0.187 +++\n", + "+++ 3.525e+01 3.494e+01 -8.000e+00 -4.500e+00 0.618 +++\n", + "+++ 3.525e+01 3.466e+01 -8.000e+00 -4.250e+00 1.18 +++\n", + "+++ 3.525e+01 3.482e+01 -8.000e+00 -4.375e+00 0.851 +++\n", + "+++ 3.525e+01 3.475e+01 -8.000e+00 -4.312e+00 1 +++\n", + "********************\n", + "0.300605 -0.178131 -1.19059 -1.52241 -2.13019 -2.49148 -3.56144 -8\n", + "0.253864 0.205597 0.228999 0.191096 0.1638 0.131949 0.246154 3.6875\n", + "********************\n" + ] + } + ], + "source": [ + "p1, p1e = clag.errors(P1, p1, p1e)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAGp1JREFUeJzt3X9s4/d93/HnxZaj5dxOi12RZ+98bLhdaBhJDbLSHzrb\n5TIn2IY26dBOIbFsiLTCQdoOuHUrcMMgzZCAYS2G9uqua3FbD9kQjNQNaDYH2LXFUKW5UVqnimm7\nbmadUT+W5kxmTXvr6kSpVnt/UHeR1I9+8I7fL389HwAhivx8vp+3cJ+TXvx+P9/vFyRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvSA/iGwBvwh0AQ+A1zsakWSJKkn3AT+NvA08H7gs8AW\n8K4u1iRJknrQ48BbwHPdLkSSJJ3sHTGONbb39fdjHFOSJPW4M7QON/xqtwuRJEmn83BM4/xz4BmO\nP9Rwbu8hSZLa88beo6PiCAk/DXw38AJw+4g255544onbt28f9bYkSTrGl4EJOhwUogwJZ2gFhI8A\neWD7mLbnbt++zac//WmefvrpCEvqvMuXL3P16tW+HO9BttVu33ban6btSW2Oez/uf7NOca51vr1z\nLcy51vn2Uc611157jY997GNP0tob3zch4WeAIq2Q8CaQ3Hv9DrAT6vD000+TzWYjLKnzxsbGYq25\nk+M9yLba7dtO+9O0PanNce/H/W/WKc61zrd3roU51zrfPuq5FpWHItz2Z4F3AjPA39/3+CLwm4fa\nngM+8YlPfIJz5/pvWcL73ve+vh3vQbbVbt922p+m7Ultjnq/VCpRLBZPXUsvca51vr1zLcy51vn2\nUc21N954g2vXrgFco8N7Es50cmMPIAusr6+v92XqVn/58Ic/zKuvvtrtMjQEnGuKQ7VaJZfLAeSA\naie3Hed1EiRJUh8xJGjo9OvuX/Uf55r6nSFBQ8df3IqLc039zpAgSZKCDAmSJCnIkCBJkoIMCZIk\nKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnI\nkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAg\nSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmS\nggwJkiQpyJAgSZKCDAmSJCkoypDwAvBZ4MvAW8BHIhxLkiR1WJQh4V3AF4Af2vv+7QjHkiRJHfZw\nhNv+xb2HJEnqQ65JkCRJQYYESZIUZEiQJElBUa5JaNvly5cZGxs78FqxWKRYLHapIkmSekepVKJU\nKh147c6dO5GNdyayLR/0FvC9wKtHvJ8F1tfX18lmszGVJElS/6tWq+RyOYAcUO3ktqPck3AW+Iv7\nvn8P8CzwVeBLEY4rSZI6IMqQMAH8yt7zt4Gf2Hv+KWA2wnElSVIHRBkSPocLIyVJ6lv+EZckSUGG\nBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJ\nkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhT0cLcLkKJQKpUolUoA7OzssL29zYUL\nFxgdHQWgWCxSLBa7WaIk9TxDggbS/hBQrVbJ5XKUSiWy2WyXK5Ok/uHhBkmSFGRIkCRJQYYESZIU\nZEiQJElBhgQNrK2tLWZnZ5mengZgenqa2dlZtra2uluYJPUJz27QwGk2mxQKBWq1Go1G497r9Xqd\ner3OzZs3yWQylMtlEolEFyuVpN5mSNBAaTabTE1NsbGxcWSbRqNBo9Hg0qVLVCoVg4IkHcHDDRoo\nhULh2ICwX71ep1AoRFyRJPUvQ4IGxubmJrVara0+tVrNNQqSdARDggbG4uLigTUIp9FoNFhYWIio\nIknqb4YEDYy1tbVY+0nSoDMkaGDs7u7G2k+SBp0hQQNjZGQk1n6SNOgMCRoYExMT99VvcnKyw5VI\n0mAwJGhgzM/Pk0wm2+qTTCaZm5uLqCJJ6m+GBA2MVCpFJpNpq08mkyGVSkVTkCT1OUOCBkq5XCad\nTp+qbTqdZmlpKeKKJKl/GRI0UBKJBJVKhXw+f+Shh2QyST6fZ2VlhfHx8ZgrlKT+YUjQwEkkEiwv\nL7O6usrMzMy9PQvpdJqZmRlWV1dZXl42IEjSCbzBkwZWKpXi+vXrVKtVcrkcN27cIJvNdrssSeob\nUe9J+EFgE/g68OvAcxGPJ0mSOiTKkPBR4CeBReBZ4BZwEzgf4ZiSJKlDogwJPwL8K+A68DvA3wO+\nBHwywjElSVKHRBUSHgGywC8fev2XgamIxpQkSR0U1cLFx4GHgOah178CtHdJPOk+lEolSqUSADs7\nO1y8eJErV64wOjoKQLFYpFgsdrNESep5nt2ggWQIOJ3DYWp7e5sLFy4YpiQBcCai7T4CvAl8P/Af\n9r3+U8D7gb90qH0WWH/++ecZGxs78Ia/pKR43D1VdH193VNFpR61P9jfdefOHW7dugWQA6qdHC+q\nPQl/DKwDH+JgSPgg8JmjOl29etVfTpIkHSH0wfluwI9ClGc3/ATwA8AM8DSt0yH/PPBzEY4pqU1b\nW1vMzs4yPT0NwPT0NLOzs2xtbXW3MEldF+WahBvAY8A8cA74b8Bfo3UapKQuazabFAoFarUajUbj\n3uv1ep16vc7NmzfJZDKUy2USiUQXK5XULVEvXPzZvYekHtJsNpmammJjY+PINo1Gg0ajwaVLl6hU\nKgYFaQh5gydpCBUKhWMDwn71ep1CoRBxRZJ6kSFBGjKbm5vUarW2+tRqNdcoSEPIkCANmcXFxQNr\nEE6j0WiwsLAQUUWSepUhQRoya2trsfaT1L8MCdKQ2d3djbWfpP5lSJCGzMjISKz9JPUvQ4I0ZCYm\nJu6r3+TkZIcrkdTrDAnSkJmfnyeZbO9mrMlkkrm5uYgqktSrDAnSkEmlUmQymbb6ZDIZUqlUNAVJ\n6lmGBGkIlctl0un0qdqm02mWlpYirkhSLzIkSEMokUhQqVTI5/NHHnpIJpPk83lWVlYYHx+PuUJJ\nvcCQIA2pRCLB8vIyq6urzMzM3NuzkE6nmZmZYXV1leXlZQOCNMSivsGTpB6XSqW4fv36vXvS37hx\ng2w22+2yJPUA9yRIkqQgQ4IkSQrycIM0xEqlEqVSCYCdnR0uXrzIlStXGB0dBaBYLFIsFrtZoqQu\nMiRIQ8wQIOk4Hm6QJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAk\nSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElB\nhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUFFVI+EfACvA14A8iGkOSJEUoqpAwAiwB/yKi7UuS\npIg9HNF2X977+vGIti9JkiLmmgRJkhQU1Z4ESeq4UqlEqVQCYGdnh+3tbS5cuMDo6CgAxWKRYrHY\nzRKlgdJOSHgZmD+hzXcC1fuuRpKOsT8EVKtVcrkcpVKJbDbb5cqkwdROSPhp4N+e0Gb7AWrh8uXL\njI2NHXjNTwaSJLXs35t21507dyIbr52Q8NW9R2SuXr3qJwJJko4Q+uB8d69aFKJak/AU8O69rw8B\n3wGcAb4IvBnRmJIkqYOiOrthgdbahJeBs8AXgHUgmqgjaWhsbW0xOzvL9PQ0ANPT08zOzrK1tdXd\nwqQBFNWehI/jNRIkdVCz2aRQKFCr1Wg0Gvder9fr1Ot1bt68SSaToVwuk0gkulipNDg8BVJSz2s2\nm0xNTbGxsXFkm0ajQaPR4NKlS1QqFYOC1AFeTElSzysUCscGhP3q9TqFQiHiiqThYEiQ1NM2Nzep\n1Wpt9anVaq5RkDrAkCCppy0uLh5Yg3AajUaDhYWFiCqShochQVJPW1tbi7WfpG8yJEjqabu7u7H2\nk/RNhgRJPW1kZCTWfpK+yZAgqadNTEzcV7/JyckOVyINH0OCpJ42Pz9PMplsq08ymWRubi6iiqTh\nYUiQ1NNSqRSZTKatPplMhlQqFU1B0hAxJEjqeeVymXQ6faq26XSapaWliCuShoMhQVLPSyQSVCoV\n8vn8kYcekskk+XyelZUVxsfHY65QGkzeu0FSX0gkEiwvL7O1tcXCwgKf//znqdfrpNNpXnjhBebn\n5yM7xFAqlSiVSgDs7Oywvb3NhQsXGB0dBaBYLFIsFiMZW+qmM90uYE8WWF9fXyebzXa7Fkl9oFqt\nksvliPv3RrfGlY5yd04COaDayW17uEGSJAUZEiTpFLa2tpidnWV6ehqA6elpZmdnvZGUBpprEiTp\nGM1mk0KhQK1WO3CjqXq9Tr1e5+bNm2QyGcrlMolEoouVSp1nSJDUNw4vILx48SJXrlyJbAFhs9lk\namqKjY2NI9s0Gg0ajQaXLl2iUqkYFDRQDAmS+kbcZxEUCoVjA8J+9XqdQqHA8vJyxFVJ8XFNgiQF\nbG5uUqvV2upTq9Vco6CBYkiQpIDFxcUDaxBOo9FosLCwEFFFUvwMCZIUsLa2Fms/qRcZEiQpYHd3\nN9Z+Ui8yJEhSwMjISKz9pF5kSJCkgImJifvqNzk52eFKpO4xJEhSwPz8/JF3nDxKMplkbm4uooqk\n+BkSJCkglUqRyWTa6pPJZCK7E6XUDYYESTpCuVwmnU6fqm06nWZpaSniiqR4GRIk6QiJRIJKpUI+\nnz/y0EMymSSfz7OyssL4+HjMFUrRMiRI0jESiQTLy8usrq4yMzNzb89COp1mZmaG1dVVlpeXDQga\nSN67QZJOIZVKcf36darVKrlcjhs3bpDNZrtdlhQp9yRIkqQg9yRI0gnivkW11CsMCZJ0AkOAhpWH\nGyRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUlBUISEF/DywAXwN+J/Ay8BIRONJ\nkqQOi+piSu8FzgAv0QoI7wP+JXAW+NGIxpQkSR0UVUj4pb3HXVvAPwM+iSFBkqS+EOeahDHgqzGO\nJ0mSHkBc925IAz8M/EhM40lSXzt8U6nt7W0uXLjgTaUUq3b3JLwMvHXC4/AN1p8AfhG4AVx/gFol\naWgUi0VeeeUVHn/8cTY2Nnj99dfZ2Njg8ccf55VXXjEgKBZn2mz/2N7jONvAN/aePwEsA6vAx4/p\nkwXWn3/+ecbGxg68YVqWNGyazSaFQoFarUaj0fhT7yeTSTKZDOVymUQi0YUK1S379zDddefOHW7d\nugWQA6qdHK/dkNCOJ2kFhDXgY8Dbx7TNAuvr6+tks4d3REjS8Gg2m0xNTbGxsXFi23Q6TaVSMSgM\nuWq1Si6XgwhCQlQLF58EPkdrr8KPAgkgufeQJB2hUCicKiAA1Ot1CoVCxBVpmEW1cPGDtBYrvgf4\n3X2vvw08FNGYktTXNjc3qdVqbfWp1WpsbW2RSqWiKUpDLao9CZ/a2/ZDe1/fse97SVLA4uJicA3C\ncRqNBgsLCxFVpGHnvRskqUesra3F2k86iSFBknrE7u5urP2kkxgSJKlHjIzc3z3w7refdBJDgiT1\niImJifvqNzk52eFKpBZDgiT1iPn5eZLJ9s4UTyaTzM3NRVSRhp0hQZJ6RCqVIpPJtNUnk8l4+qMi\nY0iQpB5SLpdJp9OnaptOp1laWoq4Ig0zQ4Ik9ZBEIkGlUiGfzx956CGZTJLP51lZWWF8fDzmCjVM\nDAmS1GMSiQTLy8usrq4yMzNzb89COp1mZmaG1dVVlpeXDQiKXFSXZZYkPaBUKsX169fv3cDnxo0b\n3gRPsTIkSFIP2n9L4J2dHS5evMiVK1cYHR0FoFgsUiwWu1mihoAhQZJ6kCFAvcA1CZIkKciQIEm6\np1Qq8eKLL/LUU0/x6KOP8sgjj/Doo4/y1FNP8eKLL947BKLh4OEGSRIAzWaTa9euUavVDtyyend3\nlzfffJPd3V2uXbvGBz7wARKJRBcrVVwMCZIkms0mU1NTbGxsHNmm0WjQaDS4dOkSlUrFoDAEPNwg\nSaJQKBwbEPar1+sUCoWIK1IvMCRI0pDb3NykVqu11adWq7G1tRVNQeoZhgRJGnKLi4sH1iCcRqPR\nYGFhIaKK1CsMCZI05NbW1mLtp/5hSJCkIbe7uxtrP/UPQ4IkDbmRkZFY+6l/GBIkachNTEzcV7/J\nyckOV6JeY0iQpCE3Pz9PMplsq08ymWRubi6iitQrDAmSNORSqRSZTKatPplMhlQqFU1B6hmGBEkS\n5XKZdDp9qrbpdJqlpaWIK1IvMCRIkkgkElQqFfL5/JGHHpLJJPl8npWVFcbHx2OuUN1gSJAkAa2g\n8NJLL/HMM89w/vx5zp49y8jICGfPnuX8+fM888wzvPTSSwaEIeINniRJ9xSLRYrFYrfLUI9wT4Ik\nSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkK\niiokvApsA18HbgP/BjgX0ViSJCkCUYWEXwH+BnAR+D4gDfxCRGNJkqQIRHUXyKv7nn8J+DHgM8BD\nwJ9ENKYkSeqgONYkvBv4m8AyBgRJkvpGlCHhx4A/An4P+HbgoxGOJUmSOqydkPAy8NYJj+y+9j8O\nPAt8CPgG8O+BMw9csSRJikU7f7Qf23scZ5tWIDjsSVprE54DVgLvZ4H1559/nrGxsQNvFItFisVi\nG2VKkjSYSqUSpVLpwGt37tzh1q1bADmg2snx4vpkf55WgPgu4Fbg/Sywvr6+TjabDbwtSZJCqtUq\nuVwOIggJUZzdMLn3+M/AHwDvARaALwKrEYwnSZIiEMXCxa8Bfx34T0AN+Hngt2jtRfh/EYwnSZIi\nEMWehN8G/nIE25UkSTHy3g2SJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ\nkoIMCZIkKciQIEmSggwJkiQpKIp7N0iSdGqlUolSqQTAzs4O29vbXLhwgdHRUQCKxSLFYrGbJQ4t\nQ4Ikqav2h4BqtUoul6NUKpHNZrtcmTzcIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ6rqtrS1mZ2eZ\nnp4GYHp6mtnZWba2trpb2JDz7AZJUtc0m00KhQK1Wo1Go3Hv9Xq9Tr1e5+bNm2QyGcrlMolEoouV\nDidDgiSpK5rNJlNTU2xsbBzZptFo0Gg0uHTpEpVKxaAQMw83SJK6olAoHBsQ9qvX6xQKhYgr0mGG\nBElS7DY3N6nVam31qdVqrlGImSFBkhS7xcXFA2sQTqPRaLCwsBBRRQoxJEiSYre2thZrP90fQ4Ik\nKXa7u7ux9tP9MSRIkmI3MjISaz/dH0OCJCl2ExMT99VvcnKyw5XoOIYESVLs5ufnSSaTbfVJJpPM\nzc1FVJFCDAmSpNilUikymUxbfTKZDKlUKpqCFGRIkCR1RblcJp1On6ptOp1maWkp4op0mCFBktQV\niUSCSqVCPp8/8tBDMpkkn8+zsrLC+Ph4zBXKkCBJ6ppEIsHy8jKrq6vMzMzc27OQTqeZmZlhdXWV\n5eVlA0KXeIMnSVLXpVIprl+/TrVaJZfLcePGDbLZbLfLGnruSZAkSUGGBEmSFGRIkCRJQYYESZIU\n5MJFSVJXlUolSqUSADs7O1y8eJErV64wOjoKQLFYpFgsdrPEoWVIkCR1lSGgd3m4QZIkBRkSJElS\nUNQh4Z3AbwBvAe+PeCzpVO4e+5Si5lxTv4s6JPw48OWIx5Da4i9uxcW5pn4XZUj4q8CLwD+IcAxJ\nkhSRqEJCArgG/C3g6xGN0RPi/qTQyfEeZFvt9m2n/WnantRmED/BOdc63965FuZc63z7fp1rUYSE\nM8CngJ8FqhFsv6f4n6nz7fv1P1PUnGudb+9cC3Oudb59v861dq6T8DIwf0KbCeAS8CjwTw+9d+ak\nAV577bU2yukNd+7coVqNLwt1crwH2Va7fdtpf5q2J7U57v24/806xbnW+fbOtTDnWufbRznXovzb\neeIf7n0e23scZxsoA98DvL3v9YeAPwE+DcwE+p0D1oAn26hHkiS1fJnWB/U3OrnRdkLCaZ0HvmXf\n908CvwR8H/BrwO0j+p3be0iSpPa8QYcDQlxSeJ0ESZL6TlxXXHz75CaSJEmSJEmSJEmSJEmx+xbg\nvwJfAH4b+OHulqMBdh74HPDfgd8Evr+r1WjQfQb4feDfdbsQDazvBmrA68Df6XItkXkHMLr3/M8A\nG8C3da8cDbAk3zwT59uAL9Gac1IUvovWL3FDgqLwMPA7tC4v8CitoPDudjYQ19kND+otYGfv+buA\n3X3fS53UAH5r7/n/pvUpr63/VFIbfhX4o24XoYE1SWuv6Bu05tl/BD7Uzgb6JSQA/Flau3//F/BT\nwP/tbjkaAt9J64Jj3u5cUj96goO/v36XNq9s3E8h4f8A3wF8O/BDwF/objkacI8B/xp4qduFSNJ9\neuBrFEUVEl4APksrwbwFfCTQ5geBTVq3kv514Ll97/1dWosUq8DIoX5fobWw7NmOVqx+FcVceyfw\nC8A/Af5LJFWrH0X1e82LzekoDzrnbnNwz8F5emTP6F8BFoDvpfWDffjQ+x8FvgHMAu8FfpLW4YPz\nR2xvHPjWveffSuuY8Xs7W7L6VKfn2hmgBPzjKIpVX+v0XLsrjwsXFfagc+5hWosVn6B1luDrwJ+L\nvOo2hX6wXwN+5tBr/4PWJ7eQLK0E/ht7j9CdJKVOzLXnaN2xtEprzn0BeKaDNWowdGKuQevmd18B\n3qR1Jk2uUwVq4NzvnPseWmc4fBH4gciqewCHf7BHaJ2dcHi3yVVahxGk++VcU1yca4pbV+ZcNxYu\nPg48BDQPvf4VWueoS53iXFNcnGuKWyxzrp/ObpAkSTHqRkj4PVrHfBOHXk/QuuCD1CnONcXFuaa4\nxTLnuhES/hhY509f9emDwEr85WiAOdcUF+ea4tbXc+4sresYPEtrscXlved3T8uYpnXaxgzwNK3T\nNv6Qk08Vkg5zrikuzjXFbWDnXJ7WD/QWrd0hd59f39fmk7QuALEDrHHwAhDSaeVxrikeeZxrilce\n55wkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVIf+P9cYZ1EAfTlhQAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-4,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"black\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xt8k/d99/+XfAQbjEniQLBJICam2CXj0DoE0qQdJIRl\ny6klxWnv1vyyhe6RbsuWDe6t2256/3Yf5q2Hde1vwJbFSbMqp3ZJ1rRA3TbhEBI3kCwM0Tg4kGAD\nsSCcbAM+6ffHV5csyZItWZekS9L7+XjokWDLui5fvqTrc32/n+/nAyIiIiIiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIuN2BBiK8PhuGvdJREREHOxy4Mqgx3JM8HBzOndK\nREREMse3gbZ074SIiIhkhiLgJPDf070jIiIiYp+CJL723cAUoHmU51zlf4iIiEh8jvsfKedK4mtv\nAy4Cd0X5/lUzZsw4duzYsSTugoiISNbqBD5JGgKIZI08XINJlrxnlOdcdezYMZ588knmzZuXpN2Q\ncA8//DDf/va3070bOUXHPPV0zFNPxzy1Dh48yBe/+MVKzOh91gQPa4EPgZfGeuK8efNYtGhRknZD\nwpWXl+t4p5iOeerpmKeejnluyUvSa64FHscs0xQREZEskozgYQVQBfxrEl5bRERE0iwZ0xbbgfwk\nvK6IiIg4QDJGHsTBGhoa0r0LOUfHPPV0zFNPxzy3JHOp5lgWAXv37t2rJBsREZE47Nu3j8WLFwMs\nBvalevsaeRAREZG4KHgQERGRuCh4EBERkbgoeBAREZG4KHgQERGRuCh4EBERkbgoeBAREZG4KHgQ\nERGRuCh4EBERkbgoeBAREZG4KHgQERGRuCh4EBERkbgoeBAREZG4KHgQERGRuCh4EBERkbgUpHsH\nRESyiXu/G/d/uek818kH5z7gQv8FiguKuTRwiYmFE7m67Goqyypp+HgDDfMb0r27IuOi4EFExEYN\n8xtYMX0F6zeu5+Sek5w8fpJLXGKgYIArpl3B9TdcT9PGJioqKtK9qyLjpuBBRMRGXV1dLF21lPaP\ntcNp4A4YqBoAF7w/9D7Nnc3svH0ne7buUQAhGUs5DyIiNtrw9Q20L2yHI8ByYCbg8n8zz/y7fWE7\n6zeuT9cuiiRMwYOIiI1a32qFKsCL+W8klf7niWQoBQ8iIjYawExRBB6R5PmfJ5KhFDyIiNiogALw\nMfyIZMj/PJEMpeBBRMRG9QvqoQOowPw3kk7/80QylIIHEREbNW1sovrNapgF/Bw4Cgz5vzlk/l39\nZjVNG5vStYsiCVPwICJio4qKCvZs3UNjeSNXT70aXoKCLQXwL3DNS9fQWNyoZZqS8TTpJiJio0CF\nyes76Z3VS2l/aaDCZE9hD2+Xvc0DLQ+owqRkNAUPIiI2apivoECyn6YtREREJC4KHkRERCQuCh5E\nRJLIvd/Nys0rmblqJpPqJlFUW8SkuknMXDWTlZtX4t7vTvcuisRNOQ8iIjaxkiUBLg5c5P2z73OV\n6yp+9Z1f0fupXrgBcEH/UD89nT0Ubylmxb0r0rvTIuOgkQcREZs0zG/g0RWPcvmuyzn03UO0/WMb\ne5v2msBBDbIki2jkQUTEJoF23AvbYRXggu4nu0dvkNWiBlmSeRQ8iIjYJNCOe2bQF/NQgyzJOpq2\nEBGxSaAddzA1yJIspOBBRMQmgXbcwdQgS7KQggcREZsE2nEHW4ZpkPUBapAlWUPBg4iITQLtuIOV\nAquBvTDp8UnwA5i9dbYaZElGU/AgImKTQDvu8DbcH0HJhRIW/9liav6ghjlfncOpm07xQMsDKhIl\nGSkZmTqVwN8CtwMTgTbgAWBfErYlIuIYLSdaqH6wmkvPX+L0ntP0+foochUx9eqp1P5JLY1LG9U0\nS7KC3cHDVGA3ZobvdqALqAbO2LwdERHHCXTUXJfuPRFJLruDhw3A+5iRBssHNm9DRERE0sjunIc7\ngb3As8CHmKmK37V5GyIiIpJGdgcP1wK/D7wD3Ab8E/Ad4Es2b0dERETSxO5pizygFfhL/7//E/g4\n8BXgiUg/8PDDD1NeXh7ytYaGBhoalFQkIiLidrtxu0NX5Zw5k95UwmgV18frCLAdeDDoa78PfI2R\nRVsXAXv37t3LokWLbN4NERFnidSu+5op1zChYAIADR9v0EoMidm+fftYvHgxwGLSsJrR7pGH3cDH\nwr5WgwkqRERyVsP8BlZMX8H6jet55Y1XOHzmMP3l/dzyiVto2tikYlGSUewOHr4FvAr8OSZpsh74\nPf9DRCRnRWrXfXjoMIc7D7Pz9p2qNikZxe6EyTeAe4AGYD9muuKPAJVQE5GcFtKu25owzgNmQvvC\ndtZvXJ/GvROJTzIqTL7kf4iIiF/rW61wa5RvVkJrS2tK90ckEeptISKSAhHbdVvy/N8XyRAKHkRE\nUiBiu27LkP/7IhlCwYOISApEbNdt6fR/XyRDKHgQEUmBqO26j8LEHRM5dv0x7nTfqRbdkhEUPIiI\npEBFRQV7tu6hsbiRq//jatgEBVsKYBtcWXYlM96ewaMrHlWhKMkImmQTEUkBq8LkpfmX8P7MC3fA\nQJVJonx/6H2aO5tV70EyhkYeRERSoGF+Ay82vMiM/TO4cPMF1XuQjKaRB5EEqF+BxEv1HiQbKHgQ\nSYD6FUi8VO9BsoGCB5EEqF+BxCtQ7yFSAKF6D5IhlPMgkgD1K5B4qd6DZAMFDyIJaH2rFaqifLPS\n/32RIKPVe6h+s5qmjU1p3DuR2Ch4EEmA5q8FTOLsys0rmblqJpPqJlFUW8SkuknMXDWTlZtXhhR+\najnRQvWD1VR1VlH6XCmFTxdS+lwpVZ1VVD9YTcuJljT+JiKx0eSaSAI0fy0Ay6ct56+2/BUdCzvg\nBsAF/UP99HT2ULylmBX3rgg8t2G+WYHjXuqm+dVmPM97OP3BaT58/0NOf+c0nuc9NN/dTOPSRq3U\nEcfSyINIAjR/LTC+3Jfl05bTvqWdjsoOelb30P/5fno+10NHZQftW9pZMX3FiJ8RcQoFDyIJ0Py1\nwPhyX5RsK5lMwYNIAqz568uOXEbek3mwCfPYBofPHeZjDR8bMect2cO9382d7jt5/9z7cee+KNlW\nMpkmZEXi4N4fOk/d5+ujyFVE2bQyivOKuXDHBXNBcMHQ0BAfdX5khqDv1RB0NrKKhF33tevizn1R\nsq1kMo08iMQh2jz18Y+Oc+EW9SvINV1dXdx4+42cLTsbd+5LINk2EiXbisMpeBCJkXu/mwX3L4g8\nT92LhqBzUCBv4Tbg54zMffkgeu7LWMm258rOabpLHEuhrUiMlk9bzskDJ+GmCN90oSHoHBRocuUC\nVgO7gR3+fw/BlP4p7PlV5BLlTRub2Hn7TtovtMNh4KT/5/pg0sAktm/fzrx581L3y4jEQSMPIjHa\n8PUN9Jf0Rw4SfGgIOgeF5C2UYkYgvgDcD3wRBiYP8EDLAxFHECoqKnjx+y8yeedkqPX/zP3Al6B7\nZTe/88Xfwev1pug3EYmPggeRGLW+1Qr5RA4SKlC9hxw0Vt7CNWXX8GLDixGLPbn3u1n5yErO33Ze\nuTKScRQ8iMRogIHoQcIyYBvwAar3ECSess2ZKJEiYQ3zGyg7V6ZcGclICh5EYlRAASwlcmLcKSi4\nVMAa1jB762z4AczeOpvG4sacbsud7VUUEy0SpuWakqk0ESsSo/oF9XhOe0YmxvmAEsivzqetvo05\nn55D4dlCrplyDacKTvFAywM0fLwhJ/sUhFRRtFjD8phh+ce+91i6dm/crHofbzz7BmfOnIGXMEFD\nEeRNyKP8mvJAk6uGiuh/d/VGkUylM1MkRoHs+IXtsAJzERwCOs1d5p4Xc3eEIZrAaoRIKqG1JTOH\n5a1GWB8t/MisvvGvrqATZr85mz3u2M6F+gX1eDo8ocGVRbky4mCathCJUUVFBXu27qGxuDHq1ES2\nz/HHK1uH5e3qS6HeKJKpNPIgEiP3fjfu/3LDTVD68VJKT5dyvvA8P+bHPPvPz3Lt1Gu5ynUVu761\ni95P9Y7ZmjkXZOuwvF0jKlZvlEvPX+L0nuFy51OvnhrTtIdIumTmO1ckDRrmh+YteL1e1m9czytv\nvMLJMyfpLu/mvf73TOCQZXP845Wtw/J2jagEzql19u2bSCooeBAZh66uLpauWmqGrlcBLjg8dBie\nYPSldxk6xz9egTwR2qGSEXkiTVszc1g+W0dURGKlnAeRcYg6511EVs7xj1cseSKZKJH6DiLZQOGx\nyDhEnfO2ylTrjhQIzROZsyR7lrBm64iKSKxy65NMxCZR57ytCpRZNsc/XuF5ItlCiY6S6xQ8iIxD\n1DnvZcCzwG8CU4E9QBcwBK5uF9vmb2Pl5pU0Lm3MyotqrlCio+Q6BQ8i4xB1FUEpsBQm/mIiF7sv\n4rvLF2jZ7BvycbzzOCVbSrJ+yWZgugK4OHCR98++zzVTrmFCwQSAjJ2uSBarYqXneQ+nPwgdyai9\nu1bBpjhOtNSuVFgE7N27dy+LFi1K426IxM/r9XLj7TeapMkIc96fXPBJnnI9FXn64ig0Fjc6aslm\nMi72wUtZD585zOzy2dzyiVto2tiUsYmSyRKyeqeKkIqV1W9WZ3RyqSTHvn37WLx4McBiYF+qt6+R\nB5FxGGvOe+eWnfA7UX7YgUs2G+Y3sGL6ipCLfX95/7gv9tGWsh7uPMzO23fqYhgmW3uASPZS8CAy\nDmPNec99Ym5GLdm0+2Kvi2F8srUHiGQv1XkQSYJAQmUkDlqyafXimL1sti29Giytb7WOXizrLV0M\ng2VrDxDJXnYHDxsxM3XBj2M2b0PE8TKliNDyactp39JO70Bv6MW+B9gO/BuwEx7/4eNxNfcacTEM\nfr2n4GD7wZxtFhZJpgSbIpZknJH/hWlYbBlMwjZEHC1TiggFphd2Mnyx7waeA5YTslKko7Mj5uZe\nIUtZbXg9p0jWKpJs7QEi2SsZ0xaDmJXt1uNUErYh4mhWQmVVZxWlz5VS+HQhpc+VUtVZFSgi5ASB\n6QWrMmYPpk7FchKawggZeXk18ddziob5DTy64lEu33U5h757iLZ/bOPQdw9x+a7LeXTFo+NeTqnW\n3JJpkjHycB3QCVwCXgf+AjichO2IOJZTiwhZ9QTeePYNzh49y+D5QXNBrwDexVzoXSTc3Ctk5KWL\nrEkGTNYqElWslExjd/DwGvDfgDZgOvCXmI+jOuAjm7clInFaPm05f7Xlr/ho4UewEJOD4MNUxmwG\n7iR0CiNcjMl7wRfDzp5OfK4oE/oJJAOmo7BSslaRODXYFInG7uBha9D/H8AU520Hvgx8y+ZtiTia\nE6sGBi5+UzF5CFcy3IujjNApjASaewVfDOuW1eHxeczr9QC7AS+BQkjv9bwXV8lu67juf3o/J/af\nMFU8bzCv1z/UT09nT9JyKbSkUsRIdgpvL7AfmBPtCQ8//DDl5eUhX2toaKChQUN0ktmsu/yOhR0p\nu7iNJXDx+xkmD+EyhnMc8hmewrCxuVcgGdAKWIISJxmCgc4B2re0x3w8rON6fPA43EVKa0loSaWk\ng9vtxu0OXZV05syZNO2Nkezy1MWYkYdNwN+EfU/lqSWrrX1oLc2Xmh1Vonrusrm03dZmpivuJ3Q0\n4BDw+5iQ3woogleKdED1W/GXSg6U8h5sh0+Q8PEIHNcdQb9DuCGobanlwO4DMe9nLOqW1eG51ZPS\nbYpEku7y1Havtvh74GZgNuZe6zlgEvC4zdsRcTwnFkoKWUJpXQBLgdsw44Md/n+vBg4CbuAHwBNQ\nsqNkXCtFrPyHglMF5ngE13z4gf+/Hnj258/GVPMhcFyDf4dwSRoFyJT6HSLJZve0RSXm4+YKzKzm\nHmAJZgGSSE5x2hC3e7+b0xNPm4tfpLyG4HbiVZiAwobmTFb+w9wn5tLW0xZx6oJO6PtxHyumjz11\nETiuNuRmxCtT6neIJJvdIw8NmLdUMebjZzXwa5u3IZIRnFY1cPm05RR3FcM2YCIj76CtEYe9UPBo\nge21KQooMNMjUWo+9N/RH1PNh8BxtXIzIknSKECm1O8QSTbVPM1CTszyz0VOqxq44esbOFJ/xCRJ\nvgy8gFmaWcXwHfRHUJ1fzZ437e96Wb+gHs9PPGZEI5Kq2FYrBI6rNVISJTcjGaMAWlIpYiQ7YXI0\nSphMkpBCNtbcsA3DzxKfQKLgwshD3Kn+O4xI9gtbNuk666JyYWXSAkyv10vlwkr6f68/6nNqttfw\nzu53xnydwHEtx0yOdgFDkNedxxVzryC/KJ9zx89xcegivj6fGanIB1eBiwl5E+IOpBWQi9OkO2FS\nIw9ZaKxCNr+x5jfIL8rXh2CSOa1q4IgcDCtR0u+67dfxzk9Hv3AnouVEC0VlRfT7+hPKU7CO6+ln\nT3P26FmGXEO48lzkTc9j0g2TOPPCGfpu6YObMAGSlWPhD6R7hnriXi7rxGW3IumkkYcsNOpysvNQ\n+GQh/b/db9bdv0rgrs3V7WL6/OnMXz1fQUQWcsIyw2QvXx3x+tuBedi3PNRBy24tGhXJTekeeUhG\nYyxJs1Gz/HcwHDg8h/lg/QLwJfB9xcfxWcdNwZ4Yst4lszhhmWGsDaDc+92s3LySmatmMqluEkW1\nRUyqmzRmG+8Ry2O92LJc1onLbi1WW/WOyg56fquH/qn99PT10NHWwc/++mc88sePqPW52E7BQxaK\nmuXfDRzBfAhmUadDiY0TOjfGuloh5IK4uof+z/fT87keOio7Rg1uRwTONtSCcO93c+TMEUctuw02\nouS4bggkBZTzkIWiZvm/CkzGfAh6UY3+HFNRUcGerXtYv3E9r2x9hcNnDjO7fDa3fOIWmrY2pSR5\nM9bVCuNtQBVSBAviqgURbfi/bFoZF7wXUl5TIlYjSo6nsFx3Omiaxhk08pCFot5hHsP0LwivMBhO\nNfqzknu/mwdaHuDUTaeY89U51PxBDXO+OodTN53igZYHHDWsHc80QfAUR9vhttCpmThqQUQb7Tj+\n0XF8M3zRX6cjvZUlA6MtNk3RON14R6XEXhp5yELRsvwvDl1ksGIweoVByxD0XOxh5eaViu5t4JQ7\npcBdfwaIpzpnyEqIj2OG7q0qmeFVM0epCBl1tKMX04DLWrURVlOi8KVCmvanr7JkxJLj4bLohiBZ\nbdElPgoeslC0oeG6ZXV4lnrMh+AURu2ceNP1N/HGlje0NM0GWuYXv8AFsZfQFt4+4Aro/KgT9343\nDfMbRl5MVvt/ZicwCPkX8yneUYyvwMeFoQtRp2qittt2YTr0WK+7I2hfKqBwamHKl90GC0xTpqFc\ndzqoLbozaNoih9QvqIfTmA/BIkyFwQ+ImDznynMNfyAroTIhIRe3DDuW4131kKj6BfXwLmbUYB6m\ne+b9mAL4tZDXmxcYng5McVgNt54HTgIDwCAMDg7Sm9/LpaFLFFxZwNnbz/L29W+PmKqJOtphXZSt\nuhhf8O/LF4AVMOuyWWkd0QlMU5aQ9tU0qeC0njG5KjtCURmT1+vl4oWLFP6kkP47+mEVcAHYBfwC\nuAgl5SVcNusyqh+sZueWnfA7UV5M0X1cMvlOKVmjJmNN5dx7370898Xn6F7ZHXF4+vxt5wPD0wMM\nhBaDupXhf68gUBxqaGiIoc4hpv54Klu3bh2RIDoi2dJi5U04pMx4OGuasveZXk68cALfnb4xp2gy\nWdS/E2TVCIvTaeQhy3m9Xm6850am1U7jqbyn6P9v/aZV2Q+AHwKHoPzqcm7beBv/8sy/cPSnR9m2\nbhulE0oV3dskU++U3PvdLLh/QVJGTcZKegPwTfbFlAAYseHWOJYiR62DsQzTTCzKKJ2dS1zHM9LT\nML+Bbeu28Y1vf4Nb/+ZWqo5ld9MuJ9QrEY08ZLVNL2/ikXWP0Dux1yR8WXdOwY2JjsLdxXdz29Lb\naH61mfXr13P6g9P0nOwZbpkcTtF9XDL1Tmn5tOWcPHDSlHmOJIFRk7GS3l575jUqp1bS5mqL/AJB\nQVfEhlvjWIoc0m47rGcGFyDv53lQGNofw+4y44mM9ORK0y61RXcGjTxksdeffZ3eT/WapLMx7uDC\n7wSZQ85F98ma38/UO6UNX99Af0lQHworp+DfMCNX3wfPOx7yr8unYF5BXMdq1KWY5fDkvz/Ju+3v\nxtTSvGljE4X9hQkXh7KG/6967ypcj7tCii3xEAytGGJ22WyO7zhO94HuwCidnfkOmZwfkypqi+4M\nzrzlkXEJn0fuOdkDv09MH6Qj7gSjtTvO4uh+xJK/V6G/q5+eth46/7qT/fP307y6Oe6llem+Uxrv\nUtHWt1qH64JEyym4G4aqhoYbTh3q4fjG4+wq38WXXV+Oup2oUzndwA9h4LcGwENMuQYRG26NY+WB\ndee+9u21NF/bnJalgJmcH5MquTLC4nQaecgiI0YPyhleUjbGHdyIO8FSzKqMg5i7zM1kfXSfrDK/\n6b5TSqjUs5UsGJ5DECmnoNd8ffCOQXo/3zvqdqKWUA9+3ZuAnzNmOe2G+Q2s/szqcReHCpfOPhap\nyI9J1woap+2DJEYjD1lkxOiBFTTEkC3+6luvjvzQCmrZXLO9hnd2J69dsxMkq8xvuu+UEir1vBQT\nSEHoHXGknILgC/8Y24laQj34da0ANqi2guusi8qFlSNyDUaM7sRRHCpcOhNcU5Ef44S6I07YB0mM\ngocsMmLI0woaok1BdED1W+aD9NN3f3r4Q6uH0MI8Q/Bez3us3LwyqytLhpT5zaKh4/EOhdcvqMdz\n2mMu4G7GzimI47hFncoZDHvdoAAW4Lrt1/HOT0cGseFVVS8OXcSX54NfAvkmybGAAiiHjuIOZt48\nkyHXEEWuIoqvKsa10IXvTR+Xjl8aThaOUqAqmYtjogZVYFt+TMRg8gJwENo/amfa4mmUTC5JagVU\nVYnMfAoessiIO6bgoOGzmOzxV4AhcHW7mD5/euAOLvChZQ3ZW3Pb/uBhoHPADD1n8R1Btpb5He+d\ndOACv7AdJjB2w6k4jlu0EuqX+i4x4Iuyv6PceccyutPV1cXSVUvN7+Ov/dA/1E/PoR4KHi9g4M4B\nM1XyM0yBKmskJeh9QCe0v9TO5lc2s+4W+4eS7MiPCc9xuTh0EV+fD9+QDx8+OA98NegHugl5z/tc\nPpO/ksRRAOV2ZD7lPGQJr9fLh8c/DJ1HDs5beAE4DKVFpVTVVHHr/7yVb3zrG4Fs8UCVuuAh+xzL\n9g6sioghRySTRM0vgFF/n+BcjYKeguEcgh6gj5E5BXEcN6s2wdGfHqX7QDd9nj66D3TzxTu/mLSV\nKVFXMhzBBA7W15cx6vtg8I5BXnvmtXHvx2jsyI9ZPm05b333LTou66BnSg+DvYMMnRnCt9T/x5kS\n9Dv1MHyDkcL3fKbWPpFhmfUpKBEF6jmU9Y7MbbCGfY9CY3Fj1KFA60Pr/b95n4GqKG/cLL8jCNz1\nlbQ7uqJgvMY7FB58N+/1ernx9htpv9Bu7siXYZIZg6fCriDh4zbanfeVr1/JkS8fYeaqmeNqMBb1\nbjd8uqUUKGP0pMkkvQ/syI/Z8PUNdF3fZf5OS4FDwD2Ym4jlmPyR4BU0LlL+u2Zq7RMZpr9QFgjU\nc7iMMXMborE+tOY+MTemwjzZKFvL/NoxFG4dm+N/f5ze5b0mQKgktFHUBXC968J3ly/h7YRPZ0y9\neirVX6rG87iHrhu6xpVkF/VuN9J0S36Er1lS9D5IaImtD/M5cBATDFVh/k63MpwLZQUTO0n57xoS\n0IbnWPXBkYIjWZ9jlekUPGSBwB2Vi5Gd/4agoKeA6v8RWyW8XL4jsAIo99KgD+3Xwi5gNlcUTIVR\nL8gx/j7Wsal7og5Plcd8MSyZkSEoebqEqZ1TE95OpDvvtQ+t5ZUbXhl3kl3UcztS/kaaO1S697vZ\nvHUzu765i8E7BkcES+e+fY6+832BirDBx/qjMx9BP8MBQxHDAZI1LfOsf0O3pud3DQS01khWWG5J\nb2dv1udYZbrsvRLkkJA7qvAPdODa7deybd22mF4rFdneTpfupZV2s/P3GXH3HnbX2Hu2l6lMZdkf\nLrPtrtG6A//Fi7+AB6I8KYbh9ajndqSlzGluhrV82nIe/M6DJnCIECydW3SOvd/Zy/nbzo8ILArf\nKjTTLlaw4At7WLlQ1gqaNPyuEUeywn5HrbpwNiVMZoHxJsRFEkicHKMwj+SmkHOtmxEts33rfGMW\nnwoWS7Egq8jVQFFiSXYh5/Z5TKntx4E24EeENr66kZQ1w4pkw9c30F3QHT0X4bDpLBopybF/Wr9J\naLWCBSsXJbhwVikw0f99K38l/D3/QXJ+V6/Xy/ZN2+l4ooOBnoG4CnJ5vV7WPrSWumV1zF02l7pl\ndax9aC1er9fWfZSxKXjIAnb2TgjP9s5/Kp+8J/PI+0Ueh88d5qqbr1IluBwWcq6No3NluFiqXwZW\nSVilsiOJIUge0btilv/17sKMaFjdZp8wj6LpRRQfLKb4meKUVwVtfat1eLohkpNEv+iuANc513DA\nMBsTHMwiNEiwgongVVluAsegZEeJ7b/rppc3MeumWTRfasZzq4e+yX0xB4ThP9t2WxueFR6aLzUz\n66ZZbH5ls237KWPTtEUWsLN3QvgQd6S18cleAy7OFXKudZHwWv1YigUFcnoSHF4f0bvCShiM0m32\n/uL70zZkPsDA6LkIo9XUmAwTLptA30t9DH5mcHjVxWH/z7yEKcblA97BBE9VmN/f/7lRsrOEb275\npu21LALJ3eFVcGPItxjxsxA4V3o/1ctrz7yWlNobEpmChyxgR0JcNKoEJ8GCz7XOnk58rihDATFm\n6Ycsn4xQ2fTJnicpmloUmugXYTVRya4SlmxZEtPvENimtfogkjQvSy6gYPSlr9a0RJSL7mVll1H3\np3W88ewbnMk7w9AvhsyxKoK8SXmUX1POJ1Z/gns/di+vPfMarS2tDDBAAQXUL6inaVcTFRUVtv9e\nUavgxhAQqrCUsyh4yALJTPDTG1aCBZ9rdcvq8Pg8CWXpBxIww6ocBlc2db3kCk30C1tNNKV/Cu/+\n6t2YL3bnlauyAAAgAElEQVSBbTq4kmj9gno8Zzwja2n4g6WC7gIGOgaiXnRvXXIrj617LKbPhFTe\nrY9aBXeMUVMVlnIWBQ8yqlx5w453TX0us2NlTiABc5SmWv3T+ofvTsNXEx2Fe4rviesuObDNNC/H\nHE3TxiZ+8ps/oWtpl2lNbgVLfZB/MZ/6h+o59MNDdNGVljbv4zViuWxwQPgK0AOlU0sjjprm8jJy\nJ9LRllHlyhtWXf7iZ0euTSAAGa2p1gpwPR65+FTJztinK0ZsM83LMUfTcqKFBV9dYILZs6fpK/AH\ns9eaYLZmZg2Trppkvm/DVGWqgueIAWeMVXC1jNxZsuOTX5ImV96wyu2Inx25NoEAZLB91ATA2bNn\nc3PxzbbMzS+5bwnPPPgMvZ/ojTwtMM6gxE7B00PhF/Zf/sMv2e3abeuFPVXBcyIBp52J4ZI4BQ8y\nqlx5wyq3I3525NqE9FQZpZvmhMIJtgVv625Zx7277mX9xvW8WvEqJ1pOcLHvIhNKJjD98uks/cTS\npCUMjkcqLuypCp4TCTiTmRgu8VPwIKPKlTdsruR2OE3I8smO5pSNcFVUVGTMSFLEC/sF4CC0f9TO\ntMXTKJlcktBIRKqC50QCzmyr/JrpVCRKRtUwv4HGpY3U3l3L1KunUuQqos/Xx+kPTuN53kPzq81Z\nUSjKziqdThFL9Ua7JFr5b8l9SyjZWRKxsmnJzhKW3Je+KYR0a32rNbQgVHBlzy+D7wHfiMJa8VLw\nLPFS8CBjiqUKYKazs0qnU6Tq72ZH5b91t6zjyK4jNBY3UttSS832GmpbamksbuTIriM5XfxnxIXd\nhsqe4bIxeJbkUvAgYwoZNrXpw8ppsrGnR6r+biGV/8K2Y1X+i4U1lXBg9wHe2f0OB3Yf4LHvPeaY\n3IN0Cbmw92AqRcbRDyIWEYPnHkz/jyfg4NGDaStLn8oRNImdwskMlqrlVbmQTJiK3I5U/b3s6kIZ\nq1w4P9IpsOJpKqaQ1kRsn2IIrED5VC+UY2ouHMGUrr4VfC5f0svSe73eQDny4BU1f/bQn5kRNC2j\ndpRop2AqLAL27t27l0WLFqVxNzJXpL4TwSsh9mzdY8td29xlc2m7rS3q92u21/DO7ncS3k62S9Xf\nK7CdM+3wpejPs+vvpvMjubxeLzfefqNZzvoJTMGo+4m6MqW2pZYDuw+Mazt3Pngnr+96HV+lz2wr\nUgLrGPUYxmPTy5t4ZN0jJngJe2/kv5Q/sjV5EvclU+zbt4/FixcDLAb2pXr7mrbIYKkaltZ8qD2S\n9fcKT1asqa+xpQtlrHR+JJc1KlZwqsBcWINba4dLID+noqKCj834mCnG1YvtUyOjCZn66sVMl7iB\nnTA4OJjSfZHYJDN4+O+Y2PFbSdxGThuRhR3MxjdVNiYTpkMy/l6RkhXPFp5N6kUmnM6P5GqY38C2\nddu49uprhxuEBbfWxv/fDxJfmRI4R4P7fli5D/+GadfthrYjbbbmGwS2G7yS5H7/YypaCeJAybol\n+CTwIPA20e9JJEGpWl6VK4Wiki0Zf6+obYrH6EJZ/ZZ9fzedH6kRGOGxqUFYJIFz1Or70UPUhmXt\nW9ptyzcIbDdSjxMH9yDJZckYeZgEPAn8LnA6Ca8vfqkaLraGTas6qyh9rpTCpwspfa6Uqs6qQDJh\npkplJncy/l4RRzOsD1vrInMQMwT8A/Mo+GmBrX+3bD4/nCRkhMfqB/EFzN35LXDPHfE1CIskcI5a\no1ZJWBY66na9mPM5eLTjPBrZcqBkhGzfA34M/AL46yS8vvilqu9ENld2S2VDrGT8vSKOZgQ3fIrQ\nhfKLxV807Zptks3nh5OErIhIUi+OwDlqjVpBSlbSBLbrYuRoR69/X34TE1hoZMsR7B55WAMsAP7c\n/29NWSSRqvIlLpU1LJJRS2LEaEYP0A+8AHxg33Yk/VJRSCtwjn4EfBYYIGVTo9VvVkMfZjomeLTD\nGkH7NfAEuB51aWTLAewceZgJ/AOwAnMKQGjaTUQPP/ww5eXlIV9raGigoSHz+yUkW3CDHzu6Deai\nVNYosKuWRHC9iBOHTwyPMnQzfMd2C2bIeQcmcDgP5fPKs6ofSS5Kdk+O8HO0p68nJfkG1naP//1x\neo/3ho6WwfAI2hDMa5k3rqWomcztduN2h06hnjlzJk17Y9hZ5+Fu4EfAYNDXrMVig0AxofdIqvMg\naZdpNQrc+91s3rqZXd/cZda+W4WDfhOT21CL1sOLbdY+tJbmS80pO6e8Xi+VCyvp/73+qM9x2nsy\nXbKpzkML8HHgN/yPBcAbmOTJBWgKQxwok2oUeL1eXvjmC+z4vzuGi+ZMYnhItx2thxdbhUyNnsck\nMT6JmT74DxfvnHgn5uZnsWg50UJRWVHGvCdzmZ3BQzfgCXocwKS6fOT/t4jjZEqNAquew9NvPo2v\nzBcaJFhDuuVoPbzYysqzWHJqCa7HXab+wheAL4HvKz72TN0Tc/OzWDTMb2D1Z1ZnxHsy1yW7wqS1\naEzEkTKlIVagnkMvUETkIGG0d5vu2GScQipPJtj8LBaZ8p7MdckOHj4D/EmStyEybplSoyCk8l+k\nIKEHk6asOzZJglRVs4XMeU/mOt2KZKBo3eeaNmqFRbwypUZBSOW/KxheYQHDqyysssXhFSW1Hl4S\nlKpqtpA578lcp8ZYGSZSLwPPCg/Nl5ptnXvMBeENpeqW1bH2obW2JoDZJaTy32xCextYVQBrGFlR\n8gkoeaVEd2ySkMD5F97n4t+AbdB5qnPMaqyprOYqyaeRhwzi9Xr5xp98I3Ivg6C5RzuKxYy2D9kw\n6hHSAjioZr+n08MzNz3DN7d8M6nHMV4jKv8txaQh7wDOMlyrIryi5BDMapnFtnXbUrq/kl3qF9Tj\nedczHKgGvWfohLzteayYPno11lRWc5Xk08hDhrBGHA6dPpS25XjZNOoR0lAqyQlgdhhR+e8Ipg+A\nVVVFqywkiZo2NjFpx6SofS7O33Z+zGqsqazmKsmn4CFDBC520TLtIekXiky74I4mlQlgdghJIvtp\nKYWnCyktKqWqporSy0u1ykKSquVEC77JvoTeM/G+5zTN4WwKHjJE4I2XxuV4mXbBHU0qE8BiMdYH\nJcC2dds4+tOjdB/ops/TR/eBbo7+9KjWxUvSNcxvoHJq5fB7Jjz3wQ0dnR2j5gvF+55bPm057Vva\n6ajsoGd1D/2f76fncz10VHaYduBjTJNIcil4yBCBN57VMTGSJF8onHbBTYTTKksm8kGpdfGSCoH3\nTDcm72Yeph34/UADnFtxbtTpy3jfc5rmcDYFDxki8MazluOFXyg+SP6FwmkX3EQ4rbJkIh+UWhcv\nqRB4z1hJk3FOX8b7nsumkc5spOAhQwTeeFZ72vDleDuSvxzPaRfcRDjtbj2RD8qG+Q1RpzS2rdtm\n1syLJCjQ5+IY4zpXQ/pkhL3nSnaWsOS+JSHPz6aRzmyUObeKOa5pYxM7b99JO+2mAJC/Pa1VAGjP\n1j1JXyo5Yh8yuAiRXe2x7aIPSnG6dbes495d9zLnxjmcc52L/KRRzlXr59dvXE9rS9hS710jl3oH\nRjqT3A5cxkdHP0M44WLnhH2wS7qr2IXXyzhy+Ig+KMXxKioqqJpWhcfnGde5WlFREXML70Btk0jt\nwDNspDMb6RMpQ6T7YueUfcgGEQtUbSO05HQwfVCKg6Tqor7kviU88+Az5n0SNtJZsrOEJVuWjPEK\nkkzKeZCck+6y1BHrZdyESYT9gOH54PPAvwMvwvdbvq817uIIqcoXstqBNxY3UttSS832Gmpbamks\nbuTIriOOqgCbi6LNsqbCImDv3r17WbRoURp3Q3JJyF2/1aUy6G4mFWWp65bV4bk1wrBvD7ALio4U\nUVVZxdGjR+n/7X6Yislw7zL76up2MX3+dOavnk/j0kYlREpKufe7aX61Gc/zHj567yMunL8AQ5BX\nnMeE0gks/o3FPPed5zKqXH0m2rdvH4sXLwZYDOxL9fY18pAB0n2nnE2cUCUzYnJkD7AbOAm+fB+n\nvKeGA4fnMGvqvwB8CXxf8XF81nEVypG0sFb3fG3D1wDw/ZYP31d8DP4/g/Ss7mFH6Y6MK1cv8VPw\n4HBO7ScRHtDMrZ/LdYuuY+4Ncx0d4Dhh7fiIehlhRXf6f7efs4VnzX6OsqZehXIknZwQiEv6KHhw\nOCe+QUcENEvbaPO2cWjRIdpWtTkmwInECUsiR9TLiBYguDDNr1QoRxzICYG4pI+CB4dz4ht0REAz\nzopz6eCEKpkjEs4iBQhWDxMXaQ92RCJxQiAu6aPgweGc+AYNCWh6gMM4LsCJxglVMsPLSdPNyL+x\n1cMkjY3QREYTTyCuvK3so+DB4ZxwpxwuENBYc/UTSajbXio5oSx1cDnpwy8fZsqEKSP/xlYPk4mk\nPdgRiSTWQNypeVuSGAUPDueEO+VwgYDGmq7IJ6Fue6nkpCZS1ofq2bKzI//GVg+TQUyth+D6D6P0\nAxBJlZBA/DzmpuFJ4Ako+I8CXt71MnNvmMuGxg2Oy9uSxGnM0+GcWGUtUGHOi6mQaA2xH2Q498ES\n9iGR7sIuTqqSGcgduQwTdC0n9G98Ckr6S/j6v36dA9sPxNQPQCRVrED81L+d4szBM3AX5vOgBwae\nG+DIJ4+Y6cwfMPq0ZotzpjUldgoeHC7eZjKpEAhoBnvNncQyzMUPzIdHJPqQGKH1rdbh8tSrMXUe\ndhAoXDWlfwrv/upd8ze+K517KjKSFYivfXstzTXNwzcNwQnUoKTfLKXgIQPE00wmFayA5robruOs\n7+zwELsbfUjEISQZthTTKTXItO3TNLIgjhcIgmE4gTr4JiJ45VA4Jf1mLOU8yLhUVFRwz6p7hufq\nSzHJfQ5L7nQyJybDisRr1ARqGJ7WjERJvxlLwYOM25L7llCys2R45YI+JOLixGRYkXhFTaAGMxLR\nD7xAxKTfVK1wEvspeJBxC+96d2X3lbhecGllQIxGBF+g4yUZJxAEW8XOrJsIayTieqAR+DUmefIJ\n4J+g/N3ylK9wEvtoXFQSEp6P4fV6HZXc6WROTIYViVfUBOophCZOBuf0HIW7i+/msXXOyeWS+Kgl\nt4iIJMTr9ZoE6i+dNVeVHkzNhweJmihZ21LLgd0HUrqf2UQtuUVEJKNFTKCejFZfZTEFD5Iz3Pvd\nrNy8kpmrZjKpbhJFtUVMqpvEzFUzWbl5Je797nTvokjGGpHDo74sWU3Bg+SM5dOW076lnY7KDnpW\n99D/+X56PtdDR2UH7VvaWTF9Rbp3USRjhSdQl/WVaTVRFlPwIDljw9c30L6wPWKN/faF7azfuD6N\neyeS+awE6gO7D3DoV4fS3oROkkfBg+SMkFbi4RzWOlwk0zmpCZ3YT5NOkjNCykGHUwKXiK2c1IRO\n7KeRB7GVk5MSVQ5aRMQeCh7EVk5OSlQ5aBEReyh4EFs5OSlR5aBFROyhcVqxVUh73nCV0NqSvqRE\nlYMWEbGHggexVUhSYg+wG9MwxwX4oKOvA6/Xm7YLdXgvDhERiZ+mLcRWgaREq6PePOB+/6MBzq04\nx6ybZrH5lc3p3E0REUmA3cHD7wP/CZz1P14Fbrd5G+JggaTEVxnuqBeW+9D7qV5ee+a1dO2iiIgk\nyO7g4SiwAdMxczHwC+BFoM7m7YhDBZISj6GCTCIiWcru4OHHwFagHTgE/CVwHtAauBxh1bcvyy9T\nQSYRkSyVzITJfGA1UAzsTOJ2xGEqKiqomlaFx+eBXkYkTXIFKHYQEclcyUiYnI9Jl7sIbAHuw4xC\nSA6pX1AP7xIxaZJaaD/arqRJEZEMlYyRh18D1wNTMCMPTwGfBvZFevLDDz9MeXl5yNcaGhpoaGhI\nwq5Jqiy5bwnfX/N9Bu8YNEmTFn/S5OAdg7z2zGusu0WF70VERuN2u3G7Q0v7nzlzJk17Y0SblbbT\nz4AjwO+FfX0RsHfv3r0sWrQoBbshqTb3hrm0rWqLfJYNQW1LLQd2H0j5fomIZLp9+/axePFiMIsT\nIt6cJ1Mq6jzkpWg74jQFKGlSRCQL2T1t8X+An2CWbE4G1gC3AP/L5u1IBggUjIoy8qAuliIimcnu\nEYEK4AlM3kML8ElgJabeg+QYdbEUEclOdgcPvwvMBiYA04DbgJ/bvA3JEOpiKSKSnTRuLEmjLpYi\nItlJwYMklbpYiohkH62CkJzg9XpZ+9Ba6pbVMXfZXOqW1bH2obV4vd5075qISMZR8CBZb9PLm5h1\n0yyaLzXjudVD221teFZ4aL7UrPbgIiLjoOBBst7rz75O76d61R5cRMQmCh4k67W+1ar24CIiNlLw\nIFlvgAFVuhQRsZGCB0mpdCQuBipdRqJKlyIicVPwICmTrsRFVboUEbGXggdJmXQlLqrSpYiIvTRe\nKynT+lYr3Brlm5XQ2pKcxEVVuhQRsZeCB0mZEYmLPcBuwAu44ND5Q6x9aC1NG+2/oKvSpYiIfTRt\nISkTkrjYDTwLzAPuN4++3+tT4SYRkQyg4EFSJiRx8VVgOSrcJCKSgRQ8SMqEJC52ocJNIiIZSsGD\npMy6W9ZxZNcRGosbKbpYpMJNIiIZSsGDpJSVuDjn6jkpKdykbpoiIvZT8CBpkYrCTeqmKSKSHFqq\nKWmx5L4lPPPgM6ZoVCUmjB0COv2Fm7bEXrjJ6/WaGg5vmRoO9MPQwBBdp7rovdVflMoSlpS57pZ1\n9v5iIiI5QMGDpIVdhZu6urpYumop7QvbTQGqHuA5YCnwS0ZPykxSUSoRkWyn4EHSxo7CTav/aLUJ\nHGZiAodngWWYpaATUVKmiEgSKOdBMtrJD06a0QWr6JQLOIypIZGPummKiCSBggdJq0RWQ3i9Xjo+\n7DABg1V0qgg4iQkoKlA3TRGRJNCtl6TNiHwFFzAEnk4PO2/fyZ6te6LmPmx6eROPrHuE3sFeM7rg\nxbyGz/86Lsz0xbOYoCI4KbMDSnbFl5QpIiLDFDxI2oTkK1j8qyHaaedzf/g5XnG/EvFnA+29D2JG\nF6yAoQI4hgkiSoHVmOZbOwgEJ1P6p/Dur95VN00RkXFS8CBpc/KDk6O26D7ZcjLqzwbae1+GGV0A\nEzAsA5oxAcVMTABxW9APHoV7iu9R4CAikgDlPEjajGjRHSxsNURwbkR1fTW/fu/X5met0QUfJmAo\nBe4Dfgx8gJmmwP/fo/4aEvdpukJEJBEaeZC0CbTojhRABK2GCMmNWIqp4zCB4Z+1Aobg/IYvAbuA\nX4DrkovpV05n5bKVcdWQEBGRyBQ8SNrUL6jH0+EJzXmwBK2GCORGXAY8A6xgONfB+tng/Iafw0Qm\nMnvGbOp/q56mjQoYRETspOBB0ibWEtUnPzhpRhysOg5VDOc6BK+kmAh8DKovVo+6UkNERBKjnAdJ\nm+AW3TU/raHssTKK/rmIspfLqCqv4rVnXsPr9Zrch+A6DsG5DgcBN/AD89+yn5cpcBARSTKNPEha\nVVRU8Lf/429Zumop51acgyroc/VxbugcbZ1t7Lx9J/kF+XCa4ToOwbkOwSsphqCqpUqBg4hIkil4\nkLQb0Z9iN6bokwva+9qZcGnCcJ8Kq2rkGHkSIiKSPAoeJO0C9R66MSsplhNScfLioYuwleE6Dqoa\nKSKSVgoeJO0C9R6svIbwipM1wH8yPOIQXjWyD6aVTGP/rv2ashARSQElTEraBeo9eDErKSK5HQp/\nXAhHMVMYtwENwKeg+rJq9r+swEFEJFU08iBpF6j3YPWniGQyzLx6JjcX30xrSysDDFBAAfUL6mna\nqjoOIiKppOBB0i5Q76Gvd9SKkxMKJ/DY9x5L9e6JiEgYTVtI2ln1HuZMnWPyGiLRSgoREcdQ8CCO\nUFFRwZ9+608p2Vli8hrU0EpExLHsDh7+HPgVcA74EPh3TK68yJiCK07WttRSs72G2pZaGosbObLr\nCOtuWZfuXRQREezPebgZ+EdMAFEI/C9gO1AL9Nq8LclCFRUVymsQEXE4u4OHVWH/Xgt0AYswDZJF\nREQkwyU756Hc/9+PkrwdERERSZFkBg8u4FvATsCTxO2IiIhICiWzzsN3gTrgpiRuQ0RERFIsWcHD\nPwK/jUmgPDbaEx9++GHKy8tDvtbQ0EBDQ0OSdk1ERCRzuN1u3G53yNfOnDmTpr0xohUDTuT1/hG4\nC/g00D7KcxcBe/fu3cuiRYts3g0REZHstW/fPhYvXgywGNiX6u3bPfLwPUy7oruAHmC6/+tngIs2\nb0tERETSwO6Eya8AZcDLmOkK63GfzdsRERGRNLF75EHlrkVERLKcLvYiIiISFwUPIiIiEhcFDyIi\nIhIXBQ8iIiISFwUPIiIiEhcFDyIiIhIXBQ8iIing9XpZu3YtdXV1zJ07l7q6OtauXYvX6033ronE\nLZmNsUREcp7X6+UP/uAP+NGPfkR/f3/I9zweD83NzeTn5zM0NITL5SI/P5+SkhJWrVrFd77zHSoq\nKtK05yLRaeRBJAV015mburq6uPHGG3n66adHBA7BBgcH8fl8DA0N0d/fz9mzZ3nqqaeorKykoaFB\n54k4joIHkSTbtGkTs2bNorm5GY/HQ1tbW+COc9asWWzevDnduyg2sgLFuXPnUlVVRXv7aP0BR9ff\n389TTz3FlVdeSVlZGXPnzlXQKY6gaQuRGLndbrZs2UJraysXLlzA5/PhcrmYOHEi9fX1PPjgg4FW\n8l6vl/Xr19Pa2kpHRwe9vb0RX7O3t5fXXnuNdevWpfJXiYn1O7z66qucOHGCCxcuAOByuZgwYQJX\nXHEFeXl55OWZe5CCggLq6+tpamrK+qH24GNz7Ngxuru7k77N8+fPc/78edra2mhubqa0tJT8/Hxc\nLhdXXHEFxcXFI45/8Hk4MDAAwNDQUOBvNta/c+lvKvGxuyV3PNSS28HCP3Ry9UMk+CIxWhAAUFpa\nSl9fHz6fL/BBHYvKykrq6urweDycPn2avr4+ioqKmDp1KrW1tTQ2NgaCkmSzft8dO3Zw+PBhfD5f\n3K/hcrkoLS0F4NKlSyO+N2HCBKZPn87SpUttP5/CA56LFy/GHOhECpZ8Ph+Dg4OBXIQJEyZQXl7O\niRMnRp2GSLeCggJcLhcDAwPj+huGKyws5Oqrr44YoEh6pLsldzotAnx79+71SfJ5PB7fnDlzfIWF\nhT4g4qOwsNBXWlrqy8/Pj/ocl8vlKysr882aNcs3ZcoU35QpU3zV1dW+2tpaX2Njo6+rqyvdv2rC\nurq6fI2Njb5rr73W53K5oh4Lux4lJSVRt1NaWurbtWuXr7Gx0VdbW+urqakZ81hb+x/p+V1dXb41\na9b4Jk+enJLfbaxHYWGh7+677/atWbPGV1NT4ysrK/MVFRX5ysrKfDU1Nb7Gxkafx+PxNTY2Rv2+\ndRw+/PBDX3V1dVzbd7lcvsLCQl9BQUHaj0UmPaqrq5P2Xo92/sZ6HuSKvXv3Wn+PnLv7VvBgM6dc\nGEpLSzM2oBjPBSidx7mmpibkA/bAgQNR9/+aa67xzZw5M+37He9jrAt7YWGhb82aNb41a9akfV9z\n6dHY2Jjw+y04ULj22mt9kydP9uXl5Y1rf2bNmpVRnzWJUvCg4GHcrDdeTU2Nb9KkSWn/MBntkZeX\n5ysoKPAVFhb6ysrKHBtcNDY2pv1Y6TG+x2gjZnrY/5gyZUrMo2GRJCNQX7NmTRI/HZxFwYOCh3E5\ncOCAb/LkyWn/ALHjkcwh0HhVVlam/Xjokf2PyZMn+6699lpfWVlZVk2blJSU+DZt2hTTey0ZgXpJ\nSUmSPyGcI93Bg5ZqZqCuri5uuOEGzp8/n+5dsUV7ezsPPvhguncDIJDoJ5Is1dXVtLe3097eztmz\nZ+nr66O/v59NmzYxceLEdO9eQqzVQ7FobW21ffvxJCpLYhQ8ZKANGzakZGlYKj3//PMcPHgwpduM\nVLipo6MjpfsguWPy5Mk0NjayZ8+eiCsV1q1bx/vvv09jYyM1NTWUlZVRWFhIQUFmraiPNSg4duyY\n7dt28gqYbJNZZ6UAyYnYneDOO+/k3XffTcm2PB4PS5YsyZrRGzEKCwsdeQGZNWsWra2tYy5vrKio\n4LHHHhvxdTvqShQWFjJz5syQJatgLrgdHR22HbdY7/5nzJjBmTNnbNmmpayszNbXk+gUPGSgZETs\nTnDo0CEmT57MpEmTuOyyyxJeTx5t3b6dQ5sFBQVUVVWRl5fHyZMnRxRSsuoZrF+/nqamppC6Gddf\nfz27d+/m6NGjtu3PWPt61VVXjXt7kyZN4pFHHqGpqSnwe8azbRjfsHJBQUHMP/fZz36WCRMmRK3z\nMDQ0xNGjR2O+UIb3nJgwYQKXX345RUVFgX2rr68P/H3Dt2tXPYvwoCK4DsvFixc5deoUQ0ND+Hy+\nQG2NeGpqxFMfo7Ozk7Nnz0bd11hHSurr6/F4PLEegpisWrXK1tcTZ1LC5DjV1tYmJdmpoKDAV1pa\nGkjestbAT5482VddXZ3wUqrxPFwul6+6ujpqJnf4ihOXy+XLy8tLOPN+tHoYYDLN7VgpEry8NtnH\ncsmSJXEt5y0sLPTNmjVrRCZ9tHX4u3bt8s2ZM8dXVFTkKyws9BUVFfnmzJnj83g8I/5ewT9rLbOM\npc7DaKuKYk28DT5nrIRFa39zuW5ArMZKdIx1CWdXV5etqy20VDN3KHgYJzuylBNZLhlcRCmVWeLB\nF4euri7f5z//+TEv8uN9XHnllVE/2FKxOiR8/fuUKVN8kydPHvfxnjlzZtZ8sI5WBEuSb9OmTb6S\nkpKI51k8qy18vsjnuVV4rqamxjdnzpyQVSnBj1wP9hQ8KHiI22gRu8vl8lVUVES9887Pz/f93d/9\nXdL2K/iOLhmBRWNjY0oKOVVWVjryIhW+T8EfsKWlpSN+D6uCY659sEpyOfG9kWvSHTyot0WGGqv3\nhFN6U3i9Xv7wD/+QH/7wh7YkZNXW1lJfX09zc3PiOzeKxsbGiIlrIiJOkO7eFgoeJCWCGy699957\n4w3zOZIAAAfxSURBVH6d8vJyZsyYYXuiVbDJkyfT3t6uxj8i4ljpDh5U50FSwsoWb29vp7a2dtyv\nM2PGjKSuNikoKOD1119X4CAiMgoFD5Jy9fX1Cf3sjBkzbNybYaWlpbz99tvMmzcvKa8vIpItFDxI\nyjU1NVFdXR33z1VXV9PU1JRQ8BEuLy+PsrIy1qxZw+HDhxU4iIjEQEWiJOUqKirYs2cP69ev55VX\nXuHw4cPMnj2bG264ATBzeaMV2mlqamLnzp20t7dHfP3gojaDg4P4fL4Rz6muro5aJlhEREan4EFS\nzu1243a7AZgzZw6FhYVcc8019PT0ALBx40YaGhqi/nxw8DHWahKnrDoREckmWm0hIiKSYbTaQkRE\nRDKKggcRERGJi4IHERERiYuCBxEREYmLggcRERGJi4IHERERiYuCBxEREYmLggcRERGJi4IHERER\niYuChxxjlYWW1NExTz0d89TTMc8tyQgebgb+A+gEhoC7krANGSe9wVNPxzz1dMxTT8c8tyQjeCgB\n3gQe8v97ZEtDERERyVjJ6Kq51f8QERGRLKScBxEREYlLMkYe4nLw4MF070JOOXPmDPv2pbx7a07T\nMU89HfPU0zFPrXRfO11Jfv0h4G7gxQjfuwr4FVCZ5H0QERHJRp3AJ4Hjqd5wOkcejmN+6avSuA8i\nIiKZ6jhpCBwg/dMWafvFRUREZHySETyUAtcF/ftaYAFwCjiahO2JiIhIhvs0JtdhCBgM+v9/TeM+\niYiIiIiIiIiIiIiIiIiISO7ayHD+gvU4FvaceZiaDmeAc8AeYGbYc24EfgF0A6eBXwITgr5/JMJ2\n/nfYa1yNab7VDXiBfwAKx/l7OdlGEjvmsyL8vPX4bNBrTAW+73+NM8ATwJSw7eiYD7PjmB+J8H2d\n5+P/bJkB/AA4gTle+wg93qDzPNhGUnPMj0TYjs7z8R/zauDfgS7gLPA0cGXYazjuPN8IvO3fUetx\nedD3qzErKv4v8BuYD9FVQEXQc27E/DLrMQepGrgXKAp6zmHga2HbKQ36fj6wH2jxb2c50AF8J9Ff\n0IE2ktgxzwv72SuBv8KcdCVBr/NT4D+BG4Al/m0GF/bSMR9m1zHXeT5sI4l/tvwSeA34hP/7XwMG\nMCu9LDrPh20kNcdc5/mwjSR2zEuBduA5oA74OCaQeJ3Qgo+OO883YrplRvMU8PgYr/Ea8PUxnnMY\n+KNRvr8Kc4JOD/ra54ELwKQxXjvTbCTxYx7uTeCfg/49DxMBfzLoazf4v2YtudUxH2bHMQed58E2\nkvgxPw98IexrJ4G1/v/XeR5qI8k/5qDzPNhGEjvmt2GOVfBxKcecw8v9/07ZeR5vY6zrMOUw3wPc\nwOyg1/kt4F1gG/AhJlC4K+hnrwTqMUMkr2KGul4GlkXYzgbMSfgm8BeEDqfciImaTgR9bTtQDCyO\n8/fJBIkc83CLMZHmo0FfuxFzV/yroK+97v/a0qDn6Jjbd8wtOs+HJXrMfwyswQzZ5vn/vwjzGQM6\nzyNJ9jG36DwflsgxLwZ8QF/Q1y5hAgPrOurI8/x24B7McMlyzJDVceAyTAQzhJk/+SPgeswJMwjc\n7P/5Jf7nnAS+jPlA/SZwEZgTtJ2HgU9hhmQewMztBN+1bSFyy++LmOgpmyR6zMP9f8B/hX3tL4B3\nIjz3Hf/rgY653cccdJ4Hs+OYT8QMww5hPlzPMHw3BjrPw6XimIPO82CJHvMrMMf4W5hjXwp81/9z\n/+R/Tkac5yWYX/yPMf0phoAnw57zAiahBkzUMwT8Tdhz/pORCTTB7vX/3FT/v7dgIrNw2XiyhYv3\nmAebiDnx/jjs67GebDrm9h3zSHSeDxvPMf8RJrnsM8B84K8xCdkf939f5/noknHMI9F5Pmw8x/xW\n4BAmqOjHTHO8AXzP//2UnefxTlsE68UMfczBjCYMAJ6w5/wak9UJwz0swp9zMOg5kbzu/681OnEC\nmBb2nKmY4bITZLd4j3mwz2EuZk+Eff0EI7N18X/tRNBzdMztO+aR6DwfFu8xn4fp3vsA5m5uP/A/\nMR+qD/mfo/N8dMk45pHoPB82ns+Wn/mfX4FJtvwyUIWZBoEUnueJBA/FQC0mKOjHzLF8LOw5NZil\nOvj/eyzCc+YGPSeShf7/WsHHq5jINviXvw0z97M3xn3PVPEe82APYKLYU2Ff34NZxhOeYDMFc6xB\nx9zuYx6JzvNh8R5z63NsMOw5Qwxnoes8H10yjnkkOs+HJfLZ8hFmKedyTCBhraZw5Hn+95i5l9n+\nnfkPzJCstQb1bv/GfxcTGX0Vc0CWBr3GH/l/5rP+5/y/QA/DSSNLMEM4C/xfuw+zhOTfg14jD7P0\n5Gf+5y0HPsCsU802dhxz/N8bxJwgkfwEeIvQpT0vBH1fx9zeY67zPFSixzwfc8f2CuZDsxp4BHP8\nbw/ajs7zYak45jei8zyYHZ8tazHnbjXwRcyIxd+Fbcdx57kbkyV6CXMCPMvIKGkt0IYZjtkH/E6E\n19ng39FuYBehB2YhJnI67X+Ng5h5tAlhrzETc+B7MAfv22RnURG7jvn/ZvTRnXJMUZGz/scTQFnY\nc3TMhyV6zHWeh7LjmF/r/7njmM+WNxm5jFDn+bBUHHOd56HsOOb/B3O8L2GmNB6OsB2d5yIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIpJW/z8cFuwozfnxHQAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t2, l2, l2e = np.loadtxt(echo_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o', color=\"green\")\n", + "errorbar(t2, l2, yerr=l2e, fmt='o', color=\"black\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.356e-01 6.706e+01 inf -- -2.964e+02 -- 1 1 1 1 1 1 1 1\n", + " 2 7.719e-01 6.609e+01 8.091e+01 -- -2.155e+02 -- 0.566297 0.565079 0.565579 0.565108 0.564503 0.565385 0.564367 0.564961\n", + " 3 3.379e+00 6.484e+01 7.996e+01 -- -1.355e+02 -- 0.138579 0.130954 0.131695 0.130103 0.128857 0.130335 0.128712 0.130511\n", + " 4 1.429e+00 6.354e+01 7.865e+01 -- -5.686e+01 -- -0.27205 -0.301257 -0.300578 -0.304918 -0.306545 -0.305024 -0.306246 -0.301896\n", + " 5 5.891e-01 6.225e+01 7.700e+01 -- 2.014e+01 -- -0.639865 -0.728428 -0.729483 -0.7395 -0.741278 -0.740758 -0.740477 -0.732461\n", + " 6 3.717e-01 6.064e+01 7.473e+01 -- 9.487e+01 -- -0.916158 -1.1392 -1.15122 -1.17266 -1.17468 -1.17713 -1.17495 -1.16261\n", + " 7 2.723e-01 5.813e+01 7.142e+01 -- 1.663e+02 -- -1.05542 -1.49675 -1.55907 -1.60318 -1.60661 -1.61473 -1.61106 -1.59295\n", + " 8 2.151e-01 5.427e+01 6.693e+01 -- 2.332e+02 -- -1.09159 -1.71699 -1.94737 -2.02949 -2.03872 -2.0544 -2.04928 -2.02094\n", + " 9 1.766e-01 4.902e+01 6.164e+01 -- 2.949e+02 -- -1.0864 -1.76184 -2.31512 -2.44735 -2.4733 -2.49635 -2.4886 -2.44039\n", + " 10 1.488e-01 4.321e+01 5.498e+01 -- 3.498e+02 -- -1.06321 -1.76835 -2.64945 -2.8386 -2.90987 -2.9371 -2.92734 -2.84392\n", + " 11 1.266e-01 3.774e+01 4.629e+01 -- 3.961e+02 -- -1.05206 -1.78791 -2.90485 -3.15492 -3.34002 -3.36876 -3.363 -3.22984\n", + " 12 1.020e-01 3.183e+01 3.581e+01 -- 4.319e+02 -- -1.04328 -1.80162 -3.05493 -3.33738 -3.73969 -3.77247 -3.78883 -3.60537\n", + " 13 8.417e-02 2.370e+01 2.339e+01 -- 4.553e+02 -- -1.03318 -1.80414 -3.12825 -3.41545 -4.06016 -4.10442 -4.17529 -3.97261\n", + " 14 5.584e-02 1.304e+01 1.058e+01 -- 4.659e+02 -- -1.02449 -1.80162 -3.1555 -3.47184 -4.25708 -4.30813 -4.44309 -4.307\n", + " 15 2.209e-02 4.062e+00 2.538e+00 -- 4.684e+02 -- -1.02032 -1.79854 -3.15803 -3.51038 -4.34263 -4.3778 -4.52295 -4.54752\n", + " 16 5.247e-03 5.023e-01 2.477e-01 -- 4.687e+02 -- -1.02062 -1.79556 -3.15642 -3.51858 -4.37903 -4.39008 -4.51121 -4.64796\n", + " 17 2.880e-03 1.411e-01 1.010e-02 -- 4.687e+02 -- -1.02146 -1.79354 -3.15518 -3.51435 -4.40201 -4.39592 -4.50461 -4.66221\n", + " 18 1.495e-03 7.076e-02 1.728e-03 -- 4.687e+02 -- -1.02146 -1.79301 -3.15424 -3.51272 -4.41468 -4.39804 -4.50083 -4.6632\n", + " 19 7.709e-04 3.584e-02 4.325e-04 -- 4.687e+02 -- -1.02146 -1.79285 -3.15372 -3.51155 -4.42128 -4.39875 -4.49916 -4.66361\n", + " 20 3.958e-04 1.822e-02 1.104e-04 -- 4.687e+02 -- -1.02145 -1.79279 -3.15346 -3.51104 -4.42469 -4.39897 -4.4983 -4.66381\n", + " 21 2.024e-04 9.268e-03 2.840e-05 -- 4.687e+02 -- -1.02145 -1.79276 -3.15333 -3.51076 -4.42644 -4.39904 -4.4979 -4.6639\n", + "********************\n", + "-1.02145 -1.79276 -3.15333 -3.51076 -4.42644 -4.39904 -4.4979 -4.6639\n", + "0.234388 0.20444 0.264527 0.210547 0.308149 0.209858 0.179189 0.173278\n", + "1.75973e-05 0.000353327 0.000863132 0.0021508 -0.00926831 -0.00174289 0.00467078 -0.00131932\n", + "********************\n" + ] + } + ], + "source": [ + "P2 = clag.clag('psd10r', [t2], [l2], [l2e], dt, fqL)\n", + "p2 = np.ones(nfq)\n", + "p2, p2e = clag.optimize(P2, p2)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 4.687e+02 4.637e+02 -1.021e+00 -2.145e-02 9.96 +++\n", + "+++ 4.687e+02 4.671e+02 -1.021e+00 -5.214e-01 3.22 +++\n", + "+++ 4.687e+02 4.682e+02 -1.021e+00 -7.714e-01 0.935 +++\n", + "+++ 4.687e+02 4.677e+02 -1.021e+00 -6.464e-01 1.95 +++\n", + "+++ 4.687e+02 4.680e+02 -1.021e+00 -7.089e-01 1.41 +++\n", + "+++ 4.687e+02 4.681e+02 -1.021e+00 -7.402e-01 1.16 +++\n", + "+++ 4.687e+02 4.682e+02 -1.021e+00 -7.558e-01 1.05 +++\n", + "+++ 4.687e+02 4.682e+02 -1.021e+00 -7.636e-01 0.99 +++\n", + "+++ 4.687e+02 4.682e+02 -1.021e+00 -7.597e-01 1.02 +++\n", + "+++ 4.687e+02 4.682e+02 -1.021e+00 -7.617e-01 1 +++\n", + "\t### errors for param 1 ###\n", + "+++ 4.687e+02 4.683e+02 -1.793e+00 -1.589e+00 0.875 +++\n", + "+++ 4.687e+02 4.678e+02 -1.793e+00 -1.487e+00 1.84 +++\n", + "+++ 4.687e+02 4.680e+02 -1.793e+00 -1.538e+00 1.33 +++\n", + "+++ 4.687e+02 4.681e+02 -1.793e+00 -1.563e+00 1.09 +++\n", + "+++ 4.687e+02 4.682e+02 -1.793e+00 -1.576e+00 0.981 +++\n", + "+++ 4.687e+02 4.682e+02 -1.793e+00 -1.569e+00 1.04 +++\n", + "+++ 4.687e+02 4.682e+02 -1.793e+00 -1.573e+00 1.01 +++\n", + "\t### errors for param 2 ###\n", + "+++ 4.687e+02 4.683e+02 -3.153e+00 -2.889e+00 0.804 +++\n", + "+++ 4.687e+02 4.678e+02 -3.153e+00 -2.756e+00 1.76 +++\n", + "+++ 4.687e+02 4.681e+02 -3.153e+00 -2.823e+00 1.24 +++\n", + "+++ 4.687e+02 4.682e+02 -3.153e+00 -2.856e+00 1.01 +++\n", + "+++ 4.687e+02 4.682e+02 -3.153e+00 -2.872e+00 0.904 +++\n", + "+++ 4.687e+02 4.682e+02 -3.153e+00 -2.864e+00 0.957 +++\n", + "+++ 4.687e+02 4.682e+02 -3.153e+00 -2.860e+00 0.983 +++\n", + "+++ 4.687e+02 4.682e+02 -3.153e+00 -2.858e+00 0.997 +++\n", + "\t### errors for param 3 ###\n", + "+++ 4.687e+02 4.686e+02 -3.511e+00 -3.405e+00 0.282 +++\n", + "+++ 4.687e+02 4.684e+02 -3.511e+00 -3.353e+00 0.62 +++\n", + "+++ 4.687e+02 4.683e+02 -3.511e+00 -3.326e+00 0.835 +++\n", + "+++ 4.687e+02 4.682e+02 -3.511e+00 -3.313e+00 0.953 +++\n", + "+++ 4.687e+02 4.682e+02 -3.511e+00 -3.307e+00 1.01 +++\n", + "+++ 4.687e+02 4.682e+02 -3.511e+00 -3.310e+00 0.984 +++\n", + "+++ 4.687e+02 4.682e+02 -3.511e+00 -3.308e+00 0.999 +++\n", + "\t### errors for param 4 ###\n", + "+++ 4.687e+02 4.683e+02 -4.427e+00 -4.119e+00 0.792 +++\n", + "+++ 4.687e+02 4.678e+02 -4.427e+00 -3.965e+00 1.84 +++\n", + "+++ 4.687e+02 4.680e+02 -4.427e+00 -4.042e+00 1.31 +++\n", + "+++ 4.687e+02 4.682e+02 -4.427e+00 -4.080e+00 1.03 +++\n", + "+++ 4.687e+02 4.682e+02 -4.427e+00 -4.100e+00 0.907 +++\n", + "+++ 4.687e+02 4.682e+02 -4.427e+00 -4.090e+00 0.968 +++\n", + "+++ 4.687e+02 4.682e+02 -4.427e+00 -4.085e+00 1 +++\n", + "\t### errors for param 5 ###\n", + "+++ 4.687e+02 4.682e+02 -4.399e+00 -4.189e+00 0.899 +++\n", + "+++ 4.687e+02 4.677e+02 -4.399e+00 -4.084e+00 1.98 +++\n", + "+++ 4.687e+02 4.680e+02 -4.399e+00 -4.137e+00 1.33 +++\n", + "+++ 4.687e+02 4.682e+02 -4.399e+00 -4.163e+00 1.06 +++\n", + "+++ 4.687e+02 4.682e+02 -4.399e+00 -4.176e+00 0.941 +++\n", + "+++ 4.687e+02 4.682e+02 -4.399e+00 -4.170e+00 1 +++\n", + "\t### errors for param 6 ###\n", + "+++ 4.687e+02 4.682e+02 -4.498e+00 -4.319e+00 1.01 +++\n", + "\t### errors for param 7 ###\n", + "+++ 4.687e+02 4.686e+02 -4.664e+00 -4.577e+00 0.267 +++\n", + "+++ 4.687e+02 4.684e+02 -4.664e+00 -4.534e+00 0.602 +++\n", + "+++ 4.687e+02 4.683e+02 -4.664e+00 -4.512e+00 0.82 +++\n", + "+++ 4.687e+02 4.682e+02 -4.664e+00 -4.501e+00 0.942 +++\n", + "+++ 4.687e+02 4.682e+02 -4.664e+00 -4.496e+00 1.01 +++\n", + "********************\n", + "-1.02145 -1.79274 -3.15326 -3.51062 -4.42734 -4.39906 -4.49769 -4.66395\n", + "0.259766 0.220088 0.295514 0.2023 0.342171 0.229522 0.179146 0.167871\n", + "********************\n" + ] + } + ], + "source": [ + "p2, p2e = clag.errors(P2, p2, p2e)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X9w3PV95/GnsQVKSItjct41MWjj7TlriCEnIRes4Ipe\nmmm5Nuk1PXV3krmJhI+0pce4dzD1tWMdI9/kro2noU067fhA9O4CK/umzTWewYWmlWsqi5wqJYCD\nF3JrrbCDd13imLakAoF9f6xkZPOVpZX2uz+0z8fMjuTd72c/H8PX2pe+n8/38wZJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQt0X8CRoC/BwrA14CNVR2RJEmqCQeBfwtsAm4GDgA54L1V\nHJMkSapBHwDOAR+r9kAkSdL8rqhgX6unv56pYJ+SJKnGraA43fDX1R6IJElamFUV6ucrwE1cfqph\n3fRDkiSV5tT0o6wqERK+DPwssA14ZY5j1l133XWvvPLKXC9LkqTL+B7QTpmDQpghYQXFgPApoBOY\nuMyx61555RW++tWvsmnTphCHVH47duzgoYceqsv+lvJepbYt5fiFHDvfMZd7vdL/z8rFc638x3uu\nBfNcK//xYZ5rx44d47Of/ewHKV6Nr5uQ8AdAimJIeB2ITj9/FpgMarBp0yZaW1tDHFL5rV69uqJj\nLmd/S3mvUtuWcvxCjp3vmMu9Xun/Z+XiuVb+4z3Xgnmulf/4sM+1sKwM8b0PAFcB3cB/nPX4LvDs\nJceuAz7/+c9/nnXr6m9ZwubNm+u2v6W8V6ltSzl+IcfOd8xcr6fTaVKp1ILHUks818p/vOdaMM+1\n8h8f1rl26tQp9u7dC7CXMl9JWFHON1uCVmB0dHS0LlO36ssnP/lJvv71r1d7GGoAnmuqhLGxMdra\n2gDagLFyvncl90mQJEl1xJCghlOvl39VfzzXVO8MCWo4/uBWpXiuqd4ZEiRJUiBDgiRJCmRIkCRJ\ngQwJkiQpkCFBkiQFMiRIkqRAhgRJkhTIkCBJkgIZEiRJUiBDgiRJCmRIkCRJgQwJkiQpkCFBkiQF\nMiRIkqRAhgRJkhTIkCBJkgIZEiRJUiBDgiRJCmRIkCRJgQwJkiQpkCFBkiQFMiRIkqRAhgRJkhTI\nkCBJkgIZEiRJUqAwQ8I24ADwPeAc8KkQ+5IkSWUWZkh4L/At4N7pP58PsS9JklRmq0J87z+ffkiS\npDrkmgRJkhTIkCBJkgIZEiRJUqAw1ySUbMeOHaxevfqi51KpFKlUqkojkiSpdqTTadLp9EXPnT17\nNrT+VoT2zhc7B/w88PU5Xm8FRkdHR2ltba3QkCRJqn9jY2O0tbUBtAFj5XzvMK8kXA3881l/3gB8\nFPg+cCLEfiVJUhmEGRLagb+a/v488LvT3/8x0BNiv5IkqQzCDAmHcGGkJEl1yw9xSZIUyJAgSZIC\nGRIkSVIgQ4IkSQpkSJAkSYEMCZIkKZAhQZIkBTIkSJKkQIYESZIUyJAgSZICGRIkSVIgQ4IkSQoU\nZoEnqWrSz6dJH00DMPnWJBOvTdByTQvNq5oBSH0kRWpzqppDlKSaZ0jQspTa/E4IGDs1RtveNtKf\nTtO6rrXKI5Ok+uF0gyRJCmRI0LKVy+XoubeHrl/ogseh6xe66Lm3h1wuV+2hSVJdcLpBy06hUCC5\nPUnmTIb8jXn46eLzWbJkT2Y5+JmDJNYkGHh4gEgkUt3BSlINMyRoWSkUCmy9ayvHbzsOtwYcsB7y\n6/PkT+fpuKuDoSeGDAqSNAenG7SsJLcniwFh7TwHroXsbVmS25MVGZck1SNDgpaN8fFxMmcy8weE\nGWshcybjGgVJmoMhQcvG7j27i2sQSpDflKdvT19II5Kk+mZI0LIx8twIrC+x0XoYeXYklPFIUr0z\nJGjZmHp7qvRGK2Dq3CLaSVIDMCRo2Wha2VR6o/PQdMUi2klSAzAkaNlov7kdTpbY6CRsuWVLKOOR\npHpnSNCy0ftAL9EXoiW1iR6Lsuv+XSGNSJLqmyFBy0YsFiOxJgGnF9jgNCTWJIjFYmEOS5LqVtgh\n4VeBceCfgL8FPhZyf2pwAw8PEH8mPn9QOA3xZ+Lse2RfRcYlSfUozJDwS8CXgN3AR4GngYPA9SH2\nqQYXiUQYemKIzpc7iT4VhRPA+ekXzwMnIPpUlM6XOzly8Ahr1y505yVJajxhhoT/ADwM9AMvAr9O\n8Uf2r4TYp0QkEmHwwCDDjw3T3dxN/Mk4PA7xJ+N0N3cz/NgwgwcGDQiSNI+wCjxdCbQCX7jk+aeA\nrSH1KV0kFovR/5V+xk6N0ba3jf337Kd1XWu1hyVJdSOsKwkfAFYChUuePw2UtvxckiRVhaWitSyl\nn0+TPpoGYPKtSTZeu5Gd39hJ86pmAFIfSZHanKrmEGvCpf+dJl6boOWaFv87SQJgRUjveyXwOvCL\nwJ/Nev73gJuBOy85vhUYveOOO1i9evVFL6RSKVIpf0hJYcnlcvR9sY/DY4fJnskSXxNnW+s2eh/o\n9fZQqcak02nS6fRFz509e5ann34aoA0YK2d/YYUEgGeAUeDeWc+9AHwN+K1Ljm0FRkdHR2ltdc5Y\nqoRCoUBye5LMmUyxeubs4lgnIfpClMSaBAMPDxCJRKo2TkmXNzY2RltbG4QQEsKcbvhd4H9R3B/h\nGeAeij+G/ijEPiUtQKFQYOtdWzl+23G4NeCA9ZBfnyd/Ok/HXR0MPTFkUJAaUJi3QO4HdgC9wLco\nbqR0F8XbICVVUXJ7shgQ5rsLdC1kb8uS3J6syLgk1Zawd1z8Q+BDQDPQDvxNyP1Jmsf4+DiZM5n5\nA8KMtZA5kyGXy4U5LEk1yNoNUoPZvWd3cQ1CCfKb8vTt6QtpRJJqlSFBajAjz41cvEhxIdbDyLMj\noYxHUu0yJEgNZurtqdIbrYCpc4toJ6muGRKkBtO0sqn0Rueh6YpFtJNU1wwJUoNpv7kdTpbY6CRs\nuWVLKOORVLsMCVKD6X2gl+gLpZVQiR6Lsuv+XSGNSFKtMiRIDSYWi5FYkyiWW1uI05BYk3CLZqkB\nGRKkBjTw8ADxZ+LzB4XTEH8mzr5H9lVkXJJqiyFBakCRSIShJ4bofLmT6FPR4j6o56dfPA+cgOhT\nUTpf7uTIwSOsXbvQnZckLSeWipYaVCQSYfDAYLEK5J4+Dj85qwpk2zZ6H7MKpNToDAlSA0s/nyZ9\nNA0dsOHHN7DytZW0XNPCq6te5b7h+0j9Q4rUZku1S43KkCA1sNRmQ4CkubkmQZIkBTIkSJKkQIYE\nSZIUyJAgSZICGRIkSVIgQ4IkSQpkSJAkSYEMCZIkKZAhQZIkBTIkSJKkQIYESZIUyJAgSZICGRIk\nSVIgq0BqWUqn06TTaQAmJyeZmJigpaWF5uZmAFKpFKmU1Q8l6XIMCVqWZoeAsbEx2traSKfTtLa2\nVnlkklQ/nG6QJEmBwgoJvwUcAX4I/CCkPqTLyuVy9PT00NXVBUBXVxc9PT3kcrnqDkyS6kRY0w1N\nwD6KQeHukPqQAhUKBZLJJJlMhnw+f+H5bDZLNpvl4MGDJBIJBgYGiEQiVRypJNW2sELCg9NfPxfS\n+0uBCoUCW7du5fjx43Mek8/nyefzdHR0MDQ0ZFCQpDm4JkHLSjKZvGxAmC2bzZJMJkMekSTVL0OC\nlo3x8XEymUxJbTKZjGsUJGkOpUw3PAj0znPMrcDYokcjLcHu3bsvWoOwEPl8nr6+Pvr7+0Malcop\n/Xya9NHp/S/emmTitQlarmmhedX0/hcfSZHa7P4XUrmUEhK+DDw+zzETSxgLO3bsYPXq1Rc956Y3\nWqiRkZGKtlPlpTanuP1Hbqfvi30cHjtM9kyWt9e8zbbWbfQ+0EssFqv2EKVQzd4obsbZs2dD629F\naO9c9DngS8D75zmuFRgdHR11sxstWiKR4MUXXyy53Yc//OGSpylUeYVCgeT2JJkzGfI35mH9rBdP\nQvSFKIk1CQYe9q4VNZaZDeOANsp8NT+suxtuANZMf10J3EIxkHwXeD2kPtXgmpqaKtpOlVMoFNh6\n11aO33a8OKl5qfWQX58nfzpPx10dDD3hXStSOYS1cLGPYpp5ELga+BYwSjHlSKFob29fVLstW7aU\neSQqt+T2ZDEgrJ3nwLWQvS1Lcrt3rUjlEFZI+Nz0e19B8UrCzNfDIfUn0dvbSzQaLalNNBpl165d\nIY1I5TA+Pk7mTGb+gDBjLWTOeNeKVA7eAqllIxaLkUgkSmqTSCRc7Fbjdu/ZXVyDUIL8pjx9e/pC\nGpHUOAwJWlYGBgaIx+MLOjYej7Nv376QR6SlGnlu5OJFiguxHkae9a4VaakMCVpWIpEIQ0NDdHZ2\nzjn1EI1G6ezs5MiRI6xdu9Br2KqWqbenSm+0AqbOLaKdpIsYErTsRCIRBgcHGR4epru7+8KVhXg8\nTnd3N8PDwwwODhoQ6kTTykXcfXIemq7wrhVpqcK6BVKqulgsRn9//4V7iPfv3+8+HHWo/eZ2jp48\nWtqUw0nYcot3rUhL5ZUESTWt94Feoi+UeNfKsSi77veuFWmpvJKgZWn21qWTk5Ns3LiRnTt30tw8\nvce/233XjVgsRmJNgvzp/MJugzwNiTXetSKVgyFBy5IhYHkZeHiAjrs6yN6WvXxQOA3xZ+LsO+hd\nK1I5ON0gqeZFIhGGnhii8+VOok9F4QRwfvrF88AJiD4VpfPlTo4cLP9dK+nn03z89z/ODT9zA+/b\n/D6uvPFK3rf5fdzwMzfw8d//OOnn0/O/iVSHvJIgqS5EIhEGDwySy+Xo29PH4SeLVSDja+Jsa9tG\n72PhVIEsFArs/c297xSWuq34/BRTvH7ydab2TbH3L/bykw//pPUitOwYEiTVlVgsRv9X+hk7NUbb\n3jb237Of1nXh3LViYSk1OkOCpLqRfj5N+uj0gtS3Jtl47UZ2fmMnzaumF6R+JEVqc/nWoiymsNTg\ngcGy9S9VmyFBUt1IbS5vCLicC4Wlgq4gBFkLmW8XC0t5Z4WWCxcuSlIAC0tJhgRJCmRhKcmQIEmB\nLCwlGRIkKZCFpSQXLkoN7dLtqycmJmhpaXH7aiwsJQGsqPYAprUCo6Ojo1bpk6pkplqm/w6Lcrkc\nt3/mdvKfWPjixehTUYYfG/buBlXUzL9doA0YK+d7O90gNbhcLkdPTw9dXV0AdHV10dPTQy6Xq+7A\nqmymsBSnF9jAwlJahpxukBpUoVAgmUySyWTI59/5bTmbzZLNZjl48CCJRIKBgYGG3UXQwlJqdF5J\nkBpQoVBg69atHDp06KKAMFs+n+fQoUN0dHRQKBQqPMLaUO3CUlK1GRKkBpRMJjl+/PiCjs1msyST\nyZBHVLtmCksNPzZMd3M38Sfj8DjEn4zT3dzN8GPDDB4YNCBoWXK6QWow4+PjZDKZktpkMo293fCF\nmhEdsOHHN7DytZW0XNPCq6te5b7h+0j9Q+W2i5YqyZAgNZjdu3fPOcUwl3w+T19fH/39/SGNqrZV\nsmaEVEucbpAazMjI4rYNXmw7SfXLkCA1mKmpxW0bvNh2kuqXIUFqME1Ni9s2eLHtJNWvsEJCDHgE\nOA78EPh/wIOAP2WkKmtvb19Uuy1b3G5YajRhhYQPU9zy+R7gRuDXgV8GvhBSf5IWqLe3l2g0WlKb\naDTKrl27QhqRpFoVVkh4EugBvgHkgAPAHuAXQupP0gLFYjESiURJbRIJtxuWGlEl1ySsBr5fwf4k\nzWFgYIB4PL6gY+PxOPv2ud2w1IgqFRLiwK8Bf1Sh/iRdRiQSYWhoiM7OzjmnHqLRKJ2dnRw54nbD\n1ZLL5ei5t4fNd2wmsTXB5js203OvxbdUOaVupvQg0DvPMbdycanK64A/B/YDjbkTi1SDIpEIg4OD\n5HI5+vr6OHz4MNlslng8zrZt2+jt7XWKoUoKhQJ3Ju/k+N8f543WN+Dj77x29ORRHv/042z40Q0M\nDgw2bPEtVcaKEo+/dvpxORPAG9PfXwcMAsPA5y7TphUYveOOO1i9evVFL6RSKVIpdzqTwpBOp0mn\n0wBMTk4yMTFBS0sLzc3NgP/+qqFQKLD1rq0cv+34gipPDj0xZFBoILP/zc44e/YsTz/9NEAbF/+S\nvmSlhoRSfJBiQBgBPss7tdOCtAKjo6OjtLa2hjgkSaptd/7cnRy64dDlA8KM09D5cieDBwZDHpVq\n2djYGG1tbRBCSAhrTcIHgUMUryo8AESA6PRDkhRgfHyczJnMwgICwFrInMm4RkGhCSsk/BTFxYo/\nCZwEXpl+fC+k/iSp7u3es5v8jSUW39qUp29PX0gjUqMLKyT88fR7r5z+esWsP0uSAow8NwLrS2y0\nHkaetfiWwmHtBkmqEVNvL6KI1gqYOmfxLYXDkCBJNaJp5SLK25yHpissi6NwGBIkqUa039xeXMVV\nipOw5RaLbykchgRJqhG9D/QSfaHE4lvHouy63+JbCochQZJqRCwWI7EmAacX2OA0JNZYfEvhMSRI\nUg0ZeHiA+DPx+YPC9I6L+x6x+JbCY0iQpBoSiUQYemKITS9s4qqvXwUneGe/2vPACbjq61ex6YVN\nHDlo8S2Fq9QCT5KkkEUiEV4YfKFYfGtPHyN/OcLUuSmarmii/ZZ2ev8k3OJbuVyOvi/2MfLcCFNv\nT9G0son2m9vpfcCiX43GkCBJNSoWi9H/lcoVzy0UCiS3J8mcyRR3fryk+uTBzxwksSbBwMMDFpVq\nEIYESdLF1SdvDThgPeTX58mfztNxV4fVJxuEaxIkSSS3J+cvTw2wFrK3ZUluT1ZkXKouQ4IkNTir\nT2ouhgRJanBWn9RcDAmS1OCsPqm5GBIkqcFZfVJzMSRIUoOz+qTmYkiQpAZn9UnNxZAgSQ3O6pOa\niyFBkhqc1Sc1F0OCJMnqkwpkSJAkXag+2flyJ9GnooHVJ6NPRel8udPqkw3E2g2SJKAYFAYPDM5d\nffIxq0A2GkOCJOkila4+qdrldIMkSQpkSJAkSYEMCZIkKZAhQZIkBTIkSJKkQGHd3fB14BZgLfAD\n4BvAbwCnQupPUgNIp9Ok02kAJicnmZiYoKWlhebmZgBSqRSpVKqaQ5SWlbBCwl8B/4ViKFgP7AH+\nFLg9pP4kNYDZIWBsbIy2tjbS6TStra1VHpm0PIUVEh6a9f0J4LeBrwErgbdD6lOSJJVRJdYkrAE+\nAwxiQJAkqW6EGRJ+G/hH4FXgQ8AvhdiXJEkqs1JCwoPAuXkesycGfwf4KPAJ4A3g/wArljxiSQ0t\nl8vR09NDV1cXAF1dXfT09JDL5ao7MGkZKuVD+9rpx+VMUAwEl/ogxbUJHwOOBLzeCozecccdrF69\n+qIXXK0sCaBQKJBMJslkMuTz+Xe9Ho1GSSQSDAwMEIlEqjBCKXyz7/CZcfbsWZ5++mmANmCsnP1V\n6jf76ykGiJ8Ang54vRUYHR0ddZWypHcpFAps3bqV48ePz3tsPB5naGjIoKCGMXOnDyGEhDDWJGwB\nfo3iVEMLcCfwOPBdYDiE/iQtc8lkckEBASCbzZJMJkMekdQYwggJPwT+NcUNlDLAI8BzFK8ivBVC\nf5KWsfHxcTKZTEltMpmMaxSkMggjJBwF/iXwAeA9wAbgXuDdk4iSNI/du3cHrkG4nHw+T19fX0gj\nkhqHtRsk1bSRkZGKtpP0DkOCpJo2NTVV0XaS3mFIkFTTmpqaKtpO0jsMCZJqWnt7+6Labdmypcwj\nkRqPIUFSTevt7SUajZbUJhqNsmvXrpBGJDUOQ4KkmhaLxUgkEiW1SSQSxGKxcAYkNRBDgqSaNzAw\nQDweX9Cx8Xicffv2hTwiqTGsqvYAJGk+kUiEoaGhBdVu2LdvH2vXri1r/+l0mkceeYSXXnqJM2fO\n8Oabb3LllVeyZs0aNm7cyN13322NmSVIP58mfbRYj2DyrUkmXpug5ZoWmlc1A5D6SIrUZv/7VkOt\nVGW0doOkBcnlcvT19XH48GGy2SzxeJxt27bR29sbyhSDhaUqa+zUGG172xi9Z5TWdX4eLESYtRu8\nkiCprsRiMfr7+y/8YNy/f39ov1wspLBUPp8nn8/T0dFhYaklyOVy9H2xj8Njh+EMdP15F9tat9H7\nQDjhTwtjSJCkOSymsNTg4GDIo1peCoUCye1JMmcy5G/Mw08Xn8+SJXsyy8HPHCSxJsHAw16pqQYX\nLkpSAAtLha9QKLD1rq0cuuEQ+U/kYf0lB6yH/CfyHLrhEB13dVAoFKoyzkbmlQRJdSOdTpNOTy9w\nm5xk48aN7Ny5k+bm6QVuqVTZFhAupbBUf39/Wcaw3CW3Jzl+23GYb53pWsjeliW5PcngAa/UVJIh\nQVLdKGcImI+FpcI1Pj5O5kwGbl1gg7WQ+XbxSo1rFCrH6QZJCmBhqXDt3rO7uAahBPlNefr2WAK8\nkgwJkhTAwlLhGnlu5N1rEOazHkae9UpNJRkSJCmAhaXCNfX2Iq64rICpc16pqSRDgiQFsLBUuJpW\nLuKKy3lousIrNZVkSJCkABaWClf7ze1wssRGJ2HLLV6pqSRDgiTNwcJS4el9oJfoCyVeqTkWZdf9\nXqmpJEOCJM1hprBUZ2fnnFMP0WiUzs5Ojhw5UvbCUstZLBYjsSYBpxfY4DQk1nilptIMCZJ0GZFI\nhMHBQYaHh+nu7r5wZSEej9Pd3c3w8DCDg4MGhEUYeHiA+DPx+YPCaYg/E2ffI16pqTRDgiTNI51O\nc9999/Hqq6+yYcMGNm7cyIYNG3j11Ve57777LuwCqdJEIhGGnhii8+VOok9F4QRwfvrF88AJiD4V\npfPlTo4c9EpNNbjjoiTNo5I7PTaaSCTC4IHBYhXIPX0cfvIw2TNZ4mvibGvbRu9jVoGsJkOCJKnq\nYrEY/V/pZ+zUGG1729h/z35a14VTAlwL53SDJEkK5JUESVJVpZ9Pkz46Xd3zrUk2XruRnd/YSfOq\n6eqeH0mR2ux0TzUYEiRJVZXabAioVWFPN1wFfBs4B9wccl+SJKmMwg4JvwN8L+Q+JElSCMIMCT8D\nfBy4P8Q+JElSSMJakxAB9gKfAv4ppD4kSVKIwriSsAL4Y+APgbEQ3l+SJFVAKVcSHgR65zmmHegA\n3gf8t0teWzFfBzt27GD16tUXPedOZ5IkFaXT6XdtA3727NnQ+pv3g3uWa6cflzMBDAA/xzs7cAOs\nBN4Gvgp0B7RrBUZHR0dpbXWHLUmSFmpsbIy2tjaANsp8Bb+UKwnfn37M5z7gt2b9+YPAk0AX8M0S\n+pMkSVUUxsLFE5f8+YfTX7PAKyH0J0mSQlCpHRfPz3+IJGnG7LnnyclJJiYmaGlpobl5eqti12up\nAioREnIU1yRIkhZodgiYmXNOp9Ou21JFWQVSkiQFssCTJOkCpzk0myFBknSB0xyazekGSdJFcrkc\nPT09dHV1AdDV1UVPTw+5XK66A1PFGRIkqUZV+sO6UChw5513cvvtt/Poo4+SzWYByGazPProo9x+\n++3ceeedFAqFUPpX7XG6QZJqTKFQIJlMkslkyOfzF57PZrNks1kOHjxIIpFgYGCASCRStj63bt3K\n8ePH5zwmn8+Tz+fp6OhgaGiobH2rdhkSJKmGVOvDOplMXrbP2bLZLMlkksHBwSX3W03p59Okj04v\n0nxrkonXJmi5poXmVdOLND+SIrW5sRdpGhIkqYZU48N6fHycTCZTUptMJkMulyMWiy2pbyjeUfHI\nI4/w0ksvcebMGd58802uvPJK1qxZw8aNG7n77rtDuaMitfmdEDB2aoy2vW2kP52mdZ2LNGe4JkGS\nasRSPqyXYvfu3RdNayxEPp+nr69vSf1C8crJ3r17+c53vsOJEyd4/fXXmZqa4vXXX+fEiRN85zvf\nYe/eva6DqBJDgiTViGp9WI+MjFS03YyZqZVDhw7N+ffO5/McOnSIjo4Og0IVGBIkqUZU68N6amqq\nou1mLGZqRZVlSJCkGlGtD+umpqaKtoPqTa2oNIYESaoR1fiwBmhvb19Uuy1btiy6z2qug9DCGRIk\nqUZU48MaoLe3l2g0WlKbaDTKrl27Ft1ntaZWLnVhw6o7u+DL0HWnu0vOZkiQpBpRjQ9rgFgsRiKR\nKKlNIpFY0u2P1ZpamVEoFLjxxhtJJBLF3SVfzML3IfticXfJRCLBjTfe2PCLJQ0JklQjqvFhPWNg\nYIB4PL6gY+PxOPv27VtSf9WaWoF37qo4duwYb7zxRuAxb7zxBseOHWv4uyoMCZJUQyr9YT0jEokw\nNDREZ2fnnFczotEonZ2dHDlyhLVr1y6pv2pNrYB3VZTCkCBJNaTSH9aX9j04OMjw8DDd3d0Xwko8\nHqe7u5vh4WEGBwfL0me1pla8q6I0hgRJqjGV/LAOEovF6O/vZ//+/QDs37+f/v7+skxrzO6jGlMr\n3lVRGms3SFKNmvmwHhsbo62tjf3799PaGm5dgXQ6TTo9XfRocpKNGzeyc+dOmpunix6lUmWrozAw\nMEBHR8eFktSXU66plVq5q6JeGBIkSReUMwTMZ2ZqJags9oxoNEoikWDfvn1luXJS7bsq6o3TDZKk\nqolEItxzzz3cdNNNXH/99Vx99dU0NTVx9dVXc/3113PTTTdxzz33lG1qpZp3VdQjryRIkqqqklcv\n2tvbOXr0aMntynFXRT3ySoIkqWFU666KeuWVBEmqQZVcQNhIZu6qKOUOh3JtWFWPDAmSVIMMAeGp\nxl0V9crpBklSQ6nmhlX1JqyQkAPOXfL4Qkh9SZJUkkvvqnjPe98DV8B73vueUO6qqFdhTTecB3YB\n/33Wc6+H1JckSSWbPaUzdmqMtr1t/M09f0PrunA3rKonYa5J+EfgdIjvL0mSQhTmmoTfAF4FvgX8\nJtCYO1FIklSnwrqS8HvAKPAD4MeB/wp8CPh3IfUnSZLKrJQrCQ/y7sWIlz5mJnIeAp4GjgKPAL8M\n3A28vxyDliRJ4SvlSsKXgcfnOWZijue/Of31x4A5S2nt2LGD1atXX/Sc9wpLklQ0e5OtGWfPng2t\nv1JCwvenH4vxL6a/nrrcQQ899FDoZVAlSapXQb84z5QSD0MYaxJuA24HBoHXgHbgd4E/A06G0J8k\nSQpBGCFAOJCwAAAFRUlEQVThDaAL6AWuojgFsRf4nRD6kiRJIQkjJHyL4pUESZJUx6zdIEmSAhkS\nJElSIEOCJEkKZEiQJEmBDAmSJCmQIUGSJAUyJEiSpECGBEmSFMiQIEmSAhkSJElSIEOCJEkKZEiQ\nJEmBDAmSJCmQIUGSJAUyJEiSpECGBEmSFMiQIEmSAhkSJElSIEOCJEkKZEiQJEmBDAmSJCmQIUGS\nJAUyJEiSpECGBEmSFMiQIEmSAhkSJElSIEOCJEkKZEiQJEmBwgwJ/wr4JvBD4O+APwmxL2nB0ul0\ntYegBuG5pnoXVkj4NPA/gUeAm4GtwGMh9SWVxB/cqhTPNdW7VSG95+8B9wOPznr+uyH0JUmSQhLG\nlYRW4DrgPPAt4BXgCeCmEPqqukr/plDO/pbyXqW2LeX4hRw73zHL8Tc4z7XyH++5FqxRzzWeD6+v\nej3XwggJG6a/Pgj0AT8L/AA4BLw/hP6qqlH/MfmDu/I818p/vOdasEY91wwJ71bKdMODQO88x7Tz\nTvD4L8DXpr/vBk4C/wbYO1fjY8eOlTCc2nD27FnGxsbqsr+lvFepbUs5fiHHznfM5V6v9P+zcvFc\nK//xnmvBGvFcO/Z3x2ASjj13DE6Vv68wz7UwPztXlHDstdOPy5mguEjxL4GPAUdmvfYM8BfAroB2\n64AR4IMljEeSJBV9j+Iv6guMOAtTypWE708/5jMKvAEkeCckNAExiiEiyCmKf7l1JYxHkiQVnaLM\nASFMXwJOAD8FfBh4mOLgr6nmoCRJUvWtAr4I5IHXgCeBTVUdkSRJkiRJkiRJkiRJ0rv9CPB/Ke7g\neBT4teoOR8vY9RQ3/voO8Czwi1UdjZa7rwFngP9d7YFo2fpZIAO8BNxd5bGE5gqgefr79wDHgX9W\nveFoGYtSLEoGxXPsBMVzTgrDT1D8IW5IUBhWAS9S3F7gfRSDwppS3iDMUtHldA6YnP7+vcDUrD9L\n5ZQHnpv+/u8o/pZX0j8qqQR/DfxjtQehZWsLxauipyieZ08AnyjlDeolJEBxj4VngZcpVpn8h+oO\nRw3gVoq7kn6v2gORpEW4jot/fp2kxJ2N6ykkvAbcAnwIuBf4seoOR8vctcD/AO6p9kAkaZHOL/UN\nwgoJ24ADFBPMOeBTAcf8KjAO/BPwtxRrPcz49xQXKY5R3NJ5ttMUF5Z9tKwjVr0K41y7CvhT4AsU\na45IEN7PtSX/INeytdRz7hUuvnJwPTVyZfSnKZaJ/nmKf7FPXvL6L1Gs79BDcdvmL1GcPrh+jvdb\nC/zo9Pc/SnHO+MPlHbLqVLnPtRVAGvjPYQxWda3c59qMTly4qGBLPedWUVyseB3FuwRfAt4f+qhL\nFPQX+ybwB5c89wLF39yCtFJM4N+efnSXc4BaNspxrn0MeJvib3vfmn7cVMYxankox7kGxS3rTwOv\nU7yTpq1cA9Sys9hz7uco3uHwXWB7aKNbgkv/YldSvDvh0ssmD1GcRpAWy3NNleK5pkqryjlXjYWL\nHwBWAoVLnj9N8R51qVw811QpnmuqtIqcc/V0d4MkSaqgaoSEVynO+UYueT5CccMHqVw811Qpnmuq\ntIqcc9UICW8Co7x716efAo5UfjhaxjzXVCmea6q0uj7nrqa4j8FHKS622DH9/cxtGV0Ub9voBjZR\nvG3j75n/ViHpUp5rqhTPNVXasj3nOin+hc5RvBwy833/rGN+heIGEJPACBdvACEtVCeea6qMTjzX\nVFmdeM5JkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiTVgf8Ph9LAT8QX\nvogAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-6,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"green\")\n", + "errorbar(fqd, p2, yerr=p2e, fmt='o', ms=10, color=\"black\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 1.071e+02 1.046e+01 inf -- 5.152e+02 -- -0.660422 -1.28544 -2.47192 -2.81652 -3.57876 -3.74527 -4.32957 -6.63198 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1\n", + " 3 2.672e+01 1.099e+01 2.000e+00 -- 5.172e+02 -- -0.619685 -1.25308 -2.4665 -2.85762 -3.55873 -3.77022 -4.28599 -6.33198 0.133144 0.179124 0.1802 0.166312 0.0659412 0.140772 0.112456 -0.971453\n", + " 5 9.529e+00 1.283e+01 1.721e+00 -- 5.189e+02 -- -0.585859 -1.22408 -2.4589 -2.89696 -3.54076 -3.79301 -4.25035 -6.03198 0.157464 0.240277 0.249232 0.240742 0.0381923 0.179734 0.122603 1.62466\n", + " 7 2.140e+01 1.475e+01 1.536e+00 -- 5.204e+02 -- -0.557456 -1.19853 -2.45014 -2.93384 -3.52464 -3.81372 -4.22037 -6.12619 0.175865 0.28851 0.308387 0.323331 0.0151409 0.217034 0.131397 0.0766008\n", + " 9 4.054e+01 1.673e+01 1.375e+00 -- 5.218e+02 -- -0.53338 -1.17617 -2.44091 -2.96736 -3.51007 -3.8326 -4.19508 -5.82619 0.19012 0.327294 0.359004 0.414056 -0.00394175 0.251863 0.139262 -0.0873399\n", + " 11 1.539e+02 1.878e+01 1.257e+00 -- 5.231e+02 -- -0.512807 -1.15664 -2.43168 -2.9966 -3.49691 -3.84978 -4.17339 -5.52619 0.201361 0.359027 0.402429 0.511897 -0.0199226 0.284261 0.146507 0.000430987\n", + " 13 6.674e+00 2.124e+01 1.152e+00 -- 5.242e+02 -- -0.495111 -1.13956 -2.42273 -3.02071 -3.48496 -3.86545 -4.15466 -5.35324 0.210341 0.385373 0.439852 0.614993 -0.0333288 0.314186 0.153466 0.00706348\n", + " 15 3.252e+00 2.410e+01 1.060e+00 -- 5.253e+02 -- -0.479803 -1.1246 -2.41423 -3.03903 -3.47409 -3.87976 -4.13835 -5.24709 0.217599 0.407526 0.472271 0.72086 -0.0446408 0.341603 0.160157 0.0117776\n", + " 17 2.016e+00 2.719e+01 9.825e-01 -- 5.263e+02 -- -0.466499 -1.11148 -2.40628 -3.05126 -3.46421 -3.89282 -4.124 -5.17073 0.223523 0.426356 0.500528 0.826462 -0.0542649 0.366566 0.166562 0.0156079\n", + " 19 1.362e+00 3.054e+01 9.145e-01 -- 5.272e+02 -- -0.454889 -1.09993 -2.3989 -3.05757 -3.45521 -3.90473 -4.1113 -5.1118 0.228399 0.442508 0.525313 0.928622 -0.0625105 0.389157 0.172682 0.0187539\n", + " 21 9.515e-01 3.414e+01 8.538e-01 -- 5.280e+02 -- -0.444723 -1.08976 -2.3921 -3.05859 -3.44701 -3.9156 -4.09998 -5.06443 0.232442 0.456468 0.547196 1.02454 -0.0696201 0.409485 0.178522 0.0213081\n", + " 23 7.093e-01 3.801e+01 7.988e-01 -- 5.288e+02 -- -0.435796 -1.08077 -2.38588 -3.05525 -3.43953 -3.92551 -4.08984 -5.0253 0.235816 0.468611 0.566644 1.11219 -0.0757858 0.427675 0.18409 0.0233356\n", + " 25 5.803e-01 4.215e+01 7.484e-01 -- 5.296e+02 -- -0.427935 -1.07281 -2.38021 -3.04863 -3.43269 -3.93455 -4.0807 -4.99237 0.23865 0.479229 0.584038 1.19049 -0.0811613 0.443868 0.189393 0.0248916\n", + " 27 4.826e-01 4.655e+01 7.016e-01 -- 5.303e+02 -- -0.421 -1.06576 -2.37506 -3.03976 -3.42645 -3.94279 -4.07243 -4.96428 0.241046 0.488555 0.599693 1.25918 -0.085871 0.458207 0.194441 0.0260258\n", + " 29 4.068e-01 5.122e+01 6.579e-01 -- 5.309e+02 -- -0.414869 -1.0595 -2.3704 -3.02952 -3.42074 -3.95028 -4.06492 -4.94006 0.243083 0.496775 0.613868 1.31864 -0.0900155 0.470841 0.199241 0.0267841\n", + " 30 3.534e+01 8.279e+04 1.751e+01 -- 5.134e+02 -- -0.360586 -1.00374 -2.32839 -2.92007 -3.3685 -4.01834 -3.99643 -4.7296 0.260518 0.56944 0.742943 1.82845 -0.126634 0.581593 0.244852 0.0310258\n", + " 31 2.628e+00 5.230e+02 1.385e+01 -- 5.273e+02 -- -0.367347 -0.995704 -2.41817 -2.93715 -3.22222 -3.67509 -3.96857 -4.92098 0.252274 0.493499 0.92368 1.27613 -0.141219 0.150824 0.421865 -1.06553\n", + " 33 1.245e+00 1.834e+02 5.511e+00 -- 5.328e+02 -- -0.366953 -0.996565 -2.41698 -2.92546 -3.2361 -3.70408 -3.95122 -4.90366 0.254103 0.498794 0.945127 1.30107 -0.17833 0.138325 0.416295 -0.885392\n", + " 34 2.632e+00 2.549e+02 4.231e+00 -- 5.370e+02 -- -0.363913 -1.00399 -2.39017 -2.80507 -3.34439 -3.93632 -3.87676 -4.84813 0.268355 0.551262 1.00931 1.53983 -0.400317 0.167888 0.35166 0.103037\n", + " 35 2.312e-01 2.769e+01 1.185e+00 -- 5.382e+02 -- -0.36551 -1.00259 -2.35867 -2.82081 -3.32433 -3.99735 -3.92146 -5.15833 0.258537 0.557539 0.798409 1.50393 -0.115974 0.467843 0.342653 -0.168121\n", + " 36 1.282e-01 1.344e+01 1.168e-01 -- 5.383e+02 -- -0.365155 -1.00375 -2.35465 -2.81558 -3.34281 -3.98947 -3.93824 -5.07587 0.261859 0.557604 0.867168 1.51669 -0.142791 0.48333 0.289755 -0.174609\n", + " 37 2.322e-01 2.131e+00 2.015e-02 -- 5.383e+02 -- -0.365299 -1.00349 -2.35109 -2.82381 -3.34204 -3.98257 -3.95106 -5.06742 0.260301 0.559365 0.842097 1.51206 -0.130381 0.490731 0.287031 -0.152216\n", + " 38 6.590e-02 2.211e+00 4.939e-03 -- 5.383e+02 -- -0.365272 -1.00361 -2.3515 -2.82539 -3.34697 -3.98003 -3.95473 -5.01474 0.260526 0.558922 0.844539 1.51206 -0.138355 0.502691 0.282545 -0.116878\n", + " 39 5.891e-02 3.773e-01 1.420e-03 -- 5.383e+02 -- -0.365297 -1.00355 -2.3514 -2.82741 -3.34661 -3.9783 -3.95801 -4.99087 0.260204 0.559082 0.839989 1.51118 -0.135923 0.505973 0.282768 -0.109176\n", + " 40 2.572e-02 4.637e-01 4.968e-04 -- 5.383e+02 -- -0.365292 -1.00357 -2.35165 -2.82796 -3.34757 -3.97813 -3.95907 -4.96797 0.260227 0.558996 0.840181 1.51095 -0.137625 0.508445 0.282456 -0.102744\n", + " 41 1.649e-02 5.031e-02 1.977e-04 -- 5.383e+02 -- -0.365297 -1.00356 -2.35169 -2.8285 -3.34746 -3.97798 -3.95998 -4.95472 0.260155 0.559001 0.83919 1.51074 -0.137022 0.509266 0.282795 -0.100101\n", + " 42 9.246e-03 1.178e-01 8.567e-05 -- 5.383e+02 -- -0.365297 -1.00356 -2.35177 -2.82872 -3.34765 -3.9781 -3.96035 -4.94463 0.260153 0.558976 0.839165 1.51071 -0.137277 0.509832 0.282928 -0.0984504\n", + "********************\n", + "-0.365297 -1.00356 -2.35177 -2.82872 -3.34765 -3.9781 -3.96035 -4.94463 0.260153 0.558976 0.839165 1.51071 -0.137277 0.509832 0.282928 -0.0984504\n", + "0.0033599 0.00994879 0.12815 0.199699 0.0939759 0.373185 0.0923458 1.11837 0.0669538 0.104719 0.458098 0.560874 0.328106 0.903943 0.28723 1.91846\n", + "-0.117785 0.0115573 -0.00195453 -0.00472824 0.000416438 -0.000751097 -0.0358018 0.00519553 -0.00437069 -0.000802906 -0.00125322 -8.26251e-05 0.00185064 0.000334232 0.00218703 -0.00017406\n", + "********************\n" + ] + } + ], + "source": [ + "Cx = clag.clag('cxd10r', [[t1,t2]], [[l1,l2]], [[l1e,l2e]], dt, fqL, p1, p2)\n", + "p = np.concatenate( ((p1+p2)*0.5-0.3,p1*0+0.1) ) # a good starting point generally\n", + "p, pe = clag.optimize(Cx, p)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "ERROR:root:Line magic function `%autoreload` not found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 5.384e+02 5.381e+02 -3.653e-01 -3.636e-01 0.473 +++\n", + "+++ 5.384e+02 5.376e+02 -3.653e-01 -3.628e-01 1.49 +++\n", + "+++ 5.384e+02 5.379e+02 -3.653e-01 -3.632e-01 0.867 +++\n", + "+++ 5.384e+02 5.378e+02 -3.653e-01 -3.630e-01 1.14 +++\n", + "+++ 5.384e+02 5.379e+02 -3.653e-01 -3.631e-01 0.998 +++\n", + "\t### errors for param 1 ###\n", + "+++ 5.384e+02 5.382e+02 -1.004e+00 -9.986e-01 0.343 +++\n", + "+++ 5.384e+02 5.379e+02 -1.004e+00 -9.961e-01 0.962 +++\n", + "+++ 5.384e+02 5.376e+02 -1.004e+00 -9.949e-01 1.48 +++\n", + "+++ 5.384e+02 5.378e+02 -1.004e+00 -9.955e-01 1.2 +++\n", + "+++ 5.384e+02 5.378e+02 -1.004e+00 -9.958e-01 1.08 +++\n", + "+++ 5.384e+02 5.378e+02 -1.004e+00 -9.959e-01 1.02 +++\n", + "+++ 5.384e+02 5.379e+02 -1.004e+00 -9.960e-01 0.989 +++\n", + "+++ 5.384e+02 5.378e+02 -1.004e+00 -9.960e-01 1 +++\n", + "\t### errors for param 2 ###\n", + "+++ 5.384e+02 5.382e+02 -2.352e+00 -2.288e+00 0.363 +++\n", + "+++ 5.384e+02 5.378e+02 -2.352e+00 -2.256e+00 1.15 +++\n", + "+++ 5.384e+02 5.380e+02 -2.352e+00 -2.272e+00 0.665 +++\n", + "+++ 5.384e+02 5.379e+02 -2.352e+00 -2.264e+00 0.878 +++\n", + "+++ 5.384e+02 5.378e+02 -2.352e+00 -2.260e+00 1.01 +++\n", + "\t### errors for param 3 ###\n", + "+++ 5.384e+02 5.382e+02 -2.829e+00 -2.729e+00 0.379 +++\n", + "+++ 5.384e+02 5.378e+02 -2.829e+00 -2.679e+00 1.17 +++\n", + "+++ 5.384e+02 5.380e+02 -2.829e+00 -2.704e+00 0.689 +++\n", + "+++ 5.384e+02 5.379e+02 -2.829e+00 -2.692e+00 0.902 +++\n", + "+++ 5.384e+02 5.378e+02 -2.829e+00 -2.685e+00 1.03 +++\n", + "+++ 5.384e+02 5.379e+02 -2.829e+00 -2.688e+00 0.964 +++\n", + "+++ 5.384e+02 5.379e+02 -2.829e+00 -2.687e+00 0.996 +++\n", + "\t### errors for param 4 ###\n", + "+++ 5.384e+02 5.382e+02 -3.348e+00 -3.301e+00 0.337 +++\n", + "+++ 5.384e+02 5.379e+02 -3.348e+00 -3.277e+00 0.983 +++\n", + "+++ 5.384e+02 5.376e+02 -3.348e+00 -3.265e+00 1.56 +++\n", + "+++ 5.384e+02 5.377e+02 -3.348e+00 -3.271e+00 1.24 +++\n", + "+++ 5.384e+02 5.378e+02 -3.348e+00 -3.274e+00 1.11 +++\n", + "+++ 5.384e+02 5.378e+02 -3.348e+00 -3.276e+00 1.04 +++\n", + "+++ 5.384e+02 5.378e+02 -3.348e+00 -3.276e+00 1.01 +++\n", + "+++ 5.384e+02 5.379e+02 -3.348e+00 -3.277e+00 0.997 +++\n", + "\t### errors for param 5 ###\n", + "+++ 5.384e+02 5.381e+02 -3.978e+00 -3.792e+00 0.447 +++\n", + "+++ 5.384e+02 5.376e+02 -3.978e+00 -3.698e+00 1.41 +++\n", + "+++ 5.384e+02 5.379e+02 -3.978e+00 -3.745e+00 0.822 +++\n", + "+++ 5.384e+02 5.378e+02 -3.978e+00 -3.722e+00 1.08 +++\n", + "+++ 5.384e+02 5.379e+02 -3.978e+00 -3.733e+00 0.946 +++\n", + "+++ 5.384e+02 5.378e+02 -3.978e+00 -3.727e+00 1.01 +++\n", + "+++ 5.384e+02 5.379e+02 -3.978e+00 -3.730e+00 0.979 +++\n", + "+++ 5.384e+02 5.379e+02 -3.978e+00 -3.729e+00 0.996 +++\n", + "\t### errors for param 6 ###\n", + "+++ 5.384e+02 5.382e+02 -3.961e+00 -3.914e+00 0.206 +++\n", + "+++ 5.384e+02 5.381e+02 -3.961e+00 -3.891e+00 0.527 +++\n", + "+++ 5.384e+02 5.380e+02 -3.961e+00 -3.880e+00 0.771 +++\n", + "+++ 5.384e+02 5.379e+02 -3.961e+00 -3.874e+00 0.919 +++\n", + "+++ 5.384e+02 5.378e+02 -3.961e+00 -3.871e+00 1 +++\n", + "\t### errors for param 7 ###\n", + "+++ 5.384e+02 5.382e+02 -4.938e+00 -4.387e+00 0.366 +++\n", + "+++ 5.384e+02 5.370e+02 -4.938e+00 -4.112e+00 2.72 +++\n", + "+++ 5.384e+02 5.379e+02 -4.938e+00 -4.250e+00 0.924 +++\n", + "+++ 5.384e+02 5.376e+02 -4.938e+00 -4.181e+00 1.5 +++\n", + "+++ 5.384e+02 5.378e+02 -4.938e+00 -4.215e+00 1.17 +++\n", + "+++ 5.384e+02 5.378e+02 -4.938e+00 -4.232e+00 1.04 +++\n", + "+++ 5.384e+02 5.379e+02 -4.938e+00 -4.241e+00 0.98 +++\n", + "+++ 5.384e+02 5.378e+02 -4.938e+00 -4.237e+00 1.01 +++\n", + "\t### errors for param 8 ###\n", + "+++ 5.384e+02 5.379e+02 2.601e-01 3.271e-01 0.994 +++\n", + "\t### errors for param 9 ###\n", + "+++ 5.384e+02 5.382e+02 5.590e-01 6.113e-01 0.275 +++\n", + "+++ 5.384e+02 5.380e+02 5.590e-01 6.375e-01 0.603 +++\n", + "+++ 5.384e+02 5.379e+02 5.590e-01 6.506e-01 0.808 +++\n", + "+++ 5.384e+02 5.379e+02 5.590e-01 6.571e-01 0.921 +++\n", + "+++ 5.384e+02 5.379e+02 5.590e-01 6.604e-01 0.979 +++\n", + "+++ 5.384e+02 5.378e+02 5.590e-01 6.620e-01 1.01 +++\n", + "\t### errors for param 10 ###\n", + "+++ 5.384e+02 5.379e+02 8.389e-01 1.297e+00 0.964 +++\n", + "+++ 5.384e+02 5.374e+02 8.389e-01 1.526e+00 1.86 +++\n", + "+++ 5.384e+02 5.376e+02 8.389e-01 1.412e+00 1.4 +++\n", + "+++ 5.384e+02 5.378e+02 8.389e-01 1.354e+00 1.18 +++\n", + "+++ 5.384e+02 5.378e+02 8.389e-01 1.326e+00 1.07 +++\n", + "+++ 5.384e+02 5.378e+02 8.389e-01 1.311e+00 1.02 +++\n", + "+++ 5.384e+02 5.379e+02 8.389e-01 1.304e+00 0.991 +++\n", + "\t### errors for param 11 ###\n", + "+++ 5.384e+02 5.380e+02 1.511e+00 2.072e+00 0.717 +++\n", + "+++ 5.384e+02 5.377e+02 1.511e+00 2.352e+00 1.37 +++\n", + "+++ 5.384e+02 5.378e+02 1.511e+00 2.212e+00 1.04 +++\n", + "+++ 5.384e+02 5.379e+02 1.511e+00 2.142e+00 0.876 +++\n", + "+++ 5.384e+02 5.379e+02 1.511e+00 2.177e+00 0.957 +++\n", + "+++ 5.384e+02 5.379e+02 1.511e+00 2.195e+00 0.999 +++\n", + "\t### errors for param 12 ###\n", + "+++ 5.384e+02 5.380e+02 -1.371e-01 1.910e-01 0.629 +++\n", + "+++ 5.384e+02 5.377e+02 -1.371e-01 3.551e-01 1.31 +++\n", + "+++ 5.384e+02 5.379e+02 -1.371e-01 2.730e-01 0.947 +++\n", + "+++ 5.384e+02 5.378e+02 -1.371e-01 3.141e-01 1.13 +++\n", + "+++ 5.384e+02 5.378e+02 -1.371e-01 2.935e-01 1.03 +++\n", + "+++ 5.384e+02 5.379e+02 -1.371e-01 2.833e-01 0.991 +++\n", + "\t### errors for param 13 ###\n", + "+++ 5.384e+02 5.380e+02 5.100e-01 1.414e+00 0.77 +++\n", + "+++ 5.384e+02 5.378e+02 5.100e-01 1.866e+00 1.16 +++\n", + "+++ 5.384e+02 5.378e+02 5.100e-01 1.640e+00 1 +++\n", + "\t### errors for param 14 ###\n", + "+++ 5.384e+02 5.379e+02 2.831e-01 5.706e-01 0.999 +++\n", + "\t### errors for param 15 ###\n", + "********************\n", + "-0.365298 -1.00356 -2.3518 -2.8289 -3.34762 -3.97818 -3.96065 -4.9382 0.260133 0.55897 0.838914 1.51069 -0.137073 0.510048 0.283115 -0.0975401\n", + "0.00220546 0.00757768 0.0921231 0.142074 0.0708427 0.249334 0.0895957 0.701524 0.0669616 0.10308 0.465309 0.683925 0.420368 1.13017 0.287504 9.44994\n", + "********************\n" + ] + } + ], + "source": [ + "%autoreload\n", + "p, pe = clag.errors(Cx, p, pe)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "phi, phie = p[nfq:], pe[nfq:]\n", + "lag, lage = phi/(2*np.pi*fqd), phie/(2*np.pi*fqd) \n", + "cx, cxe = p[:nfq], pe[:nfq]" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 4.29089818, 3.08255955, 2.39741626, 2.78529154, -0.1630473 ,\n", + " 0.39141847, 0.14017202, -0.03115664])" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAFrCAYAAACE+GArAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAF5ZJREFUeJzt3XFsnOd9H/CvE8tWG69VmlSkncamzVamO3nLpMitxcCl\nMTcohs0ZsE0lgQwrtTVG283QNmw1Mpj1ZKwDhq1x/+g2aIPcosGO0ooNTbFpS/+Q4k1SNpX0uso1\n244SNdXW0VEWpY1TJUKs/XGkQ1GiyHt4dy/v+PkAhMj3nvfeH6VH5Pee9/e+lwAAAAAAAAAAAAAA\nAAAAAAAAAAAAAABAz3giyW8keSPJO0k+cYsxLyw8/vUkx5P8YKeKAwDW7z1tfO7vTPJqkp9Z+Pr6\nssd/NsmBhcf3JKkn+c0k97SxJgCgC72T5OklX9+R5FKSf7Bk211JvpLkUx2sCwBYh3auSNzOg0n6\nknx+ybZvJvlCkr2VVAQANK2qING/8Of8su1vLXkMANjg7qy6gFtY3kux6N6FDwCgOZcWPlquqiBR\nX/izb8nnt/p60b333Xffm2+++WbbCwOAHvRGGhc2tDxMVBUkzqcRGD6e5LcXtt2V5EdyYwPmonvf\nfPPNfPazn80jjzzSoRJb58CBA3nppZe68ljreb5m913r+LWMW23M7R7v5L9Xq5lrrR1vrq3MXGvt\n+HbOtddffz2f/OQnP5TGqn5XBYn3JfmBJV8/lOQjSb6c5GKSl5J8OskfJPk/C59/Lcm/W+kJH3nk\nkezatatd9bbNtm3bOlZ3q4+1nudrdt+1jl/LuNXG3O7xTv57tZq51trx5trKzLXWjm/3XGun97bx\nuYeTnEryTBp9Dz+28Pn7k/x6kpNJtib5uSTPJvlqkrEktzp/cW+SZ5555pnce293tkk8+uijXXus\n9Txfs/uudfxaxq02ZqXHa7VaxsbG1lTHRmSutXa8ubYyc62149s11y5dupRDhw4lyaG0YUXijlY/\nYZvsSjI1NTXVtemd7vH000/nc5/7XNVlsAmYa3TC9PR0du/enSS7k0y3+vmruvwTAOgBggQs081L\nzXQXc41eIEjAMn640ynmGr1AkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAA\nAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCg\nmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJ\nEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCAB\nABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBA\nMUECACgmSAAAxQQJAKCYIAEAFBMkAIBid1Z47BeSTCzbVk9yX+dLYTOq1Wqp1WpJkqtXr+bChQt5\n4IEHsnXr1iTJ2NhYxsbGqiwRYMOrMkgkydkkTy35+ltVFcLmszQoTE9PZ/fu3anVatm1a1fFlQF0\nj6qDxLeSvFVxDQBAoap7JH4gyRtJziWpJXmw2nIAgGZUGSS+mOSvJ/l4kp9M0p/kVJLvqbAmAKAJ\nVZ7a+C9LPn8tyekks0n+RpLPVFIRANCUqnsklvp6kt9J8v0rDThw4EC2bdt2wzad9QDQsPRqtEVX\nrlxp6zE3UpC4O8kPJnllpQEvvfSSjnoAWMGtXlwvXpXWLlX2SPzzJE+k0WD5Q0l+Lck9SX6lwpoA\ngCZUuSLxoTSu1Phgki+l0SPxw0kuVlgTANCEKlckxtIIE3cn+b4kfy3JTIX1sAnNzc1l//792bdv\nX5Jk37592b9/f+bm5qotDKBLbKQeCeiY+fn5jI6OZmZmJvV6/d3ts7OzmZ2dzbFjxzI0NJTJycn0\n9fVVWCnAxiZIsOnMz89n7969OXfu3Ipj6vV66vV6hoeHc/LkSWECYAVV39kSOm50dPS2IWKp2dnZ\njI6OtrkigO4lSLCpnD9/PjMzzbXizMzM6JkAWIEgwaby4osv3tATsRb1ej0HDx5sU0UA3U2QYFM5\nc+ZMR/cD6HWCBJvKtWvXOrofQK8TJNhUtmzZ0tH9AHqdIMGmsmfPnqL9HnvssRZXAtAbBAk2lYmJ\nifT39ze1T39/f55//vk2VQTQ3dyQik1lYGAgQ0NDTV25MTQ0lIGBgfYVRU9Y+vbNV69ezYULF/LA\nAw9k69atSW79rozQC+6ouoA12pVkampqytuIs27z8/MZHh7O7OzsqmMHBwdz6tSpbN++vQOV0SsW\n37bZzyw2giVvI747yXSrn9+pDTadvr6+nDx5MiMjIyue5ujv78/IyIgQAbAKQYJNqa+vL8ePH8/p\n06czPj6ewcHBJI0ViPHx8Zw+fTrHjx8XIgBWoUeCTW1gYCCHDx9+d+nv6NGjlqIBmiBIAD1F0yN0\nliAB3Fa3/WJeWs/iSlOtVrPSBG0iSAC35RczcDuaLYFVzc3NZf/+/dm3b1+SZN++fdm/f7+3Vwes\nSAArm5+fz+joaGZmZm64idfs7GxmZ2dz7NixDA0NZXJyMn19fRVWClRFkABuaX5+Pnv37s25c+dW\nHFOv11Ov1zM8PJyTJ08KE7AJObUB3NLo6OhtQ8RSs7OzGR0dbXNFwEYkSAA3OX/+fGZmZpraZ2Zm\nRs8EbEJObbBpLb+scceOHXnuuec27GWNnfTiiy829cZmSeM0x8GDB3P48OE2VbXxzc3N5eDBg3nl\nlVeSNJpSn3jiiUxMTHjjN3qWIMGmtZmDwmrOnDnT0f26naZUNjNBArjJtWvXOrpfN9OUymanRwK4\nyZYtWzq6XzfTlMpmZ0UCuMmePXty9uzZpvd77LHH2lDNxrWeplQ9E92h224RXwVBArjJxMREjh07\n1lTDZX9/f55//vk2VrXxaErtfW4RvzqnNoCbDAwMZGhoqKl9hoaGNsyr7E7d0ltTKliRAFYwOTmZ\n4eHhzM7Orjp2cHAwR44c6UBVt9fpqyc0pYIVCWAFfX19OXnyZEZGRtLf33/LMf39/RkZGcmpU6ey\nffv2Dld4o8WrJ06cOLHi6YZ6vZ4TJ05keHg48/Pz6z6mplQQJIDb6Ovry/Hjx3P69OmMj49ncHAw\nSWMFYnx8PKdPn87x48crDxFJNVdP7Nmzp2i/zdaUSm8TJIBVDQwM5PDhwzl69GiS5OjRozl8+PCG\n6Ymo6pbeExMTK67WrGQzNqXS2/RIALfVDbcSr+rqicWm1GaOvZGaUqEVBAngtjZCUFhNlVdPdGNT\nKrSSUxtA16vy6olua0qFVhMkgK5X9dUT3dSUCq3m1AbQ9TbKLb0Xm1IX74B49OhRd0Ck51mRALqe\nqyegOoIE0PW6/Zbe0M0ECaAnTE5OvtubsBpXT0DrCBJAT3D1BFRDkAB6hqsnoPNctQH0HFdPQOdY\nkQAAigkSAEAxQQIAKCZIAADFNFsCtEA3vN06tIMgAdACggKblVMbAEAxQQIAKObUBgBNWd4PcuHC\nhTzwwAP6QTYpQQKApiwNCot3D63Vau4eukk5tQEAFLMiAfQUl2FCZwkSQE8RFKCznNoAAIoJEgBA\nMUECgKbNzc1l//792bdvX5Jk37592b9/f+bm5qotjI7TIwHAms3Pz2d0dDQzMzOp1+vvbp+dnc3s\n7GyOHTuWoaGhTE5Opq+vr8JK6RRBAoA1mZ+fz969e3Pu3LkVx9Tr9dTr9QwPD+fkyZPCxCbg1AYA\nazI6OnrbELHU7OxsRkdH21wRG4EgAcCqzp8/n5mZmab2mZmZaWnPxGJfxqOPPpqhoaE8+uij+jI2\nAKc2AFjViy++eENPxFrU6/UcPHgwhw8fXtexV+rLSJKzZ8/qy6iYFQkAVnXmzJmO7rdosS/jxIkT\nKwaZer2eEydOZHh4OPPz8+s63q24QuX2NkKQ+Okk55P8SZLfSvKxassBYLlr1651dL9FVfZlzM/P\n58knn8zjjz+el19+ObOzs+8e5+WXX87jjz+eJ598si3hpZtUHSR+PMlnkryY5CNJ/luSY0k+XGVR\nAN2gVqvlqaeeyv3335977rknd911V+65557cf//9eeqpp959z5FW2LJlS0f3S6rty9gIKyHdouog\n8feS/Nskh5P8XpK/m+Rikp+qsiiAjW5+fj6HDh3Ka6+9losXL+btt9/OtWvX8vbbb+fixYt57bXX\ncujQoZb9gtuzZ0/Rfo899ljxMdfTl7FerlBZuyqDxF1JdiX5/LLtn0+yt/PlAHSHKl4tT0xMpL+/\nv6l9+vv78/zzzxcfs6q+jI1whUo3qTJIfDDJe5Msn+FvJWlutgJsIlW8Wh4YGMjQ0FBT+wwNDWVg\nYKD4mFX1ZVS5EtKNqj61AUATqny1PDk5mcHBwTWNHRwczJEjR9Z1vCr6MpLqVkK6VZX3kbic5FtJ\nll/025fk0q12OHDgQLZt23bDtrGxsYyNjbWlQICNpsr7OfT19eXkyZMr3tMhaZzOGBoaypEjR7J9\n+/Z1HW/Pnj05e/Zs0/utpy8jqW4lpBVqtdpNTbZXrlypqJrO+GKSX1q27XeT/JNl23YluT41NXUd\nYDPbuXPn9SRNf+zcubOldZw/f/76+Pj49cHBwetJrg8ODl4fHx+/fv78+ZYeo7+/v6nvs7+/f901\nbJS/41aZmpparHHXun5jr6DqO1v+QpJfTeP+EV9M8qkk35fkX1dZFMBGtVFeLQ8MDOTw4cOZnp7O\n7t27c/To0eza1drfU4t9Gc2swKy3LyOpbiWkW1XdI3E0yYEkE0leTeNmVH8hjUtAAVimqr6BqnS6\nLyOp5gqVblZ1kEiSf5XkwSRbk+xJ8t+rLQdg46rifg5VWuzLGBkZWfGXe39/f0ZGRnLq1Kl192Uk\n1Vyh0s02QpAAYI0246vlvr6+HD9+PKdPn874+Hh27tyZhx9+ODt37sz4+HhOnz6d48ePtyRELKpi\nJaRbVd0jAUATquob2AgW+zI6odNXqHQzQQKgy0xOTmZ4ePjdN5G6nXa8Wl56ieHVq1ezY8eOPPfc\nc9m6dWuS3rksf3ElZG5uLgcPHswrr7yS2dnZDA4O5oknnsjExERPBLT1uqPqAtZoV5KpqamplncF\nA3Sj+fl5r5Y7bPEKlW77XbRYd5LdSaZb/fx6JAC60PK+gcXz+YODg23rG4BbESQAulStVsuzzz6b\ny5cv56GHHsqOHTvy0EMP5fLly3n22Wdb+jbisBI9EgBdqld6EehuViQAgGKCBABQTJAAAIoJEgBA\nMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQT\nJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUEC\nACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACK3Vl1AQCwUdVqtdRqtSTJ1atXs2PHjjz33HPZ\nunVrkmRsbCxjY2NVllg5QQIAViAorM6pDQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZI\nAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQA\nUEyQAACKCRIAQDFBAgAoVmWQmEvyzrKPn6+wHgCgSXdWeOzrSZ5P8m+WbHu7oloAgAJVBokk+VqS\ntyquAQAoVHWPxM8muZzk1SSfTrKl2nIAgGZUuSLxi0mmknwlyQ8l+adJHkzykxXWBAA0odVB4oUk\nE6uM+WiS6SQvLdl2No1A8WtJ/uHC5zc5cOBAtm3bdsO2sbGxjI2NFZYLAL2jVqulVqvdsO3KlStt\nPeYdLX6+Dyx83M6FJN+4xfYPJbmYxurEmWWP7UoyNTU1lV27dq27SADYLKanp7N79+4k2Z3GC/mW\navWKxJcXPkr8uYU/L7WoFgCgzarqkfjhJI8nOZ7kq0n2JPmFJL+e5A8rqgkAaFJVQeIbSfal0U9x\ndxqnOw4l+WcV1QMAFKgqSLyaxooEANDFqr6PBADQxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIA\nQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAU\nEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFB\nAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQA\ngGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAo\nJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoFi7gsQ/SnIqydeT\nfGWFMfcn+Y0kX0vypSS/mGRLm+qBNavValWXwCZhrtEL2hUktiQ5kuRfrvD4e5P8pyTfkWQ4yWiS\nv5LkX7SpHlgzP9zpFHONXnBnm573hYU/f2KFxz+e5JEkP5qkvrDt7yf55SSfTmOVAgDY4KrqkXg8\nye/k2yEiST6f5O4kuyupqI06+aqj1cdaz/M1u+9ax69l3GpjevWVoLnW2vHm2srMtdaO7+a5VlWQ\n6E8yv2zbV5J8c+GxnuI/XGvHd/N/uHYz11o73lxbmbnW2vHdPNeaObXxQpKJVcZ8NMn0Gp/vjiaO\nnSR5/fXXm91lQ7hy5Uqmp9f617KxjrWe52t237WOX8u41cbc7vFO/nu1mrnW2vHm2srMtdaOb+dc\na/fvzmZ+mX9g4eN2LiT5xpKvfyLJZ5K8f9m4f5zkE0k+smTb+5N8OcmTSb6wbPy9Sc4k+VAT9QIA\nDW8k2ZPkUqufuJkViS8vfLTC6TQuEe3Lt09xfDyNEDJ1i/GX0vgLuLdFxweAzeRS2hAi2un+NFYb\nJpL8UZI/u/D1+xYef0+S/53kNxe2//kk/zeNe0kAAJvcLyd5Z+HjW0v+fGLJmA+ncUOqt5NcTvJS\n3JAKAAAAAAAAAGA1fyrJ/0zyapKzSf52teXQwz6c5ESS15L8dpK/Wmk19Lr/mOT/Jfn3VRdCz/qL\nSWaS/H6Sv1lxLZV6T5KtC59/R5JzSb63unLoYf1J/szC59+b5GIacw7a4UfS+EEvSNAOdyb5vTRu\nr3BPGmHie5p5gqpukd0O7yS5uvD5dya5tuRraKV6GpcvJ8mX0ni12NR/PGjCF+KNDGmfx9JYXb2U\nxjz7z2nc12nNeilIJMl3p7HUvHhPij+uthw2gY+mcYfYN6ouBKDAfbnx59cfpsm7SPdakPhqGje/\nejDJzyT5/mrLocd9IMmvJPlU1YUAFLq+3ieoMkg8kcYNqd5I47TEJ24x5qeTnE/yJ0l+K8nHljz2\nd9JorJzOzTeyeiuNZriPBNoz1+5O8h+S/HySL7alarpRu36urfuHPT1rvXPuzdy4AvHhdNEK648l\nOZjkL6fxzT+97PEfT+O9N/YneTiNN//64zS+yVvZnuS7Fj7/rjTOYT/c2pLpUq2ea3ckqSX5uXYU\nS1dr9VxbNBLNltzaeufcnWk0WN6XxtWPv5+b32izK9zqm/8fSX5p2bbfTeMV4K3sSiPJ/6+Fj/FW\nFkjPaMVc+1gat3yfTmPOvZrkT7ewRnpDK+ZakvzXNFZZ307jCqHdrSqQnlM65/5SGldu/EGSv9W2\n6tps+Td/VxpXXSxfonkpjVMWUMpco1PMNTqtkjm3UZstP5jkvfn2W4wveiuNa/ihVcw1OsVco9M6\nMuc2apAAALrARg0Sl9M4B923bHtfGjfNgFYx1+gUc41O68ic26hB4ptJpnLz3bV+NMmpzpdDDzPX\n6BRzjU7r+Tn3vjTu8/CRNBpEDix8vnhJyr40LlkZT/JIGpes/FFWv0wKljPX6BRzjU7b1HNuJI1v\n+p00ll4WPz+8ZMxPpXETjatJzuTGm2jAWo3EXKMzRmKu0VkjMecAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAYIP6/8Ck6KtaBWujAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "\n", + "xscale('log'); ylim(-10,10)\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=10,color=\"black\")\n", + "\n", + "lag" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGYCAYAAACQz+KaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XecHHX9+PHXpZADQhJCDQESAoTe7pD+hQQQkCZoLKcI\nIT9QFJBgjOYrIEVQJAajCIjg0Tn4RqqGGkBAREpOmkQpCaEEQgmhh7T7/fGZdfcuu3e7N3M3u7ev\n5+Mxj9mdnfK+mdvd937mU0CSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS1LPsAdwOLAA+\nAZ4HTk01IkmSqlSftANIwTeAq4AbgG8BHwGbAEPSDEqSJFWHoYTk43dpByJJkqrT6cByYIO0A5Ek\nSUGvtAPoZnsC7wJbAk8CS4D5wMXAainGJUmSqsS/CRVW3wd+TEhOfgh8DDyUYlySJFWtaqvA2guo\nBc4AzouWPQgsBqYCewP3tdlmCFZulSSpM96IpnZVWzLyLqHlzF1tlt8ZzXegdTIyZL311ps3b968\n7ohNkqSeZhawDx0kJNWWjDwJ7NzO6y1tng+ZN28e11xzDVtssUVRBxg/fjxTp07tbHxVqRLPWdox\nd/Xxk95/Uvvr7H46s12p26T9P1GJKvGcpR1zJb33Z82axRFHHLEF4e6CyUiOG4HvAAcCT+UsPyia\nP5pvoy222IK6urqiDjBo0KCi11VQiecs7Zi7+vhJ7z+p/XV2P53ZrtRt0v6fqESVeM7SjrnS3vvF\nqrZkZAbwF+CnhPojjwI7Rs//DDycXmjVq6GhIe0QSpZ2zF19/KT3n9T+OrufzmyX9jWuBpV4jtOO\nudLe+8WqSeWo6aol9DfyDULR0evAtcCZhKa+ueqAmTNnziw6Uzz00EO57bbbkotWUkXwvS+11tzc\nTH19PUA90NzeutVWMgKwCPjfaJIkSSmrtk7PulzaRXiS0uF7X+o8k5GE+YEkVSff+1LnmYxIkqRU\nmYxIkqRUmYxIkqRUmYxIkqRUmYxIkqRUmYxIkqRUmYxIkqRUmYxIkqRUmYxIkqRUmYxIkqRUmYxI\nkqRUVeOovbE0NTXR1NQEwKJFi5g7dy7Dhg2jtrYWCONTOEaFJEnFMxkpUW6y0dzcTH19PU1NTdTV\n1aUcmSRJlcnbNJIkKVUmI5IkKVUmI5IkKVUmI5IkKVUmI5IkKVUmI5IkKVUmI5IkKVUmI5IkKVUm\nI5IkKVUmI5IkKVUmI5IkKVUmI5IkKVUmI5IkKVUmI5IkKVUmI5IkKVUmI5IkKVUmI5IkKVUmI5Ik\nKVUmI5IkKVUmI5IkKVUmI5IkKVUmI5IkKVUmI5IkKVUmI5IkKVUmI5IkKVV9EtjHqsDuwM7AOsBa\nwEBgIfA28CbwKPB34JMEjidJknqQziYjawFHAF8F6qL91HSwzRJgJvB/wLWEREWSJFW5Um/TbAw0\nAq8AUwilIX1pnYh8BMwDPm6zbV9gF+B8YC7wx2h/kiSpihVbMrIGcDbw/3K2+Qy4D/gH4TbMU8AC\nQglIRl9gTWB7YCdC8rI3UAscTShdaQROibaVJElVptiSkeeB7xASkQeAYwn1Qw4CfgbcDcyndSJC\n9PwN4A7gTODAaLtvR/vpG+33+Th/RBoaGxsZM2YMAGPGjKGxsTHliCRJqkzFJiOrA9OBzwGjCbdY\nPujkMd8HLov287lov4M7ua9UNDY2MnHiRObMmQPAnDlzmDhxogmJJEmdUGwyshNwCKECapJmRvvd\nKeH9dqkpU6awYEHru0oLFixgypQpKUUkSVLlKjYZeaJLo+j6/Sdq6dKlJS2XJEmF2elZJ/Tpk7/e\nb6HlkiSpsGpPRo4BlgMflrLRhAkTGDy4dTWXwYMHM2HChARDkySpOsRNRlYCtoym2jyvr0zoV+Q1\n4FPgOeDEmMdMylDgV4Q+UVpK2XDcuHFMnjyZESNGADBixAgmT57MuHHjko9SkqQeLu59hcOA6wm9\nqW6Q5/WbgP1znm8O/AbYFPh+zGPH9XvgfkK39WNK3XjcuHFsv/321NfXM23aNOrq6hIPUJKkahC3\nZCSTaNwMLG7z2kE5r78G3EIohQA4Htg15rHjOAL4nyiOjrqxlyRJXShuMlIfzR/M89rR0fx5YCvg\nS9H834QE4JiYx+6sdYCpwCSyyZEkSUpJ3Ns0axPqW7zUZnkv4PPR49+RrSD6fvT8d8BuMY/dWRcS\n6q78PqXjSyoDTU1NNDU1AbBo0SLmzp3LsGHDqK0N1d8aGhpoaGhIM0SpasRNRtaM5ovaLN8eWI2Q\nqExv89qz0TxfHZOuNgY4GNguhWNLKiO5yUZzczP19fU0NTVZ/0tKQdxkZDGhxcyabZbvGc1fA+a0\neS1TStI75rFL1Z9QIvNbwjg6g6LlK0XzgcBSVhxtmPHjxzNo0KBWyxoaGthss826LFhJkipFbklj\nxsKFC4vePm4y8jKhWe8uwL05yw+J5g/l2SbTQcfbMY9dqjUJt5V+GE1tvUeoZPulti9MnTo176+l\n5ubmhEOUJKny5LutmSlxLEbcZOR+QjJyAqFFzXPAocCo6PXb82yzVTR/I+axS/UGYXC+3D5FaggV\nWfcCDgDe6eaYJEmqenGTkQuAbxNaqDxDKF3IlHy8DtyYZ5v9ovkzMY9dqs+AB/IsPxpYRv4WQe26\n4IL1gLc57LD+DBkCq68OgwcXN1955Zh/jSRJPUTcZOR5Qp8dlwOrkE1EFgINhAQg17pkk5H7Yh47\nKS2U2ANrxm67fcAVV1zO6NHj6du3lvfegzfegOeegwUL4L334KOP8m9bW1ta8pKZDxoEDoEjSepJ\nkvham0YoVTiIkGzMA24DFuRZd1vgOsKXf75bOGk4mmyfKCWpr/8IOJeTTvoKdXXr5F1n8WJYuDCb\nnLQ3f+GF1s+XLMl/3AEDSk9iBg+G/v2hxi7eJEllJqnf2POBxiLWuzuaqsZKK8Haa4epFC0t8Mkn\nxSUx770Hc+Zkn7//fti+rT59QmLSmRKZfv2SOR+SJLVlgX+ZqqmBVVcN0wYl9siybFlISIpJYl59\nFZ5+Ovv8k0/y73OVVTqXxAwcCL27uxG3JKmixE1G/k0oEbmSUDqiMtC7d0gGBg+GjTcubdvPPisu\niVmwAGbNav182bIV91dTExKSztxWWmUVbyuVK3svlZSkuMnISOBc4GzgDkJi8hdC6xRVoH79YN11\nw1SKlpZQWbeYJObdd0P9mMzzDz7Iv8++fTuXxKy+ethWXcfeSyUlKW4y8k9gh2g/h0TTfOAa4I+E\nkhNVgZoaWG21MA0bVtq2S5eGSr7F1o1pbs4+X9R2IIJI//6dS2IGDIBecYePlCSVJG4yUk9oIXM0\noYnvGoQ+RyYAPwAeJZSWXA8UaOSqatenD6y5ZphK9emnISkpJpF57bXWz5cvX3F/vXrBKqt8RkvL\nu/Tt+xG9e7/PkiWvseGGzzN06JOstNLH3oKQpIQlUYH1aeBk4EeEkpGjCb2Z9iZ0E78L8GvgT4TE\nJF8X8VKnrLxymNZbr7Ttli+HDz8slLz047331mPBApgz5z3uvbcXzz57OP/+N+y1V7jN9OqrpVcs\nliTll2RrmiXATdG0LnAkITHZDFgVOCqaXiRb6bW7u4SXgFACMnBgmIYPL7xec/Mc6ut35I47nmbO\nnG245RY4+WQ48UTYcUc47LAwbbmllW0lqbO66u74m8B5wBbAbsBlZEfr3QT4OTCXUNn1cLp/BF+p\nJGuvvYTvfhfuugvefhuuuw5GjIBzz4Wtt4aRI2HiRHj44fytiiRJhXVHVb1/EMav+SYhScnoAxxI\nGL9mLuFWj/2eqOwNGgQNDXDDDSExmT4dRo+Gq66CPfYIt4yOPRZuv71wBVtJUlZXJyPDgNOBl4Bb\nCbdvAJYCdwKvRs/XA6YQKryu3sUxSYmprYUDD4Q//AHmzQslI0ceCfffDwcdBGutBV/9aihJWbgw\n7WglqTx1RTKyMqFlzb2EJOR0YCOgBngBmASsTygV2QjYH5gRbbsDcEYXxCR1ud69YbfdYPLk0I/K\ns8/CpEmhOfI3vxkSk/32g4sugtdfTztaSSofSSYjuwJ/IFRKvQoYHe1/EXAtMIpQmfU84K1om+XA\nPYSRfC+Ilh2SYExSKmpqYKut4JRT4PHH4ZVXYOrU0DncSSfB+uvDzjvDL34RerLNN5aQJFWLuMnI\nesCPgVnAw8AxwIDotaeAE4EhwLcII/u258poboNJ9TgbbADHHw/33ANvvQVXXx2WnXNOaImz+ebw\n4x/DI4/k7/9EknqyuBVGX6F1QvMh0ERoPfNEifvKdApuyxr1aKuvDkccEaZPP4V774VbboHLL4fz\nzgtd8X/xi6HJ8OjRjpgsqeeLm4xkEpFHgEuB/wMKjPvaoTeBcYAF1qoaK68MBx8cpmXLQsnILbfA\nzTfDJZeE7vUPPDAkJl/4QugXRZJ6mrjJyFRCEjIrgVg+Aq5IYD9SRerdOzQN3mOPUAn22WdDYnLL\nLaEpcd++sPfecPjhcOihMGRI2hFLUjLi1hn5AckkIpJy1NTANtvAaafBzJnw8sswZQosXhzqnqy3\nHuy6K/zyl/Cf/6QdrSTF4/ikUgUYNix0QX/ffTB/Plx5ZSgZOfPMUPl1iy3gf/8XHnvMCrCSKo/J\nSImampo49NBDOfTQQ5k0aRIjR45k0qRJ/13W1NSUdohKSGNjI2PGjAFgzJgxNDY2phxRsMYaoWO1\nm26Cd96BW28NpSSXXhqaC2+wAXzve3D33aEkRZLKXZLdr+8NHAZsC6xJ6Pyso6HDRiR4/G7h8PHV\nobGxkYkTJ7JgwQIA5syZw8SJEwEYN25cmqG1ssoqof7IoYfC0qXw97+Hyq+33AIXXwwDBoSeYDMV\nYFdbLe2IJWlFSSQj6wDXA3slsC+pLEyZMuW/iUjGggULmDJlSlklI7n69IE99wzT+efD009nK8A2\nNcFKK8G++4bE5NBDYZ110o5YkoK4t2n6AreTTUSejJ5nXA1MJ/TKmtFM6KH1SqQytXTp0pKWl5ua\nGthuOzj9dPjnP0OX9OedB598AscdF+qb7L57tut6SUpT3GRkLGE8GQh9hNQRxp6B0F/IUYTu3dcH\nDickJVsAfwaOjnlsqcv06ZO/0LDQ8nI3fHjohv7++0MF2MbGMFbOT38KI0fC1lvDqafCE0/YNb2k\n7hc3GflyNL+T9vsIaSGM2rsnsIRQKjIy5rGlLjNhwgQGDx7catngwYOZMGFCShElZ801YezYcPvm\nnXdCHZMddwx1TD73OdhwQzjhBJgxA5YsSTtaSdUg7s+87aP5NQVer6F1j6ovETpK+ylwEnB8zONL\nXSJTL+Scc85h9uzZjBgxglNOOaVs64t01qqrhjokhx0WKsA+9FC2nsmFF8KgQaEC7OGHw/77Q//+\naUcsKUlNTU3/bQW6aNEi5s6dy7Bhw6itrQW6r9FG3GRkMCHZmJ2zLLcx4SrAx222uY+QjOwb89hS\nlxo3bhzbb7899fX1TJs2jbq6urRD6lJ9+oSxcEaPDiMMP/lkNjG59towRs7nPx8Sl0MOgbXXTjti\nSXHlJhvNzc3U19fT1NTU7Z93cZORxYQmvLkJyAc5j4cCz7fZZlHOa5LKUE0N7LBDmM48E2bPDv2Z\n3HwzfPvboV7J7ruHxGSTTVZKO1xJFS5unZFXCLdichsJzieMM1MD7Jxnmy2judXkpAoxYgScfDI8\n+CC88QZcdlkYffiUU+Cww7YGHuGFF2rTDrNTyrVzO6maxE1GmqP5DjnLWoAHo8fjgdwB0AcBP4oe\nO6aNVIHWXhvGjYPbbgsVYM87bzbQn299a3POP7+yuqPPdG43Z84cINu5nQmJ1L3iJiP3RvOD2yy/\nOJrvADwDTAYuih5vHr12VcxjS0pZ//6wzz4LgR35ylfeZsKEUK/k1VfTjqw47XVuJ6n7xE1GbiHc\nqlkf2Dhn+XQg89NiE2ACcBzZeiJ3k01YJFW8z5gw4XXuuSeMIrzttnD99WnH1LFK79xO6iniJiPv\nAcOBDQnNdnMdG02PEVrUfEYoGZlIKElZFvPYksrMvvuGbuj33x8aGuCb34SFC9OOqrCe1rmdVKm6\nctTeFuCPwC7AaoRWN9sBUwB/dkg91ODBYSyca66B6dNDKcn996cdVX49uXM7qZJ0ZTIiqUrV1IRS\nkaefho03hn32gR/+ED77LO3IWhs3bhyTJ09mxIgwgPiIESOYPHlyj+vcTip3JiOSusyGG8K994ZB\n+i64IHQ3/8wzaUfV2rhx45g2bRoA06ZNMxGRUmAyIqlL9eoVSkUefzx0lrbjjjBlSmU1AZbUtYqt\npTWHrumkbEQX7FNSGdp225CQnHJKSE6mT4crr4QNNkg7MklpKzYZGdalUUiqCrW1oVTkoIPgqKNg\nm23goovgG99IOzJJaSo2Gemog7LtoglgIfBP4K3o+TqE0X0HRc+fAp4sIUZJPczee4fKrccfHyq6\n/vnPISlZffW0I5OUhmKTkbHtvHY00AC8Rujc7GZWbLrbBzgc+BVhbJoLyHaKJpWVtkNqjxw5kkmT\nJnX7kNqVoLGxkbPPPhsI47qceuqpRVcAXX11uO66MALwd78bbuNceWVIVCRVl7g9++wIXAK8Q+hP\nZF6B9ZYC04C/ATMJva8+Azwe8/hS4kw2ipMZ1yXTnXpmXBegpBYpDQ2wxx7hts0++4QB+X7+83BL\nR1J1iNua5mRCQvNzCiciud6I1u0L/CDmsSWlKMlxXTbYAGbMCPVJLrwwNAF+6qmkIpVU7uImI3sS\nWtn8o4RtHo3mu8c8tqQUJT2uS69e8IMfwBNPhE7TdtoJJk+GZQ4cIfV4cZORtaJ5vxK2WanNtpIq\nUFeN67LNNqEJ8Pe/Dz/+cbh1M3durF1KKnNxk5G3gRrgwBK2yaz7TsxjS0pRV47r0q9fKBW57z6Y\nPTtUbr3mmtBpmqSeJ24ycl80PxnYo4j1d4/Wzd1WUgXqjnFdRo0KTYAPOQS+9S34+tehTTUVST1A\n3GTkl8ASoBaYAfyG0KdITc46NcAOwFRCAlILLAbOjXlsSSnrjnFdBg0KpSLXXw933x1KSWbMSPww\nklIUNxl5DjgKWEaoC3IioenuJ8DrhL5HPgGeAL5PaEWzlNBvyayYx5ZURb72tTDI3mabwec/D+PH\nw6efph2VpCQkMVDe9YRbNM3R8xpChdYhwHrR40xJSXO07vUJHLcz9gGuBJ4HPiYkS7cAdSnFI6kE\n668P99wD558Pv/99GHTvSftzlipeUqP2PkroAG0X4FTgBuDuaLoeOAXYOVrnsYSO2RnfATYEfg18\nATgJWJvQNHl0inFJKlKvXqFjtCeegD59QhPg886zCbBUyeL2wNrWY6SbbHTkBLJj5mTcCbwI/AS4\nv9sjktQpW28Njz0Gp50GkyaFUYCvugqGOaynVHGSKhmpFG0TEQi3a2YB63dzLJJi6tcvlIrcfz+8\n/HKo3Hr11TYBlipNtSUj+Qwk1Bn5V9qBSOqcvfYKTYAPPRSOPDJUdrUJsFQ5ik1GPtelUXT9/ttz\nIbAycE6KMUiKaeDAUCpyww2h6e8224TKrpLKX7HJyKPAbYQ+RJJUB/yF0sa2SdLPgG8QOmL7Z0ox\nSErQV78amgBvuSXstx+cdJJNgKVyV2wF1veAg4GDCB2XXQ3cSKhvUaoBwBjgCGBUtCyNAtXTCa18\nfgJc1N6K48ePZ9CgQa2WOcy8VL6GDoW77oILLgjj28yYETpO22GHtCOTeqampiaamppaLVu4cGHR\n2xebjIwEzgaOIfTVsQ/hC3wGodTkMeBp4F1gec52vQgD4m0P7ERo+juKcFsEQgdolxGaA3en03Om\nDnuCnTp1KnV1dkUiVZJevUKpyL77whFHwM47w1lnwcSJ0Lt32tFJPUu+H+jNzc3U19cXtX2xyci7\nwHeBKYTShG8AqwCHRlNu3fUPgA8JJSCrRctyu4cH+Ay4FvgF8FKRMSTlNEIS8rNoktSDbbUV/OMf\ncPrp8JOfwO23hybAw4enHZmkjFJb07wIHE3oOGwi8DihJKQmZxpIaCY7IGcZ0XqPAT+Mtj+G7k9E\nJgBnEvoWuZ1QUpM7SeqB+vWDc8+Fv/4VXnklNAG+8kqbAEvlorOdns0nlJJMIZR+7E64DTOEcFtm\nILAQeBuYR0hCHqZzdUySdDChFOeAaMrVAlh4K/Vge+4JTz0FJ54IY8fCn/8Ml1ySdlSSkuiB9UNC\nScOdCeyrq9nlu1TlBg4Mt2kOOQSOOy40Af7JT1breENJXcZOzyRVpa98JTQB3mYbOPHETYGzvG0j\npcRkRFLVWm89uOMOOP7414HTOOusDVmyJO2opOpjMiKpqvXqBePGzQe+xfTpa/DFL8LHadduk6qM\nyYgkAXANv/nNizz0EIweDW+/nXY8UvUwGZGkyK67fsgDD8DcubDbbjB7dtoRSdXBZESSctTVwSOP\nQE0N7LorzJyZdkRSz2cyIkltjBgBDz8cemnda68wzo2krmMyIkl5rLUW3HdfSEYOPhiuvjrtiKSe\ny2REkgpYdVW49VY48sgw/fKXdiEvdYUkemCVpIqTO+T5okWLGDlyJJMmTaK2thbIjkLapw9cdhkM\nHQqTJsHrr8Ovf+3Iv1KSTEYkVaV8Q54XUlMDZ50VEpLvfQ/eeCPctonyFkkxeZtGkor0ne/AjTfC\nX/4C++8PCxemHZHUM8QtGTmdMNptKVqARcD7wAvATOCDmHFIUrc47DCYMSMMtLfHHnDnnbD++mlH\nJVW2JJKRuBYDtwE/AV5MYH+S1KV23z00/T3ggNAXyZ13wlZbpR2VVLnK4TbNSsAY4Elg35RjkaSi\nbLFF6Bxt8OBQQvLQQ2lHJFWuuMlIL2Aj4LHo+c3A4cAGwMrRtCHwJeCWaJ1HgU2AwcCewMXAcmAV\nYBqwRsyYJKlbrLcePPgg7LADfP7zcNNNaUckVaa4ychqwN1APfAV4MvArcDrwGfR9BohEflStM6O\n0TYtwN+A44GDCAnJQOCEmDFJUrcZOBDuuCPUJRkzBi68MO2IpMoTt87IeGBT4HfAjUWsfyPwe0IC\n8kPgtGj5XcA1wJHAAcCZMeOSpG7Trx9cd10oKTnhhNAXyTnnhCbBKqxtXy9z585l2LBhK/T1op4v\nbjLy1Wh+cwnb3ERIRg4nm4xAqMR6JOEWjiRVlF694PzzQ18kP/whzJsHl14KffumHVn5yk02mpub\nqa+vp6mpibq6upQjU3eLm4xsRLjd8n4J22Sa8Q5rs3xuNB8QMyZJSs2ECTBkCIwdC/Pnw7Rp0L9/\n2lFJ5S1unZElQA2wTQnbbJ2zbb5Y7EZIUkX7xjdCPZKHH4bRo+Gtt9KOSCpvcZORZ6L5D4FiOkZe\nGZgYPX62zWsjovnbMWOSpNTts09oafPaa7DbbvCivShJBcVNRv4YzbcC7idb6pHPNtE6W7bZNiPT\nx8gzSFIPsP328Pe/h0H1dtsNnngi7Yik8hS3zshVhA7LDgJ2Bp4idF42E8gUTK5DaM67Xc52fwGu\nzHk+iGxl2DtixiSpixU74q1go43C7ZpDDoFRo+BPfwo9t0rKipuMtBD6FrkAOJZQf2SHaCq0/qXA\niW2W9wa+GL3ubwepzJlslGbNNeHee+FrXwtJyWWXwVFHpR2VVD6S6A5+MfAdQunHH4CX8qzzUvTa\n54DjWLHy6rvAX4EHgI8TiEmSysoqq8DNN8PRR4eWNj//ObSUOsyo1EPFLRnJ1UxINCBUZh0UPV5I\nGKVXkqpanz5wySWhL5JTTgmdo/32t6FOiVTNkkxGci0C3uyifUtSxaqpgdNPD721HnccvPkmXHst\n1BbTHlHqocph1F5JqjrHHgu33BL6I9lvP3jvvbQjktJjMiJJKTnkELjvPnjuOdhjD3j11bQjktKR\n5G2avYHDgG2BNQkdnHU0TNSIDl6XpB5tl11C09/994ddd4U774St2+uxSeqBkkhG1gGuB/ZKYF+S\nVHU22wweeQQOPDCUkNx6K+zlJ6qqSNzbNH2B28kmIk9GzzOuBqYDb+QsayZ0lpbb6ZkkVbUhQ+CB\nB2DHHUMdkmnT0o5I6j5xk5GxZDs4GwfUAZOi5y3AUcAhwPrA4YSkZAvgz8DRMY8tST3KgAFw++0w\nZkzoIO2CC9KOSOoecW/TfDma3wlc0c56LcCthMHxZhJKRZ4Bno95fEnqUVZaCa6+OpSUfP/7oS+S\nX/wiNAmWeqq4JSPbR/NrCrze9u3zEjAVWAU4KeaxJalH6tULfvUrOP98+OUvQ9fxixenHZXUdeIm\nI4MJpR6zc5blvmVWybPNfdF83zyvSZIiJ58M118PN9wQmgF/+GHaEUldI24ysrjNHOCDnMdD82yz\nqJ3XJEk5vva10Nz3H/8Io/7On592RFLy4iYjrxBuxayTs2w+8FG0fOc822wZzR0iSpKKMHo0PPgg\nvPEG7LYbvPBC2hFJyYqbjDRH8x1ylrUAD0aPxwP9cl4bBPwoejwr5rElqWpst13oi2SllUJC8thj\naUckJSduMnJvND+4zfKLo/kOhFYzk4GLosebR69dFfPYklRVhg2Dv/0NRo4MpSW3397xNlIliJuM\n3EK4VbM+sHHO8ulAY/R4E2ACcBzZeiJ3k01YJElFWmMNmDEDPv95OPRQuPzytCOKr7GxkTFjxgAw\nZswYGhsbO9hCPU3cfkbeA4YXeO1Y4JFovlV0rOcJJSK/AZbFPLYkVaWVV4Ybb4QTToBx40JfJKec\nUpl9kTQ2NjJx4kQWLFgAwJw5c5g4cSIA48aNSzM0daMkB8prqwX4YzRJkhLUuzdcdBEMHQqnnQb/\n+lcoLdl44zCtt17or6TcTZky5b+JSMaCBQuYMmWKyUgV6cpkpJB1CPVGciu6SpJKVFMDp54aEpIz\nzgh9kmTU1sJGG4XEZJNNsknKxhvD8OGhImw5WLp0aUnL1TOlkYwcAFxOSEZ6p3B8Sap4TU1NNDU1\nAbBo0SJqa+ey996bsHz5MD75ZF022+wgBg2q56WXQkXXOXNgyZKwba9esMEGrROU3GnAgO77O/r0\nyf81VGhUpUh1AAAdFElEQVS5eqY0rnYF3tWUpPLS0NBAQ0MDAM3NzdTX19PU1ERdXV3e9Zctg9de\ng5deaj098UTo4fWDnO4q11qrcKKyzjrJ1k2ZMGFCqzojAIMHD2bChAnJHURlz9RTkqpA796hafCw\nYbD33q1fa2mBd95ZMVF56SW49154883suquuCiNGrHjrZ+ONYcMNodQCjUy9kHPOOYfZs2czYsQI\nTjnllIqoL9K2dGru3LkMGzaM2tpaoHXCqPaZjEhSlaupCaUha60Fu+yy4usffwyzZ8OLL7ZOVG66\nCebODaUuEBKRYcOyyUluwjJiBKySb7QyQkKy/fbbU19fz7Rp0wqW7pSbr3+9gTFjGrjssqs499zz\neeWV+SxZsoRTTz21IpKpclKNyUh/4GzgK4SB/v4NnAvckGZQklSuVl0VttkmTG0tWQKvvBKSk9xk\n5aGH4Ior4NNPs+sOGZL/1s8mm4TSmbaWLw/7/+yzMGrx4sXl9zjEfWQ0wZw5C/j2t+dw6aUvcsAB\nm7Dppvx3GjSoCy5OD1GNychNwI7Ajwn9nnwTaCJ0ANeUYlySVHH69s0mFfvt1/q1lpZwiyeToGSS\nlVmz4C9/gXffza7bv/+2wBuMHr0my5aFL/y4DWpqaqBfv9ByKDPPfZxv2YAB+ZcXenzGGf/LvHlz\nCOPF9gU2ZtmyTXnqqe2YPRveeisbz5pr0io52XTT0JvuJpvAaqvF+1srXbUlIwcC+wINZEtCHgCG\nEbqsvwFYnk5oktSz1NSE0pAhQ2CPPVZ8/f33c0tS5nPBBRczdux32WijoSUlBIVe744GOb/61U2E\n37WtbbDBSP7zn//w/vshCXvhhez0/PMhGcvtXmXddVdMVDbdNCQqhW5v9STVlowcDnwITGuz/HLg\nOsIow490d1CSVI0GDoS6ujBtvPF8LrjgHI466kvU1Q3teOMy0VHT5IEDob4+TG0tWNA6SXnhBXj6\n6dC77vvvZ9cbOnTF0pRNNw31cKK6shWv2pKRrQmjBbct/Xgmmm+FyYgkqUhxmiYPHgw77xymXJnW\nTW1LUx5/HK67LlQohlDytOGG+UtUNtqofDq2K0YpychRhI7K4to9gX101hrAi3mWL8h5XZKkonRF\n0+Tc1k277db6tUw9nLYlKn/7W+sKw5mm3LklKZlp2LAVb2E1NjZy9tlnA2Gwwu5uEVRKMpLpNdVO\nyyRJinRn0+Tcejh77tn6teXLYd68bElKJlGZMQMuuSS0/oFQ6XijjbLJydtv/53bbpvOhx8uB3ql\nMlhhqbdpkkxE0khq3iV/6cfgnNdXMH78eAa1aZNlZzaSVN3adno2cuRIJk2alFqnZ716wfrrh2n0\n6NavLVsGr766YonK7bfD889/DrgxWvN3wIklD1aYey4yFi5cWHTspSQjSadHSdzyKdXThJY0vWhd\nbyTTev7ZfBtNnTq1YjrhkSR1j0r6Udq7dxggcfjwMLpzrpEjt+OFFxYDmwLZ7nZLGaww37nIDFNQ\njFKSkStKWLdc3QwcC4wB/i9n+VjgdeDRFGKSpE5L+16/Kl/fvjXAS9GU1Z2DFfbqtiOVhzuBe4CL\ngWOA0cAfgP2AH5FOaY0kdUpjYyMTJ05kzpw5AP+919/Y2JhyZKokEyZMYPDgwa2WdfdghdWWjAB8\nCbgaOAu4A/gc8HXsfVVShZkyZUqrJqXAf+/1S8UaN24ckydPZsSIEQCMGDGCyZMnl21rmp7iY2B8\nNElSxSp0T7+Ue/0SpD9YYTWWjEhSj9BR759SpTAZkaQKVQ73+qUkmIxIUoUqh3v9UhIsy5OkCpb2\nvX4pCZaMSJKkVJmMSJKkVJmMSJKkVJmMSJKkVCVdgXVjYFdgXWBl4PfA2wkfQ5Ik9SBJJSPbA78B\n9oie1xDGebmR1snIicBPgfeBLYAlCR1fklRhcoedX7RoESNHjmTSpEnU1tYClTUqruJJIhn5AnAT\n0K/N8po8614FnAusARxMGEVXklSFTDaUEbfOyDrA9YREZBZwEDAgei3fCLjvA3+OHn8h5rElSVIP\nEDcZGQ+sBrxGuEVzB/BRB9v8NZrXxzy2JEnqAeImI5nSjV8D7xW5zaxoPjzmsSVJUg8Qt87IRoTb\nMX8vYZv3o/lqMY8tSVXLyp/qSeImIytF889K2KZ/NP845rElqWqZbKgniXubZj6h1cyGJWyzQzR/\nPeaxJUlSDxA3GXkkmh9c5Po1wDHR44diHluSJPUAcZORa6L5UcBORax/PrBN9PiKmMeWJEk9QNxk\nZDpwN9A3mp9E6Ao+oy8wFPgq8LfodYAbgEdjHluSJPUASfTA+jVgBqHfkF8TSj8g3JJpznmc8QjZ\nWzWSJKnKJTFq7/vA7sA5wAe0Tjxqcp5/TOgKfhS2pJEkSZGkBspbDJwG/BLYC9gRWBvoTRgo75/A\nvWT7GJEkSQKSS0YyPiLUI5me8H4lSVIPlcRtGkmSpE4zGZEkSalK8jbNmsCuhPFqViPUF+nIWQke\nX5IkVaAkkpEhhOa8XyYkIDXtr/5fLZiMSJJU9eImI2sRRuwd1olti01aJElSDxa3zsiZZBORacDe\nhNs1faJ9dzRJkqQqF7dkJDNA3tWE8WkkSZJKErd0Ym1C3Y/GBGKRJElVKG4yMi+afxQ3EEmSVJ3i\nJiMPECqibptALJIkqQrFTUamAEuACUBt/HAkSVK1iZuMPAv8P2Bz4B5gs9gRSZKkqpJEp2fXAHOA\nPwP/Ap4Gngc+KWLbcQkcX5IkVbAkkpFtCD2wDoqebx9NHWnBZESSpKoXNxnZCLgfGJyz7CNgIbC8\ng21bYh5bkiT1AHGTkdMIiUgL8CvgImBu3KAkSVL1iJuM7BPNpwI/jrkvSZJUhZLqgfXGBGKRJElV\nKG4y8kY0Xxw3EEmSVJ3iJiN3EXpg3SmBWCRJUhWKm4z8CvgQ+BGwRvxwJElStYmbjLwEfBkYADwM\n7Bc7IkmSVFXitqa5n1CB9W1gJHAn8B7wAsX1wLp3zONLkqQKFzcZ2SvPstUprg6JnZ5JkqTYyciD\nMbY1GZEkSbGTkVFJBNGN9gGOBHYFhhJuKT0BnAU0pxiXJElVK24F1krzHWBD4NfAF4CTCB23/QMY\nnWJckiRVrSRG7a0kJwBvtVl2J/Ai8BNChVxJktSNqq1kpG0iAvAxMAtYv5tjkSRJFF8ysmHO41cK\nLO+MVzpepcsNBOqAGWkHIklSNSo2GXmZbOuX3gWWl6Im2q53Ryt2gwuBlYFz0g5EkqRqVMptmppo\nKrS8lAny76sUo4DlRU7bFtjHz4BvACcD/4wZjyRJ6oRiS0bGkb8EZFyMY8ftZ+TfwDFFrvtqnmWn\nA6cQKq5e1N7G48ePZ9CgQa2WNTQ00NDQUOThJUnquZqammhqamq1bOHChUVvX0rpxHJCArEN8FwJ\n25Wj03Omn7WzXh0wc+bMmdTV1XVLYJIkpaG5uZn6+nqS+s7L7A+op4O+vEptTRP31ko5OI1sEtJe\nIiJJkrpBqf2MVHoX7hOAMwl9i9wO7NLm9X90e0SSJFW5auv07GBCQnVANOUql9Y9kiRVlWpLRuzy\nXZKkMlNtPbBKkqQyYzIiSZJSVeptmhrgLmBJzONmemAdEXM/kiSpwnWmzsjQhI5d6S1zJElSAjqT\njMwDliZwbJMRSZLUqX5G9gf+1QWxSJKkKtSZCqyWaEiSpMTYmkaSJKXKZESSJKXKZESSJKXKZESS\nJKWq1GSkpkuikCRJVauUpr2Z3lJf64pAJElSdSolGXm5q4KQJEnVyzojkiQpVSYjkiQpVSYjkiQp\nVSYjkiQpVSYjkiQpVSYjkiQpVSYjkiQpVSYjkiQpVSYjkiQpVSYjkiQpVSYjkiQpVSYjkiQpVaUM\nlCdJknqQpqYmmpqaAFi0aBEjR45k0qRJ1NbWAtDQ0EBDQ0OXx2EyIklSlequZKMj3qaRJEmpMhmR\nJEmpMhmRJEmpMhmRJEmpMhmRJEmpMhmRJEmpMhmRJEmpMhmRJEmpMhmRJEmpMhmRJEmpMhmRJEmp\nMhmRJEmpMhmRJEmpMhmRJEmpMhmRJEmpMhmRJEmpMhmRJEmpMhmRJEmpMhmRJEmpMhmRJEmpMhmR\nJEmpquZk5BhgOfBh2oFIklTNqjUZGQr8CpgHtCS546ampiR3J6lC+N6XOq9ak5HfA/cD9wA1Se7Y\nDySpOvnelzqvGpORI4D/AY4n4UREkiSVrtqSkXWAqcAkwi0alYFK/EWZdsxdffyk95/U/jq7n85s\nl/Y1rgaVeI7TjrnS3vvFqrZk5ELgOcJtGpWJtN/cnZF2zJX2gWQyonwq8RynHXOlvfeL1SeVo8Y3\nCrivyHW3B54GxgAHA9uVerBZs2YVve7ChQtpbm4u9RBVrRLPWdoxd/Xxk95/Uvvr7H46s12p26T9\nP1GJKvGcpR1zJb33S/nurNQ6E+sCBxa57k3AUuBF4Crg5zmvXQQcAqwfrfNxm22HAI8TWt9IkqTS\nzAL2Ad5ob6VKTUZKNRyY3cE6twBfyrN8SDRJkqTSvEEHiQhUTzLSD9iF1n2K1BAqsu4FHAC8Q6hP\nIkmS1G2uwB5YJUlKVbW1pmmrhYR7YJUkSZIkSZIkSZIkSZIKWAm4HHgFeB94BNg11YgkdZfvAs3A\nYuD0lGORykK1V2BNSx9Cvye7AQOBi4HbgJXTDEpSt5gH/JTQt5EV6CWVlXeBbdIOQlK3uRRLRiTA\nkpFysTmhVOSltAORJKm7mYykbxXgauBnwCcpxyJJUrczGeke3yT09PohMD1neV9gGvAs8IsU4pLU\ntQq99yWpQ/2B84C7gbeB5RS+t9sfmAq8DnwK/BP4WhHH6AVcD9yMSaFULrrjvZ9xKaEiq1T1/BLM\nb03gWELJxc3RskK13m8CjgTOIAy49zjQBDR0cIxLgHWArxM+8CSlrzve+72BWkKrur7RYz+LJbVr\nDUKykO8XzIHRa21/Dd0FvEbhD5hh0XYfky3C/RDYPYF4JSWjK977EJKX5W2mI2PGKqmHW5PCH0iX\nEjota/vBkyntsCMzqXL53pe6iUWD8WwNzGLF2yzPRPOtujccSd3E976UIJOReNYAFuRZviDndUk9\nj+99KUEmI5IkKVUmI/G8S/5fQINzXpfU8/jelxJkMhLP08AWrHgeM2PMPNu94UjqJr73pQSZjMRz\nM6HjozFtlo8ldIT0aHcHJKlb+N6XEtQn7QDK2BeAVYHVoudbkf3gmU7ocfFO4B7gYmAAYaC7BmA/\nQjfQDg8uVR7f+5LKxhyyHRIta/N4w5z1ViV0CT0PWEToEvqr3RqppCT53pckSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSWVtOPCntIMoZ73SDkCSpB7s88ADwOC0AylnfdIO\nQJKkHqge+BnwCvBpyrFI6mZjgeXRtGG6oUhlbyXgP4T3y5hO7mMsvuc68lfgvhLW/x3hfF7VJdGU\nIW/T9GyjyH5IFDMdlUqUXaMl7QBKNIrqvVZKz8nApsDTxK/TUGnvuXL2c+Az4JvALinH0i1MRqpL\nSxFTpesJfwNUx7VSugYBkwj/S6enHItamwdcCtQAv0g5lm5hnZHqcVE0tef17giki10ZTZWsWq6V\n0nUSMBB4Ebg15Vi0ovOBE4C9gD2BB9MNp2uZjFSPt4Dn0g5CRfFaqav1A74XPb4mzUBU0MvAw8Du\nwHh6eDLibRpJqj4HA2sRbtGYjJSvzLU5iHC9eiyTEXVkJcIvqPuBt4HFwJvAdELlqpp2tr2CUNly\nTgfHGEv7tfHPyHkdQtHyacA/gYW0rtDZ0b5y7QE0EoqpPwY+AmYBvwVGtLNdKfF0l87G1NlzkLE6\ncC7wb0LzxbeAe8i2zBhL+9fjCpL5H8lI6prWAhOBZuDDaHoUOB7o3UGsGbsDlxFaq3xAeO+8BvyZ\n8J4aGK3Xl/CeWg7cUcR+t86JdVKRsbT11Wj+DDC7g3U7usbF2Bo4FbiLcA4+I1ybFwj/AzsX2C7J\nc7Me4e9oBt4n+1n2DHAd4f2xWpttdgIeKWE6uIgYS3FTNO8LfCnhfUvdZhTZN+ZPO7H9cMIHeW4r\njmVtnj9I+LDK54ponY4+7Mbm7Lu9ZGQZsAnhi6ttTEcWuS8IRdRX5tlH7t/2GXB0ge1LiadYo4h3\nrUqNKe45ANiSUNGu0PaXET7g27seV5DM/0iS13Rt4Mk2+8nd7620n4SvTPhyay+W5bSuNPrLaNkS\nwpdme86P1l0MDOlg3UIyX/CXdLBeMdd4LO1fm1G0/rsLnY+fF4ghiXPzP4QEpKMYDupg/531V0pr\n2pvrJUJsTYlFU4asM6JC+gP3AhtFz28m/OKcR/iFmalYtQfhl96eZH9VdpUa4EbCh8xvgduA9whN\nE+eWsJ//Aw4hxHsjMI3wZdgLqCPcn92c8EE7H7i9E/G8UkI8SSo2prjnYCDhV+660fPrCcnAW8Bm\nwA+AccA2Sf5x7Ujymt4crfsbwv/2guj5acAW0XGOBf6QZ/tehGRl3+j584TKyE8AnxC+THcDvkLr\nFlGXEUpiehOSxnMLxNcXOCJ6fDfwRoH12rM5IeECeKyd9ZK6xn0IpVR/IXwh/5tQUrQ2oSTj+8Aw\nQknG84QENVfcc9Mvin216LgXE0p634q2GQ7sSih5KMdWao8SPof3TDsQqbNGkc34LwS2Irz5801t\n70dOztn2zAL7vzpnnePyvH4FyZaMZH4d7ZtnnWL39f/I/ko+pMA+agkfVssJv0ra3s4sJZ5ijaLz\n16rUmJI4B1NyjvfjPNv3Ae7MWacrS0aSvqaLyP/BvzrhC245oeQkn5Ny9vMnwpddPjWsWKrx12i7\nfxfYBuDwnP0f3s567TmS7Ln8XDvrJXWN1wAGtHOcvoSkZzmhRC9f9YG/0vlzs3fO8gPb2b43K96m\nSco/CElFZ/yY7PndILGIpG40ihWLRwtNuUXG/Qi/ppcT7qcWKpJejVCPZDnwbJ7XryD5ZOTSGPuq\nIdyjXg78uoP9bJGzn31ixFOsUXTuWpUaUxLnoB+htGA5oU5KIUMJCUJXJiNdcU0nt7OPn0frLGXF\nL9hehPoQywmlUKt0EE9bR+TEsFuBdW6LXp9P8XVX2sr9ctuowDpJXuNibJuzj7o8r8c5N9/I2Xf/\nTsbXGRsSkqxMD7fLCHWZ7iKUxhTrmJztd0w2xPJhBdbqUmwnWvVkK9ddQeGiyw8JxeMQPujXLbBe\nkq6Nse2WwMaEv+eGDtadRfgwriEU4XZFPO2J0+FZezElcQ7qCR1mQft9urxOKC7vSklf0xbaP38z\no3kNK36hbE+2TsOlhNsypfgTobIx5K/bsg7whejxNYQvp87ILVlbUGCdrrzG/Qhf1FsSSvq2Ivtd\nVANsl2ebOOdmXs6+x5UYaxyvAPsTbmn1IiRIm0TLXi5hP5lrVEMPblFjMlI9ziC8GQpNZ+Wsu3U0\nb6HjosXc17cuuFYyWgjdVndW5ldFDfB3Oi6ByIyyWSjJihtPIWdQ/LUqNaYkzkGmjkAL8HgHf0t7\ndRKSkPQ1hfZvBbyX87htkf4O0byFzvUJsYhQ8RVCa5eV27z+LcL1byHU3+qsgTmPPyywTtLXeFXg\nf4GnCPVHXiaUpj5NKH1tzll3jTzbxzk3fyNb8jaV8Jk1iZCQFrqNVk4+yHk8sOBaFc5kRPnkDnU9\nv4N1M6/XULhVTZLe63iVgtbOeVxsd+strPjBl1Q8XaW9mJI4B7nX+a0OYuno9bi64pouaue15TmP\n294mWTPncWcqlkL2FttqrNh0NlMi8Djwr07uH7IlDFC4LkeS13g4IeE4h5Dk1NB+aV+ha9PZc7OU\nUJdoVvT8c4TbbQ8TWtjcDjRQvt+HuQnIwoJrVThb06jSxKntnvvlcQjFF5W29wFQjrXv24sp6XOQ\n9t/fFdc0TU8RbgXVE75gr46W70y4FQrxSkUg1PPKGEzH5yLuNb6akJAsBy4ntGyZFcWxJFqnhuyt\nlUJ11OKcm1mEROiQaNqL0CqwFjggmn5AqOD6doF9pCXz47CF8ostMSYjyufdnMfrEioIFpJb3N32\n/nPmV2RHvzhWLTKuuDJv5BbCL6Jq7HI9iXOQe53XJVTKK2SdDvYV93+knK5p7hfFeoRmqp1xGeEL\ndy/Cl/jLZH/5f0L8/ibm5Txei/yVh5O6xpsTOn+DMODbaQXWG1xgeVtxzs1yQrPrzDg86xLqmXwv\n2mc9od+VcutcLLfE7c3Uouhi5VospXRlWsbUULhnxIydonkLK7aoydyPHkT7Nis+tFgyrQJqyH5A\nVpskzsEzOftor2koRbwe93+knK5ppt5DDfH6hLiO8MVaQ2hFVAt8PXrtJgrX8yhWpo5HDaHSbT5J\nXeOtonkLoUSkkGJbiSR5bt4klNTsSvbaHUSoYFtOMtdoHj14gEyTEeUzk2zR7VEU/j9ZjWy30s+x\nYv2S2TnrjSywj5WAL3cuzJL9E3g1evwdyu9DpzskcQ5mkq2X8q121hsK7NfBvuL+j5TTNX0qJ5Zj\n6HyJX24rtaMIHaQNIHyh/zFOgJHnyb5XdyqwTlLXOLf0vb3zka+fony64twsJVvhuA8dJ8bdLXON\nHko1ii5mMqJ8FhOKQyH8ssnXr0UN8DuyNd9/l2edB3LWnVBgH7+h811al6qFUIkOQv8KV9P+l1ct\noafZnpS0JHEOFhN+UUL41TYxz3Z9CBUOO2qtEPd/pJyuaQvZPkrWB66i8N/fi/b/7zPvv2GE7tAh\nJG4P5F+9ZJn97FLg9aSuceZWVQ2Fx2v6LvDFdvbRVqnnZg9C8+9CViLc9oEwXk451ctYh/B3Quj4\nTapIo8g2afxpidv2J9wnzmx/I6EIs47wK/X+nNf+RuFKZw/nrHd5FFMd8LWcfWTWKWZsmo6M7WBf\nEH5ZZWJ6CfgR4cNoe8IH19GEinCZjt/adl5VSjzFGkXnrxWUHlPcczCA0I9CZh/XEvpPqCMUmz8W\nLX+Ujq9HEv8j3XVNR+Wsl+9WTA3Z3kSXE5oJf59wC2kHQh2FMwlf0vmS/Fz/ytnPcuCUDtYvxZfI\n/h2FSqSSusZPt9nHgdE+vkjotn85oWSilP//Us7NGVFs9wM/JJTk1BGuydE58S8n9DpbTo4jxPUZ\nreuOSBVlFPG+4IYRbr+012/Dg7RfrLkZ2UG52k7LCL8kj8pZllQyUmhfEFpgTCUUz3bUL8UHrPgr\nupR4ijWKeNfqDEqLKe45gBUHUWt7bYsZKA+S+R/prms6Kmc/+ZIRCE1Tc5OjQn9XR9f5BznrLyHc\nEklKX7Jd27fXb00p17jQtdmOUCm+0Ll4klCZtJT//1LOzentHDv3b5lGKCUpJ38jxHdTRytK5Wwv\niv/gK6QvobZ5ZmCpRYQPp+mEbpaLsR5hvJU5hCHI34y2PyB6vaMvrNNzXu9IMV9+GVsQRvmcCbxD\nKJp+j/BL7krgm+S/z11KPMWKe606G1Nnz0FGZnj5/xAqFs4HZhBKNaC4kiqI/z8S9+8p9vzlXqdC\nyUjGqOiYLxKK/z8ltP64heLqlKxN9suy0MB+cZwa7fulDtbr6BoXc202IAwYOIfwGfI28AhwMtkE\noJT//1LOzaqEsWouJJSwzSF0vPYx4W+/juz/WTkZTvac/E+6oUhSZRtL8cmhWtuH7Bdu206+kjCQ\n7Pgz5dactSNdfW7KwW8Jf9/9aQciSZVuLCYjnXUt4dxlhrrvCj+KjtEVwxp0pe44N2kaSihBWkbh\nSsaSpCKNxWSkM4YTbjEtJ9tipCv0Jdx+WUZoJlsJhtM95yZNvyNck/YGKZQkFWksJiPFGgpsSmjt\n0Uw4bx/TfU3fy5nnRpLUaWPpuHWTgr+yYguPfH2vVKO/4rnp0RybRlJXamkzV2GZ0Ws/IfRDMpXs\nYHDVznMjSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVKF+f+jx4ElHMX0cAAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from scipy.optimize import curve_fit\n", + "\n", + "# Define model function to be used to fit to the data above:\n", + "def tophat_time(x, *p):\n", + " mean, width = p\n", + " if x>(mean+width): y=0\n", + " if x<(mean-width): y=0\n", + " if x==(mean+width) | x==(mean-width): y=5\n", + " return y\n", + "\n", + "def tophat_freq(f, *pars):\n", + " A,T,t0 = pars\n", + " #return A*T*sinc(pi*f*T)*exp(-i*2*pi*f*t0)\n", + " return A*T*sinc(pi*f*T)*cos(2*pi*f*t0)\n", + "\n", + "x=np.logspace(fqd[0],fqd[-1],200)\n", + "\n", + "# p0 is the initial guess for the fitting coefficients\n", + "p0 = [3, 3, 3]\n", + "coeff, var_matrix = curve_fit(tophat_freq, fqd, lag, p0)\n", + "fit = tophat_freq(fqd, *coeff)\n", + "\n", + "\n", + "mpl.rcParams['xtick.labelsize']=12\n", + "mpl.rcParams['ytick.labelsize']=12\n", + "xscale('log'); xlim(.009,.6)\n", + "xlabel(\"Fourier Frequency (days$^{-1}$)\",fontsize=20)\n", + "ylabel(\"Time Lag (days)\",fontsize=20)\n", + "\n", + "\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=5,color=\"black\")\n", + "plot(fqd,fit)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAGJCAYAAACZwnkIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xnc1PP+//HHdJU27QsttjihRalUOLIlUfgSTleSlLWS\nKOScwkE4HI5jKVtKlssWR+SkrNlLV7SQDooWS0pFe13X74/XZ34z1zTr9fnMfOaaed5vt8/tM9dn\ne79m6mpevVcQEREREREREREREREREREREREREREREREREREREREREREREREREREREREREamITgSe\nAJYCm4CVwH+ADkne3xiYDKxx7v8IOMHzKEVERESS8DzwDnA50A3ogyUn24HjE9xbFVgIfA8UYknS\ny8693dIUr4iIiEhMjaMcqwn8CMxKcO8QoAToEnasAFgEfOJJdCIiIiIeeBv4KsE1s4AvoxwfjSU8\nTbwOSkRERFJXye8AfFYH62OzOMF1bYAFUY4vdPatvQxKREREyiffE5sHgerAuATX1QfWRTkePNbA\ny6BERESkfCr7HYCPbgH6AcOA+T7HIiIiIh7I18TmRuBvwF+B8UlcvxartYlUP+x8LE1QHxwREZHy\n+NHZkpaPic2NYdsdSd6zEDgsyvG2zn5RjPuaNG3adPXq1atTi1BEREQAVgFHkEJyE0hfLFlpLPB3\nrBnqxhTuuwyr2ekKzHGOVQY+BzYCR8W4rwMw76mnnuLQQw8tV8C5YsSIEdx7771+h5EV9FmYRJ9D\nz549WbNmDY0aNWLGjBkZjCyz9PchRJ+F0edgvvrqK/r37w/QEShO9r58qrEZiSU1M4DXsSQlXHA+\nmonAAKAFsMI59jgwFHgBG+K9Bpvb5k9A90QFH3rooXTokOwEx7mpbt26ef8ZBOmzMIk+hz322OP/\n73P589LfhxB9Fkafgzv5lNj0BkqBns4WrhSbcA9spFglytZmbcdmG74TuB+ogXU4PgV4P30hi4iI\nSCryKbFJtGxC0IXOFukXYKBn0YiIiIjn8n0eGxEREckhSmwkIwoLC/0OIWvoszD6HIw+hxB9Fkaf\ngzv5Nioq0zoA8+bNm6eOYCIpat68OatWraJZs2asXLnS73BEJMOKi4vp2LEjpDgqSjU2IiIikjOU\n2IiIiEjOUGIjIiIiOUOJjYiIiOQMJTYiIiKSM5TYiIiISM5QYiMiIiI5Q4mNiIiI5AwlNiIiIpIz\nlNiIiIhIzlBiIyIiIjlDiY2IiIjkDCU2IiIikjOU2IiIiEjOqOzRc1oCXYC9gEZAHWA9sAb4CfgU\n+MajskRERESiKm9iUwXoDZwLdAP2BgJxri/FEpz3gOeB14Cd5SxbREREJKpUE5s6wJXA5VjtTLIC\nQBOgr7P9DIwH7gM2pBiDiIiISFTJJjZ7AFcB1wF1w45/BXyCNTV9AawF1gEbsSSoPtAQaA90xpqr\nDsGSor87z/wHcA+ww91bERERkXyXbGKzCDjIeb0MeAZ4Cvg6zj1rne1/wMfABOf4IUB/oB+wP3A7\nMBjrpyMiIiJSbsmOijoIWAicDRwIjCV+UhPPEmCM85yzneceFPcOERERkSQkW2NzLvCix2WXAi8B\nLwN9PH62iIiI5KFka2y8TmrClab5+SIiIpInNEGfiIiI5AwlNiIiIpIzvJp5GKA2cA7QFZuzpjow\nCPg+7Jpm2DDwrcB3HpYtIiIi4lliczk2bLt22LFSoGbEdccDU4BtWJKzzqPyRURERDxpihoDPIgl\nNduA4jjXFmGzDldFI6FERETEY24Tm3bYDMJgSUsToFOc63dhQ7wBurssW0RERKQMt4nNFdg6UHOA\n87EVvRP5yNkf5rJsERERkTLcJjbHOfsHgJIk71nm7Ju6LFtERESkDLeJTVOsk/DiFO7Z7OyruSxb\nREREpAy3ic1OZ1+Qwj0NnP0Gl2WLiIiIlOE2sVmJ9bE5JIV7jnH237osW0RERKQMt4nNO87+/CSv\nrwtc6rx+y2XZIiIiImW4TWwewvrYdMcm6YunIfAKsBewHXjYZdkiIiIiZbhNbBYCd2HNUQ8ALwN9\nnXMB4CjgPGA88A2hZqibgBUuyxYREREpw4slFa4HagDDgDOcLeiRKNffDdzhQbkiIiIiZXixpEIp\nMBzoAbxN7PlsPgR6Atd4UKaIiIjIbrxc3ftNZ6sNHA40xoaBrwG+AH71sCwRERGR3XiZ2ARtBN5L\nw3NFRERE4nLbFFXPkyhEREREPOA2sfkJG8J9LloiQURERHzmNrGpApwGPAv8DEwGTsKGeouIiIhk\nlNvEZgKw1nldCxgAzABWAf8COrl8voiIiEjS3CY2Q4EmWK1NEbZydwDYG7gS+BT4GrgBONBlWSIi\nIiJxeTGPzU5gOjbD8F5Af+C/wC4syfkTNtPwUuAT4AqgkQflioiIiJThRWITbhPwDNALq8kZBnzs\nnAsAnYF/Y01V//W47GTsCdwJzMTm1ykBbkzy3oHO9dG2xvFu3LChfMGKiIhIarxObML9iq0RdTTQ\nAhgDfOmcq4zNVJxpDYGLsU7PLzvHSlN8xkCga8S2Lt4Nw4bBxo0pliIiIiIpS8cEfdEsB14CqgNN\ngboZKjdaHMG5dxoAF5XjGYuA4lRu+OEH6NULZsyAmjXLUaKIiIgkJZ01NmBJzEhgHrAY+BuhpGZb\nmstOpLxD0lO+74EH4PPP4fTTYcuWcpYqIiIiCaUjsakDDMYWxPweuAtbOyqANfu8BQzCOhpXRK9h\nHabXAlOB1oluaNsWpk+Hjz+GPn1gm98pnYiISI7yqimqKtAbGxl1ivNzuPnA09iQ8B89KjPTfgRu\nxUZ2bQQOA0Y7Px8FLIx3c7duMG0a9O4NffvC889DlSrpDllERCS/uE1sugP9gLOwVb3DLcNGSD0N\nLHFZTjZ4w9mCPsCGuS8EbgbOTPSA7t1h6lQ480wYMACeegoKCtITrIiISD5ym9jMjPh5LfA8lsx8\n5PLZFcH3wIfYyKik9OoFzz4L554LVavC449DpXT3dBIREckTXjRFbQGmYcnMDKz/Sb6JO2R8xIgR\n1K1bdiDYZZcVMn58IdWrw/jxENDqWiIikqeKioooKioqc2z9+vXlepbbxGYgNoz7D5fPqahaAMdQ\ntolqN/feey8dOnTY7XiHDjB4MFSvDnffreRGRETyU2FhIYWFhWWOFRcX07Fjx5Sf5TaxmeLyfj+c\nAtTEFu0EG9V0tvN6OlYDNRFb0LMFsMI5Nwsb6bUYS+TaAtdiNVRjyxPIoEE2/HvYMEtuxo0rz1NE\nREQkKFMT9GWT8cB+zutS4BxnKwUOAH7AhsFXouycNQuxUV/7YBMN/gK8CdwCfFPeYIYOha1bYdQo\nS27GjCnvk0RERCQfE5sDkrjmQmcLd3UaYgFg5EiruRk71pKbkSPTVZKIiEhuSzaxKSHUQbYgxvHy\n0GBnx5gxltyMGgXVqllNjoiIiKQmlRqbWF1b1eXVI7feGupzU62adSwWERGR5CWb2Nzs7CNrZ26O\nvDAFbmp6clIgYKOjtm6Fiy+2Zql+/fyOSkREpOJINrG5KcXjUk6BgC2auWWLzU5ctaqtLyUiIiKJ\nac7bLFSpEjz2GJxzDhQW2gKaIiIikpjbUVHHYk1KnwGbk7ynGtDFuW+2y/JzVkEBTJliK4H36QOv\nvWZrTYmIiEhsbmts3nG2/VO4p3nYfRJHlSpQVAQnnACnnw6zlQaKiIjEpaaoLFe1qq0IfuSRtoDm\nJ5/4HZGIiEj28iOxCZa5y4eyK6Tq1WHaNGjfHnr2hOJivyMSERHJTn4kNsHlDDb4UHaFVbOmdSJu\n2RJ69IBFi/yOSEREJPuk2nl437DX4RPzNSXxCt9VgYOwtZUAvkyx7LxXuzbMmGF9brp3tz43LVv6\nHZWIiEj2SDWxWc7uE+sFgDdSeEYwIaqIK4P7rn59mDULjjvOEpzZs6FFC7+jEhERyQ7laYoKhG3R\njiXatgJ3AhPLHXWea9QI3nzT+t6ceCKsWOF3RCIiItkh1RqbQc6+FEtSHnd+HgOsjnNfKZbQrAbm\nk7jZShJo0gTefhu6dQvV3DRp4ndUIiIi/ko1sZkc8XMwsXkFWOw6GknJPvtYcnPMMdbn5t13rTZH\nREQkX7kdFXUCcDywzINYpBwOOMCSm7Vr4aSTYN06vyMSERHxj9vE5l3gPZJfTkHSoGVL63OzcqXN\nc7Nxo98RiYiI+EMzD+eINm1g5kxYutRmKN60ye+IREREMs/tIpjhKgHtgXZAA6A6ZUdORXOzh+Xn\nvQ4dbJ6bk06ytaVee81GTomIiOQLrxKbgcCN2AR+iZKZoFKU2Hiua1ebobhnT1sV/OWXbb0pERGR\nfOBFU9Rt2Oio/Ug+qSHFayUF3brZ2lJvvw19+8KOHX5HJCIikhluE5suwGjn9SysKaqD83MpUAA0\nAk7BhoQDfIAtwaD+PWnUvbutCj59OgwYALu05KiIiOQBt8nF5c7+e6A3sAAIrx8oBdZiSy6cCQwF\n/gzMAPZwWbYk0KsXFBXBCy/ARRdBSYnfEYmIiKSX28TmaGd/H6GEJl4T0wRgKnAYluRImvXpA1Om\nwBNPwLBhUBq50peIiEgOcZvYNMFqZRaFHQuvF6gS5Z6nnP25LsuWJPXrB489BhMmwMiRSm5ERCR3\nuR0VFUxcfgk7Fr4OVCN2X0MquGTjQS7LlhQMGgRbtlitTfXqMG6c3xGJiIh4z21iswbrCFw77NjP\nWK1NADiU3RObvZ19LZdlS4qGDoWtW2HUKEtuxozxOyIRERFvuU1sFmOJzSHA+86xbc7xtkBf4K2I\ne85z9j+6LFvKYeRIq7kZO9aSm5Ej/Y5IRETEO24Tm/eBk7DFMB8NO/4slthcCPzk/FwTuAAodK75\nr8uypZzGjLHkZtQoqFbNanJERERygdvE5j/Y7MG9seao4PKL9wEXA/sDfwP+6hwPjpj6DbjdZdni\nwq23wubNoT43gwb5HZGIiIh7bhObRVhtTWXKjoDa5Bx/EhsSHoi453xCnYjFB4EA3HOP9bm56CKr\nuenXz++oRERE3PFirah3YxxfDhyD9b9p7ZS1FJjvQZnigUAAHnzQkpsBA2xNqT59/I5KRESk/Lxc\n3TuWJc4mWahSJZvjZutWKCy0RTN79fI7KhERkfLRek1CQYHNTty7t9XYvPmm3xGJiIiUjxIbAaBK\nFVtX6oQT4PTTYfZsvyMSERFJXbJNURdgSyd4bUoaninlVLWqrQjeu7c1R82aBV27+h2ViIhI8pJN\nbCZhiU28BS5TVYoSm6xTvTpMmwYnnww9e8Lbb0OHDn5HJSIikpxUmqK8TGrS8TzxSM2a8Prr0LIl\n9OgBixYlvkdERCQbJFtj0yKtUUjWqV0bZsywPjfdu1ufm5Yt/Y5KREQkvmQTm+XpDEKyU/361s/m\nuOMswZk9G1ooxRURkSymUVESV6NGNvy7enU48URYofmiRUQkiymxkYSaNLFOxKWlVnPzo9ZlFxGR\nLOVlYlMbGIyt8v0a8BawX8Q1zYBWqM9OhbPPPpbcbNlifW7WrPE7IhERkd15ldhcDvyAJTWDgVOB\n44CaEdcdjy2CuRio71HZkiEtWsBbb8HatXDSSfDbb35HJCIiUpYXic0Y4EGsxmYbUBzn2iLgZ6Aq\noOUWK6CDD7Y+NytX2jw3Gzf6HZGIiEiI28SmHfB353UR0AToFOf6XcBLzuvuLssWn7RpAzNnwtdf\n2wzFmzb5HZGIiIhxm9hcgU20Nwc4H1ifxD0fOfvDXJYtPurQwea5+fxzW1tqyxa/IxIREXGf2Bzn\n7B8ASpK8Z5mzb+qybPFZ164wfTp8/LGtCr5tm98RiYhIvnOb2DTF1nxanMI9m519NZdlSxbo1g1e\necVGTPXtCzt2+B2RiIjkM7eJzU5nX5DCPQ2c/QaXZZfHnsCdwExgDVbLdGMK9zcGJjv3bsKa1U7w\nNsSK56ST4MUX4bXXYMAA2LXL74hERCRfuU1sVmJ9bA5J4Z5jnP23Lssuj4bAxUAV4GXnWGmS91bF\n5uY5HhgOnI6N8JoBdPM2zIqnd2949ll44QW46CIoSbZhUkRExEPJrhUVyztYUnM+8FQS19cFLnVe\nv+Wy7PJYDtRzXjcALkrh3sFAa+BI4FPn2LvAF1gtUFdPIqzA+vSBKVOgf39bguHBByGgNdxFRCSD\n3NbYPITVeHTHJumLpyHwCrAXsB142GXZbqX6lXsmsIRQUgM2fP0poDM21D3v9esHjz0GEybAyJG2\nDIOIiEimuK2xWQjcBVyLjYzqATznnAsARwGHA0cD/bBJ/ABuAiracoptgPeiHF/o7FsDWkUJGDTI\nhn8PG2Y1N+PG+R2RiIjkC7eJDcD1QA1gGHCGswU9EuX6u4E7PCg30+oD66IcDx5rEOVc3ho61JKb\na66x5GbMGL8jEhGRfOBFYlOKdaadBozG5raJ1sT1IXALNiJJ8sCoUZbcjB0LNWvCVVf5HZGIiOQ6\nLxKboDedrTbW/NQYGwa+Butg+6uHZflhLdEX7qwfdl4ijBlj60mNGmUT+h15pN8RiYhILnOb2EzC\namz+C7zgHNtI9L4oFd1Coi8D0dbZL4p144gRI6hbt26ZY4WFhRQWFnoXXZYKBOD22+GDD+D882H+\nfKhVy++oREQkmxQVFVFUVFTm2Pr1yazStDu3g3FLsMSmFzafS0XSEPgF68h8cxLXXwaMx4Z1z3GO\nVQY+x5K5o6Lc0wGYN2/ePDp06OA23grt22+hXTubnfixx/yORiqC5s2bs2rVKpo1a8bKlSv9DkdE\nMqy4uJiOHTsCdASKk73P7XDvNVhy9JPL52TSKcDZwGnOz62dn88GqjvHJgI7gH3C7nscWzriBaAQ\nG+L+PPAn4Lq0R13BHXgg3HcfTJwIL7+c+HoREZHycJvYfOns93MbSAaNxxKSiVht0znOz88BjZxr\nKjlbeI3WduBEbFLC+7HO0nthidL7mQi8orvwQjjzTLj4YvhRA+NFRCQN3CY2Tzr7gS6fk0kHEEpc\nCiJe/+Bcc2HEz0G/YO+1ITbE/Wjg7bRHnCMCAXjkEahSxZIcTd4nIiJec5vYTMaWRjgD+Dvu++xI\njmvYECZPhjfesCUXREREvOR2VNSfgX9iTThjgXOxJp0FwG/YkgPxzHZZvlRAJ58MV1xhk/edcAK0\nauV3RCIikivcJjbvYv1UgjU1BwM3OK/jNTQEnPMFLsuXCuof/4A334TzzoNPP4U99vA7IhERyQVu\nm6IgdvNTIM4W7z7JA9Wrw9NPw+LFcMMNia8XERFJhtsamxNc3Kuuo3nu8MPh1lth9Gg45RQ49li/\nIxIRkYrOi6YokXIbORKmT4cBA+CLLyBigmYREZGUeNEUJVJuBQUwZQqsXw/DhvkdjYiIVHRKbMR3\n++0H48dbn5uIpUJERERSosRGskK/fraO1OWXw4oVfkcjIiIVVbKJzWvYgo7p0AmYnqZnSwURCFit\nTa1acMEFUFLid0QiIlIRJZvYnArMBV7GlhHwQjdsvaU52HpLkufq1bP+Nu++C//6l9/RiIhIRZRs\nYnMztgjkGdhswd9iSyi0T+EZVYAjgNuA5dhikr2Brc6zRDj+eBsp9de/2igpERGRVCQ73PsmbF2o\nm4D+2EKSY4ExwBZgPraMwq/AOuB3oDZQH1sw8nCgHVCV0MR8u7BFNG9i98UmJY/deivMnGmzEn/2\nGVSr5ndEIiJSUaQyj81ybGXrm4HhwPlAPUKrXCfbRLUWS2juc54pUkbVqjZCqlMnuP56NUuJiEjy\nyjMq6jtgBNAE6AXchfWT2Rnj+p3AJ8CdWF+dpsDVKKmRONq0sfWk7r0XZs3yOxoREako3Mw8vB34\nr7OBLWjZEFvpuw6wHliD1dAkWuVbZDdXXGGzEg8cCAsWQIMGfkckIiLZzst5bHYBPwOLgA+BxcAv\nKKmRcqpUCSZPhq1b4dJLoVSri4mISAKaoE+yWtOm8PDDMHWqDQUXERGJR4mNZL2zz7ZJ+4YNg+++\n8zsaERHJZkpspEK47z5o2NBWAd8Zq5u6iIjkPSU2UiHUrg1PPgkff2yjpURERKJRYiMVxp//bPPa\n3HQTzJ3rdzQiIpKNlNhIhXLjjdC+PfTvD5s2+R2NiIhkGyU2UqFUqQJPPQUrVsA11/gdjYiIZBsl\nNlLhHHww3HMPTJhgE/iJiIgEKbGRCunSS6FXLxg0CH75xe9oREQkWyixkQopEICJE2024osu0qzE\nIiJilNhIhbXXXpbcvPoqPPqo39GIiEg28DKxOR54Evgf8Ae2RlSriGu6AUOA/h6WK3nstNOsWeqq\nq2DpUr+jERERv3mR2NQAngPeAs4DDnSOBaJcWwo8ADwB/MmDskW4+25o1syGgO/Y4Xc0IiLiJy8S\nm2eAc5zXc4F7nNfRej28D3yJJT1neVC2CDVr2hDw4mK45Ra/oxERET+5TWzOAE53Xg8BugCjEtzz\nH2d/rMuyRf6/zp1t8r5x4+Cjj/yORkRE/OI2sRno7J8FHkrynuBk+Ie6LFukjOuvhy5drEnq99/9\njkZERPzgNrHp4uyLUrjnR2ff2GXZImVUrmwLZa5ZA1de6Xc0IiLiB7eJTUOsL80PKdyzy6OyRXZz\n4IFw330waRJMnep3NCIikmluk4tghf+eKdzT3NmvdVm2SFQDB8JZZ8Ell8Dq1X5HIyIimeQ2sfkG\nG+HUMYV7TnH2i12WLRJVIAAPPwxVq1qSU1Lid0QiIpIpbhOb/zr7S4GCJK5vDVzgvNbyhZI2DRta\nc9SsWfDAA35HIyIimeI2sXkQm2X4UGAyUDXOtT2Amc41vwITXZYtEtfJJ8Pw4XDddbBY9YMiInnB\nbWKzBrjIeX0e8B0wwfk5AFwJPIpNyjcDaAKUAOcDm1yWLZLQHXdAixY2BHzbNr+jERGRdPNiZNLz\n2MzDG7HE5dKwcxcDg4FDnJ83YjMOv+FBuSIJVa8OTz9tNTY33OB3NCIikm5eDbmeiq0RdQMwj9CQ\n7qBFwDjgIGCaR2WKJKV9e5uR+K674N13/Y5GRETSqbKHz1oL3OpsBUB9Z78W0NKE4qurr4bp02HA\nAFiwAOrW9TsiERFJh3RNkrcL63/zE0pqJAsUFMCUKbBxIwwd6nc0IiKSLpr9V/LGvvvC+PHwzDO2\niYhI7nGb2OwBtHK2alHOVwfuAVYCW7DRUVe4LFOk3Pr1g8JCGDIEfkhlIRAREakQ3CY2/4d1DH4H\nG8Yd6SVgBNAUm7/mEODfwH0uyxUptwcfhNq1rb/Nrshu7iIiUqG5TWxOdvYvA9sjzvUKO78S+A8Q\nXLlnKHCky7JFyqVePXjiCZg9G+65x+9oRETES24Tm+AaUbOjnLvQ2S/FllI4y9kvwSbvuyjKPSIZ\ncfzxMGoU/O1v8PnnfkcjIiJecZvYNAZKgW+jPPck5/UDhFYB3+D8DHCUy7LLY0/gXmAV1udnPvCX\nJO4biDW1RdsapyNQSb9bboFWreC882DLFr+jERERL7hNbBo6+60Rx9sDtbCkJ3Kxy0XOfh+XZZfH\nS8AA4CagJzAXKAIKk7x/INA1YlvndZCSGVWr2qzE334Lo0f7HY2IiHjB7QR927GRTw0jjndz9iuB\nZRHngrU3yawG7qVTge5YEvOcc+w9YD/gLudYtA7Q4RYBxekKUDKvdWu480648kro1Qt69PA7IhER\nccNtjc1yrL9M14jjpzn796PcU9/Zr3FZdqrOxJKqFyKOT8JGbXVJ4hkBr4MS/w0bZgnNwIGwdq3f\n0YiIiBtuE5t3nP0wbC4bgNOB45zXr0e5p7Wz/9Fl2alqA3zF7rUyC519axJ7DdiJLRMxNcl7JMtV\nqgSTJtnq35dcAqWlfkckIiLl5TaxuR9bMmEvLEH4FRvWHcA66E6Nck+wsn9hlHPp1IDo/WHWhZ2P\n5UdsDazBWNI2FjgC+ARo612I4pemTeGRR+Cll2wouIiIVExuE5ulQH9gM5bMBJuZ1mN9WbZFXL83\nocTmbZdlZ9Ib2MrlrwMfAOOBY7DO0Tf7GJd4qE8fa4664gr47ju/oxERkfLwYnXvF7B5bHphictq\nYBrRa0cOA57BEoJozVTptJbotTL1w86n4nvgQ3bvXyQV2L//De+9B+efb/vKXvyGiIhIxnj1z/bP\nwONJXDfT2fywAKtFqkTZfjbBpqRFu92RnIQ9MkaMGEHdunXLHCssLKSwMNlR5pIptWvDk09Ct25w\nxx0wZozfEYmI5L6ioiKKiorKHFu/fn25npVPo3x6YrVEfYHnw47PwDoB70sSSUqYFliy9AbQJ8Y1\nHYB58+bNo0OHDikHLP4ZOxZuvx0++gg6d/Y7mvzUvHlzVq1aRbNmzVi5cqXf4YhIhhUXF9OxY0ew\nVQ6SnmolnyraZwCzgAlAbWy25EKsz895hJKaidgkfi2AFc6xWVifoMXAH1gtz7XYCKmxmQlfMumG\nG2DGDOjfH+bPh5o1/Y5IRESS4WVi0xBb2PIAbNbhZCbgy3TH27OAcU659bHh35E1OJWcLbw2ayGW\n/OyDTUj4C/AmcAvwTdqjloyrUsVmJT78cBg5Eh56yO+IREQkGV4kNnsB/wLOxpKZZJu3/BhRtAkY\n4WyxXEhoAc+gq9MWkWStli1t9e/LLrNZiU87LfE9IiLiL7fDvethswv3xZKkVPrs5FP/HqmgLrkE\neveGwYPh55/9jkZERBJxm9iMBg5yXs/EOug2xpKcSklsIlktEICJE20/eLBmJRYRyXZuk4sznP10\nLKmZic0+nGgxSZEKo3FjS26mT4eHH/Y7GhERicdtYrMf1lfmQQ9iEclavXtbX5urr4avv/Y7GhER\nicVtYvOHs//JbSAi2e6f/4TmzW0I+I4dfkcjIiLRuE1sFmCdgPfzIBaRrFazpg0Bnz8fbtYKYSIi\nWcltYhPscTDAbSAiFcERR8BNN8Ftt8GHH/odjYiIRHKb2DwPFAFnAte7D0ck+40eDV272kKZGzf6\nHY2IiIRzO0FfN2wJgv2xGX3PxFbvXgJsTuL+2S7LF8m4ypVtocx27eDKK2HSJL8jEhGRILeJzbvY\nqKjgZHvW7JeoAAAgAElEQVSdnA3iLygZcM4ns+yCSNZp0QLuvx8uvNBmJT77bL8jEhER8GaSvFgz\nCAfibPHuE6kQLrgA+vSBSy+FVav8jkZERMB9jc0JLu7VHK5SoQUCNmFf27ZWczNjBlTSfNoiIr7y\noilKJG81aACTJ8PJJ1vT1JVX+h2RiEh+0/8vRVzq0cMSmuuug0WL/I5GRCS/KbER8cDtt8NBB8F5\n58G2bX5HIyKSv9w2RUXqBHQHWgP1nWPrgEXAm8A8j8sTyQrVq9usxJ07w5gxcNddfkckIpKfvEps\nDgMeATrHueY2YA5wKbYUg0hOadcObr3VmqROOQVOcNO1XkREysWLpqjuWMISntTsBH52tp3OsQDQ\nBfjUuUck51x9NRx7rA0F/+03v6MREck/bhObhsALwB5ACfAYlrzUBJo4Ww3n2KPONVWxpRgauCxb\nJOsUFMATT8Dvv8PQoX5HIyKSf9wmNlcCdYAdQC/gEmCu83PQTufYpcCpzs91gREuyxbJSvvuCxMm\nQFERPPOM39GIiOQXt4lNL2f/APBGEtfPBO5zXp/qsmyRrFVYCP36wZAh8P33fkcjIpI/3CY2LbAZ\nhKelcM+rYfeK5KwHH4Tata2/za5dfkcjIpIf3CY21Zz9HyncE1z1u6rLskWyWt26MGUKzJ4Nd9/t\ndzQiIvnBbWLzEzbaqUMK97R39j+7LFsk6x13HFxzjc1tM3++39GIiOQ+t4nN+87+OqB2EtfXdq4F\n+MBl2SIVws03Q+vWNivxli1+RyMiktvcJjYPO/sWWJITb4K+zs41wb41D8e5ViRnVK1qsxIvW2aT\n94mISPq4nXn4A2A8MARoC3wMfIlNwhdsatobm8emVdh941GNjeSRVq3gzjth+HCoUgVuuglq1fI7\nKhGR3OPFkgrDsQ7BI7H+Nq2dLZoS4G5gtAflilQow4bB5s3w97/Dc8/BvfdCnz4QCPgdmYhI7vBi\nSYUS4FqsU/BDwDdRrvkfMMG55jpsiLhIXgkErCnqyy+hUyc45xxbU+qbaL8xIiJSLl4kNkELsSap\nlkB1oKmzVQcOBoZiq3yL5LX994f//AemTYMlS6BNG6vF2brV78hERCo+LxObcNuwoeA/Oa9FJMJp\np1ntzciRMG6cJThvJDN/t4iIxJSuxEZEklCjhiU1CxbYGlM9e1oT1apVfkcmIlIxeZnYVAHOxvrZ\nvA8sdrb3sf41ffCms7JIzjnkEHjrLRsW/v779vM998COHYnvFRGREK8SmzOBZcDz2ArfRwOHOtvR\n2MreLwDLnWtFJEIgYAtnfv01XHihzVjcsSN8+KHfkYmIVBxeJDZXAVOxjsJBy7C5bD7FkpmgpsCL\nzj0iEkWdOnDffTB3LlSvDn/+MwweDL/+6ndkIiLZz21i0xW4y3m9ERvK3Rg4EDjS2VoAeznnNmJz\n3dyJTdonIjF06AAffQQPPQQvvQQHHwyPPgolJX5HJiKSvdwmNlc7z9gIHIUlOdH+X7nGOXekc20B\nNqGfiMRRUACXXmrNU6edBpdcAkcfDZ9/7ndkIiLZyW1ic4yz/we2lEIiXwF3RNwrIgk0bgyTJ8N7\n78Hvv1vfmxEjYONGvyMTEckubhObetgswm+ncM+7zr6uy7JF8k63bjB/PvzjH/DYYzZ66rnnoFRz\neYuIAO4Tmx+xPjPlvVdEUlSlCowaBV99BUceCX37Qo8esHSp35GJiPjPbWIzy9kfl8I9xzr7d1yW\nLZLX9tkHpk6F6dPhu++gbVsYOxa2bPE7MhER/7hNbO7GVva+DlsPKpGWzrWbCY2mEhEXTj0VFi2C\n0aPhzjuhdWt4/XW/oxIR8YfbxOZr4BysOepjbH6a+lGuqw+McK4JAOcCS1yWLSKO6tVtIc2FC+HA\nA6FXLzjrLPjhB78jExHJLLdLHLyDdR7+BfgTVoNzFzZB3y/Oub2AAwglUd8Ao5wtlhNcxiWSl1q2\nhJkz4YUXbNTUoYfCjTfCVVdZ3xwRkVznNrE5NsqxStgEfQfGuOcgZ4tF4ztEXAgE4NxzbUHNG2+E\n66+HJ56ACRNsVJWISC5zm9jM9iSKspTYiHigdm3417/gggtgyBA49lgYMADuusvmxRERyUVuE5vj\nvAhCRNKnfXv44AOYNAmuvRamTYPbbrNZjAsK/I5ORMRbbhMbEakAKlWyhTTPOMNGTw0ZYonOhAk2\ni7GIH375BT79FObMgc8+gz32sDXRDjnEtoMPhgYN/I5SKholNiJ5pGFDm7F40CC4/HLo3NmSnFtu\ngbqaC1zSaPNmKC4OJTKffgrff2/nGje2v4vbt8OLL8Ly5aHZtBs2DCU74fsWLaCyvsEkikz8tagG\n/BlogI2WmpOBMmPZE7gVG6JeHxtyfgfwXBL3NsZWJe8F1AC+AMaQ2nISIlnhqKNg3jy4/3644QYb\nRXX33dCvn3U+FnFj1y6bGTuYwMyZY1MR7NoFNWpYLeHZZ0OXLpbQ7Ltv2b93W7bAN9/AkiW2AOyS\nJbbw63PPwR9/2DVVqtjUBpEJzyGHQL16/rxvyQ5uE5v9gGFYh9/bgd8izncFpgJ7Y/PXlALzgbMA\nP2bYeAnohE0SuBQ4DyjCRnIVxbmvKvAWUBsYjg1lHwbMALqTnk7UImlVubINAz/3XLj6aujf32pz\nxo+3YeIiyVq1qmxNzGefWQISCNiEkV26WA1hly72c6KalurVbSbttm3LHi8thdWrQ8lOcP/ss6Ha\nH4BGjaInPPvvr1qefOD2/2ZXYXPXFGMJQ7hawP+wmo5IXwLtgZ0uy0/FqcBrQCFla2jeAFoD+wIl\nMe4dAjwAHAl86hwrwGpt/sASuGg6APPmzZtHhw4dXAUvkm4zZ8LQofYFMXKkLc9Qo4Z/8TRv3pxV\nq1bRrFkzVq5c6V8gUsbvv1viEp7IrF5t55o3txqYYE1Mx45Qq1Zm4tq8Gf73v7IJT3C/ebNdU6UK\n/OlP0Zu21BSbfYqLi+lonQA7YnlGUtzmric5+1einLuEUFJzH9Zk0wNLEloBA4HHXJafijOB34EX\nIo5PAp4BumAzI8e6dwmhpAZgF/AUcBvQBC3qKRVcjx7WXHDnnTZqqqgI7rsPTj/d78jELzt22HId\n4U1KX35pNSe1asERR9gUAsFEpmlT/2KtUQPatbMtXGmp1SgtWVI22XnqKVixInTdXntFT3j231+j\nBysat4lNC2f/WZRz5zr7l7HlFACmAY2wPi59yGxi0wb4it1rZRY6+9bETmzaAO9FOR5+rxIbqfCq\nVbM+N+edB8OG2Siq006zBGf//f2OTtKptNRq68JrYoqLrb9LQQEcdhgcc4zV5nXpYl/6FeELPxCw\nmqTmzaF797LnNm2CpUvLJjxz5sCTT4YWk61aNXYtT+3amX8/kpjbxKYx1m/m54jjtbGqo1KsRiTc\nc1hiE5FXp10DbDmHSOvCzsdSP+y6VO8VqXAOPNAW0nz5ZbjySmjVypqmRo60IblS8f32G8ydG0pk\n5syx4dcABxxgNTB9+tj+8MP9bZZMl5o17b0dfnjZ4yUlsHLl7rU8kydb7U9QkybRE559960YSV+u\ncpvYBFtPI/8Ij8Y65O4E3o04F6z8i7ZYpohkiUDAFtLs0cMW2Bw7FqZMgQcfhBO0mluFsm0bfPFF\n2SalpUvtXL16lrxceqnVxBxxhGamrlTJkpN997W//+F+/333Wp6PPrKkZ+tWu6ZaNavliUx4Dj44\nc32O8pnbxGYDlqBEtqwe5+wXYJ1ro9nqsuxUrSV6zUr9sPPx7o21anmie0UqtD33tGUYBgywOW9O\nPNGaqv75T9h7b7+jk0ilpTZUOrxJ6fPPbY6YPfawmahPPtkS1S5d4KCDNMQ/FbVqWafoyIktS0rg\nhx9277z8wQfwY1hHhaZNo4/Y2mcfS6jEPbeJzSKgGzZ8O9iBuIBQ/5p3otwTTIIim6/SbQE2IqoS\nZfvZBAcULopz70LgsCjHk7mXESNGUDeiy31hYSGFhYXxbhPJKm3bwuzZtqDmNdfAq6/CuHE2jFfV\n7v5Zs6ZsTcycOdbMBLbae+fOcP75tm/XzvqMiPcqVbJ+aPvvbwvQhtu4cfeRWu+/DxMnWsIJNsS9\nZctQh+UqVWxoeuXK9vsVb5+pawoK0pcEFxUVUVRUdtaV9evXl+tZbkMcDtyL9aW5G5vPZQBwtnO+\nCzA34p5bgL9ho6QiunKlVU/gdaAv8HzY8RmEhnvHWoDzMmA8Nqw7OMFgZeBzYCNwVIz7NNxbctK6\ndfDXv8Ijj1j/hAkT7IvTSxruvbstW6xDb3gis2yZnWvUKDTUuksX6NQJ6qvBP6vt2mUdtiNreVas\ngJ07bdu1K/p+587Q7MyZFExwMpFo/fZbMdOmZX649yPApcChwChgJKFk6VV2T2rAhk5D2aHTmTAD\nmAVMwDo3f4vV4PTAJuoL/hWZiCVnLQj1B3ocGIoNFR8NrMGGrf+JzCZnIlmhfn146CEYONCap7p2\ntT4at92mWV+9UlJiX3ThTUoLFtgXW7Vq1hRy5pmWzHTubP/LV5NSxVJQYEtDtGgBp56a+v0lJfb3\nIV7yE+tcea716ppo127duvs1GzaU73N1m9hsxb7Y7wdOd563HRv5NCzK9cdic9iATYyXaWcB44Cb\nsf4xX7F7DU4lZwv/J2I7cCK2pML92JIK84FTgPfTHrVIlura1b50J0yAMWNg6tRQfxx9yaZm9eqy\nNTFz51pH1UDAZoLu0sWSx86doU0ba6qQ/Fapkm25+nehuLh8i/R6+U9PNSxZWAtsi3HNAdgyDKVY\nQhBrpt9coaYoyRs//gijRsEzz9h8J+PH2xdweeVKU9S2bbB2Lfz6a/RtxQqbyTf4Fps2DU1416WL\n/cOu+VIkH/k183C4rcDqBNcsczYRyTFNmsDTT9vK4UOHWt+bq66yCf/23NPv6LyxY4f1L4qVpERu\na9darUukKlVs1eqGDW3G2379Qn1jmjXL/PsSySVaDkxEPHXiiTZnyt13wy232AKF//43/N//ZVfz\nVEmJjR5KNkn59VeINkijUiVo0CCUqDRsaEld+M+RW61a2fVZiOQSLxOb2tiMwl2xtZOqA4OAsDVX\naQbUwWp3vvOwbBHJIlWr2qipwkIYPtwm+jv1VLj/fuso6bXSUutomKj2JPzndessuYlUv37ZJKRV\nq+jJSTCZqVtX84+IZBOvEpvLgdux5CaoFKgZcd3xwBSsD04zoi9TICI54oADYNo024YPh9atLeG5\n9trY86mUltoaPrt22c9bt9qChYmSlp07d39W7dplk5EWLazvSqyalHr1bJipiFRcXvwKj8FGGYEl\nLIuxTrPRFAF3AXthi2A+6kH5IpLFAgFbTLN7d7j1Vrj5Zltk8C9/id0UtC1s+MHatTbBXI0aZZOQ\nZs1swrlYSUqDBlrXSiQfuU1s2gF/d14XYXO9rCf2aKddwEtYDU93lNiI5I2aNeH22y1JGTECHn/c\nJpULJiKHHFK2r8rw4Zbk7L03fPttbi7CKCLec5vYXIENGZ8DnE9yw7c/whKbaEsUiEiOa9UKZs5M\nfN0119i+oEBJjYgkz22Xt+Oc/QMkPydNcLh35MKZIiIiIq64TWyaYp2EF6dwz2ZnX81l2SIiIiJl\nuE1sguMQUlnbt4GzL+cqECIiIiLRuU1sVmJ9bA5J4Z5jnP23LssWERERKcNtYvOOsz8/yevrYquB\nA7zlsmwRERGRMtwmNg9hfWy6YyOd4mkIvILNYbMdeNhl2SIiIiJluE1sFmIT7gWwkVEvA32dcwHg\nKOA8YDzwDaFmqJuAFS7LFhERESnDi5mHrwdqAMOAM5wt6JEo198N3OFBuSIiIiJleLF0WykwHOgB\nvE3s+Ww+BHoC13hQpoiIiMhuvFzu7U1nqw0cDjTGhoGvAb4AfvWwLBEREZHdpGMd243Ae0lc1weY\nmobyRUREJE950RSVigDWuXgh8HyGyxYREZEcl44am2gKgH7AX4GDM1SmiIiI5JnyJDY1gIuwzsL7\nOMe+B14FpgDbIq7vC9wCHBh2bDvwRDnKFhEREYkp1cSmDfA60DzieFugN3AlcCLwM7Av8CShuWsA\ntgITgX9gyzGIiIiIeCaVxKYGNnNwZFITrhXwFDAYG97dzDm+CZtp+C4s6RERERHxXCqdhwcABziv\n3wa6AbWwhKcT8Kxz7kQsAWqGzWkzHmgBjEJJjYiIiKRRKjU2pzv7pcApwI6wc8VY5+C62CR87Zzz\nZ2JNVyIiIiJpl0qNzWHO/h7KJjXhbgt7/ThKakRERCSDUklsGmDLJyyJc81Xzr4UmFbeoERERETK\nI5XEpqqzj7c0wtqw16tSD0dERESk/NI58/DOND5bREREZDeZXlJBREREJG1SnaAvAAwBfolzPpnr\ngm5OsXwRERGRmMqzpMIQj64rRYmNiIiIeMjPpqhA4ktEREREkpdKjc0JHpdd6vHzREREJM+lkti8\nm64gRERERLygUVEiIiKSM5TYiIiISM5QYiMiIiI5Q4mNiIiI5AwlNiIiIpIzlNiIiIhIzlBiIyIi\nIjlDiY2IiIjkDCU2IiIikjOU2IiIiEjOUGIjIiIiOUOJjYiIiOQMJTYiIiKSM5TYiIiISM7It8Rm\nT+BeYBWwBZgP/CXJewcCJTG2xl4HKiIiIqmr7HcAGfYS0Am4DlgKnAcUYQleUZLPGAgsiTi2zqP4\nRERExIV8qrE5FegOXA48CrwHXALMAu4i+c9iETAnYtvpdbC5pqgo2bwx9+mzMPocjD6HEH0WRp+D\nO/mU2JwJ/A68EHF8EtAU6JLkcwJeBpUv9Isaos/C6HMw+hxC9FkYfQ7u5FNi0wb4CusTE26hs2+d\n5HNew2po1gJTU7hPRERE0iyf+tg0AL6Jcnxd2Pl4fgRuBT4BNgKHAaOdn48ilCCJiIiITypqYnMc\n8HaS17YHFnhQ5hvOFvQBMB1LaG7GmrpERETERxU1sVkCXJTktT84+7VEr5WpH3Y+Vd8DHwJd4130\n1VdflePRuWX9+vUUFxf7HUZW0GdhEn0O27dv///7XP689PchRJ+F0edgyvvdmU8dYR8GCoG6lO1n\n0xd4BmtO+qQcz/0v0A7rgBypCTAXaFaO54qIiOS7VcARWHeQpORTYtMTeB1LZJ4POz4D6wC8L1Ca\n4jNbYM1cbwB9YlzTxNlEREQkNT+SQlKTj97AmpwuAo4HHsFqbwojrpsI7AD2CTs2C7geOB04AbgS\nyyTXA63SGrWIiIhIFDWxJRVWA1uxJRXOjXLdJGAXVosTdA82Od8GYDuwEngCOCiN8YqIiIiIiIiI\niFfcLLaZS/YE7gRmAmuwZr8bfY3IHyditXtLgU1Ybd9/gA5+BuWD9tgUCd8Dm7Fm4Y+wNdvy3UXY\n78fvfgeSYccRe3Hhzv6F5Zs/Y31B12G/I0uBMb5GlHmTif13Iqm/FxV1uHe282KxzVzQELgY+Bx4\nGfvHO9UO2rngUqAR8C9gsfN6JDYK72TgHf9Cy6g62PQLT2NJ/57Y78aTwP7AON8i81cz4J9YE3lt\nn2Pxy/Xs/nuw2I9AfNQPmAI8B5wP/IF1dci3wSc3A+MjjgWAV7GKgrkZj0g4FcsqI2to3sD+p55P\ny1iEa4B9Ljf4HYgPGkc5VhPr6T8rw7Fko4+xWpx89SqW+E8if2tszvI5Dr81wxKZB/wOJEsdi/09\n+XsyF+frl2w6ebXYZq7Jp6kFIv0S5dgmbO2y5hmOJRutxdZfy0f9gWOAoeT370g+v3ew2uwawD/8\nDiRLDcYSm4nJXKzExnteLbYpua0O1scm36rbwb7EKmNNckOw5rh/+hqRP/bC+uKNxpqh8tmD2BQb\nG7C5xY72N5yM64Yl+K2wpvsdwM/ABKCWj3FlgzrA2cBbhFYSkAxbinX+itQES3auy2w4WaMh+dsU\nFc1TwDbgcL8D8cFDhDoC7sDmhMpHLwKzw36eTP41RbXHptI4HUtmBmLJ/g6gh39hZdwSrLPwBuw7\nohswCqvZfd/HuLLBZdi/FdGmZpEMUWITnRKbkFuwz2KI34H4ZB+stqon1klwF/n3e3E2NpfWwWHH\nJpN/iU00wU7m8/0OJIOWYv8mXBtxfLhz/ISMR5Q95mLN+VX8DiSffQx8GuV4a+wvaLKLd+YaJTbm\nRuxzGO13IFlkPDbpZSO/A8mQPYGfsKkQ6oZtz2CJTR2sc3k+m4D9nlT1O5AM+Rh7v+0ijrd0jo/M\neETZ4TDs/d+Tyk3qY+O9BcCh7P7ZtnX2izIbjmSRG8O2O3yOJZvMxfrcHOB3IBnSEBspNwqbryS4\n9cUSmt+wIfCSP9NDfJ7gfL58DpEGO/vHfI1C6En09sAZwAryt/d/vtfYjCWF4Yp5ZgrWp6KB34Fk\nSFVs+Gq3sO1Y4L9YP4tu5Pf6c/WwqTHm+R1IBnXH/n24PuL4Vc7xfOtMDfZ7sharzUqJJujz3gxs\nbpIJ2GRb32KLbPbAJiPLt8z7FOx/ocGe/a2x/gVgs9Bu8SOoDBuJJTQzsP5XXSPOf5LxiPzxCNY5\nci424qMhcA72n4A7sX/E8sE24L0oxy/E+hvNjnIuVz0NLAOKsVqrP2G/L42AAT7GlWlvAq9h//Gr\nhHVn6OT8/CrwoX+h+eb/sCRXtTVZItnFNvPBMkIjYHZFvN43zn255B3KvvfwbZePcWXaQOwL/Res\nT8064G1sxlWxua42+h1Ehl2HJTW/ERri/CLQ0c+gfFINuB2brHI79m/nreRvp9k3sN+HfO9vJiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIikucGElriIV+WuQjXAFun\nqgQ4wsVzJjvPWOZBTNmmE/be1pI/i5VKBVXJ7wBEpNz2J/r6U6luwYVZ822B1qBbscX2XsMW6HQr\nFz/Hz7BFa+thn5eIiIjn9ie0kGa0LXKxzWjndwEXhL3Otxqbg7DFF3cB7V0+azL2OX7n8jnZqiP2\n/rYDB/oci0hMlf0OQETKbSXQJsa5ALY6blNgFXBynOd8CTzhbWgVxt+AAuAt4HOfY8l287DV2Y/F\nPrdB/oYjIiL5Zjm5XYPg1l7ANuwzGuDB8yaT+5/3YOw9bgEa+RyLSFTqYyMi+ao/UAXYDEz1OZaK\n4gUsGayKfX4iWUeJjYgMJP6oqHedc+84Px8ITMBqJrYA3wOPAwdE3NcGmORctxX4ARhP8v/T7wUU\nYTVPW4ANWHPR7Vhti1vnOvs3gU1JXN8Ka7Jbgb2fFcDT2IihZNQDLgSewpr//sD6q/wEzAAuxhKt\naO7B/gx2Ys2Licxzrl8S5VxL4H5gUVgMq7HPdiL2uewR47kbgbed1+fGuEZERCQtlpNc08hA4nce\nftc5/zbQHUswwjskB5OiX4G2zj39CTXzRF63DGgSJ5462Bd9tM7PwZ83AKckeF/x1MKShBLg+iSu\n70vo/UTGsx1LWCYT//NeTvz3VIIlJNGStkPDrrkuQayHhV17bcS5c2K8j8g4WsV5/ljnmm1AzQSx\niIiIeGY53iY2XwPrnOcOwWoqjgLuJvTF+ClwNJY0LMK+8DtiHU6fIPTFWRQjlj2wIdfBL85HgNOx\nEUtdgKuwmp9gP4/yjmTqSeg9n5jg2i7YyKkSrNlqHPYeOwHDsNqObcB84n/ePwAfAX/FkrIOQFeg\nH/A6oc/mnRj3f+ic/ypBvP8ilHCFJ0l7YTU0JcCPWAfgE4F2znvsBzwE/Ez8xKYHoc+uR4JYRERE\nPLMcbxObYNNGtAna/hF2zTrgfaBalOueI/Sl2zDK+Vuc8+uBzjHirQcsdq57L8Y1idxA6D0nahr7\nzLl2K/DnKOebEkq24n3eiYZIDwx7xgkJzh8Z4xlVgDXONa9EnBtE6D3HS1z2IPqfXdBeYXGMjXOd\niIiIp5bjfWIT63/o+4VdsxM4OMZ1x4WVdVrEuT2xhKYEuDJBzKeEPac8c6pMCLs/Xl/DzoTe17/j\nXHcOiRObZBQ7z7gvyrkahJoBH4lx/1lhcZwRce6vhJoM3agSVsYDLp8l4jl1HhaRZP0GzIxx7nus\nmQNgAdZsFc0CZx9g987GxwK1sZl7n0sQy/thr2PVXsQTrKXZiH1Bx9Ld2ZdiHaFjeRlLypIVAPbG\nOvK2CdtWO+cPi3LPZkJNeOcC1aNcc6Gz/xmbSTlc8Nn1sea98tpB6M9aQ74l6yixEZFk/S/B+eAX\n+9IkrgHrwBsuOLoogH0Jl8TZNoZdu3eCuKKp4+x/T3BdsDP0duCLONftxPrYJNILSzg2YO9xCZbs\nBbdTneuiNdMBPObsawN9Is7tjfUdAht5tSvi/DRCn//L2KSEI7C+Pql+FwQ//zpxrxLxgRIbEUnW\n5gTngzUf8a4Lrx0piDjXOOx1aRJb8LpoNReJBL/gaye4rp6zX0fiNaB+iXMugCUlr2LJy57Efk8Q\n+z19RijBujDi3ADsMy3Fhm1HWofV1Kxy4jkeG0b+GVYb9yKWeCUjmNCkUkslkhFaUkFEskUw0SnF\nahF2JHnfmnKUFbynFvYfvHjNUcGY3BhEaAmC+cC92AiyVVgiGHz+E8D5WOIRy2PYPDTHYn2bvneO\nBxOdT4k+fw3AB9j6WH2wBOsYoDn2OZzlbG84+y0xnlGF0DDv8nz2ImmlxEZEskX4l+Sv2Jd+uqwO\ne90I65MSzTpn3wBLNuIlOPEmDbzY2X+DDZHfFuO6+nGeEfQUcBc2cmkg8Hds2Hiww/bjCe7fBjzj\nbGB9nXphQ9dbYuuKjQOujnF/eDPZT0nEK5JRaooSkWwR7KMSwOaJSac5YWXFmwtnobPfI8F1lROc\nb+3sXyF2UhPAaqoS2UBoCYgBzj5YG7QJeDaJZ4Rbho1uOgJbWBXizyoc/j4/TbEskbRTYiMi2eIt\nQksbDE9zWcHJ7iD2fDlgyy2AJR0XxLnuTKBunPPB2vF4M/WeTvwZmcM96uz3B3oDf3F+fpHQiKVU\n/fzNXDIAAAKgSURBVI71t4HocxUFBT+vHdiEgyJZRYmNiGSLDVjfEbDmmn8Rv69JHeCKcpa1idCX\neNc4183F5pYBuJzoNUlNgH8mKC84Uuw0oidAB2LraCVrNjZKLYDNaRMcYRavGaoH8UeQ1SGUtCyL\nc10XZz+PxB3KRUREPLMc79eKSqa8RH08gkO2b4hyrgqh2pQSbATQFdiMv+2xDrOXYc0tm3DXefVq\np4xNxB8d1Rkb7h25pMIRJL+kwsiw9/Ql9pl3BroBN2Gji4LJVrKT/F1L2SHw8YbZg61ltR0bbj4c\nW07hcCeGIU5cwWfFShjrYDMwl2BDxUVERDJmOaFFJ+MZSOgLze/EBqy5poiyX9qxtm8SlBVPI2zk\nTwmhPiqx9CX0hR65bXPun0TspKQyuy/sGb79gY1UmhznGZEaE0q4SoDRCa6fROLPcxfRZz0OuohQ\ngqfJ+SQrqSlKJHdFmx8l1nXh+1jPSba8ZMS7bhNQiM0o/DBWk7ABmwTvN6xm5DEsETg0yfKiWQM8\n7bzun+DaZ7HajSex0VrbsI62z2G1SYmSuZ3YyKPhWK3MJiw5+B+2vEMHrENwKsPKfyHUB2gnNlQ8\nnquw9/k41sS20nkfm7GZoic57yVe/6bznH0RGuotIiKSdQ4kVOuRzIikbFIJm8OmhN2XT0iHjoRq\nqMqzPpeIiIhkwHgylxx46SRCTUhnZqC8V52yJmSgLBERESmn+tiEgLuwDsEVxUws0VjJ7stTeK0T\noZXBk5lEUERERCSuPbHlEDoA/yZUW3OVn0GJiIiIlMdAdh/FNA8tjSNShkZFiYhUDMERU7uwofX3\nA92xEVEiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI56P8BHNtD\nvTxuKkoAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "time_fit = irfft(fit)\n", + "\n", + "mpl.rcParams['xtick.labelsize']=12\n", + "mpl.rcParams['ytick.labelsize']=12\n", + "ylabel(\"Response (relative)\",fontsize=20)\n", + "xlabel(\"Time (days)\",fontsize=20) \n", + "\n", + "ylim(-0.5,2)\n", + "xlim(0,7)\n", + "\n", + "plot(time_fit)\n", + "plot([3.13,3.13], [-50, 50], color='k', linestyle='-', linewidth=2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lag/data/clag_analysis-origbins-6439A.ipynb b/lag/data/clag_analysis-origbins-6439A.ipynb new file mode 100644 index 0000000..4179b43 --- /dev/null +++ b/lag/data/clag_analysis-origbins-6439A.ipynb @@ -0,0 +1,861 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X18VPWd9/9XSAKSRBRwbFEoxFBYg1pNKhD6s+qCqFBy\n1UI35PGzbbjorle73V2vSzK22u7P31W07aRre117tbXXlpL21zWmWnYXoevderNU7mro9sb4kxID\nyO2MiDcQhNyc64/vHOcmM8lM5szMOTPv5+ORR2BmMufkmzPnfM73+/l+viAiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjJm+4GhBF//K4/7JCIiIi42Fbg46msxJnj4\neD53SkRERLzju8DefO+EiIiIeMN44A3gy/neEREREXFOWRbf+5PABUD7CK+ZFv4SERGR9BwNf+Vc\nSRbf+0ngPeA/JXl+2iWXXHLkyJEjWdwFERGRgnUYuJY8BBDZ6nmYiUmWvG2E10w7cuQIP/vZz7j8\n8suztBsS78477+S73/1uvnejqKjNc09tnntq89x65ZVXuP322y/F9N4XTPCwBjgObB3thZdffjl1\ndXVZ2g2Jd+GFF6q9c0xtnntq89xTmxeXcVl6zzXATzDTNEVERKSAZCN4WAJMB36chfcWERGRPMvG\nsMVTQGkW3ldERERcIBs9D+Jizc3N+d6FoqM2zz21ee6pzYtLNqdqjqYO6Orq6lKSjYiISBr27NlD\nfX09QD2wJ9fbV8+DiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiI\npEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIik\nRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpKUs3zsgIlJIOjrMF8B778GBAzBzJpx3nnmsudl8\niXiZeh5ERBzU3AybN5vvZ8/C3r3wzjvw6qsmmOjogMbGSIAh4kXqeRARcVgoFOKppwK8/no3UMqh\nQ4McPlzL97/vZ/FiX753TyRj6nkQEXFQMBikoaGJ9vaV9PZuBOZy+LAF/Ae33HIDzc1/RSgUyvdu\nimREwYOIiIPuvruNnp4HgMuA1cBKYCvwNAMDv+eRR5ppaGhSACGepuBBRMRBu3d3AwuANuABYCFQ\nEn52HLCInp778fsDedpDkcwpeBARcdDAQCkmWLCDiEQWhIMMEW9S8CAi4qCyskHAAuwgIpFx4SBD\nxJsUPIiIOGj+/FpgF2AHEYkMhYMMEW9S8CAi4qBAwE9NzT3ARcDOJK/aFQ4yRLxJwYOIiIN8Ph87\ndnSyenUVZWX/GXgRGAo/OwTsoKbmXgIBf/52UiRDCh5ERBzm8/no6PgeTzzx78A/c+mlK4BGqqtX\n0NKyiR07OvH5VCxKvEsVJkVEHBS7toWPOXPamDwZDh+GGTNg6VJQ3CBep54HEREHRa9tcd55MHcu\nTJoEc+bAhAla20IKg3oeRESyQKtnSiFTz4OIiIikRcGDiIiIpEXDFiIiWRSbQAkHDsDMmSYfAjS8\nId6k4EFExCGjBQo33AD33mteU1eXt90UyZiCBxERh0T3IuzZA/X1JlCYMSOE3x/gRz/qBkpZtWqQ\n66+vJRDwq96DeJKCBxERB4VCJlB44QUTKNx2Wx8nT4Z4990fAgGghN7eIXp7d7NtW5MKRoknKWFS\nRMQhwWCQhoYm2ttX0tu7BdjMwYNX8+67DwELiayyOQ5YSE/P/fj9gbztr8hYKXgQEXHI3Xe30dPz\nALGBwivh/yeygN27u3OybyJOUvAgIuIQEwgsiHu0lEggEW8cAwOl2d0pkSxQ8CAi4hATCMQHCoOA\nleQnhigrG8zuTolkgYIHERGHmEAgPlCoBXYl+YldzJ9fm92dEskCBQ8iIg4xgUB8oOAH7gG2A0Ph\nx4aAHdTU3Esg4M/hHoo4Q8GDiIhDAgE/NTX3ADuIBApTgXVUVd3BzJm3Ao1UV6+gpWWTpmmKZ6nO\ng4iIQ3w+Hzt2dIbrPKynt7eU6mq7INSzvP66j/p6eOwxVZgUb1PwICLiIJ/Px8aNbe9XmPz852Hn\nTli71pSsnjMHvvxlrW0h3paN4OFS4FvALcBEYC+wFtiThW2JiLhG/NoWc+bA889HAoU1axQoSGFw\nOniYDLwI/BsmeAgCNcBbDm9HRMR11IsgxcLp4OFu4ACmp8F20OFtiIiISB45PduiEegCHgWOY4Yq\nPu/wNkRERCSPnA4eLgO+ALwKLAV+APxP4LMOb0dERETyxOlhi3HAbuCr4f//FrgC+C/ATxP9wJ13\n3smFF14Y81hzczPNGjgUERGho6ODDjsTN+ytt/KbSphstZax2g88BfxF1GNfAO4Fpse9tg7o6urq\nok4TnkVERFK2Z88e6uvrAerJw2xGp3seXgT+JO6xOZigQkSkaMVP4zxwAGbOVL0H8Sang4fvYAq4\nfwWTNDkf+PPwl4hI0WpuhiVLQuHqk9309pbS329Xn/SrTLV4itPBw0vAbcA3gL8FXgP+BugY6YdE\nRApdMBhk0aLV9PQ8AASAEnp7h+jt3c22bU1a50I8JRsLY20FrsJUl5wHbMjCNkREPOXuu9vCgcNC\nIulm44CF9PTcj98fyN/OiaRJq2qKiOTA7t3dwIIkzy4IPy/iDQoeRERyYGCglOQT3MaFnxfxBgUP\nIiI5UFY2CFhJnh0KPy/iDQoeRERyYP78WmBXkmd3hZ8X8QYFDyIiORAI+KmpuQfYAQyFHx0CdlBT\ncy+BgD9/OyeSJgUPIiI54PP52LGjk49/fBMVFSuARiZOXMGkSZuYPr2TtWt9NDZGCkmJuJnTdR5E\nRCQJn8/HCy+0sWcP1NfDP/wD3H47PPggqEq/eImCBxGRHIguT/3OOyEmTQrw53/eDZRy3XWDfPSj\ntTz2mCpNijdo2EJEJAeam2HzZvjRj4IcOtTEO++s5MyZLcBm+voe59//fSUNDU2EQqF876rIqBQ8\niIjkkCpNSiHQsIVIBrRSoqTLVJJMFiAsYPfu9bncHZExUfAgkoHo4MBOguvoUPKbJKdKk1IINGwh\nkqFQKMSaNa2sWrUcaGTVquWsWdOqsWtJSJUmpRCo50EkA1pmWdI1f34t3d27MDkP8VRpUrxBPQ8i\nGVDym6RLlSalEKjnQSQDSn4TSC9x1q406fcHeOGF9fT2llJdPcj119cSCKinSrxBwYNIBpT8JpBe\n4qwJNHxAG7NnQ3m5CTROnIC1azVDR7xBwxYiGVDym9hSTZy1i0U1N5ueiblzzeOvvmp6LTo60BoX\n4nrqeRDJgJLfBMaWONvcDEuWhMLDF9309pbS328PX6hMtbibeh5EMqDkN4GxJc4Gg0EaGppob19J\nb68pU93b+zjt7SpTLe6n4EEkA1pmWcBOnF2Q5NkF4edjaaaOeJmGLUTSEJ9V//vfw8CAj9LSNioq\nYNIkk/y2axdYlpLfCp19PBw4kH7irGbqiJcpeBBJQ6Ks+q4uk1UfCkXGr6GU118f5KmnalmyROPX\nhcrOW/jwh49gEmcTBRCJE2c1U0e8TMGDSJrig4RVqwaZP38mu3a9zP7930KVJouHnSj59tvzgJ1A\nQ4JXJU6cjczUST3gEHEL5TyIpKijA26+OcisWcOT3Do7T7N//zfQ+HVxieQtfBu4l+GJsy8mTZw1\nAcWuJO+smTribgoeRFLU3AxTpnydvr71DA8S3iDxXSckS5gT74skSvqATmATYBJn4RNccMFfJu11\nCgT8XHxx4pk6FRX3cuSIX4m24loKHkRSFAwG+cUvniVxkKDx62IUm7dgqkbCVmAz8EsGBj7E2rW+\nhEGAz+fjD3/oZPXqn1FVVQdcCXyUqqq/orFxHj/7mZJtxb2U8yCSorvvbqO//xISBwkavy5Go+Ut\nzJw5yObNyX/esix+/etXOHXqIUwPRgmnTg3xyCO7+fWvlSsj7qWeB5EUmS7q8SQuR12LSZhLROPX\nhSqTvIWODqivV60H8SYFDyIpMl3UyS4WfuAu4EVUaTLCXqehsRGWLjXrOCxdGnnM62P6mVQYbW6G\nSZPSLy4l4gYKHkRSZLqoW4FEF4s/UlYWYvXqR6iuNglz1dUraGnZVNRdz83NsGFDiKlTW9m3bzl7\n9zayb99ypk5tZcOGkOfH9O0Koy0tm8b0d1etB/Eq5TyIpMgsgvUaJqs+AKzHJEoOAhfh8y3l9Om/\n1zLLUcayYJQXxFYa9XHgQBsXXwy9vTBjhuldSeXXUq0H8SoFDyIpCgT8/PKXTQSD9wPfwnTcDQG7\nqKi4lyuv7CzaICGZ2PUbbLFj+hs3tuVp78bOriy5alWAl17qpq+vlIkTB5k0qZaSEj8dHWaGxWjH\ng1ZlFa9S8CCSIntqnakuuZ7e3lKqq+0llL15B51thbp+Q6IelTNnhjhzZjeHDqXeoxII+Nm2rYme\nnvsxuQ+RgNTkTHRm9fcQGSsFDyJp8Pl8bNzY9v66Fo89Zta1sMUvnHXggBm+OO8881ix9UwU6pi+\nUz0qds6EAlLxGgUPIimKDgx6e6GyEm6+2fz/zBm47DKYNQvOng3x3nsBXn+9m97eUvr77YtB8S2Q\nVahj+k71qJhjyhSXUq6MeImCB5EUJTuR270Q7e0wfXphJgiOVaGO6TvVo6LgQLxKUzVFxigUCrFm\nTSurVi0HGlm1ajkf+9ifhcevVfQHMquD4GaRHpVEvNujIpIqBQ8iYxAMBmloGL665r59JlBIrPiK\n/mRaB8GttCKmFDsNW4iMQfKEuSoKMUEwE6MlmXqRZklIsVPwIDIGyRPmCjNBcKziZ5/MmQNf/rL3\nZ59oloQUOwUPImOQPGHO7s4urATBsfJqcJCKQuxREUmVggeRMUg+BdEPNAFfBxqI7s6eOPFejhzp\npLGxsC+qxaBQe1REUqXgQWQMkk9B9AHrmD37Xs6dK+PgwROUlQ0wMFDFxRdP4pJLAkVZ76HQOB0c\nqLiYeI2CB5ExGClhrqLi21x66ffZvftLwA8YGFgAlHDgwBDt7cVR70EXw/TYa2WYHAoVFxP3S5YW\nngt1QFdXVxd1GigUDwqFYk/2kYQ5P35/gPb2lSTOfdhBS8smVy0IlY2L/Ujto4thrNi1MkywaYLR\n3dTU3FPwwaakb8+ePdTX1wPUA3tyvX0FDyJjMNrFds+e5Rw+vIVksy5qa1fw8stbc7W7KXHyYq+L\nYXrWrGn1VLAp+Zfv4EHDFiJjMNqd+Ny53loQKtEqkZmU1S7UpbizpVBXH5XCpQqTIlnglfLFHR3Q\n2Aj19dEX+8zLapuL4YIkzxZfpc3RFOrqo1K4FDyIZIFXyhc3N8OGDSHeffc5RrrYP/poN42NJtCw\nh2tGMtrFcP/+0rTer9B5JdgUsSl4EMkCrywIZa/R8fbbk4m92IeAVmA58EnOnj3I1KmtbNgQSilx\ncvjFMPr9Gunv703r/QqdV4JNEZvTwcN9mDNk9NcRh7ch4npeWRAqkpswnsjFPogpdLUSMIt+DQz8\nlvb2lTQ0NBEKhUZ939iL4fD36+9P7/3cwh7maWyEpUth7lzzPdNeFK8EmyI2p2db3Ad8ClgS9dgg\ncCLBazXbQgqWV+oczJu3nO7uLZjKmCuBGuDTwAPAogQ/kVrmfygUoqHBroPxC2AVhTKTIFtTUDW1\nVdJRiLMtBjG3GiJFyy3BQbz4oOaPf7RzE/zAbZi73fMwpbUTSS3zP3rhqH/8xyfp708WHHhrJoHT\ns1Js5u/iA9qYPRvKy02weeIErF3r3uNJilc2gocPA4eBs5h+y3uA3ixsR0TSZFcyXLUqwEsvddPf\nfxAzXOEDrgGagW+SaeZ/9MWwvPxV+vsLYyZBtqagKjgQr3E6eNgJfAbYC3wQ+CqwHZgHvOnwtkRc\nzY1DF7F3zq3An2HG2RcBr2F6HDJfVjz6d5s3b5Du7uTvd+TIYFqLhdntevgwHDwIZ87AhAlw9ixM\nnAgf+hBceml22lf1GEQMp4OHJ6L+/TLmrNQDfA74TqIfuPPOO7nwwgtjHmtubqZZYbh4nBvXK4jc\nOV8GrAbuxsT49wP2EIazy4rHLiIWwlx8u8Pbe5cPftBiw4ZQyu0R3a5vvPEb3njjBGfPmsXHLrpo\nEldddVXW2lf1GCQfOjo66IjLxn3rrbfytDe58xTwvQSP1wFWV1eXJVKIjh8/btXU3GjBDguGLLAs\nGLRgh1VTc6MVDAZzvk+1tcvC+7IuvF+WBcHw/68IPxe04EYLtof3197vX41pv4PBYLgdtoTfN749\ntqf1vpF23erI+6Uj0n5Wgq9Bq7Z2mePbFEmkq6vLwnQR5mXGQbbrPEzA3MYczfJ2RFwndnw886qN\nTojcOUdXgDS5CXALpsfBB3QCmwAzzRQWM3v2vWNKCLSTJ2fPbgPWM7w9GtJqj0i7PoeZFZLZ+6VD\n9RhEDKeDh28DHweqMWemx4Aq4CcOb0fE9dxYojlSvClR97sfk9+8A5iKCSgeB77CxIklXHbZo6xd\n60u7lkFHB6xd6+PYsUpGmsXx2GPdKb13pF1z376qxyBiOJ3zcCnQAVyEGdzcgbkteN3h7Yi4nhvH\nxyP5B4mSIu0eh29RXv4X9PdXR9UaGHthKztxce7cUvbuLWF43sMgUMvFFw+klOAYadfct2/0FNQX\nXlgfV4/BPcW/RLLN6eBBWY4iYZG7/LHPWnBSRwccOeKnoqKJvr4ZmMlR8T0BPmAlF11Uwvnntzla\na8D8vscxp4lInQRz576L11/fQig0euJkpF1z376qxyBiaEnuAuTGKYLFKHaWQbzcj4+bWQrw1399\nOY8//gKnT38GM6LYgBnBNBfxmho7t8HZ7Zv28BPJU7CZPIX+/h+lVCch0q7OzgpJhT47IobT5anT\nofLUWaRSt/kXW6J5AYkv0Ln7WwSDQa68cjXB4APh/XkD+Bamsu1JJk68mGuvvYrHHsvOMRIKhbj0\n0hvo7/8DyXoLamtX8PLLW0d9H9Ou6zBpVvHtu5OKiq9y7bWdHD3qcyRwVkAubpPv8tQKHgpQbCGg\nBUS6hndTU3OPqxZmKnRuCuLWrGmlvX0lydaYmDZtEx/9qLnrz9bFcPbs5fT0JA8O5sxp5NVXN4/6\nPna7Pvvsbzh48ARlZabOw8yZk2homA2MY9eu1+jtLaWiYpApU2qpqfFnFEy46W8pku/gQcMWBShb\nJXQlPW4bHx+tOuLkyevZPPp1e8w6OuD4ccg0T8Fu18OH2+jrg8rKSIXJd98NsmnTas6diwTOfX3H\n6evzc+zYDQwMzKK/n7Qv+tla00JE0qciUVkyWiGbysrF1vTp66zKymVWefkKq7JymTV9+jpr6dKg\n9fDD+d57yZY5c1YkOSbM15w5K7K+Dy0t0cWp4r+2Wy0t6xx+/+NJCkmlV6gr2/udiYcftqwVK8zX\nTTdZ1pw55rv9mD7ThanQi0RJHow8RfAN+voOc+jQSk6f3kJ//2ZOn36cQ4dW8vzzTbS3h2hsJO25\n/OJ+kVkKieRm9ke26yQMr63RRuJCUukV6nJjzQ5bczNs2BBi6tRW9u1bzt69jezbt5ypU1vZsCGk\nXAzJCg1bFKCRpwj+dyxrA4nWGTh3zuK11z7N9u2Pqgu2ALlh9keqdRLGmqA4PHB2ZiErN9bssI00\npNLZ2cR113UyYYJPSZ3iKAUPBSj5RSIIPAv8ffjfq4mfb79v304aGjSGW4gCAT/btiWf/REIdGZ9\nH1LNAxnromLDA+fML/qmPoa7anZEi81xir0hOHNGNwSSHQoeClDyi0QrpghoCbHdubZxwCIlVRYo\nN1RHTPXud6wJisMD59Qv+iP1dpx//mWcOmUvXR4vv2taRBJhi+OGQNNm3UE5DwXIvki0tGyiutos\nbFRdvYILLngZGI85mbp3DFeyw15j4sSJNmbP3sqcOZuZPXsrJ060jWnNimxKZ1Gxjg5obDRfvb1+\nysujcypqMZU0E4m96CfLHaio+CJlZS8B64DtxOZqvMisWV/O65oWkSGVZPkdi/K2EFs2KMfDHdTz\nUICSdQ1v394IzMVU5Ru5O/fNN0tpbDT/U3SfGbfcKXnpbzbatNLoXIXoIY4//KGb/v5yqqq+AJRx\n6tSFlJVtYWDgRySqpBk9VJO8t2MN8HfAh8OP309kTY6LWLjwirze0UeGapzJ73A7TZsVTdXMMTOF\n0566dsOI0zlra5dZwWDQamlZZ1VXL7NghVVdvcxqaVmX8vQ2iVBbpiedaaXHjx+3amoST8csL7/R\namjotqZPX2dVVIzc9smnY4489bmqallep0NG9jv/U3Fzwc3TZnMp31M180nBQ45FPnRBC6634MWk\nH8Cmpi8kPSGnMz9eRr64ub0t81VDYLRaJdEX7NEuJhMmrLMqKy1ryhTLqqy0rIsusqy6uuH7n3yb\n7r4oB4PB8PE1+g1BIRjt2CiU33M0+Q4elPNQRAIBPxdffA+wD7P08lcZPoZr5tuXlJSmPOYsI0tn\n/N5t8jW+bHIRdmFmD7QCy4HG8Pc1fOITs97fdvIaDCHgF5w79wSnTzdywQXL+fSnW+nuDtHVBZs3\nxw7jJJ+Omf/6GCOxc5xmz7YwuR6J5Dep00lunjZbTJTzUER8Ph9/+IPJtt+6tZtQqJzS0i9SUlIG\nfIAJE2Dy5FpqajrZtq2FkRMqC2P8NBfSGb93m2yNL4+WB7J8uZ/nnruNAweGgAeJXb57Jzt3fuX9\n5bsjF5PoaYoDwEFgI5bVltJ+J6+PYiddxi9fDm64KNs5Tpdd9iiHDzdx5kz+puLmgtuWupfc07BF\njjz8sGUtXRq0pkxZZ5WWLrNKSlZY48Yts8rK1llTpgQTduG6oZRxofBqWz78sGVNm/alEYe3Mhlf\nHikPJJ1tm27sY1ZsGep1FmxPa7+TD38ELWiw4Ffh4SZ72Gm748NOmQ4TFUNujXIejHwPW+STgocs\ns4OGadO+YJWU/MmIY+7xJ63x4zWu6BSvjtEeP37cKi+vzcq+p5IHkmq7mYvJZ+MuKOm3eSR3YPuw\nIOG88z5mTZv2pVGTLp0w1gCgWNa4GOnv5PYcIiflO3jQsEUBW7w4yNe+tpqjR2cAP2a0VTajK/qd\nO3cEM37qvqI4XuOGstBjcffdbfT3X8JI48sHDpSydGn6009HW/m1ri7Am2+mNrYdCPj5x3+8gf7+\n6GG29MfFn3nGR01NJ2fPBnjzza9x5swJYADLquLcuUmcPXse117b/v6y3tlYHTWTYSIvTcXNRPTf\n6eTJ9Zw7V8r48YPvD7k+84yvKNqhmKnnIcsi3Xuj34UNvxMMhruBXyya6D5bd25evVMyd/4jHTvH\nrLKyj4zpbnzkXoVj1gUXfMQqL78ipd6Dhx+2wvsQ/fzYe3vyOTtGXfKSKvU8iGPik9BeeMFO1Bv9\nLmz4naAPMyMjANwLvEd19ZScljLONbvY0KpVAV56qZu+vlJef32Q8vJarrnGT0eHqcKY7h1evstC\nZ7bIlF1ULH7dhAFgPwMDP2FgYAHRd8g//3kT117b+f4deqLtJM+YDwLNvP32Q8BjUduOF+mxaW6G\n9euhu9uKes/alH42kdF6RbJZuj0XybVuKVomMlbqeciC2PHSupTvwkYbXx4/fllBjp9Gi73jPG6Z\npLtbLVhilZXVWqtXf2lMd51uGIseyzh6bFGxLVZqCYlBCz5rVVXVj7id5Mdb9PvavV+j99gMv2NP\n/WcT/975yVHJVXJtvhMr3fCZ8Lp89zzkk4IHhw3vbrVPgqN3hXp1RoCTIhcg+4IZ3239oquHGZIZ\nazf8yEXFEl1gk7Xb8O2kXs0xGD5+zUWupOQKa/r0ddbSpcGYC0zioaFjFnzWKiurtWBZyhfIfH4W\nchG4uKVoWb4DGK9T8KDgwTHDT8jRJ/9Ed2G/SjuzvZBF2qCwxp3HOo4eDAatiy+2j5tb446PRBfY\n1LeTPA9kyZgv3PEXo4qKZdb06eus668PWnPmWNYVV1jWBz5gvq68MnK3W1dnHqury/9Mo1zkPLgh\nr8ItAYyX5Tt4UIXJAjK80p4fsCtKdgCbgE8AN1FWdiWrVz/yfvZ2pKIfDK/qt5j9+09z880hV628\n6LTIOHxhrTiavAIjjPT72EXFWlo2UVZ2jNgchURVF1Pfjp0xP336JiorV1Be3khl5QrKyk4meF9b\n8gJAiVYM/djHtnLNNW1MmuTjvvvg97+H3/8+xK23tnLqVKRa5lVXtfLcc69w1VWmimZkplEiu3jn\nndqsfQ4CAT81NdGrgkJ05VcnVu9MfDzYn/mv097+b1RVLWfGjNasfea9XHVV8k89Dw5L3N0a3e1b\nZ02cuMyaNMncjUWPL0buBOPHtlMfK/a6SM9DYQ3hjLUbPnpcurIy/m480d1r5u2Wzbvi5He7W62y\nsrlRj9s9dVssuMuyh0zgBquq6gqru7t7zPuQiky78+36LtOnr7MqK5dZpaUrrNLSZVZ5+TqrvDyY\n4O+U+nCTU9TTmbl89zzkk4IHh9gn+aqqsSc92iecior4sW1vd9mnI52prV7ixIk6tYTE+KGN9LeT\nzWmtyQOTRMmfL1twVYILanaDaCcSCY8fPx4ebored5P/AXMsmBv1+OiL5GXjM68cq8wpeFDw4Ihg\nMGjNnp35SaCY7wgiF67PJriYeDeAcuJuPvaifix8wf1TC64MX5DmW5WVVzlyEUp25/3QQ8GYO+ry\n8hVWZeWyhAmUiSQ/thM9nv+8gLGKTXRdZ8F1Fsy2YKtlAj77+LZ7HG7M+We+mM8zTlHwoOAhY5Hu\n2F9aiRMjU58lUMx3BJFy3l8Ml/PO/loGueDE3Xwqpc7PO+9j1sSJH894O8nuvJcuTXRHnXr3evJj\nO9Hj+b+4jbUXInatj60WXBH+m8QnUNtBRO4/825I2vQ6BQ8KHjIW+0GMndoGN1gVFdendGdmWboj\nsBXSNLL4MfB079ijjXbSnzbti45sZyzbHu2Ck17PgzuC6JF6YZIFFpWVK6IChXVWpGch+vcMWlCf\n4PHcfOar2oiKAAAgAElEQVQT92SZmiolJbXWtGlfcuSYKWT5Dh5UYbIAxFal8wHR1e+GmDVrBU8+\nmVoVQ6+uw+Ake4ljaGP2bCgvJ2trGeSC2d/442JsRquAOHnyel5+eWvG24lmV0R87rnMqi8mP7YT\nLbmd32WfOzrghz/s5le/amZw8IfErnOxi1/+sonnn/8egcCPeeGFbnp7S+nvN1VLL730LHv32m31\ndaAq/HtEV/X0Afa6JWOvxjlW9mybvr7/h2PHnsOyNr7/O1rWEEeP7qaiooklSzrD+yoSoZ4Hhzg5\n1ODVdRgkN0Y71ioqVmSlSmAwGLQmTVqY0XGe/Njeapkkwuh1XO6y8pn3cvz4cauq6ooR9mGLdf75\niRI6d4R/zq6XsSKqZyG+h8H+/+h1YLJFwxdjp54HyZi5C3LmLinf6zCIuw0/1qLXuyilv7+XqVNb\nCQT8KR0rqayzsHixWWnynXcmkslxHn1sP/vs1zh48ASlpe8xOGi/3+cpKRkHnM95553HuXNPMzj4\nA8wd+ThMvYVd4XoLnaP+bpm4++42Tp3ykbg3AOA53n33ByRaf+PUqW8xbtx/Y2jIwvSgXI7pWYjv\nYYj+v72OzXpMD8W7zJ5tsX37o45+5pOvv5NIbG+S1uRwFxWJKgCxBZ7ipdftGF9s54Mf3Mzbb7fz\nyCMwbVoLZWWNWS8gI+4Ve6wFgSZgJbAF2Ex//29pb19JQ0MToVBo1PdrboYNG0JMnWoKNNmFm6ZO\nbWXDhhDNzdEFherJ5Di3j+0jR1oJhYaA+xkcnIZZrv4VoBvL+h2W9SDnn1/Cddc9wvTp/xRTxGr6\n9E3vL/ucTWZ4yB5uSOQVYodZot1CVdV4TKGpWmAxpljcjeHvdgEqu4jcdmAqZljrceArTJxYwmWX\nPcratT5HP+Pxf+9z5+KLj0WLXTo9lWNFioOGLRySzaEGlZGVaLHH2l0ZdzmncnxFEh2d6V6PdJW7\nt8vcDA+NlMg42vDRUquiwp5tYX+/y4LFFlxtQa0FV1olJddZ48dfb02cuNTKRWJw8vV3Rk/W1Lko\nVr6HLfJJwYODsjU7QGOSEi165kZJyRUpn/iTGe34MjM3oi+U8bOJllmTJl2d1nEeCUbcO7PI7ONI\nwdkNI+77pZcus5YuDVpTpqyzxo2zA4YrLFhojRu31JoyZZ115ZVBq64utytbJl9/Z/Tzi85FsfId\nPCjnoQBkc3bAaNn1o2W4S2GJnrkxd+6r7N2bWpdzMrHHV2z+BAzw7rtHuPTSD7B3r4Xp3h4+m2ho\naAVr1/pSPs4ja5hEzz4Y2/5ni5kZ8qeYYYX7MWtR2HkXOykrO8zAQPwMEdsubrqplo0bnZlh46Th\n5xM/Zugr/nccnluic5G7KHgoANlMFIqcaBPJ7wlW8suJRN3I8RUEVgMPYE/ZgyHefnsng4N3MHwq\npW0Xq1bVsnHjWPY7v9MxRxII+Nm2rYmennXAL4hOZKyqeoMnntjI5z53Lz09o1903WT4+cRHbLLm\nMaqrP5gwQVvnIndRwqSMKHKiTSS/J1gndXTAzTeHmDGjlaqq5Ywfr8TQ0TiRqBs5vtowgUP8KouL\nOHXqW5x//n/BqZUmI/vtXKKx03w+H62tnUyf/hwVFa8ApZSVDTJt2kdZtOhZ/vqvP0ZFxfBVSXOV\n0DlWic8ndg/J44wf/0Fmz97KiRNtw5I1i+VcJKNTzoMHFMs4o5Kx0udEom6qi5FVVi52rHJlZL/t\nZMKxl3PPFicWyEp3e05VIR1JJueTYjkXpSrfOQ/5pODBA4qlaJROTOlz4oITOb6WJGl78+V0OWg7\nwfhDHzLJhGVlJplw5sylritDnotAIlfBcybnk2I5F6VKwYOCB9crpHUektGaHvlhByBlZfU5a3/7\nYlxXZ1kXXWRZlZWWNWWK+X7RRdb7MxDctK5Ctj+DuQyeM/ldiuFclKp8Bw/Jsk9yoQ7o6urqoq6u\n6AInzyiWqm5z5zayd+/mpM/PmdPIq68mf14ys2ZNK+3tK0lcUXEHLS2b2LjRXTMHciUYNBU2TaGs\nBdjJpLCbiRPvYdq0TmpqfBl9JufNW0539xaSJY/W1q5wZM2STM4nxXIuStWePXuor68HUz1tT663\nr9kWMqJi+UA6WeJb0heZXeCt2QO5EKmwGR1YnQB+wZkzFq+91ohlTQnPUEitLHi8XM1kyOR8Uizn\nIq9Q8CCjKoaIvxBXE/XS381eZfHs2QAnT67n3LlSxo8fZPLk2vdnD7hlX3NteH2D4dNazWqbu9m2\nrYkdO9Jfg0bBs3iJch48pNDHGgs1GSsXf7dcZeoXq+ErmTqfn6CEYe/Jd85DPil48IhimcZYaAFS\nrv5uxXJ85MvwZF7nk3sLNXguZPkOHlQkysM6OqCx0XwtXQpz55rv9mNOFTaKHXONLuCzkJ6e+/H7\nk5WM9Y741UTnzNmctFiNV+Tq71YMx0c+xRbjCgFv4nR+gr1ceUvLJqqrVwCNTJy4lIqKr3D0aDmX\nXro2b0XTVMBN4qnnwQG5uFvWNEZn5Kp7P9fTH3V8ZFekV2CLZYpa3eh4e0dPX50yJWiVln7Bgj/J\nWW/SSLUsli49bl18sXq24qnnQcYsGAzS0NBEe/tKenu3AJvp7X2c9vaVNDQ0EQqFHNmOaso7Y/Hi\nID09TRw6tJLTp7fQ37+Z06cf59ChlfT0NLFkiTN/L3s7AwOTycXfTcdHdtnJpBUVbZj1H+pxuqx2\nczNs3gz/+q9BJk9uYnDwNPBjctWb1NwMGzaEmDq1lX37lrN3byP79i1n6tRWpkz5OsGgerYkQj0P\nGcpVkpPuLJ2Rjb9Xoju2adNSK/msngdvibRz0EpcVvtXGd+Jp1ou3Om/6Uh5MyUltTq+ElDPg4yZ\nmcK1IMmzC8LPZ86JBZAkO3+vRHdsb7zxRHg7ufm76fjIjUgPj70S5SbA5CfACsrKvpTxoliRYzS6\nNykEtALL39/W3r1HHM03iM2beSO8vRXAA1jWeNSzVVy+jKny8p0kz6vnIUPDp3BlZz0AZWI7Ixt/\nr8R3bPZ2sneHGk3HR27koocncoza2zoePobiewScXTws8rsl2t6t6nlIoFB7Hq4F/gL4HSRdQ1Uy\nlKslau0xV68t/+s22fh7JZ7pYG8n0R3qJygr+0tH/26JMvWrq1fQ0rJpTAWLJLFc9PBEjlF7W8mX\nSncy3yDSq5Joe/NQz5b7ZKPCZBXwM+DzwNey8P4SlquqiKYSoQ/zwS4sHR3Q3h6iuzvAyZPdMZUN\na2v9tLQ4V9kwG3+v4dUHIXLiX4gJIKL/bju4/fZNbNzo3AXdVLI025k9G8rLTSXLEydg7Vp3VbL0\nslyU8I4co36gCRNIJAsQFrB79/qMtwnRQYt9PIfC37uBAWAL8COgAZUuL1w/Af4u/O/ngQeTvE7D\nFhlSd3HmclngKBt/r8RDIcmGK3RceFkupvrGHqPHLFiYk6HRSKLmiiRDF8cs+KwFc6yysmWqYGrl\nf9jC6Z6H1cDVmGEL0JBFVmk9gMwlXnQodhqYU6s5ZuPvlXhNAnu44luUlPwFllVNRcUgH/1oLY89\npmEEr8pFD6A9BOX3B3jhhW56e08x/PiyOTc0GulVsXs64j+TH8Dcl77I7bf/c9GusOomTgYPM4D/\nASwBzoUfK2GUZb/vvPNOLrzwwpjHmpubadZVb1SFPJyQK4m7/W3OdcuCc3+v6AWvTp6MHqKA2O7e\nc4wbN4HKyrlcc42fSZN8GkaQEcUPQZ040co772R/aNQOrI8e/TR9fV0k/4w0sHv3A45s00s6Ojro\niJva8tZbb+Vpb5z3ScxAVH/U1xAme+scw4MIDVtI3uVqxorT7MqiH/rQYstUAvyVBUeTZMYXdyU+\nGbtcD40Gg0GrvPxqT34mcy3fwxZOzrZ4BrgC+Ej462rgJUzy5NVoCENcKFczVpzS0QE33NDNtGlL\naG9fycGDTwP/DvwTptNvParEJ07J9UyaZ57xMX78xXjpM1msnAweTmH6Su2vl4E+zCouzlQrEnGY\nVwoc2YsD3XXXF3nhhUYGBx8iEiT4gG8DMzHZ6Ik4VzRMioe9YNzvftfG22+3U1Y2lwMH4Cc/eZVp\n01qYOtXZxamam+HTn74KL3wmi122K0za3SoirhQI+KmpuQfYgRllI/x9R3gamD9/OxfFXq/i6NHT\nmPSiRGPQWmNCnBW/5sXAwEqGhrZgWZsZHHycN990dl0W8M5nsthlO3i4EfhvWd6GyJh5pQBWZFbI\nG8D5JA4SvDUEI96Ry2XXVXTMG7JRJErEM7wyYyUyK6SUSJAQH0DUAjtJPHSh7l4Zu1zOSlLRMW9Q\n8CDiAZHyvYPA5cROzwQzRbMPaMEspaxKfOKcXC67ruDAG7SqpsfYiXMzZrRSVbWc8eMbqapazowZ\nziYuibvErjmwGIgeEw5iSgl/BtgG/DPwCeAmSkquZNq0h101BCPe47VZSZJ96nnwmMWLg3zta6s5\ndOgBTDdiCf39Q5w+vZsJE5pYsqQTk30vI4kutPTee3DggOkaPe8885jb7n6GrzmwDvgFZmrmEeB7\nRHoiIkMwlrWDm292di0LKT6R46+GSBEyewjtIk6enEVHx8ifmVyuIyOFTUWi0vDww5a1YoVlTZ9u\n14BPVEBlu9XSsi7fu+oZdqGl6uplFqywqquXWS0t61xZTGn4mgPrwksVL7FgjpYslqwKBoPWzJkf\ns6AhQRGyF61Zsz4+6ucml+vIFINCKhIlWdTcDBs2hHj33ecwK+olkt25/IU0ZBIMBmloaKK9fSW9\nvVuAzfT2Pk57+0oaGpoIhZybeuaE2Az0/wy8SnV1CS0tV1NTMxtN0ZRs8vl8NDRcg6knMnx57v37\nvznqjItcztiQ7NOwhUcEg0EWLVrN229PJl8XikIaMsnlglhOGCkD/fjx5eRi8SIpXh0dsGXLa4xc\nhGzkGRfpztjw2tBisVHPg0dELnbjyVfiUiHdOZgTWX56cBIZrVcHTLGezZvhqafg1VfN982bYdUq\nb1TJFO9qboZLLslsxkW6Mzbs3tapU1vZt285e/c2sm/fcqZObWXDhpAChzxT8OARkYtd/i4Ubrvg\nZiKXU89SYVeQPHRoJadPb6G/fzOnTz/OoUOjV/BTRT7JhdgZFyGgFVgONALLeO21gyMOX6Y7Y8Nr\nQ4vFRsGDR0Qudn5ip+kR/v5i1i8UbrvgZsJtU88y6dXxSpVM8bbIOjD21OCVgLmowxYGBr4/YqCb\n7joyhdTTKc7SbIs01NYui8pQDoaz7c0sAbjVKiv7iLV0adB6+OFc7YO3s/pbWtw1a6WQ2lYKU2TG\nz2fDs37S++yku7y3PhMj02wLSUls1G6XU96Kifq/xu2338STT2Z3nrRXVqBMhdu6+gupV0cKk93D\nVVb2MokXZoORhi/T7SHTZ8LdNNvCIwIBP9u2NdHTcz8m7yD3pYfdsA9OsU9kZ88GOHlyfUzBGvtE\nlsuErMgwimZMiDvZ68DMnXsJe/emf1FPdx0ZfSbcTcGDR7jhYueGfXCK2xbEilTwS3RH561eHSls\nubqo6zPhbgoePMINFzs37EMhSFSmt7y8j9LSpxgc/AHmZOndXh0pbLm6qBdST2chUs6DSI4lmpbZ\n1/cUg4PfpKrqDmbOvBVopLp6BS0tm9ixoxOfTzMmxB1ylS+kWUTulmzgKhfqgK6uri7q6vKSLCqS\nF2vWtNLevpLEd247mDZtE5bVxrlzIfr6AvT3m0WIzjtPiwiJO4RCIfz+AC+80E1vbynV1YNcf30t\ngYBfgW6O7Nmzh/r6eoB6YE+ut6+eBykqblifY7RiW5Mnd/Pb3waZPLmJ995byeDgRgYH53L6tMWh\nQ//B00/fwF13/ZXn1hORwtDRAWvX+jhxoo3Zs7cyZ85mZs/eyokTbaxd69MxWSSU8yBFxQ3rc6Qy\nBS1SIOcyYDUQ2V/LGuLo0Z1UVHhrPREpDPaaEnbuTl9fgO3bI0ts/+Y3tbS3q3es0KnnweXccKdc\nSNxQtS5xdUu73O8y9u49xE9+8gSmd6INEzgMX8lQVfYknzIpqS7ep+DB5dz4AY0PaMrKGiktXUJp\n6Q2Ult5MWZl7Axw3rM8xvNhWdLnfrcAeLKsaEyzkf39FEnFDIC75o+DB5dz4AY0PaAYHf8TQ0BBD\nQ99kaOgJBgfzH+Ak44aqdcOz1duA+4n9G9u9E/nfX5FE3BCIS/4oeHA5N35Ahwc0ybrW3XcH4oYF\nseKnoMETDJ95YfdO5H9/RRJxQyAu+aPgweXc+AGNDWhCwHO4LcBJxg3rczQ3w5NP+nj99TZOndrK\nnDn2EEU0e/XUi4CdSd5JVfYkf9wQiEv+KHhwOTd+QCMBjT1WPxm3BTjJuG1BLEj2N/YBnUAl8Bng\nRdyyvyKQeiCupO/CpODB5dxwpxwvcrGzhyvGE7n42bMGlgONwDJee+2ga04SbqpaZ59U9+8/jQlm\n4vmAzzBt2s1Mn/7Ped9fkWipBuJuTPoWb6sDrK6urnwvi+5qwWDQqqm50YLtFgy+v5Y9bLdqam60\ngsFgzveppWWdBTssWGbBkAX2/49bcGP430NR+/pi3vbVzY4fPx7+2/4y3G7xf2O1m7jXww9b1tKl\nQWvKlHXWuHGLLbjagissWGjBDVZJyfXWuHFLw4+/GD6u47+2Wy0t6/L9q3hSV1eXhblry0uJZvU8\nuJyb7pRtkTuOc5jhCnt8vpXhswZUkyCZSOLprZghik3ACkyPzWIqKu5R74K4lp2788orrVRXDwE/\nAH4H/AummJmZfQWXAA1J3sVdOVGSOlWYdDk3rmRpBzQHDtzKwIBFZHz+VhKv1wDmJLE+Z/voBeak\naQdU8X/jIWbNWsGTTypwEHeLnX0FsbOvQNONC5N6HiRt9h3H7bffSCQfw4e5w9BJIlVunEkjkq7R\nZ1+5L+lbMqfgQcZseMKUThLpcONMGpF0jT77yn1J35I5BQ8yZvH5GCUlR0g8awB0khjOjTNpRNI1\n8uwriOREuWd6tGROwYOMWXyxo+PHn6Km5qvoJJEaN9acEElXJAi2hy+ig+IQJq9nHPBF4ErgGsaN\nu5UpUzTd2MuUMCmOsXsizp4NcPLk+veX6J08ufb9k4SW6I1Qe0khCAT8bNvWRE+PPXzhxwxf3AX8\nHdHLyZvgeBfV1feyY4cfn0+Bg1cly9bKhTqgq6uri7q6vExTFRGRDHV0QHt7iGefvZWBgV9jLish\n4NOYwGFRgp/aQUvLJjZudM8sMq/Zs2cP9fX1APXAnlxvX8MWIiIyZslnX1Wi+g6FS8GDiIhkbHgO\nj6YiFzIFD1JUQqEQa9a0Mm/ecubObWTevOWsWdNKKKT6+iKZGL7UfC+aily4FDxI0XjooSCzZjXR\n3r6S7u4t7N27me7ux2lvX8msWU388IcKIETGKn72VUvLLWgqcuFS8CBFY9euNvr67LK50WtvLKSv\n73527tTaGyJO0VTkwqbgQYpGbBndeErgEnGSGxf1E+eozoMUDa0lIZI7blzUT5yjngcpGlpLQkTE\nGQoexHFundGgtSRERJyh4EEc5eYZDUrgEhFxhoIHcZSbZzQogUtExBlKmBRHmRkLyQKEBezevT6X\nuxNDCVwiIs5Qz4M4SjMaREQKn4IHcZRmNIiIFD4FD+Ko2BkNIaAVWA40AovZv/80N98coqMjX3so\nIiKZUvAgjorMaNgKNAErgS3AZuDf6Ov7Bj09TSxZonUkRES8yung4QvAb4G3w1/bgVsc3oa4mD2j\noaKiDVjP8FkXDfT03I/fr3UkRES8yung4XXgbqAOqAeexdxyznN4O+JS9sp6s2ZVAg1JXqV1JERE\nvMzpqZpb4v7/VUxvxHzgZYe3JS6mWRciIoUrm3UeSoFPAxOAbVncjrhQZNZFogBCsy5ERLwsG8HD\nlZj6vxOAM8CfAfuysB1xsfnza+nu3gXUYIpGdWPiyUHgIk6enEVHhxnmEBERb0nWr5yJcmAGcAGm\n5+FLwA3AnrjX1QFd1113HRdeeGHME83NzTTrquJpoVCIa6+9jQMHhoAHgQWYw20I2MmsWV9h9+7H\n8PlUElpEZCQdHR10xM1vf+utt9i2bRuY/ML462vWZSN4iPc0sB/487jH64Curq4u6urqcrAbkksd\nHXDXXX/F0aPNwKIEr9hBS8smNm5UqWgRkXTt2bOH+vp6yFPwkIs6D+NytB1xkeZmmDz5NTTjQkSk\n8Did8/AN4JeYKZvnA6uB64H7Hd6OeIBmXIiIFCangwcf8FNgGqZI1G+BmzH1HqTIaMaFiEhhcjp4\n+LzD7yceFplxsTDBs7vC62CIiIjXKBdBsmbhQj8VFfdgZu4OhR8dAnZQUXEvCxf687dzIiIyZtks\nEiVF7o47fHzqU534/QF2717PwEApZWWDzJ9fSyDQqWmaIiIepeBBssrn82k6pohIgdGwhYiIiKRF\nwYOIiIikRcMWUhRCoVA496I7LvfCr9wLEZE0KXiQgvfQQ0Huums1fX0PYBbpMmtsdHfv5uc/b+LB\nBzu54w4FECIiqdKwhRS8XbvawoHDQiIFq8YBC+nru5+dOwP52zkREQ9S8CAFz6yhsSDJs1pjQ0Qk\nXQoepOBpjQ0REWcpeJCCF1ljIxGtsSEiki4FD5IzHR1w880hZsxopapqOePHN1JVtZwZM1q5+eYQ\nHR3Z2a5ZQ2NXkme1xoaISLoUPEjOLF4cpKeniUOHVnL69Bb6+zdz+vTjHDq0kp6eJpYsCWVlu4GA\nn5qaxGts1NTcSyCgNTZERNKh4EFy5u672+jpSTzroafnfvz+7Mx6eOYZHzU1nUyfvonKyhWUlzdS\nWbmC6dM3UVPTyTPPaJqmiEg6VOdBcsbMakgWICxg9+71WdluczM0N/sArbEhIuIE9TxIzgyf9RAC\nWoHlwCfZt+8ga9a0EgplZ/hCREScoeBBciZ21kMQaAJWAluAzZw791va21cya1YTP/yhAggREbdS\n8CA5EzvroQ1Q1UcRES9S8CA5s3Chn4oKe9bDy6jqo4iINyl4kJy54w4f+/d30tKyifHjj6GqjyIi\n3qTgQXLK5/OxcWMbs2dPQ1UfRUS8ScGD5IWqPoqIeJeCB8mLXFR9zFc5bBGRQqciUZIXdtXHs2cD\nnDy5nnPnShk/fpDJk2vfr/rY3Dy29w6FQvj9AbZv/w29vYfp79+IKU5VQn//EKdP72bChCaWLOkE\nVF1SRCRdCh4kL5ys+mgHC7t3dxMKDfDGGwexrI2YnIr1mOmgtthy2Bs3quqkiEi6NGwhnvbQQ0Fm\nzWqivX0l3d1bCIWuwrJ+DNQAz6PpoCIizlPwIJ62a1cbfX12sak3gOeAyzDVKyej6aAiIs5T8CCe\nZnoPFhApdz0Z+DameuV4NB1URMR5Ch7Es0KhEIcOvYnpXbDLXY8H7IBC00FFRLJBwYPkVSgUYs2a\nVubNW87cuY3Mm7c8pZU17VyHd96ZiOldiA4YzmECCj+QaDroi1RU3MvChZlPBxURKUaabSF589BD\nQe66a3U4Z8FMpYQhurt38/OfN/Hgg53ccUfiqZSRXIdfYHoX7OW+/cANmIDCB3SG33t9+DUDXHDB\nEf74x6fx+TRNU0RkLNTzIHkTm+yY3sqakVwHu3fhXSIBw59iehsI/78N2ApsBr7GbbfdpMBBRCQD\nCh4kbyIBQCIjT6U0MyVKiPQuWEQChr8Fvko2q1eKiBQzBQ+SN5EAIJHkUylDoRDHjx8hMpPCBzxK\nJGCYigkofgEsBq6houJWpk/f9H71ShERGTvlPEjemKmSFokDiNiplHYVySee+A3Hjx/GsuYDO4GG\n8Cui8xvuoaTkPSoqpjB58keprfXT0jL2ctciIhJLwYPkzfz5tXR37yK2fLQtMpUyNrHSLjldg6nr\ncD9m6GMcpsfhk1RUdPHgg5uTJluKiEhmFDxI3ixc6OfnP2+iry86ABgCdoWnUnYC0YmVdsnpNkxv\nhWZSiIjkg4IHyZs77vDxqU91hhe1Ws/AQCllZYPMn19LIND5fgBgEifXMbzk9PCFtT7wgUYFDiIi\nWaaESckrn8/Hxo1tPP98O4sWzQVg+/ZXueGGlveLRZnESZWcFhFxC/U8SN6NVizqggvKMRUkA0RK\nTo+cJyEiItmjngfJu9GKRVVWniWVktOq4SAikhvqeZC8MzkNdjXJUPjf3dhJkIcPv0FJiYVlJS85\nXVZ2hJqap3nmGU3JFBHJNgUPkneRYlFBYDUmtyEyfHHmzE5KSz/P4OAOYBHDEyV3cPvtm9i4UYmS\nIiK5oGELybtIsSh7We344YtFDA5+m9LSL5Co5LRWyBQRyS31PEjeRYpFRQ9fxLuFmpoHWbRo04jT\nOkVEJPsUPEjeBQJ+tm1roqdn5LUuoIKNG9uSPC8iIrmiYQvJu2ee8VFT00lZ2UlUw0FExP0UPEje\nNTfDk0/6uP32GzE1HBJRDQcREbdQ8CCusXChn4qKRDUclBQpIuImynkQ10h1rQsREckv9TwUmY6O\njnzvwojstS5efnkrr766mZdf3srGjW2eDhzc3uaFSG2ee2rz4uJ08PAV4NfAO8Bx4J+AOQ5vQzKg\nD3juqc1zT22ee2rz4uJ08PBx4O+BBcBNmGGRp4AKh7cjIiIieeJ0zsOtcf9fg6k5XAf8yuFtiYiI\nSB5kO+fhwvD3N7O8HREREcmRbM62KAG+A2zD1B1O6JVXXsniLki8t956iz179uR7N4qK2jz31Oa5\npzbPrXxfO5PVAnbC9zDDGP8XcCTB89MwyZWXZnEfRERECtVh4FrgaK43nK3g4e+BRkwC5YERXjct\n/CUiIiLpOUoeAodsKAH+F/A6UJPnfREREREP+D5wEtPj8MGor/PyuVMiIiLiXkPAYPh79Ndn87lT\nIiIiIiIiIiIiIiIiIiIiUtTuY3guQ3z9hsuBzcBbmMWxdgAz4l7TADwLnMIkVz5HbELl/gTbeSDu\nPaAc+f8AAAV6SURBVD4EPB5+jxDwP4DyMf5ebnYfmbX5rAQ/b3+tjHqPycD/F36Pt4CfAhfEbUdt\nHuFEm+9P8LyO87GfWy4BHgaOYdprD7HtDTrOo91Hbtp8f4Lt6Dgfe5vXYBacDAJvA53AxXHv4brj\n/D7gd+Edtb+mRj1fA5wAvgl8BHMSvRWIXku5AfPL+DGNVAN8Chgf9Zpe4N647VRGPV8K/B54Jryd\nxcAh4H9m+gu60H1k1ubj4n72YuBrmIMuerGyfwV+i1nQbGF4m5ujnlebRzjV5jrOI+4j83PLc8BO\n4KPh5+8FBoCro16j4zziPnLT5jrOI+4jszavBHqAx4B5wBWYQGIXsTWbXHec3wf8ZoTnHwF+Msp7\n7AT+31Fe0wv8zQjP34o5QD8Y9VgTcAaoGuW9veY+Mm/zeL8B/iHq/5djIuBrox5bEH7sw+H/q80j\nnGhz0HEe7T4yb/N3gf877rE3MIvzgY7zePeR/TYHHefR7iOzNl+KaavodrkQcwwvDv8/Z8d5ugtj\nfRhTDvM1oAOojnqfZcAfgSeB45hA4T9F/ezFwHxMF8l2TFfX88DHEmznbsxB+BvgHmK7UxowUdOx\nqMeeAiYA9Wn+Pl6QSZvHq8dEmhuiHmvA3BX/OuqxXeHHFkW9Rm3uXJvbdJxHZNrmW4DVmC7bceF/\nj8ecY0DHeSLZbnObjvOITNp8AmAB56IeO4sJDOzrqCuP81uA2zDdJYsxXVZHgSmYCGYIM37yN8BV\nmANmEFMwCkz3yRDmIPoc5oT6IPAeMDtqO3cC12G6ZNZixnai79r+N/BEgv17DxM9FZJM2zze94E/\nxD12D/Bqgte+Gn4/UJs73eag4zyaE20+EdMNO4Q5ub5F5G4MdJzHy0Wbg47zaJm2+UWYNv4Opu0r\nMRWdh4AfhF/jieO8AvOL/1fM+hRDwM/iXvMvmIQaMFHPELA+7jW/ZXgCTbRPhX9ucvj//xsTmcUr\nxIMtXrptHm0i5sD7r3GPp3qwqc2da/NEdJxHjKXNN2GSy24ErgT+FpOQfUX4eR3nI8tGmyei4zxi\nLG1+E7APE1T0Y4Y5XsIsRAk5PM7THbaI1ofp+piN6U0YYPjS2/8/JqsTIot3xL/mlajXJLIr/N3u\nnTgGfCDuNZMx3WXHKGzptnm0VZiL2U/jHj/G8Gxdwo8di3qN2ty5Nk9Ex3lEum1+OfBJzJ3tc+Gf\n/e+Yk+pfhl+j43xk2WjzRHScR4zl3PJ0+PU+TLLl54DpmGEQyOFxnknwMAGoxQQF/Zgxlj+Je80c\nzFQdwt+PJHjN3KjXJHJN+LsdfGzHRLbRv/xSzNhPV4r77lXptnm0tZgo9kTc4zsw03jiE2wuwLQ1\nqM2dbvNEdJxHpNvm9nlsMO41Q0Sy0HWcjywbbZ6IjvOITM4tb2Kmci7GBBL2bApXHuffxoy9VId3\n5nFMl6w9B/WT4Y1/HhMZfQnTIIui3uNvwj+zMvyarwOniSSNLMR04VwdfuzPMFNI/inqPcZhpp48\nHX7dYuAgZp5qoXGizQk/N4g5QBL5JfAfxE7t+Zeo59Xmzra5jvNYmbZ5KeaO7QXMSbMGuAvT/rdE\nbUfHeUQu2rwBHefRnDi3rMEcuzXA7Zgei7a47bjuOO/AZImexRwAjzI8SloD7MV0x+wBViR4n7vD\nO3oK+BWxDXMNJnI6GX6PVzDjaPGrcs7ANPxpTON9l8IsKuJUmz/AyL07F2KKirwd/vopMCnuNWrz\niEzbXMd5LCfa/LLwzx3FnFt+w/BphDrOI3LR5jrOYznR5t/AtPdZzJDGnQm2o+NcRERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERE8ur/ANBpVY9jW9RvAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import sys\n", + "import getopt\n", + "sys.path.insert(1,\"/usr/local/science/clag/\")\n", + "import clag\n", + "%pylab inline\n", + "\n", + "from scipy.stats import norm\n", + "from scipy.stats import lognorm\n", + "\n", + "ref_file=\"lc/1367A.lc\"\n", + "echo_file=\"lc/6439A.lc\"\n", + "\n", + "dt = 0.01\n", + "t1, l1, l1e = np.loadtxt(ref_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.00964867, 0.02886003, 0.0556922 , 0.08632291, 0.13380051,\n", + " 0.20739079, 0.32145572, 0.49825637])" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "\n", + "fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029, \n", + " 0.25819945, 0.40020915, 0.62032418])\n", + "# fqL = np.logspace(np.log10(0.0006),np.log10(1.2),11)\n", + "nfq = len(fqL) - 1\n", + "fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.)\n", + "\n", + "\n", + "fqd\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.342e-01 5.077e+01 inf -- -5.530e+02 -- 1 1 1 1 1 1 1 1\n", + " 2 7.674e-01 5.065e+01 8.300e+01 -- -4.700e+02 -- 0.653018 0.587019 0.568277 0.567457 0.566281 0.566085 0.565773 0.566163\n", + " 3 3.298e+00 5.043e+01 8.075e+01 -- -3.893e+02 -- 0.414806 0.209135 0.141159 0.13784 0.133393 0.132728 0.131612 0.132761\n", + " 4 1.572e+00 5.010e+01 7.754e+01 -- -3.117e+02 -- 0.322539 -0.0834456 -0.273066 -0.284295 -0.297612 -0.299435 -0.302479 -0.300412\n", + " 5 5.908e-01 4.964e+01 7.386e+01 -- -2.379e+02 -- 0.302357 -0.214604 -0.654658 -0.688754 -0.723838 -0.729279 -0.736418 -0.733888\n", + " 6 3.713e-01 4.877e+01 6.953e+01 -- -1.683e+02 -- 0.284419 -0.200357 -0.96379 -1.05472 -1.13798 -1.15477 -1.17031 -1.16748\n", + " 7 2.709e-01 4.671e+01 6.269e+01 -- -1.056e+02 -- 0.277768 -0.185001 -1.13047 -1.34026 -1.52128 -1.56845 -1.6043 -1.60101\n", + " 8 2.135e-01 4.361e+01 5.281e+01 -- -5.282e+01 -- 0.277012 -0.185189 -1.16375 -1.49463 -1.83211 -1.9477 -2.03737 -2.03476\n", + " 9 1.764e-01 3.767e+01 4.019e+01 -- -1.264e+01 -- 0.282161 -0.184207 -1.17891 -1.53049 -2.01851 -2.24569 -2.46562 -2.46922\n", + " 10 1.508e-01 2.738e+01 2.645e+01 -- 1.382e+01 -- 0.289545 -0.182463 -1.18795 -1.52893 -2.08812 -2.41103 -2.87498 -2.90486\n", + " 11 1.349e-01 1.468e+01 1.390e+01 -- 2.772e+01 -- 0.293547 -0.180898 -1.1897 -1.52803 -2.10944 -2.46526 -3.22702 -3.34288\n", + " 12 1.358e-01 5.365e+00 5.378e+00 -- 3.309e+01 -- 0.295456 -0.179941 -1.19052 -1.52801 -2.11928 -2.48294 -3.46233 -3.79368\n", + " 13 1.868e-01 1.338e+00 1.633e+00 -- 3.473e+01 -- 0.297315 -0.17923 -1.19104 -1.52666 -2.12491 -2.48975 -3.55567 -4.30889\n", + " 14 6.248e-01 2.604e-01 4.517e-01 -- 3.518e+01 -- 0.299091 -0.178645 -1.191 -1.52463 -2.12805 -2.4915 -3.5672 -5.11363\n", + " 15 2.744e+02 2.611e-01 7.022e-02 -- 3.525e+01 -- 0.300248 -0.178286 -1.19075 -1.52307 -2.12961 -2.49161 -3.56337 -8\n", + " 16 2.745e+02 2.782e-01 4.368e-04 -- 3.525e+01 -- 0.300566 -0.178158 -1.19062 -1.52252 -2.13009 -2.49151 -3.5617 -8\n", + " 17 2.745e+02 2.805e-01 6.410e-05 -- 3.525e+01 -- 0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n", + "********************\n", + "0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n", + "0.238931 0.202434 0.232634 0.177249 0.153039 0.132988 0.297259 3285.23\n", + "-0.000915535 -0.00131061 -0.00195128 -0.00497899 -0.0226059 -0.0776175 -0.280541 -0.000206646\n", + "********************\n" + ] + } + ], + "source": [ + "P1 = clag.clag('psd10r', [t1], [l1], [l1e], dt, fqL)\n", + "p1 = np.ones(nfq)\n", + "p1, p1e = clag.optimize(P1, p1)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 3.525e+01 3.480e+01 3.006e-01 5.395e-01 0.891 +++\n", + "+++ 3.525e+01 3.431e+01 3.006e-01 6.590e-01 1.87 +++\n", + "+++ 3.525e+01 3.458e+01 3.006e-01 5.993e-01 1.34 +++\n", + "+++ 3.525e+01 3.469e+01 3.006e-01 5.694e-01 1.11 +++\n", + "+++ 3.525e+01 3.475e+01 3.006e-01 5.545e-01 0.997 +++\n", + "\t### errors for param 1 ###\n", + "+++ 3.525e+01 3.476e+01 -1.781e-01 2.430e-02 0.973 +++\n", + "+++ 3.525e+01 3.421e+01 -1.781e-01 1.255e-01 2.07 +++\n", + "+++ 3.525e+01 3.451e+01 -1.781e-01 7.491e-02 1.48 +++\n", + "+++ 3.525e+01 3.464e+01 -1.781e-01 4.961e-02 1.21 +++\n", + "+++ 3.525e+01 3.470e+01 -1.781e-01 3.696e-02 1.09 +++\n", + "+++ 3.525e+01 3.473e+01 -1.781e-01 3.063e-02 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.781e-01 2.747e-02 1 +++\n", + "\t### errors for param 2 ###\n", + "+++ 3.525e+01 3.511e+01 -1.191e+00 -1.074e+00 0.276 +++\n", + "+++ 3.525e+01 3.495e+01 -1.191e+00 -1.016e+00 0.598 +++\n", + "+++ 3.525e+01 3.485e+01 -1.191e+00 -9.870e-01 0.8 +++\n", + "+++ 3.525e+01 3.479e+01 -1.191e+00 -9.725e-01 0.91 +++\n", + "+++ 3.525e+01 3.476e+01 -1.191e+00 -9.652e-01 0.968 +++\n", + "+++ 3.525e+01 3.475e+01 -1.191e+00 -9.616e-01 0.997 +++\n", + "\t### errors for param 3 ###\n", + "+++ 3.525e+01 3.482e+01 -1.522e+00 -1.345e+00 0.865 +++\n", + "+++ 3.525e+01 3.432e+01 -1.522e+00 -1.257e+00 1.86 +++\n", + "+++ 3.525e+01 3.459e+01 -1.522e+00 -1.301e+00 1.32 +++\n", + "+++ 3.525e+01 3.471e+01 -1.522e+00 -1.323e+00 1.08 +++\n", + "+++ 3.525e+01 3.476e+01 -1.522e+00 -1.334e+00 0.97 +++\n", + "+++ 3.525e+01 3.473e+01 -1.522e+00 -1.329e+00 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.522e+00 -1.331e+00 0.998 +++\n", + "\t### errors for param 4 ###\n", + "+++ 3.525e+01 3.481e+01 -2.130e+00 -1.977e+00 0.874 +++\n", + "+++ 3.525e+01 3.429e+01 -2.130e+00 -1.901e+00 1.91 +++\n", + "+++ 3.525e+01 3.457e+01 -2.130e+00 -1.939e+00 1.35 +++\n", + "+++ 3.525e+01 3.470e+01 -2.130e+00 -1.958e+00 1.1 +++\n", + "+++ 3.525e+01 3.476e+01 -2.130e+00 -1.968e+00 0.983 +++\n", + "+++ 3.525e+01 3.473e+01 -2.130e+00 -1.963e+00 1.04 +++\n", + "+++ 3.525e+01 3.474e+01 -2.130e+00 -1.965e+00 1.01 +++\n", + "+++ 3.525e+01 3.475e+01 -2.130e+00 -1.966e+00 0.997 +++\n", + "\t### errors for param 5 ###\n", + "+++ 3.525e+01 3.474e+01 -2.491e+00 -2.358e+00 1.01 +++\n", + "+++ 3.525e+01 3.512e+01 -2.491e+00 -2.425e+00 0.263 +++\n", + "+++ 3.525e+01 3.496e+01 -2.491e+00 -2.392e+00 0.579 +++\n", + "+++ 3.525e+01 3.486e+01 -2.491e+00 -2.375e+00 0.781 +++\n", + "+++ 3.525e+01 3.480e+01 -2.491e+00 -2.367e+00 0.893 +++\n", + "+++ 3.525e+01 3.477e+01 -2.491e+00 -2.363e+00 0.952 +++\n", + "+++ 3.525e+01 3.476e+01 -2.491e+00 -2.361e+00 0.982 +++\n", + "+++ 3.525e+01 3.475e+01 -2.491e+00 -2.360e+00 0.997 +++\n", + "\t### errors for param 6 ###\n", + "+++ 3.525e+01 3.507e+01 -3.561e+00 -3.413e+00 0.363 +++\n", + "+++ 3.525e+01 3.484e+01 -3.561e+00 -3.339e+00 0.814 +++\n", + "+++ 3.525e+01 3.468e+01 -3.561e+00 -3.301e+00 1.13 +++\n", + "+++ 3.525e+01 3.477e+01 -3.561e+00 -3.320e+00 0.962 +++\n", + "+++ 3.525e+01 3.473e+01 -3.561e+00 -3.311e+00 1.04 +++\n", + "+++ 3.525e+01 3.475e+01 -3.561e+00 -3.315e+00 1 +++\n", + "\t### errors for param 7 ###\n", + "+++ 3.525e+01 3.524e+01 -8.000e+00 -6.000e+00 0.0178 +++\n", + "+++ 3.525e+01 3.515e+01 -8.000e+00 -5.000e+00 0.187 +++\n", + "+++ 3.525e+01 3.494e+01 -8.000e+00 -4.500e+00 0.618 +++\n", + "+++ 3.525e+01 3.466e+01 -8.000e+00 -4.250e+00 1.18 +++\n", + "+++ 3.525e+01 3.482e+01 -8.000e+00 -4.375e+00 0.851 +++\n", + "+++ 3.525e+01 3.475e+01 -8.000e+00 -4.312e+00 1 +++\n", + "********************\n", + "0.300605 -0.178131 -1.19059 -1.52241 -2.13019 -2.49148 -3.56144 -8\n", + "0.253864 0.205597 0.228999 0.191096 0.1638 0.131949 0.246154 3.6875\n", + "********************\n" + ] + } + ], + "source": [ + "p1, p1e = clag.errors(P1, p1, p1e)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAGp1JREFUeJzt3X9s4/d93/HnxZaj5dxOi12RZ+98bLhdaBhJDbLSHzrb\n5TIn2IY26dBOIbFsiLTCQdoOuHUrcMMgzZCAYS2G9uqua3FbD9kQjNQNaDYH2LXFUKW5UVqnimm7\nbmadUT+W5kxmTXvr6kSpVnt/UHeR1I9+8I7fL389HwAhivx8vp+3cJ+TXvx+P9/vFyRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvSA/iGwBvwh0AQ+A1zsakWSJKkn3AT+NvA08H7gs8AW\n8K4u1iRJknrQ48BbwHPdLkSSJJ3sHTGONbb39fdjHFOSJPW4M7QON/xqtwuRJEmn83BM4/xz4BmO\nP9Rwbu8hSZLa88beo6PiCAk/DXw38AJw+4g255544onbt28f9bYkSTrGl4EJOhwUogwJZ2gFhI8A\neWD7mLbnbt++zac//WmefvrpCEvqvMuXL3P16tW+HO9BttVu33ban6btSW2Oez/uf7NOca51vr1z\nLcy51vn2Uc611157jY997GNP0tob3zch4WeAIq2Q8CaQ3Hv9DrAT6vD000+TzWYjLKnzxsbGYq25\nk+M9yLba7dtO+9O0PanNce/H/W/WKc61zrd3roU51zrfPuq5FpWHItz2Z4F3AjPA39/3+CLwm4fa\nngM+8YlPfIJz5/pvWcL73ve+vh3vQbbVbt922p+m7Ultjnq/VCpRLBZPXUsvca51vr1zLcy51vn2\nUc21N954g2vXrgFco8N7Es50cmMPIAusr6+v92XqVn/58Ic/zKuvvtrtMjQEnGuKQ7VaJZfLAeSA\naie3Hed1EiRJUh8xJGjo9OvuX/Uf55r6nSFBQ8df3IqLc039zpAgSZKCDAmSJCnIkCBJkoIMCZIk\nKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnI\nkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAg\nSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmS\nggwJkiQpyJAgSZKCDAmSJCkoypDwAvBZ4MvAW8BHIhxLkiR1WJQh4V3AF4Af2vv+7QjHkiRJHfZw\nhNv+xb2HJEnqQ65JkCRJQYYESZIUZEiQJElBUa5JaNvly5cZGxs78FqxWKRYLHapIkmSekepVKJU\nKh147c6dO5GNdyayLR/0FvC9wKtHvJ8F1tfX18lmszGVJElS/6tWq+RyOYAcUO3ktqPck3AW+Iv7\nvn8P8CzwVeBLEY4rSZI6IMqQMAH8yt7zt4Gf2Hv+KWA2wnElSVIHRBkSPocLIyVJ6lv+EZckSUGG\nBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJ\nkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhT0cLcLkKJQKpUolUoA7OzssL29zYUL\nFxgdHQWgWCxSLBa7WaIk9TxDggbS/hBQrVbJ5XKUSiWy2WyXK5Ok/uHhBkmSFGRIkCRJQYYESZIU\nZEiQJElBhgQNrK2tLWZnZ5mengZgenqa2dlZtra2uluYJPUJz27QwGk2mxQKBWq1Go1G497r9Xqd\ner3OzZs3yWQylMtlEolEFyuVpN5mSNBAaTabTE1NsbGxcWSbRqNBo9Hg0qVLVCoVg4IkHcHDDRoo\nhULh2ICwX71ep1AoRFyRJPUvQ4IGxubmJrVara0+tVrNNQqSdARDggbG4uLigTUIp9FoNFhYWIio\nIknqb4YEDYy1tbVY+0nSoDMkaGDs7u7G2k+SBp0hQQNjZGQk1n6SNOgMCRoYExMT99VvcnKyw5VI\n0mAwJGhgzM/Pk0wm2+qTTCaZm5uLqCJJ6m+GBA2MVCpFJpNpq08mkyGVSkVTkCT1OUOCBkq5XCad\nTp+qbTqdZmlpKeKKJKl/GRI0UBKJBJVKhXw+f+Shh2QyST6fZ2VlhfHx8ZgrlKT+YUjQwEkkEiwv\nL7O6usrMzMy9PQvpdJqZmRlWV1dZXl42IEjSCbzBkwZWKpXi+vXrVKtVcrkcN27cIJvNdrssSeob\nUe9J+EFgE/g68OvAcxGPJ0mSOiTKkPBR4CeBReBZ4BZwEzgf4ZiSJKlDogwJPwL8K+A68DvA3wO+\nBHwywjElSVKHRBUSHgGywC8fev2XgamIxpQkSR0U1cLFx4GHgOah178CtHdJPOk+lEolSqUSADs7\nO1y8eJErV64wOjoKQLFYpFgsdrNESep5nt2ggWQIOJ3DYWp7e5sLFy4YpiQBcCai7T4CvAl8P/Af\n9r3+U8D7gb90qH0WWH/++ecZGxs78Ia/pKR43D1VdH193VNFpR61P9jfdefOHW7dugWQA6qdHC+q\nPQl/DKwDH+JgSPgg8JmjOl29etVfTpIkHSH0wfluwI9ClGc3/ATwA8AM8DSt0yH/PPBzEY4pqU1b\nW1vMzs4yPT0NwPT0NLOzs2xtbXW3MEldF+WahBvAY8A8cA74b8Bfo3UapKQuazabFAoFarUajUbj\n3uv1ep16vc7NmzfJZDKUy2USiUQXK5XULVEvXPzZvYekHtJsNpmammJjY+PINo1Gg0ajwaVLl6hU\nKgYFaQh5gydpCBUKhWMDwn71ep1CoRBxRZJ6kSFBGjKbm5vUarW2+tRqNdcoSEPIkCANmcXFxQNr\nEE6j0WiwsLAQUUWSepUhQRoya2trsfaT1L8MCdKQ2d3djbWfpP5lSJCGzMjISKz9JPUvQ4I0ZCYm\nJu6r3+TkZIcrkdTrDAnSkJmfnyeZbO9mrMlkkrm5uYgqktSrDAnSkEmlUmQymbb6ZDIZUqlUNAVJ\n6lmGBGkIlctl0un0qdqm02mWlpYirkhSLzIkSEMokUhQqVTI5/NHHnpIJpPk83lWVlYYHx+PuUJJ\nvcCQIA2pRCLB8vIyq6urzMzM3NuzkE6nmZmZYXV1leXlZQOCNMSivsGTpB6XSqW4fv36vXvS37hx\ng2w22+2yJPUA9yRIkqQgQ4IkSQrycIM0xEqlEqVSCYCdnR0uXrzIlStXGB0dBaBYLFIsFrtZoqQu\nMiRIQ8wQIOk4Hm6QJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAk\nSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElB\nhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUFFVI+EfACvA14A8iGkOSJEUoqpAwAiwB/yKi7UuS\npIg9HNF2X977+vGIti9JkiLmmgRJkhQU1Z4ESeq4UqlEqVQCYGdnh+3tbS5cuMDo6CgAxWKRYrHY\nzRKlgdJOSHgZmD+hzXcC1fuuRpKOsT8EVKtVcrkcpVKJbDbb5cqkwdROSPhp4N+e0Gb7AWrh8uXL\njI2NHXjNTwaSJLXs35t21507dyIbr52Q8NW9R2SuXr3qJwJJko4Q+uB8d69aFKJak/AU8O69rw8B\n3wGcAb4IvBnRmJIkqYOiOrthgdbahJeBs8AXgHUgmqgjaWhsbW0xOzvL9PQ0ANPT08zOzrK1tdXd\nwqQBFNWehI/jNRIkdVCz2aRQKFCr1Wg0Gvder9fr1Ot1bt68SSaToVwuk0gkulipNDg8BVJSz2s2\nm0xNTbGxsXFkm0ajQaPR4NKlS1QqFYOC1AFeTElSzysUCscGhP3q9TqFQiHiiqThYEiQ1NM2Nzep\n1Wpt9anVaq5RkDrAkCCppy0uLh5Yg3AajUaDhYWFiCqShochQVJPW1tbi7WfpG8yJEjqabu7u7H2\nk/RNhgRJPW1kZCTWfpK+yZAgqadNTEzcV7/JyckOVyINH0OCpJ42Pz9PMplsq08ymWRubi6iiqTh\nYUiQ1NNSqRSZTKatPplMhlQqFU1B0hAxJEjqeeVymXQ6faq26XSapaWliCuShoMhQVLPSyQSVCoV\n8vn8kYcekskk+XyelZUVxsfHY65QGkzeu0FSX0gkEiwvL7O1tcXCwgKf//znqdfrpNNpXnjhBebn\n5yM7xFAqlSiVSgDs7Oywvb3NhQsXGB0dBaBYLFIsFiMZW+qmM90uYE8WWF9fXyebzXa7Fkl9oFqt\nksvliPv3RrfGlY5yd04COaDayW17uEGSJAUZEiTpFLa2tpidnWV6ehqA6elpZmdnvZGUBpprEiTp\nGM1mk0KhQK1WO3CjqXq9Tr1e5+bNm2QyGcrlMolEoouVSp1nSJDUNw4vILx48SJXrlyJbAFhs9lk\namqKjY2NI9s0Gg0ajQaXLl2iUqkYFDRQDAmS+kbcZxEUCoVjA8J+9XqdQqHA8vJyxFVJ8XFNgiQF\nbG5uUqvV2upTq9Vco6CBYkiQpIDFxcUDaxBOo9FosLCwEFFFUvwMCZIUsLa2Fms/qRcZEiQpYHd3\nN9Z+Ui8yJEhSwMjISKz9pF5kSJCkgImJifvqNzk52eFKpO4xJEhSwPz8/JF3nDxKMplkbm4uooqk\n+BkSJCkglUqRyWTa6pPJZCK7E6XUDYYESTpCuVwmnU6fqm06nWZpaSniiqR4GRIk6QiJRIJKpUI+\nnz/y0EMymSSfz7OyssL4+HjMFUrRMiRI0jESiQTLy8usrq4yMzNzb89COp1mZmaG1dVVlpeXDQga\nSN67QZJOIZVKcf36darVKrlcjhs3bpDNZrtdlhQp9yRIkqQg9yRI0gnivkW11CsMCZJ0AkOAhpWH\nGyRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUlBUISEF/DywAXwN+J/Ay8BIRONJ\nkqQOi+piSu8FzgAv0QoI7wP+JXAW+NGIxpQkSR0UVUj4pb3HXVvAPwM+iSFBkqS+EOeahDHgqzGO\nJ0mSHkBc925IAz8M/EhM40lSXzt8U6nt7W0uXLjgTaUUq3b3JLwMvHXC4/AN1p8AfhG4AVx/gFol\naWgUi0VeeeUVHn/8cTY2Nnj99dfZ2Njg8ccf55VXXjEgKBZn2mz/2N7jONvAN/aePwEsA6vAx4/p\nkwXWn3/+ecbGxg68YVqWNGyazSaFQoFarUaj0fhT7yeTSTKZDOVymUQi0YUK1S379zDddefOHW7d\nugWQA6qdHK/dkNCOJ2kFhDXgY8Dbx7TNAuvr6+tks4d3REjS8Gg2m0xNTbGxsXFi23Q6TaVSMSgM\nuWq1Si6XgwhCQlQLF58EPkdrr8KPAgkgufeQJB2hUCicKiAA1Ot1CoVCxBVpmEW1cPGDtBYrvgf4\n3X2vvw08FNGYktTXNjc3qdVqbfWp1WpsbW2RSqWiKUpDLao9CZ/a2/ZDe1/fse97SVLA4uJicA3C\ncRqNBgsLCxFVpGHnvRskqUesra3F2k86iSFBknrE7u5urP2kkxgSJKlHjIzc3z3w7refdBJDgiT1\niImJifvqNzk52eFKpBZDgiT1iPn5eZLJ9s4UTyaTzM3NRVSRhp0hQZJ6RCqVIpPJtNUnk8l4+qMi\nY0iQpB5SLpdJp9OnaptOp1laWoq4Ig0zQ4Ik9ZBEIkGlUiGfzx956CGZTJLP51lZWWF8fDzmCjVM\nDAmS1GMSiQTLy8usrq4yMzNzb89COp1mZmaG1dVVlpeXDQiKXFSXZZYkPaBUKsX169fv3cDnxo0b\n3gRPsTIkSFIP2n9L4J2dHS5evMiVK1cYHR0FoFgsUiwWu1mihoAhQZJ6kCFAvcA1CZIkKciQIEm6\np1Qq8eKLL/LUU0/x6KOP8sgjj/Doo4/y1FNP8eKLL947BKLh4OEGSRIAzWaTa9euUavVDtyyend3\nlzfffJPd3V2uXbvGBz7wARKJRBcrVVwMCZIkms0mU1NTbGxsHNmm0WjQaDS4dOkSlUrFoDAEPNwg\nSaJQKBwbEPar1+sUCoWIK1IvMCRI0pDb3NykVqu11adWq7G1tRVNQeoZhgRJGnKLi4sH1iCcRqPR\nYGFhIaKK1CsMCZI05NbW1mLtp/5hSJCkIbe7uxtrP/UPQ4IkDbmRkZFY+6l/GBIkachNTEzcV7/J\nyckOV6JeY0iQpCE3Pz9PMplsq08ymWRubi6iitQrDAmSNORSqRSZTKatPplMhlQqFU1B6hmGBEkS\n5XKZdDp9qrbpdJqlpaWIK1IvMCRIkkgkElQqFfL5/JGHHpLJJPl8npWVFcbHx2OuUN1gSJAkAa2g\n8NJLL/HMM89w/vx5zp49y8jICGfPnuX8+fM888wzvPTSSwaEIeINniRJ9xSLRYrFYrfLUI9wT4Ik\nSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkK\niiokvApsA18HbgP/BjgX0ViSJCkCUYWEXwH+BnAR+D4gDfxCRGNJkqQIRHUXyKv7nn8J+DHgM8BD\nwJ9ENKYkSeqgONYkvBv4m8AyBgRJkvpGlCHhx4A/An4P+HbgoxGOJUmSOqydkPAy8NYJj+y+9j8O\nPAt8CPgG8O+BMw9csSRJikU7f7Qf23scZ5tWIDjsSVprE54DVgLvZ4H1559/nrGxsQNvFItFisVi\nG2VKkjSYSqUSpVLpwGt37tzh1q1bADmg2snx4vpkf55WgPgu4Fbg/Sywvr6+TjabDbwtSZJCqtUq\nuVwOIggJUZzdMLn3+M/AHwDvARaALwKrEYwnSZIiEMXCxa8Bfx34T0AN+Hngt2jtRfh/EYwnSZIi\nEMWehN8G/nIE25UkSTHy3g2SJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ\nkoIMCZIkKciQIEmSggwJkiQpKIp7N0iSdGqlUolSqQTAzs4O29vbXLhwgdHRUQCKxSLFYrGbJQ4t\nQ4Ikqav2h4BqtUoul6NUKpHNZrtcmTzcIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ6rqtrS1mZ2eZ\nnp4GYHp6mtnZWba2trpb2JDz7AZJUtc0m00KhQK1Wo1Go3Hv9Xq9Tr1e5+bNm2QyGcrlMolEoouV\nDidDgiSpK5rNJlNTU2xsbBzZptFo0Gg0uHTpEpVKxaAQMw83SJK6olAoHBsQ9qvX6xQKhYgr0mGG\nBElS7DY3N6nVam31qdVqrlGImSFBkhS7xcXFA2sQTqPRaLCwsBBRRQoxJEiSYre2thZrP90fQ4Ik\nKXa7u7ux9tP9MSRIkmI3MjISaz/dH0OCJCl2ExMT99VvcnKyw5XoOIYESVLs5ufnSSaTbfVJJpPM\nzc1FVJFCDAmSpNilUikymUxbfTKZDKlUKpqCFGRIkCR1RblcJp1On6ptOp1maWkp4op0mCFBktQV\niUSCSqVCPp8/8tBDMpkkn8+zsrLC+Ph4zBXKkCBJ6ppEIsHy8jKrq6vMzMzc27OQTqeZmZlhdXWV\n5eVlA0KXeIMnSVLXpVIprl+/TrVaJZfLcePGDbLZbLfLGnruSZAkSUGGBEmSFGRIkCRJQYYESZIU\n5MJFSVJXlUolSqUSADs7O1y8eJErV64wOjoKQLFYpFgsdrPEoWVIkCR1lSGgd3m4QZIkBRkSJElS\nUNQh4Z3AbwBvAe+PeCzpVO4e+5Si5lxTv4s6JPw48OWIx5Da4i9uxcW5pn4XZUj4q8CLwD+IcAxJ\nkhSRqEJCArgG/C3g6xGN0RPi/qTQyfEeZFvt9m2n/WnantRmED/BOdc63965FuZc63z7fp1rUYSE\nM8CngJ8FqhFsv6f4n6nz7fv1P1PUnGudb+9cC3Oudb59v861dq6T8DIwf0KbCeAS8CjwTw+9d+ak\nAV577bU2yukNd+7coVqNLwt1crwH2Va7fdtpf5q2J7U57v24/806xbnW+fbOtTDnWufbRznXovzb\neeIf7n0e23scZxsoA98DvL3v9YeAPwE+DcwE+p0D1oAn26hHkiS1fJnWB/U3OrnRdkLCaZ0HvmXf\n908CvwR8H/BrwO0j+p3be0iSpPa8QYcDQlxSeJ0ESZL6TlxXXHz75CaSJEmSJEmSJEmSJEmx+xbg\nvwJfAH4b+OHulqMBdh74HPDfgd8Evr+r1WjQfQb4feDfdbsQDazvBmrA68Df6XItkXkHMLr3/M8A\nG8C3da8cDbAk3zwT59uAL9Gac1IUvovWL3FDgqLwMPA7tC4v8CitoPDudjYQ19kND+otYGfv+buA\n3X3fS53UAH5r7/n/pvUpr63/VFIbfhX4o24XoYE1SWuv6Bu05tl/BD7Uzgb6JSQA/Flau3//F/BT\nwP/tbjkaAt9J64Jj3u5cUj96goO/v36XNq9s3E8h4f8A3wF8O/BDwF/objkacI8B/xp4qduFSNJ9\neuBrFEUVEl4APksrwbwFfCTQ5geBTVq3kv514Ll97/1dWosUq8DIoX5fobWw7NmOVqx+FcVceyfw\nC8A/Af5LJFWrH0X1e82LzekoDzrnbnNwz8F5emTP6F8BFoDvpfWDffjQ+x8FvgHMAu8FfpLW4YPz\nR2xvHPjWveffSuuY8Xs7W7L6VKfn2hmgBPzjKIpVX+v0XLsrjwsXFfagc+5hWosVn6B1luDrwJ+L\nvOo2hX6wXwN+5tBr/4PWJ7eQLK0E/ht7j9CdJKVOzLXnaN2xtEprzn0BeKaDNWowdGKuQevmd18B\n3qR1Jk2uUwVq4NzvnPseWmc4fBH4gciqewCHf7BHaJ2dcHi3yVVahxGk++VcU1yca4pbV+ZcNxYu\nPg48BDQPvf4VWueoS53iXFNcnGuKWyxzrp/ObpAkSTHqRkj4PVrHfBOHXk/QuuCD1CnONcXFuaa4\nxTLnuhES/hhY509f9emDwEr85WiAOdcUF+ea4tbXc+4sresYPEtrscXlved3T8uYpnXaxgzwNK3T\nNv6Qk08Vkg5zrikuzjXFbWDnXJ7WD/QWrd0hd59f39fmk7QuALEDrHHwAhDSaeVxrikeeZxrilce\n55wkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVIf+P9cYZ1EAfTlhQAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-4,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"black\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X2clPV97//XLHuDe4/JCriLAotLWCTlJlkRjKYFRWqr\naIJhjCdZjq2kD3NObdPCadP2kPPruSm/5qY2ORVa62psxqhto40J4CZRAVHiIg1licgGhF3BHe7Z\nXWDv5vzxnWt2ZnZmdm6umblm9v18POahzM7Odc13r7muz/X9fr6fL4iIiIiIiIiIiIiIiIiIiIiI\niIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiCTtKDAc4fHtLO6TiIiIONhHgGuCHsswwcOt2dwp\nERERyR3fAg5leydEREQkNxQDp4D/lu0dEREREfsUpvG9VwFVQEuM10z1P0RERCQxJ/yPjHOl8b23\nAZeBe6L8fOq11177wQcffJDGXRAREclbXcAnyUIAka6eh+sxyZL3xnjN1A8++IBnnnmGOXPmpGk3\nJNyjjz7Kt771rWzvxriiNs88tXnmqc0z6+DBgzz44IO1mN77vAke1gIfAi+P9cI5c+awcOHCNO2G\nhKuurlZ7Z5jaPPPU5pmnNh9fCtL0nmuBpzDTNEVERCSPpCN4WA7UAf+YhvcWERGRLEvHsMV2YEIa\n3ldEREQcIB09D+Jgbrc727sw7qjNM09tnnlq8/ElnVM1x7IQaGtra1OSjYiISAL27t3LokWLABYB\nezO9ffU8iIiISEIUPIiIiEhCFDyIiIhIQhQ8iIiISEIUPIiIiEhCFDyIiIhIQhQ8iIiISEIUPIiI\niEhCFDyIiIhIQhQ8iIiISEIUPIiIiEhCFDyIiIhIQhQ8iIiISEIUPIiIiEhCFDyIiIhIQgqzvQMi\nIvnEs9+D5z88dF3o4tiFY1wauERJYQlXBq9wVdFVXFd5HbWVtbhvdOOe58727ookRcGDiIiN3PPc\nLJ+ynPUb13Nq9ylOnTjFFa4wWDjIRyd/lI/f9HE2bdxETU1NtndVJGkKHkREbNTd3c2SlUvo+FgH\nnAXugsG6QXDB+8Pv09LVwo47d7B7624FEJKzlPMgImKjDV/bQMeCDjgKLAOmAS7/DwvMvzsWdLB+\n4/ps7aJIyhQ8iIjYaM++PVAHeDH/jaTW/zqRHKXgQUTERoOYIYrAI5IC/+tEcpSCBxERGxVSCD5G\nHpEM+18nkqMUPIiI2KhpfhN0AjWY/0bS5X+dSI5S8CAiYqNNGzdR/049TAd+AhwHhv0/HDb/rn+n\nnk0bN2VrF0VSpuBBRMRGNTU17N66m+bqZq6bdB28DIVbCuEf4PqXr6e5pFnTNCXnadBNRMRGgQqT\nH++ib3ofZQNlgQqTvUW9/KLyFzzU+pAqTEpOU/AgImIj9zwFBZL/NGwhIiIiCVHwICIiIglR8CAi\nkkae/R5WbF7BtJXTKJ9bTnFjMeVzy5m2chorNq/As9+T7V0USZhyHkREbGIlSwJcHrzM++ffZ6pr\nKj9/7Of0faoPbgJcMDA8QG9XLyVbSlh+3/Ls7rRIEtTzICJiE/c8N08sf4KP7PwIh799mEN/e4i2\nTW0mcNACWZJH1PMgImKTwHLcCzpgJeCCnmd6Yi+Q1aoFsiT3KHgQEbFJYDnuaUFPFqAFsiTvaNhC\nRMQmgeW4g2mBLMlDCh5ERGwSWI47mBbIkjyk4EFExCaB5biDLcUskHUMLZAleUPBg4iITQLLcQcr\nA1YDbVD+VDl8D2ZsnaEFsiSnKXgQEbFJYDnu8GW4z0DppVIW/fEiGv5LA7O+PIvTt5zmodaHVCRK\nclI6MnVqgb8C7gSuAg4BDwF707AtERHHaD3ZSv3D9Vz5wRXO7j5Lv6+fYlcxk66bROMfNtK8pFmL\nZklesDt4mATswozw3Ql0A/XAOZu3IyLiOIEVNddle09E0svu4GED8D6mp8FyzOZtiIiISBbZnfNw\nN9AGPA98iBmq+B2btyEiIiJZZHfwMBP4PeBd4A7g74DHgC/YvB0RERHJEruHLQqAPcCf+f/978CN\nwJeApyP9wqOPPkp1dXXIc263G7dbSUUiIiIejwePJ3RWzrlz2U0ljFZxPVlHge3Aw0HP/R7wVUYX\nbV0ItLW1tbFw4UKbd0NExFkiLdd9fdX1TCycCID7RrdmYkjc9u7dy6JFiwAWkYXZjHb3POwCPhb2\nXAMmqBARGbfc89wsn7Kc9RvX89rbr3Hk3BEGqge47RO3sWnjJhWLkpxid/DwTeAN4E8wSZNNwO/6\nHyIi41ak5bqPDB/hSNcRdty5Q9UmJafYnTD5NnAv4Ab2Y4Yrfh9QCTURGddCluu2BowLgGnQsaCD\n9RvXZ3HvRBKTjgqTL/sfIiLit2ffHrg9yg9rYU/rnozuj0gqtLaFiEgGRFyu21Lg/7lIjlDwICKS\nARGX67YM+38ukiMUPIiIZEDE5botXf6fi+QIBQ8iIhkQdbnu43DV61fxwcc/4G7P3VqiW3KCggcR\nkQyoqalh99bdNJc0c92/XQePQ+GWQtgG11Rew7W/uJYnlj+hQlGSEzTIJiKSAVaFySvzruB9xQt3\nwWCdSaJ8f/h9WrpaVO9BcoZ6HkREMsA9z81L7pe4dv+1XLr1kuo9SE5Tz4NICrRegSRK9R4kHyh4\nEEmB1iuQRKneg+QDBQ8iKdB6BZKoQL2HSAGE6j1IjlDOg0gKtF6BJEr1HiQfKHgQScGefXugLsoP\na/0/FwkSq95D/Tv1bNq4KYt7JxIfBQ8iKdD4tYBJnF2xeQXTVk6jfG45xY3FlM8tZ9rKaazYvCKk\n8FPryVbqH66nrquOshfKKPp+EWUvlFHXVUf9w/W0nmzN4icRiY8G10RSoPFrAVg2eRl/vuXP6VzQ\nCTcBLhgYHqC3q5eSLSUsv2954LXueWYGjmeJh5Y3Wmj/QTtnj53lw/c/5OxjZ2n/QTstq1poXtKs\nmTriWOp5EEmBxq8Fkst9WTZ5GR1bOuis7aR3dS8Dnxug97O9dNZ20rGlg+VTlo/6HRGnUPAgkgKN\nXwskl/uiZFvJZQoeRFJgjV9fffRqCp4pgMcxj21w5MIRPub+2Kgxb8kfnv0e7vbczfsX3k8490XJ\ntpLLNCArkgDP/tBx6n5fP8WuYionV1JSUMKluy6ZC4ILhoeHOdN1xnRB36cu6HxkFQm74as3JJz7\nomRbyWXqeRBJQLRx6hNnTnDpNq1XMN50d3dz8503c77yfMK5L4Fk20iUbCsOp+BBJE6e/R7mPzA/\n8jh1H+qCHocCeQt3AD9hdO7Lsei5L2Ml216ovKDhLnEshbYicVo2eRmnDpyCWyL80IW6oMehwCJX\nLmA1sAt43f/vYagaqGL3zyOXKN+0cRM77txBx6UOOAKc8v9eP5QPlrN9+3bmzJmTuQ8jkgD1PIjE\nacPXNjBQOhA5SPChLuhxKCRvoQzTA/F54AHgQRisGOSh1oci9iDU1NTw0ndfomJHBTT6f+cB4AvQ\ns6KH337wt/F6vRn6JCKJUfAgEqc9+/bABCIHCTWo3sM4NFbewvWV1/OS+6WIxZ48+z2s+MoKLt5x\nUbkyknMUPIjEaZDB6EHCUmAbcAzVewiSSNnmXJRKkTD3PDeVFyqVKyM5ScGDSJwKKYQlRE6MOw2F\nVwpZwxpmbJ0B34MZW2fQXNI8rpflzvcqiqkWCdN0TclVGogViVPT/Cbaz7aPTozzAaUwoX4Ch5oO\nMevTsyg6X8T1VddzuvA0D7U+hPtG97hcpyCkiqLF6pbHdMs/+Z0ns7V7SbPqfbz9/NucO3cOXsYE\nDcVQMLGA6uurA4tcuWui/921NorkKh2ZInEKZMcv6IDlmIvgMNBl7jJ3vzR+exiiCcxGiKQW9rTm\nZre8tRDWmQVnzOwb/+wKumDGOzPY7YnvWGia30R7Z3tocGVRrow4mIYtROJUU1PD7q27aS5pjjo0\nke9j/InK1255u9al0NookqvU8yASJ89+D57/8MAtUHZjGWVny7hYdJEf8kOe//vnmTlpJlNdU9n5\nzZ30fapvzKWZx4N87Za3q0fFWhvlyg+ucHb3SLnzSddNimvYQyRbcvObK5IF7nmheQter5f1G9fz\n2tuvcercKXqqe/jVwK9M4JBnY/zJytduebt6VALH1Dr79k0kExQ8iCShu7ubJSuXmK7rlYALjgwf\ngaeJPfUuR8f4kxXIE6EDahmVJ7Jpa252y+drj4pIvJTzIJKEqGPexeTlGH+y4skTyUWp1HcQyQcK\nj0WSEHXM2ypTrTtSIDRPZNbi/JnCmq89KiLxGl9nMhGbRB3ztipQ5tkYf7LC80TyhRIdZbxT8CCS\nhKhj3kuB54HfACYBu4FuYBhcPS62zdvGis0raF7SnJcX1fFCiY4y3il4EElC1FkEZcASuOqnV3G5\n5zK+e3yBJZt9wz5OdJ2gdEtp3k/ZDAxXAJcHL/P++fe5vup6JhZOBMjZ4Yp0sSpWtv+gnbPHQnsy\nGlc1KtgUx4mW2pUJC4G2trY2Fi5cmMXdEEmc1+vl5jtvNkmTEca8Pzn/kzzrejby8MVxaC5pdtSU\nzXRc7IOnsh45d4QZ1TO47RO3sWnjppxNlEyXkNk7dYRUrKx/pz6nk0slPfbu3cuiRYsAFgF7M719\n9TyIJGGsMe8dW3bAb0f5ZQdO2XTPc7N8yvKQi/1A9UDSF/toU1mPdB1hx507dDEMk69rgEj+UvAg\nkoSxxrxnPz07p6Zs2n2x18UwMfm6BojkL9V5EEmDQEJlJA6asmmtxTFj6Qxb1mqw7Nm3J3axrH26\nGAbL1zVAJH/ZHTxsxIzUBT8+sHkbIo6XK0WElk1eRseWDvoG+0Iv9r3AduCfgB3w1D8/ldDiXqMu\nhsHv9ywc7Dg4bhcLiyRXgk0RSzqOyP/ALFhsGUrDNkQcLVeKCAWGF3YwcrHvAV4AlhEyU6SzqzPu\nxb1CprLa8H5Oka5ZJPm6Bojkr3QMWwxhZrZbj9Np2IaIo1kJlXVddZS9UEbR94soe6GMuq66QBEh\nJwgML1iVMXsxdSqWkdIQRkjPyxupv59TuOe5eWL5E3xk50c4/O3DHPrbQxz+9mE+svMjPLH8iaSn\nU2ppbsk16eh5uAHoAq4AbwF/ChxJw3ZEHMupRYSsegJvP/8254+fZ+jikLmg1wDvYS70LlJe3Cuk\n56WbvEkGTNcsElWslFxjd/DwJvCfgEPAFODPMKejucAZm7clIglaNnkZf77lzzmz4AwswOQg+DCV\nMVuAuwkdwggXZ/Je8MWwq7cLnyvKgH4KyYDZKKyUrlkkTg02RaKxO3jYGvT/BzDFeTuALwLftHlb\nIo7mxKqBgYvfJEwewjWMrMVRSegQRgqLewVfDOcunUu7r928Xy+wC/ASKIT0q95fJVSy22rX/d/f\nz8n9J00Vz5vM+w0MD9Db1Zu2XApNqRQx0p3C2wfsB2ZFe8Gjjz5KdXV1yHNutxu3W110ktusu/zO\nBZ0Zu7iNJXDxewWTh3A1IzkOExgZwrBxca9AMqAVsAQlTjIMg12DdGzpiLs9rHY9MXQC7iGjtSQ0\npVKywePx4PGEzko6d+5clvbGSHd56hJMz8PjwF+G/UzlqSWvrX1kLS1XWhxVonr20tkcuuOQGa54\ngNDegMPA72FCfiugCJ4p0gn1+xIvlRwo5T3UAZ8g5fYItOvrQZ8h3DA0tjZyYNeBuPczHnOXzqX9\n9vaMblMkkmyXp7Z7tsVfA7cCMzD3Wi8A5cBTNm9HxPGcWCgpZAqldQEsA+7A9A92+v+9GjgIeIDv\nAU9D6eulSc0UsfIfCk8XmvYIrvnwPf9/2+H5nzwfV82HQLsGf4ZwaeoFyJX6HSLpZvewRS3mdPNR\nzKjmbmAxZgKSyLjitC5uz34PZ686ay5+kfIagpcTr8MEFDYszmTlP8x+ejaHeg9FHLqgC/p/2M/y\nKWMPXQTa1YbcjETlSv0OkXSzu+fBjflKlWBOP6uBX9q8DZGc4LSqgcsmL6OkuwS2AVcx+g7a6nFo\ng8InCm2vTVFIoRkeiVLzYeCugbhqPgTa1crNiCRNvQC5Ur9DJN1U8zQPOTHLfzxyWtXADV/bwNGm\noyZJ8lXgRczUzDpG7qDPQP2Eena/Y/+ql03zm2j/Ubvp0YikLr7ZCoF2tXpKouRmpKMXQFMqRYx0\nJ0zGooTJNAkpZGONDdvQ/SyJCSQKLojcxZ3pv8OoZL+waZOu8y5qF9SmLcD0er3ULqhl4HcHor6m\nYXsD7+56d8z3CbRrNWZwtBsYhoKeAj46+6NMKJ7AhRMXuDx8GV+/z/RUTABXoYuJBRMTDqQVkIvT\nZDthUj0PeWisQja/tubXmFA8QSfBNHNa1cBRORhWoqTfDdtv4N0fx75wp6L1ZCvFlcUM+AZSylOw\n2vXs82c5f/w8w65hXAUuCqYUUH5TOedePEf/bf1wCyZAsnIs/IF073BvwtNlnTjtViSb1POQh2JO\nJ7sIRc8UMfBbA2be/RsE7tpcPS6mzJvCvNXzFETkISdMM0z39NVR778dmIN900MdNO3Wol6R8Snb\nPQ/pWBhLsixmlv/rjAQOL2BOrJ8HvgC+L/k4Mf2EKdgTR9a75BYnTDOMdwEoz34PKzavYNrKaZTP\nLae4sZjyueVjLuM9anqsF1umyzpx2q3FWla9s7aT3t/sZWDSAL39vXQe6uSVv3iFr/zBV7T0udhO\nwUMeiprl3wMcxZwE82ilQ4mPE1ZujHe2QsgFcXUvA58boPezvXTWdsYMbkcFzjbUgvDs93D03FFH\nTbsNNqrkuG4IJAOU85CHomb5vwFUYE6CXlSjf5ypqalh99bdrN+4nte2vsaRc0eYUT2D2z5xG5u2\nbspI8ma8sxWSXYAqpAgWJFQLIlr3f+XkSi55L2W8pkS8RpUcz2C57mzQMI0zqOchD0W9w/wAs35B\neIXBcKrRn5c8+z081PoQp285zawvz6LhvzQw68uzOH3LaR5qfchR3dqJDBMED3EcOnIodGgmgVoQ\n0Xo7Tpw5ge9aX/T36cxuZclAb4tNQzROl2yvlNhLPQ95KFqW/+XhywzVDEWvMGgZht7LvazYvELR\nvQ2ccqcUuOvPAYlU5wyZCXEjpuveqpIZXjUzRkXIqL0dfZgFuKxZG2E1JYpeLmLT/uxVloxYcjxc\nHt0QpGtZdEmMgoc8FK1reO7SubQvaTcnwSpirpx4y8dv4e0tb2tqmg00zS9xgQtiH6FLePuAj0LX\nmS48+z2457lHX0xW+39nBzAEEy5PoOT1EnyFPi4NX4o6VBN1uW0XZoUe631fD9qXGiiaVJTxabfB\nAsOUWSjXnQ1aFt0ZNGwxjjTNb4KzmJNgMabC4DEiJs+5ClwjJ2QlVKYk5OKWY22Z7KyHVDXNb4L3\nML0GczCrZz6AKYDfCAV9BYHu6cAQh7Xg1g+AU8AgMARDQ0P0TejjyvAVCq8p5Pyd5/nFx38xaqgm\nam+HdVG26mJ83r8vnweWw/Srp2e1RycwTFlK1mfTZILT1owZr/IjFJUxeb1eLl+6TNGPihi4awBW\nApeAncBPgctQWl3K1dOvpv7henZs2QG/HeXNFN0nJJfvlNLVazLWUM5999/HCw++QM+Knojd0xfv\nuBjonh5kMLQY1O2M/Hs5geJQw8PDDHcNM+mHk9i6deuoBNFRyZYWK2/CIWXGw1nDlH3P9XHyxZP4\n7vaNOUSTy6L+nSCvelicTj0Pec7r9XLzvTczuXEyzxY8y8B/GjBLlX0P+GfgMFRfV80dG+/gH577\nB47/+Djb1m2jbGKZonub5Oqdkme/h/kPzE9Lr8lYSW8AvgpfXAmAERfcSmIqctQ6GEsxi4lF6aWz\nc4prMj097nlutq3bxte/9XVu/8vbqfsgvxftckK9ElHPQ157/NXH+cq6r9B3VZ9J+LLunIIXJjoO\nq0pWcceSO2h5o4X169dz9thZek/1jiyZHE7RfUJy9U5p2eRlnDpwypR5jiSFXpOxkt7efO5NaifV\ncsh1KPIbBAVdERfcSmIqcshy22FrZnAJCn5SAEWh62PYXWY8lZ6e8bJol5ZFdwb1POSxt55/i75P\n9ZmkszHu4MLvBJnFuIvu0zW+n6t3Shu+toGB0qB1KKycgn/C9Fx9F9rfbWfCDRMonFOYUFvFnIpZ\nDc/86zO81/FeXEuab9q4iaKBopSLQ1nd/1N/NRXXU66QYks8AsPLh5lROYMTr5+g50BPoJfOznyH\nXM6PyRQti+4MzrzlkaSEjyP3nuqF3yOuE+moO8Foyx3ncXQ/asrfGzDQPUDvoV66/qKL/fP207K6\nJeGpldm+U0p2quiefXtG6oJEyylYBcN1wyMLTh3u5cTGE+ys3skXXV+Mup2oQzk9wD/D4G8OQjtx\n5RpEXHAriZkH1p372l+spWVmS1amAuZyfkymjJceFqdTz0MeGdV7UM3IlLIx7uBG3QmWYWZlHMTc\nZW4m76P7dJX5zfadUkqlnq1kwfAcgkg5BX3m+aG7huj7XF/M7UQtoR78vrcAP2HMctrueW5W//rq\npItDhcvmOhaZyI/J1gwap+2DpEY9D3lkVO+BFTTEkS3+xr43Rp+0gpZsbtjewLu70rdcsxOkq8xv\ntu+UUir1vAQTSEHoHXGknILgC/8Y24laQj34fa0ANqi2guu8i9oFtaNyDUb17iRQHCpcNhNcM5Ef\n44S6I07YB0mNgoc8MqrL0woaog1BdEL9PnMi/fSqT4+ctHoJLcwzDL/q/RUrNq/I68qSIWV+86jr\nONmu8Kb5TbSfbTcXcA9j5xQk0G5Rh3KGwt43KIAFuGH7Dbz749FBbHhV1cvDl/EV+OBnwAST5FhI\nIVRDZ0kn026dxrBrmGJXMSVTS3AtcOF7x8eVE1dGkoWjFKhK5+SYqEEV2JYfEzGYvAQchI4zHUxe\nNJnSitK0VkBVlcjcp+Ahj4y6YwoOGj6DyR5/DRgGV4+LKfOmBO7gAictq8veGtv2Bw+DXYOm6zmP\n7wjytcxvsnfSgQv8gg6YyNgLTiXQbtFKqF/pv8KgL8r+xrjzjqd3p7u7myUrl5jP46/9MDA8QO/h\nXgqfKmTw7kEzVPIKpkCV1ZMS9D2gCzpe7mDza5tZd5v9XUl25MeE57hcHr6Mr9+Hb9iHDx9cBL4c\n9As9hHznfS6fyV9JYy+Acjtyn3Ie8oTX6+XDEx+GjiMH5y28CByBsuIy6hrquP1/3M7Xv/n1QLZ4\noEpdcJf9OMv2DsyKiCNHJJdEzS+AmJ8nOFejsLdwJIegF+hndE5BAu1m1SY4/uPj9Bzoob+9n54D\nPTx494Npm5kSdSbDUUzgYD2/lJjfg6G7hnjzuTeT3o9Y7MiPWTZ5Gfu+vY/OqzvpreplqG+I4XPD\n+Jb4/zhVQZ+pl5EbjAx+53O19omMyK2zoEQUqOdQ2Tc6t8Hq9j0OzSXNUbsCrZPW+3/5PoN1Ub64\neX5HELjrK+1wdEXBRCXbFR58N+/1ern5zpvpuNRh7siXYpIZg4fCPkrK7Rbrzvuat67h6BePMm3l\ntKQWGIt6txs+3FIGVBI7aTJN3wM78mM2fG0D3R/vNn+nJcBh4F7MTcQyTP5I8AwaFxn/rLla+0RG\n6C+UBwL1HK5mzNyGaKyT1uynZ8dVmCcf5WuZXzu6wq22OfHXJ+hb1mcChFpCF4q6BK73XPju8aW8\nnfDhjEnXTaL+C/W0P9VO903dSSXZRb3bjTTcMiHCc5YMfQ9SmmLrw5wHDmKCoTrM3+l2RnKhrGBi\nBxn/rCEBbXiOVT8cLTya9zlWuU7BQx4I3FG5GL3y3zAU9hZS/9/jq4Q3nu8IrADKsyTopP1m2AXM\n5oqCmRDzghzn57HaZu7Tc2mvazdPhiUzMgyl3y9lUteklLcT6c577SNree2m15JOsot6bEfK38jy\nCpWe/R42b93Mzm/sZOiuoVHB0oVvXaD/Yn+gImxwW585dwYGGAkYihkJkKxhmef9G7o9O581ENBa\nPVlhuSV9XX15n2OV6/L3SjCOhNxRhZ/QgZnbZ7Jt3ba43isT2d5Ol+2plXaz8/OMunsPu2vsO9/H\nJCax9L8ute2u0boD/+lLP4WHorwoju71qMd2pKnMWV4Ma9nkZTz82MMmcIgQLF1YeIG2x9q4eMfF\nUYFF0b4iM+xiBQu+sIeVC2XNoMnCZ43YkxX2GTXrwtmUMJkHkk2IiySQODlGYR4Zn0KOtR5GLZnt\nW+cbs/hUsHiKBVlFrgaLU0uyCzm2L2JKbT8FHAL+hdCFr24mY4thRbLhaxvoKeyJnotwxKwsGinJ\ncWDygElotYIFKxcluHBWGXCV/+dW/kr4d/5Yej6r1+tl++Pb6Xy6k8HewYQKcnm9XtY+spa5S+cy\ne+ls5i6dy9pH1uL1em3dRxmbgoc8YOfaCeHZ3hOenUDBMwUU/LSAIxeOMPXWqaoEN46FHGtJrFwZ\nLp7ql4FZElap7EjiCJJHrV0x3f9+92B6NKzVZp82j+IpxZQcLKHkuZKMVwXds2/PyHBDJKeIftFd\nDq4LrpGAYQYmOJhOaJBgBRPBs7I8BNqg9PVS2z/r468+zvRbptNypYX229vpr+iPOyAM/91Ddxyi\nfXk7LVdamH7LdDa/ttm2/ZSxadgiD9i5dkJ4F3ekufHpngMuzhVyrHWT8lz9eIoFBXJ6UuxeH7V2\nhZUwGGW12QdKHshal/kgg7FzEWLV1KiAiVdPpP/lfoZ+fWhk1sUR/++8jCnG5QPexQRPdZjP7z9v\nlO4o5RtbvmF7LYtAcnd4Fdw48i1G/S4EjpW+T/Xx5nNvpqX2hkSm4CEP2JEQF40qwUmw4GOtq7cL\nnytKV0CcWfoh0ycjVDZ9pvcZiicVhyb6RZhNVLqzlMVbFsf1GQLbtGYfRJLlacmFFMae+moNS0S5\n6F5deTVz/2gubz//NucKzjH802HTVsVQUF5A9fXVfGL1J7jvY/fx5nNvsqd1D4MMUkghTfOb2LRz\nEzU1NbZ/rqhVcOMICFVYylkUPOSBdCb46QsrwYKPtblL59Lua08pSz+QgBlW5TC4sqnrZVdool/Y\nbKKqgSqO8OQKAAAgAElEQVTe+/l7cV/sAtt0cCXRpvlNtJ9rH11Lwx8sFfYUMtg5GPWie/vi23ly\n3ZNxnRMyebceswruGL2mKizlLAoeJKbx8oVNdk79eGbHzJxAAmaMRbUGJg+M3J2GzyY6DveW3JvQ\nXXJgm1mejhnLpo2b+NFv/IjuJd1maXIrWOqHCZcn0PRIE4f/+TDddGdlmfdkjZouGxwQvgb0Qtmk\nsoi9puN5GrkTqbUlpvHyhdUqf4mzI9cmEIDEWlRrObieilx8qnRH/MMVo7aZ5emYsbSebGX+l+eb\nYPb8WfoL/cHsTBPMNkxroHxqufm5DUOVmQqeIwaccVbB1TRyZ8mPM7+kzXj5wiq3I3F25NoEApCh\njpgJgDNmzODWklttGZtffP9innv4Ofo+0Rd5WCDJoMROwcND4Rf2n/3Nz9jl2mXrhT1TwXMqAaed\nieGSOgUPEtN4+cIqtyNxduTahKypEmM1zYlFE20L3tbdto77dt7H+o3reaPmDU62nuRy/2Umlk5k\nykemsOQTS9KWMJiMTFzYMxU8pxJwpjMxXBKn4EFiGi9f2PGS2+E0IdMnO1sy1sNVU1OTMz1JES/s\nl4CD0HGmg8mLJlNaUZpST0SmgudUAs58q/ya61QkSmJyz3PTvKSZxlWNTLpuEsWuYvp9/Zw9dpb2\nH7TT8kZLXhSKsrNKp1PEU73RLqlW/lt8/2JKd5RGrGxauqOUxfdnbwgh2/bs2xNaECq4sucXwfeQ\nb1RhrUQpeJZEKXiQMcVTBTDX2Vml0yky9Xezo/LfutvWcXTnUZpLmmlsbaRhewONrY00lzRzdOfR\ncV38Z9SF3YbKnuHyMXiW9FLwIGMK6Ta16WTlNPm4pkem/m4hlf/CtmNV/ouHNZRwYNcB3t31Lgd2\nHeDJ7zzpmNyDbAm5sPdiKkUmsB5EPCIGz72Y9T+ehoPHD2atLH0me9Akfgonc1impleNh2TCTOR2\nZOrvZdcqlPEaD8dHNgVmPE3CFNK6CtuHGAIzUD7VB9WYmgtHMaWrbwefy5f2svRerzdQjjx4Rs0f\nP/LHpgdN06gdJdohmAkLgba2tjYWLlyYxd3IXZHWnQieCbF7625b7tpmL53NoTsORf15w/YG3t31\nbsrbyXeZ+nsFtnOuA74Q/XV2/d10fKSX1+vl5jtvNtNZP4EpGPUAUWemNLY2cmDXgaS2c/fDd/PW\nzrfw1frMtiIlsI5RjyEZj7/6OF9Z9xUTvIR9Nya8PGH00uRp3JdcsXfvXhYtWgSwCNib6e1r2CKH\nZapbWuOh9kjX3ys8WbGhqcGWVSjjpeMjvaxescLThebCGry0drgU8nNqamr42LUfM8W4+rB9aCSW\nkKGvPsxwiQfYAUNDQxndF4lPOoOH/4aJHb+Zxm2Ma6OysIPZ+KXKx2TCbEjH3ytSsuL5ovNpvciE\n0/GRXu55brat28bM62aOLBAWvLQ2/v8eS31mSuAYDV73w8p9+CfMct0eOHT0kK35BoHtBs8kecD/\nmIRmgjhQum4JPgk8DPyC6PckkqJMTa8aL4Wi0i0df6+oyxSPsQpl/T77/m46PjIj0MNj0wJhkQSO\nUWvdj16iLljWsaXDtnyDwHYjrXHi4DVIxrN09DyUA88AvwOcTcP7i1+muoutbtO6rjrKXiij6PtF\nlL1QRl1XXSCZMFdlMpM7HX+viL0Z1snWusgcxHQBf888Cn9caOvfLZ+PDycJ6eGx1oP4PObu/Da4\n967EFgiLJHCMWr1WaZgWGnO7XszxHNzbcRH1bDlQOkK27wA/BH4K/EUa3l/8MrXuRD5Xdsvkgljp\n+HtF7M0IXvApwiqUD5Y8aJZrtkk+Hx9OEjIjIk1rcQSOUavXCjIykyawXRejezv6/PvyG5jAQj1b\njmB3z8MaYD7wJ/5/a8gijVSVL3WZrGGRjloSo3ozeoEB4EXgmH3bkezLRCGtwDF6BvgMMEjGhkbr\n36mHfsxwTHBvh9WD9kvgaXA94VLPlgPY2fMwDfgbYDnmEIDQtJuIHn30Uaqrq0Oec7vduN25v15C\nugUv8GPHaoPjUSZrFNhVSyK4XsTJIydHehl6GLljuw3T5fw6JnC4CNVzqvNqPZLxKN1rcoQfo739\nvRnJN7C2e+KvT9B3oi+0twxGetCGYU7rnKSmouYyj8eDxxM6hHru3Lks7Y1hZ52HVcC/AENBz1mT\nxYaAEkLvkVTnQbIu12oUePZ72Lx1Mzu/sdPMfbcKB/0GJrehEc2HF9usfWQtLVdaMnZMeb1eahfU\nMvC7A1Ff47TvZLbkU52HVuBG4Nf8j/nA25jkyfloCEMcKJdqFHi9Xl78xou8/n9eHymaU85Il24H\nmg8vtgoZGr2ISWJ8BjN88G8u3j35btyLn8Wj9WQrxZXFOfOdHM/sDB56gPagxwFMqssZ/79FHCdX\nahRY9Ry+/8738VX6QoMEq0u3Gs2HF1tZeRaLTy/G9ZTL1F/4PPAF8H3Jx+5Ju+Ne/Cwe7nluVv/6\n6pz4To536a4waU0aE3GkXFkQK1DPoQ8oJnKQEOvbpjs2SVJI5ckUFz+LR658J8e7dAcPvw78YZq3\nIZK0XKlREFL5L1KQ0ItJU9Ydm6RBpqrZQu58J8c73YrkoGirz23aqBkWicqVGgUhlf8+ysgMCxiZ\nZWGVLQ6vKKn58JKiTFWzhdz5To53Whgrx0Ray6B9eTstV1psHXscD8IXlJq7dC5rH1lrawKYXUIq\n/80gdG0DqwpgA6MrSj4Npa+V6o5NUhI4/sLXufgnYBt0ne4asxprJqu5Svqp5yGHeL1evv6HX4+8\nlkHQ2KMdxWJi7UM+9HqELAEcVLO/vaud5255jm9s+UZa2zFRoyr/LcGkIb8OnGekVkV4RclhmN46\nnW3rtmV0fyW/NM1vov299pFANeg7QxcUbC9g+ZTY1VgzWc1V0k89DznC6nE4fPZw1qbj5VOvR8iC\nUmlOALPDqMp/RzHrAFhVVTTLQtJo08ZNlL9eHnWdi4t3XByzGmsmq7lK+il4yBGBi120THtI+4Ui\n1y64sWQyAcwOIUlkPy6j6GwRZcVl1DXUUfaRMs2ykLRqPdmKr8KX0ncm0e+chjmcTcFDjgh88bI4\nHS/XLrixZDIBLB5jnSgBtq3bxvEfH6fnQA/97f30HOjh+I+Pa168pJ17npvaSbUj35nw3AcPdHZ1\nxswXSvQ7t2zyMjq2dNBZ20nv6l4GPjdA72d76aztNMuBjzFMIuml4CFHBL541oqJkaT5QuG0C24q\nnFZZMpUTpebFSyYEvjM9mLybOZjlwB8A3HBh+YWYw5eJfuc0zOFsCh5yROCLZ03HC79QHEv/hcJp\nF9xUOK2yZConSs2Ll0wIfGespMkEhy8T/c7lU09nPlLwkCMCXzxredrw6Xivp386ntMuuKlw2t16\nKidK9zx31CGNbeu2mTnzIikKrHPxAUkdqyHrZIR950p3lLL4/sUhr8+nns58lDu3iuPcpo2b2HHn\nDjroMAWA/MvTWgWAdm/dnfapkqP2IYeLENm1PLZddKIUp1t32zru23kfs26exQXXhcgvinGsWr+/\nfuN69rSGTfXeOXqqd6CnM83LgUty1Po5wgkXOyfsg12yXcUuvF7G0SNHdaIUx6upqaFuch3tvvak\njtWampq4l/AO1DaJtBx4jvV05iOdkXJEti92TtmHfBCxQNU2QktOB9OJUhwkUxf1xfcv5rmHnzPf\nk7CeztIdpSzesniMd5B0Us6DjDvZLksdsV7GLZhE2GOMjAdfBP4VeAm+2/pdzXEXR8hUvpC1HHhz\nSTONrY00bG+gsbWR5pJmju486qgKsONRtFHWTFgItLW1tbFw4cIs7oaMJyF3/dYqlUF3M5koSz13\n6Vzab4/Q7dsL7ITio8XU1dZx/PhxBn5rACZhMty7zb66elxMmTeFeavn0bykWQmRklGe/R5a3mih\n/QftnPnVGS5dvATDUFBSwMSyiSz6tUW88NgLOVWuPhft3buXRYsWASwC9mZ6++p5yAHZvlPOJ06o\nkhkxObIX2AWcAt8EH6e9p0cChxcwc+o/D3wBfF/ycWL6CRXKkaywZvd8dcNXAfD9pg/fl3wM/ech\nelf38nrZ6zlXrl4Sp+DB4Zy6nkR4QDO7aTY3LLyB2TfNdnSA44S546PqZYQV3Rn4nQHOF503+xlj\nTr0K5Ug2OSEQl+xR8OBwTvyCjgpolhzikPcQhxce5tDKQ44JcCJxwpTIUfUyogUILsziVyqUIw7k\nhEBcskfBg8M58Qs6KqBJsuJcNjihSuaohLNIAYK1homLrAc7IpE4IRCX7FHw4HBO/IKGBDS9wBEc\nF+BE44QqmeHlpOlh9N/YWsMkiwuhicSSSCCuvK38o+DB4ZxwpxwuENBYY/VXkdJqe5nkhLLUweWk\nj7x6hKqJVaP/xtYaJleR9WBHJJJ4A3Gn5m1JahQ8OJwT7pTDBQIaa7hiAimttpdJTlpEyjqpnq88\nP/pvbK1hMoSp9RBc/yHGegAimRISiF/E3DQ8AzwNhf9WyKs7X2X2TbPZ0LzBcXlbkjr1eTqcE6us\nBSrMeTEVEq0u9oOM5D5Ywk4S2S7s4qQqmYHckasxQdcyQv/Gp6F0oJSv/ePXOLD9QFzrAYhkihWI\nn/6n05w7eA7uwZwPemHwhUGOfvKoGc78HrGHNVudM6wp8VPw4HCJLiaTCYGAZqjP3EksxVz8wJw8\nItFJYpQ9+/aMlKdejanz8DqBwlVVA1W89/P3zN/4nmzuqchoViC+9hdraWloGblpCE6gBiX95ikF\nDzkgkcVkMsEKaG646QbO+86PdLF70EkiASHJsGWYlVKDTN4+WT0L4niBIBhGEqiDbyKCZw6FU9Jv\nzlLOgySlpqaGe1feOzJWX4ZJ7nNYcqeTOTEZViRRMROoYWRYMxIl/eYsBQ+StMX3L6Z0R+nIzAWd\nJBLixGRYkURFTaAG0xMxALxIxKTfTM1wEvspeJCkha96d03PNbhedGlmQJxGBV+g9pKcEwiCrWJn\n1k2E1RPxcaAZ+CUmefJp4O+g+r3qjM9wEvuoX1RSEp6P4fV6HZXc6WROTIYVSVTUBOoqQhMng3N6\njsOqklU8uc45uVySGC3JLSIiKfF6vSaB+gvnzVWlF1Pz4WGiJko2tjZyYNeBjO5nPtGS3CIiktMi\nJlBXoNlXeUzBg4wbnv0eVmxewbSV0yifW05xYzHlc8uZtnIaKzavwLPfk+1dFMlZo3J4tC5LXlPw\nIOPGssnL6NjSQWdtJ72rexn43AC9n+2ls7aTji0dLJ+yPNu7KJKzwhOoK/srNZsojyl4kHFjw9c2\n0LGgI2KN/Y4FHazfuD6LeyeS+6wE6gO7DnD454ezvgidpI+CBxk3QpYSD+ewpcNFcp2TFqET+2nQ\nScaNkHLQ4ZTAJWIrJy1CJ/ZTz4PYyslJiSoHLSJiDwUPYisnJyWqHLSIiD0UPIitnJyUqHLQIiL2\nUD+t2Cpked5wtbCnNXtJiSoHLSJiDwUPYquQpMReYBdmwRwX4IPO/k68Xm/WLtTha3GIiEjiNGwh\ntgokJVor6s0BHvA/3HBh+QWm3zKdza9tzuZuiohICuwOHn4P+HfgvP/xBnCnzdsQBwskJb7ByIp6\nYbkPfZ/q483n3szWLoqISIrsDh6OAxswK2YuAn4KvATMtXk74lCBpMQPUEEmEZE8ZXfw8ENgK9AB\nHAb+DLgIaA7cOGHVt6+cUKmCTCIieSqdCZMTgNVACbAjjdsRh6mpqaFuch3tvnboY1TSJB8FxQ4i\nIrkrHQmT8zDpcpeBLcD9mF4IGUea5jfBe0RMmqQROo53KGlSRCRHpaPn4ZfAx4EqTM/Ds8Cngb2R\nXvzoo49SXV0d8pzb7cbtdqdh1yRTFt+/mO+u+S5Ddw2ZpEmLP2ly6K4h3nzuTdbdpsL3IiKxeDwe\nPJ7Q0v7nzp3L0t4Y0Ual7fQKcBT43bDnFwJtbW1tLFy4MAO7IZk2+6bZHFp5KPJRNgyNrY0c2HUg\n4/slIpLr9u7dy6JFi8BMToh4c55OmajzUJCh7YjTFKKkSRGRPGT3sMX/Bn6EmbJZAawBbgP+p83b\nkRwQKBgVpedBq1iKiOQmu3sEaoCnMXkPrcAngRWYeg8yzmgVSxGR/GR38PA7wAxgIjAZuAP4ic3b\nkByhVSxFRPKT+o0lbbSKpYhIflLwIGmlVSxFRPKPZkHIuOD1eln7yFrmLp3L7KWzmbt0LmsfWYvX\n6832romI5BwFD5L3Hn/1cabfMp2WKy20397OoTsO0b68nZYrLVoeXEQkCQoeJO+99fxb9H2qT8uD\ni4jYRMGD5L09+/ZoeXARERspeJC8N8igKl2KiNhIwYNkVDYSFwOVLiNRpUsRkYQpeJCMyVbioipd\niojYS8GDZEy2EhdV6VJExF7qr5WM2bNvD9we5Ye1sKc1PYmLqnQpImIvBQ+SMaMSF3uBXYAXcMHh\ni4dZ+8haNm20/4KuSpciIvbRsIVkTEjiYg/wPDAHeMA8+n+3X4WbRERygIIHyZiQxMU3gGWocJOI\nSA5S8CAZE5K42I0KN4mI5CgFD5Ix625bx9GdR2kuaab4crEKN4mI5CgFD5JRVuLirOtmZaRwk1bT\nFBGxn4IHyYpMFG7SapoiIumhqZqSFYvvX8xzDz9nikbVYsLYYaDLX7hpS/yFm7xer6nhsM/UcGAA\nhgeH6T7dTd/t/qJUlrCkzHW3rbP3g4mIjAMKHiQr7Crc1N3dzZKVS+hY0GEKUPUCLwBLgJ8ROykz\nTUWpRETynYIHyRo7Cjet/v3VJnCYhgkcngeWYqaCXoWSMkVE0kA5D5LTTh07ZXoXrKJTLuAIpobE\nBLSapohIGih4kKxKZTaE1+ul88NOEzBYRaeKgVOYgKIGraYpIpIGuvWSrBmVr+AChqG9q50dd+5g\n99bdUXMfHn/1cb6y7iv0DfWZ3gUv5j18/vdxYYYvnscEFcFJmZ1QujOxpEwRERmh4EGyJiRfweKf\nDdFBB5/9r5/lNc9rEX83sLz3QUzvghUw1AAfYIKIMmA1ZvGt1wkEJ1UDVbz38/e0mqaISJIUPEjW\nnDp2KuYS3adaT0X93cDy3ldjehfABAxLgRZMQDENE0DcEfSLx+HeknsVOIiIpEA5D5I1o5boDhY2\nGyI4N6K+qZ5f/uqX5net3gUfJmAoA+4HfggcwwxT4P/vcX8Nifs1XCEikgr1PEjWBJbojhRABM2G\nCMmNWIKp4zCRkd+1Aobg/IYvADuBn4Lriosp10xhxdIVCdWQEBGRyBQ8SNY0zW+ivbM9NOfBEjQb\nIpAbcTXwHLCckVwH63eD8xt+AldxFTOunUHTbzaxaaMCBhEROyl4kKyJt0T1qWOnTI+DVcehjpFc\nh+CZFFcBH4P6y/UxZ2qIiEhqlPMgWRO8RHfDjxuofLKS4r8vpvLVSuqq63jzuTfxer0m9yG4jkNw\nrsNBwAN8z/y38ieVChxERNJMPQ+SVTU1NfzVf/8rlqxcwoXlF6AO+l39XBi+wKGuQ+y4cwcTCifA\nWUbqOATnOgTPpBiGutY6BQ4iImmm4EGybtT6FLswRZ9c0NHfwcQrE0fWqbCqRo6RJyEiIumj4EGy\nLlDvoQczk2IZIRUnLx++DFsZqeOgqpEiIlml4EGyLlDvwcprCK842QD8OyM9DuFVI/thculk9u/c\nryELEZEMUMKkZF2g3oMXM5Mikjuh6IdFcBwzhHEH4AY+BfVX17P/VQUOIiKZop4HybpAvQdrfYpI\nKmDaddO4teRW9rTuYZBBCimkaX4Tm7aqjoOISCYpeJCsC9R76O+LWXFyYtFEnvzOk5nePRERCaNh\nC8k6q97DrEmzTF5DJJpJISLiGAoexBFqamr4o2/+EaU7Sk1egxa0EhFxLLuDhz8Bfg5cAD4E/hWT\nKy8ypuCKk42tjTRsb6CxtZHmkmaO7jzKutvWZXsXRUQE+3MebgX+FhNAFAH/E9gONAJ9Nm9L8lBN\nTY3yGkREHM7u4GFl2L/XAt3AQswCySIiIpLj0p3zUO3/75k0b0dEREQyJJ3Bgwv4JrADaE/jdkRE\nRCSD0lnn4dvAXOCWNG5DREREMixdwcPfAr+FSaD8INYLH330Uaqrq0Oec7vduN3uNO2aiIhI7vB4\nPHg8npDnzp07l6W9MaIVA07l/f4WuAf4NNAR47ULgba2tjYWLlxo826IiIjkr71797Jo0SKARcDe\nTG/f7p6H72CWK7oH6AWm+J8/B1y2eVsiIiKSBXYnTH4JqARexQxXWI/7bd6OiIiIZIndPQ8qdy0i\nIpLndLEXERGRhCh4EBERkYQoeBAREZGEKHgQERGRhCh4EBERkYQoeBAREZGEKHgQERGRhCh4EBER\nkYQoeBAREZGEKHgQERGRhCh4EBERkYQoeBAREZGEKHgQERGRhCh4EBERkYQoeBAREZGEKHgQERGR\nhCh4EBERkYQoeBAREZGEKHgQERGRhCh4EBERkYQoeBARsZHX62Xt2rXMnTuX2bNnM3fuXNauXYvX\n6436s4MHD0b9HREncmVx2wuBtra2NhYuXJjF3RBJntfrZf369ezZs4fBwUEKCwtpampi06ZNAFF/\nVlNTk+U9l3To7u5myZIldHR0jPpZaWkpAwMDDAwMxP1+06dPZ8+ePTpeZJS9e/eyaNEigEXA3kxv\nX8GDSJJiXSjGUlFRwdSpU1myZImCiTyydu1aWlpabH3PiooKpk2bpsBTQmQ7eNCwhUiSNmzYkFTg\nAHDx4kUOHTpES0sLM2fO5ODBgzbvnWTDtm3bbH/Pixcv0t7eTktLC9dccw3FxcVUV1fjdrs1rCFZ\no+BBJEmvvPKKLe/T09PDjTfeiNvtzvrYd6zxeifLRC6BtY3Zs2dTVVVFSUkJFRUVVFVVUV1dzfTp\n0zlx4kQaPl2ogYEBzp8/z7PPPsu1115LRUUFxcXFFBcXh+xTZWUlFRUVFBUVUVBQgMvlivgoKCig\nqKiIkpISqqqqmD17Nm63G7fbnXPHgYwPCwFfW1ubT5ytu7vb19zc7GtsbPQ1NDT4Ghsbfc3Nzb7u\n7u5s71raRPvM7e3tgeeLiop8QEYe9fX1aW/vDz/80FdfXx/X9q32aWho8FVWVvqKi4t9lZWVvoaG\nhlHtFOmYiad9Yx1rwb9//fXX+woKCpJq14KCAl9lZaVvzZo1MT9fUVGRz+VyZezv7eRHUVGRr6qq\nalSbSWa1tbVZf5NxN+6v4CGNop3cZ86c6Zs1a5Zv5syZEU/64SeDWBcUwOdyuXzFxcW+WbNm+drb\n27P0ae011mfO1qOgoMC3atWqmCfsVAK9W2+9Neb2b731Vl93d7fvc5/73JiBU2FhYcTn6+vrfQcO\nHIjavrF+z/oM6fz7FBYWKlBIsL2sc0pDQ0NSNxeRjtk1a9b41qxZE3iuoaEhpW3kIwUPCh7iNtbd\nnvVFOnDggK+ioiKpk0H4HWZzc3NCJ5J8CCAS+czZeEybNi3iSTPW3z2enovGxsaY221oaLDloj15\n8uSkfm/GjBm+NWvW+KqqqrL+N9Bj7Id1YxHr5iSVcxVkpkfOqRQ8KHiISzx3W9OnT/etWrUq5bum\n5ubmwHbHuqCEP2bNmpXFVkpOd3e3b82aNb6KioqcueO0TsTWHdvMmTPH3Pfgv2skDQ0NMX+/srLS\nln2P1rugR/4/CgsLfdOmTfOVl5fb9p5jHdf5SsGDgoe4rFmzJmNf8MbGxsB2q6urEz45BHNyvoTV\nBZ+LF7NkegGC/66R1NbWjvm3tWPfM5kr4tSHy+UaFey5XC5fQUGBr6ysLGeCWCc8amtrM3TGcBYF\nDwoexvThhx/6JkyYkLEvY3V1dWDbifY8FBQUhOx3vAl4mZaOcXNr7Le4uNhXVFTkKyoq8lVUVPim\nT5/uq6ystDVISeYCHPx3jWSs4Rq7LvrJJjfmyyOeY7+9vT2l7vzx9JgyZYqdp4acke3gQVM1c8CG\nDRsYGhrK2PauvfbawP83NTUl9LsFBSOHVKw6CB0dHaxfvx7IzvTAVGo0RHPrrbfy3nvvceXKFfr7\n++nv7+fChQscOXKE8+fPMzAwQHd3N2vWrKGoqCilbfl8voR/J/jvGsmmTZuor6+P+LP6+npmzJiR\n8DYjmTlzpi3vk0sKCwtpaGigubmZ3bt3j1noac6cOXR0dNDc3ExDQwPl5eW4XNms6edcV199dbZ3\nQTJMPQ9xGqs72e5H8Bhid3d3QnfowTkPY/VaNDY22to7kcgQyVjj+4k+ktnXNWvWJN0bkUz+QTxj\nw7HaMNHk2Wjt1N7envBsi1x6FBYW+urr69MyTJfo9zGeh8vl8hUWFoYkN65atcrWvIR0PpTzoGEL\niWLKlCkZ+yJGughaF7p4pucFz7YYK1+iurp6zAuSdTIba5pWokHIxIkTU2qngoICX319fcoXB6tt\nq6qqfMXFxb7i4mJfWVlZzG1PmzbNN3Xq1IT2t6KiIuUL2FgXroqKClvqPMyaNSvrF6TgR7RZA9nK\n5xlrGnbw9yR8ymMi+xi8nfLy8oh5Gtl+ZHv4M5sUPCh4GFOieQeJPoJP+vHUEJg5c2YgkIhV5yGe\nnodUPltRUVFgv8dKKA2/O0ll3L28vDztU1Lb29t9M2bMCDlZFxUVBeo8JNILYOf+ZuKCmcrddSKf\nNVIhqKKiojGnF4534ceAFdwHnxdSfZSVlflWrVqlOg8xKHhQ8DCmeO7O16xZ45s+fXrUi+yqVauS\nvgNJ1343NzcnPJsj2mOsk1b4TINkpx3OmjXLESesWBfYoqIiW3pFsmmswkEzZ870VVVV+aqqqnL+\ns+aT8N6KZL7HqlwZHwUPCh7GFOtCEdxt57RpkfHsd7p7VaxH+EyDRLv9w9vaCZz29xYJFxxMxArw\nKyoqFDQkKNvBg5bkzhFer5f169ezZ88eBgcHKSwszIklesfa73QsYRxJY2MjBw4cCPw7nu0WFRVx\n3YGzYB4AAAdqSURBVHXXUVJSkhNtLeJkuXoOc6psL8mt4EGyyuv1cvPNN9s+bTJcc3MzTz75ZFzb\nLSoq4jOf+QyPPfaYTmoi4kjZDh4KM71BkWA1NTXs3r07cEfS2dnJhQsXknqvoqIiBgYGRj1fX1/P\npk2bYm5Xd0IiIvFT8DDOeDwe3G53tncjRE1NTaBXIJWeiM985jNMnDgx7mAgeLvp5MQ2z3dq88xT\nm48v6agweSvwb0AXMAzck4ZtSJI8Hk+2dyEmq0egubmZxsZGGhoaaGhoYNasWcycOTNqZcb6+noe\ne+wxnnzySQ4cOMC7777LgQMHePLJJ7Pei+D0Ns9HavPMU5uPL+noeSgF3gGeAP4Fkw0qErdYPQJK\nuhIRyb50BA9b/Q8R22VqqEFERKLTwlgiIiKSkKwnTB48eDDbuzCunDt3jr17Mz6rZ1xTm2ee2jzz\n1OaZle1rZ7rrPAwDq4CXIvxsKvBzoDbN+yAiIpKPuoBPAicyveFs9jycwHzoqVncBxERkVx1giwE\nDpD9YYusfXARERFJTjqChzLghqB/zwTmA6eB42nYnoiIiOS4T2NyHYaBoaD//8cs7pOIiIiIiIiI\niIiIiIiIiIiMXxsZyV+wHh+EvWYOpqbDOeACsBuYFvaam4GfAj3AWeBnwMSgnx+NsJ3/FfYe12EW\n3+oBvMDfAJFXTMptG0mtzadH+H3r8Zmg95gEfNf/HueAp4GqsO2ozUfY0eZHI/xcx3ny55Zrge8B\nJzHttZfQ9gYd58E2kpk2PxphOzrOk2/zeuBfgW7gPPB94Jqw93Dccb4R+IV/R63HR4J+Xo+ZUfF/\ngF/DnERXAsGrFd2M+TDrMY1UD9wHFAe95gjw1bDtlAX9fAKwH2j1b2cZ0Ak8luoHdKCNpNbmBWG/\new3w55iDrjTofX4M/DtwE7DYv83gwl5q8xF2tbmO8xEbSf3c8jPgTeAT/p9/FRjEzPSy6DgfsZHM\ntLmO8xEbSa3Ny4AO4AVgLnAjJpB4i9CCj447zjdiVsuM5lngqTHe403ga2O85gjw+zF+vhJzgE4J\neu5zwCWgfIz3zjUbSb3Nw70D/H3Qv+dgIuBPBj13k/85a8qt2nyEHW0OOs6DbST1Nr8IfD7suVPA\nWv//6zgPtZH0tznoOA+2kdTa/A5MWwW3SzXmGF7m/3fGjvNEF8a6AVMO81eAB5gR9D6/CbwHbAM+\nxAQK9wT97jVAE6aL5A1MV9erwNII29mAOQjfAf6U0O6UmzFR08mg57YDJcCiBD9PLkilzcMtwkSa\nTwQ9dzPmrvjnQc+95X9uSdBr1Ob2tblFx/mIVNv8h8AaTJdtgf//izHnGNBxHkm629yi43xEKm1e\nAviA/qDnrmACA+s66sjj/E7gXkx3yTJMl9UJ4GpMBDOMGT/5feDjmANmCLjV//uL/a85BXwRc0L9\nBnAZmBW0nUeBT2G6ZB7CjO0E37VtIfKS35cx0VM+SbXNw/1f4D/CnvtT4N0Ir33X/36gNre7zUHH\neTA72vwqTDfsMObkeo6RuzHQcR4uE20OOs6DpdrmH8W08TcxbV8GfNv/e3/nf01OHOelmA/+B5j1\nKYaBZ8Je8yImoQZM1DMM/GXYa/6d0Qk0we7z/94k/7+3YCKzcPl4sIVLtM2DXYU58P4g7Pl4Dza1\nuX1tHomO8xHJtPm/YJLLfh2YB/wFJiH7Rv/PdZzHlo42j0TH+Yhk2vx24DAmqBjADHO8DXzH//OM\nHeeJDlsE68N0fczC9CYMAu1hr/klJqsTRtawCH/NwaDXRPKW/79W78RJYHLYayZhustOkt8SbfNg\nn8VczJ4Oe/4ko7N18T93Mug1anP72jwSHecjEm3zOZjVex/C3M3tB/4H5qT6iP81Os5jS0ebR6Lj\nfEQy55ZX/K+vwSRbfhGowwyDQAaP81SChxKgERMUDGDGWD4W9poGzFQd/P/9IMJrZge9JpIF/v9a\nwccbmMg2+MPfgRn7aYtz33NVom0e7CFMFHs67PndmGk84Qk2VZi2BrW53W0eiY7zEYm2uXUeGwp7\nzTAjWeg6zmNLR5tHouN8RCrnljOYqZzLMIGENZvCkcf5X2PGXmb4d+bfMF2y1hzUVf6N/w4mMvoy\npkGWBL3H7/t/5zP+1/x/QC8jSSOLMV048/3P3Y+ZQvKvQe9RgJl68or/dcuAY5h5qvnGjjbH/7Mh\nzAESyY+AfYRO7Xkx6Odqc3vbXMd5qFTbfALmju01zEmzHvgKpv3vDNqOjvMRmWjzm9FxHsyOc8ta\nzLFbDzyI6bH4/8O247jj3IPJEr2COQCeZ3SUtBY4hOmO2Qv8doT32eDf0R5gJ6ENswATOZ31v8dB\nzDjaxLD3mIZp+F5M432L/CwqYleb/y9i9+5UY4qKnPc/ngYqw16jNh+RapvrOA9lR5vP9P/eCcy5\n5R1GTyPUcT4iE22u4zyUHW3+vzHtfQUzpPFohO3oOBcRERERERERERERERERERERERERERERERER\nEREREREREREREREREREREREREREREZGs+n+kSOUnHdTgQgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t2, l2, l2e = np.loadtxt(echo_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o', color=\"green\")\n", + "errorbar(t2, l2, yerr=l2e, fmt='o', color=\"black\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.345e-01 5.367e+01 inf -- -2.331e+02 -- 1 1 1 1 1 1 1 1\n", + " 2 7.681e-01 5.318e+01 6.465e+01 -- -1.684e+02 -- 0.582708 0.565919 0.567071 0.565455 0.565472 0.567054 0.565985 0.567541\n", + " 3 3.306e+00 5.243e+01 6.380e+01 -- -1.046e+02 -- 0.185981 0.132028 0.135218 0.13138 0.131144 0.134919 0.132269 0.135939\n", + " 4 1.864e+00 5.146e+01 6.266e+01 -- -4.198e+01 -- -0.181134 -0.300836 -0.294737 -0.302717 -0.302476 -0.296396 -0.30108 -0.294221\n", + " 5 5.957e-01 5.034e+01 6.140e+01 -- 1.942e+01 -- -0.518821 -0.728805 -0.721808 -0.738858 -0.734893 -0.72747 -0.734418 -0.722812\n", + " 6 3.763e-01 4.873e+01 5.988e+01 -- 7.930e+01 -- -0.826205 -1.14111 -1.14324 -1.17897 -1.16599 -1.15914 -1.16891 -1.15053\n", + " 7 2.737e-01 4.601e+01 5.715e+01 -- 1.365e+02 -- -1.07976 -1.51457 -1.54719 -1.6226 -1.59467 -1.59132 -1.60536 -1.57616\n", + " 8 2.126e-01 4.210e+01 5.222e+01 -- 1.887e+02 -- -1.22751 -1.79949 -1.90925 -2.06669 -2.0187 -2.02254 -2.04251 -1.99341\n", + " 9 1.708e-01 3.838e+01 4.572e+01 -- 2.344e+02 -- -1.23813 -1.90084 -2.20766 -2.50544 -2.43783 -2.45004 -2.47673 -2.39386\n", + " 10 1.443e-01 3.612e+01 4.007e+01 -- 2.745e+02 -- -1.15982 -1.77137 -2.45761 -2.92172 -2.8541 -2.86716 -2.89804 -2.78318\n", + " 11 1.465e-01 3.205e+01 3.355e+01 -- 3.080e+02 -- -1.00642 -1.66795 -2.68038 -3.28735 -3.25239 -3.25214 -3.28683 -3.18475\n", + " 12 1.147e-01 2.460e+01 2.338e+01 -- 3.314e+02 -- -0.859013 -1.64077 -2.83751 -3.57526 -3.57815 -3.56594 -3.6097 -3.59927\n", + " 13 9.727e-02 1.530e+01 1.253e+01 -- 3.439e+02 -- -0.770014 -1.63264 -2.92007 -3.72033 -3.73522 -3.78014 -3.82976 -4.01212\n", + " 14 7.615e-02 7.436e+00 5.601e+00 -- 3.495e+02 -- -0.717971 -1.62697 -2.94479 -3.70604 -3.70977 -3.91796 -3.95008 -4.4024\n", + " 15 4.898e-02 2.805e+00 2.111e+00 -- 3.516e+02 -- -0.694246 -1.6192 -2.93083 -3.65405 -3.66478 -4.01526 -4.01935 -4.73764\n", + " 16 2.092e-02 1.546e+00 5.495e-01 -- 3.522e+02 -- -0.686453 -1.6148 -2.9107 -3.61859 -3.64327 -4.06623 -4.07053 -4.96968\n", + " 17 6.268e-03 6.434e-01 9.603e-02 -- 3.523e+02 -- -0.684867 -1.61298 -2.89653 -3.5983 -3.63262 -4.0834 -4.10603 -5.07364\n", + " 18 2.301e-03 2.165e-01 1.331e-02 -- 3.523e+02 -- -0.685248 -1.61215 -2.88778 -3.5897 -3.62755 -4.08853 -4.12306 -5.10544\n", + " 19 7.739e-04 7.392e-02 1.675e-03 -- 3.523e+02 -- -0.685882 -1.61169 -2.88397 -3.58619 -3.6255 -4.0902 -4.1289 -5.11719\n", + " 20 2.809e-04 2.462e-02 2.072e-04 -- 3.523e+02 -- -0.686276 -1.61151 -2.88251 -3.58466 -3.62482 -4.09073 -4.13094 -5.12115\n", + " 21 1.264e-04 8.449e-03 2.600e-05 -- 3.523e+02 -- -0.686469 -1.61146 -2.88191 -3.58405 -3.62462 -4.0909 -4.13161 -5.12257\n", + "********************\n", + "-0.686469 -1.61146 -2.88191 -3.58405 -3.62462 -4.0909 -4.13161 -5.12257\n", + "0.231147 0.207462 0.274193 0.294642 0.222424 0.244627 0.185969 0.531275\n", + "-0.00158514 0.000476266 0.00320976 0.00304574 0.000752612 -0.00194507 -0.00844944 -0.00236823\n", + "********************\n" + ] + } + ], + "source": [ + "P2 = clag.clag('psd10r', [t2], [l2], [l2e], dt, fqL)\n", + "p2 = np.ones(nfq)\n", + "p2, p2e = clag.optimize(P2, p2)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 3.523e+02 3.519e+02 -6.866e-01 -4.554e-01 0.735 +++\n", + "+++ 3.523e+02 3.515e+02 -6.866e-01 -3.398e-01 1.52 +++\n", + "+++ 3.523e+02 3.517e+02 -6.866e-01 -3.976e-01 1.11 +++\n", + "+++ 3.523e+02 3.518e+02 -6.866e-01 -4.265e-01 0.915 +++\n", + "+++ 3.523e+02 3.518e+02 -6.866e-01 -4.121e-01 1.01 +++\n", + "+++ 3.523e+02 3.518e+02 -6.866e-01 -4.193e-01 0.962 +++\n", + "+++ 3.523e+02 3.518e+02 -6.866e-01 -4.157e-01 0.986 +++\n", + "+++ 3.523e+02 3.518e+02 -6.866e-01 -4.139e-01 0.999 +++\n", + "\t### errors for param 1 ###\n", + "+++ 3.523e+02 3.518e+02 -1.611e+00 -1.404e+00 0.91 +++\n", + "+++ 3.523e+02 3.513e+02 -1.611e+00 -1.300e+00 1.93 +++\n", + "+++ 3.523e+02 3.516e+02 -1.611e+00 -1.352e+00 1.38 +++\n", + "+++ 3.523e+02 3.517e+02 -1.611e+00 -1.378e+00 1.13 +++\n", + "+++ 3.523e+02 3.518e+02 -1.611e+00 -1.391e+00 1.02 +++\n", + "+++ 3.523e+02 3.518e+02 -1.611e+00 -1.397e+00 0.964 +++\n", + "+++ 3.523e+02 3.518e+02 -1.611e+00 -1.394e+00 0.992 +++\n", + "\t### errors for param 2 ###\n", + "+++ 3.523e+02 3.518e+02 -2.882e+00 -2.608e+00 0.933 +++\n", + "+++ 3.523e+02 3.513e+02 -2.882e+00 -2.470e+00 2.04 +++\n", + "+++ 3.523e+02 3.516e+02 -2.882e+00 -2.539e+00 1.44 +++\n", + "+++ 3.523e+02 3.517e+02 -2.882e+00 -2.573e+00 1.17 +++\n", + "+++ 3.523e+02 3.518e+02 -2.882e+00 -2.590e+00 1.05 +++\n", + "+++ 3.523e+02 3.518e+02 -2.882e+00 -2.599e+00 0.991 +++\n", + "\t### errors for param 3 ###\n", + "+++ 3.523e+02 3.518e+02 -3.584e+00 -3.289e+00 0.911 +++\n", + "+++ 3.523e+02 3.512e+02 -3.584e+00 -3.142e+00 2.13 +++\n", + "+++ 3.523e+02 3.516e+02 -3.584e+00 -3.216e+00 1.45 +++\n", + "+++ 3.523e+02 3.517e+02 -3.584e+00 -3.252e+00 1.17 +++\n", + "+++ 3.523e+02 3.518e+02 -3.584e+00 -3.271e+00 1.03 +++\n", + "+++ 3.523e+02 3.518e+02 -3.584e+00 -3.280e+00 0.971 +++\n", + "+++ 3.523e+02 3.518e+02 -3.584e+00 -3.275e+00 1 +++\n", + "\t### errors for param 4 ###\n", + "+++ 3.523e+02 3.519e+02 -3.625e+00 -3.402e+00 0.838 +++\n", + "+++ 3.523e+02 3.513e+02 -3.625e+00 -3.291e+00 1.88 +++\n", + "+++ 3.523e+02 3.516e+02 -3.625e+00 -3.347e+00 1.31 +++\n", + "+++ 3.523e+02 3.518e+02 -3.625e+00 -3.374e+00 1.06 +++\n", + "+++ 3.523e+02 3.518e+02 -3.625e+00 -3.388e+00 0.946 +++\n", + "+++ 3.523e+02 3.518e+02 -3.625e+00 -3.381e+00 1 +++\n", + "\t### errors for param 5 ###\n", + "+++ 3.523e+02 3.521e+02 -4.091e+00 -3.969e+00 0.288 +++\n", + "+++ 3.523e+02 3.520e+02 -4.091e+00 -3.907e+00 0.659 +++\n", + "+++ 3.523e+02 3.518e+02 -4.091e+00 -3.877e+00 0.904 +++\n", + "+++ 3.523e+02 3.518e+02 -4.091e+00 -3.862e+00 1.04 +++\n", + "+++ 3.523e+02 3.518e+02 -4.091e+00 -3.869e+00 0.972 +++\n", + "+++ 3.523e+02 3.518e+02 -4.091e+00 -3.865e+00 1.01 +++\n", + "\t### errors for param 6 ###\n", + "+++ 3.523e+02 3.518e+02 -4.132e+00 -3.946e+00 0.976 +++\n", + "+++ 3.523e+02 3.512e+02 -4.132e+00 -3.853e+00 2.17 +++\n", + "+++ 3.523e+02 3.515e+02 -4.132e+00 -3.899e+00 1.49 +++\n", + "+++ 3.523e+02 3.517e+02 -4.132e+00 -3.923e+00 1.24 +++\n", + "+++ 3.523e+02 3.517e+02 -4.132e+00 -3.934e+00 1.1 +++\n", + "+++ 3.523e+02 3.518e+02 -4.132e+00 -3.940e+00 1.04 +++\n", + "+++ 3.523e+02 3.518e+02 -4.132e+00 -3.943e+00 1.01 +++\n", + "\t### errors for param 7 ###\n", + "+++ 3.523e+02 3.521e+02 -5.123e+00 -4.857e+00 0.383 +++\n", + "+++ 3.523e+02 3.518e+02 -5.123e+00 -4.724e+00 1 +++\n", + "********************\n", + "-0.686556 -1.61144 -2.88168 -3.58378 -3.62457 -4.09096 -4.13184 -5.12305\n", + "0.272685 0.217188 0.282737 0.308392 0.243262 0.225511 0.188902 0.398741\n", + "********************\n" + ] + } + ], + "source": [ + "p2, p2e = clag.errors(P2, p2, p2e)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X9w2/d93/GnLNHhGq9W5Y6AHMVEjE6F0sjOkaZqkZEG\nZm7XeEnaNa0CXLJdqOmca9L63C3etPbEedSWSxdfk7RpmlMdqevigNLWZrXvrNr9AVUaRWcsmfpH\nbbQZSNBWLEB1VLmtW3q0rf0ByqaUL0WCxBc/n487nCjg+8HnLekr4IXv94PvGyRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkrRG/wGYAP4aKAFfB7bWtSJJktQQjgP/CtgG3AI8DBSA76lj\nTZIkqQF9P/A68J56FyJJkpZ3TQ3n2rjw6/kazilJkhrcOsqnG/643oVIkqSV2VCjeb4I/BBXP9Ww\neeEmSZIqc3bhVlW1CAm/Crwf2A28sMQ2m2+88cYXXnhhqYclSdJVfBvoo8pBIcyQsI5yQPhxIAnM\nXmXbzS+88AJf/epX2bZtW4glVd8999zD5z//+aacby3PVenYSrZfybbLbXO1x2v9b1Yt7mvV3959\nLZj7WvW3D3Nfe/bZZ/noRz/6NspH45smJPwakKYcEl4Gogv3XwDmggZs27aNnp6eEEuqvo0bN9a0\n5mrOt5bnqnRsJduvZNvltrna47X+N6sW97Xqb+++Fsx9rfrbh72vhWV9iM/9MPAWYAj4t4tu3wKe\nuGLbzcDHP/7xj7N5c/MtS9i+fXvTzreW56p0bCXbr2Tb5bZZ6vFMJkM6nV5xLY3Efa3627uvBXNf\nq/72Ye1rZ8+e5dChQwCHqPKRhHXVfLI16AEmJycnmzJ1q7l88IMf5KGHHqp3GWoD7muqhampKXp7\newF6galqPnctr5MgSZKaiCFBbadZD/+q+bivqdkZEtR2fOFWrbivqdkZEiRJUiBDgiRJCmRIkCRJ\ngQwJkiQpkCFBkiQFMiRIkqRAhgRJkhTIkCBJkgIZEiRJUiBDgiRJCmRIkCRJgQwJkiQpkCFBkiQF\nMiRIkqRAhgRJkhTIkCBJkgIZEiRJUiBDgiRJCmRIkCRJgQwJkiQpkCFBkiQFMiRIkqRAhgRJkhTI\nkCBJkgIZEiRJUqAwQ8Ju4GHg28DrwI+HOJckSaqyMEPC9wDfBD658PuLIc4lSZKqbEOIz/17CzdJ\nktSEXJMgSZICGRIkSVIgQ4IkSQoU5pqEit1zzz1s3LjxsvvS6TTpdLpOFUmS1DgymQyZTOay+y5c\nuBDafOtCe+bLvQ78BPDQEo/3AJOTk5P09PTUqCRJkprf1NQUvb29AL3AVDWfO8wjCW8F/vGi398M\nvBv4DvB8iPNKkqQqCDMk9AF/tPDzReCXF37+TWBviPNKkqQqCDMknMCFkZIkNS3fxCVJUiBDgiRJ\nCmRIkCRJgQwJkiQpkCFBkiQFMiRIkqRAhgRJkhTIkCBJkgIZEiRJUiBDgiRJCmRIkCRJgQwJkiQp\nUJgNnqS6yTyVIfN0BoC5V+eYfWmW7uu76dzQCUD6XWnS29P1LFGSGp4hQS0pvf3NEDB1doreQ71k\nPpShZ3NPnSuTpObh6QZJkhTIkKCWVSgU2PvJvez5yT3wNdjzk3vY+8m9FAqFepcmSU3B0w1qOaVS\nidS+FLnzOYrvLMKPle/Pkyd/Js/xjxwnsSnB6AOjRCKR+hYrSQ3MkKCWUiqV6L+zn+nbp+G2gA22\nQHFLkeK5IgN3DjD2yJhBQZKW4OkGtZTUvlQ5IHQts2EX5G/Pk9qXqkldktSMDAlqGTMzM+TO55YP\nCJd0Qe58zjUKkrQEQ4JaxsH7D5bXIFSguK3IyP0jIVUkSc3NkKCWMfHkBGypcNAWmHhiIpR6JKnZ\nGRLUMuZfm6980DqYf30V4ySpDRgS1DI61ndUPugidFyzinGS1AYMCWoZfbf0wZkKB52BHbfuCKUe\nSWp2hgS1jOF7h4k+E61oTPTZKAc+dSCkiiSpuRkS1DJisRiJTQk4t8IB5yCxKUEsFguzLElqWmGH\nhE8AM8DfA38CvCfk+dTmRh8YJf54fPmgcA7ij8c5+pWjNalLkppRmCHhw8DngIPAu4FTwHHg7SHO\nqTYXiUQYe2SM5HNJoo9F4Xng4sKDF4HnIfpYlORzSU4fP01X10qvvCRJ7SfMkPBvgAeAw8CfAz9P\n+SX7Z0KcUyISiZB9OMv4g+MMdQ4RfzQOX4P4o3GGOocYf3Cc7MNZA4IkLSOsBk/XAj3Ap6+4/zGg\nP6Q5pcvEYjEOf/EwU2en6D3Uy7G7jtGzuafeZUlS0wjrSML3A+uB0hX3nwMqW34uSZLqwlbRakmZ\npzJkns4AMPfqHFtv2Mr+P9hP54ZOANLvSpPenq5niQ3hyr+n2Zdm6b6+278nSQCsC+l5rwVeBn4K\n+N1F938BuAUYvGL7HmBy165dbNy48bIH0uk06bQvUlJYCoUCI58d4eTUSfLn88Q3xdnds5vhe4f9\neqjUYDKZDJlM5rL7Lly4wKlTpwB6galqzhdWSAB4HJgEPrnovmeArwO/eMW2PcDk5OQkPT2eM5Zq\noVQqkdqXInc+V+6eubg51hmIPhMlsSnB6AOjRCKRutUp6eqmpqbo7e2FEEJCmKcbfhn475Svj/A4\ncBfll6EvhzinpBUolUr039nP9O3TcFvABluguKVI8VyRgTsHGHtkzKAgtaEwvwJ5DLgHGAa+SflC\nSndS/hqkpDpK7UuVA8Jy3wLtgvzteVL7UjWpS1JjCfuKi78OvAPoBPqA/x3yfJKWMTMzQ+58bvmA\ncEkX5M7nKBQKYZYlqQHZu0FqMwfvP1heg1CB4rYiI/ePhFSRpEZlSJDazMSTE5cvUlyJLTDxxEQo\n9UhqXIYEqc3MvzZf+aB1MP/6KsZJamqGBKnNdKzvqHzQRei4ZhXjJDU1Q4LUZvpu6YMzFQ46Aztu\n3RFKPZIalyFBajPD9w4TfaayFirRZ6Mc+NSBkCqS1KgMCVKbicViJDYlyu3WVuIcJDYlvESz1IYM\nCVIbGn1glPjj8eWDwjmIPx7n6FeO1qQuSY3FkCC1oUgkwtgjYySfSxJ9LFq+DurFhQcvAs9D9LEo\nyeeSnD5+mq6ulV55SVIrsVW01KYikQjZh7PlLpD3j3Dy0UVdIHt3M/ygXSCldmdIkNpY5qkMmacz\nMAA3//DNrH9pPd3Xd/Pihhe5e/xu0n+TJr3dVu1SuzIkqCUt7rk+NzfH7Ows3d3ddHZ2ApBOp0mn\nffNLbzcESFqaIUEtaXEIuNRrPZPJ0NPTU+fKJKl5uHBRkiQFMiRIkqRAhgS1rEKhwN69e9mzZw8A\ne/bsYe/evRQKhfoWJklNwjUJajmlUolUKkUul6NYLL5xfz6fJ5/Pc/z4cRKJBKOjo0QikTpWKkmN\nzZCgllIqlejv72d6enrJbYrFIsVikYGBAcbGxgwKkrQETzeopaRSqasGhMXy+TypVCrkiiSpeRkS\n1DJmZmbI5XIVjcnlcq5RkKQlGBLUMg4ePHjZGoSVKBaLjIyMhFSRJDU3Q4JaxsTERE3HSVKrMySo\nZczPz9d0nCS1OkOCWkZHR0dNx0lSqzMkqGX09fWtatyOHTuqXIkktQZDglrG8PAw0Wi0ojHRaJQD\nBw6EVJEkNTdDglpGLBYjkUhUNCaRSBCLxcIpSJKanCFBLWV0dJR4PL6ibePxOEePHg25IklqXmGF\nhF8ETgN/B/xVSHNI3yUSiTA2NkYymVzy1EM0GiWZTHL69Gm6urpqXKEkNY+wQkIHcBT4UkjPLy0p\nEomQzWYZHx9naGjojSML8XicoaEhxsfHyWazBgRJWkZYDZ7uW/j1YyE9v7SsWCzG4cOHmZqaore3\nl2PHjtHT01PvsiSpabgmQZIkBTIkSJKkQJWcbrgPGF5mm9uAqVVXI1VJJpMhk8kAMDc3x9atW9m/\nfz+dnZ0ApNNp0ul0PUvUKmSeypB5euHf9dU5Zl+apfv6bjo3LPy7vitNerv/rlK1rKtg2xsWblcz\nC7yy6PcfAz4HfN8y43qAyV27drFx48bLHvDFXNJihUKBkc+OcHLqJPnzeeKb4uzu2c3wvcNe80It\nb/EHoEsuXLjAqVOnAHqp8gf1SkLCanyMCkLC5OSkC8skBSqVSqT2pcidz1F8ZxG2LHrwDESfiZLY\nlGD0gVEikUjd6pRq7dLibEIICWF9u+EmYNPCr+uBWykHkm8BL4c0p6QWVSqV6L+zn+nbp8snNa+0\nBYpbihTPFRm4c4CxR8YMClIVhLVwcYRymrkPeCvwTWCScsqRpIqk9qXKAWG5S1t0Qf72PKl9qZrU\nJbW6sELCxxae+xrKRxIu/XoypPkktaiZmRly53PLB4RLuiB3PkehUAizLKkt+BVISQ3t4P0Hy2sQ\nKlDcVmTk/pGQKpLahyFBUkObeHLi8kWKK7EFJp6YCKUeqZ0YEiQ1tPnX5isftA7mX1/FOEmXMSRI\namgd6zsqH3QROq5ZxThJlzEkSGpofbf0wZkKB52BHbfuCKUeqZ0YEiQ1tOF7h4k+E61oTPTZKAc+\ndSCkiqT2YUiQ1NBisRiJTQk4t8IB5yCxKeElmqUqMCRIanijD4wSfzy+fFA4B/HH4xz9ytGa1CW1\nOkOCpIYXiUQYe2SM5HNJoo9F4Xng4sKDF4HnIfpYlORzSU4fP01X10qvvLQymacy3PErd3DT+27i\nuu3Xce07r+W67ddx0/tu4o5fuYPMU5nln0RqQmH1bpCkqopEImQfzpa7QN4/wslHF3WB7N3N8IPh\ndIEslUoc+oVDbzaWur18/zzzvHzmZeaPznPo9w/x3gfea78ItRxDgtTGFrednZubY3Z2lu7ubjo7\nO4HGbNUei8U4/MXDTJ2dovdQL8fuOkbP5nC6x9pYSu0u7FbRK2WraKnOLrWbbeT/h5mnMmSeXgg1\nr84x+9Is3dd307lhIdS8K016e/VCzeAHBjlx04mV9Y04B8nnkmQfzlZtfmklmrFVtKQmUSgUGBkZ\n4eTJcv+1PXv2sHv3boaHwzl8vxbp7dUNAVfzRmOpoCMIQbog96flxlKN9vcmrZYLF6U2VSqVGBwc\nZOfOnRw5coR8Pg9APp/nyJEj7Ny5k8HBQUqlUp0rrQ8bS0keSZDaUqlUor+/n+np6SW3KRaLFItF\nBgYGGBtrv3PtE09OwB0VDtoCE39oYym1Do8kSG0olUpdNSAsls/nSaVSIVfUeGwsJRkSpLYzMzND\nLperaEwuVz7X3k5sLCUZEqS2c/DgQYrFCs+1F4uMjLTXuXYbS0mGBKntTEys7pz5asc1KxtLSYYE\nqe3Mz6/unPlqxzUrG0tJhgSp7XR0rO6c+WrHNTMbS6ndGRKkNtPX17eqcTt2tN+59no3lpLqzZAg\ntZnh4WGi0QrPtUejHDjQnufaLzWWGn9wnKHOIeKPxuFrEH80zlDnEOMPjpN9OGtAUEvyYkpSm4nF\nYiQSiYq+4ZBItPe59jd6RgzAzT98M+tfWk/39d28uOFF7h6/m/Tf1O5y0VItGRKkNjQ6OsrAwMAb\nl2K+mng8ztGj7X2uvZY9I6RG4ukGqQ1FIhHGxsZIJpNLnnqIRqMkk0lOn/Zcu9SuDAlSm4pEImSz\nWcbHxxkaGiIejwPlIwdDQ0OMj4+TzXquXWpnhgSpjWUyGe6++25efPFFbr75ZrZu3crNN9/Miy++\nyN13300mk6l3iZLqKKw1CTHgADAIRIEXgK8C/wVoryuySA0snU6TTnuuXVKwsELCDwLrgLuA/wts\nB34DeCtwb0hzSpKkKgorJDy6cLukANwP/AyGBEmSmkIt1yRsBL5Tw/kkSdIa1CokxIGfBb5co/kk\nqekVCgX2fnIv23dtJ9GfYPuu7ez95F4KhUK9S1ObqPR0w33A8DLb3AZMLfr9jcDvAceAwxXOJ0lt\np1QqMZgaZPqvp3ml5xW4483Hnj7zNF/70Ne4+XtvJjuaJRKJ1K9Qtbx1FW5/w8LtamaBVxZ+vhHI\nAuPAx64ypgeY3LVrFxs3brzsAVdfS2onpVKJ/jv7mb59Gq52iYqFzpNjj4wZFNpIJpP5rq8mX7hw\ngVOnTgH0cvmH9DWrNCRU4m2UA8IE8FHe7J0WpAeYnJycpKenJ8SSJKmxDX5gkBM3nbh6QLjkHCSf\nS5J9OBtyVWpkU1NT9Pb2QgghIaw1CW8DTlA+qnAvEKF8vYTKWs9JUhuZmZkhdz63soAA0AW58znX\nKCg0YYWEH6G8WPG9wBnKF1N6Afh2SPNJUtM7eP9Biu9ceXdOgOK2IiP3j4RUkdpdWCHhNxeee/3C\nr9cs+r0kKcDEkxOwpcJBW2DiiYlQ6pHs3SBJDWL+tVVctX4dzL/u1e4VDkOCJDWIjvUdlQ+6CB3X\nrGKctAKGBElqEH239JVXcVXiDOy4dUco9UiGBElqEMP3DhN9prIvgUWfjXLgUwdCqkjtzpAgSQ0i\nFouR2JSAcysccA4SmxLEYrEwy1IbMyRIUgMZfWCU+OPx5YPCwhUXj37laE3qUnsyJEhSA4lEIow9\nMsa2Z7bxlofeAs/z5vVqLwLPw1seegvbntnG6eOn6epa6ZWXpMpV2uBJkhSySCTCM9lnKBQKjNw/\nwsQfTjD/+jwd13TQd2sfw789HOophkKhwMhnR5h4coL51+bpWN9B3y19DN8b7rxqPIYESWpQsViM\nw1+sXfPcUqlEal+K3Plc+cqPV3SfPP6R4yQ2JRh9YNSmUm3CkCBJurz75G0BG2yB4pYixXNFBu4c\nsPtkm3BNgiSJ1L7U8u2pAbogf3ue1L5UTepSfRkSJKnN2X1SSzEkSFKbs/uklmJIkKQ2Z/dJLcWQ\nIEltzu6TWoohQZLanN0ntRRDgiS1ObtPaimGBElqc3af1FK8mJKkppHJZMhkMgDMzc0xOztLd3c3\nnZ2dAKTTadLpdD1LbEqXuk8WzxVX9jVIu0+2jXX1LmBBDzA5OTlJT09PvWuR1ASmpqbo7e3F143q\nKJVKDNw5QP72/NWDwkL3SZtLNY5L/xeAXmCqms/t6QZJ0hvdJ5PPJYk+Fg3sPhl9LEryuaQBoY14\nukGSBJSDQvbh7NLdJx+0C2S7MSRIaiqFQoGRkRFOnjwJwJ49e9i9ezfDw76BVUutu0+qcRkSJDWF\nUqlEKpUil8tRLL55CeF8Pk8+n+f48eMkEglGR21jLFWLIUFSwyuVSvT39zM9Pb3kNsVikWKxyMDA\nAGNjtjGWqsGFi5IaXiqVumpAWCyfz5NK2cZYqgZDgqSGNjMzQy6Xq2hMLmcbY6kaDAmSGtrBgwcv\nW4OwEsVikZER2xhLaxVWSHgImAX+HngB+C1gc0hzSWphExOra0e82nGS3hRWSPgj4KeBrcCHgDjw\nOyHNJamFzc+vrh3xasdJelNY3274/KKfnwd+Cfg6sB54LaQ5JbWgjo7VtSNe7ThJb6rFmoRNwEeA\nLAYESRXq6+tb1bgdO2xjLK1VmCHhl4C/BV4E3gF8OMS5JLWo4eFhotEK2xhHoxw4YBtjaa0qCQn3\nAa8vc1vciu2/Au8GfhR4BfhfNE7XSUlNIhaLkUgkKhqTSNjGWKqGSt60b1i4Xc0s5UBwpbdRXpvw\nHuB0wOM9wOSuXbvYuHHjZQ/YH15SqVRiYGCAfD6/7LbxeJzTp+1SqNaUyWTIZDKX3XfhwgVOnToF\nIbSKrtUn+7dTDhD/BDgV8HgPMGlfeElLWap3wyXRaJREIsHRo0cNCGorU1NT9Pb2QgghIYw1CTuA\nn6V8qqEbGAS+BnwLGA9hPkltIBKJkM1mGR8fZ2hoiHg8DpSPHAwNDTE+Pk42mzUgSFUUxlcg/w74\nF5TXMLwVOAscBw4Cr4Ywn6Q2EovFOHz48Bufno4dO+YRSCkkYYSEp4F/GsLzSpKkGrJ3gyRJChTW\nFRclqeoWr+yem5tj69at7N+/n87OTsBvQ0nVZkiQ1DQMAVJtebpBkiQFMiRIkqRAnm6QpGVcuRZi\ndnaW7u5u10Ko5RkSJGkZi0PApeszZDIZr8+glmdIkCTVVeapDJmnF47UvDrH7EuzdF/fTeeGhSM1\n70qT3u6RmnowJEiS6iq9/c0QMHV2it5DvWQ+lKFns0dq6s2QIEkNqN3WQRQKBUY+O8LJqZNwHvb8\n3h529+xm+N5h237XUa26QC7HLpCSGlqhUGBkZISTJ0+Sz+eJx+Ps3r2b4eHw38QurYNoxdfIUqlE\nal+K3PkcxXcWYcuiB89A9JkoiU0JRh8YJRKJ1K3ORhZmF0iPJEjSVSzVojqfz5PP5zl+/DiJRILR\nUd/EKlUqlei/s5/p26fhtoANtkBxS5HiuSIDdw4w9siYf8c15nUSJGkJpVKJ/v5+Tpw4cVlAWKxY\nLHLixAkGBgYolUpVnb9QKLB371727NkDwJ49e9i7dy+FQqGq89RLal+qHBCW6+7dBfnb86T2pWpS\nl95kSJCkJaRSKaanp1e0bT6fJ5WqzptYqVRicHCQnTt3cuTIEfL5/BtzHDlyhJ07dzI4OFj1UFJL\nMzMz5M7nlg8Il3RB7nyuZQJSszAkSFKAmZkZcrlcRWNyubW/idX76EWtHLz/YHkNQgWK24qM3D8S\nUkUKYkiQpAAHDx5c8k16KcVikZGRtb2J1evoRa1NPDlx+SLFldgCE09MhFKPghkSJCnAxMTq3oxW\nOw7qd/SiHuZfm6980DqYf30V47RqhgRJCjA/v7o3o9WOg/odvaiHjvUdlQ+6CB3XrGKcVs2QIEkB\nOjpW92a02nFQn6MX9dJ3Sx+cqXDQGdhx645Q6lEwQ4IkBejr61vVuB07Vv8mVo+jF/UyfO8w0Wei\nFY2JPhvlwKcOhFSRghgSJCnA8PAw0WiFb2LRKAcOrP5NrB5HL+olFouR2JSAcysccA4SmxJeornG\nDAmSFCAWi5FIJCoak0is7U2sHkcv6mn0gVHij8eXDwrnIP54nKNfOVqTuvQmQ4IkLWF0dJR4PL6i\nbePxOEePru1NrB5HL+opEokw9sgYyeeSRB+LwvPAxYUHLwLPQ/SxKMnnkpw+fpqurpVeeUnVYkiQ\npCVEIhHGxsZIJpNLvnlHo1GSySSnT6/9TaweRy/qLRKJkH04y/iD4wx1DhF/NA5fg/ijcYY6hxh/\ncJzsw1kDQp3YBVKSVqBWXSBLpRIDAwNvXIr5auLxeFXCSSOZOjtF76FeJu+apGez7wcrEWYXSI8k\nSNIKxGIxDh8+zLFjxwA4duwYhw8frvqn+FofvZCuxlbRktRgIpEI2Wy2Zkcv6i3zVIbM0xkA5l6d\nY+sNW9n/B/vp3NAJQPpdadLb0/UssW0ZEiSpQV06enHpcPKxY8da8pRsershoFGFHRLeAnwDuAV4\nN/BkyPNJUkvIZDJkMgufrufm2Lp1K/v376ezc+HTdTpNOl39N9Yr552dnaW7uzv0edWYwl64+AXg\nB4D3cfWQ4MJFSQ2rXd84Lx3B8LW5sYW5cDHMIwnvA+4AfmrhZ0lqSq0aApayeC0EwJ49e1pyLYSW\nF9a3GyLAIeBfAn8f0hySpCoqlUoMDg6yc+dOjhw58sbXMPP5PEeOHGHnzp0MDg5SKpWqOm8mk+GO\nO+7gpptu4rrrruPaa6/luuuu46abbuKOO+544yiOai+MIwnrgN8Efp3yYY9YCHNIkqqoVCrR39/P\n9PT0ktsUi0WKxSIDAwOMjY0RiUSqMu+hQ4fI5XKXtcmen5/n5ZdfZn5+nkOHDvHe9763KvOpMpWE\nhPuA4WW26QMGgOuAz1zx2LLrH+655x42btx42X3tdphPkuohlUpdNSAsls/nSaVSZLPZNc1Zr2DS\nzBavj7nkwoULoc1XycLFGxZuVzMLjAIf4M0rcAOsB14DvgoMBYxz4aIk1cnMzAz9/f2XfZJfTjQa\nZXx8fE1rFAYHBzlx4sSKt08mk2sOJq2oUa64+B3gL5a5vQLcTfkrj7cu3O5cGL8H+MWqVC1JqpqD\nBw9WFBCg/Al/ZGRk1XPOzMyQy+UqGpPL5SgUCqueU5ULY+Hi88Azi27fWrg/D7wQwnySpDWYmJio\n6TioTzBR5WrVu+Hi8ptIkuphfn6+puOgPsFElavFZZkLlNckSJIaUEdHR03HQX2CiSpnF0hJanN9\nfX2rGrdjx45Vz1mPYKLKGRIkqc0NDw8v2ZZ6KdFolAMHDqx6znoEE1XOkCBJbS4Wi5FIJCoak0gk\n1vT1x3oEE1XOkCBJYnR0lHg8vqJt4/E4R48eXdN89QgmqpwhQZJEJBJhbGyMZDK55Cf8aDRKMpnk\n9OnTdHV1rXnOWgcTVc6QIEkCykEhm80yPj7O0NDQG2/g8XicoaEhxsfHyWazVQkIl+ardTBRZWrx\nFUhJUhOJxWIcPnz4jcv9Hjt2LLRL5l8KJovbU+fzeeLxeOjtqTNPZcg8Xe6DMPfqHLMvzdJ9fTed\nGzoBSL8rTXp7e/cOqqR3Q5js3SBJDWBxA6G5uTlmZ2fp7u6ms3PhjTOEpnv1mPNKU2en6D3Uy+Rd\nk/Rsbq73oTB7N3gkQZL0hnp03rXbb+NyTYIkSQpkSJAkSYEMCZIkKZAhQZIkBTIkSJKkQIYESZIU\nyJAgSZICGRIkSVIgQ4IkSQpkSJAkSYEMCZIkKZAhQZIkBTIkSJKkQHaBlCS1pcUtqs+9dA7+DD7x\nR5+g6/ouwO6UYEiQJLWpxSHgwUcf5Bs/9g1+7hd+jo/8s4/UubLG4ekGSZIUyJAgSZICGRIkSVKg\nsEJCAXj9itunQ5pLkiSFIKyFixeBA8BvLLrv5ZDmkiRJIQjz2w1/C5wL8fklSVKIwlyT8O+BF4Fv\nAr8AdIQ4lyRJqrKwQsIXgA8DSeCLwD3Al0KaS5KkVSkUCuzdu5f9H98PwP6P72fv3r0UCoX6FtYg\nKjndcB8wvMw2twFTwOcX3fc08FfA/wT+3cLPkiTVTalUIpVKkcvlKBaLb9x/ZvYMR44c4fjx4yQS\nCUZHR4lEInWstL7WVbDtDQu3q5kFXgm4/23A88APAxMBj/cAk7t27WLjxo2XPeBlMSVJ1VQqlejv\n72d6enpLKzCsAAAGw0lEQVTZbePxOGNjYw0TFBZfSvqSCxcucOrUKYBeyh/Uq6aSkLAW7wceAm4C\nzgQ83gNMTk5O0tPTU6OSJEntaHBwkBMnTqx4+2QySTabDa+gNZqamqK3txdCCAlhrEm4Hfh54N3A\nO4A9wJeB3yU4IEiSVBMzMzPkcrmKxuRyubZdoxBGSHiFcjDIAn8G/CfgEOA5A0lSXR08ePCyNQgr\nUSwWGRkZCamixhbGdRK+CewM4XklSVqTiYmgZXHhjWt29m6QJLWN+fn5mo5rdoYESVLb6OhY3XX9\nVjuu2RkSJElto6+vb1XjduzYUeVKmoMhQZLUNoaHh4lGoxWNiUajHDhwIKSKGpshQZLUNmKxGIlE\noqIxiUSCWCwWTkENzpAgSWoro6OjxOPxFW0bj8c5evRoyBU1LkOCJKmtRCIRxsbGSCaTS556iEaj\nJJNJTp8+TVdXV40rbByGBElS24lEImSzWcbHxxkaGmJLbAsAW2JbGBoaYnx8nGw229YBAQwJkqQ2\nFovFOHz4MJ/58mcA+MyXP8Phw4fbdg3ClQwJkiQpkCFBkiQFMiRIkqRAhgRJkhTIkCBJkgIZEiRJ\nUqAN9S5AkqR6yGQyZDIZAM69dA5ugF/99K9y9NfKV1hMp9Ok0+l6llh3hgRJUltaHAKmzk7Re6iX\nL931JXo299S5ssbh6QZJkhTIkCBJkgIZEiRJUiBDgiRJCmRIkCRJgQwJkiQpkCFBkiQFMiRIkqRA\nhgRJkhTIkCBJkgIZEiRJUqAwQ8I/B74B/B3wl8BvhziXtGKXGrpIYXNfU7MLKyR8CPgt4CvALUA/\n8GBIc0kV8YVbteK+pmYXRhfIDcAXgE8BRxbd/60Q5pIkSSEJ40hCD3AjcBH4JvAC8AjwQyHMVXe1\n/qRQzfnW8lyVjq1k+5Vsu9w2rfgJzn2t+tu7rwVr132Np8Kbq1n3tTBCws0Lv94HjADvB/4KOAF8\nXwjz1VW7/mfyhbv23Neqv737WrB23dcMCd+tktMN9wHDy2zTx5vB4z8DX1/4eQg4A/w0cGipwc8+\n+2wF5TSGCxcuMDU11ZTzreW5Kh1byfYr2Xa5ba72eK3/zarFfa3627uvBWvHfe3Zv3wW5uDZJ5+F\ns9WfK8x9Lcz3znUVbHvDwu1qZikvUvxD4D3A6UWPPQ78PnAgYNxmYAJ4WwX1SJKksm9T/qC+woiz\nMpUcSfjOwm05k8ArQII3Q0IHEKMcIoKcpfyH21xBPZIkqewsVQ4IYfoc8DzwI8APAg9QLv76ehYl\nSZLqbwPwWaAIvAQ8Cmyra0WSJEmSJEmSJEmSJEnf7R8C/4fyFRyfBn62vuWohb2d8oW//gx4Avip\nulajVvd14DzwP+pdiFrW+4Ec8BfAv65zLaG5Buhc+PkfANPAP6pfOWphUcpNyaC8jz1PeZ+TwvBP\nKL+IGxIUhg3An1O+vMB1lIPCpkqeIMxW0dX0OjC38PP3APOLfi9VUxF4cuHnv6T8Ka+i/1RSBf4Y\n+Nt6F6GWtYPyUdGzlPezR4AfreQJmiUkQPkaC08Az1HuMvk39S1HbeA2ylcl/Xa9C5GkVbiRy1+/\nzlDhlY2bKSS8BNwKvAP4JPAD9S1HLe4G4L8Bd9W7EElapYtrfYKwQsJu4GHKCeZ14McDtvkEMAP8\nPfAnlHs9XPJzlBcpTlG+pPNi5ygvLHt3VStWswpjX3sL8DvApyn3HJEgvNe1Nb+Qq2WtdZ97gcuP\nHLydBjky+mOU20T/BOU/2AevePzDlPs77KV82ebPUT598PYlnq8L+N6Fn7+X8jnjH6xuyWpS1d7X\n1gEZ4D+GUayaWrX3tUuSuHBRwda6z22gvFjxRsrfEvwL4PtCr7pCQX+wbwC/dsV9z1D+5Bakh3IC\n/9OF21A1C1TLqMa+9h7gNcqf9r65cPuhKtao1lCNfQ3Kl6w/B7xM+Zs0vdUqUC1ntfvcByh/w+Fb\nwL7QqluDK/9g11L+dsKVh00+T/k0grRa7muqFfc11Vpd9rl6LFz8fmA9ULri/nOUv6MuVYv7mmrF\nfU21VpN9rpm+3SBJkmqoHiHhRcrnfCNX3B+hfMEHqVrc11Qr7muqtZrsc/UICf8PmOS7r/r0I8Dp\n2pejFua+plpxX1OtNfU+91bK1zF4N+XFFvcs/Hzpaxl7KH9tYwjYRvlrG3/N8l8Vkq7kvqZacV9T\nrbXsPpek/Ad6nfLhkEs/H160zc9QvgDEHDDB5ReAkFYqifuaaiOJ+5pqK4n7nCRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJUhP4/2mSFna6/IuoAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-6,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"green\")\n", + "errorbar(fqd, p2, yerr=p2e, fmt='o', ms=10, color=\"black\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 9.080e+02 8.628e+00 inf -- 3.946e+02 -- -0.492976 -1.19479 -2.33614 -2.85309 -3.17738 -3.59122 -4.14664 -6.86153 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1\n", + " 3 2.942e+01 1.064e+01 2.632e+00 -- 3.972e+02 -- -0.481238 -1.16249 -2.32998 -2.86236 -3.17204 -3.5971 -4.23481 -6.56153 0.196538 0.194241 0.217236 0.210439 0.208644 0.19838 0.076294 2.89715\n", + " 5 7.015e+01 1.272e+01 2.261e+00 -- 3.995e+02 -- -0.466455 -1.13277 -2.31839 -2.86564 -3.1624 -3.59969 -4.33223 -6.86153 0.280457 0.266919 0.318442 0.315419 0.302037 0.289194 0.0452378 0.657906\n", + " 7 1.553e+02 1.490e+01 1.934e+00 -- 4.014e+02 -- -0.450147 -1.10622 -2.30366 -2.86384 -3.15036 -3.59968 -4.44186 -6.56153 0.351939 0.32391 0.403816 0.412369 0.381156 0.372195 0.00381962 2.32595\n", + " 9 7.337e+01 1.721e+01 1.703e+00 -- 4.031e+02 -- -0.433442 -1.08282 -2.28754 -2.85817 -3.13723 -3.59775 -4.56867 -6.86153 0.41207 0.369439 0.474927 0.499989 0.447819 0.447139 -0.0555143 2.71453\n", + " 11 2.642e+02 1.966e+01 1.517e+00 -- 4.046e+02 -- -0.417104 -1.0623 -2.27119 -2.84975 -3.12388 -3.59444 -4.72052 -7.16153 0.462324 0.406445 0.533924 0.577792 0.503961 0.514362 -0.147032 1.64655\n", + " 13 1.134e+02 2.224e+01 1.353e+00 -- 4.060e+02 -- -0.401589 -1.04435 -2.25531 -2.83959 -3.11085 -3.59024 -4.9108 -6.86153 0.504215 0.43699 0.582926 0.646084 0.551409 0.574431 -0.303917 2.12243\n", + " 15 4.422e+01 2.495e+01 1.214e+00 -- 4.072e+02 -- -0.387134 -1.02863 -2.24025 -2.8285 -3.09839 -3.58552 -5.16145 -6.92565 0.539131 0.46254 0.623794 0.705676 0.59172 0.627943 -0.619596 -3.09158\n", + " 17 2.645e+02 2.779e+01 1.104e+00 -- 4.083e+02 -- -0.373836 -1.01484 -2.22621 -2.81703 -3.08666 -3.58053 -5.46145 -7.22565 0.568271 0.484154 0.658085 0.757538 0.626161 0.675551 -1.4082 2.0864\n", + " 19 2.867e+01 3.074e+01 9.808e-01 -- 4.093e+02 -- -0.361705 -1.00274 -2.21326 -2.80561 -3.07569 -3.57544 -5.41113 -6.92565 0.592636 0.502612 0.687049 0.802652 0.655755 0.718052 2.88736 -2.83886\n", + " 21 2.872e+02 3.381e+01 9.306e-01 -- 4.102e+02 -- -0.350685 -0.992095 -2.20141 -2.79451 -3.06542 -3.57021 -5.11113 -7.22565 0.612993 0.518498 0.711608 0.842016 0.681241 0.756352 -2.50407 1.58824\n", + " 23 4.288e+03 3.693e+01 9.343e-01 -- 4.111e+02 -- -0.340752 -0.982709 -2.19051 -2.78383 -3.05601 -3.56539 -4.81113 -6.92565 0.630223 0.532271 0.732844 0.876431 0.703498 0.789821 -2.82897 -0.0394334\n", + " 25 3.415e+01 4.012e+01 8.120e-01 -- 4.119e+02 -- -0.331787 -0.974425 -2.18054 -2.7737 -3.04741 -3.56096 -4.66441 -6.62565 0.644673 0.544307 0.750981 0.90648 0.723128 0.819985 -2.85376 -1.97808\n", + " 26 9.994e+02 4.117e+02 2.909e+00 -- 4.148e+02 -- -0.251075 -0.9012 -2.08945 -2.67816 -2.96888 -3.52102 -3.7456 -8 0.766488 0.649993 0.907611 1.17077 0.897255 1.08952 -2.95842 2.74048\n", + " 27 6.433e+02 1.002e+01 3.929e+00 -- 4.188e+02 -- -0.248558 -0.908886 -2.07891 -2.65067 -2.96976 -3.54662 -3.96146 -8 0.701601 0.621254 0.876275 1.16829 1.0404 1.20006 -2.9623 -2.8748\n", + " 28 8.040e+02 4.356e+00 3.810e-01 -- 4.192e+02 -- -0.24941 -0.908256 -2.07352 -2.6406 -2.96684 -3.53274 -4.09371 -8 0.719662 0.643488 0.90068 1.14499 0.973393 1.15172 -2.91207 1.1996\n", + " 29 6.002e-01 1.402e+00 4.879e-01 -- 4.187e+02 -- -0.249394 -0.90855 -2.07276 -2.63793 -2.96077 -3.52618 -4.14701 -5 0.719126 0.6433 0.900826 1.17205 0.953098 1.1439 -2.86205 -1.93902\n", + " 30 1.613e+02 1.454e+00 5.129e-01 -- 4.192e+02 -- -0.249496 -0.908472 -2.07365 -2.63477 -2.95891 -3.5366 -4.14887 -6.64352 0.723003 0.644781 0.906634 1.17771 0.938562 1.11686 -2.77459 -0.775149\n", + " 31 1.624e+03 1.161e+00 1.714e-02 -- 4.192e+02 -- -0.249667 -0.908595 -2.07175 -2.63868 -2.95842 -3.52179 -4.1679 -8 0.72384 0.64458 0.904311 1.17024 0.944786 1.13843 -2.857 -1.41511\n", + " 32 1.970e+02 3.152e-01 7.158e-04 -- 4.192e+02 -- -0.249609 -0.908562 -2.07305 -2.63658 -2.95704 -3.52378 -4.16495 -8 0.721446 0.644368 0.906308 1.1724 0.941102 1.13792 -2.85898 -2.42836\n", + " 33 8.595e+02 3.798e-01 6.275e-04 -- 4.192e+02 -- -0.24955 -0.908572 -2.07254 -2.6381 -2.95677 -3.52227 -4.16647 -8 0.722642 0.644061 0.90574 1.17222 0.940858 1.13781 -2.8621 2.99735\n", + " 34 9.794e+02 1.202e-01 9.051e-05 -- 4.192e+02 -- -0.249592 -0.908557 -2.07291 -2.63765 -2.95644 -3.52276 -4.16658 -8 0.721993 0.644122 0.906381 1.1716 0.940534 1.13825 -2.86125 2.8441\n", + "********************\n", + "-0.249592 -0.908557 -2.07291 -2.63765 -2.95644 -3.52276 -4.16658 -8 0.721993 0.644122 0.906381 1.1716 0.940534 1.13825 -2.86125 2.8441\n", + "0.0338278 0.0081193 0.0342279 0.0767303 0.0666745 0.170245 0.340225 1391.22 0.211725 0.0953128 0.214457 0.311582 0.260149 0.464275 0.812667 2572.32\n", + "0.0179335 -0.0240087 0.0250454 -0.120246 -0.0820404 -0.0104754 -0.0627678 -0.000341413 0.00675955 -0.0176544 -0.00416412 0.00520845 -0.00874943 0.000211486 -0.0321303 -0.000438528\n", + "********************\n" + ] + } + ], + "source": [ + "Cx = clag.clag('cxd10r', [[t1,t2]], [[l1,l2]], [[l1e,l2e]], dt, fqL, p1, p2)\n", + "p = np.concatenate( ((p1+p2)*0.5-0.3,p1*0+0.1) ) # a good starting point generally\n", + "p, pe = clag.optimize(Cx, p)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "ERROR:root:Line magic function `%autoreload` not found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 4.199e+02 4.196e+02 -2.495e-01 -2.326e-01 0.408 +++\n", + "+++ 4.199e+02 4.192e+02 -2.495e-01 -2.242e-01 1.23 +++\n", + "+++ 4.199e+02 4.195e+02 -2.495e-01 -2.284e-01 0.733 +++\n", + "+++ 4.199e+02 4.194e+02 -2.495e-01 -2.263e-01 0.956 +++\n", + "+++ 4.199e+02 4.193e+02 -2.495e-01 -2.252e-01 1.09 +++\n", + "+++ 4.199e+02 4.193e+02 -2.495e-01 -2.257e-01 1.02 +++\n", + "+++ 4.199e+02 4.194e+02 -2.495e-01 -2.260e-01 0.988 +++\n", + "+++ 4.199e+02 4.194e+02 -2.495e-01 -2.259e-01 1 +++\n", + "\t### errors for param 1 ###\n", + "+++ 4.199e+02 4.197e+02 -9.086e-01 -9.045e-01 0.351 +++\n", + "+++ 4.199e+02 4.194e+02 -9.086e-01 -9.025e-01 1 +++\n", + "\t### errors for param 2 ###\n", + "+++ 4.199e+02 4.197e+02 -2.073e+00 -2.056e+00 0.357 +++\n", + "+++ 4.199e+02 4.192e+02 -2.073e+00 -2.047e+00 1.24 +++\n", + "+++ 4.199e+02 4.195e+02 -2.073e+00 -2.051e+00 0.685 +++\n", + "+++ 4.199e+02 4.194e+02 -2.073e+00 -2.049e+00 0.93 +++\n", + "+++ 4.199e+02 4.193e+02 -2.073e+00 -2.048e+00 1.08 +++\n", + "+++ 4.199e+02 4.194e+02 -2.073e+00 -2.049e+00 1 +++\n", + "\t### errors for param 3 ###\n", + "+++ 4.199e+02 4.197e+02 -2.645e+00 -2.605e+00 0.304 +++\n", + "+++ 4.199e+02 4.195e+02 -2.645e+00 -2.585e+00 0.798 +++\n", + "+++ 4.199e+02 4.192e+02 -2.645e+00 -2.574e+00 1.23 +++\n", + "+++ 4.199e+02 4.194e+02 -2.645e+00 -2.579e+00 0.995 +++\n", + "\t### errors for param 4 ###\n", + "+++ 4.199e+02 4.198e+02 -2.954e+00 -2.922e+00 0.194 +++\n", + "+++ 4.199e+02 4.196e+02 -2.954e+00 -2.905e+00 0.544 +++\n", + "+++ 4.199e+02 4.194e+02 -2.954e+00 -2.897e+00 0.845 +++\n", + "+++ 4.199e+02 4.193e+02 -2.954e+00 -2.893e+00 1.04 +++\n", + "+++ 4.199e+02 4.194e+02 -2.954e+00 -2.895e+00 0.94 +++\n", + "+++ 4.199e+02 4.194e+02 -2.954e+00 -2.894e+00 0.991 +++\n", + "\t### errors for param 5 ###\n", + "+++ 4.199e+02 4.197e+02 -3.498e+00 -3.421e+00 0.356 +++\n", + "+++ 4.199e+02 4.193e+02 -3.498e+00 -3.382e+00 1.02 +++\n", + "+++ 4.199e+02 4.195e+02 -3.498e+00 -3.401e+00 0.628 +++\n", + "+++ 4.199e+02 4.194e+02 -3.498e+00 -3.392e+00 0.807 +++\n", + "+++ 4.199e+02 4.194e+02 -3.498e+00 -3.387e+00 0.909 +++\n", + "+++ 4.199e+02 4.194e+02 -3.498e+00 -3.385e+00 0.964 +++\n", + "+++ 4.199e+02 4.194e+02 -3.498e+00 -3.383e+00 0.992 +++\n", + "\t### errors for param 6 ###\n", + "+++ 4.199e+02 4.197e+02 -4.180e+00 -4.005e+00 0.338 +++\n", + "+++ 4.199e+02 4.193e+02 -4.180e+00 -3.918e+00 1.02 +++\n", + "+++ 4.199e+02 4.195e+02 -4.180e+00 -3.962e+00 0.609 +++\n", + "+++ 4.199e+02 4.195e+02 -4.180e+00 -3.940e+00 0.793 +++\n", + "+++ 4.199e+02 4.194e+02 -4.180e+00 -3.929e+00 0.899 +++\n", + "+++ 4.199e+02 4.194e+02 -4.180e+00 -3.924e+00 0.956 +++\n", + "+++ 4.199e+02 4.194e+02 -4.180e+00 -3.921e+00 0.986 +++\n", + "+++ 4.199e+02 4.194e+02 -4.180e+00 -3.920e+00 1 +++\n", + "\t### errors for param 7 ###\n", + "+++ 4.199e+02 4.195e+02 -4.560e+00 -4.379e+00 0.634 +++\n", + "+++ 4.199e+02 4.190e+02 -4.560e+00 -4.288e+00 1.79 +++\n", + "+++ 4.199e+02 4.193e+02 -4.560e+00 -4.333e+00 1.09 +++\n", + "+++ 4.199e+02 4.194e+02 -4.560e+00 -4.356e+00 0.841 +++\n", + "+++ 4.199e+02 4.194e+02 -4.560e+00 -4.345e+00 0.961 +++\n", + "+++ 4.199e+02 4.193e+02 -4.560e+00 -4.339e+00 1.03 +++\n", + "+++ 4.199e+02 4.194e+02 -4.560e+00 -4.342e+00 0.993 +++\n", + "\t### errors for param 8 ###\n", + "+++ 4.199e+02 4.197e+02 7.176e-01 8.234e-01 0.288 +++\n", + "+++ 4.199e+02 4.195e+02 7.176e-01 8.762e-01 0.636 +++\n", + "+++ 4.199e+02 4.194e+02 7.176e-01 9.027e-01 0.85 +++\n", + "+++ 4.199e+02 4.194e+02 7.176e-01 9.159e-01 0.967 +++\n", + "+++ 4.199e+02 4.193e+02 7.176e-01 9.225e-01 1.03 +++\n", + "+++ 4.199e+02 4.194e+02 7.176e-01 9.192e-01 0.997 +++\n", + "\t### errors for param 9 ###\n", + "+++ 4.199e+02 4.194e+02 6.417e-01 7.370e-01 0.917 +++\n", + "+++ 4.199e+02 4.189e+02 6.417e-01 7.847e-01 1.94 +++\n", + "+++ 4.199e+02 4.192e+02 6.417e-01 7.609e-01 1.4 +++\n", + "+++ 4.199e+02 4.193e+02 6.417e-01 7.490e-01 1.15 +++\n", + "+++ 4.199e+02 4.193e+02 6.417e-01 7.430e-01 1.03 +++\n", + "+++ 4.199e+02 4.194e+02 6.417e-01 7.400e-01 0.972 +++\n", + "+++ 4.199e+02 4.194e+02 6.417e-01 7.415e-01 1 +++\n", + "\t### errors for param 10 ###\n", + "+++ 4.199e+02 4.194e+02 9.056e-01 1.120e+00 0.922 +++\n", + "+++ 4.199e+02 4.189e+02 9.056e-01 1.227e+00 1.85 +++\n", + "+++ 4.199e+02 4.192e+02 9.056e-01 1.173e+00 1.37 +++\n", + "+++ 4.199e+02 4.193e+02 9.056e-01 1.147e+00 1.14 +++\n", + "+++ 4.199e+02 4.193e+02 9.056e-01 1.133e+00 1.03 +++\n", + "+++ 4.199e+02 4.194e+02 9.056e-01 1.127e+00 0.975 +++\n", + "+++ 4.199e+02 4.194e+02 9.056e-01 1.130e+00 1 +++\n", + "\t### errors for param 11 ###\n", + "+++ 4.199e+02 4.193e+02 1.164e+00 1.485e+00 1.01 +++\n", + "\t### errors for param 12 ###\n", + "+++ 4.199e+02 4.195e+02 9.406e-01 1.198e+00 0.789 +++\n", + "+++ 4.199e+02 4.191e+02 9.406e-01 1.326e+00 1.57 +++\n", + "+++ 4.199e+02 4.193e+02 9.406e-01 1.262e+00 1.16 +++\n", + "+++ 4.199e+02 4.194e+02 9.406e-01 1.230e+00 0.972 +++\n", + "+++ 4.199e+02 4.193e+02 9.406e-01 1.246e+00 1.07 +++\n", + "+++ 4.199e+02 4.193e+02 9.406e-01 1.238e+00 1.02 +++\n", + "+++ 4.199e+02 4.194e+02 9.406e-01 1.234e+00 0.995 +++\n", + "\t### errors for param 13 ###\n", + "+++ 4.199e+02 4.197e+02 1.187e+00 1.403e+00 0.29 +++\n", + "+++ 4.199e+02 4.195e+02 1.187e+00 1.511e+00 0.642 +++\n", + "+++ 4.199e+02 4.194e+02 1.187e+00 1.565e+00 0.862 +++\n", + "+++ 4.199e+02 4.194e+02 1.187e+00 1.592e+00 0.982 +++\n", + "+++ 4.199e+02 4.193e+02 1.187e+00 1.606e+00 1.04 +++\n", + "+++ 4.199e+02 4.193e+02 1.187e+00 1.599e+00 1.01 +++\n", + "+++ 4.199e+02 4.194e+02 1.187e+00 1.596e+00 0.997 +++\n", + "\t### errors for param 14 ###\n", + "+++ 4.199e+02 4.195e+02 -3.113e+00 -2.282e+00 0.756 +++\n", + "+++ 4.199e+02 4.193e+02 -3.113e+00 -1.866e+00 1.19 +++\n", + "+++ 4.199e+02 4.194e+02 -3.113e+00 -2.074e+00 0.996 +++\n", + "\t### errors for param 15 ###\n", + "+++ 4.199e+02 4.197e+02 1.032e+00 1.598e+00 0.239 +++\n", + "+++ 4.199e+02 4.195e+02 1.032e+00 1.881e+00 0.622 +++\n", + "+++ 4.199e+02 4.194e+02 1.032e+00 2.023e+00 0.848 +++\n", + "+++ 4.199e+02 4.194e+02 1.032e+00 2.094e+00 0.957 +++\n", + "+++ 4.199e+02 4.193e+02 1.032e+00 2.129e+00 1.01 +++\n", + "********************\n", + "-0.249474 -0.908595 -2.07282 -2.6453 -2.95426 -3.49832 -4.17972 -4.56002 0.717619 0.641666 0.90563 1.164 0.940625 1.18717 -3.11332 1.03245\n", + "0.0235989 0.00609752 0.0240131 0.0658289 0.0603077 0.115006 0.260075 0.218293 0.201566 0.0998359 0.224231 0.321435 0.293375 0.408381 1.03966 1.09658\n", + "********************\n" + ] + } + ], + "source": [ + "%autoreload\n", + "p, pe = clag.errors(Cx, p, pe)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "phi, phie = p[nfq:], pe[nfq:]\n", + "lag, lage = phi/(2*np.pi*fqd), phie/(2*np.pi*fqd) \n", + "cx, cxe = p[:nfq], pe[:nfq]" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 11.83713905, 3.53860689, 2.58807242, 2.14608694,\n", + " 1.11886842, 0.91105232, -1.54142564, 0.32978838])" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAFkCAYAAABFIsPfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAF2pJREFUeJzt3X9sXddhH/CvaytR4qxTG9akmxlizMR9ructJUu1kIqU\nwbag6LZkf2wK35CikLY5S7IF6oCtRgtpqbTmj2FINGHrCmMQUiwYKS9YhgSYsgwIHWCUsilktlWJ\nWHekqKaJHx2n07YmkyPE3h+P8igeUeKPd98Pvs8HeNDjfefccwgdUV/ec+85CQAAAAAAAAAAAAAA\nAAAAAAAAQJe6r9MdWPXw6gsA2JoXVl8t1Q0B4eFarfathYWFTvcDAHrRlSR/Li0OCd0QEEaTzH3q\nU5/K448/3um+bNmxY8dy+vTpnmxrJ+fbat3Nlt9MuXuVudvn7fz7ajVjrbXljbWNGWutLV/lWLty\n5Ure//73J8lYkvl7dmYLHmjlyXbi8ccfz+joaKe7sWX79u1rW79b3dZOzrfVupstv5ly9ypzt8/b\n+ffVasZaa8sbaxsz1lpbvuqxVpX729ranT2c5AMf+MAH8vDDvXkbwpNPPtmzbe3kfFutu9nymyl3\nrzIbfT41NZV6vb6pfnQjY6215Y21jRlrrS1f1Vh74YUX8swzzyTJM9mtUwxzc3M9m7bpHe95z3vy\n2c9+ttPdoA8Ya7TD/Px8xsbGkgqmGH6olScDAHYHAYG+0suXfOktxhq9TkCgr/ihTbsYa/Q6AQEA\nKGw3ILwzyeeSfDPJK0neu+7zT64eX/u6sM22AIA2225AeGOSryb58OrXr677/NUk55MMrXn94jbb\nAgDabLsLJX1+9bWR+5J8P8mL2zw/ANBBVa2k+GqSiSQrSa4n+VKSX0/y7Yrag9tMTU1lamoqSXLj\nxo1cu3Yt+/fvz969e5M0byBzExnAxqoKCOeTPJvkWpJHk5xK8sU0F3L4fkVtwmvWBoBbC4lMTU1Z\njAtgk6oKCM+uef/1JF9JspzkLyb5TEVtAgAt0q7NmhpJ/iDJ2zYqcOzYsezbt++2Yy4DA0DT2qnT\nW65fv15Ze+0KCANJHsldNpI4ffq0y78AsIE7/dK8Zi+GlttuQHgwydvXfP1oknck+U6SP0ryG0k+\nneaVg+EkH0vzBkXTCwDQA7YbEMbTvOkwaT6x8PHV959M8qEkfzrJLyXZl+ZVgy8m+WtJvrvdjgIA\n7bPdgPBc7r7I0i9s87wAQBewFwMAUBAQAICCgAAAFAQEAKAgIAAABQEBACgICABAQUAAAAoCAgBQ\nEBAAgIKAAAAUBAQAoCAgAAAFAQEAKAgIAEBBQAAACgICAFAQEACAgoAAABQEBACgICAAAAUBAQAo\nCAgAQEFAAAAKAgIAUBAQAICCgAAAFAQEAKAgIAAABQEBACgICABAQUAAAAoCAgBQEBAAgIKAwK61\nvLyco0eP5vDhw0mSw4cP5+jRo1leXu5sxwB6wAOd7gC02srKSiYnJ7OwsJBGo/Ha8cXFxSwuLub8\n+fOp1WqZnp7O4OBgB3sK0L0EBHaVlZWVHDx4MEtLSxuWaTQaaTQaOXToUGZnZ4UEgDswxcCuMjk5\neddwsNbi4mImJycr7hFAbxIQ2DWuXr2ahYWFLdVZWFhwTwLAHQgI7BqnTp267Z6DzWg0Gjl58mRF\nPQLoXQICu8alS5faWg9gNxMQ2DVu3rzZ1noAu5mAwK6xZ8+ettYD2M0EBHaN8fHxbdU7cOBAi3sC\n0PsEBHaNEydOZGhoaEt1hoaGcvz48Yp6BNC7BAR2jeHh4dRqtS3VqdVqGR4erqZDAD1MQGBXmZ6e\nzsjIyKbKjoyM5Ny5cxX3CKA3CQjsKoODg5mdnc3ExMSG0w1DQ0OZmJjIhQsX8tBDD7W5hwC9QUBg\n1xkcHMzMzEwuXryYI0eOvHZFYWRkJEeOHMnFixczMzMjHADchc2a2LWGh4dz9uzZzM/PZ2xsLM8+\n+2xGR0c73S2AnuAKAgBQEBAAgIKAAAAUBAQAoCAgAAAFAQEAKAgIAEBBQAAACgICAFAQEACAgoAA\nABQEBACgICAAAIXtBoR3Jvlckm8meSXJe+9Q5qOrn38vyUySn9xmWwBAm203ILwxyVeTfHj161fX\nff6rSY6tfj6epJHkPyZ50zbbAwDa6IFt1vv86utO7kszHPxmkn+3euyXk6wk+etJntlmmwBAm1Rx\nD8Jbkwwm+cKaY99P8qUkBytoDwBosSoCwtDqnyvrjr+45jMAoIttd4phu9bfq/CaY8eOZd++fbcd\nq9frqdfrlXcKALrd1NRUpqambjt2/fr1ytqrIiA0Vv8cXPP+Tl/f5vTp0xkdHa2gOwDQ++70S/P8\n/HzGxsYqaa+KKYaraQaBd6859rokP5/kQgXtAQAttt0rCA8mefuarx9N8o4k30nyjSSnk/xakt9P\n8j9W3/9xkn+97Z4CAG2z3YAwnuSLq+9fTfLx1fefTHI0yT9O8oYkv5XkR5J8Oc0rCt/dbkcBgPbZ\nbkB4LveenviN1RcA0GPsxQAAFAQEAKAgIAAABQEBACgICABAQUAAAAoCAgBQEBAAgIKAAAAUBAQA\noCAgAAAFAQEAKAgIAEBBQAAACgICAFAQEACAwgOd7gBUYWpqKlNTU0mSGzdu5LHHHsvTTz+dvXv3\nJknq9Xrq9XonuwjQ1QQEdiUBAGBnTDEAAAUBAQAoCAgAQEFAAAAKAgIAUBAQAICCgAAAFAQEAKAg\nIAAABQEBACgICABAQUAAAAoCAgBQEBAAgIKAAAAUBAQAoCAgAAAFAQEAKAgIAEBBQAAACgICAFAQ\nEACAgoAAABQEBACgICAAAAUBAQAoCAgAQEFAAAAKAgIAUBAQAICCgAAAFAQEAKAgIAAABQEBACgI\nCABAQUAAAAoCAgBQEBAAgIKAAAAUBAQAoCAgAAAFAQEAKAgIAEBBQAAAClUFhI8meWXd61sVtQUA\ntNgDFZ77cpI/v+brH1TYFgDQQlUGhB8kebHC8wMAFanyHoS3J/lmkqUkU0neWmFbAEALVRUQvpzk\nl5K8O8nfSjKU5EKSH62oPQCghaqaYvj8mvdfS3IxyWKSX07yiYraBABapMp7ENb6XpLfTfK2jQoc\nO3Ys+/btu+1YvV5PvV6vuGsA0P2mpqYyNTV127Hr169X1t59lZ35dq9P8wrCbyf5R+s+G00yNzc3\nl9HR0TZ1BwB63/z8fMbGxpJkLMl8K89d1T0I/yTJO9O8MfFnknw6yZuS/E5F7QEALVTVFMNb0nxy\nYSDJt9O8B+Fnk3yjovYAgBaqKiC4cQAAepi9GACAgoAAABQEBACgICAAAAUBAQAoCAgAQEFAAAAK\nAgIAUBAQAIBCu3ZzBLrQ2t3hbty4kWvXrmX//v3Zu3dvEjuqQj9zBQH6WL1ez5kzZzIwMJClpaU8\n//zzWVpaysDAQM6cOSMcQB9zBQH61MrKSiYnJ7OwsJBGo/Ha8cXFxSwuLub8+fOp1WqZnp7O4OBg\nB3sKdIKAAH1oZWUlBw8ezNLS0oZlGo1GGo1GDh06lNnZWSEB+owpBuhDk5OTdw0Hay0uLmZycrLi\nHgHdRkCAPnP16tUsLCxsqc7CwkKWl5er6RDQlQQE6DOnTp267Z6DzWg0Gjl58mRFPQK6kYAAfebS\npUttrQf0JgEB+szNmzfbWg/oTQIC9Jk9e/a0tR7QmwQE6DPj4+PbqnfgwIEW9wToZgIC9JkTJ05k\naGhoS3WGhoZy/PjxinoEdCMLJUGfGR4eTq1W29KTDLVaLcPDw9V1apPsHQHtc1+nO5BkNMnc3Nxc\nRkdHO90X6AsrKys5dOhQFhcX71l2ZGQkFy5cyEMPPdSGnm3e/Px8xsbG4mcH/ezWv4MkY0nmW3lu\nUwzQhwYHBzM7O5uJiYkNpxuGhoYyMTHRleEAqJ6AAH1qcHAwMzMzuXjxYo4cOZKRkZEkzSsGR44c\nycWLFzMzM9N14WB5eTlHjx7N4cOHkySHDx/O0aNHrfQILeYeBOhja+f0H3300dx///3Zv39/Xnrp\npXzkIx/pqjl9u09CewkI0Me6KQDcjd0nof1MMQBdz+6T0H4CAtDV7D4JnWGKAehqO9l98uzZsztu\n39oL9CtXEICu1undJ+v1es6cOZOBgYEsLS3l+eefz9LSUgYGBnLmzBnhgF3LFQSgq3Vy90lPTtDP\nBASgq3Vq90lPTtDvTDEAXa1Tu096coJ+JyAAXa0Tu096cgIEBKDL3dp9cit2uvvkTp6cgN1CQAC6\n3vT09Gt7RdzLyMhIzp07t6P2Ov3kBHQDAQHoeu3efbKTT05AtxAQgJ7Qzt0nO/XkBHQTjzkCPWV4\neDhnz57N/Px8xsbG8uyzz2Z0dLSlbYyPj+fy5ctbrrfTJyegmwgIQM9Yv+zxY489lqeffrrlyx6f\nOHEi58+f39KNijt9cgK6jYAA9Ix27Xtw68mJrQSEnT45Ad3GPQgAd9DuJyeg2wgIAHfQ7icnoNsI\nCAAbaOeTE9Bt3IMAcA/teHICuo2AAHAX7Xpy4k6Wl5dz8uTJXLp0KTdv3syePXsyPj6eEydOuCGS\nyt3X6Q4kGU0yNzc3J5EDpLnV9Lve9a4sLS3l5ZdfLj5//etfn0cffTQzMzO2mO5zt65qJRlLMt/K\nc7sHAaCLrKys5ODBg7ly5codw0GSvPzyy7ly5UoOHTqUlZWVNveQfiEgAHSRycnJLC0tbars4uJi\nJicnW9r+8vJyjh49mieffDK1Wi1PPvlkjh49aivrPuQeBIAucfXq1SwsLGypzsLCQpaXl3d8T8LK\nykomJyezsLBQLBB1+fLlnD9/PrVaLdPT06Y1+oQrCABd4tSpU1tavTFJGo1GTp48uaN2b01rPPfc\ncxu232g08txzz5nW6CMCAkCXuHTpUlvr3dLpaQ26k4AA0CVu3rzZ1nrJzqY12N0EBIAusWfPnrbW\nSzo3rUH3ExAAusT4+Pi26h04cGDbbXZqWoPuJyAAdIkTJ05suDHURoaGhnL8+PFtt9mJaQ16g4AA\n0CWGh4dTq9W2VKdWq+3oEcdOTGt0C2s+3J11EAC6yPT0dA4dOpTFxcV7lh0ZGcm5c+d21N74+Hgu\nX7685Xo7mdboNGs+bI4rCABdZHBwMLOzs5mYmNhwumFoaCgTExO5cOHCjrea7sS0RidZ82HzXEEA\n6DKDg4OZmZlpy26Ot6Y1tvIkw06nNTppO2s+zMzMVNyr7iQgAHSp4eHhnD17tvJ22j2t0SmdXMq6\nF5liAOhz7Z7W6BRrPmxN1VcQPpTk7ycZSvK1JMeS/KeK2wRgi9o5rdEp1nzYmioDwvuSfCLJB5PM\nJvnbSc4n+ckk36iwXQC2qV3TGp1gzYetqXKK4e8l+ZdJzib5vSS/kmYw+GCFbQLAHfXzmg/bUVVA\neF2S0SRfWHf8C0kOVtQmAGyoE0tZ97KqAsJAkvuTrH+A9MU070cAgLbqtzUfdspTDAD0hU4sZd3L\nqrpJ8aUkP0iyfo3KwSQv3KnCsWPHsm/fvtuO1ev11Ov1SjoIQP/p5TUfpqamMjU1ddux69evV9be\nfZWdOflykrkkH15z7OtJPpPk19ccG00yNzc3l9HR0Qq7AwB334shaU4r1Gq1nDt3ruvXfJifn8/Y\n2FiSjCWZb+W5q3zM8eNJ/lWSr6QZFp5K8qeS/HaFbQLAXfXDmg+tUGVAeDbJm5OcSPJwkt9N8oux\nBgIAXWA3r/nQClWvpPgvVl8AQA/xFAMAUBAQAICCgAAAFAQEAKAgIAAABQEBACgICABAQUAAAAoC\nAgBQEBAAgELVSy0DwF2t3cb4xo0buXbtWvbv35+9e/cmSer1eur1eie72JdcQQCgo+r1es6cOZOB\ngYEsLS3l+eefz9LSUgYGBnLmzBnhoENcQQCgY1ZWVjI5OZmFhYU0Go3Xji8uLmZxcTHnz59PrVbL\n9PR0BgcHO9jT/iMgANARKysrOXjwYJaWljYs02g00mg0cujQoczOzgoJbWSKAYCOmJycvGs4WGtx\ncTGTk5MV94i1BAQA2u7q1atZWFjYUp2FhYUsLy9X0yEKAgIAbXfq1Knb7jnYjEajkZMnT1bUI9YT\nEABou0uXLrW1HlsnIADQdjdv3mxrPbZOQACg7fbs2dPWemydgABA242Pj2+r3oEDB1rcEzYiIADQ\ndidOnMjQ0NCW6gwNDeX48eMV9Yj1BAQA2m54eDi1Wm1LdWq1WoaHh6vpEAUBAYCOmJ6ezsjIyKbK\njoyM5Ny5cxX3iLUEBAA6YnBwMLOzs5mYmNhwumFoaCgTExO5cOFCHnrooTb3sL8JCAB0zODgYJ56\n6qk88cQTeeSRR/Lggw9mz549efDBB/PII4/kiSeeyFNPPSUcdIDNmgDoqHq9bkvnLuQKAgBQEBAA\ngIKAAAAUBAQAoCAgAAAFAQEAKAgIAEBBQAAACgICAFAQEACAgoAAABQEBACgICAAAAUBAQAoCAgA\nQEFAAAAKAgIAUBAQAICCgAAAFAQEAKAgIAAABQEBACgICABAQUAAAAoCAgBQEBAAgIKAAAAUBAQA\noCAgAAAFAQEAKAgIAEBBQAAACgICAFAQEACAgoAAABQEBACgUFVAWE7yyrrXxypqCzZtamqq012g\nTxhr9LqqAsKrSY4nGVrz+s2K2oJN80ObdjHW6HUPVHjuP07yYoXnBwAqUuU9CL+a5KUkX03ya0n2\nVNhWx7Tzt4RWt7WT82217mbLb6bcvcrs1t/cjLXWljfWNmastbZ8r461qgLCP03yviQTSf5ZkmNJ\nfquitjrKP6TWlu/Vf0jtYKy1tryxtjFjrbXle3WsbWWK4aNJTtyjzE8nmU9yes2xy0n+Z5JPJ/kH\nq+8LV65c2UJXusf169czPz/fk23t5HxbrbvZ8pspd68yd/u8nX9frWastba8sbYxY6215asca1X+\n33nfFsq+efV1N9eSvHyH429J8o0kP5Pk0rrPHl499pYt9AUAaPpmkvEkL7TypFu5gvCd1dd2/NTq\nn3fq/AtpfmMPb/PcANDPXkiLw0FVfjbJryR5R5K3Jjmc5A+TfKaTnQIAOuunklxM816D7yW5kua9\nC3s72SkAAAAAAAAAgCR/Isl/SXNVxstJ/k5nu8Mu9kiS55J8Lcl/S/JXO9obdrvPJPmjJP+m0x1h\n1/pLSRaSPJ/kb3S4L5X4ofz/mxzfkGQpyY91rjvsYkNJ/szq+x9Lc/2ON3SuO+xyP5/mD3ABgSo8\nkOT30lxG4E1phoQf3WzlKvdiaKVXktxYff/GJDfXfA2t1Ejy31fffzvN3+42/Q8KtuhLaW5sB1U4\nkObV0BfSHGf/Psm7N1u5VwJCkvzJNC/5/kGaez38n852hz7w02muNvrNTncEYBt+PLf//PrDbGHV\n4l4KCP8ryZ9Nc/GlDyd5W2e7wy735iS/k+SpTncEYJte3UnlqgLCO5N8Ls3k8kqS996hzIeSXE3y\nf5N8JcnPrfns76Z5Q+J8ym2iX0zzJrJ3tLTH9Koqxtrrk/zbJB9L8uVKek0vqurn2o5+iLOr7XTM\nfSu3XzF4JF1wRfQXkpxM8lfS/Kbes+7z96W5qdPRJD+R5BNpThk8ssH5Hkryw6vvfzjNOeKfaG2X\n6VGtHmv3JZlK8g+r6Cw9rdVj7ZaJuEmRO9vpmHsgzRsTfzzNpwGfT/Ijlfd6C+70Tf3nJP983bGv\np/kb252Mppm8/+vq60grO8iu0Yqx9nNJfpDmb3lfXX090cI+sju0YqwlyX9I86rod9N8YmasVR1k\n19numPvLaT7J8PtJ/mZlvdum9d/U69J8CmH9pZLTaU4dwHYZa7SLsUa7tX3MdeImxYEk9ydZWXf8\nxTSfQYdWMdZoF2ONdqt8zPXSUwwAQJt0IiC8lOYc7+C644NpLuYArWKs0S7GGu1W+ZjrRED4fpK5\nlKs5/YUkF9rfHXYxY412MdZot54dcw+muU7BO9K8seLY6vtbj14cTvPRjCNJHk/z0Yz/nXs/DgTr\nGWu0i7FGu+3KMTeR5jfzSpqXQG69P7umzAfTXNzhRpJLuX1xB9isiRhrtMdEjDXaayLGHAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECb/D9d+eeql0lSdwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "\n", + "xscale('log'); ylim(-5,16)\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=10,color=\"black\")\n", + "\n", + "lag" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 96, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGYCAYAAAB/DYmkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xl4U2Xax/FvoSAgaxFXFCmbCCq2grjXHRdccenojFh1\n1HEZZhBlRkfcZ5zKDI7buFBxrYqKGyoqiruiLQgiKmIBFVzGggrI2rx/3Cdv0pC0Sc5JTpbf57py\nJTk5y92kSe4853nuB0RERERERERERERERERERERERERERERERERERERERERERERERERERERERCS9\nDgbuAz4HVgFfA08BJVHWLQFeAX4BlgNPAD3TE6aIiIjkoseA14Dzgf2BE4F3gHXAgWHr7QT8DMwA\nhgHHA3OxxGWL9IUrIiIiuWTLKMs2B5YBL4ctewz4DmgftmwHYC3wj5RFJyIiInnpVWC+c7sQWA3c\nHmW9F4HP0hWUiIiINNbC7wBSoBPWH2Sec78X0AaYE2XduUBvoHV6QhMREZFwuZiI3Aa0Ba537nd1\nruujrFsPFABd0hCXiIiIRCj0OwCPXQv8BrgQmOXRPrdxLiIiIpKYZc4lplxKRMYBlwN/pXF/kB+d\n66Io2xQBAWw4bzTbbLvttkuXLl3qWZAiIiJ5ZD5WaiNmMpIrici4sEvkKJiFwK/ArlG22wVYgA33\njWabpUuX8uCDD9K/f/9mgxg1ahQTJkyIO2jJzufM75jTcXyvj+HF/tzsI5ltE9nG7/+JbJSNz5nf\nMWfbe3/+/Pmcfvrp/bGzCjmdiPwNS0CudS6RNgDPAicAlwIrneU7YLVGxjd3gP79+1NSEq1GWmOd\nO3eOaz0JycbnzO+Y03F8r4/hxf7c7COZbRPZxu//iWyUjc+Z3zFn43s/HtmeiIwGrsaG4T4PDI14\n/D3nehzwAfAc1mLSFrgG+J44EhFJnfLycr9DSJjfMafj+F4fw4v9udlHMtv6/Trnumx8fv2OORvf\n+/EoSPsRvfUaVlE12t8RAFqG3S8BbgT2wlpJpgOXAHVN7L8EqKmpqYkrQzzmmGN45pln4otcRHKG\n3vsim6qtraW0tBSgFKiNtV62t4gc2Pwq/68WODRVgYiIiEjicrGOiG/8brYTEX/ovS+SPCUiHtKH\nkUh+0ntfJHlKRERERMQ3SkRERETEN0pERERExDdKRERERMQ3SkRERETEN0pERERExDdKRERERMQ3\nSkRERETEN0pERERExDdKRERERMQ3SkRERETEN0pERERExDdKRERERMQ3SkRERETEN0pERERExDdK\nRERERMQ3SkRERETEN0pERERExDdKRERERMQ3SkRERETEN0pERERExDdKRERERMQ3SkRERETEN0pE\nRERExDdKRERERMQ3SkRERETEN0pERERExDdKRERERMQ3SkRERETEN0pERERExDdKRERERMQ3SkRE\nRETEN0pERERExDdKRERERMQ3SkRERETEN0pERERExDdKRERERMQ3SkRERETEN4Ue7GNzYB9gT2Ar\noBvQCVgB/AB8C7wPvAOs9uB4IiIikiOSTUS6AacDJwMlzn4KmtlmPVADPAY8hCUpIiIikscSPTXT\nC6gClgDjsVaQVjROQlYCS4FVEdu2AoYC/wIWAxOd/YmIiEieirdFpCtwHXBW2DZrgVeB97BTLx8B\n9VjLR1ArYAtgEDAES1wOAtoAZ2KtKlXA5c62IiIikkfiTUQ+B7o4t18HHgQmAz83s916YJlzecFZ\n1gk4CTgNOAA417m/RdxRi4iISE6I99RMF2AqMBg4EDut0lwSEstPwD3OfgY7+y1Kcl8iIiKSxeJt\nERkCfJiC49cAw4E9UrBvERERyXDxtoikIglJ5/5FREQkA6mgmYiIiPgmFxKR9sA/gZew2iQNwLgo\n601yHou8fJKWKEVERGQTbhOR1sDOzqVNlMfbYnVDvgZ+xb70L3J5zEhbAOdgQ4WnOMsCMdb9Fatl\nEn45xeN4REREJE5uS7wfBzyCtURsH+XxJ4HDw+7vBNwM9AEudnnsoEWEhhZ3Bc5uYt2NwEyPjisi\nIiIuuW0RCSYZU4B1EY8dFfb418BTWMVVgAuAvVweO5rmysw397iIiIikkdtEpNS5fiPKY2c6158D\nA4ATnOtPsYSgqZaLVGmLFVfbAHwF3EKoNUVERETSzO2pmS2x/hgLI5a3AA51bt8K/OLc/sm5fyuw\nt8tjJ2o2MAv42LlfBvwJOBgrrBY5N05U1dXVVFdXA7BmzRoWL15Mjx49aNPGusiUl5dTXl7ubeQi\nIiI5ym0iEizLviZi+SCgA5akTI14LJgIROtTkkoTIu5PxxKTx7HWmZvj2Ul4olFbW0tpaSnV1dWU\nlJR4GauIiEhecJuIrMNOd0TOE7O/c/01UBfxWLB1pKXLY3thCtYSsmdTK40aNYrOnTs3WlZeXk6/\nfv1SGJqIiEh2CD9bELRixYq4tnWbiCzChu4OxVoYgoY7129G2SY4r8wPLo/thQLi6CczYcKEqC0e\ntbW1qYhJREQkq0TrlhA8a9Act51VX3OuL8QSEoBjsP4XAM9H2WaAc73M5bG9MAJr0XnX70BERETy\nkdsWkVuA3wNbAXOB5YRaPL4BnoiyzWHO9VyXxw53BLA51i8FLNkZ4dyeinWqfRB4GPgSawk5APgj\n1mflHg9jERERkTi5TUQ+B04H7gXaEUpCVgDlwNqI9bcmlIi86vLY4W4Heji3A8BJziUA9MRG63wP\njMGSppbYaaWbgRuwiqsiIiKSZm4TEYDJWB2Ro7BEYynwDFAfZd1dsVaJANFP2ySrZxzrnOjh8URE\nRMQDXiQiAN8BVXGs95JzEREREcmJ2XdFREQkS7lNRD4FLsX6XYiIiIgkxG0i0hf4BzZvy9PAsWRG\noTIRERHJAm4TkVnOdSFWxGwKVk21EtjJ5b5FREQkx3kx++4gbBjsj86yrYDRwDzgHWwel/YujyMi\nIiI5yIvOqnOwWWy3xYqITQU2YkXDhgJ3YVVU7wX28+B4IiIikiO8HDWzHngSO0WzPTAW+Mx5bHPg\nDOB1rAjaWGAbD48tIiIiWShVw3e/Bf4J9Af2xkqoB2fd7Y1VM10MPAccjzq4ioiI5KV01BF5D5uP\n5jQsQQkqBI7E5qNZjJ3e8arAmoiIiGSBVCciPYBxwEJseO/WzvINwIvYsF+w/iXjgfeBLimOSURE\nRDJEKhKRtthEeNOxBGQcNhdMAbAA6x/SHWsN6QkcDrzibLs7cFUKYhIREZEM5GUishehETL3Awc6\n+18DPASUAf2wviPfO9s0AC9jM/Le4iwb7mFMIiIiksHc9snYFvgtMBJLMsJ9hHVSfRD4KY593Qdc\nhI24ERERkTzgNhFZQuNWlV+AaiwB+TDBff3sXGsEjYiISJ5wm4gEk5B3gbuBx4DVSe7rW6ACCLiM\nSURERLKE20RkApaAzPcglpXAJA/2IyIiIlnCbSLyZ0+iEBERkbyUjoJmIiIiIlEpERERERHfeFlS\n/SDgOGBXYAussFlBM9sUe3h8ERERyTJeJCJbAY8AB3iwLxEREckjbhORVsDzWGl2gNnAUqx8O8AD\nQBFQAmzjLKsFPkbDdEVERPKe2z4iIwklIRVYwjHWuR8AzsBKtncHjsfKv/cHngXOdHlsERERyXJu\nE5ETnesXaboGSACbfXd/YD1Wzr2vy2OLiIhIlnObiAxyrh+M8XhkZ9WFWBG0dsAfXR5bREREspzb\nRKQIa+34MmzZurDb7aJs86pzfYjLY4uIiEiWc5uIrIu4htDkdQDbRdlmTROPiYiISB5xm4gswU6/\nbBW27Dts3pgCYM8o2+zsXGvUjIiISJ5zm4jUOte7hy0LAG84t0cBm4U91hm41LntxUR5IiIiksXc\nJiLTneujI5bf4VzvDswFKoHbnds7OY/d7/LYvqqqqmLEiBEAjBgxgqqqKp8jEhERyT5uE5GnsNMz\n3YFeYcunAsFv5t7AaOA8Qv1CXiKUrGSdqqoqxowZQ11dHQB1dXWMGTNGyYiIiEiC3CYiy4EdgR2w\nobnhznEuM4FVwFqsRWQM1oKy0eWxfTN+/Hjq6+sbLauvr2f8+PE+RSQiIpKdvJz0LlIAmOhccsqG\nDRsSWi4iIiLRuW0RyUuFhdHzt1jLRUREJDolIkkYPXo0RUVFjZYVFRUxevRonyISERHJTkpEklBR\nUUFlZSXFxcUAFBcXU1lZSUVFhc+RiYiIZJd4zyXUkZoCZMUp2GdaVFRUMGjQIEpLS5k8eTIlJSV+\nhyQiIpJ14k1EeqQ0ChEREclL8SYizRUf2825AKwAZgHfO/e3wmbp7ezc/wiYnUCMIiIikqPiTURG\nNvHYmUA58DVWuGwKEDmOtRA4HrgJm2vmFkIFz0RERCRPue2sugdwJ/AjMBSYzKZJCM6yyc46P2JV\nVQe7PLaIiIhkObeJyJ+w1o4bgKVxrL/MWbcV8GeXxxYREZEs5zYR2R8bTfNeAtu871zv4/LYIiIi\nkuXcJiLdnOvNEtimdcS2IiIikqfcJiI/AAXAkQlsE1z3fy6P7au1a+Gf/4ycdFhEREQS4TYRedW5\n/hOwbxzr7+OsG75tVlqwAF59tTPwKVdfvQN1dX5HJCIikn3cJiI3AuuBNsArwM1YzZCCsHUKgN2B\nCVjy0QZYB/zD5bF9NXAgPPXUPGA0b7/dib594dxzYckSvyMTERHJHm4TkU+AM4CNWN+Pi4AaYDXw\nDVZbZDXwIXAxNlpmA1aXZL7LY/uuTZsA8B+efvpj/v53ePJJ6N0bLrgAvvnG7+hEREQynxeT3j2C\nnZapde4XYJ1XtwG2dW4HW0hqnXUf8eC4Qe2BfwIvYX1WGoBxMdYtwVpufgGWA08APd0G0LZtgEsu\ngbo6uOYaeOQR6NULRo2Cb791u3cREZHc5dXsu+9jxc2GAlcAj2KJwUtY0nE5sKezzkyPjhm0BXAO\n1toyxVkWbYK+nYAZWN2Tk4AKoC/wprMP19q3h7FjLSG5/HKYNAmKi+GSS+CHH7w4goiISG6Jt8R7\nvGbifaLRnEVAF+d2V+DsGOtdA/wKHA2sdJbVAAuAS4CxXgXUsSP87W9w0UXw73/b5b//tfuXXAJd\nu3p1JBERkezmVYtIpiiIsbwQS0CeIJSEACwBXsPmwfFc585w9dXWQnLxxXDLLdCzJ1x5JSxfnooj\nioiIZJdcS0Ri6YWN1pkT5bG5QG9ChdY817Ur3HCDJSTnngs33WQJyTXXwE8/peqoIiIimS/eRCTV\nE9Slev/BkyH1UR6rx1pSukR5zFPdukFlJXz5JZx5piUnPXvC3/8OK1c2v72IiEiuiTcReR94BqsR\n4qUS4DkSm6sm6229tfUbWbgQfvMbuOoqS0gqK2H1ar+jExERSZ94O6sux/pYHIUVJXsA62+xKolj\ndgRGAKcDZc6yaC0VXvrRuS6K8lgRNsomZq+NUaNG0blz50bLysvL6devn6ugttsObr0VLr3UWkf+\n+lcYP95G3px7LrRt62r3IiIiaVFdXU11dXWjZStWrIhr21idOyN1Ba7DRqS0dJatxmpyvI+NlJmD\nfeE3hG3XApvcbhAwBBveWwYEv2I3APdgQ369SEa2AL4HrsJGyQQVAj8B9wF/iNjmRWBHbHhvpBKg\npqamhpKSkk0erK2tpbS0lFiPJ6quDq67Du67D7bc0hKTc86BzRKZUlBERCQDBL8jgVJCtcY2Ee+p\nmR+B84H+2Jf5eqAdcAxwPVYv5Ftn+XJsNMoK5/5S4AXgauAILAlZC1Q5+/sDqW8R2QA8C5yAFUAL\n2gE4EHgyxcePS8+eMHEifPopHHoo/PGPVqn1zjth3Tq/oxMREfFeoqNmvgDOxL7AxwAfYC0gBWGX\nTkB37BRMcBnOejOxmh07YK0rC92F//+OwE73DHfuD3DujyDU+jIOS56eA4ZhQ3anYi0o4z2KwxO9\ne1uryCefwH77wfnnQ9++lqSsX+93dCIiIt5JtqDZd9iX93igAzar7hCsrHs3LBlZgZVcX4olIG+T\nXJ+SeNwO9HBuB7DKqSc5t3tiLTSfYaeFbgQex1pJpmOJ0Y9koH794OGHrUrr1VfD2WfbCJsrr7RO\nroVel6MTERFJMy++yn7B+lm86MG+khXvfDG1wKGpDCQVBgyAxx6DOXNg3Dg44wy4/nq7fcop0LJl\n8/sQERHJRPlS0Cwn7LorTJkCH35op2pOO82WTZ4MDQ3Nby8iIpJplIhkodJSePZZeO892H57OPlk\nGDTIkpRAtOn+REREMpQSkSy2557w4ovw1ls23PeEEyxJee45JSQiIpIdlIjkgH32gVdegRkzoH17\nGD4chg6FadOUkIiISGZTIpJDDjgAXn/dkpKWLWHYMNh3X5g+XQmJiIhkJiUiOaagAA4+GN5+G154\nweqOHHIIlJXBG2/4HZ2IiEhjSkRyVEGBtYi8/751bP3lF2sxOeQQeOcdv6MTERExSkRyXEEBHH00\n1NTAk0/C999bn5IjjoCZM/2OTkRE8p0SkTxRUADHHw+zZ8Ojj8LixTbqZvhwmDXL7+hERCRfKRHJ\nMy1aWN2RuXPhoYfgs8+gpMSG/s6Z43d0IiKSb5SI5KmWLW2+mk8+gUmT4KOPYLfdLEmZN8/v6ERE\nJF8oEclzhYU2d82nn8I991i/kV12sSTls8/8jk5ERHKd20nvxmEz3CYiAKwBfgIWADXAzy7jSJvq\n6mqqq6sBWLNmDX379mXs2LG0adMGgPLycsrLy/0MMSmtWsFZZ8FvfwtVVTap3s47w+mnw9/+Br17\n+x2hiIjkogKX23sx1do64Bngr8AXHuzPSyVATU1NDSUlJX7HklZr1lgLyQ032EibkSPhiitgxx39\njkxERLJBbW0tpaWlAKVAbaz1MuHUTGtgBDAbOMTnWMTRpg1ceCEsXAiVlVaLpE8fOO88+Oorv6MT\nEZFc4TYRaQH0BIIVKaYAxwPbA22dyw7ACcBTzjrvA72BImB/4A6sZaUdMBno6jIm8VDbtvCnP8GX\nX1rryOOP22maiy6CpUv9jk5ERLKd20SkA/AS1uxyEnAi8DTwDbDWuXyNJSEnOOvs4WwTAN4CLgCO\nwpKRTsCFLmOSFNh8cxgzBurqYNw4G/rbq5clKd9953d0IiKSrdwmIqOAPlirxhNxrP8E8F+gGLgk\nbPk04EHn9jCXMUkKdegAf/2rJSR/+Yt1bO3ZEy69FH74we/oREQk27hNRE52rqcksM2TzvXxEcuf\nca41PiMLdOoEV14JixbB6NFwxx2WkFx+OdTX+x2diIhkC7eJSE/sFMtPCWwTHKrbI2L5Yue6o8uY\nJI26dIFrr7UWkgsvhAkTbGTNuHGwYoXf0YmISKZzm4isx4YA75LANgPDto0Wi76+stAWW8A//mEJ\nye9/D//8p7WQXHcd/Jw1VWJERCTd3CYic53rS4A2cazfFhjj3P444rFi51o9DbLYllvCTTfZKJvf\n/c4SkZ49LUlZudLv6EREJNO4TUQmOtcDgNcItXZEs4uzzs4R2wYFa4jMRbLeNtvAzTfDF1/Aqada\nf5LiYhg/Hlav9js6ERHJFG4TkfuBqc7tPYGPsJLtdwHXOZe7gVnOY0OcdZ8D7gvbT2dCHV9fcBmT\nZJDu3eG222DBAjjuOBg71hKSm2+26q0iIpLf3CYiAax2yN3O/QJgd+BsrGT7X4GzgN3C1r/L2SZc\nS+BY4EDiGwYsWaZHD7jrLptI78gjbaRNr15w++2wdq3f0YmIiF+8KPG+DjgXK1R2F7AwyjoLnccG\nA+exaUfVH4EZwOvAKg9ikgxVXGy1R+bPh4MOspE2ffpYkrJund/RiYhIunk510wtlmT0wcq1b+tc\n2jnLzqOJSW8kv/TpAw88APPmwd572xw2/frBvffChg1+RyciIumSqknv1gDfOhf1BJCY+veHRx6B\njz6C0lKoqLBlDzwAGzf6HZ2IiKRaJsy+K8Iuu9iEerNmwYABNvR3wABLUhoa/I5ORERSRYmIZJRB\ng+Cpp+CDD6wza3k57LqrJSlKSEREco+XichBwH+wTqcfYx1Uv2zmIhLVHnvA1Knw7ruw3XZw0klQ\nUgJPPw2BgN/RiYiIVwo92MdWwCPAAR7sS6SRoUNh2jR4802bv+a446wvyTXXwBFHQEGB3xGKiIgb\nbltEWgHPE0pCZjv3gx7ACp4tC1tWixVCCy9oJtKk/faDV1+1S9u2cNRRsNde8NJLaiEREclmbhOR\nkVgBM4AKoAQY69wPAGcAw4HuwPFYQtIfeBY40+WxJQ8deCC88YYlIACHHw777w+vveZvXCIikhy3\niUiwQuqLwKQm1gsATwP7Y8XM7gP6ujy25KmCAjj0UOs/8vzzVir+oIMsSXnzTb+jExGRRLhNRAY5\n1w/GeDzyDP5CYAJW5OyPLo8tea6gwPqJzJxpnViXL7fWkcMOsyRFREQyn9tEpAhr7QgfARNeqLtd\nlG1eda4PifKYSMIKCuCYY6C21ob5Ll1q1VqPPNKGAYuISOZym4isi7gG+Dns9nZRtlnTxGMiSWvR\nAk48EebMsUJodXUwZAgceyzMnu13dCIiEo3bRGQJdvplq7Bl3wErneV7RtlmZ+daYx0kJVq0gFNO\ngY8/tlLxn3wCu+9uScrcuX5HJyIi4dwmIsFJ7HYPWxYA3nBujwI2C3usM3Cpc3u+y2OLNKllSzj9\ndJvp9957rXz8rrtakjJf/30iIhnBbSIy3bk+OmL5Hc717sBcoBK43bm9k/PY/S6PLRKXwkIYORI+\n+wzuuss6sg4YYEnK55/7HZ2ISH5zm4g8hZ2e6Q70Cls+FahybvcGRgPnEeoX8hKhZEUkLVq1gnPO\ngQUL4NZbrfZI//5w5pnwpSYcEBHxhdtEZDmwI7ADNjQ33DnOZSawCliLtYiMwVpQNMm7+GKzzeAP\nf4CFC+Hf/4YXXoB+/SxJWbzY7+hERPJLKmffDQATgaFAB6AtsBswHtiQwuOKxKVNG7j4YmsNufFG\nq0XSp48lKV9/7Xd0IiL5IZWJSCxbYXPT7O/DsUU20a4d/PnPNtz32mvh0UehVy9LUpYta357ERFJ\nnh+JyDDgNecikjE23xwuu8wSkiuvtKG/xcVw221+RyYikrv8SEQ0cbtktI4d4fLLLSGpqIALL4Rb\nbvE7KhGR3FTodwAimapzZxtdE+xL0qIFXHCB31GJiOQWJSIiTSgogJtugoYGaxlp2RLOO8/vqERE\nckc+JSJlhCbcizQUG2YssomCAvjXvywZOf98axn5/e/9jkpEJDfkUyIS9Bc27Sg7z49AJHsUFMCE\nCbBxI5x7rrWMnHWW31GJiGS/fExEFqDWD0lCQYF1Wm1osOJnLVpYVVYREUlePiYiGrUjSSsosA6s\nGzdai0iLFnDGGX5HJSKSvfwYvuu324D1wE/Ai8A+/oYj2aZFC7jjDktEzjwTHnzQ74hERLJXIi0i\nZ2Bl293y64t/BTABmAH8CPTB5r2ZARyFTcQnEpcWLeDOO+00zRln2P3f/MbvqEREsk8iici9WCKS\nrac2ZjuXoLeBKdhEfDeiREQS1KIF3H23nab57W/t/qmn+h2ViEh2SbSPiJdJSCYkND8BU4Fzgc2w\nGYI3MWrUKDp37txoWXl5OeXl5SkPUDJbixYwcaK1jJx+ut0/+WS/oxIRSa/q6mqqq6sbLVuxYkVc\n2yaSDIxMYN14BID7PN5nMu7AEpE2wLqIx0qAmpqaGkpKStIemGSPjRvtFM0jj9hlxAi/IxIR8Vdt\nbS2lpaUApUBtrPUSaRGZ5DKmTNQFGA7MYtMkRCRuLVvCpEmWkJSX2/3jj/c7KhGRzJdPw3cfAuqw\nrKwe66w6GugG/M7HuCRHFBbajL0NDXZ65vHH4dhj/Y5KRCSz5dPw3TnAkcBE4GXgOuBjYG9il34X\nSUhhITz0EBx3HJx0Ejz7rN8RiYhktnxKRG7E+nx0AVoBWwEjgBo/g5LcU1gIDz8Mw4fDiSfCc8/5\nHZGISObKp0REJG1atYLqajjqKEtGnn/e74hERDKTEhGRFGndGh59FIYNgxNOgGnT/I5IRCTzKBER\nSaHWreGxx+DQQ63j6ksqmyci0ogSEZEU22wzG0Fz8MGWjLzyit8RiYhkDiUiImmw2WbwxBNQVgbH\nHAOvapyWiAiQX3VEROISXqp4zZo1LF68mB49etCmTRsg+fL+bdrAlCnWKnL00daBtazMy8hFRLJP\nJsz3kslU4j3PBUsUe/k/8Ouv1iryzjvwwguw//6e7FZEJKPEW+Jdp2ZE0qxtW3j6aRg6FI48Et56\ny++IRET843Ui0gs4HbgE+BtWPl1EIrRrB888A4MHwxFHWOuIiEg+8ioRGQS8DnyOzaj7T+AqNk1E\nLgJ+AL7AqpuKZKyqqipGONPojhgxgqqqKk/3v/nmVnW1pMRqjbz3nqe7FxHJCl4kIkcA7wL7YX1O\ngv1OovU/uR9oBxQDR3twbJGUqKqqYsyYMdTV1QFQV1fHmDFjUpKMTJ0Ku+0Ghx8OM2d6unsRkYzn\nNhHZCngE2AyYDxwFdHQeC0RZ/ycgOA3YES6PLZIy48ePp76+vtGy+vp6xo8f7/mx2re3ETQDB8Jh\nh8EHH3h+CBGRjOU2ERkFdAC+BvYFXgBWNrPNDOe61OWxRVJmw4YNCS13q0MHG0Gz886WjNRoKkYR\nyRNuE5Fgq8a/geVxbjPfud7R5bFFUqawMHqJnVjLvdCxoyUj/fpZSfhZs1J2KBGRjOE2EemJnYJJ\npM//T851B5fHFkmZ0aNHU1RU1GhZUVERo0ePTulxO3WyyfF694ZDDoHZs1N6OBER37lNRFo712sT\n2Ka9c73K5bFFUqaiooLKykqKi4sBKC4uprKykoqKipQfu1MnmxyvZ09LRubMSfkhRUR847ad+Ttg\nB+cS72+33Z3rb1weWySlKioqGDRoEKWlpUyePDmt1XU7d4aXX7ZE5OCD4bXXrDNrpkhVGXwRyT9u\nE5F3sSTkaOCZONYvAM52br/p8tgiOa1LF0tGDj4YDjrIkpEBA/yOyoQnGsEyztXV1ZoKQUQS5vbU\nzIPO9RkRXyuuAAAgAElEQVTAkDjW/xewi3N7kstji+S8oiJ45RXYZhtLRj75xO+IRES85bZFZCrw\nEnCYcz0OeDTs8VbAdsA+wMXA3s7yR4H3XR5bJCUiTzv07duXsWPH+nbaoWtXmD7dEpGDDoIZM2Cn\nndJ2eBGRlPJiLOIpwCtYXZB/Y60eYKdhasNuB71L6PSMSMbJxP4NW2xhyciBB9plxgwb5isiku28\nKPH+E9bicT3wM42TjvCS76uAfwBlaMSMSMK6dbNkpEsXS0YWLPA7otTPxyMiuc+r6kzrsNl2bwQO\nAPYAtgRaYpPczQKmE6ohIiJJ2GorePXVxi0jvXv7E0twPp5gKfzgfDxAWoY5u6FRPyKZI9rEdBJS\nAtTU1NRoNIBklGXLoKwMVq+2ZKRXr/THMGDAAD6J0nt25513Zt68eekPKEnBUT96n4t4K/jewrpu\n1MZaz4tTMyKSZttsY8N527a1lhFnkuC0Svd8PCKSm5SIiGSpbbe1ZGSzzSwZWbQovcf3Yz4eEck9\nXn5ibAHshc0/0wHrH9Kcazw8vkje2W47S0YOOCDUZ6RHj/Qce/To0Y36iEB65uPxUlVVFddddx1g\nnW2vuOKKjO/fIpJrvEhEtsGG7J6IJR/x9jsJoERExLXu3S0ZKSuzZOT112H77VN/3OAX9vXXX8+X\nX35JcXExl19+edZ8kWdzZ1uRXOK2s2o3YCaQ7G+wTD81pM6qkjUWL7ZkpGVLaxnp3j09x83Wzp65\n0tlWJFOlq7Pq1YSSkMnAQdgpmkJn381dRMQjPXpYy8j69dYy8o2mlWySOtuKZAa3ycDRzvUDWIXV\nGUA90OByvyKShB13tGRk7VorB79smd8RZS51thXJDG4TkS2xvh4qpyiSIYqLLRlZvdpaRr791u+I\nMtPo0aMpKipqtCzbOtuK5AK3qf9S7NTMSg9iERGP9Oq16Wiarbbybv+ZNjFgMrK9s61IrnDbWfVe\n4AzgLOd2rlFnVclqn39uHVi7dLHEZMst/Y4o82RrZ1uRTJeuzqrjgfXAaKCNy32JiMf69rUEpL4e\nDj4YfvjB74hERBpzm4h8jLWG7AS8DGhicpEM06+fTZT3ww+WjPzvf35HJCIS4kX38AeBOuBZYB4w\nB/gcWB3HtjoZK5IG/ftbMlJWBoccAtOnQ9eufkflr0AA3nwTrr22J/AB//rXdpSXw/77Q4cOfkcn\nkj+8SER2wSqrdnbuD3IuzQmgREQkbXbe2ZKRAw+EQw+FV16BiEEjeWH1ahg16n0efbQbP/9cTLt2\nK+nQ4RueeGIHHnoICgo20KfPck45pRsHHwxDh9p8PiKSGm4TkZ7Aa0D4x9lKYAXN1xIJuDy2iCRo\n4MBNk5EuXfyOKj0WLYLbb4d77oEVK/bkqKPgoovgkEO2p0WL7QkE4IsvYPr0QqZP78Ztt8G119oM\nx/vtZ6e1Dj4YBg2y6rV+ixy5tHjxYnr06JFVI5dEvFCFJRwbgRtJvtR7pioBAjU1NQGRXDJ7diBQ\nVBQI7LFHILB8ud/RpE5DQyDw8suBwDHHBAIFBYFA586BwOjRgcDChc1vu3FjIFBbGwhUVgYCw4YF\nAu3aBQIQCHTpEgiccEIgcNttgcCnn9ox/DRx4sRAz549A0CgZ8+egYkTJ/obkIijpqYmgDU6pHQ4\n2mIsERmfyoP4SImI5KxZs+xLdfDgQGDFCr+j8dbPP1ui0L+/JQ8DBwYCd94ZCKxcmfw+164NBF5/\nPRC48spAYJ99AoHCQtt39+6BwO9+Fwjcd18g8PXX3v0N8Zg4cWKgqKgo+GEfAAJFRUVKRiQjxJuI\nuK0j8ivQGtgPeMflvjKR6ohITquttdMNO+0E06ZBx45+R+TOggVw660waRKsWgXHHQcXXmiF3Qrc\nftpFWLkS3njDOv5Onw4ffWTL+/ULncY58MDUnvrK5on7gqeWlixZwhdffMG6deto3bo1vXv3Zocd\ndtCppRyQrjoiwZks1rncj4j4oKTE+onMnw/DhsEvv/gdUeIaGuD55+GII6xuysMPwwUXQF0dPP64\njRTyOgkBaN8ejjwSxo+H2bPh++/h0Uct6Zk2DU480UYm7bEHXHYZvPSSdZT1UjZP3FdeXs5xxx3H\nV199xapVq1i/fj2rVq3iq6++4rjjjlMSkkfcJiLTsFaVIR7EIiI+KC2Fl1+GefPsyzxbkpEVK2DC\nBGuBOOooq5MyaRJ89RXccANsv3164+nWDU4+Ge680zq9LlpkHWP79YP774fDD7fWkbIy6wT7zjs2\nU7Ib2T5x3/jx46mvr2+0rL6+nvHjc/Vsv0TjNhG5CfgFuBTI86oEItlr8GD7xT5njn2pr8zg2aPm\nzYPzz4fu3WHMGIv9nXfggw/gjDOgTYbUeO7RAyoq4KGHYOlS+PhjqKyETp3gpptgn31s+PTRR8O/\n/23PfUOC85Zn+8R92dyiI95xm4gsBE4EOgJvA4e5jkhEfLHnnnZKYdYs+3JctcrviEI2boSnnrJ+\nFwMH2u1LLoElS+xUzF57peb0i1cKCmDAALj4Ynj6afjxR3jvPfjLX+DXX+16t91g663h1FPh7rvh\nyy+b329FRQWVlZUUFxcDUFxcTGVlZdZM3JftLTriDbdv3dewHrHbAX2cZcuBBcRXWfUgl8dPNXVW\nlbzz9tt2GmHIEHjuOWjXzr9YfvzRTm/cfrslHXvtZbU/TjwRWrf2Ly6v/fqrteoEO75++KG1juy4\nY6jj60EHNZ5BORfqiFRVVTFmzJhGp2eKioqyKpmS2OLtrOo2EUmwIbGRAJABZYGapERE8tKbb1p/\nkaFD4dlnrahXOs2eDbfcYq0dgQCUl9voF/tMy30rVsDrr4cSk+DAmIEDQ4nJAQdk/ygnsGTk+uuv\n58svv6S4uJjLL79cSUiapDqZTVciMsPFtgHgQJfHTzUlIpK33njDkpF99rHTCalORtavhyeftATk\n7betD8gf/gBnn20dQfPZsmVWETeYmCxZYtVdBw8OtZbssIMlJh07Zk4/mabkQotOLgkmDV5+36Ur\nEck27YHrgJOwsvSfAv8AHo2xvhIRyWszZtgQ1f32s2QkFV9w330Hd90F//2vdeosK7PWj2OPBXUV\n2FQgAAsXhpKSV1+1U1jhWrcOJSVuLu3aZXbfG/FGVVUV1113HXV1dfTs2ZMrrrjCk1apeBORfHub\nPwnsAVyGzRB8GlCNddqt9jEukYxUVmb9RI46Ck44AaZM8W4CuPfft+Jjjz1mv+5/+1tLQHbZxZv9\n56qCAujd2y7nnmt9SebPtzomP//c9GXpUvj008bL1qyJfawWLbxJaNq3z4z5eWRTkf106urqGDNm\nDEDaTpHlU657JPAcUE7jFpBpwABgBzbt86IWERGs6Nnw4XYa4Iknkk9G1q61xOOWW2y4bc+eVnys\noiJ/Jt/LNOvWWe2Y5pKY5i7NDflu377pZKV7d5uIcbfd1AqTTqmszqsWkU0dj9U8mRyx/F7gYWBP\n4N10ByWSDQ45xE7NHHMMnHSSVSxNZNTKN9/YqZe77rJf7ocdZp1gjzhCv5T91rq1VYDt6rIS1MaN\nlowkmsB8+61d19XBpZfaEObDDrNKv4ceClts4c3fKdFlQi2XeBORHcJuL4mxPBlLml/FMwOB+Wza\n6jHXuR6AEhGRmA47zOp3HHusVRB97LGmk5FAAN56y1o/nnzSOruOHGmnX/r1S1vYkiYtW1qxtk6d\nktt+3TrrpPzii3a5/35rGRk82IaTDxtmQ8rVb8hbmVDLJd6CZouAOucSa3kil0VR9pVqXYH6KMvr\nwx4XkSYMG2b9RF54wQpvRStRvno1TJwIu+8O++9vFUMnTLBWkVtuURIi0bVubZME3nijTSD4zTdQ\nVWWn72691UZvdetmLXITJ8LXX/sdcW5oXJ3XvgbTXZ03kcqqBUTvU1KQxAXyq3+KSM448kjrJ/Lc\nc1bfI5iMLFpkTevbbw/nnGPX06ZZDYwLL8yNmheSPttuay1ojzxi8wi99x6MGmUJyO9/b/9fu+xi\nFXZfecX6H0n8fvzRWp6++aaC7befRcuW3wOf07Nn+qvzxpsMjMTqfgDcF7E8WYGIfaXau1jitWfE\n8gHY6ZnfA/dEPFYC1Oy333507ty50QMa4y757plnYMQIayVp0cL6fHTsCGedZfU/nKrjIp6rr7fk\nI3gaZ9kyG2p84IGh0zi9e6vTa9CqVVBbax3EZ8606+AUAq1a/ULnzgto3/5T1q59k513rqNtWzvn\nmsj3XHhdmKAVK1bw5ptvgod1RBqw5GEXYNMutpnvTmzETGca9xM5FeusujfwXsQ2GjUj0oSnnrL+\nIv36Wen1006DzTf3OyrJJ4EAzJ1rrW8vvmhVgdevt0R42DBLTA48EDp08DvS9Fi/3p6P8KRj3jwb\n5t22LZSUWL+bIUPsulev1CVsqShoFvzyHkh2JiLDgOexxOOxsOUvEhq+G4jYRomISDNWrLAOivr1\nKZlg5Up47TVLTF54wX75t2oF++4bai3Zddfc+H9taIAFCxonHbNnW22Yli3t1FV40jFgQHo7+6Zq\n+G7kF3U2eRF4GbgDmy14IdZCchhW2Cyb/zYR30SctRTxVfv2VvNm+HC7/8UX1lIybRpccw2MHQvb\nbGNJyeGH2xBht0OX0yEQsA684UnHhx/CTz/Z4336WLJx6ql2PWiQvxNWJiLfBkKdAFwPXIOVeJ/P\npi0kIiKSI3r3ts7SF15oHVrfeiuUmEyaZC0jQ4aETuMMGZIZtW3q6y3RCCYdM2dazRWwjryDB1vn\n8MGDYY89srsgYD71EUmGTs2IiOSor7+Gl16yxOTll+00Y5cu1koSbDHZbrvUx7F6dagzaTDpWLjQ\nHuvc2RKN4OmVwYPTE5MXVFlVRESkCd272/QCFRWwYYMlAcGROGefbadDdtkl1Fqy777u51pavx4+\n/rhx0jFvnlWmbdPGOpMefXSob0evXjYqLZcpERERkbxXWAh77WWXq6+G//0vNET4/vuhstL6XBx0\nUCgx6d276X02NFgflfCkY9asUGfSgQMt2bjgArseMMA61uabRBORAmySuCj1FBPeTwBQpQEREck4\nW2xhHT9PPdUSijlzQkOER42yFpRevRoPEf7pp8ZJx4cf2ukesKRl8GCrDDtkiFUezpbOpKmWTIuI\nV2enNEpFREQyXosWNgpl0CC47DKbrfjVVy0xmToVbrvN1mlwilxsvbUlG6NH2/Uee8D/V1GXTSST\niCwFvJiWT4mIiIhknQ4dbPLHY4+1fiQLFljtki23DHUmzYU6JemSTB2Rw4F5KYhFREQkqxQUQN++\ndpHkJNMXVy0ZIiIi4gmNmhEREUlC+ERva9asYfHixfTo0YM2bdoAmhw1XkpEREREkhCeaASLd1VX\nV6sAZoJyvEyKiIiIZDIlIiIiIi5UVVUxYsQIAEaMGEFVVZXPEWWXZAqaiYiICJaEjBkzhvr6egDq\n6uoYM2YMABUVFX6GljUSaREpdi6fpygWERGRrDJ+/Pj/T0KC6uvrGT9+vE8RZZ9EWkQWpSoIERGR\nbLRhQ/T6nrGWy6bUR0RERCRJhYXRf8/HWi6bUiIiIiKSpNGjR1MUMZFMUVERo0eP9imi7KNERERE\nJEkVFRVUVlZSXGyTyRcXF1NZWamOqglQ25GIiIgLFRUVDBo0iNLSUiZPnqyCZglSi4iIiIj4Ri0i\nIiIiSYica6Zv376MHTtWc80kSImIiIhIEpRoeEOnZkRERMQ3SkRERETEN0pERERExDdKRERERMQ3\nSkRERETEN0pERERExDdKRERERMQ3SkRERETEN0pERERExDdKRERERMQ3SkRERETEN0pERERExDdK\nRERERMQ3SkRERETEN0pERERExDdKRERERMQ3SkRERETEN0pERERExDdKRERERMQ3SkRERETEN0pE\nRERExDdKRERERMQ3SkRERETEN0pERERExDdKRERERMQ3SkRERETEN0pERERExDdKRERERMQ3+ZSI\nlAENMS5D/AtLREQkf+VTIhL0F2BoxGWeFzuurq72YjcikmX03hdJXj4mIguAmRGXVV7sWB9GIvlJ\n732R5OVjIlLgdwAiIiJi8jERuQ1YD/wEvAjs4284+S0bf0n6HXM6ju/1MbzYn5t9JLOt369zrsvG\n59fvmLPxvR+PfEpEVgATgN9jHVf/CGwPzAAO8y2qPOf3GzsZfsecjR9GSkQkUjY+v37HnI3v/XgU\npv2I3igDXo1z3UHAHGC2cwl6G5gCzAVuBF6KtYP58+fHdaAVK1ZQW1sbZ1gC2fmc+R1zOo7v9TG8\n2J+bfSSzbSLb+P0/kY2y8TnzO+Zse+/H+92Zrf0ltgaOjHPdKcDyJh6/AzgXaAusjXhsG+ADYLtE\nAxQRERHmAwcDy2KtkK0tIt8CVR7vMxBl2TJgMJaQiIiISGKW0UQSItAF+Bqo8TsQERGRfJStLSLJ\neAioA2qBeqAPMBroBvzOx7hEREQkD1yGJSHLseG73wGPA6V+BiUiIiIiIiIiIiIiIiIiIiIiOas1\ncC+wBCs1/y6wl68RiUi6nI/1V1sHjPM5FhHf5VOJ90xSCHwJ7A10woqqPYMVVROR3LYUuBJ4iuj1\ni0REfPEjsIvfQYhI2tyNWkRE1CKSIXbCWkMW+h2IiIhIOikR8V874AHgWmC1z7GIiIiklRKR9DgN\n+MW5TA1b3gqYDHwM/N2HuEQktWK990VEmtQe+CfwEvAD0EDsc7ntgQnAN8CvwCzglDiO0QJ4BJsd\nWAmhSGZIx3s/6G6s06pIXtMXYHRbAOdgLRZTnGWxerc/ic1VcxUwDPgAqAbKmznGncBWwKnYh52I\n+C8d7/2WQBts9Fwr57Y+i0Ukpq5YohDtl8uRzmORv4KmYbP6xvpw6eFst4pQs+0vwD4exCsi3kjF\nex8scWmIuGjiTRGJaQtifxjdjRUki/zQCbZyqEiZSPbSe18kDdQc6M5AYD6bnlqZ61wPSG84IpIm\neu+LeESJiDtdgfooy+vDHheR3KP3vohHlIiIiIiIb5SIuPMj0X/5FIU9LiK5R+99EY8oEXFnDtCf\nTZ/H4JwxH6c3HBFJE733RTyiRMSdKVhRoxERy0diRY7eT3dAIpIWeu+LeKTQ7wAy2BHA5kAH5/4A\nQh86U7FKii8CLwN3AB2xSevKgcOw0s6a4lsk++i9LyIZoY5QsaGNEbd3CFtvc6zM81JgDVbm+eS0\nRioiXtJ7X0RERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERE\nRERERETSYkfgcb+DyGQt/A5AREQkRx0KvA4U+R1IJiv0OwAREZEcUwpcCywBfvU5FhFJo5FAg3PZ\nwd9QRDJea+Az7P0yIsl9jETvuebMAF5NYP1bsefz/pREk4F0aiZ3lRH6gIjncoYvUaZGwO8AElRG\n/r5W4p8/AX2AObjvw5Bt77lMdgOwFjgNGOpzLGmhRCR/BOK4ZLtc+BsgP14r8VdnYCz2vzTO51ik\nsaXA3UAB8HefY0kL9RHJD7c7l6Z8k45AUuw+55LN8uW1En/9EegEfAE87XMssql/ARcCBwD7A2/4\nG05qKRHJD98Dn/gdhMRFr5Wk2mbAH5zbD/oZiMS0CHgb2AcYRY4nIjo1IyKSX44GumGnZZSIZK7g\na3MU9nrlLCUi0pTW2C+n14AfgHXAt8BUrCNVQRPbTsI6VtY1c4yRNN3r/qqwx8Gak/8GzAJW0Ljz\nZnP7CrcvUIU1Ta8CVgLzgf8AxU1sl0g86ZJsTMk+B0FdgH8An2JDFL8HXiY0AmMkTb8ek/DmfyTI\nq9e0DTAGqAV+cS7vAxcALZuJNWgf4B5sVMrP2Hvna+BZ7D3VyVmvFfaeagBeiGO/A8NiHRtnLJFO\ndq7nAl82s25zr3E8BgJXANOw52At9toswP4H9oyxnZfPzbbY31EL/ETos2wu8DD2/ugQsc0Q4N0E\nLkfHEWMinnSuWwEneLxvkbQoI/SmvDKJ7XfEPsTDR2tsjLj/BvZBFc0kZ53mPuhGhu27qURkI9Ab\n+9KKjOl3ce4LrFn6vij7CP/b1gJnxtg+kXjiVYa71yrRmNw+BwA7Y53qYm1/D/bh3tTrMQlv/ke8\nfE23BGZH7Cd8v0/TdALeFvtiayqWBhp3EL3RWbYe+8Jsyr+cddcB2zSzbizBL/c7m1kvntd4JE2/\nNmU0/rtjPR83xIjBi+dmPyz5aC6Go5rZf7JmkNjw3XALsdiqPYsmA6mPiETTHpgO9HTuT8F+aS7F\nflkGO1Hti/3C25/Qr8lUKQCewD5g/gM8AyzHhh8uTmA/jwHDsXifACZjX4QtgBLsfOxO2Ifsd8Dz\nScSzJIF4vBRvTG6fg07Yr9utnfuPYInA90A/4M9ABbCLl39cE7x8Tac4696M/W/XO/f/BvR3jnMO\ncFeU7Vtgicohzv3PsY7HHwKrsS/SvYGTaDzy6R6sBaYlljD+I0Z8rYDTndsvActirNeUnbBkC2Bm\nE+t59RoXYq1Tz2Ffxp9iLURbYi0YFwM9sBaMz7HkNJzb52YzJ/YOznHvwFp4v3e22RHYC2txyMTR\naO9jn8P7+x2ISDLKCGX6twEDsDd+tEvk+cfKsG2vjrH/B8LWOS/K45PwtkUk+KvokCjrxLuvswj9\nOh4eYx9tsA+qBuzXSOTpy0TiiVcZyb9WicbkxXMwPux4l0XZvhB4MWydVLaIeP2ariH6h34X7Mut\nAWsxieaPYft5HPuii6aATVszZjjbfRpjG4Djw/Z/fBPrNeV3hJ7LwU2s59Vr3BXo2MRxWmEJTwPW\nkhetu8AMkn9uDgpbfmQT27dk01MzXnkPSyiScRmh53d7zyISSZMyNm0SjXUJbybeDPsV3YCdP43V\nDN0B6zfSAHwc5fFJeJ+I3O1iXwXYOekG4N/N7Kd/2H4OdhFPvMpI7rVKNCYvnoPNsFaCBqwPSizb\nYclBKhORVLymlU3s4wZnnQ1s+uXaAuv/0IC1PrVrJp5Ip4fFsHeMdZ5xHv+O+PuqRAr/YusZYx0v\nX+N47Bq2j5Ioj7t5bn4Ttu/2ScaXjB2wBCtYuXYj1ndpGtYKE6+zw7bfw9sQM4c6q+aPeAtklRLq\nSDeJ2M2Vv2BN4mAf8lvHWM9LD7nYdmegF/b3PNrMuvOxD+ICrNk2FfE0xU0xs6Zi8uI5KMWKYUHT\nNVu+wZrIU8nr1zRA089fjXNdwKZfJoMI9WG4GzsVk4jHsY7FEL0vy1bAEc7tB7EvpmSEt6jVx1gn\nla/xZtiX9M5YC98AQt9DBcBuUbZx89wsDdt3RYKxurEEOBw7jdUCS456O8sWJbCf4GtUQA6PnFEi\nkh+uwt4IsS7XhK070LkO0HxzYvjjA2Ou5Y0AVoo6WcFfEwXAOzTf8hCcLTNWguU2nliuIv7XKtGY\nvHgOgn0CAsAHzfwtTfVB8ILXryk03fy/POx2ZDP+7s51gORqPqzBOrmCjWppG/H4b7HXP4D110pW\np7Dbv8RYx+vXeHPgL8BHWH+RRVgr6hys1bU2bN2uUbZ389y8RajFbQL2mTUWS0ZjnTrLJD+H3e4U\nc60sp0REIoVPV/1dM+sGHy8g9ugZLy1vfpWYtgy7HW8J9QCbfuh5FU+qNBWTF89B+Ov8fTOxNPe4\nW6l4Tdc08VhD2O3IUyNbhN1OphMphE6rdWDT4bHBloAPgHlJ7h9CLQsQu++Gl6/xjliycT2W4BTQ\ndCtfrNcm2edmA9Z3aL5zfzB2iu1tbCTN80A5mftdGJ58rIi5VpbTqBnJJm56tYd/cQwn/ubRpt78\nmdjLvqmYvH4O/P77U/Ga+ukj7PRPKfbl+oCzfE/s9Ce4aw0B69cVVETzz4Xb1/gBLBlpAO7FRrDM\nd+JY76xTQOh0Sqw+aW6em/lYEjTcuRyAjf5rAwxzLn/GOrP+EGMffgn+MAyQebF5RomIRPox7PbW\nWGfAWMKbuCPPNwd/PTb3S2PzOONyK/gmDmC/hPKxjLoXz0H467w11gEvlq2a2Zfb/5FMek3DvyS2\nxYaiJuMe7Mv2AOwLfBGhX/yrcV9PYmnY7W5E7yjs1Wu8E1bYDWzytr/FWK8oxvJIbp6bBmxodXBe\nna2xfiV/cPZZitVVybTCYeEtbd/6FkWKZWpzlPgnOAKmgNgVD4OGONcBNh05Ezz/3Jmm9Ys/NFeC\nvf8LCH045hsvnoO5YftoavgncTzu9n8kk17TYD+HAtzVfHgY+1ItwEYLtQFOdR57ktj9OuIV7NNR\ngHWwjcar13iAcx3AWkJiiXc0iJfPzbdYC81ehF67o7DOtJkk+BotJYcnu1QiIpFqCDXXnkHs/5EO\nhEpFf8Km/Um+DFuvb4x9tAZOTC7MhM0CvnJun0vmfeCkgxfPQQ2hfii/bWK97YDDmtmX2/+RTHpN\nPwqL5WySb+kLH412Blb8rCP2ZT7RTYCOzwm9V4fEWMer1zi8xb2p5yNaHaJoUvHcbCDUubiQ5pPi\ndAu+Rm/6GkWKKRGRSOuwJlCwXzTR6lYUALcS6uF+a5R1Xg9bd3SMfdxM8mWqExXAOsyB1U94gKa/\nuNpgFWRzKWHx4jlYh/2SBPu1NibKdoVY58LmRiW4/R/JpNc0QKgGSXfgfmL//S1o+v8++P7rgZU4\nB0vaXo++esKC+xka43GvXuPg6akCYs+/dD5wbBP7iJToc7MvNsQ7ltbYqR6w+W8yqR/GVtjfCVbU\nTSTrlBEatnhlgtu2x84LB7d/Amu2LMF+nb4W9thbxO5g9nbYevc6MZUAp4TtI7hOPHPNNGdkM/sC\n+0UVjGkhcCn2QTQI+9A6E+v0FizqFlmYKpF44lVG8q8VJB6T2+egI1YnIbiPh7D6CCVYU/lMZ/n7\nNP96ePE/kq7XtCxsvWinXwoIVQltwIYCX4ydNtod65NwNfYFHS3BDzcvbD8NwOXNrJ+IEwj9HbFa\nooGlfogAAAKqSURBVLx6jedE7ONIZx/HYqX4G7AWiUT+/xN5bq5yYnsNuARrwSnBXpMzw+JvwKrJ\nZpLzsLjW0riviEjWKMPdl1sP7JRLU3UZ3qDppsx+hCbYirxsxH5BnhG2zKtEJNa+wEZaTMCaZJur\nO/Ezm/56TiSeeJXh7rW6isRicvscwKYTokW+tvFMegfe/I+k6zUtC9tPtEQEbPhpeGIU6+9q7nX+\nc9j667HTIF5pRahcfVN1aRJ5jWO9NrthHeBjPRezsY6jifz/J/LcjGvi2OF/y2SsdSSTvIXF92Rz\nK4pkqgOI/0MvllZYr/LgJFFrsA+mqVjp5Hhsi82fUodNI/6ts/0w5/HmvqzGhT3enHi++IL6Y7N1\n1gD/w5qjl2O/4O4DTiP6ee1E4omX29cq2ZiSfQ6CglPEf4Z1IvwOeAVrzYD4WqjA/f+I278n3ucv\n/HWKlYgElTnH/AJr8v8VG+XxFPH1IdmS0BdlrEn63LjC2ffCZtZr7jWO57XZHpv8rw77DPkBeBf4\nE6Ev/0T+/xN5bjbH5p65DWtZq8OKqq3C/vaHCf2fZZIdCT0n+/kbiohI9hpJ/ImhNHYwoS/byAJe\nXuhEaD6ZTBuy2pxUPzeZ4D/Y3/ea34GIiGSzkSgRSdZD2HMXnK4+FS51jpGKqQpSKR3PjZ+2w1qO\nNhK7Q7GIiMRhJEpEkrEjdlqpgdDIkFRohZ1y2YgNhc0GO5Ke58ZPt2KvSVMTDoqISBxGokQkXtsB\nfbBRHbXY87aK9A1vz2R6bkREJCkjaX4Uk5gZbDqSI1ptlXw0Az03OU1zzYhIqgQiriW24Cy0q7E6\nIxMITeyW7/TciIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI\niIiI+Oz/ALKB7rJ0agN2AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from scipy.optimize import curve_fit\n", + "\n", + "# Define model function to be used to fit to the data above:\n", + "def tophat_time(x, *p):\n", + " mean, width = p\n", + " if x>(mean+width): y=0\n", + " if x<(mean-width): y=0\n", + " if x==(mean+width) | x==(mean-width): y=5\n", + " return y\n", + "\n", + "def tophat_freq(f, *pars):\n", + " A,T,t0 = pars\n", + " #return A*T*sinc(pi*f*T)*exp(-i*2*pi*f*t0)\n", + " return A*T*sinc(pi*f*T)*cos(2*pi*f*t0)\n", + "\n", + "x=np.logspace(fqd[0],fqd[-1],200)\n", + "\n", + "# p0 is the initial guess for the fitting coefficients\n", + "p0 = [3, 3, 3]\n", + "coeff, var_matrix = curve_fit(tophat_freq, fqd, lag, p0)\n", + "fit = tophat_freq(fqd, *coeff)\n", + "\n", + "\n", + "mpl.rcParams['xtick.labelsize']=12\n", + "mpl.rcParams['ytick.labelsize']=12\n", + "xscale('log'); xlim(.009,.6)\n", + "xlabel(\"Fourier Frequency (days$^{-1}$)\",fontsize=20)\n", + "ylabel(\"Time Lag (days)\",fontsize=20)\n", + "\n", + "\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=5,color=\"black\")\n", + "plot(fqd,fit)" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 97, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAGJCAYAAACZwnkIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4VNXWx/HvBATpSIcAKoIKKGKC4EUFRPTSRLrEgqBY\nEcSOFXsvXBWxXBQVjYAae0NFxY4EpVtRBKSIIldB+vvHOvPOECaTmZwzcyYzv8/znOckp66MYBZ7\nr703iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiURccATwDfAn8D\ny4EXgZwY768HTAbWOvd/AnT1PEoRERGRGEwDZgLnAp2AAVhysgU4uoR7KwLzgZ+BPCxJKnDu7ZSg\neEVERESKVS/CsSrAr8CMEu49D9gBdAg7Vg5YAHzmSXQiIiIiHngPWFzCNTOARRGOj8USnoZeByUi\nIiLxy/I7AJ/VwGpsFpZw3UHAvAjH5zv71l4GJSIiIqWT6YnNBKAScHMJ19UCfo9wPHistpdBiYiI\nSOmU9zsAH90InAScD8z1ORYRERHxQKYmNuOAq4ArgQdjuH4d1mpTVK2w88VpiGpwRERESuNXZ4tZ\nJiY248K222K8Zz7QJsLxg539gmLua9ioUaOVK1eujC9CERERAVgBHEYcyU0gcbGkpGuA67FuqHFx\n3HcO1rJzOPCFc6w88BWwAehYzH05wJwpU6bQsmXLUgWcLsaMGcP48eP9DiMl6LMwpf0cunfvztq1\na6lbty5vvvlmAiJLLv15CNFnYfQ5mMWLF3PKKacA5AKFsd6XSS02F2NJzZvA61iSEi44H80kYCjQ\nDPjFOfYYMBKYjg3xXovNbdMC6FbSi1u2bElOTqwTHKenmjVrZvxnEKTPwpT2c6hQocL/79Phc9Sf\nhxB9FkafgzuZlNj0BnYC3Z0t3E5swj2wkWJZ7NqatQWbbfgO4H6gMlZw3AOYlbiQRUREJB6ZlNiU\ntGxC0HBnK2oNMMyzaERERMRzmT6PjYiIiKQRJTaSFHl5eX6HkDL0WRh9DkafQ4g+C6PPwZ1MGxWV\nbDnAnDlz5qgQTMQjjRs3ZsWKFWRnZ7N8+XK/wxGRBCksLCQ3NxfiHBWlFhsRERFJG0psREREJG0o\nsREREZG0ocRGRERE0oYSGxEREUkbSmxEREQkbSixERERkbShxEZERETShhIbERERSRtKbERERCRt\nKLERERGRtKHERkRERNKGEhsRERFJG0psREREJG2U9+g5+wMdgPpAXaAGsB5YC6wCPge+9+hdIiIi\nIhGVNrHZA+gNDAY6AQ2AQJTrd2IJzgfANOBVYFsp3y0iIiISUbxdUTWAa4FlwPPAiUBDoic1OOcb\nAkOAF4BfgGuc56W9hx6CxYv9jkJERCT9xZrYVAAuB5YC12FdTgCLgceBc4B/YV1SdZzr6wIHAEcA\nI4EngCXOffWB653nXY61AKWtZ56BVq3gkEPg1lvhxx/9jkhERCQ9xdoVtQBo7ny9FHgGmAJ8E+We\ndc72HfApMNE5fiBwCnASsA9wK3AGlhSlpRkzYPVqmDoVbroJrrwS2reHIUNg8GDIzvY7QhERkfQQ\na4tNc2A+MBDYD+tGipbURLMEuNp5zkDnuc2j3lHGVawIfftCfj6sWQPPPguNGsHYsdCkCXTuDBMn\n2jkREREpvVgTm8HAIVh9jFd2Os9r6zw/I1SpAieeCAUFlsg8/jhUrgyjRlmyc9xx8Nhj8Mcffkcq\nIiJS9sSa2DyXwBh2Jvj5KatGDTjtNHjjDVi1CiZMgK1bYcQIqF8f+vSx+py//vI7UhERkbJBE/Sl\niDp14OyzYeZMWL4c7roLfvsNTj4Z6tWzWpwXXoBNm/yOVEREJHUpsUlBjRrB6NHwySewdClcdx18\n/z0MGGAtOUOHwuuvw5YtfkcqIiKSWrxMbKpjo5sexSbgexfYu8g12UAroJmH701r++wDl10GhYWw\nZAlccgnMng29ekGDBnDmmfDuu7B9u9+RioiI+M+rxOZcbNK+R7HkpifQBahS5LqjsaHjC4FaHr07\nYxxwAFx7LSxaBF9/DeecA++9B9262ZDxUaPg449hxw6/IxUREfGHF4nN1cAErMVmM1AY5dp8YDVQ\nERjgwbszUiAAbdrALbdYF9UXX1gtTkEBHHmktfJceinMmQM7d/odrYiISPK4TWwOwWYQBktaGgLt\noly/ndCQ8W4u3y1YknPYYXD33bBsGXz4IRx/PDzxBLRrB/vvD9dcAwsX+h2piIhI4rlNbEZh60B9\nAZyKrehdkk+cfRuX75YisrLgqKNs2PjKlfD229CpEzzwABx0kG033QTffed3pCIiIonhNrHp4uwf\nAGKt7Fjq7Bu5fLdEUb48HHssTJpkyzm88gq0bQu33WatOO3a2ZDyZcv8jlRERMQ7bhObRtgEe/F0\ndGx09nu6fLfEqEIF6N0bpkyx2Y6nT7c6nKuvhr33trqcBx6wSQJFRETKMreJzTZnXy6Oe2o7+z9d\nvltKoXJlGDgQnnvOkpynnoKaNeHCC21k1THHwKOPwrp1fkcqIiISP7eJzXKsxubAOO45ytn/4PLd\n4lL16nDKKfDqq9Zd9fDDVox8zjk2R06vXpb4bNjgd6QiIiKxcZvYzHT2p8Z4fU3gbOfrd12+WzxU\nq5atUfXOO1Z4PH68JTRDh9qSDgMGWBfWxo0lP0tERMQvbhObh7Aam27YJH3R1AFeAuoDW4CHXb5b\nEqR+fRg5EmbNsuLim2+2/eDBluScfLIVI2/e7HekIiIiu3Kb2MwH7sS6ox4ACoAhzrkA0BE4GXgQ\n+J5QN9R1wC8u3y1J0KQJXHyxLePw3XdwxRUwb56tPF6/Ppx+ug0r37at5GeJiIgkmhczD1+BJTUB\n4ATgmbBzjwBPAedgMxMD3A3c5sF7JcmaN4erroL5820bNcpadf79b1u487zzbIJALekgIiJ+8SKx\n2QmMBo4D3qP4+Ww+BroDl3rwTvHZQQfBjTfCt9/Cl1/CaadZEXLnztC0KVx0kS31oCUdREQkmcp7\n+Kx3nK06cChQDxsGvhb4GvjNw3dJiggEIDfXtttvh88+g2efhWeegXvvhX33hRNPtC6rFi38jlZE\nRNKdV6t7h9sAfABMB57FRj8pqckAWVnQsSPcdx+sWAHvvmsrjz/yiK1npaUcREQk0dwmNnt5EoWk\nnXLloGtXS2p+/NHmxTnhBPjf//yOTERE0pnbxGYVNoR7MFoiQYpRowa89JK14gwdquJiERFJHLeJ\nzR7A8ViX02pgMnAsNkJK5P8dcAA8/bQlODfe6Hc0IiKSrtwmNhOB4KpC1YChwJvACuBeoJ3L50sa\n6d0bbrgBrrvOEhwRERGvuU1sRgINsVabfGzl7gDQALgA+Bz4BrgW2M/luyQNXHkl9O9va1QtWuR3\nNCIikm68GBW1DXgNm2G4PnAK8AawHUtyWmAzDX8LfAaMAup68F4pg7KyYPJk2Htv6NsX1q/3OyIR\nEUknXg/3/hubebgX1pJzPvCpcy4AtAf+g3VVveHxu2NRFbgDeBubX2cHMC7Ge4c510fa6nkdaDqr\nVg1efBHWroWTToLt2/2OSERE0kUi5rEJ+g1bI+oIoBlwNRDsfCiPzVScbHWAM7Gi5wLnWLxz4w4D\nDi+y/e5RfBmjeXObyO+tt+Daa/2ORkRE0oWXMw9H8xPwAlAJaATUTNJ7I8URnHunNjCiFM9YABR6\nFVAm+/e/4dZb4fLLoW1bGDTI74hERKSsS3Ri0wjIA04C2rLrMPDNCX53SUo7JF1D2T106aUwdy4M\nG2ZDwtu08TsiEREpyxLRFVUDOANbEPNn4E5s7agA1u3zLnA6VmhcFr2KFUyvA54HWvsbTtkWCMCk\nSbD//lZMvG5dyfeIiIgUx6sWm4pAb2xkVA/n+3BzgaexIeG/evTOZPsVuAkb2bUBaAOMdb7vCMz3\nL7SyrXJlKCiAdu1gyBB44w0on6xOUhERSStuf310w7qZ+mOreodbio2QehpY4vI9qeAtZwv6CBvm\nPh+4AejnR1DpYp99YNo0OO44GDsW7rrL74hERKQscpvYvF3k+3XANCyZ+cTls8uCn4GPsZFR4lLX\nrnD33TBmDBx6KJx8st8RiYhIWeNFg/8m4GUsmXkTqz/JNFGHjI8ZM4aaNXcdCJaXl0deXl5CgyqL\nRo+GwkIYMQJatoScHL8jEhGRRMvPzyc/P3+XY+tLOYOr2xE+Q7Fh3H+5fI4f6gBrsFmRbyjlM5oB\n87AuqgERzucAc+bMmUOOfkPHbNMm6NQJVq+GL7+Eepr+UMI0btyYFStWkJ2dzfLly/0OR0QSpLCw\nkNzcXIBc4phmxe2oqCcpe0lND2Agtr4V2Kimgc5WyTk2CdgKNAm7bwZwBdAH6IqthTULa6G6JuFR\nZ5BKleCFF2DzZhg8GLZu9TsiEREpKzJx7MmDwN7O1zuBQc62E9gXWIYlfFns2qI1Hxv11QRLgNYA\n7wA3At8nI/BM0qQJPP88HH00XHwx3Hef3xGJiEhZkImJzb4xXDPc2cJdlIBYJIojj4T774dzz7Vi\n4uFF/4uIiIgUEWtis4NQgWy5Yo6XRrmSL5FMdvbZVkx8zjnQqhV06OB3RCIiksriqbEJELnYOOBi\nE4kqELBWm9xc6N8ffi2r0zuKiEhSxNpiExw1VLR1prSjiSI9SySiihWt3iY3FwYMgJkz7ZiIiEhR\nsSY218V5XMRTDRvaSKnOnW2um4cf9jsiERFJRYlYBFMkIQ4/HCZOhEceUWIjIiKRuR0V1RnrUvoS\n2BjjPXsCHZz7PnT5fskwp58Oc+fCqFHQurWNnBIREQly22Iz09n2ieOexmH3icTtnnvgX/+CgQNB\nE8+KiEg4dUVJmbPHHjB9OlSoYCOl/vnH74hERCRV+JHYBN+53Yd3S5qoVw8KCmD+fJvjZqfG2ImI\nCP4kNsHlDP704d2SRnJz4dFH4YknbK4bERGReIuHm4Z9HT7BXiNKXgyzItAcW1sJYFGc7xbZzSmn\nWDHxRRfBwQfb2lIiIpK54k1sfmL3ifUCwFtxPCOYED0Z57tFIrr9dvj6axg0CL78EvbZx++IRETE\nL6Xpioq0JEI8yyj8A9wBTCp11CJhypeHqVOhenXo1w82xjrxgIiIpJ14W2xOd/Y7sSTlMef7q4GV\nUe7biSU0K4G5lNxtJRKX2rXhxRdtGPiIEfD007bOlIiIZJZ4E5vJRb4PJjYvAQtdRyPiQps2MHky\nDB4MOTlwySV+RyQiIsnmdlRUV+BoYKkHsYi4NmgQXHEFXH45vBVP5ZeIiKQFt0sqvO9FECJeuvFG\n+OorGDIEZs+G5s39jkhERJJFMw9L2ilXDp55BurWhb594S9VdImIZAy3LTbhsoC2wCFAbaASu46c\niuQGD98v8v9q1rRi4g4d4LTT4LnnVEwsIpIJvEpshgHjsAn8Yv31sRMlNpJArVrBU0/ZEPBbboGr\nrvI7IhERSTQvuqJuwUZH7U3sSQ1xXitSKn37wrhxcM018OqrfkcjIiKJ5jax6QCMdb6egXVF5Tjf\n7wTKAXWBHtiQcICPsCUYVN8jSXHttdCnD5x8Mnzzjd/RiIhIIrlNLs519j8DvYF5wNaw8zuBddiS\nC/2AkcCRwJtABZfvFolJVhY8+SRkZ8MJJ8CfWn5VRCRtuU1sjnD29xFKaKJ1MU0EngfaYEmOSFJU\nr27FxKtWwamnwo4dfkckIiKJ4DaxaYi1yiwIOxb+K2OPCPdMcfaDXb5bJC7772/DwF99Fa67zu9o\nREQkEdwmNsHEZU3YsfBZQ+pGuOcXZ69p0yTpevaEm2+2SfxeeMHvaERExGtuE5u1WNdT9bBjqwm1\n2rSMcE8DZ1/N5btFSmXsWBg4EIYOhQULSr5eRETKDreJTXDhywPDjm12jgeAIRHuOdnZ/+ry3SKl\nEgjA449Ds2Y2HPyPP/yOSEREvOI2sZnl7LsWOf6ssx8O3Ai0BtoDE4A859wbLt8tUmpVq1ox8R9/\nQF4ebN/ud0QiIuIFt4nNi86+N7t2R90H/OQ8/ypsGPinhIaH/wHc6vLdIq40awZTp8KMGZqVWEQk\nXbhNbBZgrTX92HUE1N/O8Y+d7wOEhoEH7/kFEZ916wZ33gm33w7PPlvy9SIiktq8WCvq/WKO/wQc\nhdXftHbe9S0w14N3injmwguhsBBOPx0OPBDatvU7IhERKS0vV/cuzhJnE0lJgQA8+igsXmzFxF9+\nCXXq+B2ViIiUhtZrEgEqVYKCAti4EQYPhm3b/I5IRERKQ4mNiKNpU5g+HT78EC691O9oRESkNGLt\nijoNWzrBa08m4Jkipda5M4wfD6NGwaGH2iR+IiJSdsSa2DyOJTbRFriM106U2EgKGjnSionPOgta\ntYJ27fyOSEREYhVPV5SXSU0inifiiUAAHnzQRkf16werV/sdkYiIxCrWFptmCY1CJMXsuSc8/7y1\n1gwcCO++CxUq+B2ViIiUJNbE5qdEBiGSirKzLbnp0gXGjLFWHBERSW0aFSUSRceOMGECTJxoc92I\niEhqS8YEfSJl2plnWjHxyJHQurUlOyIikpq8TGyqA4OAw4GGQCXgdODnsGuygRrAP8CPHr5bJKH+\n8x+YPx8GDIA5c6BRI78jEhGRSLzqijoXWAY8CpwB9AS6AFWKXHc0tgjmQqCWR+8WSbgKFeC556Bc\nOejfHzZv9jsiERGJxIvE5mpgAtZisxkojHJtPrAaqAgM8ODdIknToIEtu/DVV3DeebAzEVNWioiI\nK24Tm0OA652v87EuqGjTmW0HXnC+7uby3SJJd9hh8Mgj8NhjVlAsIiKpxW1iMwqbaO8L4FRgfQz3\nfOLs27h8t4gvhg6FCy6w7cMP/Y5GRETCuU1sujj7B4AdMd6z1Nmr/FLKrDvvhKOOssn7li3zOxoR\nEQlym9g0wtZ8WhjHPRud/Z4u3y3imz32gKlToXJlW3Zh0ya/IxIREXCf2Gxz9uXiuKe2s//T5btL\noypwB/A2sBZrZRoXx/31gMnOvX9j3WpdvQ1Ryoq6da2YePFiWzBTxcQiIv5zm9gsx2psDozjnqOc\n/Q8u310adYAzgT2AAudYrL+OKgLvYkPWRwN9sBFebwKdvA1TyopDD4VJk2DKFBg/3u9oRETE7QR9\nM7Gk5lRgSgzX1wTOdr5+1+W7S+MnYC/n69rAiDjuPQNoDfwL+Nw59j7wNdYKdLgnEUqZk5cHc+fC\nJZfAwQdDN433ExHxjdsWm4ewFo9u2CR90dQBXgLqA1uAh12+261AnNf3A5YQSmrAhq9PAdpjQ90l\nQ916qyU0J54IS5eWfL2IiCSG28RmPnAnliQ8gHXvDHHOBYCOwMnAg8D3hLqhrgN+cfnuZDsImBfh\n+Hxn3zqJsUiKKVcO8vNhr72gb1/4+2+/IxIRyUxezDx8BZbUBIATgGfCzj0CPAWcg81MDHA3cJsH\n7022WsDvEY4Hj9WOcE4ySK1a8OKL8MMPMHy4iolFRPzgRWKzEyumPQ54j+Lns/kY6A5c6sE7RVLS\nQQfBk0/C9Olw++1+RyMiknm8XN37HWerDhyKDY0uhw2N/hr4zcN3+WEdkRfurBV2XoT+/eHqq+HK\nK+GQQ6BHD78jEhHJHG4Tm8exFps3gOnOsQ3ABy6fm4rmE3kZiIOd/YLibhwzZgw1a9bc5VheXh55\neXneRScp5frrbbHMvDyYPRtatPA7IhGR1JWfn09+fv4ux9avj2WVpt3FOzKoqB1YYtMLm8+lLKkD\nrMEKmW+I4fpzsCLow7G1scASw6+wZK5jhHtygDlz5swhJyfHbbxSxvz5J3ToAFlZ8PnnUK2a3xGl\nh8aNG7NixQqys7NZvny53+GISIIUFhaSm5sLkAsUxnqf2xqbtVhytMrlc5KpBzAQON75vrXz/UCg\nknNsErAVaBJ232PY0hHTgTxsiPs0oAVwecKjljKnRg0rJl6+3BbO3BHramoiIlJqbhObRc5+b7eB\nJNGDWEIyCWttGuR8PxWo61yT5WzhLVpbgGOwSQnvB17G5uTpAcxKRuBS9hx4IDz9NLz0Etx0k9/R\niIikP7eJzVPOfpjL5yTTvoQSl3JFvg6u0zy8yPdBa7CftQ5QGTgCGwkmUqzjj4cbboBx4+Dll/2O\nRkQkvbktHp6MdcucAFyP1ato9g6RIq680pZdOOkkyMmxCf2ysmwfvkU6lqhr/b6/UiU7LiLiJbeJ\nzZHAXVgXzjXAYKxLZx7wB7bkQDQfuny/SJmQlQWTJ1urzdq1Vm+zffuu244dsHXr7sciXVfaY+HH\n/Va/PpxwAvTrB127QoUKfkckIunAbWLzPtZCE6xFOQC41vk6WstNwDlfzuX7RcqMatXgnnv8jiIk\nPPHxOoEq6di2bVBYCAUF8MgjUL069OplSU6PHlC1qt+fjoiUVV5M0FfckPGShpK7HWouIi5kZdm2\nxx7+vP+kk+DOO2HePEtwCgpsva2KFeHYYy3J6dMH6tTxJz4RKZvcJjZdXdyrWhyRDBcI2OzMhxwC\n110HP/4YSnJGjLDznTpZktO3LzRt6nfEIpLqvOiKEhHxRLNmcPHFtq1ebcPkCwrgkkvgggsgNxf+\n9z+/oxSRVKYxCSKSkurXh7POgjfesILr/HzYb79QYrN6NYwda7M6a/JDEQlSYiMiKa9GDRgyBKZO\nhYYN7ViFCjBpEhx+ODRpAiNHwjvv2MgyEclcSmxEpEwJOMMO9toLVq2CDz6AwYPhtdes6Lh+fVvC\noqAANm70N1YRSb5YE5tXsQUdE6Ed8FqCni0iaaxcOSsuvvdeWLrUhpCff75Nhti/v42o6tcPnnwS\nfv/d72hFJBliTWx6ArOBAmwZAS90wtZb+gJbb0lEpNQCATj0UFu+Yv58+PZbuP56q8U57TSoVw+6\ndYMJE2DFCr+jFZFEiTWxuQFbBPIEbLbgH7AlFNrG8Yw9gMOAW4CfsMUkewP/OM8SEfFMixZw6aXw\nySewciU88IC18IwZA40bQ4cOcNtt8M03fkcqIl6KZ5K8fbC1oE4hlMzsBDYBc7FlFH4Dfgf+B1QH\namELRh4KHAJUDHvndmwRzevYfbHJdJEDzJkzZw45OYnqyRPJLI0bN2bFihVkZ2ezfPnyuO9fv97q\ncQoKbMTVxo3QsqV1WfXrZ0PKA5o+VMR3hYWF5ObmAuQChbHeF888Nj9hK1vfAIwGTgX2IrTKdaxd\nVOuwhOY+55kiIklTsyacfLJtmzbBjBmW5Dz0ENxyi42w6tvXkpyjjoLyXszPLiJJU5pRUT8CY4CG\nQC/gTqxOZlsx128DPgPuwGp1GgEXoaRGRHxWqZIt2/D441aL8957tjBnQYEtzNmgAQwfDi+/bEmQ\niKQ+N/8W2QK84WxgC1rWwVb6rgGsB9ZiLTQpsJawiEjxypeHo4+27b77YM6c0PIOkydDlSrQvbu1\n5PTqZS0/IpJ6vGxk3Q6sdjYRkTIrEIB27Wy7+WYrMA4mOaecYklQ166W5JxwQmjSQBHxnyboExEp\nwQEHhJZv+OUXGD8etm+3OXOys6FjR1up/Pvv/Y5URJTYiIjEoXHj0PINa9ZYN1X9+jBunA0xP/hg\nuPZamyRw506/oxXJPEpsRERKqVat0PINa9fCCy/YJIH33w85ObZa+YUXwocfWguPiCSeEhsREQ9U\nqRJavmHNGhtG3rMnTJsGnTtbHc6IETaHzj//+B2tSPpSYiMi4rE99ggt3/DLL/DZZ3D66TBrFvTu\nDXXrwoknwrPPwoYNfkcrkl6U2IiIJFBWVmj5hiVLYOFCK0T+4QfIy4NGjWD6dL+jFEkfSmxERJIk\nEIBWreCqq+DLL+Hnn+H442HwYFu8U8XGIu5psnAREZ80bQrPPAOtW8M118DixfDYYzYjsoiUjlps\nRER8FAjA1VfDc8/Z0g2dO9tq5CJSOkpsRERSwIABVly8ciW0b29LOohI/JTYiIikiJwcmD3bZjM+\n6igVFYuUhpeJzdHAU8B3wF/Y2lGtilzTCTgPOMXD94qIpI2GDeH9920NKhUVi8TPi+LhysDjwKAY\nrt0JPODsP8eSIBERCVOpkoqKRUrLixabZwglNbOBe5yvI/0bYxawCAgA/T14t4hIWgovKn7pJRUV\ni8TKbWJzAtDH+fo8oANwSQn3vOjsO7t8t4hI2hswAD76KFRUXFjod0Qiqc1tYjPM2T8LPBTjPbOd\nfUuX7xYRyQjBouJGjeDII60VR0Qic5vYdHD2+XHc86uzr+fy3SIiGaNhQ/jgAysqHjQIbrxRRcUi\nkbgtHq6D1dIsi+Oe7c5eQ81FROIQLCpu1QquvRYWLVJRsUhRbpOL/zn7qnHc09jZr3P5bhGRjBMI\n2Eip6dNDRcW//lryfSKZwm1i8z02wik3jnt6OPuFLt8tIpKxBg4MzVR82GEqKhYJcpvYvOHszwbK\nxXB9a+A05+vXXL5bRCSj5ebCF1+Eioqff97viET85zaxmYDNMtwSmAxUjHLtccDbzjW/AZNcvltE\nJOM1ahQqKh44UEXFIm6Lh9cCI7Dh3icDXYGXnXMB4AIseToCONA5vgM4Ffjb5btFRAQVFYuE82JJ\nhWnYSKdJQEOsWyrozCLXbgCGAm958F4REXEEi4pbtoShQ62o+KWXbJi4SCbxasj188B+wLXAHEJD\nuoMWADcDzQm16IiIiMdUVCyZzsu5ZNYBNwGHAXsC9YFGWE1NG+AarLZGREQSSEXFkskSNUnedqz+\nZhWwNUHvEBGRYgSLivv0sVacm25SUbFkBi9qbEREJAVVqgT5+VZUfM01VlQ8aZKKiiW9uW2xqQC0\ncrY9I5yvBNwDLAc2AYuAUS7fKSIiMQoEbKTUtGnw4ovQpYtmKpb05jax6YsVBs/EhnEX9QIwhlCt\nzYHAf4D7XL5XRETiMGiQFRUvXw7t28PcuX5HJJIYbhObfzv7AmBLkXO9ws4vB14EVjrfjwT+5fLd\nIiISh9xcmD0bGjSwouIXXvA7IhHvuU1sgmtEfRjh3HBn/y22lEJ/Z78Em7xvhMt3i4hInIJFxb17\nw4ABcPNAIRTqAAAgAElEQVTNKiqW9OI2sakH7AR+iPDcY52vHyC0CvifzvcAHV2+uzSqAuOBFVjN\nz1zgxBjuG4Z1tUXa6iUiUBGRRKlcGZ59Fq67Dq6+Gk45BTZt8jsqEW+4HRVVx9n/U+R4W6AalvQU\nXexygbNv4vLdpfEC0A64HGtJOhnIxxKx/BjuH4a1OIX73cP4RESSIhCAceNsxNRpp8H331txsWYq\nlrLObWKzBRv5VKfI8U7OfjmwtMi5YOtNLKuBe6kn0A3IA6Y6xz4A9gbudI5FKoAOtwDQPJ4ikjYG\nDYJ997VFNNu3h5dfhkMP9TsqkdJz2xX1E1Yvc3iR48c7+1kR7qnl7Ne6fHe8+mFJ1fQixx/HRm11\niOEZAa+DEhHxW7t2NlOxioolHbhNbGY6+/OxuWwA+gBdnK9fj3BPa2ef7JkUDgIWs3urzHxn35qS\nvQpsw5aPeD7Ge0REUl52toqKJT247Yq6HzgLWxdqPvAHoRaZFdgv/6KOc/bzI5xLpNrA9xGO/x52\nvji/YutgfYatUN4GGOt835Hk/ywiIp4LFhW3amVFxYsWwX//q5mKpWxx22LzLXAKsBHrpgkmNeux\nWpbNRa5vQCixec/lu5PpLWzl8teBj4AHgaOw4ugbfIxLRMRTwaLiadOgoACOPhpWrfI7KpHYebFW\n1HRsHpteWOKyEniZyKOF2gDPYAlBpG6qRFpH5FaZWmHn4/Ez8DG71xeJiJR54UXFhx2momIpO7xa\nBHM18FgM173tbH6Yh7UiZbFrnc3Bzn7BbnfEpsRe6DFjxlCzZs1djuXl5ZGXl1fKV4qIJF6wqLhv\nXysqfuop6N/f76gkHeXn55Ofv+usK+vXry/VszJplE93rJVoCDAt7PibWBFwU2JIUsI0w5Klt4AB\nxVyTA8yZM2cOOTk5cQcsIrtr3LgxK1asIDs7m+XLl/sdTkbYuBGGD7fuqZtugiuvtC4rkUQqLCwk\nNzcXbJWDmKda8arFpix4E5gBTASqY7Ml52E1PycTSmomAUOxxOUX59gMrCZoIfAX1spzGTZC6prk\nhC8i4o+iRcWLF1tR8Z57+h2ZyO68TGzqYAtb7ovNOhzLBHzJLrztD9zsvLcWNvy7aAtOlrOF/3tk\nPpb8NMEmJFwDvAPcSOSRViIiaSVYVNyy5a4zFTdo4HdkIrvyIrGpD9wLDMSSmVgbKP0YUfQ3MMbZ\nijOc0AKeQRclLCIRkTJk8ODdZypu29bvqERC3A733gubXXgIliTF0+uqHloRkTLosMNg9myoVw+O\nOEIzFUtqcZvYjAWaO1+/jRXo1sOSnKwYNhERKYOys+HDD6FXL81ULKnFbVfUCc7+NULrQ4mISAZQ\nUbGkIretJntjtTITPIhFRETKmKwsuO46S3Cefx66dNFMxeIvt4nNX85ef4xFRDLYiSda19SyZVZU\n/NVXfkckmcptYjMPKwLe24NYRESkDCtaVFxQ4HdEkoncJjYPO/uhbgMREZGyL7youH9/uOUWFRVL\ncrlNbKYB+UA/4Ar34YiISFkXLCoeNw6uugpOPRX++cfvqCRTuB0V1QlbgmAfbEbfftjq3UuAjTHc\n/6HL94uISAoKFhW3bAnDhsEPP1jXlGYqlkRzm9i8j42KCk62187ZIPqCkgHnfCzLLoiISBl14onQ\nrJlmKpbk8WKSvOJmEA5E2aLdJyIiaSRYVFy3rhUVv/ii3xFJOnPbYtPVxb0qJxMRyRDZ2TBrli2g\n2a+fFRWPHWuLa4p4yYuuKBERkRJVrgxTp8L118OVV8LChZqpWLyn9ZpERCRpsrIsscnPt5mKjz5a\nMxWLt5TYiIhI0g0ZAh98AD//rJmKxVteJzbtsBW/n8IWxnzN+fpyINfjd4mISBnWvj188UWoqHjC\nBNi0ye+opKzzKrFpA3wGfAHcApwM9HC2k4FbnXOfOteKiIjQuLHNVDx4MIweDfvsAzffDH/84Xdk\nUlZ5kdh0w5KW9mHHtgGrnW2bcywAdAA+d+4RERGhShV4/HH45htbhuHGG6FpU7j4Yli+3O/opKxx\nm9jUAaYDFYAdwH+x5KUK0NDZKjvHHnWuqYgtxVDb5btFRCSNNG8OEyda3c3o0fDYYza53/DhsGiR\n39FJWeE2sbkAqAFsBXoBZwGzne+DtjnHzgZ6Ot/XBMa4fLeIiKSh+vWtO2rZMrj1VpgxA1q3hj59\n4OOP/Y5OUp3bxKaXs38AeCuG698G7nO+7uny3SIiksaqVbPuqB9/tNab776DI4+07ZVXYMcOvyOU\nVOQ2sWmGzSD8chz3vBJ2r4iISFQVKlh31MKFthzDjh3WetOmDTzxBGzZ4neEkkrcJjbB+SL/iuOe\n4KrfFV2+W0REMkhWli2m+ckntjzDvvvayuH77Qf33gt/xfObSNKW28RmFTbaKSeOe4Lruq52+W4R\nEclQwe6o+fOha1e47DIbSXXNNbBmjd/RiZ/cJjaznP3lQPUYrq/uXAvwkct3i4hIhjvoIOuO+uEH\nW2Dz3nth773hvPOsNkcyj9vE5mFn3wxLctpHuba9c02wtubhKNeKiIjErGlTS2qWLbMFNqdPhxYt\nbOmGuXP9jk6SyW1i8xHwoPP1wdjMwvOx+WxudrZJwAJsZuKDnWsfRC02IiLisVq1rDvq55/hvvvg\n888hJweOOw7efRd27vQ7Qkk0L2YeHg3chY2OCgCtgdOBK5xtONDKuXYHcCcwyoP3ioiIRFS5Mowc\naUPE8/Nh7Vro1g0OO8xac7Zv9ztCSRQvEpsdwGVYUfBDwPcRrvkOmOhcczmWBImIiCRU+fLWHVVY\nCG+9BTVq2LpUBx4IDz8M//zjd4TiNS9X954PnAfsD1QCGjlbJeAAYCTWJSUiIpJUgUCoO+qLL6Bt\nWzj3XFt089ZbYf16vyMUr3iZ2ITbjA0FX+V8LSIikhKC3VHffGPz4lx/vRUfX3oprFjhd3TiVqIS\nGxERkZTWooV1R/30k9XjPPqoTfp3+umweLHf0UlpeZnY7AEMxOpsZgELnW0WVl8zACjv4ftERERc\na9DAuqOWLYNbbrFanFatoG9f+PRTv6OTeHmV2PQDlgLTsBW+jwBaOtsR2Mre04GfnGtFRERSSvXq\ncMklNrHfpEmwZAl07AidOsFrr2moeFnhRWJzIfA8VigctBT43Nl+CjveCHjOuUdERCTlVKxo3VGL\nFkFBAWzdCr1726KbTz1l30vqcpvYHI7NSwOwARvKXQ/YD/iXszUD6jvnNmBz3dwBdHD5bhERkYTJ\nyrLuqE8+gQ8+sALjoUNt0c3x47XoZqpym9hc5DxjA9ARS3J+i3DdWufcv5xrywEXu3y3iIhIwgUC\noe6oefOgc2frstp7b7j2Wpv8T1KH28TmKGd/O7AohusXA7cVuVdERKRMOPhg64764Qc49VS4+25L\ncM4/H5Yu9Ts6AfeJzV7YLMLvxXHP+86+pst3i4iI+GLvva07atkyGDsWpk614eMnnQRffeV3dJnN\nbWLzK1YzU9p7RUREyqzata076uefLdH59FM49FDo3h3ee08jqfzgNrGZ4ey7xHFPZ2c/0+W7RURE\nUkLlytYd9d138PTTsGoVHHMMdOgAzz2nRTeTyW1iczewERvxdEAM1+/vXLuR0GgqERGRtFC+vHVH\nzZ0Lb7wBVavCoEHQsiU88ogW3UwGt4nNN8AgrDvqU2x+mloRrqsFjHGuCQCDgSUu3y0iIpKSAoFQ\nd9Tnn9scOOecY0s23HYb/Pmn3xGmL7dLHMzEiofXAC2wFpw7sQn61jjn6gP7EkqivgcucbbidHUZ\nl4iISEpo3966o779Fu66C8aNs6UbzjkHxoyBRo1KfobEzm1i0znCsSxsgr79irmnubMVR6VWIiKS\ndvbf37qjrr8e/vMfmDjR9qeeaiuLHxBLQYeUyG1i86EnUexKiY2IiKSthg2tO+qKK2x18fHj4bHH\nbJbjyy+3gmMpPbeJTRcvghAREck0NWrAZZfBBRfAlClw551w+OFw7LH2fb16fkdYNnm1ureIiIiU\nQsWKcMYZtujm88/D/PnWarMolvn8ZTdKbERERFJAVhb072+jqKpWhY4d4Z13/I6q7ElGYrMn0A04\nEWifhPdFUxUYD6wANgFzsbhiUQ+YjC3o+TfwCRq9JSIiHmvaFD7+2LqlevSA//7X74jKFreJzd7Y\n8O47sHWjijoc+AF4C8jH5rH5Emjq8r2l9QIwFLgO6A7MduLKK+G+isC7wNHAaKAPsBp4E+iUoFhF\nRCRDVa8Or74KI0bAmWfaelQ7dvgdVdngtni4P3AxUAhcVuRcNeBFrKUjKADkAK8DbYFtLt8fj55Y\ny1EeMNU59gGh5GwqUNwfmzOA1sC/gM+dY+8DX2NJ3eEJiVhERDJW+fLw4IO2uOYll9iK4k8+CZUq\n+R1ZanPbYnOss38pwrmzCCU19wF9gQed71sBw1y+O179gP8B04scfxxoBEQbYNcPmyn587Bj24Ep\nWPdaQ+/CFBERMYEAXHQRvPACvP46dOkCq1f7HVVqc5vYNHP2X0Y4N9jZF2DLKbwMnE8osRjg8t3x\nOghYzO6tMvOdfesS7p0X4Xgs94qIiLjSty98+CEsW2YjphYu9Dui1OU2samHTahXNH+sDuQ65x4v\nci7YDXSIy3fHqzbwe4Tjv4edL04tF/eKiIi4lptrI6aqV7cRUzNm+B1RanKb2FRz9uWKHD/CefZ2\nrBYl3C/OPtJimSIiIlKMpk3ho48ssenRAx591O+IUo/bxOZPrCC46BJeXZz9POCvYu5N9uLt64jc\nslIr7Hy0e4tbtbyke0VERDxTvTq88gqcfTacdZbNXqwRUyFuR0UtwIY79ydUQFyOUH3NzAj3BJOg\nZJc/zcNGRGWxa53Nwc5+QZR75wNtIhyP5V7GjBlDzZo1dzmWl5dHXl5Jo8xFRER2V748PPCAjZi6\n6CIbMfXUU1C5st+RlU5+fj75+fm7HFu/fn2pnhVwGctobMK7ncDd2KKYQ4GBzvkO2Fwx4W4ErgLe\nw4ZfJ0t3bJj5EGBa2PE3seLfphS/AOc52Iiuw4EvnGPlga+ADUDHYu7LAebMmTOHnJwcV8GLiGnc\nuDErVqwgOzub5cuX+x2OiO9efhny8qB1a/u6QQO/I/JGYWEhubm5YDW7hbHe57Yr6hFspFEAuARr\ntQkmNa+we1IDNnQadh06nQxvAjOAicAIbLK9R4DjsDl4gknNJGAr0CTs3seAhdiIrjwsIZsGtAAu\nT0LsIiIiEfXpYyOmli+3EVMLovYhpD+3ic0/2C/5F7DJ9gLAFuAp4JQI13fG5rABm4042fpjsd0A\nvAEchrXghLd/ZTlbeGvWFuAYrGvtfmzoen2gBzAr4VGLiIhEERwxVbMmHHEEvP223xH5x22NDcCv\nWCvNnlgx7TpgczHXLsPWV9oJfOTBu+P1Nzanzpgo1wx3tqLWkPxJBUVERGLSpImNmBoyBHr2hAkT\nrMA403iR2AT9A6ws4ZqlziYiIiIeq1YNXnoJLrwQzjkHvvsO7rjDVg7PFF4mNiIiIuKz8uXh/vtt\nxNSYMfDjjzBlStkdMRUvL3O46thikY8Cr2KrYe9d5JpsrMamGSIiIpIwo0db683bb0PnzvDrr35H\nlBxeJTbnYvUzj2LJTU9skr4qRa47GpvzZSGaeVhERCShjj8eZs2ClSttxNT8+SXfU9Z5kdhcDUzA\nWmw2E32seT42MV9Fkr8IpoiISMY59FAbMVW7to2YevNNvyNKLLeJzSHA9c7X+UBDoF2U67djQ8Mh\nuZPziYiIZKzGja3lplMn6N0bJk70O6LEcZvYjMLme/kCOBWIZf7jT5x9pCUKREREJAGqVrWam5Ej\n4bzz4OKLYft2v6PynttRUV2c/QPsuv5SNMHh3kUXzhQREZEEKlcO/vMfaN7cRkz98AM8/TRUKVoR\nW4a5bbFphE22tzCOezY6+z1dvltERERKYdQoW1fqnXdsxNTKkmahK0PcJjbbnH25OO6p7ez/dPlu\nERERKaVevWym4lWrbMTUvHl+R+QNt4nNcqzG5sA47jnK2f/g8t0iIiLiQtu2NmKqbt30GTHlNrGZ\n6exPjfH6mkBw5Yp3Xb5bREREXMrOttXBu3SxVpyyPmLKbWLzEFZj0w2bpC+aOsBL2KrYW4CHXb5b\nREREPFC1Krz4Ipx/vo2Yuuiisjtiyu2oqPnAncBl2Mio44CpzrkA0BE4FDgCOAmbxA/gOuAXl+8W\nERERjwRHTLVoARdcYCOmnnmm7I2Y8mIRzCuAysD5wAnOFvRIhOvvBm7z4L0iIiLisfPPh333hSFD\nbEK/V16BRmVoghYvllTYCYzGWmveo/j5bD4GugOXevBOERERSZDgiKnVq23E1Ndf+x1R7LxosQl6\nx9mqY91P9bBh4GuBr4HfPHyXiIiIJNAhh9iIqeOPhyOPhKlToWdPv6MqmVere4fbAHwATAeexUY/\nRUpqtAimiIhICguOmDr6aEtwJkzwO6KSJSKxiSYADMGKjqcl+d0iIiISp6pVoaAARo+2+psxY1J7\nxJSXXVHRlMNGRV0JHJCkd4qIiIgHypWDe++1EVOjRsGPP9qIqapV/Y5sd6VpsamMFQu/itXOfA28\nDJwJVIxw/RBgCfAEoaRmC/BoKd4tIiIiPjnvPHj1VZg500ZMrVjhd0S7izexOQhLUsYDPYGDna03\nNuHeHGwCPoCmWK3NM8B+zrF/gAlAc0IzEIuIiEgZ0aOHjZhau9ZGTH31ld8R7SqexKYyNnNw4yjX\ntAKmYEnNx4TWhfobuAfYFxiFrTElIiIiZVBwxFT9+jZi6rXX/I4oJJ7EZiiWmIDNV9MJqIYlPO2w\nEVAAx2AJUDY2p82DQDPgEmC1+5BFRETEb40a2Yipbt2gTx+4/36/IzLxFA/3cfbfAj2ArWHnCrHi\n4JrYJHyHOOf7Aa+7D1NERERSTZUq8PzzcNllNmrqu++syLhcOf9iiqfFpo2zv4ddk5pwt4R9/RhK\nakRERNJauXJw993w4IO29e0Lf/3lXzzxJDa1seUTlkS5ZrGz34mNlBIREZEMcO65NmLqgw/gqKNg\nuU/VtPEkNsGh3NGWRlgX9nUKDgITERGRROneHT7+GNatsxFTc+cmP4ZEzjy8LYHPFhERkRR08ME2\nYqpRI2u5eeWV5L4/2UsqiIiISJpr2BDefx+OO85qbu67L3nvjndJhQBwHrAmyvlYrgu6Ic73i4iI\nSBlQpQo89xxcfjlccEFoxFT5BC/mVJrHn+fRdTtRYiMiIpK2srLgzjuheXMYOdLWmHr2WahWLYHv\nTNyjSxQo+RIREREp684+22YnnjUr8SOm4mmx6erxu3d6/DwRERFJUf/+N3zyCfTqBe3b29DwnBzv\n3xNPYvO+968XERGRTHHQQTZiqk8fa7nJz7evvaRRUSIiIpI0DRrYiKnu3W3E1PjxsNPDPhwlNiIi\nIpJUlSvD9OlwySVw4YVw/vmwzaPZ7xI86EpERERkd1lZcMcd0KKFLcewdKmNmKpe3eVzvQlPRERE\nJH5nnglvvGFLMRx5JPzyi7vnKbERERERXx17rI2Y2rDB1piaM6f0z1JiIyIiIr5r3dpGTDVpAp06\nwcsvl+45SmxEREQkJdSvDzNnQo8ecP31pXuGEhsRERFJGZUrw7RpcEMpF11SYiMiIiIpJSvLZigu\n1b3ehiIiIiLiHyU2IiIikjaU2IiIiEjaUGIjIiIiaUOJjYiIiKSNTEtsqgLjgRXAJmAucGKM9w4D\ndhSz1fM6UBEREYlfpi2C+QLQDrgc+BY4GcjHErz8GJ8xDFhS5NjvHsUnIiIiLmRSi01PoBtwLvAo\n8AFwFjADuJPYP4sFwBdFNo8WW09f+fmx5o3pT5+F0edg9DmE6LMw+hzcyaTEph/wP2B6keOPA42A\nDjE+J+BlUJlCf1FD9FkYfQ5Gn0OIPgujz8GdTEpsDgIWYzUx4eY7+9YxPudVrIVmHfB8HPeJiIhI\ngmVSjU1t4PsIx38POx/Nr8BNwGfABqANMNb5viOhBElERER8UlYTmy7AezFe2xaY58E733K2oI+A\n17CE5gasq0tERER8VFYTmyXAiBivXebs1xG5VaZW2Pl4/Qx8DBwe7aLFixeX4tHpZf369RQWFvod\nRkrQZ2FK+zls2bLl//fp8Dnqz0OIPgujz8GU9ndnJhXCPgzkATXZtc5mCPAM1p30WSme+wZwCFaA\nXFRDYDaQXYrnioiIZLoVwGFYOUhMMimx6Q68jiUy08KOv4kVADcFdsb5zGZYN9dbwIBirmnobCIi\nIhKfX4kjqclEb2FdTiOAo4FHsNabvCLXTQK2Ak3Cjs0ArgD6AF2BC7BMcj3QKqFRi4iIiERQBVtS\nYSXwD7akwuAI1z0ObMdacYLuwSbn+xPYAiwHngCaJzBeERERERERERHxipvFNtNJVeAO4G1gLdbt\nN87XiPxxDNa69y3wN9ba9yKQ42dQPmiLTZHwM7AR6xb+BFuzLdONwP5+/M/vQJKsC8UvLtzev7B8\ncyRWC/o79nfkW+BqXyNKvskU/2cipj8XZXW4d6rzYrHNdFAHOBP4CijA/ucdb4F2OjgbqAvcCyx0\nvr4YG4X3b2Cmf6ElVQ1s+oWnsaS/KvZ34ylgH+Bm3yLzVzZwF9ZFXt3nWPxyBbv/PVjoRyA+Ogl4\nEpgKnAr8hZU6ZNrgkxuAB4scCwCvYA0Fs5MekdATyyqLttC8hf1LPZOWsQhXG/tcrvU7EB/Ui3Cs\nClbpPyPJsaSiT7FWnEz1Cpb4P07mttj09zkOv2VjicwDfgeSojpjf06uj+XiTP0lm0heLbaZbjJp\naoGi1kQ49je2dlnjJMeSitZh669lolOAo4CRZPbfkUz+2cFasysDt/sdSIo6A0tsJsVysRIb73m1\n2KaktxpYjU2mNbeD/RIrj3XJnYd1x93la0T+qI/V4o3FuqEy2QRsio0/sbnFjvA3nKTrhCX4rbCu\n+63AamAiUM3HuFJBDWAg8C6hlQQkyb7Fir+KaoglO5cnN5yUUYfM7YqKZAqwGTjU70B88BChQsCt\n2JxQmeg54MOw7yeTeV1RbbGpNPpgycwwLNnfChznX1hJtwQrFv4T+x3RCbgEa9md5WNcqeAc7P8V\nkaZmkSRRYhOZEpuQG7HP4jy/A/FJE6y1qjtWJLidzPt7MRCbS+uAsGOTybzEJpJgkflcvwNJom+x\n/ydcVuT4aOd416RHlDpmY935e/gdSCb7FPg8wvHW2B/QWBfvTDdKbMw47HMY63cgKeRBbNLLun4H\nkiRVgVXYVAg1w7ZnsMSmBlZcnskmYn9PKvodSJJ8iv28hxQ5vr9z/OKkR5Qa2mA//z3x3KQaG+/N\nA1qy+2d7sLNfkNxwJIWMC9tu8zmWVDIbq7nZ1+9AkqQONlLuEmy+kuA2BEto/sCGwEvmTA/xVQnn\nM+VzKOoMZ/9fX6MQuhO5P/BN4Bcyt/o/01tsriGO4YoZ5kmspqK234EkSUVs+GqnsK0z8AZWZ9GJ\nzF5/bi9saow5fgeSRN2w/z9cUeT4hc7xTCumBvt7sg5rzYqLJujz3pvY3CQTscm2fsAW2TwOm4ws\n0zLvHti/QoOV/a2x+gKwWWg3+RFUkl2MJTRvYvVXhxc5/1nSI/LHI1hx5GxsxEcdYBD2j4A7sP+J\nZYLNwAcRjg/H6o0+jHAuXT0NLAUKsVarFtjfl7rAUB/jSrZ3gFexf/hlYeUM7ZzvXwE+9i803/TF\nkly11qSIWBfbzARLCY2A2V7k66ZR7ksnM9n1Zw/ftvsYV7INw36hr8Fqan4H3sNmXBWb62qD30Ek\n2eVYUvMHoSHOzwG5fgblkz2BW7HJKrdg/++8icwtmn0L+/uQ6fVmIiIiIiIiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiGW4YoSUeMmWZi3C1sXWqdgCHuXjOZOcZSz2IKdW0\nw362dWTOYqVSRmX5HYCIlNo+RF5/Kt4tuDBrpi3QGnQTttjeq9gCnW6l4+f4JbZo7V7Y5yUiIuK5\nfQgtpBlpK7rYZqTz24HTwr7OtBab5tjii9uBti6fNRn7HH90+ZxUlYv9fFuA/XyORaRY5f0OQERK\nbTlwUDHnAtjquI2AFcC/ozxnEfCEt6GVGVcB5YB3ga98jiXVzcFWZ++MfW6n+xuOiIhkmp9I7xYE\nt+oDm7HPaKgHz5tM+n/eZ2A/4yagrs+xiESkGhsRyVSnAHsAG4HnfY6lrJiOJYMVsc9PJOUosRGR\nYUQfFfW+c26m8/1+wESsZWIT8DPwGLBvkfsOAh53rvsHWAY8SOz/0u8F5GMtT5uAP7Huolux1ha3\nBjv7d4C/Y7i+FdZl9wv28/wCPI2NGIrFXsBwYArW/fcXVq+yCngTOBNLtCK5B/tvsA3rXizJHOf6\nJRHO7Q/cDywIi2El9tlOwj6XCsU8dwPwnvP14GKuERERSYifiK1rZBjRi4ffd86/B3TDEozwguRg\nUvQbcLBzzymEunmKXrcUaBglnhrYL/pIxc/B7/8EepTwc0VTDUsSdgBXxHD9EEI/T9F4tmAJy2Si\nf94/Ef1n2oElJJGStpZh11xeQqxtwq69rMi5QcX8HEXjaBXl+dc412wGqpQQi4iIiGd+wtvE5hvg\nd+e552EtFR2Buwn9YvwcOAJLGhZgv/BzsYLTJwj94swvJpYK2JDr4C/OR4A+2IilDsCFWMtPsM6j\ntCOZuhP6mY8p4doO2MipHVi31c3Yz9gOOB9r7dgMzCX6570M+AS4EkvKcoDDgZOA1wl9NjOLuf9j\n5/ziEuK9l1DCFZ4k1cdaaHYAv2IFwMcAhzg/40nAQ8Bqoic2xxH67I4rIRYRERHP/IS3iU2wayPS\nBG23h13zOzAL2DPCdVMJ/dKtE+H8jc759UD7YuLdC1joXPdBMdeU5FpCP3NJXWNfOtf+AxwZ4Xwj\nQt5T9+wAAAYaSURBVMlWtM+7pCHSw8Ke0bWE8/8q5hl7AGuda14qcu50Qj9ztMSlApH/2wXVD4vj\nmijXiYiIeOonvE9sivsX+t5h12wDDijmui5h7zq+yLmqWEKzA7ighJh7hD2nNHOqTAy7P1qtYXtC\nP9d/olw3iJITm1gUOs+4L8K5yoS6AR8p5v7+YXGcUOTclYS6DN3YI+wdD7h8lojnVDwsIrH6A3i7\nmHM/Y90cAPOwbqtI5jn7ALsXG3cGqmMz904tIZZZYV8X13oRTbCVZgP2C7o43Zz9TqwQujgFWFIW\nqwDQACvkPShsW+mcbxPhno2EuvAGA5UiXDPc2a/GZlIOF3x2Lax7r7S2EvpvrSHfknKU2IhIrL4r\n4XzwF/u3MVwDVsAbLji6KID9Et4RZdsQdm2DEuKKpIaz/18J1wWLobcAX0e5bhtWY1OSXljC8Sf2\nMy7Bkr3g1tO5LlI3HcB/nX11YECRcw2w2iGwkVfbi5x/mdDnX4BNSjgGq/WJ93dB8POvEfUqER8o\nsRGRWG0s4Xyw5SPadeGtI+WKnKsX9vXOGLbgdZFaLkoS/AVfvYTr9nL2v1PyGlBropwLYEnJK1jy\nUpXifyYo/mf6klCCNbzIuaHYZ7oTG7Zd1O9YS80KJ56jsWHkX2Ktcc9hiVcsgglNPK1UIkmhJRVE\nJFUEE52dWCvC1hjvW1uKdwXvqYb9Ay9ad1QwJjdOJ7QEwVxgPDaCbAWWCAaf/wRwKpZ4FOe/2Dw0\nnbHapp+d48FE53Miz18D8BG2PtYALME6CmiMfQ79ne0tZ7+pmGfsQWiYd2k+e5GEUmIjIqki/Jfk\nb9gv/URZGfZ1XawmJZLfnX1tLNmIluBEmzTwTGf/PTZEfnMx19WK8oygKcCd2MilYcD12LDxYMH2\nYyXcvxl4xtnAap16YUPX98fWFbsZuKiY+8O7yVbFEK9IUqkrSkRSRbBGJYDNE5NIX4S9K9pcOPOd\nfYUSritfwvnWzv4lik9qAlhLVUn+JLQExFBnH2wN+ht4NoZnhFuKjW46DFtYFaLPKhz+c34e57tE\nEk6JjYikincJLW0wOsHvCk52B8XPlwO23AJY0nFalOv6ATWjnA+2jkebqbcP0WdkDveos98H6A2c\n6Hz/HKERS/H6v/bu3rWpKAzA+KPoJhQEBedOblq1Ojmpm4ObokMHBxVaqII4iX+AICIoglhBpDq7\ndXSVri4KduikgxSNUG2Cw3svp21uzr3GmKbl+UFIwWtObpb7cs778Z3It4HqXkWl8vf6TTQclEaK\ngY2kUbFC5I5AHNc8IJ9rMgZM97lWi/QQP5W57j3RWwbgOtU7SYeA+zXrlZVi56kOgMaJOVpNvSOq\n1HYRPW3KCrPcMdQ58hVkY6Sg5XPmupPF+yL1CeWSJA3MEoOfFdVkvbocj7Jk+27Fv+0l7aZ0iAqg\naaLj7xEiYfYacdzS4t+SV28Wa7TIV0dNEuXem0cqnKD5SIVb6+7pA/GbTwKngXtEdVEZbDVt8neb\njSXwuTJ7iFlWv4hy8xlinMLR4jvcKL5X+Vm9AsYxogNzhygVlyRpaJZIQydzpkgPtK0ObCCOa+bZ\n+NDu9fpUs1bOAaLyp0PKUenlIumBvvm1Wvz/OXoHJXvoHuy5/vWDqFR6kfmMzQ6SAq4OcKfm+jnq\nf8821V2PS1dJAZ7N+TSSPIqSdq6q/ii9rlv/3utzmq7XRO66FnCJ6Cj8lNhJWCGa4H0jdkaeEYHA\n4YbrVfkKvCr+vlJz7Wtid+MlUa21SiTaviF2k+qCuTWi8miG2JVpEcHBR2K8wwSREPw3ZeVfSDlA\na0SpeM4scZ/PiSO25eI+fhKdoueKe8nlN10u3uex1FuSpJEzTtr1aFKRNEp2Ez1sOnSPT/gfjpF2\nqPqZzyVJkobgMcMLDgbpLOkI6cIQ1ntbrPVkCGtJkqQ+7ScaAraJhODtYoEINJbpHk8xaMdJk8Gb\nNBGUJEnK2keMQ5gAHpJ2a2a38ktJkiT1Y4ruKqZFHI0jbWBVlCRtD2XFVJsorX8EnCEqoiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqQd6A8yOf9Nd4gJBgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "time_fit = irfft(fit)\n", + "\n", + "mpl.rcParams['xtick.labelsize']=12\n", + "mpl.rcParams['ytick.labelsize']=12\n", + "ylabel(\"Response (relative)\",fontsize=20)\n", + "xlabel(\"Time (days)\",fontsize=20) \n", + "\n", + "ylim(-0.5,2)\n", + "xlim(0,7)\n", + "\n", + "plot(time_fit)\n", + "plot([3.22,3.22], [-50, 50], color='k', linestyle='-', linewidth=2)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 98, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAGJCAYAAACZwnkIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4VNXWx/HvBATpSIcAKoIKKGKC4EUFRPTSRLrEgqBY\nEcSOFXsvXBWxXBQVjYAae0NFxY4EpVtRBKSIIldB+vvHOvPOECaTmZwzcyYzv8/znOckp66MYBZ7\nr703iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiURccATwDfAn8D\ny4EXgZwY768HTAbWOvd/AnT1PEoRERGRGEwDZgLnAp2AAVhysgU4uoR7KwLzgZ+BPCxJKnDu7ZSg\neEVERESKVS/CsSrAr8CMEu49D9gBdAg7Vg5YAHzmSXQiIiIiHngPWFzCNTOARRGOj8USnoZeByUi\nIiLxy/I7AJ/VwGpsFpZw3UHAvAjH5zv71l4GJSIiIqWT6YnNBKAScHMJ19UCfo9wPHistpdBiYiI\nSOmU9zsAH90InAScD8z1ORYRERHxQKYmNuOAq4ArgQdjuH4d1mpTVK2w88VpiGpwRERESuNXZ4tZ\nJiY248K222K8Zz7QJsLxg539gmLua9ioUaOVK1eujC9CERERAVgBHEYcyU0gcbGkpGuA67FuqHFx\n3HcO1rJzOPCFc6w88BWwAehYzH05wJwpU6bQsmXLUgWcLsaMGcP48eP9DiMl6LMwpf0cunfvztq1\na6lbty5vvvlmAiJLLv15CNFnYfQ5mMWLF3PKKacA5AKFsd6XSS02F2NJzZvA61iSEi44H80kYCjQ\nDPjFOfYYMBKYjg3xXovNbdMC6FbSi1u2bElOTqwTHKenmjVrZvxnEKTPwpT2c6hQocL/79Phc9Sf\nhxB9FkafgzuZlNj0BnYC3Z0t3E5swj2wkWJZ7NqatQWbbfgO4H6gMlZw3AOYlbiQRUREJB6ZlNiU\ntGxC0HBnK2oNMMyzaERERMRzmT6PjYiIiKQRJTaSFHl5eX6HkDL0WRh9DkafQ4g+C6PPwZ1MGxWV\nbDnAnDlz5qgQTMQjjRs3ZsWKFWRnZ7N8+XK/wxGRBCksLCQ3NxfiHBWlFhsRERFJG0psREREJG0o\nsREREZG0ocRGRERE0oYSGxEREUkbSmxEREQkbSixERERkbShxEZERETShhIbERERSRtKbERERCRt\nKLERERGRtKHERkRERNKGEhsRERFJG0psREREJG2U9+g5+wMdgPpAXaAGsB5YC6wCPge+9+hdIiIi\nIhGVNrHZA+gNDAY6AQ2AQJTrd2IJzgfANOBVYFsp3y0iIiISUbxdUTWAa4FlwPPAiUBDoic1OOcb\nAkOAF4BfgGuc56W9hx6CxYv9jkJERCT9xZrYVAAuB5YC12FdTgCLgceBc4B/YV1SdZzr6wIHAEcA\nI4EngCXOffWB653nXY61AKWtZ56BVq3gkEPg1lvhxx/9jkhERCQ9xdoVtQBo7ny9FHgGmAJ8E+We\ndc72HfApMNE5fiBwCnASsA9wK3AGlhSlpRkzYPVqmDoVbroJrrwS2reHIUNg8GDIzvY7QhERkfQQ\na4tNc2A+MBDYD+tGipbURLMEuNp5zkDnuc2j3lHGVawIfftCfj6sWQPPPguNGsHYsdCkCXTuDBMn\n2jkREREpvVgTm8HAIVh9jFd2Os9r6zw/I1SpAieeCAUFlsg8/jhUrgyjRlmyc9xx8Nhj8Mcffkcq\nIiJS9sSa2DyXwBh2Jvj5KatGDTjtNHjjDVi1CiZMgK1bYcQIqF8f+vSx+py//vI7UhERkbJBE/Sl\niDp14OyzYeZMWL4c7roLfvsNTj4Z6tWzWpwXXoBNm/yOVEREJHUpsUlBjRrB6NHwySewdClcdx18\n/z0MGGAtOUOHwuuvw5YtfkcqIiKSWrxMbKpjo5sexSbgexfYu8g12UAroJmH701r++wDl10GhYWw\nZAlccgnMng29ekGDBnDmmfDuu7B9u9+RioiI+M+rxOZcbNK+R7HkpifQBahS5LqjsaHjC4FaHr07\nYxxwAFx7LSxaBF9/DeecA++9B9262ZDxUaPg449hxw6/IxUREfGHF4nN1cAErMVmM1AY5dp8YDVQ\nERjgwbszUiAAbdrALbdYF9UXX1gtTkEBHHmktfJceinMmQM7d/odrYiISPK4TWwOwWYQBktaGgLt\noly/ndCQ8W4u3y1YknPYYXD33bBsGXz4IRx/PDzxBLRrB/vvD9dcAwsX+h2piIhI4rlNbEZh60B9\nAZyKrehdkk+cfRuX75YisrLgqKNs2PjKlfD229CpEzzwABx0kG033QTffed3pCIiIonhNrHp4uwf\nAGKt7Fjq7Bu5fLdEUb48HHssTJpkyzm88gq0bQu33WatOO3a2ZDyZcv8jlRERMQ7bhObRtgEe/F0\ndGx09nu6fLfEqEIF6N0bpkyx2Y6nT7c6nKuvhr33trqcBx6wSQJFRETKMreJzTZnXy6Oe2o7+z9d\nvltKoXJlGDgQnnvOkpynnoKaNeHCC21k1THHwKOPwrp1fkcqIiISP7eJzXKsxubAOO45ytn/4PLd\n4lL16nDKKfDqq9Zd9fDDVox8zjk2R06vXpb4bNjgd6QiIiKxcZvYzHT2p8Z4fU3gbOfrd12+WzxU\nq5atUfXOO1Z4PH68JTRDh9qSDgMGWBfWxo0lP0tERMQvbhObh7Aam27YJH3R1AFeAuoDW4CHXb5b\nEqR+fRg5EmbNsuLim2+2/eDBluScfLIVI2/e7HekIiIiu3Kb2MwH7sS6ox4ACoAhzrkA0BE4GXgQ\n+J5QN9R1wC8u3y1J0KQJXHyxLePw3XdwxRUwb56tPF6/Ppx+ug0r37at5GeJiIgkmhczD1+BJTUB\n4ATgmbBzjwBPAedgMxMD3A3c5sF7JcmaN4erroL5820bNcpadf79b1u487zzbIJALekgIiJ+8SKx\n2QmMBo4D3qP4+Ww+BroDl3rwTvHZQQfBjTfCt9/Cl1/CaadZEXLnztC0KVx0kS31oCUdREQkmcp7\n+Kx3nK06cChQDxsGvhb4GvjNw3dJiggEIDfXtttvh88+g2efhWeegXvvhX33hRNPtC6rFi38jlZE\nRNKdV6t7h9sAfABMB57FRj8pqckAWVnQsSPcdx+sWAHvvmsrjz/yiK1npaUcREQk0dwmNnt5EoWk\nnXLloGtXS2p+/NHmxTnhBPjf//yOTERE0pnbxGYVNoR7MFoiQYpRowa89JK14gwdquJiERFJHLeJ\nzR7A8ViX02pgMnAsNkJK5P8dcAA8/bQlODfe6Hc0IiKSrtwmNhOB4KpC1YChwJvACuBeoJ3L50sa\n6d0bbrgBrrvOEhwRERGvuU1sRgINsVabfGzl7gDQALgA+Bz4BrgW2M/luyQNXHkl9O9va1QtWuR3\nNCIikm68GBW1DXgNm2G4PnAK8AawHUtyWmAzDX8LfAaMAup68F4pg7KyYPJk2Htv6NsX1q/3OyIR\nEUknXg/3/hubebgX1pJzPvCpcy4AtAf+g3VVveHxu2NRFbgDeBubX2cHMC7Ge4c510fa6nkdaDqr\nVg1efBHWroWTToLt2/2OSERE0kUi5rEJ+g1bI+oIoBlwNRDsfCiPzVScbHWAM7Gi5wLnWLxz4w4D\nDi+y/e5RfBmjeXObyO+tt+Daa/2ORkRE0oWXMw9H8xPwAlAJaATUTNJ7I8URnHunNjCiFM9YABR6\nFVAm+/e/4dZb4fLLoW1bGDTI74hERKSsS3Ri0wjIA04C2rLrMPDNCX53SUo7JF1D2T106aUwdy4M\nG2ZDwtu08TsiEREpyxLRFVUDOANbEPNn4E5s7agA1u3zLnA6VmhcFr2KFUyvA54HWvsbTtkWCMCk\nSbD//lZMvG5dyfeIiIgUx6sWm4pAb2xkVA/n+3BzgaexIeG/evTOZPsVuAkb2bUBaAOMdb7vCMz3\nL7SyrXJlKCiAdu1gyBB44w0on6xOUhERSStuf310w7qZ+mOreodbio2QehpY4vI9qeAtZwv6CBvm\nPh+4AejnR1DpYp99YNo0OO44GDsW7rrL74hERKQscpvYvF3k+3XANCyZ+cTls8uCn4GPsZFR4lLX\nrnD33TBmDBx6KJx8st8RiYhIWeNFg/8m4GUsmXkTqz/JNFGHjI8ZM4aaNXcdCJaXl0deXl5CgyqL\nRo+GwkIYMQJatoScHL8jEhGRRMvPzyc/P3+XY+tLOYOr2xE+Q7Fh3H+5fI4f6gBrsFmRbyjlM5oB\n87AuqgERzucAc+bMmUOOfkPHbNMm6NQJVq+GL7+Eepr+UMI0btyYFStWkJ2dzfLly/0OR0QSpLCw\nkNzcXIBc4phmxe2oqCcpe0lND2Agtr4V2Kimgc5WyTk2CdgKNAm7bwZwBdAH6IqthTULa6G6JuFR\nZ5BKleCFF2DzZhg8GLZu9TsiEREpKzJx7MmDwN7O1zuBQc62E9gXWIYlfFns2qI1Hxv11QRLgNYA\n7wA3At8nI/BM0qQJPP88HH00XHwx3Hef3xGJiEhZkImJzb4xXDPc2cJdlIBYJIojj4T774dzz7Vi\n4uFF/4uIiIgUEWtis4NQgWy5Yo6XRrmSL5FMdvbZVkx8zjnQqhV06OB3RCIiksriqbEJELnYOOBi\nE4kqELBWm9xc6N8ffi2r0zuKiEhSxNpiExw1VLR1prSjiSI9SySiihWt3iY3FwYMgJkz7ZiIiEhR\nsSY218V5XMRTDRvaSKnOnW2um4cf9jsiERFJRYlYBFMkIQ4/HCZOhEceUWIjIiKRuR0V1RnrUvoS\n2BjjPXsCHZz7PnT5fskwp58Oc+fCqFHQurWNnBIREQly22Iz09n2ieOexmH3icTtnnvgX/+CgQNB\nE8+KiEg4dUVJmbPHHjB9OlSoYCOl/vnH74hERCRV+JHYBN+53Yd3S5qoVw8KCmD+fJvjZqfG2ImI\nCP4kNsHlDP704d2SRnJz4dFH4YknbK4bERGReIuHm4Z9HT7BXiNKXgyzItAcW1sJYFGc7xbZzSmn\nWDHxRRfBwQfb2lIiIpK54k1sfmL3ifUCwFtxPCOYED0Z57tFIrr9dvj6axg0CL78EvbZx++IRETE\nL6Xpioq0JEI8yyj8A9wBTCp11CJhypeHqVOhenXo1w82xjrxgIiIpJ14W2xOd/Y7sSTlMef7q4GV\nUe7biSU0K4G5lNxtJRKX2rXhxRdtGPiIEfD007bOlIiIZJZ4E5vJRb4PJjYvAQtdRyPiQps2MHky\nDB4MOTlwySV+RyQiIsnmdlRUV+BoYKkHsYi4NmgQXHEFXH45vBVP5ZeIiKQFt0sqvO9FECJeuvFG\n+OorGDIEZs+G5s39jkhERJJFMw9L2ilXDp55BurWhb594S9VdImIZAy3LTbhsoC2wCFAbaASu46c\niuQGD98v8v9q1rRi4g4d4LTT4LnnVEwsIpIJvEpshgHjsAn8Yv31sRMlNpJArVrBU0/ZEPBbboGr\nrvI7IhERSTQvuqJuwUZH7U3sSQ1xXitSKn37wrhxcM018OqrfkcjIiKJ5jax6QCMdb6egXVF5Tjf\n7wTKAXWBHtiQcICPsCUYVN8jSXHttdCnD5x8Mnzzjd/RiIhIIrlNLs519j8DvYF5wNaw8zuBddiS\nC/2AkcCRwJtABZfvFolJVhY8+SRkZ8MJJ8CfWn5VRCRtuU1sjnD29xFKaKJ1MU0EngfaYEmOSFJU\nr27FxKtWwamnwo4dfkckIiKJ4DaxaYi1yiwIOxb+K2OPCPdMcfaDXb5bJC7772/DwF99Fa67zu9o\nREQkEdwmNsHEZU3YsfBZQ+pGuOcXZ69p0yTpevaEm2+2SfxeeMHvaERExGtuE5u1WNdT9bBjqwm1\n2rSMcE8DZ1/N5btFSmXsWBg4EIYOhQULSr5eRETKDreJTXDhywPDjm12jgeAIRHuOdnZ/+ry3SKl\nEgjA449Ds2Y2HPyPP/yOSEREvOI2sZnl7LsWOf6ssx8O3Ai0BtoDE4A859wbLt8tUmpVq1ox8R9/\nQF4ebN/ud0QiIuIFt4nNi86+N7t2R90H/OQ8/ypsGPinhIaH/wHc6vLdIq40awZTp8KMGZqVWEQk\nXbhNbBZgrTX92HUE1N/O8Y+d7wOEhoEH7/kFEZ916wZ33gm33w7PPlvy9SIiktq8WCvq/WKO/wQc\nhdXftHbe9S0w14N3injmwguhsBBOPx0OPBDatvU7IhERKS0vV/cuzhJnE0lJgQA8+igsXmzFxF9+\nCXXq+B2ViIiUhtZrEgEqVYKCAti4EQYPhm3b/I5IRERKQ4mNiKNpU5g+HT78EC691O9oRESkNGLt\nijoNWzrBa08m4Jkipda5M4wfD6NGwaGH2iR+IiJSdsSa2DyOJTbRFriM106U2EgKGjnSionPOgta\ntYJ27fyOSEREYhVPV5SXSU0inifiiUAAHnzQRkf16werV/sdkYiIxCrWFptmCY1CJMXsuSc8/7y1\n1gwcCO++CxUq+B2ViIiUJNbE5qdEBiGSirKzLbnp0gXGjLFWHBERSW0aFSUSRceOMGECTJxoc92I\niEhqS8YEfSJl2plnWjHxyJHQurUlOyIikpq8TGyqA4OAw4GGQCXgdODnsGuygRrAP8CPHr5bJKH+\n8x+YPx8GDIA5c6BRI78jEhGRSLzqijoXWAY8CpwB9AS6AFWKXHc0tgjmQqCWR+8WSbgKFeC556Bc\nOejfHzZv9jsiERGJxIvE5mpgAtZisxkojHJtPrAaqAgM8ODdIknToIEtu/DVV3DeebAzEVNWioiI\nK24Tm0OA652v87EuqGjTmW0HXnC+7uby3SJJd9hh8Mgj8NhjVlAsIiKpxW1iMwqbaO8L4FRgfQz3\nfOLs27h8t4gvhg6FCy6w7cMP/Y5GRETCuU1sujj7B4AdMd6z1Nmr/FLKrDvvhKOOssn7li3zOxoR\nEQlym9g0wtZ8WhjHPRud/Z4u3y3imz32gKlToXJlW3Zh0ya/IxIREXCf2Gxz9uXiuKe2s//T5btL\noypwB/A2sBZrZRoXx/31gMnOvX9j3WpdvQ1Ryoq6da2YePFiWzBTxcQiIv5zm9gsx2psDozjnqOc\n/Q8u310adYAzgT2AAudYrL+OKgLvYkPWRwN9sBFebwKdvA1TyopDD4VJk2DKFBg/3u9oRETE7QR9\nM7Gk5lRgSgzX1wTOdr5+1+W7S+MnYC/n69rAiDjuPQNoDfwL+Nw59j7wNdYKdLgnEUqZk5cHc+fC\nJZfAwQdDN433ExHxjdsWm4ewFo9u2CR90dQBXgLqA1uAh12+261AnNf3A5YQSmrAhq9PAdpjQ90l\nQ916qyU0J54IS5eWfL2IiCSG28RmPnAnliQ8gHXvDHHOBYCOwMnAg8D3hLqhrgN+cfnuZDsImBfh\n+Hxn3zqJsUiKKVcO8vNhr72gb1/4+2+/IxIRyUxezDx8BZbUBIATgGfCzj0CPAWcg81MDHA3cJsH\n7022WsDvEY4Hj9WOcE4ySK1a8OKL8MMPMHy4iolFRPzgRWKzEyumPQ54j+Lns/kY6A5c6sE7RVLS\nQQfBk0/C9Olw++1+RyMiknm8XN37HWerDhyKDY0uhw2N/hr4zcN3+WEdkRfurBV2XoT+/eHqq+HK\nK+GQQ6BHD78jEhHJHG4Tm8exFps3gOnOsQ3ABy6fm4rmE3kZiIOd/YLibhwzZgw1a9bc5VheXh55\neXneRScp5frrbbHMvDyYPRtatPA7IhGR1JWfn09+fv4ux9avj2WVpt3FOzKoqB1YYtMLm8+lLKkD\nrMEKmW+I4fpzsCLow7G1scASw6+wZK5jhHtygDlz5swhJyfHbbxSxvz5J3ToAFlZ8PnnUK2a3xGl\nh8aNG7NixQqys7NZvny53+GISIIUFhaSm5sLkAsUxnqf2xqbtVhytMrlc5KpBzAQON75vrXz/UCg\nknNsErAVaBJ232PY0hHTgTxsiPs0oAVwecKjljKnRg0rJl6+3BbO3BHramoiIlJqbhObRc5+b7eB\nJNGDWEIyCWttGuR8PxWo61yT5WzhLVpbgGOwSQnvB17G5uTpAcxKRuBS9hx4IDz9NLz0Etx0k9/R\niIikP7eJzVPOfpjL5yTTvoQSl3JFvg6u0zy8yPdBa7CftQ5QGTgCGwkmUqzjj4cbboBx4+Dll/2O\nRkQkvbktHp6MdcucAFyP1ato9g6RIq680pZdOOkkyMmxCf2ysmwfvkU6lqhr/b6/UiU7LiLiJbeJ\nzZHAXVgXzjXAYKxLZx7wB7bkQDQfuny/SJmQlQWTJ1urzdq1Vm+zffuu244dsHXr7sciXVfaY+HH\n/Va/PpxwAvTrB127QoUKfkckIunAbWLzPtZCE6xFOQC41vk6WstNwDlfzuX7RcqMatXgnnv8jiIk\nPPHxOoEq6di2bVBYCAUF8MgjUL069OplSU6PHlC1qt+fjoiUVV5M0FfckPGShpK7HWouIi5kZdm2\nxx7+vP+kk+DOO2HePEtwCgpsva2KFeHYYy3J6dMH6tTxJz4RKZvcJjZdXdyrWhyRDBcI2OzMhxwC\n110HP/4YSnJGjLDznTpZktO3LzRt6nfEIpLqvOiKEhHxRLNmcPHFtq1ebcPkCwrgkkvgggsgNxf+\n9z+/oxSRVKYxCSKSkurXh7POgjfesILr/HzYb79QYrN6NYwda7M6a/JDEQlSYiMiKa9GDRgyBKZO\nhYYN7ViFCjBpEhx+ODRpAiNHwjvv2MgyEclcSmxEpEwJOMMO9toLVq2CDz6AwYPhtdes6Lh+fVvC\noqAANm70N1YRSb5YE5tXsQUdE6Ed8FqCni0iaaxcOSsuvvdeWLrUhpCff75Nhti/v42o6tcPnnwS\nfv/d72hFJBliTWx6ArOBAmwZAS90wtZb+gJbb0lEpNQCATj0UFu+Yv58+PZbuP56q8U57TSoVw+6\ndYMJE2DFCr+jFZFEiTWxuQFbBPIEbLbgH7AlFNrG8Yw9gMOAW4CfsMUkewP/OM8SEfFMixZw6aXw\nySewciU88IC18IwZA40bQ4cOcNtt8M03fkcqIl6KZ5K8fbC1oE4hlMzsBDYBc7FlFH4Dfgf+B1QH\namELRh4KHAJUDHvndmwRzevYfbHJdJEDzJkzZw45OYnqyRPJLI0bN2bFihVkZ2ezfPnyuO9fv97q\ncQoKbMTVxo3QsqV1WfXrZ0PKA5o+VMR3hYWF5ObmAuQChbHeF888Nj9hK1vfAIwGTgX2IrTKdaxd\nVOuwhOY+55kiIklTsyacfLJtmzbBjBmW5Dz0ENxyi42w6tvXkpyjjoLyXszPLiJJU5pRUT8CY4CG\nQC/gTqxOZlsx128DPgPuwGp1GgEXoaRGRHxWqZIt2/D441aL8957tjBnQYEtzNmgAQwfDi+/bEmQ\niKQ+N/8W2QK84WxgC1rWwVb6rgGsB9ZiLTQpsJawiEjxypeHo4+27b77YM6c0PIOkydDlSrQvbu1\n5PTqZS0/IpJ6vGxk3Q6sdjYRkTIrEIB27Wy7+WYrMA4mOaecYklQ166W5JxwQmjSQBHxnyboExEp\nwQEHhJZv+OUXGD8etm+3OXOys6FjR1up/Pvv/Y5URJTYiIjEoXHj0PINa9ZYN1X9+jBunA0xP/hg\nuPZamyRw506/oxXJPEpsRERKqVat0PINa9fCCy/YJIH33w85ObZa+YUXwocfWguPiCSeEhsREQ9U\nqRJavmHNGhtG3rMnTJsGnTtbHc6IETaHzj//+B2tSPpSYiMi4rE99ggt3/DLL/DZZ3D66TBrFvTu\nDXXrwoknwrPPwoYNfkcrkl6U2IiIJFBWVmj5hiVLYOFCK0T+4QfIy4NGjWD6dL+jFEkfSmxERJIk\nEIBWreCqq+DLL+Hnn+H442HwYFu8U8XGIu5psnAREZ80bQrPPAOtW8M118DixfDYYzYjsoiUjlps\nRER8FAjA1VfDc8/Z0g2dO9tq5CJSOkpsRERSwIABVly8ciW0b29LOohI/JTYiIikiJwcmD3bZjM+\n6igVFYuUhpeJzdHAU8B3wF/Y2lGtilzTCTgPOMXD94qIpI2GDeH9920NKhUVi8TPi+LhysDjwKAY\nrt0JPODsP8eSIBERCVOpkoqKRUrLixabZwglNbOBe5yvI/0bYxawCAgA/T14t4hIWgovKn7pJRUV\ni8TKbWJzAtDH+fo8oANwSQn3vOjsO7t8t4hI2hswAD76KFRUXFjod0Qiqc1tYjPM2T8LPBTjPbOd\nfUuX7xYRyQjBouJGjeDII60VR0Qic5vYdHD2+XHc86uzr+fy3SIiGaNhQ/jgAysqHjQIbrxRRcUi\nkbgtHq6D1dIsi+Oe7c5eQ81FROIQLCpu1QquvRYWLVJRsUhRbpOL/zn7qnHc09jZr3P5bhGRjBMI\n2Eip6dNDRcW//lryfSKZwm1i8z02wik3jnt6OPuFLt8tIpKxBg4MzVR82GEqKhYJcpvYvOHszwbK\nxXB9a+A05+vXXL5bRCSj5ebCF1+Eioqff97viET85zaxmYDNMtwSmAxUjHLtccDbzjW/AZNcvltE\nJOM1ahQqKh44UEXFIm6Lh9cCI7Dh3icDXYGXnXMB4AIseToCONA5vgM4Ffjb5btFRAQVFYuE82JJ\nhWnYSKdJQEOsWyrozCLXbgCGAm958F4REXEEi4pbtoShQ62o+KWXbJi4SCbxasj188B+wLXAHEJD\nuoMWADcDzQm16IiIiMdUVCyZzsu5ZNYBNwGHAXsC9YFGWE1NG+AarLZGREQSSEXFkskSNUnedqz+\nZhWwNUHvEBGRYgSLivv0sVacm25SUbFkBi9qbEREJAVVqgT5+VZUfM01VlQ8aZKKiiW9uW2xqQC0\ncrY9I5yvBNwDLAc2AYuAUS7fKSIiMQoEbKTUtGnw4ovQpYtmKpb05jax6YsVBs/EhnEX9QIwhlCt\nzYHAf4D7XL5XRETiMGiQFRUvXw7t28PcuX5HJJIYbhObfzv7AmBLkXO9ws4vB14EVjrfjwT+5fLd\nIiISh9xcmD0bGjSwouIXXvA7IhHvuU1sgmtEfRjh3HBn/y22lEJ/Z78Em7xvhMt3i4hInIJFxb17\nw4ABcPNAIRTqAAAgAElEQVTNKiqW9OI2sakH7AR+iPDcY52vHyC0CvifzvcAHV2+uzSqAuOBFVjN\nz1zgxBjuG4Z1tUXa6iUiUBGRRKlcGZ59Fq67Dq6+Gk45BTZt8jsqEW+4HRVVx9n/U+R4W6AalvQU\nXexygbNv4vLdpfEC0A64HGtJOhnIxxKx/BjuH4a1OIX73cP4RESSIhCAceNsxNRpp8H331txsWYq\nlrLObWKzBRv5VKfI8U7OfjmwtMi5YOtNLKuBe6kn0A3IA6Y6xz4A9gbudI5FKoAOtwDQPJ4ikjYG\nDYJ997VFNNu3h5dfhkMP9TsqkdJz2xX1E1Yvc3iR48c7+1kR7qnl7Ne6fHe8+mFJ1fQixx/HRm11\niOEZAa+DEhHxW7t2NlOxioolHbhNbGY6+/OxuWwA+gBdnK9fj3BPa2ef7JkUDgIWs3urzHxn35qS\nvQpsw5aPeD7Ge0REUl52toqKJT247Yq6HzgLWxdqPvAHoRaZFdgv/6KOc/bzI5xLpNrA9xGO/x52\nvji/YutgfYatUN4GGOt835Hk/ywiIp4LFhW3amVFxYsWwX//q5mKpWxx22LzLXAKsBHrpgkmNeux\nWpbNRa5vQCixec/lu5PpLWzl8teBj4AHgaOw4ugbfIxLRMRTwaLiadOgoACOPhpWrfI7KpHYebFW\n1HRsHpteWOKyEniZyKOF2gDPYAlBpG6qRFpH5FaZWmHn4/Ez8DG71xeJiJR54UXFhx2momIpO7xa\nBHM18FgM173tbH6Yh7UiZbFrnc3Bzn7BbnfEpsRe6DFjxlCzZs1djuXl5ZGXl1fKV4qIJF6wqLhv\nXysqfuop6N/f76gkHeXn55Ofv+usK+vXry/VszJplE93rJVoCDAt7PibWBFwU2JIUsI0w5Klt4AB\nxVyTA8yZM2cOOTk5cQcsIrtr3LgxK1asIDs7m+XLl/sdTkbYuBGGD7fuqZtugiuvtC4rkUQqLCwk\nNzcXbJWDmKda8arFpix4E5gBTASqY7Ml52E1PycTSmomAUOxxOUX59gMrCZoIfAX1spzGTZC6prk\nhC8i4o+iRcWLF1tR8Z57+h2ZyO68TGzqYAtb7ovNOhzLBHzJLrztD9zsvLcWNvy7aAtOlrOF/3tk\nPpb8NMEmJFwDvAPcSOSRViIiaSVYVNyy5a4zFTdo4HdkIrvyIrGpD9wLDMSSmVgbKP0YUfQ3MMbZ\nijOc0AKeQRclLCIRkTJk8ODdZypu29bvqERC3A733gubXXgIliTF0+uqHloRkTLosMNg9myoVw+O\nOEIzFUtqcZvYjAWaO1+/jRXo1sOSnKwYNhERKYOys+HDD6FXL81ULKnFbVfUCc7+NULrQ4mISAZQ\nUbGkIretJntjtTITPIhFRETKmKwsuO46S3Cefx66dNFMxeIvt4nNX85ef4xFRDLYiSda19SyZVZU\n/NVXfkckmcptYjMPKwLe24NYRESkDCtaVFxQ4HdEkoncJjYPO/uhbgMREZGyL7youH9/uOUWFRVL\ncrlNbKYB+UA/4Ar34YiISFkXLCoeNw6uugpOPRX++cfvqCRTuB0V1QlbgmAfbEbfftjq3UuAjTHc\n/6HL94uISAoKFhW3bAnDhsEPP1jXlGYqlkRzm9i8j42KCk62187ZIPqCkgHnfCzLLoiISBl14onQ\nrJlmKpbk8WKSvOJmEA5E2aLdJyIiaSRYVFy3rhUVv/ii3xFJOnPbYtPVxb0qJxMRyRDZ2TBrli2g\n2a+fFRWPHWuLa4p4yYuuKBERkRJVrgxTp8L118OVV8LChZqpWLyn9ZpERCRpsrIsscnPt5mKjz5a\nMxWLt5TYiIhI0g0ZAh98AD//rJmKxVteJzbtsBW/n8IWxnzN+fpyINfjd4mISBnWvj188UWoqHjC\nBNi0ye+opKzzKrFpA3wGfAHcApwM9HC2k4FbnXOfOteKiIjQuLHNVDx4MIweDfvsAzffDH/84Xdk\nUlZ5kdh0w5KW9mHHtgGrnW2bcywAdAA+d+4RERGhShV4/HH45htbhuHGG6FpU7j4Yli+3O/opKxx\nm9jUAaYDFYAdwH+x5KUK0NDZKjvHHnWuqYgtxVDb5btFRCSNNG8OEyda3c3o0fDYYza53/DhsGiR\n39FJWeE2sbkAqAFsBXoBZwGzne+DtjnHzgZ6Ot/XBMa4fLeIiKSh+vWtO2rZMrj1VpgxA1q3hj59\n4OOP/Y5OUp3bxKaXs38AeCuG698G7nO+7uny3SIiksaqVbPuqB9/tNab776DI4+07ZVXYMcOvyOU\nVOQ2sWmGzSD8chz3vBJ2r4iISFQVKlh31MKFthzDjh3WetOmDTzxBGzZ4neEkkrcJjbB+SL/iuOe\n4KrfFV2+W0REMkhWli2m+ckntjzDvvvayuH77Qf33gt/xfObSNKW28RmFTbaKSeOe4Lruq52+W4R\nEclQwe6o+fOha1e47DIbSXXNNbBmjd/RiZ/cJjaznP3lQPUYrq/uXAvwkct3i4hIhjvoIOuO+uEH\nW2Dz3nth773hvPOsNkcyj9vE5mFn3wxLctpHuba9c02wtubhKNeKiIjErGlTS2qWLbMFNqdPhxYt\nbOmGuXP9jk6SyW1i8xHwoPP1wdjMwvOx+WxudrZJwAJsZuKDnWsfRC02IiLisVq1rDvq55/hvvvg\n888hJweOOw7efRd27vQ7Qkk0L2YeHg3chY2OCgCtgdOBK5xtONDKuXYHcCcwyoP3ioiIRFS5Mowc\naUPE8/Nh7Vro1g0OO8xac7Zv9ztCSRQvEpsdwGVYUfBDwPcRrvkOmOhcczmWBImIiCRU+fLWHVVY\nCG+9BTVq2LpUBx4IDz8M//zjd4TiNS9X954PnAfsD1QCGjlbJeAAYCTWJSUiIpJUgUCoO+qLL6Bt\nWzj3XFt089ZbYf16vyMUr3iZ2ITbjA0FX+V8LSIikhKC3VHffGPz4lx/vRUfX3oprFjhd3TiVqIS\nGxERkZTWooV1R/30k9XjPPqoTfp3+umweLHf0UlpeZnY7AEMxOpsZgELnW0WVl8zACjv4ftERERc\na9DAuqOWLYNbbrFanFatoG9f+PRTv6OTeHmV2PQDlgLTsBW+jwBaOtsR2Mre04GfnGtFRERSSvXq\ncMklNrHfpEmwZAl07AidOsFrr2moeFnhRWJzIfA8VigctBT43Nl+CjveCHjOuUdERCTlVKxo3VGL\nFkFBAWzdCr1726KbTz1l30vqcpvYHI7NSwOwARvKXQ/YD/iXszUD6jvnNmBz3dwBdHD5bhERkYTJ\nyrLuqE8+gQ8+sALjoUNt0c3x47XoZqpym9hc5DxjA9ARS3J+i3DdWufcv5xrywEXu3y3iIhIwgUC\noe6oefOgc2frstp7b7j2Wpv8T1KH28TmKGd/O7AohusXA7cVuVdERKRMOPhg64764Qc49VS4+25L\ncM4/H5Yu9Ts6AfeJzV7YLMLvxXHP+86+pst3i4iI+GLvva07atkyGDsWpk614eMnnQRffeV3dJnN\nbWLzK1YzU9p7RUREyqzata076uefLdH59FM49FDo3h3ee08jqfzgNrGZ4ey7xHFPZ2c/0+W7RURE\nUkLlytYd9d138PTTsGoVHHMMdOgAzz2nRTeTyW1iczewERvxdEAM1+/vXLuR0GgqERGRtFC+vHVH\nzZ0Lb7wBVavCoEHQsiU88ogW3UwGt4nNN8AgrDvqU2x+mloRrqsFjHGuCQCDgSUu3y0iIpKSAoFQ\nd9Tnn9scOOecY0s23HYb/Pmn3xGmL7dLHMzEiofXAC2wFpw7sQn61jjn6gP7EkqivgcucbbidHUZ\nl4iISEpo3966o779Fu66C8aNs6UbzjkHxoyBRo1KfobEzm1i0znCsSxsgr79irmnubMVR6VWIiKS\ndvbf37qjrr8e/vMfmDjR9qeeaiuLHxBLQYeUyG1i86EnUexKiY2IiKSthg2tO+qKK2x18fHj4bHH\nbJbjyy+3gmMpPbeJTRcvghAREck0NWrAZZfBBRfAlClw551w+OFw7LH2fb16fkdYNnm1ureIiIiU\nQsWKcMYZtujm88/D/PnWarMolvn8ZTdKbERERFJAVhb072+jqKpWhY4d4Z13/I6q7ElGYrMn0A04\nEWifhPdFUxUYD6wANgFzsbhiUQ+YjC3o+TfwCRq9JSIiHmvaFD7+2LqlevSA//7X74jKFreJzd7Y\n8O47sHWjijoc+AF4C8jH5rH5Emjq8r2l9QIwFLgO6A7MduLKK+G+isC7wNHAaKAPsBp4E+iUoFhF\nRCRDVa8Or74KI0bAmWfaelQ7dvgdVdngtni4P3AxUAhcVuRcNeBFrKUjKADkAK8DbYFtLt8fj55Y\ny1EeMNU59gGh5GwqUNwfmzOA1sC/gM+dY+8DX2NJ3eEJiVhERDJW+fLw4IO2uOYll9iK4k8+CZUq\n+R1ZanPbYnOss38pwrmzCCU19wF9gQed71sBw1y+O179gP8B04scfxxoBEQbYNcPmyn587Bj24Ep\nWPdaQ+/CFBERMYEAXHQRvPACvP46dOkCq1f7HVVqc5vYNHP2X0Y4N9jZF2DLKbwMnE8osRjg8t3x\nOghYzO6tMvOdfesS7p0X4Xgs94qIiLjSty98+CEsW2YjphYu9Dui1OU2samHTahXNH+sDuQ65x4v\nci7YDXSIy3fHqzbwe4Tjv4edL04tF/eKiIi4lptrI6aqV7cRUzNm+B1RanKb2FRz9uWKHD/CefZ2\nrBYl3C/OPtJimSIiIlKMpk3ho48ssenRAx591O+IUo/bxOZPrCC46BJeXZz9POCvYu5N9uLt64jc\nslIr7Hy0e4tbtbyke0VERDxTvTq88gqcfTacdZbNXqwRUyFuR0UtwIY79ydUQFyOUH3NzAj3BJOg\nZJc/zcNGRGWxa53Nwc5+QZR75wNtIhyP5V7GjBlDzZo1dzmWl5dHXl5Jo8xFRER2V748PPCAjZi6\n6CIbMfXUU1C5st+RlU5+fj75+fm7HFu/fn2pnhVwGctobMK7ncDd2KKYQ4GBzvkO2Fwx4W4ErgLe\nw4ZfJ0t3bJj5EGBa2PE3seLfphS/AOc52Iiuw4EvnGPlga+ADUDHYu7LAebMmTOHnJwcV8GLiGnc\nuDErVqwgOzub5cuX+x2OiO9efhny8qB1a/u6QQO/I/JGYWEhubm5YDW7hbHe57Yr6hFspFEAuARr\ntQkmNa+we1IDNnQadh06nQxvAjOAicAIbLK9R4DjsDl4gknNJGAr0CTs3seAhdiIrjwsIZsGtAAu\nT0LsIiIiEfXpYyOmli+3EVMLovYhpD+3ic0/2C/5F7DJ9gLAFuAp4JQI13fG5rABm4042fpjsd0A\nvAEchrXghLd/ZTlbeGvWFuAYrGvtfmzoen2gBzAr4VGLiIhEERwxVbMmHHEEvP223xH5x22NDcCv\nWCvNnlgx7TpgczHXLsPWV9oJfOTBu+P1Nzanzpgo1wx3tqLWkPxJBUVERGLSpImNmBoyBHr2hAkT\nrMA403iR2AT9A6ws4ZqlziYiIiIeq1YNXnoJLrwQzjkHvvsO7rjDVg7PFF4mNiIiIuKz8uXh/vtt\nxNSYMfDjjzBlStkdMRUvL3O46thikY8Cr2KrYe9d5JpsrMamGSIiIpIwo0db683bb0PnzvDrr35H\nlBxeJTbnYvUzj2LJTU9skr4qRa47GpvzZSGaeVhERCShjj8eZs2ClSttxNT8+SXfU9Z5kdhcDUzA\nWmw2E32seT42MV9Fkr8IpoiISMY59FAbMVW7to2YevNNvyNKLLeJzSHA9c7X+UBDoF2U67djQ8Mh\nuZPziYiIZKzGja3lplMn6N0bJk70O6LEcZvYjMLme/kCOBWIZf7jT5x9pCUKREREJAGqVrWam5Ej\n4bzz4OKLYft2v6PynttRUV2c/QPsuv5SNMHh3kUXzhQREZEEKlcO/vMfaN7cRkz98AM8/TRUKVoR\nW4a5bbFphE22tzCOezY6+z1dvltERERKYdQoW1fqnXdsxNTKkmahK0PcJjbbnH25OO6p7ez/dPlu\nERERKaVevWym4lWrbMTUvHl+R+QNt4nNcqzG5sA47jnK2f/g8t0iIiLiQtu2NmKqbt30GTHlNrGZ\n6exPjfH6mkBw5Yp3Xb5bREREXMrOttXBu3SxVpyyPmLKbWLzEFZj0w2bpC+aOsBL2KrYW4CHXb5b\nREREPFC1Krz4Ipx/vo2Yuuiisjtiyu2oqPnAncBl2Mio44CpzrkA0BE4FDgCOAmbxA/gOuAXl+8W\nERERjwRHTLVoARdcYCOmnnmm7I2Y8mIRzCuAysD5wAnOFvRIhOvvBm7z4L0iIiLisfPPh333hSFD\nbEK/V16BRmVoghYvllTYCYzGWmveo/j5bD4GugOXevBOERERSZDgiKnVq23E1Ndf+x1R7LxosQl6\nx9mqY91P9bBh4GuBr4HfPHyXiIiIJNAhh9iIqeOPhyOPhKlToWdPv6MqmVere4fbAHwATAeexUY/\nRUpqtAimiIhICguOmDr6aEtwJkzwO6KSJSKxiSYADMGKjqcl+d0iIiISp6pVoaAARo+2+psxY1J7\nxJSXXVHRlMNGRV0JHJCkd4qIiIgHypWDe++1EVOjRsGPP9qIqapV/Y5sd6VpsamMFQu/itXOfA28\nDJwJVIxw/RBgCfAEoaRmC/BoKd4tIiIiPjnvPHj1VZg500ZMrVjhd0S7izexOQhLUsYDPYGDna03\nNuHeHGwCPoCmWK3NM8B+zrF/gAlAc0IzEIuIiEgZ0aOHjZhau9ZGTH31ld8R7SqexKYyNnNw4yjX\ntAKmYEnNx4TWhfobuAfYFxiFrTElIiIiZVBwxFT9+jZi6rXX/I4oJJ7EZiiWmIDNV9MJqIYlPO2w\nEVAAx2AJUDY2p82DQDPgEmC1+5BFRETEb40a2Yipbt2gTx+4/36/IzLxFA/3cfbfAj2ArWHnCrHi\n4JrYJHyHOOf7Aa+7D1NERERSTZUq8PzzcNllNmrqu++syLhcOf9iiqfFpo2zv4ddk5pwt4R9/RhK\nakRERNJauXJw993w4IO29e0Lf/3lXzzxJDa1seUTlkS5ZrGz34mNlBIREZEMcO65NmLqgw/gqKNg\nuU/VtPEkNsGh3NGWRlgX9nUKDgITERGRROneHT7+GNatsxFTc+cmP4ZEzjy8LYHPFhERkRR08ME2\nYqpRI2u5eeWV5L4/2UsqiIiISJpr2BDefx+OO85qbu67L3nvjndJhQBwHrAmyvlYrgu6Ic73i4iI\nSBlQpQo89xxcfjlccEFoxFT5BC/mVJrHn+fRdTtRYiMiIpK2srLgzjuheXMYOdLWmHr2WahWLYHv\nTNyjSxQo+RIREREp684+22YnnjUr8SOm4mmx6erxu3d6/DwRERFJUf/+N3zyCfTqBe3b29DwnBzv\n3xNPYvO+968XERGRTHHQQTZiqk8fa7nJz7evvaRRUSIiIpI0DRrYiKnu3W3E1PjxsNPDPhwlNiIi\nIpJUlSvD9OlwySVw4YVw/vmwzaPZ7xI86EpERERkd1lZcMcd0KKFLcewdKmNmKpe3eVzvQlPRERE\nJH5nnglvvGFLMRx5JPzyi7vnKbERERERXx17rI2Y2rDB1piaM6f0z1JiIyIiIr5r3dpGTDVpAp06\nwcsvl+45SmxEREQkJdSvDzNnQo8ecP31pXuGEhsRERFJGZUrw7RpcEMpF11SYiMiIiIpJSvLZigu\n1b3ehiIiIiLiHyU2IiIikjaU2IiIiEjaUGIjIiIiaUOJjYiIiKSNTEtsqgLjgRXAJmAucGKM9w4D\ndhSz1fM6UBEREYlfpi2C+QLQDrgc+BY4GcjHErz8GJ8xDFhS5NjvHsUnIiIiLmRSi01PoBtwLvAo\n8AFwFjADuJPYP4sFwBdFNo8WW09f+fmx5o3pT5+F0edg9DmE6LMw+hzcyaTEph/wP2B6keOPA42A\nDjE+J+BlUJlCf1FD9FkYfQ5Gn0OIPgujz8GdTEpsDgIWYzUx4eY7+9YxPudVrIVmHfB8HPeJiIhI\ngmVSjU1t4PsIx38POx/Nr8BNwGfABqANMNb5viOhBElERER8UlYTmy7AezFe2xaY58E733K2oI+A\n17CE5gasq0tERER8VFYTmyXAiBivXebs1xG5VaZW2Pl4/Qx8DBwe7aLFixeX4tHpZf369RQWFvod\nRkrQZ2FK+zls2bLl//fp8Dnqz0OIPgujz8GU9ndnJhXCPgzkATXZtc5mCPAM1p30WSme+wZwCFaA\nXFRDYDaQXYrnioiIZLoVwGFYOUhMMimx6Q68jiUy08KOv4kVADcFdsb5zGZYN9dbwIBirmnobCIi\nIhKfX4kjqclEb2FdTiOAo4FHsNabvCLXTQK2Ak3Cjs0ArgD6AF2BC7BMcj3QKqFRi4iIiERQBVtS\nYSXwD7akwuAI1z0ObMdacYLuwSbn+xPYAiwHngCaJzBeERERERERERHxipvFNtNJVeAO4G1gLdbt\nN87XiPxxDNa69y3wN9ba9yKQ42dQPmiLTZHwM7AR6xb+BFuzLdONwP5+/M/vQJKsC8UvLtzev7B8\ncyRWC/o79nfkW+BqXyNKvskU/2cipj8XZXW4d6rzYrHNdFAHOBP4CijA/ucdb4F2OjgbqAvcCyx0\nvr4YG4X3b2Cmf6ElVQ1s+oWnsaS/KvZ34ylgH+Bm3yLzVzZwF9ZFXt3nWPxyBbv/PVjoRyA+Ogl4\nEpgKnAr8hZU6ZNrgkxuAB4scCwCvYA0Fs5MekdATyyqLttC8hf1LPZOWsQhXG/tcrvU7EB/Ui3Cs\nClbpPyPJsaSiT7FWnEz1Cpb4P07mttj09zkOv2VjicwDfgeSojpjf06uj+XiTP0lm0heLbaZbjJp\naoGi1kQ49je2dlnjJMeSitZh669lolOAo4CRZPbfkUz+2cFasysDt/sdSIo6A0tsJsVysRIb73m1\n2KaktxpYjU2mNbeD/RIrj3XJnYd1x93la0T+qI/V4o3FuqEy2QRsio0/sbnFjvA3nKTrhCX4rbCu\n+63AamAiUM3HuFJBDWAg8C6hlQQkyb7Fir+KaoglO5cnN5yUUYfM7YqKZAqwGTjU70B88BChQsCt\n2JxQmeg54MOw7yeTeV1RbbGpNPpgycwwLNnfChznX1hJtwQrFv4T+x3RCbgEa9md5WNcqeAc7P8V\nkaZmkSRRYhOZEpuQG7HP4jy/A/FJE6y1qjtWJLidzPt7MRCbS+uAsGOTybzEJpJgkflcvwNJom+x\n/ydcVuT4aOd416RHlDpmY935e/gdSCb7FPg8wvHW2B/QWBfvTDdKbMw47HMY63cgKeRBbNLLun4H\nkiRVgVXYVAg1w7ZnsMSmBlZcnskmYn9PKvodSJJ8iv28hxQ5vr9z/OKkR5Qa2mA//z3x3KQaG+/N\nA1qy+2d7sLNfkNxwJIWMC9tu8zmWVDIbq7nZ1+9AkqQONlLuEmy+kuA2BEto/sCGwEvmTA/xVQnn\nM+VzKOoMZ/9fX6MQuhO5P/BN4Bcyt/o/01tsriGO4YoZ5kmspqK234EkSUVs+GqnsK0z8AZWZ9GJ\nzF5/bi9saow5fgeSRN2w/z9cUeT4hc7xTCumBvt7sg5rzYqLJujz3pvY3CQTscm2fsAW2TwOm4ws\n0zLvHti/QoOV/a2x+gKwWWg3+RFUkl2MJTRvYvVXhxc5/1nSI/LHI1hx5GxsxEcdYBD2j4A7sP+J\nZYLNwAcRjg/H6o0+jHAuXT0NLAUKsVarFtjfl7rAUB/jSrZ3gFexf/hlYeUM7ZzvXwE+9i803/TF\nkly11qSIWBfbzARLCY2A2V7k66ZR7ksnM9n1Zw/ftvsYV7INw36hr8Fqan4H3sNmXBWb62qD30Ek\n2eVYUvMHoSHOzwG5fgblkz2BW7HJKrdg/++8icwtmn0L+/uQ6fVmIiIiIiIiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiGW4YoSUeMmWZi3C1sXWqdgCHuXjOZOcZSz2IKdW0\nw362dWTOYqVSRmX5HYCIlNo+RF5/Kt4tuDBrpi3QGnQTttjeq9gCnW6l4+f4JbZo7V7Y5yUiIuK5\nfQgtpBlpK7rYZqTz24HTwr7OtBab5tjii9uBti6fNRn7HH90+ZxUlYv9fFuA/XyORaRY5f0OQERK\nbTlwUDHnAtjquI2AFcC/ozxnEfCEt6GVGVcB5YB3ga98jiXVzcFWZ++MfW6n+xuOiIhkmp9I7xYE\nt+oDm7HPaKgHz5tM+n/eZ2A/4yagrs+xiESkGhsRyVSnAHsAG4HnfY6lrJiOJYMVsc9PJOUosRGR\nYUQfFfW+c26m8/1+wESsZWIT8DPwGLBvkfsOAh53rvsHWAY8SOz/0u8F5GMtT5uAP7Huolux1ha3\nBjv7d4C/Y7i+FdZl9wv28/wCPI2NGIrFXsBwYArW/fcXVq+yCngTOBNLtCK5B/tvsA3rXizJHOf6\nJRHO7Q/cDywIi2El9tlOwj6XCsU8dwPwnvP14GKuERERSYifiK1rZBjRi4ffd86/B3TDEozwguRg\nUvQbcLBzzymEunmKXrcUaBglnhrYL/pIxc/B7/8EepTwc0VTDUsSdgBXxHD9EEI/T9F4tmAJy2Si\nf94/Ef1n2oElJJGStpZh11xeQqxtwq69rMi5QcX8HEXjaBXl+dc412wGqpQQi4iIiGd+wtvE5hvg\nd+e552EtFR2Buwn9YvwcOAJLGhZgv/BzsYLTJwj94swvJpYK2JDr4C/OR4A+2IilDsCFWMtPsM6j\ntCOZuhP6mY8p4doO2MipHVi31c3Yz9gOOB9r7dgMzCX6570M+AS4EkvKcoDDgZOA1wl9NjOLuf9j\n5/ziEuK9l1DCFZ4k1cdaaHYAv2IFwMcAhzg/40nAQ8Bqoic2xxH67I4rIRYRERHP/IS3iU2wayPS\nBG23h13zOzAL2DPCdVMJ/dKtE+H8jc759UD7YuLdC1joXPdBMdeU5FpCP3NJXWNfOtf+AxwZ4Xwj\nQt5T9+wAAAYaSURBVMlWtM+7pCHSw8Ke0bWE8/8q5hl7AGuda14qcu50Qj9ztMSlApH/2wXVD4vj\nmijXiYiIeOonvE9sivsX+t5h12wDDijmui5h7zq+yLmqWEKzA7ighJh7hD2nNHOqTAy7P1qtYXtC\nP9d/olw3iJITm1gUOs+4L8K5yoS6AR8p5v7+YXGcUOTclYS6DN3YI+wdD7h8lojnVDwsIrH6A3i7\nmHM/Y90cAPOwbqtI5jn7ALsXG3cGqmMz904tIZZZYV8X13oRTbCVZgP2C7o43Zz9TqwQujgFWFIW\nqwDQACvkPShsW+mcbxPhno2EuvAGA5UiXDPc2a/GZlIOF3x2Lax7r7S2EvpvrSHfknKU2IhIrL4r\n4XzwF/u3MVwDVsAbLji6KID9Et4RZdsQdm2DEuKKpIaz/18J1wWLobcAX0e5bhtWY1OSXljC8Sf2\nMy7Bkr3g1tO5LlI3HcB/nX11YECRcw2w2iGwkVfbi5x/mdDnX4BNSjgGq/WJ93dB8POvEfUqER8o\nsRGRWG0s4Xyw5SPadeGtI+WKnKsX9vXOGLbgdZFaLkoS/AVfvYTr9nL2v1PyGlBropwLYEnJK1jy\nUpXifyYo/mf6klCCNbzIuaHYZ7oTG7Zd1O9YS80KJ56jsWHkX2Ktcc9hiVcsgglNPK1UIkmhJRVE\nJFUEE52dWCvC1hjvW1uKdwXvqYb9Ay9ad1QwJjdOJ7QEwVxgPDaCbAWWCAaf/wRwKpZ4FOe/2Dw0\nnbHapp+d48FE53Miz18D8BG2PtYALME6CmiMfQ79ne0tZ7+pmGfsQWiYd2k+e5GEUmIjIqki/Jfk\nb9gv/URZGfZ1XawmJZLfnX1tLNmIluBEmzTwTGf/PTZEfnMx19WK8oygKcCd2MilYcD12LDxYMH2\nYyXcvxl4xtnAap16YUPX98fWFbsZuKiY+8O7yVbFEK9IUqkrSkRSRbBGJYDNE5NIX4S9K9pcOPOd\nfYUSritfwvnWzv4lik9qAlhLVUn+JLQExFBnH2wN+ht4NoZnhFuKjW46DFtYFaLPKhz+c34e57tE\nEk6JjYikincJLW0wOsHvCk52B8XPlwO23AJY0nFalOv6ATWjnA+2jkebqbcP0WdkDveos98H6A2c\n6Hz/HKERS/H6v/bu3rWpKAzA+KPoJhQEBedOblq1Ojmpm4ObokMHBxVaqII4iX+AICIoglhBpDq7\ndXSVri4KduikgxSNUG2Cw3svp21uzr3GmKbl+UFIwWtObpb7cs778Z3It4HqXkWl8vf6TTQclEaK\ngY2kUbFC5I5AHNc8IJ9rMgZM97lWi/QQP5W57j3RWwbgOtU7SYeA+zXrlZVi56kOgMaJOVpNvSOq\n1HYRPW3KCrPcMdQ58hVkY6Sg5XPmupPF+yL1CeWSJA3MEoOfFdVkvbocj7Jk+27Fv+0l7aZ0iAqg\naaLj7xEiYfYacdzS4t+SV28Wa7TIV0dNEuXem0cqnKD5SIVb6+7pA/GbTwKngXtEdVEZbDVt8neb\njSXwuTJ7iFlWv4hy8xlinMLR4jvcKL5X+Vm9AsYxogNzhygVlyRpaJZIQydzpkgPtK0ObCCOa+bZ\n+NDu9fpUs1bOAaLyp0PKUenlIumBvvm1Wvz/OXoHJXvoHuy5/vWDqFR6kfmMzQ6SAq4OcKfm+jnq\nf8821V2PS1dJAZ7N+TSSPIqSdq6q/ii9rlv/3utzmq7XRO66FnCJ6Cj8lNhJWCGa4H0jdkaeEYHA\n4YbrVfkKvCr+vlJz7Wtid+MlUa21SiTaviF2k+qCuTWi8miG2JVpEcHBR2K8wwSREPw3ZeVfSDlA\na0SpeM4scZ/PiSO25eI+fhKdoueKe8nlN10u3uex1FuSpJEzTtr1aFKRNEp2Ez1sOnSPT/gfjpF2\nqPqZzyVJkobgMcMLDgbpLOkI6cIQ1ntbrPVkCGtJkqQ+7ScaAraJhODtYoEINJbpHk8xaMdJk8Gb\nNBGUJEnK2keMQ5gAHpJ2a2a38ktJkiT1Y4ruKqZFHI0jbWBVlCRtD2XFVJsorX8EnCEqoiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqQd6A8yOf9Nd4gJBgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "time_fit = irfft(fit)\n", + "\n", + "mpl.rcParams['xtick.labelsize']=12\n", + "mpl.rcParams['ytick.labelsize']=12\n", + "ylabel(\"Response (relative)\",fontsize=20)\n", + "xlabel(\"Time (days)\",fontsize=20) \n", + "\n", + "ylim(-0.5,2)\n", + "xlim(0,7)\n", + "\n", + "plot(time_fit)\n", + "plot([3.22,3.22], [-50, 50], color='k', linestyle='-', linewidth=2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lag/data/clag_analysis-origbins-7647A.ipynb b/lag/data/clag_analysis-origbins-7647A.ipynb new file mode 100644 index 0000000..2959a2e --- /dev/null +++ b/lag/data/clag_analysis-origbins-7647A.ipynb @@ -0,0 +1,832 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X18VPWd9/9XSAKSRBRwbFEoxFBYg1pNKhD6s+qCqFBy\n1UI35PGzbbjorle73V2vSzK22u7P31W07aRre117tbXXlpL21zWmWnYXoevderNU7mro9sb4kxID\nyO2MiDcQhNyc64/vHOcmM8lM5szMOTPv5+ORR2BmMufkmzPnfM73+/l+viAiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjJm+4GhBF//K4/7JCIiIi42Fbg46msxJnj4\neD53SkRERLzju8DefO+EiIiIeMN44A3gy/neEREREXFOWRbf+5PABUD7CK+ZFv4SERGR9BwNf+Vc\nSRbf+0ngPeA/JXl+2iWXXHLkyJEjWdwFERGRgnUYuJY8BBDZ6nmYiUmWvG2E10w7cuQIP/vZz7j8\n8suztBsS78477+S73/1uvnejqKjNc09tnntq89x65ZVXuP322y/F9N4XTPCwBjgObB3thZdffjl1\ndXVZ2g2Jd+GFF6q9c0xtnntq89xTmxeXcVl6zzXATzDTNEVERKSAZCN4WAJMB36chfcWERGRPMvG\nsMVTQGkW3ldERERcIBs9D+Jizc3N+d6FoqM2zz21ee6pzYtLNqdqjqYO6Orq6lKSjYiISBr27NlD\nfX09QD2wJ9fbV8+DiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiI\npEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIik\nRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpKUs3zsgIlJIOjrMF8B778GBAzBzJpx3nnmsudl8\niXiZeh5ERBzU3AybN5vvZ8/C3r3wzjvw6qsmmOjogMbGSIAh4kXqeRARcVgoFOKppwK8/no3UMqh\nQ4McPlzL97/vZ/FiX753TyRj6nkQEXFQMBikoaGJ9vaV9PZuBOZy+LAF/Ae33HIDzc1/RSgUyvdu\nimREwYOIiIPuvruNnp4HgMuA1cBKYCvwNAMDv+eRR5ppaGhSACGepuBBRMRBu3d3AwuANuABYCFQ\nEn52HLCInp778fsDedpDkcwpeBARcdDAQCkmWLCDiEQWhIMMEW9S8CAi4qCyskHAAuwgIpFx4SBD\nxJsUPIiIOGj+/FpgF2AHEYkMhYMMEW9S8CAi4qBAwE9NzT3ARcDOJK/aFQ4yRLxJwYOIiIN8Ph87\ndnSyenUVZWX/GXgRGAo/OwTsoKbmXgIBf/52UiRDCh5ERBzm8/no6PgeTzzx78A/c+mlK4BGqqtX\n0NKyiR07OvH5VCxKvEsVJkVEHBS7toWPOXPamDwZDh+GGTNg6VJQ3CBep54HEREHRa9tcd55MHcu\nTJoEc+bAhAla20IKg3oeRESyQKtnSiFTz4OIiIikRcGDiIiIpEXDFiIiWRSbQAkHDsDMmSYfAjS8\nId6k4EFExCGjBQo33AD33mteU1eXt90UyZiCBxERh0T3IuzZA/X1JlCYMSOE3x/gRz/qBkpZtWqQ\n66+vJRDwq96DeJKCBxERB4VCJlB44QUTKNx2Wx8nT4Z4990fAgGghN7eIXp7d7NtW5MKRoknKWFS\nRMQhwWCQhoYm2ttX0tu7BdjMwYNX8+67DwELiayyOQ5YSE/P/fj9gbztr8hYKXgQEXHI3Xe30dPz\nALGBwivh/yeygN27u3OybyJOUvAgIuIQEwgsiHu0lEggEW8cAwOl2d0pkSxQ8CAi4hATCMQHCoOA\nleQnhigrG8zuTolkgYIHERGHmEAgPlCoBXYl+YldzJ9fm92dEskCBQ8iIg4xgUB8oOAH7gG2A0Ph\nx4aAHdTU3Esg4M/hHoo4Q8GDiIhDAgE/NTX3ADuIBApTgXVUVd3BzJm3Ao1UV6+gpWWTpmmKZ6nO\ng4iIQ3w+Hzt2dIbrPKynt7eU6mq7INSzvP66j/p6eOwxVZgUb1PwICLiIJ/Px8aNbe9XmPz852Hn\nTli71pSsnjMHvvxlrW0h3paN4OFS4FvALcBEYC+wFtiThW2JiLhG/NoWc+bA889HAoU1axQoSGFw\nOniYDLwI/BsmeAgCNcBbDm9HRMR11IsgxcLp4OFu4ACmp8F20OFtiIiISB45PduiEegCHgWOY4Yq\nPu/wNkRERCSPnA4eLgO+ALwKLAV+APxP4LMOb0dERETyxOlhi3HAbuCr4f//FrgC+C/ATxP9wJ13\n3smFF14Y81hzczPNGjgUERGho6ODDjsTN+ytt/KbSphstZax2g88BfxF1GNfAO4Fpse9tg7o6urq\nok4TnkVERFK2Z88e6uvrAerJw2xGp3seXgT+JO6xOZigQkSkaMVP4zxwAGbOVL0H8Sang4fvYAq4\nfwWTNDkf+PPwl4hI0WpuhiVLQuHqk9309pbS329Xn/SrTLV4itPBw0vAbcA3gL8FXgP+BugY6YdE\nRApdMBhk0aLV9PQ8AASAEnp7h+jt3c22bU1a50I8JRsLY20FrsJUl5wHbMjCNkREPOXuu9vCgcNC\nIulm44CF9PTcj98fyN/OiaRJq2qKiOTA7t3dwIIkzy4IPy/iDQoeRERyYGCglOQT3MaFnxfxBgUP\nIiI5UFY2CFhJnh0KPy/iDQoeRERyYP78WmBXkmd3hZ8X8QYFDyIiORAI+KmpuQfYAQyFHx0CdlBT\ncy+BgD9/OyeSJgUPIiI54PP52LGjk49/fBMVFSuARiZOXMGkSZuYPr2TtWt9NDZGCkmJuJnTdR5E\nRCQJn8/HCy+0sWcP1NfDP/wD3H47PPggqEq/eImCBxGRHIguT/3OOyEmTQrw53/eDZRy3XWDfPSj\ntTz2mCpNijdo2EJEJAeam2HzZvjRj4IcOtTEO++s5MyZLcBm+voe59//fSUNDU2EQqF876rIqBQ8\niIjkkCpNSiHQsIVIBrRSoqTLVJJMFiAsYPfu9bncHZExUfAgkoHo4MBOguvoUPKbJKdKk1IINGwh\nkqFQKMSaNa2sWrUcaGTVquWsWdOqsWtJSJUmpRCo50EkA1pmWdI1f34t3d27MDkP8VRpUrxBPQ8i\nGVDym6RLlSalEKjnQSQDSn4TSC9x1q406fcHeOGF9fT2llJdPcj119cSCKinSrxBwYNIBpT8JpBe\n4qwJNHxAG7NnQ3m5CTROnIC1azVDR7xBwxYiGVDym9hSTZy1i0U1N5ueiblzzeOvvmp6LTo60BoX\n4nrqeRDJgJLfBMaWONvcDEuWhMLDF9309pbS328PX6hMtbibeh5EMqDkN4GxJc4Gg0EaGppob19J\nb68pU93b+zjt7SpTLe6n4EEkA1pmWcBOnF2Q5NkF4edjaaaOeJmGLUTSEJ9V//vfw8CAj9LSNioq\nYNIkk/y2axdYlpLfCp19PBw4kH7irGbqiJcpeBBJQ6Ks+q4uk1UfCkXGr6GU118f5KmnalmyROPX\nhcrOW/jwh49gEmcTBRCJE2c1U0e8TMGDSJrig4RVqwaZP38mu3a9zP7930KVJouHnSj59tvzgJ1A\nQ4JXJU6cjczUST3gEHEL5TyIpKijA26+OcisWcOT3Do7T7N//zfQ+HVxieQtfBu4l+GJsy8mTZw1\nAcWuJO+smTribgoeRFLU3AxTpnydvr71DA8S3iDxXSckS5gT74skSvqATmATYBJn4RNccMFfJu11\nCgT8XHxx4pk6FRX3cuSIX4m24loKHkRSFAwG+cUvniVxkKDx62IUm7dgqkbCVmAz8EsGBj7E2rW+\nhEGAz+fjD3/oZPXqn1FVVQdcCXyUqqq/orFxHj/7mZJtxb2U8yCSorvvbqO//xISBwkavy5Go+Ut\nzJw5yObNyX/esix+/etXOHXqIUwPRgmnTg3xyCO7+fWvlSsj7qWeB5EUmS7q8SQuR12LSZhLROPX\nhSqTvIWODqivV60H8SYFDyIpMl3UyS4WfuAu4EVUaTLCXqehsRGWLjXrOCxdGnnM62P6mVQYbW6G\nSZPSLy4l4gYKHkRSZLqoW4FEF4s/UlYWYvXqR6iuNglz1dUraGnZVNRdz83NsGFDiKlTW9m3bzl7\n9zayb99ypk5tZcOGkOfH9O0Koy0tm8b0d1etB/Eq5TyIpMgsgvUaJqs+AKzHJEoOAhfh8y3l9Om/\n1zLLUcayYJQXxFYa9XHgQBsXXwy9vTBjhuldSeXXUq0H8SoFDyIpCgT8/PKXTQSD9wPfwnTcDQG7\nqKi4lyuv7CzaICGZ2PUbbLFj+hs3tuVp78bOriy5alWAl17qpq+vlIkTB5k0qZaSEj8dHWaGxWjH\ng1ZlFa9S8CCSIntqnakuuZ7e3lKqq+0llL15B51thbp+Q6IelTNnhjhzZjeHDqXeoxII+Nm2rYme\nnvsxuQ+RgNTkTHRm9fcQGSsFDyJp8Pl8bNzY9v66Fo89Zta1sMUvnHXggBm+OO8881ix9UwU6pi+\nUz0qds6EAlLxGgUPIimKDgx6e6GyEm6+2fz/zBm47DKYNQvOng3x3nsBXn+9m97eUvr77YtB8S2Q\nVahj+k71qJhjyhSXUq6MeImCB5EUJTuR270Q7e0wfXphJgiOVaGO6TvVo6LgQLxKUzVFxigUCrFm\nTSurVi0HGlm1ajkf+9ifhcevVfQHMquD4GaRHpVEvNujIpIqBQ8iYxAMBmloGL665r59JlBIrPiK\n/mRaB8GttCKmFDsNW4iMQfKEuSoKMUEwE6MlmXqRZklIsVPwIDIGyRPmCjNBcKziZ5/MmQNf/rL3\nZ59oloQUOwUPImOQPGHO7s4urATBsfJqcJCKQuxREUmVggeRMUg+BdEPNAFfBxqI7s6eOPFejhzp\npLGxsC+qxaBQe1REUqXgQWQMkk9B9AHrmD37Xs6dK+PgwROUlQ0wMFDFxRdP4pJLAkVZ76HQOB0c\nqLiYeI2CB5ExGClhrqLi21x66ffZvftLwA8YGFgAlHDgwBDt7cVR70EXw/TYa2WYHAoVFxP3S5YW\nngt1QFdXVxd1GigUDwqFYk/2kYQ5P35/gPb2lSTOfdhBS8smVy0IlY2L/Ujto4thrNi1MkywaYLR\n3dTU3FPwwaakb8+ePdTX1wPUA3tyvX0FDyJjMNrFds+e5Rw+vIVksy5qa1fw8stbc7W7KXHyYq+L\nYXrWrGn1VLAp+Zfv4EHDFiJjMNqd+Ny53loQKtEqkZmU1S7UpbizpVBXH5XCpQqTIlnglfLFHR3Q\n2Aj19dEX+8zLapuL4YIkzxZfpc3RFOrqo1K4FDyIZIFXyhc3N8OGDSHeffc5RrrYP/poN42NJtCw\nh2tGMtrFcP/+0rTer9B5JdgUsSl4EMkCrywIZa/R8fbbk4m92IeAVmA58EnOnj3I1KmtbNgQSilx\ncvjFMPr9Gunv703r/QqdV4JNEZvTwcN9mDNk9NcRh7ch4npeWRAqkpswnsjFPogpdLUSMIt+DQz8\nlvb2lTQ0NBEKhUZ939iL4fD36+9P7/3cwh7maWyEpUth7lzzPdNeFK8EmyI2p2db3Ad8ClgS9dgg\ncCLBazXbQgqWV+oczJu3nO7uLZjKmCuBGuDTwAPAogQ/kVrmfygUoqHBroPxC2AVhTKTIFtTUDW1\nVdJRiLMtBjG3GiJFyy3BQbz4oOaPf7RzE/zAbZi73fMwpbUTSS3zP3rhqH/8xyfp708WHHhrJoHT\ns1Js5u/iA9qYPRvKy02weeIErF3r3uNJilc2gocPA4eBs5h+y3uA3ixsR0TSZFcyXLUqwEsvddPf\nfxAzXOEDrgGagW+SaeZ/9MWwvPxV+vsLYyZBtqagKjgQr3E6eNgJfAbYC3wQ+CqwHZgHvOnwtkRc\nzY1DF7F3zq3An2HG2RcBr2F6HDJfVjz6d5s3b5Du7uTvd+TIYFqLhdntevgwHDwIZ87AhAlw9ixM\nnAgf+hBceml22lf1GEQMp4OHJ6L+/TLmrNQDfA74TqIfuPPOO7nwwgtjHmtubqZZYbh4nBvXK4jc\nOV8GrAbuxsT49wP2EIazy4rHLiIWwlx8u8Pbe5cPftBiw4ZQyu0R3a5vvPEb3njjBGfPmsXHLrpo\nEldddVXW2lf1GCQfOjo66IjLxn3rrbfytDe58xTwvQSP1wFWV1eXJVKIjh8/btXU3GjBDguGLLAs\nGLRgh1VTc6MVDAZzvk+1tcvC+7IuvF+WBcHw/68IPxe04EYLtof3197vX41pv4PBYLgdtoTfN749\ntqf1vpF23erI+6Uj0n5Wgq9Bq7Z2mePbFEmkq6vLwnQR5mXGQbbrPEzA3MYczfJ2RFwndnw886qN\nTojcOUdXgDS5CXALpsfBB3QCmwAzzRQWM3v2vWNKCLSTJ2fPbgPWM7w9GtJqj0i7PoeZFZLZ+6VD\n9RhEDKeDh28DHweqMWemx4Aq4CcOb0fE9dxYojlSvClR97sfk9+8A5iKCSgeB77CxIklXHbZo6xd\n60u7lkFHB6xd6+PYsUpGmsXx2GPdKb13pF1z376qxyBiOJ3zcCnQAVyEGdzcgbkteN3h7Yi4nhvH\nxyP5B4mSIu0eh29RXv4X9PdXR9UaGHthKztxce7cUvbuLWF43sMgUMvFFw+klOAYadfct2/0FNQX\nXlgfV4/BPcW/RLLN6eBBWY4iYZG7/LHPWnBSRwccOeKnoqKJvr4ZmMlR8T0BPmAlF11Uwvnntzla\na8D8vscxp4lInQRz576L11/fQig0euJkpF1z376qxyBiaEnuAuTGKYLFKHaWQbzcj4+bWQrw1399\nOY8//gKnT38GM6LYgBnBNBfxmho7t8HZ7Zv28BPJU7CZPIX+/h+lVCch0q7OzgpJhT47IobT5anT\nofLUWaRSt/kXW6J5AYkv0Ln7WwSDQa68cjXB4APh/XkD+Bamsu1JJk68mGuvvYrHHsvOMRIKhbj0\n0hvo7/8DyXoLamtX8PLLW0d9H9Ou6zBpVvHtu5OKiq9y7bWdHD3qcyRwVkAubpPv8tQKHgpQbCGg\nBUS6hndTU3OPqxZmKnRuCuLWrGmlvX0lydaYmDZtEx/9qLnrz9bFcPbs5fT0JA8O5sxp5NVXN4/6\nPna7Pvvsbzh48ARlZabOw8yZk2homA2MY9eu1+jtLaWiYpApU2qpqfFnFEy46W8pku/gQcMWBShb\nJXQlPW4bHx+tOuLkyevZPPp1e8w6OuD4ccg0T8Fu18OH2+jrg8rKSIXJd98NsmnTas6diwTOfX3H\n6evzc+zYDQwMzKK/n7Qv+tla00JE0qciUVkyWiGbysrF1vTp66zKymVWefkKq7JymTV9+jpr6dKg\n9fDD+d57yZY5c1YkOSbM15w5K7K+Dy0t0cWp4r+2Wy0t6xx+/+NJCkmlV6gr2/udiYcftqwVK8zX\nTTdZ1pw55rv9mD7ThanQi0RJHow8RfAN+voOc+jQSk6f3kJ//2ZOn36cQ4dW8vzzTbS3h2hsJO25\n/OJ+kVkKieRm9ke26yQMr63RRuJCUukV6nJjzQ5bczNs2BBi6tRW9u1bzt69jezbt5ypU1vZsCGk\nXAzJCg1bFKCRpwj+dyxrA4nWGTh3zuK11z7N9u2Pqgu2ALlh9keqdRLGmqA4PHB2ZiErN9bssI00\npNLZ2cR113UyYYJPSZ3iKAUPBSj5RSIIPAv8ffjfq4mfb79v304aGjSGW4gCAT/btiWf/REIdGZ9\nH1LNAxnromLDA+fML/qmPoa7anZEi81xir0hOHNGNwSSHQoeClDyi0QrpghoCbHdubZxwCIlVRYo\nN1RHTPXud6wJisMD59Qv+iP1dpx//mWcOmUvXR4vv2taRBJhi+OGQNNm3UE5DwXIvki0tGyiutos\nbFRdvYILLngZGI85mbp3DFeyw15j4sSJNmbP3sqcOZuZPXsrJ060jWnNimxKZ1Gxjg5obDRfvb1+\nysujcypqMZU0E4m96CfLHaio+CJlZS8B64DtxOZqvMisWV/O65oWkSGVZPkdi/K2EFs2KMfDHdTz\nUICSdQ1v394IzMVU5Ru5O/fNN0tpbDT/U3SfGbfcKXnpbzbatNLoXIXoIY4//KGb/v5yqqq+AJRx\n6tSFlJVtYWDgRySqpBk9VJO8t2MN8HfAh8OP309kTY6LWLjwirze0UeGapzJ73A7TZsVTdXMMTOF\n0566dsOI0zlra5dZwWDQamlZZ1VXL7NghVVdvcxqaVmX8vQ2iVBbpiedaaXHjx+3amoST8csL7/R\namjotqZPX2dVVIzc9smnY4489bmqallep0NG9jv/U3Fzwc3TZnMp31M180nBQ45FPnRBC6634MWk\nH8Cmpi8kPSGnMz9eRr64ub0t81VDYLRaJdEX7NEuJhMmrLMqKy1ryhTLqqy0rIsusqy6uuH7n3yb\n7r4oB4PB8PE1+g1BIRjt2CiU33M0+Q4elPNQRAIBPxdffA+wD7P08lcZPoZr5tuXlJSmPOYsI0tn\n/N5t8jW+bHIRdmFmD7QCy4HG8Pc1fOITs97fdvIaDCHgF5w79wSnTzdywQXL+fSnW+nuDtHVBZs3\nxw7jJJ+Omf/6GCOxc5xmz7YwuR6J5Dep00lunjZbTJTzUER8Ph9/+IPJtt+6tZtQqJzS0i9SUlIG\nfIAJE2Dy5FpqajrZtq2FkRMqC2P8NBfSGb93m2yNL4+WB7J8uZ/nnruNAweGgAeJXb57Jzt3fuX9\n5bsjF5PoaYoDwEFgI5bVltJ+J6+PYiddxi9fDm64KNs5Tpdd9iiHDzdx5kz+puLmgtuWupfc07BF\njjz8sGUtXRq0pkxZZ5WWLrNKSlZY48Yts8rK1llTpgQTduG6oZRxofBqWz78sGVNm/alEYe3Mhlf\nHikPJJ1tm27sY1ZsGep1FmxPa7+TD38ELWiw4Ffh4SZ72Gm748NOmQ4TFUNujXIejHwPW+STgocs\ns4OGadO+YJWU/MmIY+7xJ63x4zWu6BSvjtEeP37cKi+vzcq+p5IHkmq7mYvJZ+MuKOm3eSR3YPuw\nIOG88z5mTZv2pVGTLp0w1gCgWNa4GOnv5PYcIiflO3jQsEUBW7w4yNe+tpqjR2cAP2a0VTajK/qd\nO3cEM37qvqI4XuOGstBjcffdbfT3X8JI48sHDpSydGn6009HW/m1ri7Am2+mNrYdCPj5x3+8gf7+\n6GG29MfFn3nGR01NJ2fPBnjzza9x5swJYADLquLcuUmcPXse117b/v6y3tlYHTWTYSIvTcXNRPTf\n6eTJ9Zw7V8r48YPvD7k+84yvKNqhmKnnIcsi3Xuj34UNvxMMhruBXyya6D5bd25evVMyd/4jHTvH\nrLKyj4zpbnzkXoVj1gUXfMQqL78ipd6Dhx+2wvsQ/fzYe3vyOTtGXfKSKvU8iGPik9BeeMFO1Bv9\nLmz4naAPMyMjANwLvEd19ZScljLONbvY0KpVAV56qZu+vlJef32Q8vJarrnGT0eHqcKY7h1evstC\nZ7bIlF1ULH7dhAFgPwMDP2FgYAHRd8g//3kT117b+f4deqLtJM+YDwLNvP32Q8BjUduOF+mxaW6G\n9euhu9uKes/alH42kdF6RbJZuj0XybVuKVomMlbqeciC2PHSupTvwkYbXx4/fllBjp9Gi73jPG6Z\npLtbLVhilZXVWqtXf2lMd51uGIseyzh6bFGxLVZqCYlBCz5rVVXVj7id5Mdb9PvavV+j99gMv2NP\n/WcT/975yVHJVXJtvhMr3fCZ8Lp89zzkk4IHhw3vbrVPgqN3hXp1RoCTIhcg+4IZ3239oquHGZIZ\nazf8yEXFEl1gk7Xb8O2kXs0xGD5+zUWupOQKa/r0ddbSpcGYC0zioaFjFnzWKiurtWBZyhfIfH4W\nchG4uKVoWb4DGK9T8KDgwTHDT8jRJ/9Ed2G/SjuzvZBF2qCwxp3HOo4eDAatiy+2j5tb446PRBfY\n1LeTPA9kyZgv3PEXo4qKZdb06eus668PWnPmWNYVV1jWBz5gvq68MnK3W1dnHqury/9Mo1zkPLgh\nr8ItAYyX5Tt4UIXJAjK80p4fsCtKdgCbgE8AN1FWdiWrVz/yfvZ2pKIfDK/qt5j9+09z880hV628\n6LTIOHxhrTiavAIjjPT72EXFWlo2UVZ2jNgchURVF1Pfjp0xP336JiorV1Be3khl5QrKyk4meF9b\n8gJAiVYM/djHtnLNNW1MmuTjvvvg97+H3/8+xK23tnLqVKRa5lVXtfLcc69w1VWmimZkplEiu3jn\nndqsfQ4CAT81NdGrgkJ05VcnVu9MfDzYn/mv097+b1RVLWfGjNasfea9XHVV8k89Dw5L3N0a3e1b\nZ02cuMyaNMncjUWPL0buBOPHtlMfK/a6SM9DYQ3hjLUbPnpcurIy/m480d1r5u2Wzbvi5He7W62y\nsrlRj9s9dVssuMuyh0zgBquq6gqru7t7zPuQiky78+36LtOnr7MqK5dZpaUrrNLSZVZ5+TqrvDyY\n4O+U+nCTU9TTmbl89zzkk4IHh9gn+aqqsSc92iecior4sW1vd9mnI52prV7ixIk6tYTE+KGN9LeT\nzWmtyQOTRMmfL1twVYILanaDaCcSCY8fPx4ebored5P/AXMsmBv1+OiL5GXjM68cq8wpeFDw4Ihg\nMGjNnp35SaCY7wgiF67PJriYeDeAcuJuPvaifix8wf1TC64MX5DmW5WVVzlyEUp25/3QQ8GYO+ry\n8hVWZeWyhAmUiSQ/thM9nv+8gLGKTXRdZ8F1Fsy2YKtlAj77+LZ7HG7M+We+mM8zTlHwoOAhY5Hu\n2F9aiRMjU58lUMx3BJFy3l8Ml/PO/loGueDE3Xwqpc7PO+9j1sSJH894O8nuvJcuTXRHnXr3evJj\nO9Hj+b+4jbUXInatj60WXBH+m8QnUNtBRO4/825I2vQ6BQ8KHjIW+0GMndoGN1gVFdendGdmWboj\nsBXSNLL4MfB079ijjXbSnzbti45sZyzbHu2Ck17PgzuC6JF6YZIFFpWVK6IChXVWpGch+vcMWlCf\n4PHcfOar2oiKAAAgAElEQVQT92SZmiolJbXWtGlfcuSYKWT5Dh5UYbIAxFal8wHR1e+GmDVrBU8+\nmVoVQ6+uw+Ake4ljaGP2bCgvJ2trGeSC2d/442JsRquAOHnyel5+eWvG24lmV0R87rnMqi8mP7YT\nLbmd32WfOzrghz/s5le/amZw8IfErnOxi1/+sonnn/8egcCPeeGFbnp7S+nvN1VLL730LHv32m31\ndaAq/HtEV/X0Afa6JWOvxjlW9mybvr7/h2PHnsOyNr7/O1rWEEeP7qaiooklSzrD+yoSoZ4Hhzg5\n1ODVdRgkN0Y71ioqVmSlSmAwGLQmTVqY0XGe/Njeapkkwuh1XO6y8pn3cvz4cauq6ooR9mGLdf75\niRI6d4R/zq6XsSKqZyG+h8H+/+h1YLJFwxdjp54HyZi5C3LmLinf6zCIuw0/1qLXuyilv7+XqVNb\nCQT8KR0rqayzsHixWWnynXcmkslxHn1sP/vs1zh48ASlpe8xOGi/3+cpKRkHnM95553HuXNPMzj4\nA8wd+ThMvYVd4XoLnaP+bpm4++42Tp3ykbg3AOA53n33ByRaf+PUqW8xbtx/Y2jIwvSgXI7pWYjv\nYYj+v72OzXpMD8W7zJ5tsX37o45+5pOvv5NIbG+S1uRwFxWJKgCxBZ7ipdftGF9s54Mf3Mzbb7fz\nyCMwbVoLZWWNWS8gI+4Ve6wFgSZgJbAF2Ex//29pb19JQ0MToVBo1PdrboYNG0JMnWoKNNmFm6ZO\nbWXDhhDNzdEFherJ5Di3j+0jR1oJhYaA+xkcnIZZrv4VoBvL+h2W9SDnn1/Cddc9wvTp/xRTxGr6\n9E3vL/ucTWZ4yB5uSOQVYodZot1CVdV4TKGpWmAxpljcjeHvdgEqu4jcdmAqZljrceArTJxYwmWX\nPcratT5HP+Pxf+9z5+KLj0WLXTo9lWNFioOGLRySzaEGlZGVaLHH2l0ZdzmncnxFEh2d6V6PdJW7\nt8vcDA+NlMg42vDRUquiwp5tYX+/y4LFFlxtQa0FV1olJddZ48dfb02cuNTKRWJw8vV3Rk/W1Lko\nVr6HLfJJwYODsjU7QGOSEi165kZJyRUpn/iTGe34MjM3oi+U8bOJllmTJl2d1nEeCUbcO7PI7ONI\nwdkNI+77pZcus5YuDVpTpqyzxo2zA4YrLFhojRu31JoyZZ115ZVBq64utytbJl9/Z/Tzi85FsfId\nPCjnoQBkc3bAaNn1o2W4S2GJnrkxd+6r7N2bWpdzMrHHV2z+BAzw7rtHuPTSD7B3r4Xp3h4+m2ho\naAVr1/pSPs4ja5hEzz4Y2/5ni5kZ8qeYYYX7MWtR2HkXOykrO8zAQPwMEdsubrqplo0bnZlh46Th\n5xM/Zugr/nccnluic5G7KHgoANlMFIqcaBPJ7wlW8suJRN3I8RUEVgMPYE/ZgyHefnsng4N3MHwq\npW0Xq1bVsnHjWPY7v9MxRxII+Nm2rYmennXAL4hOZKyqeoMnntjI5z53Lz09o1903WT4+cRHbLLm\nMaqrP5gwQVvnIndRwqSMKHKiTSS/J1gndXTAzTeHmDGjlaqq5Ywfr8TQ0TiRqBs5vtowgUP8KouL\nOHXqW5x//n/BqZUmI/vtXKKx03w+H62tnUyf/hwVFa8ApZSVDTJt2kdZtOhZ/vqvP0ZFxfBVSXOV\n0DlWic8ndg/J44wf/0Fmz97KiRNtw5I1i+VcJKNTzoMHFMs4o5Kx0udEom6qi5FVVi52rHJlZL/t\nZMKxl3PPFicWyEp3e05VIR1JJueTYjkXpSrfOQ/5pODBA4qlaJROTOlz4oITOb6WJGl78+V0OWg7\nwfhDHzLJhGVlJplw5sylritDnotAIlfBcybnk2I5F6VKwYOCB9crpHUektGaHvlhByBlZfU5a3/7\nYlxXZ1kXXWRZlZWWNWWK+X7RRdb7MxDctK5Ctj+DuQyeM/ldiuFclKp8Bw/Jsk9yoQ7o6urqoq6u\n6AInzyiWqm5z5zayd+/mpM/PmdPIq68mf14ys2ZNK+3tK0lcUXEHLS2b2LjRXTMHciUYNBU2TaGs\nBdjJpLCbiRPvYdq0TmpqfBl9JufNW0539xaSJY/W1q5wZM2STM4nxXIuStWePXuor68HUz1tT663\nr9kWMqJi+UA6WeJb0heZXeCt2QO5EKmwGR1YnQB+wZkzFq+91ohlTQnPUEitLHi8XM1kyOR8Uizn\nIq9Q8CCjKoaIvxBXE/XS381eZfHs2QAnT67n3LlSxo8fZPLk2vdnD7hlX3NteH2D4dNazWqbu9m2\nrYkdO9Jfg0bBs3iJch48pNDHGgs1GSsXf7dcZeoXq+ErmTqfn6CEYe/Jd85DPil48IhimcZYaAFS\nrv5uxXJ85MvwZF7nk3sLNXguZPkOHlQkysM6OqCx0XwtXQpz55rv9mNOFTaKHXONLuCzkJ6e+/H7\nk5WM9Y741UTnzNmctFiNV+Tq71YMx0c+xRbjCgFv4nR+gr1ceUvLJqqrVwCNTJy4lIqKr3D0aDmX\nXro2b0XTVMBN4qnnwQG5uFvWNEZn5Kp7P9fTH3V8ZFekV2CLZYpa3eh4e0dPX50yJWiVln7Bgj/J\nWW/SSLUsli49bl18sXq24qnnQcYsGAzS0NBEe/tKenu3AJvp7X2c9vaVNDQ0EQqFHNmOaso7Y/Hi\nID09TRw6tJLTp7fQ37+Z06cf59ChlfT0NLFkiTN/L3s7AwOTycXfTcdHdtnJpBUVbZj1H+pxuqx2\nczNs3gz/+q9BJk9uYnDwNPBjctWb1NwMGzaEmDq1lX37lrN3byP79i1n6tRWpkz5OsGgerYkQj0P\nGcpVkpPuLJ2Rjb9Xoju2adNSK/msngdvibRz0EpcVvtXGd+Jp1ou3Om/6Uh5MyUltTq+ElDPg4yZ\nmcK1IMmzC8LPZ86JBZAkO3+vRHdsb7zxRHg7ufm76fjIjUgPj70S5SbA5CfACsrKvpTxoliRYzS6\nNykEtALL39/W3r1HHM03iM2beSO8vRXAA1jWeNSzVVy+jKny8p0kz6vnIUPDp3BlZz0AZWI7Ixt/\nr8R3bPZ2sneHGk3HR27koocncoza2zoePobiewScXTws8rsl2t6t6nlIoFB7Hq4F/gL4HSRdQ1Uy\nlKslau0xV68t/+s22fh7JZ7pYG8n0R3qJygr+0tH/26JMvWrq1fQ0rJpTAWLJLFc9PBEjlF7W8mX\nSncy3yDSq5Joe/NQz5b7ZKPCZBXwM+DzwNey8P4SlquqiKYSoQ/zwS4sHR3Q3h6iuzvAyZPdMZUN\na2v9tLQ4V9kwG3+v4dUHIXLiX4gJIKL/bju4/fZNbNzo3AXdVLI025k9G8rLTSXLEydg7Vp3VbL0\nslyU8I4co36gCRNIJAsQFrB79/qMtwnRQYt9PIfC37uBAWAL8COgAZUuL1w/Af4u/O/ngQeTvE7D\nFhlSd3HmclngKBt/r8RDIcmGK3RceFkupvrGHqPHLFiYk6HRSKLmiiRDF8cs+KwFc6yysmWqYGrl\nf9jC6Z6H1cDVmGEL0JBFVmk9gMwlXnQodhqYU6s5ZuPvlXhNAnu44luUlPwFllVNRcUgH/1oLY89\npmEEr8pFD6A9BOX3B3jhhW56e08x/PiyOTc0GulVsXs64j+TH8Dcl77I7bf/c9GusOomTgYPM4D/\nASwBzoUfK2GUZb/vvPNOLrzwwpjHmpubadZVb1SFPJyQK4m7/W3OdcuCc3+v6AWvTp6MHqKA2O7e\nc4wbN4HKyrlcc42fSZN8GkaQEcUPQZ040co772R/aNQOrI8e/TR9fV0k/4w0sHv3A45s00s6Ojro\niJva8tZbb+Vpb5z3ScxAVH/U1xAme+scw4MIDVtI3uVqxorT7MqiH/rQYstUAvyVBUeTZMYXdyU+\nGbtcD40Gg0GrvPxqT34mcy3fwxZOzrZ4BrgC+Ej462rgJUzy5NVoCENcKFczVpzS0QE33NDNtGlL\naG9fycGDTwP/DvwTptNvParEJ07J9UyaZ57xMX78xXjpM1msnAweTmH6Su2vl4E+zCouzlQrEnGY\nVwoc2YsD3XXXF3nhhUYGBx8iEiT4gG8DMzHZ6Ik4VzRMioe9YNzvftfG22+3U1Y2lwMH4Cc/eZVp\n01qYOtXZxamam+HTn74KL3wmi122K0za3SoirhQI+KmpuQfYgRllI/x9R3gamD9/OxfFXq/i6NHT\nmPSiRGPQWmNCnBW/5sXAwEqGhrZgWZsZHHycN990dl0W8M5nsthlO3i4EfhvWd6GyJh5pQBWZFbI\nG8D5JA4SvDUEI96Ry2XXVXTMG7JRJErEM7wyYyUyK6SUSJAQH0DUAjtJPHSh7l4Zu1zOSlLRMW9Q\n8CDiAZHyvYPA5cROzwQzRbMPaMEspaxKfOKcXC67ruDAG7SqpsfYiXMzZrRSVbWc8eMbqapazowZ\nziYuibvErjmwGIgeEw5iSgl/BtgG/DPwCeAmSkquZNq0h101BCPe47VZSZJ96nnwmMWLg3zta6s5\ndOgBTDdiCf39Q5w+vZsJE5pYsqQTk30vI4kutPTee3DggOkaPe8885jb7n6GrzmwDvgFZmrmEeB7\nRHoiIkMwlrWDm292di0LKT6R46+GSBEyewjtIk6enEVHx8ifmVyuIyOFTUWi0vDww5a1YoVlTZ9u\n14BPVEBlu9XSsi7fu+oZdqGl6uplFqywqquXWS0t61xZTGn4mgPrwksVL7FgjpYslqwKBoPWzJkf\ns6AhQRGyF61Zsz4+6ucml+vIFINCKhIlWdTcDBs2hHj33ecwK+olkt25/IU0ZBIMBmloaKK9fSW9\nvVuAzfT2Pk57+0oaGpoIhZybeuaE2Az0/wy8SnV1CS0tV1NTMxtN0ZRs8vl8NDRcg6knMnx57v37\nvznqjItcztiQ7NOwhUcEg0EWLVrN229PJl8XikIaMsnlglhOGCkD/fjx5eRi8SIpXh0dsGXLa4xc\nhGzkGRfpztjw2tBisVHPg0dELnbjyVfiUiHdOZgTWX56cBIZrVcHTLGezZvhqafg1VfN982bYdUq\nb1TJFO9qboZLLslsxkW6Mzbs3tapU1vZt285e/c2sm/fcqZObWXDhpAChzxT8OARkYtd/i4Ubrvg\nZiKXU89SYVeQPHRoJadPb6G/fzOnTz/OoUOjV/BTRT7JhdgZFyGgFVgONALLeO21gyMOX6Y7Y8Nr\nQ4vFRsGDR0Qudn5ip+kR/v5i1i8UbrvgZsJtU88y6dXxSpVM8bbIOjD21OCVgLmowxYGBr4/YqCb\n7joyhdTTKc7SbIs01NYui8pQDoaz7c0sAbjVKiv7iLV0adB6+OFc7YO3s/pbWtw1a6WQ2lYKU2TG\nz2fDs37S++yku7y3PhMj02wLSUls1G6XU96Kifq/xu2338STT2Z3nrRXVqBMhdu6+gupV0cKk93D\nVVb2MokXZoORhi/T7SHTZ8LdNNvCIwIBP9u2NdHTcz8m7yD3pYfdsA9OsU9kZ88GOHlyfUzBGvtE\nlsuErMgwimZMiDvZ68DMnXsJe/emf1FPdx0ZfSbcTcGDR7jhYueGfXCK2xbEilTwS3RH561eHSls\nubqo6zPhbgoePMINFzs37EMhSFSmt7y8j9LSpxgc/AHmZOndXh0pbLm6qBdST2chUs6DSI4lmpbZ\n1/cUg4PfpKrqDmbOvBVopLp6BS0tm9ixoxOfTzMmxB1ylS+kWUTulmzgKhfqgK6uri7q6vKSLCqS\nF2vWtNLevpLEd247mDZtE5bVxrlzIfr6AvT3m0WIzjtPiwiJO4RCIfz+AC+80E1vbynV1YNcf30t\ngYBfgW6O7Nmzh/r6eoB6YE+ut6+eBykqblifY7RiW5Mnd/Pb3waZPLmJ995byeDgRgYH53L6tMWh\nQ//B00/fwF13/ZXn1hORwtDRAWvX+jhxoo3Zs7cyZ85mZs/eyokTbaxd69MxWSSU8yBFxQ3rc6Qy\nBS1SIOcyYDUQ2V/LGuLo0Z1UVHhrPREpDPaaEnbuTl9fgO3bI0ts/+Y3tbS3q3es0KnnweXccKdc\nSNxQtS5xdUu73O8y9u49xE9+8gSmd6INEzgMX8lQVfYknzIpqS7ep+DB5dz4AY0PaMrKGiktXUJp\n6Q2Ult5MWZl7Axw3rM8xvNhWdLnfrcAeLKsaEyzkf39FEnFDIC75o+DB5dz4AY0PaAYHf8TQ0BBD\nQ99kaOgJBgfzH+Ak44aqdcOz1duA+4n9G9u9E/nfX5FE3BCIS/4oeHA5N35Ahwc0ybrW3XcH4oYF\nseKnoMETDJ95YfdO5H9/RRJxQyAu+aPgweXc+AGNDWhCwHO4LcBJxg3rczQ3w5NP+nj99TZOndrK\nnDn2EEU0e/XUi4CdSd5JVfYkf9wQiEv+KHhwOTd+QCMBjT1WPxm3BTjJuG1BLEj2N/YBnUAl8Bng\nRdyyvyKQeiCupO/CpODB5dxwpxwvcrGzhyvGE7n42bMGlgONwDJee+2ga04SbqpaZ59U9+8/jQlm\n4vmAzzBt2s1Mn/7Ped9fkWipBuJuTPoWb6sDrK6urnwvi+5qwWDQqqm50YLtFgy+v5Y9bLdqam60\ngsFgzveppWWdBTssWGbBkAX2/49bcGP430NR+/pi3vbVzY4fPx7+2/4y3G7xf2O1m7jXww9b1tKl\nQWvKlHXWuHGLLbjagissWGjBDVZJyfXWuHFLw4+/GD6u47+2Wy0t6/L9q3hSV1eXhblry0uJZvU8\nuJyb7pRtkTuOc5jhCnt8vpXhswZUkyCZSOLprZghik3ACkyPzWIqKu5R74K4lp2788orrVRXDwE/\nAH4H/AummJmZfQWXAA1J3sVdOVGSOlWYdDk3rmRpBzQHDtzKwIBFZHz+VhKv1wDmJLE+Z/voBeak\naQdU8X/jIWbNWsGTTypwEHeLnX0FsbOvQNONC5N6HiRt9h3H7bffSCQfw4e5w9BJIlVunEkjkq7R\nZ1+5L+lbMqfgQcZseMKUThLpcONMGpF0jT77yn1J35I5BQ8yZvH5GCUlR0g8awB0khjOjTNpRNI1\n8uwriOREuWd6tGROwYOMWXyxo+PHn6Km5qvoJJEaN9acEElXJAi2hy+ig+IQJq9nHPBF4ErgGsaN\nu5UpUzTd2MuUMCmOsXsizp4NcPLk+veX6J08ufb9k4SW6I1Qe0khCAT8bNvWRE+PPXzhxwxf3AX8\nHdHLyZvgeBfV1feyY4cfn0+Bg1cly9bKhTqgq6uri7q6vExTFRGRDHV0QHt7iGefvZWBgV9jLish\n4NOYwGFRgp/aQUvLJjZudM8sMq/Zs2cP9fX1APXAnlxvX8MWIiIyZslnX1Wi+g6FS8GDiIhkbHgO\nj6YiFzIFD1JUQqEQa9a0Mm/ecubObWTevOWsWdNKKKT6+iKZGL7UfC+aily4FDxI0XjooSCzZjXR\n3r6S7u4t7N27me7ux2lvX8msWU388IcKIETGKn72VUvLLWgqcuFS8CBFY9euNvr67LK50WtvLKSv\n73527tTaGyJO0VTkwqbgQYpGbBndeErgEnGSGxf1E+eozoMUDa0lIZI7blzUT5yjngcpGlpLQkTE\nGQoexHFundGgtSRERJyh4EEc5eYZDUrgEhFxhoIHcZSbZzQogUtExBlKmBRHmRkLyQKEBezevT6X\nuxNDCVwiIs5Qz4M4SjMaREQKn4IHcZRmNIiIFD4FD+Ko2BkNIaAVWA40AovZv/80N98coqMjX3so\nIiKZUvAgjorMaNgKNAErgS3AZuDf6Ov7Bj09TSxZonUkRES8yung4QvAb4G3w1/bgVsc3oa4mD2j\noaKiDVjP8FkXDfT03I/fr3UkRES8yung4XXgbqAOqAeexdxyznN4O+JS9sp6s2ZVAg1JXqV1JERE\nvMzpqZpb4v7/VUxvxHzgZYe3JS6mWRciIoUrm3UeSoFPAxOAbVncjrhQZNZFogBCsy5ERLwsG8HD\nlZj6vxOAM8CfAfuysB1xsfnza+nu3gXUYIpGdWPiyUHgIk6enEVHhxnmEBERb0nWr5yJcmAGcAGm\n5+FLwA3AnrjX1QFd1113HRdeeGHME83NzTTrquJpoVCIa6+9jQMHhoAHgQWYw20I2MmsWV9h9+7H\n8PlUElpEZCQdHR10xM1vf+utt9i2bRuY/ML462vWZSN4iPc0sB/487jH64Curq4u6urqcrAbkksd\nHXDXXX/F0aPNwKIEr9hBS8smNm5UqWgRkXTt2bOH+vp6yFPwkIs6D+NytB1xkeZmmDz5NTTjQkSk\n8Did8/AN4JeYKZvnA6uB64H7Hd6OeIBmXIiIFCangwcf8FNgGqZI1G+BmzH1HqTIaMaFiEhhcjp4\n+LzD7yceFplxsTDBs7vC62CIiIjXKBdBsmbhQj8VFfdgZu4OhR8dAnZQUXEvCxf687dzIiIyZtks\nEiVF7o47fHzqU534/QF2717PwEApZWWDzJ9fSyDQqWmaIiIepeBBssrn82k6pohIgdGwhYiIiKRF\nwYOIiIikRcMWUhRCoVA496I7LvfCr9wLEZE0KXiQgvfQQ0Huums1fX0PYBbpMmtsdHfv5uc/b+LB\nBzu54w4FECIiqdKwhRS8XbvawoHDQiIFq8YBC+nru5+dOwP52zkREQ9S8CAFz6yhsSDJs1pjQ0Qk\nXQoepOBpjQ0REWcpeJCCF1ljIxGtsSEiki4FD5IzHR1w880hZsxopapqOePHN1JVtZwZM1q5+eYQ\nHR3Z2a5ZQ2NXkme1xoaISLoUPEjOLF4cpKeniUOHVnL69Bb6+zdz+vTjHDq0kp6eJpYsCWVlu4GA\nn5qaxGts1NTcSyCgNTZERNKh4EFy5u672+jpSTzroafnfvz+7Mx6eOYZHzU1nUyfvonKyhWUlzdS\nWbmC6dM3UVPTyTPPaJqmiEg6VOdBcsbMakgWICxg9+71WdluczM0N/sArbEhIuIE9TxIzgyf9RAC\nWoHlwCfZt+8ga9a0EgplZ/hCREScoeBBciZ21kMQaAJWAluAzZw791va21cya1YTP/yhAggREbdS\n8CA5EzvroQ1Q1UcRES9S8CA5s3Chn4oKe9bDy6jqo4iINyl4kJy54w4f+/d30tKyifHjj6GqjyIi\n3qTgQXLK5/OxcWMbs2dPQ1UfRUS8ScGD5IWqPoqIeJeCB8mLXFR9zFc5bBGRQqciUZIXdtXHs2cD\nnDy5nnPnShk/fpDJk2vfr/rY3Dy29w6FQvj9AbZv/w29vYfp79+IKU5VQn//EKdP72bChCaWLOkE\nVF1SRCRdCh4kL5ys+mgHC7t3dxMKDfDGGwexrI2YnIr1mOmgtthy2Bs3quqkiEi6NGwhnvbQQ0Fm\nzWqivX0l3d1bCIWuwrJ+DNQAz6PpoCIizlPwIJ62a1cbfX12sak3gOeAyzDVKyej6aAiIs5T8CCe\nZnoPFhApdz0Z+DameuV4NB1URMR5Ch7Es0KhEIcOvYnpXbDLXY8H7IBC00FFRLJBwYPkVSgUYs2a\nVubNW87cuY3Mm7c8pZU17VyHd96ZiOldiA4YzmECCj+QaDroi1RU3MvChZlPBxURKUaabSF589BD\nQe66a3U4Z8FMpYQhurt38/OfN/Hgg53ccUfiqZSRXIdfYHoX7OW+/cANmIDCB3SG33t9+DUDXHDB\nEf74x6fx+TRNU0RkLNTzIHkTm+yY3sqakVwHu3fhXSIBw59iehsI/78N2ApsBr7GbbfdpMBBRCQD\nCh4kbyIBQCIjT6U0MyVKiPQuWEQChr8Fvko2q1eKiBQzBQ+SN5EAIJHkUylDoRDHjx8hMpPCBzxK\nJGCYigkofgEsBq6houJWpk/f9H71ShERGTvlPEjemKmSFokDiNiplHYVySee+A3Hjx/GsuYDO4GG\n8Cui8xvuoaTkPSoqpjB58keprfXT0jL2ctciIhJLwYPkzfz5tXR37yK2fLQtMpUyNrHSLjldg6nr\ncD9m6GMcpsfhk1RUdPHgg5uTJluKiEhmFDxI3ixc6OfnP2+iry86ABgCdoWnUnYC0YmVdsnpNkxv\nhWZSiIjkg4IHyZs77vDxqU91hhe1Ws/AQCllZYPMn19LIND5fgBgEifXMbzk9PCFtT7wgUYFDiIi\nWaaESckrn8/Hxo1tPP98O4sWzQVg+/ZXueGGlveLRZnESZWcFhFxC/U8SN6NVizqggvKMRUkA0RK\nTo+cJyEiItmjngfJu9GKRVVWniWVktOq4SAikhvqeZC8MzkNdjXJUPjf3dhJkIcPv0FJiYVlJS85\nXVZ2hJqap3nmGU3JFBHJNgUPkneRYlFBYDUmtyEyfHHmzE5KSz/P4OAOYBHDEyV3cPvtm9i4UYmS\nIiK5oGELybtIsSh7We344YtFDA5+m9LSL5Co5LRWyBQRyS31PEjeRYpFRQ9fxLuFmpoHWbRo04jT\nOkVEJPsUPEjeBQJ+tm1roqdn5LUuoIKNG9uSPC8iIrmiYQvJu2ee8VFT00lZ2UlUw0FExP0UPEje\nNTfDk0/6uP32GzE1HBJRDQcREbdQ8CCusXChn4qKRDUclBQpIuImynkQ10h1rQsREckv9TwUmY6O\njnzvwojstS5efnkrr766mZdf3srGjW2eDhzc3uaFSG2ee2rz4uJ08PAV4NfAO8Bx4J+AOQ5vQzKg\nD3juqc1zT22ee2rz4uJ08PBx4O+BBcBNmGGRp4AKh7cjIiIieeJ0zsOtcf9fg6k5XAf8yuFtiYiI\nSB5kO+fhwvD3N7O8HREREcmRbM62KAG+A2zD1B1O6JVXXsniLki8t956iz179uR7N4qK2jz31Oa5\npzbPrXxfO5PVAnbC9zDDGP8XcCTB89MwyZWXZnEfRERECtVh4FrgaK43nK3g4e+BRkwC5YERXjct\n/CUiIiLpOUoeAodsKAH+F/A6UJPnfREREREP+D5wEtPj8MGor/PyuVMiIiLiXkPAYPh79Ndn87lT\nIiIiIiIiIiIiIiIiIiIiUtTuY3guQ3z9hsuBzcBbmMWxdgAz4l7TADwLnMIkVz5HbELl/gTbeSDu\nPaAc+f8AAAV6SURBVD4EPB5+jxDwP4DyMf5ebnYfmbX5rAQ/b3+tjHqPycD/F36Pt4CfAhfEbUdt\nHuFEm+9P8LyO87GfWy4BHgaOYdprD7HtDTrOo91Hbtp8f4Lt6Dgfe5vXYBacDAJvA53AxXHv4brj\n/D7gd+Edtb+mRj1fA5wAvgl8BHMSvRWIXku5AfPL+DGNVAN8Chgf9Zpe4N647VRGPV8K/B54Jryd\nxcAh4H9m+gu60H1k1ubj4n72YuBrmIMuerGyfwV+i1nQbGF4m5ujnlebRzjV5jrOI+4j83PLc8BO\n4KPh5+8FBoCro16j4zziPnLT5jrOI+4jszavBHqAx4B5wBWYQGIXsTWbXHec3wf8ZoTnHwF+Msp7\n7AT+31Fe0wv8zQjP34o5QD8Y9VgTcAaoGuW9veY+Mm/zeL8B/iHq/5djIuBrox5bEH7sw+H/q80j\nnGhz0HEe7T4yb/N3gf877rE3MIvzgY7zePeR/TYHHefR7iOzNl+KaavodrkQcwwvDv8/Z8d5ugtj\nfRhTDvM1oAOojnqfZcAfgSeB45hA4T9F/ezFwHxMF8l2TFfX88DHEmznbsxB+BvgHmK7UxowUdOx\nqMeeAiYA9Wn+Pl6QSZvHq8dEmhuiHmvA3BX/OuqxXeHHFkW9Rm3uXJvbdJxHZNrmW4DVmC7bceF/\nj8ecY0DHeSLZbnObjvOITNp8AmAB56IeO4sJDOzrqCuP81uA2zDdJYsxXVZHgSmYCGYIM37yN8BV\nmANmEFMwCkz3yRDmIPoc5oT6IPAeMDtqO3cC12G6ZNZixnai79r+N/BEgv17DxM9FZJM2zze94E/\nxD12D/Bqgte+Gn4/UJs73eag4zyaE20+EdMNO4Q5ub5F5G4MdJzHy0Wbg47zaJm2+UWYNv4Opu0r\nMRWdh4AfhF/jieO8AvOL/1fM+hRDwM/iXvMvmIQaMFHPELA+7jW/ZXgCTbRPhX9ucvj//xsTmcUr\nxIMtXrptHm0i5sD7r3GPp3qwqc2da/NEdJxHjKXNN2GSy24ErgT+FpOQfUX4eR3nI8tGmyei4zxi\nLG1+E7APE1T0Y4Y5XsIsRAk5PM7THbaI1ofp+piN6U0YYPjS2/8/JqsTIot3xL/mlajXJLIr/N3u\nnTgGfCDuNZMx3WXHKGzptnm0VZiL2U/jHj/G8Gxdwo8di3qN2ty5Nk9Ex3lEum1+OfBJzJ3tc+Gf\n/e+Yk+pfhl+j43xk2WjzRHScR4zl3PJ0+PU+TLLl54DpmGEQyOFxnknwMAGoxQQF/Zgxlj+Je80c\nzFQdwt+PJHjN3KjXJHJN+LsdfGzHRLbRv/xSzNhPV4r77lXptnm0tZgo9kTc4zsw03jiE2wuwLQ1\nqM2dbvNEdJxHpNvm9nlsMO41Q0Sy0HWcjywbbZ6IjvOITM4tb2Kmci7GBBL2bApXHuffxoy9VId3\n5nFMl6w9B/WT4Y1/HhMZfQnTIIui3uNvwj+zMvyarwOniSSNLMR04VwdfuzPMFNI/inqPcZhpp48\nHX7dYuAgZp5qoXGizQk/N4g5QBL5JfAfxE7t+Zeo59Xmzra5jvNYmbZ5KeaO7QXMSbMGuAvT/rdE\nbUfHeUQu2rwBHefRnDi3rMEcuzXA7Zgei7a47bjuOO/AZImexRwAjzI8SloD7MV0x+wBViR4n7vD\nO3oK+BWxDXMNJnI6GX6PVzDjaPGrcs7ANPxpTON9l8IsKuJUmz/AyL07F2KKirwd/vopMCnuNWrz\niEzbXMd5LCfa/LLwzx3FnFt+w/BphDrOI3LR5jrOYznR5t/AtPdZzJDGnQm2o+NcRERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERE8ur/ANBpVY9jW9RvAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import sys\n", + "import getopt\n", + "sys.path.insert(1,\"/usr/local/science/clag/\")\n", + "import clag\n", + "%pylab inline\n", + "\n", + "from scipy.stats import norm\n", + "from scipy.stats import lognorm\n", + "\n", + "ref_file=\"lc/1367A.lc\"\n", + "echo_file=\"lc/7647A.lc\"\n", + "\n", + "dt = 0.01\n", + "t1, l1, l1e = np.loadtxt(ref_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.00964867, 0.02886003, 0.0556922 , 0.08632291, 0.13380051,\n", + " 0.20739079, 0.32145572, 0.49825637])" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "\n", + "fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029, \n", + " 0.25819945, 0.40020915, 0.62032418])\n", + "# fqL = np.logspace(np.log10(0.0006),np.log10(1.2),11)\n", + "nfq = len(fqL) - 1\n", + "fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.)\n", + "\n", + "\n", + "fqd\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.342e-01 5.077e+01 inf -- -5.530e+02 -- 1 1 1 1 1 1 1 1\n", + " 2 7.674e-01 5.065e+01 8.300e+01 -- -4.700e+02 -- 0.653018 0.587019 0.568277 0.567457 0.566281 0.566085 0.565773 0.566163\n", + " 3 3.298e+00 5.043e+01 8.075e+01 -- -3.893e+02 -- 0.414806 0.209135 0.141159 0.13784 0.133393 0.132728 0.131612 0.132761\n", + " 4 1.572e+00 5.010e+01 7.754e+01 -- -3.117e+02 -- 0.322539 -0.0834456 -0.273066 -0.284295 -0.297612 -0.299435 -0.302479 -0.300412\n", + " 5 5.908e-01 4.964e+01 7.386e+01 -- -2.379e+02 -- 0.302357 -0.214604 -0.654658 -0.688754 -0.723838 -0.729279 -0.736418 -0.733888\n", + " 6 3.713e-01 4.877e+01 6.953e+01 -- -1.683e+02 -- 0.284419 -0.200357 -0.96379 -1.05472 -1.13798 -1.15477 -1.17031 -1.16748\n", + " 7 2.709e-01 4.671e+01 6.269e+01 -- -1.056e+02 -- 0.277768 -0.185001 -1.13047 -1.34026 -1.52128 -1.56845 -1.6043 -1.60101\n", + " 8 2.135e-01 4.361e+01 5.281e+01 -- -5.282e+01 -- 0.277012 -0.185189 -1.16375 -1.49463 -1.83211 -1.9477 -2.03737 -2.03476\n", + " 9 1.764e-01 3.767e+01 4.019e+01 -- -1.264e+01 -- 0.282161 -0.184207 -1.17891 -1.53049 -2.01851 -2.24569 -2.46562 -2.46922\n", + " 10 1.508e-01 2.738e+01 2.645e+01 -- 1.382e+01 -- 0.289545 -0.182463 -1.18795 -1.52893 -2.08812 -2.41103 -2.87498 -2.90486\n", + " 11 1.349e-01 1.468e+01 1.390e+01 -- 2.772e+01 -- 0.293547 -0.180898 -1.1897 -1.52803 -2.10944 -2.46526 -3.22702 -3.34288\n", + " 12 1.358e-01 5.365e+00 5.378e+00 -- 3.309e+01 -- 0.295456 -0.179941 -1.19052 -1.52801 -2.11928 -2.48294 -3.46233 -3.79368\n", + " 13 1.868e-01 1.338e+00 1.633e+00 -- 3.473e+01 -- 0.297315 -0.17923 -1.19104 -1.52666 -2.12491 -2.48975 -3.55567 -4.30889\n", + " 14 6.248e-01 2.604e-01 4.517e-01 -- 3.518e+01 -- 0.299091 -0.178645 -1.191 -1.52463 -2.12805 -2.4915 -3.5672 -5.11363\n", + " 15 2.744e+02 2.611e-01 7.022e-02 -- 3.525e+01 -- 0.300248 -0.178286 -1.19075 -1.52307 -2.12961 -2.49161 -3.56337 -8\n", + " 16 2.745e+02 2.782e-01 4.368e-04 -- 3.525e+01 -- 0.300566 -0.178158 -1.19062 -1.52252 -2.13009 -2.49151 -3.5617 -8\n", + " 17 2.745e+02 2.805e-01 6.410e-05 -- 3.525e+01 -- 0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n", + "********************\n", + "0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n", + "0.238931 0.202434 0.232634 0.177249 0.153039 0.132988 0.297259 3285.23\n", + "-0.000915535 -0.00131061 -0.00195128 -0.00497899 -0.0226059 -0.0776175 -0.280541 -0.000206646\n", + "********************\n" + ] + } + ], + "source": [ + "P1 = clag.clag('psd10r', [t1], [l1], [l1e], dt, fqL)\n", + "p1 = np.ones(nfq)\n", + "p1, p1e = clag.optimize(P1, p1)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 3.525e+01 3.480e+01 3.006e-01 5.395e-01 0.891 +++\n", + "+++ 3.525e+01 3.431e+01 3.006e-01 6.590e-01 1.87 +++\n", + "+++ 3.525e+01 3.458e+01 3.006e-01 5.993e-01 1.34 +++\n", + "+++ 3.525e+01 3.469e+01 3.006e-01 5.694e-01 1.11 +++\n", + "+++ 3.525e+01 3.475e+01 3.006e-01 5.545e-01 0.997 +++\n", + "\t### errors for param 1 ###\n", + "+++ 3.525e+01 3.476e+01 -1.781e-01 2.430e-02 0.973 +++\n", + "+++ 3.525e+01 3.421e+01 -1.781e-01 1.255e-01 2.07 +++\n", + "+++ 3.525e+01 3.451e+01 -1.781e-01 7.491e-02 1.48 +++\n", + "+++ 3.525e+01 3.464e+01 -1.781e-01 4.961e-02 1.21 +++\n", + "+++ 3.525e+01 3.470e+01 -1.781e-01 3.696e-02 1.09 +++\n", + "+++ 3.525e+01 3.473e+01 -1.781e-01 3.063e-02 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.781e-01 2.747e-02 1 +++\n", + "\t### errors for param 2 ###\n", + "+++ 3.525e+01 3.511e+01 -1.191e+00 -1.074e+00 0.276 +++\n", + "+++ 3.525e+01 3.495e+01 -1.191e+00 -1.016e+00 0.598 +++\n", + "+++ 3.525e+01 3.485e+01 -1.191e+00 -9.870e-01 0.8 +++\n", + "+++ 3.525e+01 3.479e+01 -1.191e+00 -9.725e-01 0.91 +++\n", + "+++ 3.525e+01 3.476e+01 -1.191e+00 -9.652e-01 0.968 +++\n", + "+++ 3.525e+01 3.475e+01 -1.191e+00 -9.616e-01 0.997 +++\n", + "\t### errors for param 3 ###\n", + "+++ 3.525e+01 3.482e+01 -1.522e+00 -1.345e+00 0.865 +++\n", + "+++ 3.525e+01 3.432e+01 -1.522e+00 -1.257e+00 1.86 +++\n", + "+++ 3.525e+01 3.459e+01 -1.522e+00 -1.301e+00 1.32 +++\n", + "+++ 3.525e+01 3.471e+01 -1.522e+00 -1.323e+00 1.08 +++\n", + "+++ 3.525e+01 3.476e+01 -1.522e+00 -1.334e+00 0.97 +++\n", + "+++ 3.525e+01 3.473e+01 -1.522e+00 -1.329e+00 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.522e+00 -1.331e+00 0.998 +++\n", + "\t### errors for param 4 ###\n", + "+++ 3.525e+01 3.481e+01 -2.130e+00 -1.977e+00 0.874 +++\n", + "+++ 3.525e+01 3.429e+01 -2.130e+00 -1.901e+00 1.91 +++\n", + "+++ 3.525e+01 3.457e+01 -2.130e+00 -1.939e+00 1.35 +++\n", + "+++ 3.525e+01 3.470e+01 -2.130e+00 -1.958e+00 1.1 +++\n", + "+++ 3.525e+01 3.476e+01 -2.130e+00 -1.968e+00 0.983 +++\n", + "+++ 3.525e+01 3.473e+01 -2.130e+00 -1.963e+00 1.04 +++\n", + "+++ 3.525e+01 3.474e+01 -2.130e+00 -1.965e+00 1.01 +++\n", + "+++ 3.525e+01 3.475e+01 -2.130e+00 -1.966e+00 0.997 +++\n", + "\t### errors for param 5 ###\n", + "+++ 3.525e+01 3.474e+01 -2.491e+00 -2.358e+00 1.01 +++\n", + "+++ 3.525e+01 3.512e+01 -2.491e+00 -2.425e+00 0.263 +++\n", + "+++ 3.525e+01 3.496e+01 -2.491e+00 -2.392e+00 0.579 +++\n", + "+++ 3.525e+01 3.486e+01 -2.491e+00 -2.375e+00 0.781 +++\n", + "+++ 3.525e+01 3.480e+01 -2.491e+00 -2.367e+00 0.893 +++\n", + "+++ 3.525e+01 3.477e+01 -2.491e+00 -2.363e+00 0.952 +++\n", + "+++ 3.525e+01 3.476e+01 -2.491e+00 -2.361e+00 0.982 +++\n", + "+++ 3.525e+01 3.475e+01 -2.491e+00 -2.360e+00 0.997 +++\n", + "\t### errors for param 6 ###\n", + "+++ 3.525e+01 3.507e+01 -3.561e+00 -3.413e+00 0.363 +++\n", + "+++ 3.525e+01 3.484e+01 -3.561e+00 -3.339e+00 0.814 +++\n", + "+++ 3.525e+01 3.468e+01 -3.561e+00 -3.301e+00 1.13 +++\n", + "+++ 3.525e+01 3.477e+01 -3.561e+00 -3.320e+00 0.962 +++\n", + "+++ 3.525e+01 3.473e+01 -3.561e+00 -3.311e+00 1.04 +++\n", + "+++ 3.525e+01 3.475e+01 -3.561e+00 -3.315e+00 1 +++\n", + "\t### errors for param 7 ###\n", + "+++ 3.525e+01 3.524e+01 -8.000e+00 -6.000e+00 0.0178 +++\n", + "+++ 3.525e+01 3.515e+01 -8.000e+00 -5.000e+00 0.187 +++\n", + "+++ 3.525e+01 3.494e+01 -8.000e+00 -4.500e+00 0.618 +++\n", + "+++ 3.525e+01 3.466e+01 -8.000e+00 -4.250e+00 1.18 +++\n", + "+++ 3.525e+01 3.482e+01 -8.000e+00 -4.375e+00 0.851 +++\n", + "+++ 3.525e+01 3.475e+01 -8.000e+00 -4.312e+00 1 +++\n", + "********************\n", + "0.300605 -0.178131 -1.19059 -1.52241 -2.13019 -2.49148 -3.56144 -8\n", + "0.253864 0.205597 0.228999 0.191096 0.1638 0.131949 0.246154 3.6875\n", + "********************\n" + ] + } + ], + "source": [ + "p1, p1e = clag.errors(P1, p1, p1e)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAGp1JREFUeJzt3X9s4/d93/HnxZaj5dxOi12RZ+98bLhdaBhJDbLSHzrb\n5TIn2IY26dBOIbFsiLTCQdoOuHUrcMMgzZCAYS2G9uqua3FbD9kQjNQNaDYH2LXFUKW5UVqnimm7\nbmadUT+W5kxmTXvr6kSpVnt/UHeR1I9+8I7fL389HwAhivx8vp+3cJ+TXvx+P9/vFyRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvSA/iGwBvwh0AQ+A1zsakWSJKkn3AT+NvA08H7gs8AW\n8K4u1iRJknrQ48BbwHPdLkSSJJ3sHTGONbb39fdjHFOSJPW4M7QON/xqtwuRJEmn83BM4/xz4BmO\nP9Rwbu8hSZLa88beo6PiCAk/DXw38AJw+4g255544onbt28f9bYkSTrGl4EJOhwUogwJZ2gFhI8A\neWD7mLbnbt++zac//WmefvrpCEvqvMuXL3P16tW+HO9BttVu33ban6btSW2Oez/uf7NOca51vr1z\nLcy51vn2Uc611157jY997GNP0tob3zch4WeAIq2Q8CaQ3Hv9DrAT6vD000+TzWYjLKnzxsbGYq25\nk+M9yLba7dtO+9O0PanNce/H/W/WKc61zrd3roU51zrfPuq5FpWHItz2Z4F3AjPA39/3+CLwm4fa\nngM+8YlPfIJz5/pvWcL73ve+vh3vQbbVbt922p+m7Ultjnq/VCpRLBZPXUsvca51vr1zLcy51vn2\nUc21N954g2vXrgFco8N7Es50cmMPIAusr6+v92XqVn/58Ic/zKuvvtrtMjQEnGuKQ7VaJZfLAeSA\naie3Hed1EiRJUh8xJGjo9OvuX/Uf55r6nSFBQ8df3IqLc039zpAgSZKCDAmSJCnIkCBJkoIMCZIk\nKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnI\nkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAg\nSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmS\nggwJkiQpyJAgSZKCDAmSJCkoypDwAvBZ4MvAW8BHIhxLkiR1WJQh4V3AF4Af2vv+7QjHkiRJHfZw\nhNv+xb2HJEnqQ65JkCRJQYYESZIUZEiQJElBUa5JaNvly5cZGxs78FqxWKRYLHapIkmSekepVKJU\nKh147c6dO5GNdyayLR/0FvC9wKtHvJ8F1tfX18lmszGVJElS/6tWq+RyOYAcUO3ktqPck3AW+Iv7\nvn8P8CzwVeBLEY4rSZI6IMqQMAH8yt7zt4Gf2Hv+KWA2wnElSVIHRBkSPocLIyVJ6lv+EZckSUGG\nBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJ\nkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhT0cLcLkKJQKpUolUoA7OzssL29zYUL\nFxgdHQWgWCxSLBa7WaIk9TxDggbS/hBQrVbJ5XKUSiWy2WyXK5Ok/uHhBkmSFGRIkCRJQYYESZIU\nZEiQJElBhgQNrK2tLWZnZ5mengZgenqa2dlZtra2uluYJPUJz27QwGk2mxQKBWq1Go1G497r9Xqd\ner3OzZs3yWQylMtlEolEFyuVpN5mSNBAaTabTE1NsbGxcWSbRqNBo9Hg0qVLVCoVg4IkHcHDDRoo\nhULh2ICwX71ep1AoRFyRJPUvQ4IGxubmJrVara0+tVrNNQqSdARDggbG4uLigTUIp9FoNFhYWIio\nIknqb4YEDYy1tbVY+0nSoDMkaGDs7u7G2k+SBp0hQQNjZGQk1n6SNOgMCRoYExMT99VvcnKyw5VI\n0mAwJGhgzM/Pk0wm2+qTTCaZm5uLqCJJ6m+GBA2MVCpFJpNpq08mkyGVSkVTkCT1OUOCBkq5XCad\nTp+qbTqdZmlpKeKKJKl/GRI0UBKJBJVKhXw+f+Shh2QyST6fZ2VlhfHx8ZgrlKT+YUjQwEkkEiwv\nL7O6usrMzMy9PQvpdJqZmRlWV1dZXl42IEjSCbzBkwZWKpXi+vXrVKtVcrkcN27cIJvNdrssSeob\nUe9J+EFgE/g68OvAcxGPJ0mSOiTKkPBR4CeBReBZ4BZwEzgf4ZiSJKlDogwJPwL8K+A68DvA3wO+\nBHwywjElSVKHRBUSHgGywC8fev2XgamIxpQkSR0U1cLFx4GHgOah178CtHdJPOk+lEolSqUSADs7\nO1y8eJErV64wOjoKQLFYpFgsdrNESep5nt2ggWQIOJ3DYWp7e5sLFy4YpiQBcCai7T4CvAl8P/Af\n9r3+U8D7gb90qH0WWH/++ecZGxs78Ia/pKR43D1VdH193VNFpR61P9jfdefOHW7dugWQA6qdHC+q\nPQl/DKwDH+JgSPgg8JmjOl29etVfTpIkHSH0wfluwI9ClGc3/ATwA8AM8DSt0yH/PPBzEY4pqU1b\nW1vMzs4yPT0NwPT0NLOzs2xtbXW3MEldF+WahBvAY8A8cA74b8Bfo3UapKQuazabFAoFarUajUbj\n3uv1ep16vc7NmzfJZDKUy2USiUQXK5XULVEvXPzZvYekHtJsNpmammJjY+PINo1Gg0ajwaVLl6hU\nKgYFaQh5gydpCBUKhWMDwn71ep1CoRBxRZJ6kSFBGjKbm5vUarW2+tRqNdcoSEPIkCANmcXFxQNr\nEE6j0WiwsLAQUUWSepUhQRoya2trsfaT1L8MCdKQ2d3djbWfpP5lSJCGzMjISKz9JPUvQ4I0ZCYm\nJu6r3+TkZIcrkdTrDAnSkJmfnyeZbO9mrMlkkrm5uYgqktSrDAnSkEmlUmQymbb6ZDIZUqlUNAVJ\n6lmGBGkIlctl0un0qdqm02mWlpYirkhSLzIkSEMokUhQqVTI5/NHHnpIJpPk83lWVlYYHx+PuUJJ\nvcCQIA2pRCLB8vIyq6urzMzM3NuzkE6nmZmZYXV1leXlZQOCNMSivsGTpB6XSqW4fv36vXvS37hx\ng2w22+2yJPUA9yRIkqQgQ4IkSQrycIM0xEqlEqVSCYCdnR0uXrzIlStXGB0dBaBYLFIsFrtZoqQu\nMiRIQ8wQIOk4Hm6QJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAk\nSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElB\nhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUFFVI+EfACvA14A8iGkOSJEUoqpAwAiwB/yKi7UuS\npIg9HNF2X977+vGIti9JkiLmmgRJkhQU1Z4ESeq4UqlEqVQCYGdnh+3tbS5cuMDo6CgAxWKRYrHY\nzRKlgdJOSHgZmD+hzXcC1fuuRpKOsT8EVKtVcrkcpVKJbDbb5cqkwdROSPhp4N+e0Gb7AWrh8uXL\njI2NHXjNTwaSJLXs35t21507dyIbr52Q8NW9R2SuXr3qJwJJko4Q+uB8d69aFKJak/AU8O69rw8B\n3wGcAb4IvBnRmJIkqYOiOrthgdbahJeBs8AXgHUgmqgjaWhsbW0xOzvL9PQ0ANPT08zOzrK1tdXd\nwqQBFNWehI/jNRIkdVCz2aRQKFCr1Wg0Gvder9fr1Ot1bt68SSaToVwuk0gkulipNDg8BVJSz2s2\nm0xNTbGxsXFkm0ajQaPR4NKlS1QqFYOC1AFeTElSzysUCscGhP3q9TqFQiHiiqThYEiQ1NM2Nzep\n1Wpt9anVaq5RkDrAkCCppy0uLh5Yg3AajUaDhYWFiCqShochQVJPW1tbi7WfpG8yJEjqabu7u7H2\nk/RNhgRJPW1kZCTWfpK+yZAgqadNTEzcV7/JyckOVyINH0OCpJ42Pz9PMplsq08ymWRubi6iiqTh\nYUiQ1NNSqRSZTKatPplMhlQqFU1B0hAxJEjqeeVymXQ6faq26XSapaWliCuShoMhQVLPSyQSVCoV\n8vn8kYcekskk+XyelZUVxsfHY65QGkzeu0FSX0gkEiwvL7O1tcXCwgKf//znqdfrpNNpXnjhBebn\n5yM7xFAqlSiVSgDs7Oywvb3NhQsXGB0dBaBYLFIsFiMZW+qmM90uYE8WWF9fXyebzXa7Fkl9oFqt\nksvliPv3RrfGlY5yd04COaDayW17uEGSJAUZEiTpFLa2tpidnWV6ehqA6elpZmdnvZGUBpprEiTp\nGM1mk0KhQK1WO3CjqXq9Tr1e5+bNm2QyGcrlMolEoouVSp1nSJDUNw4vILx48SJXrlyJbAFhs9lk\namqKjY2NI9s0Gg0ajQaXLl2iUqkYFDRQDAmS+kbcZxEUCoVjA8J+9XqdQqHA8vJyxFVJ8XFNgiQF\nbG5uUqvV2upTq9Vco6CBYkiQpIDFxcUDaxBOo9FosLCwEFFFUvwMCZIUsLa2Fms/qRcZEiQpYHd3\nN9Z+Ui8yJEhSwMjISKz9pF5kSJCkgImJifvqNzk52eFKpO4xJEhSwPz8/JF3nDxKMplkbm4uooqk\n+BkSJCkglUqRyWTa6pPJZCK7E6XUDYYESTpCuVwmnU6fqm06nWZpaSniiqR4GRIk6QiJRIJKpUI+\nnz/y0EMymSSfz7OyssL4+HjMFUrRMiRI0jESiQTLy8usrq4yMzNzb89COp1mZmaG1dVVlpeXDQga\nSN67QZJOIZVKcf36darVKrlcjhs3bpDNZrtdlhQp9yRIkqQg9yRI0gnivkW11CsMCZJ0AkOAhpWH\nGyRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUlBUISEF/DywAXwN+J/Ay8BIRONJ\nkqQOi+piSu8FzgAv0QoI7wP+JXAW+NGIxpQkSR0UVUj4pb3HXVvAPwM+iSFBkqS+EOeahDHgqzGO\nJ0mSHkBc925IAz8M/EhM40lSXzt8U6nt7W0uXLjgTaUUq3b3JLwMvHXC4/AN1p8AfhG4AVx/gFol\naWgUi0VeeeUVHn/8cTY2Nnj99dfZ2Njg8ccf55VXXjEgKBZn2mz/2N7jONvAN/aePwEsA6vAx4/p\nkwXWn3/+ecbGxg68YVqWNGyazSaFQoFarUaj0fhT7yeTSTKZDOVymUQi0YUK1S379zDddefOHW7d\nugWQA6qdHK/dkNCOJ2kFhDXgY8Dbx7TNAuvr6+tks4d3REjS8Gg2m0xNTbGxsXFi23Q6TaVSMSgM\nuWq1Si6XgwhCQlQLF58EPkdrr8KPAgkgufeQJB2hUCicKiAA1Ot1CoVCxBVpmEW1cPGDtBYrvgf4\n3X2vvw08FNGYktTXNjc3qdVqbfWp1WpsbW2RSqWiKUpDLao9CZ/a2/ZDe1/fse97SVLA4uJicA3C\ncRqNBgsLCxFVpGHnvRskqUesra3F2k86iSFBknrE7u5urP2kkxgSJKlHjIzc3z3w7refdBJDgiT1\niImJifvqNzk52eFKpBZDgiT1iPn5eZLJ9s4UTyaTzM3NRVSRhp0hQZJ6RCqVIpPJtNUnk8l4+qMi\nY0iQpB5SLpdJp9OnaptOp1laWoq4Ig0zQ4Ik9ZBEIkGlUiGfzx956CGZTJLP51lZWWF8fDzmCjVM\nDAmS1GMSiQTLy8usrq4yMzNzb89COp1mZmaG1dVVlpeXDQiKXFSXZZYkPaBUKsX169fv3cDnxo0b\n3gRPsTIkSFIP2n9L4J2dHS5evMiVK1cYHR0FoFgsUiwWu1mihoAhQZJ6kCFAvcA1CZIkKciQIEm6\np1Qq8eKLL/LUU0/x6KOP8sgjj/Doo4/y1FNP8eKLL947BKLh4OEGSRIAzWaTa9euUavVDtyyend3\nlzfffJPd3V2uXbvGBz7wARKJRBcrVVwMCZIkms0mU1NTbGxsHNmm0WjQaDS4dOkSlUrFoDAEPNwg\nSaJQKBwbEPar1+sUCoWIK1IvMCRI0pDb3NykVqu11adWq7G1tRVNQeoZhgRJGnKLi4sH1iCcRqPR\nYGFhIaKK1CsMCZI05NbW1mLtp/5hSJCkIbe7uxtrP/UPQ4IkDbmRkZFY+6l/GBIkachNTEzcV7/J\nyckOV6JeY0iQpCE3Pz9PMplsq08ymWRubi6iitQrDAmSNORSqRSZTKatPplMhlQqFU1B6hmGBEkS\n5XKZdDp9qrbpdJqlpaWIK1IvMCRIkkgkElQqFfL5/JGHHpLJJPl8npWVFcbHx2OuUN1gSJAkAa2g\n8NJLL/HMM89w/vx5zp49y8jICGfPnuX8+fM888wzvPTSSwaEIeINniRJ9xSLRYrFYrfLUI9wT4Ik\nSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkK\niiokvApsA18HbgP/BjgX0ViSJCkCUYWEXwH+BnAR+D4gDfxCRGNJkqQIRHUXyKv7nn8J+DHgM8BD\nwJ9ENKYkSeqgONYkvBv4m8AyBgRJkvpGlCHhx4A/An4P+HbgoxGOJUmSOqydkPAy8NYJj+y+9j8O\nPAt8CPgG8O+BMw9csSRJikU7f7Qf23scZ5tWIDjsSVprE54DVgLvZ4H1559/nrGxsQNvFItFisVi\nG2VKkjSYSqUSpVLpwGt37tzh1q1bADmg2snx4vpkf55WgPgu4Fbg/Sywvr6+TjabDbwtSZJCqtUq\nuVwOIggJUZzdMLn3+M/AHwDvARaALwKrEYwnSZIiEMXCxa8Bfx34T0AN+Hngt2jtRfh/EYwnSZIi\nEMWehN8G/nIE25UkSTHy3g2SJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ\nkoIMCZIkKciQIEmSggwJkiQpKIp7N0iSdGqlUolSqQTAzs4O29vbXLhwgdHRUQCKxSLFYrGbJQ4t\nQ4Ikqav2h4BqtUoul6NUKpHNZrtcmTzcIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ6rqtrS1mZ2eZ\nnp4GYHp6mtnZWba2trpb2JDz7AZJUtc0m00KhQK1Wo1Go3Hv9Xq9Tr1e5+bNm2QyGcrlMolEoouV\nDidDgiSpK5rNJlNTU2xsbBzZptFo0Gg0uHTpEpVKxaAQMw83SJK6olAoHBsQ9qvX6xQKhYgr0mGG\nBElS7DY3N6nVam31qdVqrlGImSFBkhS7xcXFA2sQTqPRaLCwsBBRRQoxJEiSYre2thZrP90fQ4Ik\nKXa7u7ux9tP9MSRIkmI3MjISaz/dH0OCJCl2ExMT99VvcnKyw5XoOIYESVLs5ufnSSaTbfVJJpPM\nzc1FVJFCDAmSpNilUikymUxbfTKZDKlUKpqCFGRIkCR1RblcJp1On6ptOp1maWkp4op0mCFBktQV\niUSCSqVCPp8/8tBDMpkkn8+zsrLC+Ph4zBXKkCBJ6ppEIsHy8jKrq6vMzMzc27OQTqeZmZlhdXWV\n5eVlA0KXeIMnSVLXpVIprl+/TrVaJZfLcePGDbLZbLfLGnruSZAkSUGGBEmSFGRIkCRJQYYESZIU\n5MJFSVJXlUolSqUSADs7O1y8eJErV64wOjoKQLFYpFgsdrPEoWVIkCR1lSGgd3m4QZIkBRkSJElS\nUNQh4Z3AbwBvAe+PeCzpVO4e+5Si5lxTv4s6JPw48OWIx5Da4i9uxcW5pn4XZUj4q8CLwD+IcAxJ\nkhSRqEJCArgG/C3g6xGN0RPi/qTQyfEeZFvt9m2n/WnantRmED/BOdc63965FuZc63z7fp1rUYSE\nM8CngJ8FqhFsv6f4n6nz7fv1P1PUnGudb+9cC3Oudb59v861dq6T8DIwf0KbCeAS8CjwTw+9d+ak\nAV577bU2yukNd+7coVqNLwt1crwH2Va7fdtpf5q2J7U57v24/806xbnW+fbOtTDnWufbRznXovzb\neeIf7n0e23scZxsoA98DvL3v9YeAPwE+DcwE+p0D1oAn26hHkiS1fJnWB/U3OrnRdkLCaZ0HvmXf\n908CvwR8H/BrwO0j+p3be0iSpPa8QYcDQlxSeJ0ESZL6TlxXXHz75CaSJEmSJEmSJEmSJEmx+xbg\nvwJfAH4b+OHulqMBdh74HPDfgd8Evr+r1WjQfQb4feDfdbsQDazvBmrA68Df6XItkXkHMLr3/M8A\nG8C3da8cDbAk3zwT59uAL9Gac1IUvovWL3FDgqLwMPA7tC4v8CitoPDudjYQ19kND+otYGfv+buA\n3X3fS53UAH5r7/n/pvUpr63/VFIbfhX4o24XoYE1SWuv6Bu05tl/BD7Uzgb6JSQA/Flau3//F/BT\nwP/tbjkaAt9J64Jj3u5cUj96goO/v36XNq9s3E8h4f8A3wF8O/BDwF/objkacI8B/xp4qduFSNJ9\neuBrFEUVEl4APksrwbwFfCTQ5geBTVq3kv514Ll97/1dWosUq8DIoX5fobWw7NmOVqx+FcVceyfw\nC8A/Af5LJFWrH0X1e82LzekoDzrnbnNwz8F5emTP6F8BFoDvpfWDffjQ+x8FvgHMAu8FfpLW4YPz\nR2xvHPjWveffSuuY8Xs7W7L6VKfn2hmgBPzjKIpVX+v0XLsrjwsXFfagc+5hWosVn6B1luDrwJ+L\nvOo2hX6wXwN+5tBr/4PWJ7eQLK0E/ht7j9CdJKVOzLXnaN2xtEprzn0BeKaDNWowdGKuQevmd18B\n3qR1Jk2uUwVq4NzvnPseWmc4fBH4gciqewCHf7BHaJ2dcHi3yVVahxGk++VcU1yca4pbV+ZcNxYu\nPg48BDQPvf4VWueoS53iXFNcnGuKWyxzrp/ObpAkSTHqRkj4PVrHfBOHXk/QuuCD1CnONcXFuaa4\nxTLnuhES/hhY509f9emDwEr85WiAOdcUF+ea4tbXc+4sresYPEtrscXlved3T8uYpnXaxgzwNK3T\nNv6Qk08Vkg5zrikuzjXFbWDnXJ7WD/QWrd0hd59f39fmk7QuALEDrHHwAhDSaeVxrikeeZxrilce\n55wkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVIf+P9cYZ1EAfTlhQAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-4,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"black\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xt8VPW97//X5AoJBFCGi4AGg0FCbRE0QvCy+4Oi2P4U\nrVpi3e7ws1va4+9YdtsfnJ69+3vQnp5z9qFnV497dxfd+2zRqvFC66W1gqVWi4BiA7ZsQolGEBIu\nGZRwSYDc5vzxnTW3zISszJqZNTPv5+MxD2VmMmvlmzVrfdb3+/l+viAiIiIiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjJk+4G+GI9/SuM+iYiIiItdCIwLeyzABA/Xp3On\nREREJHM8DDSleydEREQkMxQBx4D/lO4dEREREecUJPGzlwCjgHUDvGdi4CEiIiL2HA48Us6TxM/e\nCJwFbo3z+sSLLrro0KFDh5K4CyIiIlmrFbiaNAQQyep5uASTLHnbAO+ZeOjQIZ566ilmzJiRpN2Q\naCtWrODhhx9O927kFLV56qnNU09tnlp79uzhnnvumYTpvc+a4GEZcBR49XxvnDFjBrNnz07Sbki0\n0aNHq71TTG2eemrz1FOb55a8JH3mMuAJzDRNERERySLJCB4WApOBf0vCZ4uIiEiaJWPY4nUgPwmf\nKyIiIi6QjJ4HcbHa2tp070LOUZunnto89dTmuSWZUzXPZzbQ0NDQoCQbERERG3bs2MGcOXMA5gA7\nUr199TyIiIiILQoeRERExBYFDyIiImKLggcRERGxRcGDiIiI2KLgQURERGxR8CAiIiK2KHgQERER\nWxQ8iIiIiC0KHkRERMQWBQ8iIiJiSzJW1RQRyVn1u+qp//d6AM72nOXjEx9zyahLGFYwDIDaz9RS\ne4UWkZLMpuBBRMRBtVfUsnDCQu548A7e2/EeZ06e4YO+D6AYhpcOZ2f5TtYtWUddTZ2CCMlYCh5E\nRBzU1tZGzeIami9vhi7gi+Cf7AcPdPZ10tnaSfFjxSy8fWG6d1VkyJTzICLioFXfX0Xzlc2wH1gA\nTAE8gRfzzL+br2xm5eqV6dpFkYQpeBARcdD297fDZMCH+W8skwLvE8lQCh5ERBzUQ4/pabAeseQF\n3ieSoRQ8iIg4qIAC8BN6xNIXeJ9IhlLwICLioOpZ1dACeDH/jaU18D6RDKXgQUTEQWtWr6FiZwWU\nA78FDgJ9gRf7zL8rdlawZvWadO2iSMLUbyYi4qBNRzZRcX8F5146x6dFn3Lm12egF/xFfoaPGM7V\ns65m/Yb1eL3edO+qyJApeBARcVDtFaaCZH1N/EqT9226T5UmJaMpeBARSQIriBDJRgoeRESSSGtd\nSDZS8CAi4pD6XfWs27qOxpcaOX7gOF3+Loo8RZRNKAMP9HzSg6/TR/fobm646gbWrF6j3AfJSAoe\nREQcsmD8Ar732PdoubIFrgE80H2qm47nOuBG4Frz3L6+fexr3cfmmzazbcM2BRCScTRVU0TEIcF1\nLcLXs9iGCRy0xoVkEQUPIiIOCa5rEU5rXEgWUvAgIuKQ4LoW4bTGhWQhBQ8iIg4JrmsRTmtcSBZS\n8CAi4pDguhbhtMaFZKFkBA+TgKeAY0AHsBOYnYTtiIi4SnBdi/D1LOYBG4EDaI0LyRpOBw9jgC3A\nOeAmYAbwLaDd4e2IiLiO1+tl24Zt1BXXMXXDVHgGvL/1MrFyIhM/nkjp+lIKnyukdH0pk1snU3F/\nBZuObEr3bovY5vRg2yrgY+C+sOcOOLwNERFXClaTvBamzZ1G4YlCVZOUrOR08HALsAF4AbgeaAX+\nGfhXh7cjIuI6Ws9CcoXTwxaXAt8A9gKLgJ8CjwD3OrwdERERSROnex7ygO3A3wX+/UfgM8DXgScd\n3paIiIikgdPBwyGgMeq5PwNfjvcDK1asYPTo0RHP1dbWUlurrj8REZH6+nrq6+sjnmtvT+88hHh1\nz4bqaUwF9+vDnnsIuBqzJEy42UBDQ0MDs2drJqeIZLd4K26OuXgMVUuqqKupU76EDNqOHTuYM2cO\nwBxgR6q373TPw0PAVuC7mKTJauCvAw8RkZwVc8XNvm46WjsofqyYhbcvTPcuigya0wmTfwBuA2qB\nXcDfAt8E6gf6IRGRbBdzxU2trikZKhlF1V8NPEREJGD7+9vhC3FenATbN2l1TckcWttCRCQFYq64\nadHqmpJhFDyIiKRAzBU3LVpdUzKMggcRkRSIWHGzA3gdMz/tGeBJ2N+2nxsfvZH6XUoRE/dTqCsi\nkgJrVq9h802baT7TbOakLcDkQHiAPuhs7aT5sWbNupCMoJ4HEZEU2HRkExX3V1CyvcQEDpp1IRlM\nwYOISArUXlHLxuUbKR9XDpPjvGlSYFaGiMspeBBJQP2uem589EamLJ7CiJkjKKoqYsTMEUxZPEXj\n1xKTZl1INlDOg0gCVDVQ7ArOuogVQGjWhWQI9TyIJEBVA8WuiFkX0VoDr4u4nIIHkQRsf3+7xq/F\nljWr11CxswIOAn2BJ/uAg1Cxs4I1q9ekce9EBkfBg0gCNH4tYC/3xZp1Mbl1MqXrSyl8rpDS9aVM\nbp1Mxf0VbDqyKY2/icjgaHBNJAEavxawl/tSe0UttVfUUl8TuUT30Y+PcvyR4zS+1Mi6Jeu0RLe4\nmnoeRBKg8WuBoeW+LBi/gObHmmmZ1ELHnR10f6Wbjjs6aJnUYopFTVCyrbiXggeRBESMX5/ClBx+\nCngSPL/0sHHvRk3ZzHI+n48XX3vRdu6Lkm0lk6lPVcSG+l2RXc1n+87i7/Lj+Y0Hf6cfbiVYctjf\n5+dw62FKHivRlM0stfbNtXx7+bfp9HTazn3REt2SydTzIGJDdFdz79Je+u7pwz8mEDjoLjKnvPvC\nu3Re1wn52F4xU8m2kskUPIgMUv2uembdPSt2V3MnmrKZg4JTdb3Yzn0JJttGr7D5NLARWj9p1XCX\nuJaCB5FBWjB+Acd2H4sdJHjQXWQOCvYezAd+S//aDQegZHMJc++a2+9nq2dVwwfAC8AM4O7Aoxao\ngrzOPCVNimspeBAZpFXfX0V3SXfsIMGP7W5ryXzB3oNS4E5gD1CP6UF4Bkb9dhT7397P8huW9/vZ\nuXfNJf+N/LgrbJ5adErDXeJaCh5EBmn7+9vjj20Pods6V/h8PpY9sIyZ82cyff50Zs6fybIHluHz\n+dK9awmLmKpbCiwCvorpQbgBbvvibXi93pg/u/yG5VRcXKHhLslICh5EBqmHnvhBwnxgI3AAlRwO\ns/bNtZRfW866c+to/EIjTYuaaFzYyLpz6yi/tpxH33o03buYkIRLTReg4S7JSAoeRAapgAKoIfbY\n9idAJ0z8eKJKDocJzkaI0S3feV0n7zz/Thr3buisctSX117OvvZ98CqwFvhXyHsmjwv2XzCov3tw\n2CMWDXeJiyl4EBmk6lnVcJz+Y9v1QANMnDWRf3joH9j35j6++vmvcsnoSyg5WULLky28vvb1rOim\ntytbFw6zpux+Wv4pfX/ZB1/HPG6EqWVT+XP9n9m4fON5y0urQqlkKgUPIoMU7KL+FFiIGdteClwP\nFfkV/PHZP3LikxNZ3U1vV7bWMnCqOqRW2JRMpT4xkUGyVkM899I5fFt8nOs+Z+bo58FHpR8x5fop\n5Pfk03lDoJveEtVNHyvzPltl68JhTlWHDD+mjm87Tpe/iyJPEWMuHhMc9qj1anEscZ/M/OaKpIG1\nGiLLoa2tjZrFNTT/RTNMBr/Hz7m+c/AkA3fT51jJ4epZ1TS2NEYGU5YM7pZ3qkcl/JgSySQathAZ\ngrjd1kVkZTf9UGVrt7wSHSXXKXgQGYK4iYAqFhXB6paf3Do5q2ahKNFRcl1unclEHBK329qqAzEF\nkw+xBfBh3tsFXWO68Pl8cQsHZZts7Zafe9dcnr//eTMNdRLmNqwPaA2Uo36sfzlqkWyingeRIYjb\nbW2tcbCX/msW3Asfzv4wJ2ddZJvlNyxn/9v7qSuuo2pTFZWvV1K1qYq64rq45agHYtWNmLJ4CiNm\njqCoqogRM0cwZfEUbnz0Ri2QJa6jngeRIYibCFgK1ED+b/Pp/VJvRs268Pl8rFy9ku3vb6eHHgoo\noHpWNWtWr7HdU1K/q551W9fR+FIjxw9EziKoWlJFXU3deWsguJ3X6+XxnzzuyGctGL+A7z32PVqu\nbIFrAA9093XT0dpB8WPFLLxdC2SJu6jnQWQI5t41l5LNJTETAUv+UMK4CeMyqjiS02WkrSJKLZNa\n6Lizg+6vdNNxRwctk1pofqxZq0VGcapuhEiqKHgQGYLzdVuPLB2ZUbMunC4jrYuhPdlaiVOyl4Yt\nRIZooG7rTCmOZA0vvPHKG3BfnDcNoT5FvyJKUcmjz5x6BmBIQyLZKFsrcUr2crrnYTWm8zb8ccjh\nbYi4XqZM5bOGF3qKoi5eHcDrwNPAs7CneY+t5L2Ii+Fp+iWPdv11V86W7I5FdSMk0yRj2OLfgQlh\njyuSsA0RV8uU4kjB4YV8zMWrA/gV8DgRF3v/cr+tfIWIi+FWYAFZsbJmsmZFZEqwKWJJRvDQC7SF\nPT5JwjZEXM2txZGiL37r1q8zY+1e4ANMD0E3cCsJ5StEXAx9ZM14frISQTMl2BSxJCN4uAxoBT7C\nLFY8NQnbEHG12itq2bh8IwdfO8jp3afpauzi9O7THHzt4KCWak6WiIvfzR2hctrzgd9gegg6Sfhi\nHzEbxUPSxvN9Ph/LHljGzPkzmT5/OjPnz2TZA8uStvx5shJB3RpsisTj9EDaO8BfAk2YIYu/w3Ra\nzsQsZCySM9xY6yB48RsDrMecAfyY+hRlmKDBgYv98huWc/vbt7Ny9UqeOfUMXf4u85nRVTf74KOO\nj7jx0RsH3R5Wu25/ejvte9pNL8kXQp/X2NrI89c+z48f+7HjtTScWk0zWrZW4pTs5XTwsCHs/3cD\n24Bm4K+Ah2L9wIoVKxg9enTEc7W1tdTWZnYBGRE3Fv4JXvysXoY9hMpp55t9DK7PkeBMkfDZKOta\n1oUClgVEXOx7WntMl/8g28Nq1/be9tDwiiXJhbg0K0LSob6+nvr6yHya9vb2NO2NkewU3k5gFzAt\n3hsefvhhZs+eneTdEEm9iC5ui9XFjenidqpC4WAFL34+zAX8AkyewwLMGLufyPU5og0heW/N6jVs\nvmkzzb3NZjsXYIIXq/fBD80lzTy46kHq/+38CYfBdv09KV/+PFOm4Ep2iXVDvWPHDubMmZOmPUp+\nkahioAo4nOTtiLiOGwv/RFz8PJjhijsxPRCnMEGDtT5HdPLegcCiT3fZW/TJGs8v+KTA9D5Er/lR\nC1wFz/3yuUFN2wy2axJzKeLRrAgRw+ng4X8C12OSJK/BdFKOAJ5weDsirue2Lu76XfUcH37cXPzC\nlw4vBRYB92KChk+AL2MCimeAJ8Gz1sO89nlDWvTJSh699OJLB5y26b/FP6hpm8F2TcPy5wOWJR9C\nYCWSqZz+dk3CzLAYi+mU3AbMxXzVJEXcmKiXi9zWxb1g/AKK24rNip8X0H9owuqFeB1GnRzF+Inj\nKRg39MWxohVQEBouiWXy4IYagu0ab3glUOCq9WQr0+dPT2iBr3A+n493nn+HyaMmc2TTEc52nWVY\nyTAmXDiBmqtqWPO2qmVK7nD67KUrkgu4MVEvF8VdeRPS0sW96vur2F+93wQObwIvA7dghgDyMHfQ\nn0LJmRL+x+P/w/Fkw+pZ1TRuaEy4NybYrvMJ5WtMMj/PKeA54EY4MfkEJzwn4BQ0bmrkic88gfci\nL2NLxtoOJta+uZZvL/+2Wf/jZoLJnl2tXfRs7mHuXXMVOEhO0cJYWeh8c9EfXPVgSufG5yq3dXEH\ncwVKgS8Cy4A/Y/oKn4GifykKLuyVjOXC5941F89pT8JDDcF2/ZR+wyv8G3AjoWP/NPBz4Crwf8NP\n25K2Ia0W6vTCYU5Ldb0LkXj3AKkwG2hoaGjQbAuHzZw/k8YvxLnDO4q5M7sNk7y2FVMHtA84BaNn\njKb67moNbTjE5/OxcvVKtr+/nR56HOtCH4rp86fTtKgp7uuVr1eyd8vepO5D7X21POt5NnZvzEGo\nK64LzkAZqO2AmK9t/cNWmhY3hY791zHJmYPY3kAG/E71QdWmKnZv2T2IFnBeRK+IlUjaB7SaIDUZ\n9S4k/cJmW8wBdqR6+5pXlIXiJuqdxqSwWoFDjDn37a3ttubcy8AGWnkz1dyQg/HI3z/Ceze9RzPN\noaGGwIWuYmcFazaYwCDighinAFSsdp0+f3rk7zdQjoWN6Zznes65Kvk1XESvSFQRrs6uTr71tW/x\ni+/8QjcE4igNW2ShuCv0bcV0WU9mwKz3RMrsinu5YZrhYMswD3WYoN+xb3M6Z6zu/3m3zeOjfR+5\ndtXL4HBUjNVLuRc6b+hMaN0Nt0nW4mRij3oeslDcRD0fobUMHLojk8wx9665PH//8+aiHHXXX7K5\nhLmPJT8HY7BlmO2UgQ6fXXRk35HIGRg2qmXG6+3gZeAi4hfOaklvfYdgT2P4DYElzUXJkkEJ4e6g\nnocsFDdRr5fIk+kAd2SfnvtU0b1D3HKntPyG5ex/ez91xXVUbaqi8vVKqjZVJTVJcqjs1MgIX+yr\n56s9plbFAcwxb03njCWqtyVub0cnJpiIUzir8NXCtK56GextyaLVSweSrMXJxB71PGSh8EWJtm8K\nJZS1+ls5MfZEZJGgOHdkZZ4yc0JWdJ8wN90pDSUHIx1Jn8ELYieRC2n5gbHQ+mkr9bvqqb2itn8Z\n8DsDP/M7zNTNPZg8n/ApqVE5FjBAb4cHU+rO+tzfh+2LFwrHFLLpyCZqvenJJwj2NKah4mY6JGtx\nMrFHPQ9ZyrpI7N6ym71b9rJ7y25uW3ybqf35W6CEAe/I+nr7FN07JJPvlNa+uZbya8tZd24djV9o\npGlR05CmOsYy0PTC6lnV8AGxS1lXQV5nXnAMPzjmHygOxUvAEUzgcCtwH2ZKqjWd86cw+oPR/Za6\njtvbYQXaViXOrwb25avAQii/oDytiYhrVq+hYmcFdOHavAwnua1ya65S8JADrG7zjX/eiOd1D8wD\nCjFjuVb3LkTUIOjo68iJLtBUcOMaF4NRv6ueH/zwB0mpb3C+oGTmopmM+P2IuEm9pxadCgZdPfSY\nwCE80JhAaMXNEZiL/j2YEty3wJLPLGHj8o0RF/24icY2hj6cYLdmg5WEWlJQkvaE2FSI+3eCrAqS\n3E6tnMWsRLJdz+3iyK4j+G/1m+oaW4F2zJ3US1AwvIC8kXl4ej3k+/OhAA63HVZ075BMvVNaMH4B\nx3Yfg2vjvCGBLuKI/AJLWFDyy2d/iX+kf1CrZhZQYIYTwpMFh5AQHJFoHD7lsRdT0vtWzjv0kajB\nTFGNzk2xklAfvfxRvnX/t9KaEJsKbqvcmqvU85DFrESyw58eNoFD9F3YMuA2uOfWezj41kEmj5xM\n5w2ddH6l07wvB6P7ZFTqy9Q7pVXfX0V3SXco8LGGBZ7GDAH8DPbs3UPpjFLbSaAD9saMhq1vbaWz\nvXNQQVf1rGqzbm/45w1h/D+YaNxEZC/GvUAd0AD8FPKfyY85vdQJiVSyzKSE2ES4rXJrrnLnWUuG\nLDy5raW1hZMLT5oEr/PcwfVLOou36BBkbXQfcddXQ7D6ZuOGRp5Y/wRzr53Ly2tftp0k6IY7paEk\nPW5/fzvkYwKfDiKLigX+7V/ip3NyZygJ9MMO2n/Yzv6L9rO6YHXc7QxYyOzn0HNzjzluBzHNcu5d\nc3nixSfwe8IiNBtTNC1WonHNjTV8uODDyL/XSEzS5UH4y+K/TNqUx0STAQebEOumyqd2xUsIr55V\nrcXJUkg9D1kkehz5ZNHJULna89yF9bsTnE/sqWlZHN0H7/qs6pszMElx94L/6362jdk2pCTBdN8p\nDTXpsYeeUBAZXVQsVpGxTvP86RtP07S4acDtDFjIzPrcQeYaLL9hOZdNuSzy84aYp+D1eikaXpS2\nHJVUDHElMwl2sBKdvhwrIfzxnzyuwCGFFDxkkX5dntbDuguLJXAXFnHSssZ7PcCrwFrwrPVQuaEy\n67pAwwUDqAGqbw4lSTDd3ckJVWuswQSRh4i8oMaqKWCj3eJWuwz/XBsBbM1VNZGfF+9nm2DExhFs\n/cPWiGGpPXv2BIerPjjwQdpyVFIxxOWGRb7Ca3N03NlB91e66bijg5ZJLVlVDTObadgii/Tr8rSC\nhkEMQWx/f3vs7ulAwpa/1U/L5pasXno4GEAlofpmOte4GGpXePWsahqPN5r6BvVEXlBj9WbZaLc1\nq9ew+abN/de46A373FL61VYoOlXE3bfd3a97ul/1zFLMipubgFcgf0w++X35dJ/q5vSXTtM0uSmU\njPhhI+uuWwdLAvv/DIOuMeE0p4a4oocl6Ia+nj766GN/y374D1E/YN0wtMG6jnW88OYLjLl4DFVL\nqpKyJka/YVLIymqY2Uw9D1nC5/PRcrQl8oRuBQ3x7sIOhO7ggneCDt91Z5KIhaMycHZEPEPtCo9Y\n+noYoTviDkwNheg7ZBvtFm+Ni4KuqDvv8NoKS2Ha1Gkxu6dj9u5sq6Jufh1tu9vo2dvD3Yvuxv8l\nf/9jez8mcLCe9zLoGhNOC9ZsiNHbUrGzYlCVLIPDEu3raPQ30tTSRFNzEx/O+JCPjn9E38i+yF7G\nXwGPExqmW07SewEydfqyhCh4yALWyeJk78nIE68VNHyKuQvbQ7BQjmeth3nt84Ld5sELRXT3dLgs\n/1IHA6hBDPNkkqF2hYdfkEd1jzJtYy2+NI7+ww422q32ilo2Lt/IwdcOcnr3aboauzi9+zT33HLP\ngLkKx4cdjztOvunIpgHHweNesKKHYOYDv2FQNSacNtiFwwby7gvv0nlVp7kRmAqcwSR77g/8TlYS\nrPW37CZUEyNFRcwydfqyhCh4yALBMUxr8R6L1e27B/g5lB0to2pcFXU31XH034+y9edbgydW60JR\nll+Ws1/q4F3feapvZtpMk0RW07SGWz547wPTNtZFdRH9e7PGknC7DZRcOvx3w+k53DPkcfK4F6zo\nHpNSoIy0BNHRQVXrW63c+Rd3UnayjP1P7ueHX/9hcOpwvGnFW/+wFfZh/k77Ca2kawVJ0Umwnan/\nXSMC2ugpwE/B0dajCU2PluRT8JAFgndUsYYnhgOXQ0lRCWv+95oBs5K9Xi+Tx0/OqrtuO6y7vokX\nTsTzsidm9c3Bdh27iROzPay2KfikwBxr4YFpPeakfwR4kYS2Ey+5dGnfUsaPGI+vxjfkO+S4PTCx\nekzySXsQ/aOXfsTEz06MOStiUvUkJs+dHPO1Dw5+AMcIBQzWSrrWwzpPWL2MaRimCwa0sZYRvxtO\nLDyRspkfMjTZeyXIIcE7qhgJZvihrKuMD9/7cFCJjm6oSZAuVqW++prQEs/H3zlOl7+LIk8RYy4e\nE+w6TtciSEPhxLx4q22mPzmdJk+TebIUcyGykgoLgXwoeasET6GHkSUjuaD4gvNuJ17NgTdfehOv\n1xuqv9HVOaiKk/HErCB5GDhB/4TiIdSJcNLaN9fy3W98l94v9sZMKuwe1Q1XEfM1f7E/9myr8DU6\nwpNg0/C7BhNch3fGXUbcyrHKxpld2UDBQxaISPSzEswsfTB50+RBz5CImQV/CtgEhUcL2XzxZmbO\nn5kxBWWGwrpQkkXnLKdme0Qca6eJOTOns7WTip0VbHtt23mPj8GUYw4Oy20moTvk4LF9ptl02ddg\n7r5vwtyJLyB0zFtDMGkKot994V16h/XGD5Y6iP/aRExQZAUF1u8SPuuqFNMrOcjZWE6xSuY3vtQY\n/HyWxHlzVEAY/rPHD0QG9cmaFSLxadgiCyQyph0tOmEr76k8eAK4CrqXd9N8c3PKC8qIe0QcawPM\nzBlsot1gag4Eh+USTGQNLiC1vSSUD7AAqKT/EEwLZugqTYW9tr+/PTTcEEveAK9dS6g3xUtoJd1y\nIoc1bczGckp4fYfO2k64YIDfIyogVG0Id1HPQxaIO2d+CAv3RN91L3tgGevOrVO3ogBRx1obCdfD\niKhBEb4YVaAH4qmOpygaUxSaQpnAHbJ1bM98ciaNkxvN0J617Rg9dpe9dhk1xTVpKYHcQ895hxPi\nvjYcxk0YxyevfkLv53tDvSz7CBV+6w38vLXg15eBbcBb5rM9pz2mHPvb9suxD6RffQcbQyaqDeEu\nCh6ygHVHde6lcxzf5uwYfaK19jNJJtf7T5XwY621ozVyPYlwg0y0C+brxBkC6WntwfOqx1xg5mOS\n68KHF/qAFih5e/CrRga3eZ5EQQpJ28WogIKBh05KBnitFW7+/M2sWb2GOx68g4biBs69eY7e3l4o\nguGjh3NB+QVULani9stvN7072wLH/LjkHvP9zic2AsJcOhdlAgUPWSCZY/S5Mh97KEsh56LwY23m\n/Jk0+hsTSrQL5lCED4FYrOTA8d2hC0x0QnAXTBszja1vbx30xS64zTQnRQ6kelY1je2N/XMxAsFS\n3pE8Ltx6oZl9Eqe30ev18lb9W+fdlnVchwfP1y65NinBc7/zSbyAMMYy4rlyLsoUynmQAWXqctJ2\nuaHef6ZxItcm+Bmx1sqwLAzLPxiOGV6oBa4zU5C/89B3bF3cgtsc4uJZqTD3rrmU/KHEDDc0Aj8D\n1gI/BV6FEReOoGBiARP3TxxyMalwqVosq9/5JHzK7zNQ9K9Fcdd9yZVzUaZQ8CADcjIZ081ULtc+\nJ+pHBAtzha9pEW0kTJ061bGFxYL7XY5rV44N1rsYXceE0xPwnPbAFzFrUnwDTt55ksNTD3Pi4An+\n4Z//IVih8+BrB9m4fKPtWQepCp5jnk+sfJMb4O5b7o5biyZXzkWZQsGDDCjdy0mnirpE7XNitdBg\n8anoNS3C9cGwwmGOLcEcfmGu9FZStqmMon8pouxnZa5aOdaaXnvTdTfhvyVqTY4zwB7o7Opk5X0r\ng9Ulh1qVMVXBcyLnk1w5F2WKeKfLVJgNNDQ0NDB79uw07oacj8/n48FVD/LaG69xpusM5MPwwuEs\n/vxiHvnJZ5c9AAAgAElEQVT7R7IimXDm/Jk0fiH++H3Vpip2b9md8v1KVKqSQBPdTsxZPZaDUFdc\nl7OZ9P2OzfDkUqtCZFiewFDyc6bPn07Toqa4r1e+XsneLXuHtP/REjlWlNQcsmPHDubMmQMwB9iR\n6u1rkEjO6+e7f84rW16hc2Fn8GTV1dfFs63P8sq1r2RFMmE2VtZMVRKoE9vpt6T2AIlzuSaiV6wD\nk2C4EEenT0cU/4rmcD5BIgXL0rm0vUTSsEWGi7c4jpOLyuRCMqETSyEPRir+XpZU/d2c2I4TQyDZ\nKnhht9aB8OD4EEPMfAJrwaonoeVoS1KP1fNJ5fdGBkc9DxksVXeWuTC/Opm1Miyp+ntZZXzfeOUN\nuC/Omxz8uzl1fOiuMrZgr9gezFBFgmW6Y4no+RmNKRa1H1NA6gtw0nOSxr7GpE5djjckUfWFKlav\nWq1p1C6j4CGDRdzxWZJQ/TEXkglTsZ5Fsv5e0SdduuDw0cP0FKXm75YLx0c6Bat6ftpsLp5JqE9h\nLZ52y/238O7L7+Kf5DeBQ4oqy0YE1jWYuh9t0LihEZ4FbkvdvsjgJHPY4j9hOn4fSuI2clqqMqQ1\nv9oZyfh7xZqf31TYxKlFp8yy0in4u+n4SC6rVyy/Lz+yTHcsCeTneL1eLr/ocvy3+qGT0LFqDV88\njVn34y148dUXkzM0OgaTDDoD+CpwL2b9C02jdp1kBQ9XA/cDfyL+aUUSlKo7Ps2vdkYy/l4x8w2O\nYU62KSqCpOMjuWqvqGXj8o1Mnzw9VKY7SQtZBQNcq3S3lWcxA7g79Dix8ISjxaOC24232Jp6tlwn\nGcHDCOAp4GvA8SR8vgSk6o4v2+dXpyoZKxl/r5i9GdaJP0WrJaYq2TTXBYO08KqM1iqgT8K0ndMS\nTi4NBrjW0MgAK6c6mXQb3K5VaTS8t6Md9Wy5UDKCh58AvwLeIL11JLJequ74sjkTPlVleSE5f6+Y\nvRnWiT/WReYZGPXbUY7+3aKXcU+0VLLEFhGkRZXprriggq0bB7++RzzBANfqtRqobHgyhkY9hKaj\nWr0d01DPlgs5HbItBWZhhi1AQxZJlcq58dmaCZ+qpFNwdul0K0ly/779kclzHUAXoYWkopeaPgi3\nFd/maEGdVCSbSmpmBAVndlgLVqVoyCC4XT9m4bPwRdJsLJ4lqeNk8DAF+F+Y8iVdgecGWvQWgBUr\nVjB69OiI52pra6mtTexLkAusDOmVq1eyfVNUxbW3c6/i2lCkchqqUyf/H730I777je/S+8Vesz6D\nFShYlQet4QqdbLNKKoK0iBuSL2N6q1JQPCq43ZJOOExkwGv1oG0B3oKis0VMu3haTp3n6uvrqa+v\nj3iuvb09TXtjODmssAT4BWaJG4uV790LFBPZE6Hy1JJ2qSzLmyifz8ct99/CO2+9A7djAgari3cB\nZvXFqrDnt2C6ncOXrnaga1uyW/jU35bWFk4uPJmSY8oqg//sq8+aBcDicNN3Mp3SXZ7ayZyHTcBn\ngM8FHrOAP2CSJ2ehIQxxoUyZZmjlZryz7x0YRWgcOjyvoTnq+UWY6W53A/dC0fAiBQ5yXtYQ5e4t\nu1nzxBqTLN1E/1kX98KHsz90LDfI6/Vyy9/cQumFpRnxncx1TgYPpzH3PtZjN2a28KeBf4u4TqZM\nMwzmZnQCRUT2GVqBwmg0pU0cZSVLT9szLSWzLmqvqOXOz9+ZEd/JXJfstS2svG8RV8qUaagR8+9j\nfas6gFMxnrfojk2GyOv1UjS8KGWFmjLlO5nrkn02+XySPz8naVla52RK0mnE/PuxhJIkIZQoOS7q\n+XC6Y5MEBI+/6LyHwLTOs91nB/U5gzl3Zcp3MtfpViSDWAlz7779rikhq0ViEhLrRFYzq8aVQVjE\n/PtyImdTWIV8LiD2lLYWKHlbsyxk6AooCAWpC4g499AK+17ex6NvPTrgucfOwnDZOjU8m2hJ7gwR\nnjDnv9WftuWxs2Vp3FQWh3JCMDdjPiZYqMFkEtUDH2K6lFNUFEpyT/WsavgNcfMe/Lf4z3vuSdUS\n8ZIaCh4yRETCXJoWicm0C+5A3HgiGygwC44Df4qZf78f03VsTYy2fofoWRb3wPhJ413XkyKZZe5d\nc/Ec9sQ/90w+/7lnKAvDZcvNSjZS8JAh+i1YE0uSM+rdeMEdqlStSDpY5wvMgFCJ8G1VVFJJ1bgq\n6m6qo7K8UomSklTLb1jOpeWXRlYyDV9psx5aWlsGvKjbXRgum25WspGChwzRb8GaWJJ8oXDbBTcR\nqVqRdLAGE5iFz7/fu2Uvu7fs5vGfPE7NVTWa2iZJV1xQbM49sVbarIWTC08OeFG3W1Mlm25WspGC\nhwzRb8GaWJJ8oXDbBTcRbisOlUhgpqltkgrBvJshrrRpt6ZKNt2sZCMFDxkiImEuBcssx+K2C24i\n3FYcKpHALJtXPRX3CAaphxjSRd1ukJtNNyvZKHPO9jmu34I124C3gD7wnPYw99q5vPz2y0lNjAuu\nfJcFdQRSuSJpLNHTRPutjhluEIGZprZJsln1F6bNm8ZJz8nYbxrgom63fkPEMt3RMuxmJRup9TNE\nxBdvW+CLNy61xaHSfcF1UjoL0cSc774RFXgS1/N6vUweP5lGf+OQLup2gtxsulnJRgoeMki67y6z\npfJbuotDRSSCWa7FJKH9X5gu4TxMuelNQCs8W/wsz7z4DMNKhjHhwgnUXOXOYlaS/VJ1Uc+mm5Vs\npOAhA7ipHHW6A5hE2alylyzb399uth3NC7wK9EJeQR59XX1wE3ACzi44C5Ohy9PFyb6TNLU2sfmm\nzWzbsE0BhKRUxEV9NGYItY3gEOrea/fi8/kSPi6z5WYlW8VLR0mF2UBDQ0MDs2fPTuNuuFtbWxs1\ni2tovrI5VOchEH1X7KxI28XDTQGNHcseWMa6c+ti3zUdhLriuqQHR9PnT6dpUVPoifCyv9bfeCNQ\nhakWOYO4+3t9x/W8Vf9WUvdXJFq/UvlR56aSzSUqlZ9kO3bsYM6cOQBzgB2p3r5mW7jcnd+80wQO\nMaZFNV/ZzB0P3pHyfWpra2PeTfMii7fMa2TdlnVM+uwkpl0zzbWV4Nww/avfrJVYU9+OYfbTx4D7\ne+zAsaTtp0g8Xq+Xyy+6PK2l8iW9FDy43LEDx1x38egX0JwGfg5cBd3Lu2m+udm1leDcMP2r3zTR\nWAGCJ+oRi6arSRq5IRCX9FHw4HJuuNhFiwhoOgit5JgBdyBuqFXRb757rADBH/WIRdPVJI3snJu0\nRkX2UfDgcm642EULnjSsMrUeIoOJ8Jr3b8GLr77ompOEG4pDhRd1qnytkrzjef3/xlYl0TRWFBUZ\nyGDPTVqjIjspeHA5N1zsogVPGtZYfRGRwUR4zfu74cTCE645SbillLPX6+WaO6+h5UQLfRf19f8b\nW5VELyF2RVGVnpY0izg3Rd80PA4HDxxk+jXTWVW3SmtUZCEFDy7nlotduOBJwxqrt7rWh1jzPpXc\nVMo5WO9hEf0DhOHAPMj/XT7jSsdRtqmMon8pouxnZVRuqFTpaUm74LmpicibhluAfDh14ymaFjdx\nsuikciOykAZMXc6Nc52D87x7O02QYHWt+4hdvwDMSWKTO04SbqlVEaz34AHuBLYAvyc45W1U9yg+\n+NMHrp76KrnLOjfV3FjDhws+NDcNVg7UQkLTi5X0m5UUPGQAt1zsLNZJ47JrLuOE/4TpYn8B08ug\nk8SgRSSclWJ6IMKMf328AgdxNa/XS9HwItOzYNUrCc+BglDPpNaoyCoatpAh8Xq9fO6az5keh1LM\nnfMZXJfc6WZuTIYVsSsYBEfnQIHpiejCdXlbkjgFDzJk6x9ZT8XOCjNWPxyYik4SNrgxGVbErmAQ\nHJ0DZSVQW8m/LsrbksQpeJAh83q9bNuwLZh8OO70ODwve+AAOkkMghuTYUXsCgbBVm6DlQNl9URU\nYnom9wD1mNkYT8K0HdOU9JvB1C8qCYnOxwiueeGS5E43c2MyrIhdwQTqrk7T42DlQEEogTo6p6cP\nijYV6RjPYFoYS3JKpi7oJeJmPp/PzLqYHTbroh74WvyfqXy9kr1b9qZoD7OPFsYSSRFVuhNJDq/X\ny3ce+k5oGG544KGE4Kyl4EFyRrAok4uLWIlkqugCbGVdZUoIzmIKHiRnaBVAkeSycqB2b9nNmifW\nKCE4i6nfSBzn1rwCN65QKpKtlBCc3RQ8iKPWvrmWby//thkesEov90FjayPPX/s8P37sx2mbmhWc\nj65KdyIp4bbquOIcDVuIo9ycV6CiTCIizlDwII5yc16BijKJiDhD/bTiqIi8gg7MSpE+zHN+aOlq\nwefzpWW8U2OwIiLOcDp4+AbwdaA88O/dwA+ADQ5vR1wqmFfQgVlhbwERuQ8nW09Sfm152nIfNAYr\nIpI4p4ctDgKrMNUj5wBvAK8AMx3ejrhUMK/AqmvvwtwHERFJjNPBw68wvQzNwIfA3wGnAGWi5Yhg\nXsEhXJv7ICIiiUlmzkM+Zi21YmBzErcjLmLlFUybN42TnpMx8x7wwtnus2ndTxERGbpkBA9XANsw\nQcMZ4C5ML4TkCK/Xy+Txk2k83Rgz74FWOPirg2lLnBQRkcQkY6rmn4HPYoYq/gl4FpMDITmkelY1\n/Ia4eQ/dX+zmjgfvSNv+iYjI0CWj56Eb+Cjw/zuBqzGzMP461ptXrFjB6NGjI56rra2ltrY2Cbsm\nqTL3rrk8sf4J/JPjLKs3GY5tOpbanRIRyUD19fXU19dHPNfe3p6mvTHiVfp30m+B/cB9Uc/PBhoa\nGhqYPVsdE9lo2jXTaL65Oe7rla9XsnfL3hTukYhIdtixYwdz5swBM7NxR6q373TPw38Hfo2ZsjkS\nWArcAPxXh7cjGaC4oFhrSYiIZCGncx68wJOYvIdNmCGLGzH1HiTHaC0JEZHs5HTw8DVgKjAMGA8s\nwgxbSA7SWhIiItlJ/caSNFpLQkQkOyl4kKRyy1oSPp/PBDHvRwUxqxXEiIjYpeBBsl5bWxs1i2to\nvrI5olhVY2sjm2/azLYN2xRAiIjYkIwiUSKucuc37zSBQ4xiVc1XNqtYlYiITQoeJOsdO3BswEW6\njh1QsSoRETsUPEhK+Xw+lj2wjJnzZzJ9/nRmzp/JsgeW4fP5krbNHnril0PLC7wuIiKDppwHSZl0\n5R4UUKBiVSIiDlLPg6RMunIPVKxKRMRZCh4kZfrlHnQArwNPA5vhnbfeScoQhopViYg4S/21kjIR\nuQengfWYJbsDQxhdfV2sa13n+BCGilWJiDhLwYOkTETuwVZM4DAl7A3WEAZmCOOt+rcc27ZbilWJ\niGQDDVtIyoy9eGwo98CHpk+KiGQoBQ+SMusfWU/FzgqTe+BB0ydFRDKUggdJGa/Xy7YN26grrqPo\nVJEZwojFwemT6agrISKS7ZTzICkVnnuwrmVdZM6DJcHpk9YiWFu3b2XfwX10f6lba1qIiDhIPQ+S\nFk5OnwzvXai4uoJJV0xiXfs6mnxNJnDQmhYiIo5Sz4OkhVPTJ9e+uZZvL/82ndd1Qg3wAmYWx1ZM\nwDBQUuYmJWWKiAyFggdJGyemT777wrsmcBiDqRvhAfZhAojNKClTRCQJNGwhaZVIQqPP5+PF1140\nvQtW3Ygi4BjmOT8pScoUEck1OntK2iSyUFZwuMLTaX7Oh/kMqwiVB/Bi6krEScoce/HYZPxaIiJZ\nTz0PkjaJLJQVHK7Ip3/A0BV4bj7wW/onZR6Aip0VrH9kfTJ+LRGRrKfgQdKm30JZ4QaoMhkxXGH1\nLlhDFPMxC261AKXAncAeoB54BngSpu2cpmmaIiIJUPAgaROxUFa0qIRGKzdi+tXTmXTFJE54Tpif\ntXoXSggFDHcBvwIOAMOBRUAtcB2UFJXwnYe+o8BBRCQBynmQtIlYKCtaWEJjML/hqk6T2/Al4PeY\nn7V6F94EXgZuwfRI3Au8DbwBnnMeJoybwI3zb9QqmiIiDlDwIGlTPauaxpbG81aZfPeFd03gEF67\nITwZshT4Ima4YgvwBgxnOFMvmkr1zdWsWa2AQUTESQoeJG3m3jWX5+9/3iQ+jga2AW1AH3hOe9h7\n7V58Ph/b399uehnCazfMJ1QQahJmAG44cDlUnK1QToOISBIpeJC0sapM/seV/5FfPPWLiDUo/H1+\ntrVuY95N88xRepzI2g3WcMUWzBBGYJrnqO5RbHtPgYOISDIpeJC08nq9HD57OLQGhTX04AM80NzV\nTP6ZfBhF/9oNpZhkSMtBuK34NgUOIiJJptkWknbBKZunMUMRM4C7A497oXdC76BqN9hdUEtERIZG\nPQ+SdsEpm1aJ6fAEyjxM78LjhHocoocrumB8yXh2vb1LvQ4iIimgngdJu+CUTR+xi0YF8hvyXsqL\nWbuh4oIKdr2pwEFEJFXU8yBpN/bisaZXwSoxHct4KL+0nOuHXd9/Ce8NmoopIpJKCh4k7dY/sp55\nN82juat5wKJRwwqHJbyEt4iIJM7pYYvvAu8BJ4GjwItApcPbkCzj9XrZtmEb40vGmx6IWLQKpoiI\nazgdPFwP/CNwDWbGfgHwOmblAZG4vF4vu97cRcXOiv4zKQ5qFUwRETdxethicdS/l2FqBs7GrDQg\nEpfVA7Fy9UrlNYiIuFiycx5GB/77aZK3I1nC6/Uqr0FExOWSOVXTAzyEWY2gMYnbERERkRRKZs/D\nPwEzgWuTuA0RERFJsWQFD/8IfAmTQHlooDeuWLGC0aNHRzxXW1tLbW1tknZNREQkc9TX11NfXx/x\nXHt7e5r2xohXkieRz/tH4FbgL4DmAd47G2hoaGhg9uzZDu+GiIhI9tqxYwdz5swBmAPsSPX2ne55\n+AmmaPCtmPURJwSebwfOOrwtERERSQOnEya/DpQBb2KGK6zHXQ5vR0RERNLE6Z4HLbQlIiKS5XSx\nFxEREVsUPIiIiIgtCh5ERETEFgUPIiIiYouCBxEREbFFwYOIiIjYouBBREREbFHwICIiIrYoeBAR\nERFbFDyIiIiILQoeRERExBYFDyIiImKLggcRERGxRcGDiIiI2KLgQURERGxR8CAiIiK2KHgQERER\nWxQ8iIiIiC0KHkRERMQWBQ8iIiJii4IHERERsUXBg4iIiNii4EFERERsUfAgIiIitih4EBEREVsU\nPIiIiIgtCh5ERETEFgUPIiIiYouCBxEREbFFwYOIiIjYouBBREREbFHwICKSBj6fj2XLljFz5kzK\ny8spKioiPz+foqIiiouLueyyy9izZ0+6d1MkpoJ074BINvL5fKxcuZLt27fT09MDQHd3N5988gln\nzpyhp6cHj8dDaWkpEydOpKamhjVr1uD1etO855Io62//+9//noMHD9Ld3R18zePxkJ+fDxA8LqL1\n9fUB8OGHH1JVVUVBQQEejyfiPR6Ph2HDhjFhwgQdO5IWnvO/JWlmAw0NDQ3Mnj07jbsh4fbs2cMt\nt9zCxx9/TE9PD36/H4/HQ0FBAcOHD8/5k5XVPgcOHMDv9wMwbNgwLrzwQj799FPOnDmD3++Pe2EY\nSEFBARMnTuTEiROcPXsWgOHDh7N48WIeeeSRlLS3z+fjwQcf5NVXX+XUqVP9Xvd4POTl5dHX1xf8\n/cMVFhZy8cUXc91116X0GIkO1goKCqiurk5oH8I/8+zZs3zyySfB37urq4thw4YxduxY/H4/bW1t\ndHR0OPxb2WMFJlagESvAAPoFtX19ffT19XHs2DE6Ozvp7e2N+N4PGzaMcePGkZ+f70i7ijN27NjB\nnDlzAOYAO1K9/WQED9cD/x8mOJgI3Aa8HON9Ch6SwDr5v/baa3R2dgZPENYJH4h50neCx+OhpKSE\nCRMmZPSJxrpobN26lSNHjnD27FmKioro6+ujs7MzbfuVl5cXvDhMmjSJz33uczQ1NQX/xmfPnuXw\n4cPBO928vDwuvvhifv3rXzNjxozg72YFB6dPn07asRDufHfO1vf/T3/6U8wL2pkzZ/p9pt/vp7e3\nN/j/g92+x+OhqKiIvLw8/H4/fr+fc+fOxfz8oQSAbnbJJZfg8XjYv3+/I5/n8XiCwaTH42H48OF4\nvV6Ki4sH/b2PFfR99rOfBULHg3Ue+drXvkZdXR379++P+NsUFhZyySWX8MorrwSP81yQ7uAhGW4C\nfgAsAfqAW+K8bzbgb2ho8It9bW1t/qVLl/pHjRrlLyws9Hs8Hj/g2kes/cvLy/OXlZX5ly5d6m9r\na0t3k/r9fr//6NGj/oqKirS3l9OPxYsX+3fv3u2/5JJL0r4veuTGo6KiYsDvtdPftYKCAn9jY2MK\nzxbp1dDQYP3uWXn3reAhCY4ePZqVF4GRI0f6Kysr/XV1dUkPJsKDr6KiIn9RUZF/1KhR/vLy8rS3\nQ7IepaWlad8HPXLrUVdXF/c7WFdX5/j2pk2bltTzhpukO3hQwmQGWrVqFR9//HG6d8Nxp06d4tSp\nUzQ1NfHEE08wcuTIuN2gdsa4w4chDh06xOnTp2Nuv6urixMnTiT990yXdI/JS+7Zvn37kF4bqgMH\nDjj+mRKbgocMlIwvndv4/X5OnjzJyZMnAWhsbOTpp5/my1/+Mg888AA333xzv4S+xsZG1q1bl4a9\nFZFYDh06NKTXhirb8lTcLO3Bw4oVKxg9enTEc7W1tdTW1qZpj9wvGV+6TNDd3c2zzz7Lc889l5JE\nPxFJzEUXXTTga+3t7Sncm8xVX19PfX19xHPpbru0Bw8PP/ywZlvYlOtfukwMHMKnYZ45cyZi7r/k\njvDplNaMk7Fjx5KXl0deXh49PT0RU0KdnAlSXl4O4Nhsi8Gorq4e8LXGxkZHt3fppZc6+nluEeuG\nOmy2RVZSwmQSJCPRaKCHx+PxFxQUuH5GR7oepaWl/vLycn9ZWZm/sLDQX1hY6C8qKvKXlZUNmABq\nJW0WFBSkdF8TPRby8vLS3uZueIwcOdJ/6aWX+qdOnRq3XQsLC/3Tpk1zfBZArNlW1vd0oGOwra3N\nX1dX56+qqvJXVlb6Kysr/dOmTfNfeuml/rKysojvucfj8RcWFvpHjhzpLy8v9xcWFtpqn/PNtmhr\na9NsiwSkO2EyGUqBWYFHH7Ai8P9Tot6n4GGI2trabM8KyM/PD55gBnpfXl5e3FkP1omnsrLSP2LE\niLSfvJP5mDp1atyLekFBgaOzQga6EBQVFflLS0v9hYWF/ry8vOBFYerUqf7FixfbOqGXl5f7Gxsb\n/UuXLvWPHDlywGPB4/EMOI02+iJUVVXlX7JkiX/KlCn9Pjf8ghbrwrZ06VL/0qVL417Qon+2sLAw\neJGzHtZxe+mllw74s0VFRf4RI0b4y8rK/CNHjvSPGDEi5udHv3fUqFH+iooKf1VVVUpmA7lR9Pff\nanfr71tWVma7jcI/025wYj2SFaC5XbqDh2QUifoL4I3A//vDtrEO+H/C3qciUQmIVwwqPz+fvLy8\ntJSujS6uZFVbHGwxH7coLy8PJqU6XbXQaQOVwU5XlUqRoYh1LIcXCzt79qxKcodJd5EolaeWlIoX\nYLghS9rj8XDrrbfy2GOP5fRJSUTcL93BQ9oTJiW3eL1eHn/88X7P79mzh2uuuSbmegrRCgoKHAs2\n8vLyGDFiBDfffLPuzEVEBknBg7jCjBkzaG5ujtltmZdnVo63hg1WrlzJmjVr+i1Y1NfXN2AhJAUK\nIiLOUPAgrhGvVyKWwb5PREScl5fuHRAREZHMouBBREREbFHwICIiIrYoeBARERFbFDyIiIiILQoe\nRERExBYFDyIiImKLggcRERGxRcGDiIiI2KLgQURERGxR8CAiIiK2KHgQERERWxQ8iIiIiC0KHkRE\nRMQWBQ8iIiJii4IHERERsUXBg4iIiNii4EFERERsUfAgIiIitih4EBEREVsUPIiIiIgtCh5ERETE\nFgUPIiIiYouCBxEREbFFwYOIiIjYouBBREREbFHwICIiIrYoeBARERFbFDyIiIiILQoeckx9fX26\ndyHnqM1TT22eemrz3JKs4OE/APuAM8AfgGuTtB2xSV/w1FObp57aPPXU5rklGcHDV4CHgP8CzAI2\nA68BU5KwLREREUmxZAQP3wL+Ffg3YC/wN8BB4BtJ2JaIiIikmNPBQxEwG3g96vnXgRqHtyUiIiJp\nUODw540F8oGjUc+3ARNi/cCePXsc3gUZSHt7Ozt27Ej3buQUtXnqqc1TT22eWum+dnoc/ryLgBZM\nL8M7Yc//Z+Be4PKw5yYC7wGTHN4HERGRXNAKXA0cTvWGne55OAb0AuOjnh9P/1/uMOaXnujwPoiI\niOSCw6QhcEiWd4CfRD3XCPzXNOyLiIiIZIC7gHPAMmAGZtrmSTRVU0RERAbwDUyRqLOYvAYViRIR\nEREREREREREREREREZF0WQ30RT0ORb1nBvAK0I5JktxG/0TJecAbwGngOPA7YFjY6/tjbOe/RX3G\nxcAvA5/hA/4XUDjE38vNVpNYm5fH+Hnr8eWwzxgD/CzwGe3Ak8CoqO2ozUOcaPP9MV7XcT70c8tF\nwDPAEUx77SCyvUHHebjVpKbN98fYjo7zobd5BfAipvDiCeA5YFzUZ7juOF8N/Cmwo9bjwrDXK4BP\ngL8HPoc5iS4GvGHvmYf5ZVZiGqkCuB1T1tqyD/jbqO2Uhr2eD+wCNgW2swBTmOqRRH9BF1pNYm2e\nF/Wz44DvYQ66krDPeQ34I3ANMDewzVfCXlebhzjV5jrOQ1aT+Lnld5hp4lcFXv9boAezOJ9Fx3nI\nalLT5jrOQ1aTWJuXAs3AemAm8BlMIPEukQUfXXecrwZ2DvD6s8AT5/mMd4Dvn+c9+4BvDvD6YswB\nGl7u+iuY5b9HnOezM81qEm/zaDuBfwn79wxMBHx12HPXBJ67LPBvtXmIE20OOs7DrSbxNj8FfDXq\nuWOYKeOg4zzaapLf5qDjPNxqEmvzRZi2Cm+X0ZhjeEHg3yk7zu0ujHUZphzmR0A9MDXsc24GPgA2\nYgmD538AAAPlSURBVNa2eAe4NexnxwHVmC6SrZiurjeB+TG2swpzEO7ElLYO706Zh4majoQ99zpQ\nDMyx+ftkgkTaPNocTKT5v8Oem4e5K34v7Ll3A8/VhL1Hbe5cm1t0nIck2ua/ApZiumzzAv9fhDnH\ngI7zWJLd5hYd5yGJtHkx4Ae6wp47hwkMrOuoK4/zm4DbMN0lCzBdVoeBCzARTB9m/OSbwGcxB0wv\ncH3g5+cG3nMM+CvMCfXHmFoQ08K2swK4DtMlcx9mbCf8ru0xYEOM/TuLiZ6ySaJtHu2fgX+Peu4/\nY5ZOj7Y38HmgNne6zUHHeTgn2nw4phu2D3NybSd0NwY6zqOlos1Bx3m4RNt8LKaNH8K0fSnwT4Gf\n+2ngPRlxnJdgfvG/waxP0Qc8FfWelzEJNWCinj7gh1Hv+SP9E2jC3R74uTGBfz+GicyiZePBFs1u\nm4cbjjnw/ibq+cEebGpz59o8Fh3nIUNp819gkss+D1wB/P+YhOzPBF7XcT6wZLR5LDrOQ4bS5l8A\nPsQEFd2YYY4/EFoSImXHud1hi3CdmK6PaZjehB7MGhbh/ozJ6oTQ4h3R79kT9p5Y3g381+qdOEL/\nhbfGYLrLjpDd7LZ5uDswF7Mno54/Qv9sXQLPHQl7j9rcuTaPRcd5iN02nwEswdzZ/i7wsz/AnFQf\nCLxHx/nAktHmseg4DxnKueU3gfd7McmWfwVMxgyDQAqP80SCh2KgChMUdGPGWC6Pek8lZqoOgf8e\nivGe6WHvieXKwH+t4GMrJrIN/+UXYcZ+Gga575nKbpuHuw8TxX4S9fw2zDSe6ASbUZi2BrW5020e\ni47zELttbp3HeqPe00coC13H+cCS0eax6DgPSeTc8ilmKucCTCBhzaZw5XH+PzFjL1MDO/NLTJes\nNQd1SWDjX8NERv8vpkFqwj7jm4Gf+XLgPf8F6CCUNDIX04UzK/DcXZgpJC+GfUYeZurJbwLvWwAc\nwMxTzTZOtDmB13oxB0gsvwbeJ3Jqz8thr6vNnW1zHeeREm3zfMwd21uYk2YF8G1M+98Uth0d5yGp\naPN56DgP58S5ZRnm2K0A7sH0WPwoajuuO87rMVmi5zAHwAv0j5KWAU2Y7pgdwP8d43NWBXb0NPA2\nkQ1zJSZyOh74jD2YcbRhUZ8xBdPwHZjGe5jsLCriVJv/Nwbu3RmNKSpyIvB4EiiLeo/aPCTRNtdx\nHsmJNr808HOHMeeWnfSfRqjjPCQVba7jPJITbf7fMe19DjOksSLGdnSci4iIiIiIiIiIiIiIiIiI\niIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiISFr9H/NcRQATgKp3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t2, l2, l2e = np.loadtxt(echo_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o', color=\"green\")\n", + "errorbar(t2, l2, yerr=l2e, fmt='o', color=\"black\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.352e-01 7.004e+01 inf -- -2.548e+02 -- 1 1 1 1 1 1 1 1\n", + " 2 7.709e-01 6.945e+01 8.689e+01 -- -1.680e+02 -- 0.568202 0.566496 0.565546 0.565389 0.565371 0.564829 0.565108 0.56515\n", + " 3 3.365e+00 6.850e+01 8.615e+01 -- -8.181e+01 -- 0.138452 0.134629 0.131417 0.131051 0.130581 0.129376 0.130493 0.130733\n", + " 4 1.432e+00 6.742e+01 8.494e+01 -- 3.128e+00 -- -0.281314 -0.293481 -0.30187 -0.302706 -0.304046 -0.305979 -0.303068 -0.302158\n", + " 5 5.888e-01 6.660e+01 8.345e+01 -- 8.658e+01 -- -0.670439 -0.713504 -0.734283 -0.735609 -0.738394 -0.740978 -0.735503 -0.733408\n", + " 6 3.712e-01 6.580e+01 8.170e+01 -- 1.683e+02 -- -0.98186 -1.11559 -1.16661 -1.16796 -1.17265 -1.17538 -1.16791 -1.16475\n", + " 7 2.710e-01 6.441e+01 7.924e+01 -- 2.475e+02 -- -1.15319 -1.47413 -1.59924 -1.60004 -1.60675 -1.60901 -1.601 -1.59713\n", + " 8 2.138e-01 6.207e+01 7.606e+01 -- 3.236e+02 -- -1.2017 -1.73389 -2.0317 -2.03093 -2.04033 -2.04197 -2.03495 -2.02955\n", + " 9 1.767e-01 5.874e+01 7.252e+01 -- 3.961e+02 -- -1.21944 -1.84738 -2.46191 -2.45696 -2.47336 -2.47447 -2.47007 -2.4612\n", + " 10 1.505e-01 5.422e+01 6.836e+01 -- 4.645e+02 -- -1.22867 -1.87558 -2.87636 -2.86554 -2.90591 -2.90606 -2.90644 -2.89281\n", + " 11 1.304e-01 4.826e+01 6.187e+01 -- 5.263e+02 -- -1.23499 -1.89484 -3.22854 -3.22689 -3.33472 -3.3325 -3.34386 -3.32489\n", + " 12 1.163e-01 4.093e+01 5.179e+01 -- 5.781e+02 -- -1.23852 -1.90721 -3.44389 -3.49376 -3.74893 -3.73895 -3.77938 -3.75848\n", + " 13 9.980e-02 3.115e+01 3.779e+01 -- 6.159e+02 -- -1.23702 -1.90846 -3.49545 -3.63342 -4.12276 -4.08853 -4.19527 -4.19544\n", + " 14 7.004e-02 1.776e+01 2.014e+01 -- 6.360e+02 -- -1.23105 -1.90503 -3.4814 -3.68042 -4.41637 -4.31891 -4.53403 -4.61415\n", + " 15 2.773e-02 5.191e+00 5.391e+00 -- 6.414e+02 -- -1.22657 -1.90214 -3.47116 -3.69656 -4.59718 -4.39786 -4.69506 -4.93731\n", + " 16 1.057e-02 6.378e-01 4.477e-01 -- 6.419e+02 -- -1.22775 -1.90089 -3.46879 -3.70567 -4.68256 -4.39619 -4.69519 -5.07423\n", + " 17 7.888e-03 4.329e-01 3.041e-02 -- 6.419e+02 -- -1.22951 -1.90056 -3.46786 -3.71222 -4.73204 -4.38418 -4.69485 -5.07494\n", + " 18 5.819e-03 2.998e-01 1.477e-02 -- 6.419e+02 -- -1.2294 -1.90021 -3.46615 -3.71187 -4.76937 -4.37843 -4.69171 -5.07347\n", + " 19 4.291e-03 2.100e-01 7.619e-03 -- 6.419e+02 -- -1.22925 -1.89995 -3.46439 -3.71159 -4.79712 -4.37418 -4.69047 -5.07198\n", + " 20 3.153e-03 1.486e-01 3.972e-03 -- 6.419e+02 -- -1.22914 -1.89977 -3.46327 -3.71125 -4.8177 -4.3712 -4.68937 -5.07092\n", + " 21 2.314e-03 1.059e-01 2.083e-03 -- 6.419e+02 -- -1.22907 -1.89964 -3.46247 -3.71101 -4.83289 -4.36903 -4.68864 -5.07007\n", + " 22 1.695e-03 7.595e-02 1.096e-03 -- 6.419e+02 -- -1.22901 -1.89955 -3.46191 -3.71083 -4.84408 -4.36746 -4.68811 -5.06945\n", + " 23 1.239e-03 5.467e-02 5.783e-04 -- 6.419e+02 -- -1.22898 -1.89949 -3.46151 -3.7107 -4.85229 -4.36633 -4.68772 -5.06898\n", + " 24 9.051e-04 3.947e-02 3.054e-04 -- 6.419e+02 -- -1.22895 -1.89945 -3.46122 -3.7106 -4.8583 -4.3655 -4.68745 -5.06863\n", + " 25 6.605e-04 2.855e-02 1.614e-04 -- 6.419e+02 -- -1.22893 -1.89941 -3.46102 -3.71052 -4.8627 -4.3649 -4.68725 -5.06838\n", + " 26 4.816e-04 2.069e-02 8.536e-05 -- 6.419e+02 -- -1.22891 -1.89939 -3.46087 -3.71047 -4.86591 -4.36446 -4.68711 -5.06819\n", + "********************\n", + "-1.22891 -1.89939 -3.46087 -3.71047 -4.86591 -4.36446 -4.68711 -5.06819\n", + "0.234933 0.200019 0.259825 0.196536 0.332059 0.153872 0.153084 0.180761\n", + "0.000177336 0.000464495 0.00122062 -0.000734339 -0.0206875 0.00948273 0.00295267 0.00321028\n", + "********************\n" + ] + } + ], + "source": [ + "P2 = clag.clag('psd10r', [t2], [l2], [l2e], dt, fqL)\n", + "p2 = np.ones(nfq)\n", + "p2, p2e = clag.optimize(P2, p2)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 6.419e+02 6.415e+02 -1.229e+00 -9.940e-01 0.854 +++\n", + "+++ 6.419e+02 6.411e+02 -1.229e+00 -8.765e-01 1.78 +++\n", + "+++ 6.419e+02 6.413e+02 -1.229e+00 -9.352e-01 1.28 +++\n", + "+++ 6.419e+02 6.414e+02 -1.229e+00 -9.646e-01 1.06 +++\n", + "+++ 6.419e+02 6.415e+02 -1.229e+00 -9.793e-01 0.954 +++\n", + "+++ 6.419e+02 6.414e+02 -1.229e+00 -9.719e-01 1.01 +++\n", + "\t### errors for param 1 ###\n", + "+++ 6.419e+02 6.415e+02 -1.899e+00 -1.699e+00 0.892 +++\n", + "+++ 6.419e+02 6.410e+02 -1.899e+00 -1.599e+00 1.89 +++\n", + "+++ 6.419e+02 6.413e+02 -1.899e+00 -1.649e+00 1.35 +++\n", + "+++ 6.419e+02 6.414e+02 -1.899e+00 -1.674e+00 1.11 +++\n", + "+++ 6.419e+02 6.414e+02 -1.899e+00 -1.687e+00 1 +++\n", + "\t### errors for param 2 ###\n", + "+++ 6.419e+02 6.414e+02 -3.461e+00 -3.201e+00 1.01 +++\n", + "+++ 6.419e+02 6.418e+02 -3.461e+00 -3.331e+00 0.268 +++\n", + "+++ 6.419e+02 6.417e+02 -3.461e+00 -3.266e+00 0.586 +++\n", + "+++ 6.419e+02 6.416e+02 -3.461e+00 -3.233e+00 0.788 +++\n", + "+++ 6.419e+02 6.415e+02 -3.461e+00 -3.217e+00 0.898 +++\n", + "+++ 6.419e+02 6.415e+02 -3.461e+00 -3.209e+00 0.956 +++\n", + "+++ 6.419e+02 6.415e+02 -3.461e+00 -3.205e+00 0.985 +++\n", + "+++ 6.419e+02 6.414e+02 -3.461e+00 -3.203e+00 1 +++\n", + "\t### errors for param 3 ###\n", + "+++ 6.419e+02 6.415e+02 -3.710e+00 -3.514e+00 0.934 +++\n", + "+++ 6.419e+02 6.409e+02 -3.710e+00 -3.416e+00 2.02 +++\n", + "+++ 6.419e+02 6.412e+02 -3.710e+00 -3.465e+00 1.43 +++\n", + "+++ 6.419e+02 6.414e+02 -3.710e+00 -3.489e+00 1.17 +++\n", + "+++ 6.419e+02 6.414e+02 -3.710e+00 -3.502e+00 1.05 +++\n", + "+++ 6.419e+02 6.415e+02 -3.710e+00 -3.508e+00 0.991 +++\n", + "\t### errors for param 4 ###\n", + "+++ 6.419e+02 6.417e+02 -4.868e+00 -4.535e+00 0.545 +++\n", + "+++ 6.419e+02 6.414e+02 -4.868e+00 -4.369e+00 1.17 +++\n", + "+++ 6.419e+02 6.416e+02 -4.868e+00 -4.452e+00 0.745 +++\n", + "+++ 6.419e+02 6.415e+02 -4.868e+00 -4.411e+00 0.943 +++\n", + "+++ 6.419e+02 6.414e+02 -4.868e+00 -4.390e+00 1.05 +++\n", + "+++ 6.419e+02 6.414e+02 -4.868e+00 -4.400e+00 0.998 +++\n", + "\t### errors for param 5 ###\n", + "+++ 6.419e+02 6.415e+02 -4.364e+00 -4.210e+00 0.842 +++\n", + "+++ 6.419e+02 6.410e+02 -4.364e+00 -4.133e+00 1.87 +++\n", + "+++ 6.419e+02 6.413e+02 -4.364e+00 -4.172e+00 1.32 +++\n", + "+++ 6.419e+02 6.414e+02 -4.364e+00 -4.191e+00 1.07 +++\n", + "+++ 6.419e+02 6.415e+02 -4.364e+00 -4.201e+00 0.951 +++\n", + "+++ 6.419e+02 6.414e+02 -4.364e+00 -4.196e+00 1.01 +++\n", + "\t### errors for param 6 ###\n", + "+++ 6.419e+02 6.418e+02 -4.687e+00 -4.610e+00 0.306 +++\n", + "+++ 6.419e+02 6.416e+02 -4.687e+00 -4.572e+00 0.686 +++\n", + "+++ 6.419e+02 6.415e+02 -4.687e+00 -4.553e+00 0.933 +++\n", + "+++ 6.419e+02 6.414e+02 -4.687e+00 -4.544e+00 1.07 +++\n", + "+++ 6.419e+02 6.414e+02 -4.687e+00 -4.548e+00 1 +++\n", + "\t### errors for param 7 ###\n", + "+++ 6.419e+02 6.418e+02 -5.068e+00 -4.978e+00 0.293 +++\n", + "+++ 6.419e+02 6.416e+02 -5.068e+00 -4.932e+00 0.662 +++\n", + "+++ 6.419e+02 6.415e+02 -5.068e+00 -4.910e+00 0.903 +++\n", + "+++ 6.419e+02 6.414e+02 -5.068e+00 -4.899e+00 1.04 +++\n", + "+++ 6.419e+02 6.415e+02 -5.068e+00 -4.904e+00 0.969 +++\n", + "+++ 6.419e+02 6.414e+02 -5.068e+00 -4.901e+00 1 +++\n", + "********************\n", + "-1.2289 -1.89937 -3.46076 -3.71043 -4.86825 -4.36415 -4.687 -5.06805\n", + "0.256958 0.212521 0.257777 0.202656 0.468138 0.168247 0.138715 0.166617\n", + "********************\n" + ] + } + ], + "source": [ + "p2, p2e = clag.errors(P2, p2, p2e)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X9w3OVh5/G3sYV9Ta44hvOuiYM33p67pggYCblgARUt\nzaVcfvRCq+xeMp1I8ZBr6XncO5jztWMdI990romnSWn6Y1xser3Ayr5pc4UZXGhauVDZ5FSJAMLe\nkFv9wA7edR3XtA0IBPb9sRLI5itLK+93f75fMzuSdp/n+zzGD/Ln+/0+3+cBSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkXaL/CgwC/wjkgW8CGyraI0mSVBUOAL8EbASuBx4HxoEfqWCf\nJElSFboKOAvcWumOSJKk+V1WxrZWTn89XcY2JUlSlVtC4XbD31S6I5IkaWGWlamdrwM/wcVvNayZ\nfkmSpOKcmH6VVDlCwu8CnwBuB16do8yaq6+++tVXX53rY0mSdBHfB9oocVAIMyQsoRAQPg10ABMX\nKbvm1Vdf5Rvf+AYbN24MsUult23bNr72ta/VZHuXcqxi6xZTfiFl5ytzsc/L/XdWKo610pd3rAVz\nrJW+fJhj7ejRo3z+85//MIWr8TUTEn4PSFEICT8EotPvnwEmgyps3LiRlpaWELtUeitXrixrn0vZ\n3qUcq9i6xZRfSNn5ylzs83L/nZWKY6305R1rwRxrpS8f9lgLy9IQj/04sBzoAv7zrNf3gOcvKLsG\n+NKXvvQl1qypvWkJzc3NNdvepRyr2LrFlF9I2fnKzPV5Op0mlUotuC/VxLFW+vKOtWCOtdKXD2us\nnThxgt27dwPspsRXEpaU8mCXoAUYGhoaqsnUrdryqU99iscee6zS3VADcKypHIaHh2ltbQVoBYZL\neexyrpMgSZJqiCFBDadWL/+q9jjWVOsMCWo4/uJWuTjWVOsMCZIkKZAhQZIkBTIkSJKkQIYESZIU\nyJAgSZICGRIkSVIgQ4IkSQpkSJAkSYEMCZIkKZAhQZIkBTIkSJKkQIYESZIUyJAgSZICGRIkSVIg\nQ4IkSQpkSJAkSYEMCZIkKZAhQZIkBTIkSJKkQIYESZIUyJAgSZICGRIkSVIgQ4IkSQpkSJAkSYEM\nCZIkKVCYIeF24HHg+8BZ4NMhtiVJkkoszJDwI8BzwL3TP58LsS1JklRiy0I89l9MvyRJUg1yToIk\nSQpkSJAkSYEMCZIkKVCYcxKKtm3bNlauXHnee6lUilQqVaEeSZJUPdLpNOl0+rz3zpw5E1p7S0I7\n8vnOAj8PPDbH5y3A0NDQEC0tLWXqkiRJtW94eJjW1laAVmC4lMcO80rCB4B/Pevn9cCNwA+AYyG2\nK0mSSiDMkNAG/PX09+eA357+/o+B7hDblSRJJRBmSDiIEyMlSapZ/iMuSZICGRIkSVIgQ4IkSQpk\nSJAkSYEMCZIkKZAhQZIkBTIkSJKkQIYESZIUyJAgSZICGRIkSVIgQ4IkSQpkSJAkSYHC3OBJqpj0\ni2nSI2kAJt+eZOK1CdZdsY4Vy1YAkLouRao5VckuSlLVMySoLqWa3wsBwyeGad3dSvruNC1rWirc\nM0mqHd5ukCRJgQwJqlvj4+N039tN52c64VHo/Ewn3fd2Mz4+XumuSVJN8HaD6k4+nye5JUnmdIbc\ntTn4eOH9LFmyx7Mc+NwBEqsS9D3URyQSqWxnJamKGRJUV/L5PJvv2szozaNwU0CBtZBbmyN3Mkf7\nXe0MPDFgUJCkOXi7QXUluSVZCAir5ym4GrI3Z0luSZalX5JUiwwJqhtjY2NkTmfmDwgzVkPmdMY5\nCpI0B0OC6sbOXTsLcxCKkNuYo3dXb0g9kqTaZkhQ3Rh8YRDWFllpLQw+PxhKfySp1hkSVDem3pkq\nvtISmDq7iHqS1AAMCaobTUubiq90DpouW0Q9SWoAhgTVjbbr2+B4kZWOw6YbNoXSH0mqdYYE1Y2e\n+3uIHokWVSd6NMqO+3aE1CNJqm2GBNWNWCxGYlUCTi6wwklIrEoQi8XC7JYk1aywQ8KvAGPAG8Df\nAbeG3J4aXN9DfcSfjc8fFE5C/Nk4+/bsK0u/JKkWhRkSPgt8FdgJ3Ag8AxwAPhJim2pwkUiEgScG\n6Hilg+hTUTgGnJv+8BxwDKJPRel4pYNDBw6xevVCV16SpMYTZkj4T8BDwF7gu8CvUfiV/cshtikR\niUTof7yfw48cpmtFF/En4/AoxJ+M07Wii8OPHKb/8X4DgiTNI6wNni4HWoDfvOD9p4DNIbUpnScW\ni7H363sZPjFM6+5W9t+zn5Y1LZXuliTVjLCuJFwFLAXyF7x/Eihu+rkkSaoIt4pWXUq/mCY9kgZg\n8u1JNly5ge3f2s6KZSsASF2XItWcqmQXq8KF/50mXptg3RXr/O8kCYAlIR33cuCHwC8Afz7r/d8B\nrgfuuKB8CzB02223sXLlyvM+SKVSpFL+kpLCMj4+Tu9Xenl6+Gmyp7PEV8W5veV2eu7v8fFQqcqk\n02nS6fR57505c4ZnnnkGoBUYLmV7YYUEgGeBIeDeWe8dAb4J/MYFZVuAoaGhIVpavGcslUM+nye5\nJUnmdKawe+bszbGOQ/RIlMSqBH0P9RGJRCrWT0kXNzw8TGtrK4QQEsK83fDbwP+isD7Cs8A9FH4N\n/WGIbUpagHw+z+a7NjN68yjcFFBgLeTW5sidzNF+VzsDTwwYFKQGFOYjkPuBbUAP8ByFhZTuovAY\npKQKSm5JFgLCfE+BrobszVmSW5Jl6Zek6hL2iot/AHwUWAG0AX8bcnuS5jE2NkbmdGb+gDBjNWRO\nZxgfHw+zW5KqkHs3SA1m566dhTkIRchtzNG7qzekHkmqVoYEqcEMvjB4/iTFhVgLg88PhtIfSdXL\nkCA1mKl3poqvtASmzi6inqSaZkiQGkzT0qbiK52DpssWUU9STTMkSA2m7fo2OF5kpeOw6YZNofRH\nUvUyJEgNpuf+HqJHittCJXo0yo77doTUI0nVypAgNZhYLEZiVaKw3dpCnITEqoRLNEsNyJAgNaC+\nh/qIPxufPyichPizcfbt2VeWfkmqLoYEqQFFIhEGnhig45UOok9FC+ugnpv+8BxwDKJPRel4pYND\nBw6xevVCV16SVE/cKlpqUJFIhP7H+wu7QO7q5eknZ+0C2Xo7PY+4C6TU6AwJUgNLv5gmPZKGdlj/\nk+tZ+tpS1l2xjlPLTrH18FZS/5Qi1exW7VKjMiRIDSzVbAiQNDfnJEiSpECGBEmSFMiQIEmSAhkS\nJElSIEOCJEkKZEiQJEmBDAmSJCmQIUGSJAUyJEiSpECGBEmSFMiQIEmSAhkSJElSIEOCJEkKZEiQ\nJEmBDAmSJCmQIUGSJAUKKyT8BnAIeB34h5DakCRJIQorJDQB+4DfD+n4kiQpZMtCOu4D01+/ENLx\nJUlSyJyTIEmSAhkSJElSoGJuNzwA9MxT5iZgeNG9kUoknU6TTqcBmJycZGJignXr1rFixQoAUqkU\nqVSqkl3UIqRfTJMemf57fXuSidcmWHfFOlYsm/57vS5Fqtm/V6lUlhRR9srp18VMAG/O+vkLwFeB\nD81TrwUYuu2221i5cuV5H/jLXJdqeHiY1tZWhoaGaGlpqXR3dInGx8fp/UovTw8/TfZ0lviqOLe3\n3E7P/T3EYrFKd08K1ewToBlnzpzhmWeeAWilxCfqxYSExfgCRYQEf4krDIaE+pDP50luSZI5nSF3\nbQ7WzvrwOESPREmsStD3UB+RSKRi/ZTKbeZ3HCGEhLDmJFwD3Dj9dSlww/TPHwipPel9xsfH6e7u\nprOzE4DOzk66u7sZHx+vbMdUtHw+z+a7NnPwmoPkPnZBQABYC7mP5Th4zUHa72onn89XpJ9SvQnr\nEche4Jemvz8HPDf99Q7g6ZDalIDpM85kkkwmQy6Xe/f9bDZLNpvlwIEDJBIJ+vo846wVyS1JRm8e\nhdXzFFwN2ZuzJLck6X+8vyx9k+pZWFcSvjB97MsoXEmY+WpAUKjy+TybN2/m4MGD5wWE2XK5HAcP\nHqS93TPOWjA2NkbmdGb+gDBjNWROZ7xiJJWAj0CqriSTSUZHRxdUNpvNkkwmQ+6RLtXOXTsLcxCK\nkNuYo3dXb0g9khqHIUF1Y2xsjEwmU1SdTMYzzmo3+MLg++cgzGctDD4/GEp/pEZiSFDd2Llz55y3\nGOaSy+Xo7fWMs5pNvTNVfKUlMHV2EfUknceQoLoxOLi4M8fF1lN5NC1tKr7SOWi6bBH1JJ3HkKC6\nMTW1uDPHxdZTebRd3wbHi6x0HDbdsCmU/kiNxJCgutHUtLgzx8XWU3n03N9D9Ei0qDrRo1F23Lcj\npB5JjcOQoLrR1ta2qHqbNnnGWc1isRiJVQk4ucAKJyGxKuESzVIJGBJUN3p6eohGizzjjEbZscMz\nzmrX91Af8Wfj8weFkxB/Ns6+PfvK0i+p3hkSVDdisRiJRKKoOomEZ5y1IBKJMPDEAB2vdBB9KgrH\nKKzhyvTXYxB9KkrHKx0cOnCI1asXuvLSwqRfTHPng3dyzc9dwwebP8jl117OB5s/yDU/dw13Pngn\n6RfT8x9EqkFhLcssVURfXx/t7e1ks9l5y8bjcfbt84yzVkQiEfof7y/sArmrl6efnLULZOvt9DwS\nzi6Q+Xye3b+++72NpW4uvD/FFD88/kOm9k2x+y9389MP/bTLfKvuhL0L5EK5C6RKZq69G2ZEo1ES\niQT79u0r+Rmnymf4xDCtu1sZumeIljXh/N6Y2Vhq3n0jpm9zDDwxYFBQ2YW5C6RXElR3IpEI/f3T\nZ5y9vTz99NNks1ni8Ti33347PT3hnHEqfOkX06RHCpf2J9+eZMOVG9j+re2sWLYCgNR1KVLNqZK1\n58ZSanSGBNWtWCzG3r17303Z+/fv90pVjUs1lzYEXMy7G0vdtMAKqyHzncIy34ZQ1QsnLkpSADeW\nkrySoDqVTqdJp6cvS09OsmHDBrZv386KFdOXpVMpUqnynJGqNg2+MAh3FllpLQz+lct8q34YElSX\nDAG6VG4sJXm7QZICubGUZEiQpEBuLCUZEiQpkBtLSYYESQrkxlKSIUGS5uTGUmp0hgRJmkOlN5aS\nKs1HIKUGduF6EhMTE6xbt871JGap1MZSUjUwJEgNLJVKccstt5y3x8U777zjHhcXeHfPiHZY/5Pr\nWfraUtZdsY5Ty06x9fBWUv9UvuWipXIyJEgNaq7dMrPZLNlslgMHDpBIJOjr62v4nQ3LuWeEVE0M\nCVIDyufzbN68mdHR0TnL5HI5crkc7e3tDAy4BbLUiJy4KDWgZDJ50YAwWzabJZlMhtwjSdXIkCA1\nmLGxMTKZTFF1MpnCFsiSGktYISEG7AFGgdeB/wc8ALiouVRhO3fuPG8OwkLkcjl6e90CWWo0Yc1J\n+HFgCXAPhYDQDPwR8AHg/pDalLQAg4OL28p4sfUk1a6wQsKT068Z48Au4JcxJEgVNTW1uK2MF1tP\nUu0q55yElcAPytiepABNTYu767fYepJqV7lCQhz4VeAPy9SepDm0tbUtqt6mTW6BXG7j4+N039tN\n823NJDYnaL6tme57u51EqrIpNiQ8AJyd59VyQZ2rgb8A9gN7L6Gvkkqgp6eHaLTILZCjUXbscAvk\ncsnn81x7x7Uk7k7w8FsPM3LnCN/9N99l5M4RHn7rYRJ3J7j2jmvJ5/OV7qrqXLFzEn4XeHSeMhOz\nvr8a6AcGKExivKht27axcuXK895z7XiptGKxGIlEoqgnHBIJt0Aul3w+z+a7NjN68ygE7Re1Ft5c\n+yZHTx6l/a52Bp5woatGMnu/lRlnzpwJrb0loR0ZPkwhIAwCn+e9vdOCtABDQ0NDtLRceCFCUqnl\n83na29vJZrPzlo3H4xw65A6H5XLHJ+/g4DUHgwPChU5Cxysd9D/eH3KvVM2Gh4dpbW0FaAWGS3ns\nsOYkfBg4SOGqwv1ABIhOvyRVWCQSYWBggI6OjjlvPUSjUTo6OgwIZTQ2NkbmdGZhAQFgNWROu9CV\nwhNWSPhZCpMVfxo4Drw6/fp+SO1JKlIkEqG/v5/Dhw/T1dVFPB4HClcOurq6OHz4MP39/QaEMtq5\naye5a4tc6Gpjjt5dLnSlcIQVEv54+thLp79eNutnSVUinU6zdetWTp06xfr169mwYQPr16/n1KlT\nbN269X33PhWuwRcGYW2RldbC4PMudKVwuAuk1MCcGFxdpt5ZxIJVS2DqrAtdKRxu8CRJVaJp6SIW\nrDoHTZe50JXCYUiQpCrRdn1bYRZXMY7Dphtc6ErhMCRIUpXoub+H6JEiF7o6GmXHfS50pXAYEiSp\nSsRiMRKrEnBygRVOQmKVC10pPIYESaoifQ/1EX82Pn9QOAnxZ+Ps27OvLP1SYzIkSFIViUQiDDwx\nwMYjG1n+2HI4xnvr1Z4DjsHyx5az8chGDh1woSuFy0cgJanKRCIRjvQfYXx8nN5dvQz+1SBTZ6do\nuqyJthva6PnTnlBvMYyPj9P7lV4GXxhk6p0pmpY20XZ9Gz33h9uuqo8hQZKqVCwWY+/Xy7d5bj6f\nJ7klSeZ0prDy453vfTZyfIQDnztAYlWCvof63FSqQRgSJEnn7z55U0CBtZBbmyN3Mufukw3EOQmS\nJJJbknNvTz3basjenCW5JVmWfqmyDAmS1ODcfVJzMSRIUoNz90nNxZAgSQ3O3Sc1F0OCJDU4d5/U\nXAwJktTg3H1SczEkSFKDc/dJzcWQIEkNzt0nNRdDgiQ1OHef1FwMCZIkd59UIEOCJOnd3Sc7Xukg\n+lQ0cPfJ6FNROl7pcPfJBuLeDZIkoBAU+h/vn3v3yUfcBbLRGBIkSecp9+6Tql7ebpAkSYEMCZIk\nKZAhQZIkBTIkSJKkQIYESZIUKKyQ8BgwAbwBvAr8CbAmpLYkSVIIwgoJfw38IrABuBuIA38WUluS\nJCkEYa2T8LVZ3x8Dfgv4JrAUeCekNiVJUgmVY07CKuBzQD8GBEmSakaYIeG3gH8GTgEfBT4bYluS\nJKnEigkJDwBn53m1zCr/ZeBG4GPAm8D/AZZcco8lSVJZFPOP9pXTr4uZoBAILvRhCnMTbgUOBXze\nAgzddtttrFy58rwPUqkUqVSqiG5KklSf0uk06XT6vPfOnDnDM888A9AKDJeyvXKd2X+EQoD4KeCZ\ngM9bgKGhoSFaWloCPpYkSUGGh4dpbW2FEEJCGE83bJp+/S3wD8B6oBf4HnA4hPYkSVIIwpi4+Drw\n74BvARlgD/AChasIb4fQniRJCkEYVxJGgJ8J4biSJKmM3LtBkiQFMiRIkqRAYS3LLEklN/vxr8nJ\nSSYmJli3bh0rVqwAfGRaKjVDgqSaMTsEzDz2lU6nfXRaCom3GyRJUiBDgqSaMj4+Tnd3N52dnQB0\ndnbS3d3N+Ph4ZTsm1SFvN0iqCfl8nmQySSaTIZfLvft+Npslm81y4MABEokEfX19RCKRCvZUqh+G\nBElVL5/Ps3nzZkZHR+csk8vlyOVytLe3MzAwYFCoIekX06RHpiekvj3JxGsTrLtiHSuWTU9IvS5F\nqtkJqZVgSJBU9ZLJ5EUDwmzZbJZkMkl/f3/IvVKppJrfCwHDJ4Zp3d1K+u40LWuckFppzkmQVNXG\nxsbIZDJF1clkMs5RqDHj4+N039tN52c64VHo/Ewn3fc616TSDAmSqtrOnTvPm4OwELlcjt7e3pB6\npFLK5/Pc8ck7uOVzt/DwWw+T/XgW/j1kP57l4bce5pbP3cIdn7yDfD5f6a42JG83SKpqg4ODZa2n\n8snn82y+azOjN4/CTQEF1kJubY7cyRztd7Uz8IRzTcrNKwmSqtrU1FRZ66l8kluShYCwep6CqyF7\nc5bklmRZ+qX3GBIkVbWmpqay1lN5jI2NkTmdmT8gzFgNmdPONSk3bzdIqmptbW2MjIwUXW/Tpk0l\n64N7RpTezl07yV1b5FyTjTl6d/Wy9+t7Q+qVLuSVBElVraenh2g0WlSdaDTKjh07StaHVCrFgw8+\nyFVXXcXo6Cgvv/wyo6OjXHXVVTz44IMGhEUYfGEQ1hZZaS0MPu9ck3LySoKkqhaLxUgkEkU94ZBI\nJIjFYiVp35UewzH1ziLmjCyBqbPONSknryRIqnp9fX3E4/EFlY3H4+zbt68k7c6s9Hjw4ME5Q0ou\nl+PgwYO0t7f7mF4RmpYuYs7IOWi6zLkm5WRIkFT1IpEIAwMDdHR0zHnrIRqN0tHRwaFDh1i9eqGz\n4S5uMSs9amHarm+D40VWOg6bbijdXBPNz5AgqSZEIhH6+/s5fPgwXV1d715ZiMfjdHV1cfjwYfr7\n+0sWEFzpMVw99/cQPVLkXJOjUXbcV7q5JpqfIUFSTYnFYuzdu5f9+/cDsH//fvbu3VuyOQgzXOkx\nXLFYjMSqBJxcYIWTkFhVurkmWhhDgiQFcKXH8PU91Ef82fj8QeEkxJ+Ns29PaeaaaOF8ukFSzbhw\nvYINGzawffv2UNYrcKXH8EUiEQaeGCC5JUnmOxlyG3OFxyKXAOeA44VbDIlVCfYd2FeyW0laOEOC\npJpRzkWLXOmxPCKRCP2P9zM+Pk7vrl6efvJpsqezxFfFub31dnoe6fEWQwUZEiQpQDWs9NhIYrEY\ne7++l+ETw7TubmX/PftpWdNS6W41POckSFKAaljpUao0ryRIUoBKr/TYSNIvpkmPTM81eXuSDVdu\nYPu3trNi2fRck+tSpJpd+roSDAmSNIe+vj7a29vJZrPzli3lSo+NJtVsCKhWYd9uWA58BzgLXB9y\nW5JUUpVa6VGqFmGHhC8D3w+5DUkKTblXepSqSZgh4eeAO4H7QmxDkkKXTqfZunUrp06dYv369WzY\nsIH169dz6tQptm7d+u7aDVK9CWtOQgTYDXwaeCOkNiSpLMq5PoNUTcK4krAE+GPgD4DhEI4vSZLK\noJgrCQ8APfOUaQPagQ8C/+OCz5bM18C2bdtYuXLlee+Z4CVJKpi9NPmMM2fOhNbevP9wz3Ll9Oti\nJoA+4JMUVt6esRR4B/gG0BVQrwUYGhoaoqXFFbYkSVqo4eFhWltbAVop8RX8Yq4k/GD6NZ+twG/M\n+vnDwJNAJ/DtItqTJEkVFMbExWMX/Pz69Ncs8GoI7UmSpBCUa++Gc/MXkSRJ1aQcyzKPU5iTIEmS\naoi7QEqSpECGBEnSecbHx+nu7qa5uZlEIkFzczPd3d2Mj49XumsqM3eBlCQBkM/nueOOOxgdHeXN\nN98877ORkREeffRR1q9fT39/P5FIpEK9VDl5JUGSRD6fZ/PmzRw9evR9AWHGm2++ydGjR2lvbyef\nz5e5h6oEQ4IkiWQyyejo6ILKZrNZkslkyD1SNTAkSFKDGxsbI5PJFFUnk8k4R6EBOCdBkhrczp07\nyeVyRdXJ5XL09vayd+/ekHoVvvSLadIjhX0QJt+eZOK1CdZdsY4Vy1YAkLouRaq5sfcOMiRIUoMb\nHBwsa71qkWp+LwQMnximdXcr6bvTtKxxD6EZ3m6QpAY3NTVV1nqqHYYESWpwTU1NZa2n2uHtBkmq\nQul0mnR6+n755CQTExOsW7eOFSum75enUqRSpblf3tbWxsjISNH1Nm3aVJL2Vb0MCZJUhWaHgOHh\nYVpbW0mn07S0lP5+eU9PDwcOHChq8mI0GmXHjh0l74uqi7cbJKnBxWIxEolEUXUSiQSxWCycDqlq\nGBIkSfT19RGPxxdUNh6Ps2/fvpB7pGpgSJAkEYlEGBgYoKOjg2g0GlgmGo3S0dHBoUOHWL16dUnb\nd1Op6uScBEkSUAgK99xzD3v27KGpqYnTp0/z1ltvcfnll7Nq1So2bNjAF7/4xZIGhHw+TzKZJJPJ\nvG9OxMjICAcOHCCRSNDX1+emUhVgSJAkvauUT03MZ2ZTqYvtGZHL5cjlcrS3tzMwMGBQKDNvN0iS\nKsJNpaqfIUGSVHZuKlUbDAmSpLK7lE2lVD6GBElS2TXqplK1xpAgSVVq5rHAzs5OADo7O+vmsUA3\nlaoNPt0gSVVmrscCs9ks2Wy2Lh4LdFOp2uCVBEmqIjOPBR48eHDOe/a5XI6DBw/S3t5OPp8vcw9L\no62tbVH13FSqvAwJklRFGuWxwJ6enjlXdpyLm0qVnyFBkqpEIz0W6KZStcGQIElVotEeC3RTqeoX\nVkgYB85e8PrNkNqSpLrQaI8FVnpTKc0vrKcbzgE7gD+a9d4PQ2pLkupCIz4WGIlE6O/vZ3x8nN7e\nXgYHB5mamqKpqYm2tjZ6enq8xVBBYT4C+c/AyRCPL0l1pZEfC4zFYuzdu7esbabTafbs2cPLL7/M\nqR+cgkm49cu3ctWVV72742W5NruqVmHOSfgvwCngOeDXgdofxZIUIh8LLJ98Ps/u3bt56aWXOHbs\nGG+8/gachTdef4Njx47x0ksvsXv37pp9xLRUwgoJvwN8FugAvg5sA34/pLYkqS74WGB5NMpaFKVQ\nTEh4gPdPRrzw1TJd9mvAM8AIsAf4D8AXgQ+VotOSVI98LLA8GmUtilIoZk7C7wKPzlNmYo73vz39\n9ceAOafhbtu2jZUrV573XiqVavh7QpIaR19fH+3t7WSz2XnL+lhg8S5lLYpqCGPpdJp0On3ee2fO\nnAmtvSWhHfl8nwAeA64Bjgd83gIMDQ0N0dLSEvCxJDWOufZumBGNRkkkEuzbt8/HAovU3d3Nww8/\nXHS9rq6usk+sXKjh4WFaW1sBWoHhUh47jDkJNwO/BtwIfBToBP4Q+HOCA4IkaZaZxwIPHz5MV1fX\nuwsOxeNxurq6OHz4MP39/QaERWi0tSguVRiPQL5JIRj0AMsp3ILYDXw5hLYkqW7NPBY4c6a4f/9+\nr7ZeokZci+JShBESngNuCeG4kiRdkkZei2Ix3LtBktQwXIuiOIYESVLDcC2K4hgSJEkNw7UoimNI\nkCQ1FLeoXjhDgiSpocxsUb1x40aWL18eWGb58uVs3Lix4beoNiRIkhpOJBLhyJEjZDKZwloUiThc\nCfFEYS2KTCbDkSNHGjogQLhbRUuSVNXeXYvixDCtu1vZf89+Wta4FsUMryRIkqRAXkmQpCo0eyOf\nyclJNmyeVdvdAAAE+0lEQVTYwPbt21mxYgXg5ncqD0OCJFUhQ4CqgbcbJElSIEOCJEkKZEiQJEmB\nDAmSJCmQIUGSJAUyJEiSpECGBEmSFMiQIEmSAhkSJElSIEOCJEkKZEiQJEmBDAmSJCmQIUGSJAUy\nJEiSpECGBEmSFMiQIEmSAhkSJElSIEOCJEkKFGZI+LfAt4HXgb8H/jTEtqQFS6fTle6CGoRjTbUu\nrJBwN/AnwB7gemAz8EhIbUlF8Re3ysWxplq3LKRj/g5wH/DwrPe/F0JbkiQpJGFcSWgBrgbOAc8B\nrwJPAD8RQlsVV+4zhVK2dynHKrZuMeUXUna+MvV4BudYK315x1qwRh1rvBheW7U61sIICeunvz4A\n9AKfAP4BOAh8KIT2KqpR/2fyF3f5OdZKX96xFqxRx5oh4f2Kud3wANAzT5k23gse/x345vT3XcBx\n4BeB3XNVPnr0aBHdqQ5nzpxheHi4Jtu7lGMVW7eY8gspO1+Zi31e7r+zUnGslb68Yy1YI461o39/\nFCbh6AtH4UTp2wpzrIX5b+eSIspeOf26mAkKkxT/CrgVODTrs2eBvwR2BNRbAwwCHy6iP5IkqeD7\nFE7UFxhxFqaYKwk/mH7NZwh4E0jwXkhoAmIUQkSQExT+cGuK6I8kSSo4QYkDQpi+ChwDfhb4ceAh\nCp2/opKdkiRJlbcM+AqQA14DngQ2VrRHkiRJkiRJkiRJkiRJ7/cvgf9LYQXHEeBXK9sd1bGPUFj4\n6yXgeeAXKtob1btvAqeB/13pjqhufQLIAC8DX6xwX0JzGbBi+vt/AYwC/6py3VEdi1LYlAwKY+wY\nhTEnheGnKPwSNyQoDMuA71JYXuCDFILCqmIOEOZW0aV0Fpic/v5HgKlZP0ullANemP7+7ymc5RX1\nP5VUhL8B/rnSnVDd2kThqugJCuPsCeBjxRygVkICFNZYeB54hcIuk/9U2e6oAdxEYVXS71e6I5K0\nCFdz/u+v4xS5snEthYTXgBuAjwL3Aj9W2e6ozl0J/E/gnkp3RJIW6dylHiCskHA78DiFBHMW+HRA\nmV8BxoA3gL+jsNfDjP9IYZLiMIUlnWc7SWFi2Y0l7bFqVRhjbTnwZ8BvUthzRILwfq9d8i9y1a1L\nHXOvcv6Vg49QJVdGP05hm+ifp/AH+9QFn3+Wwv4O3RSWbf4qhdsHH5njeKuBH53+/kcp3DP+8dJ2\nWTWq1GNtCZAG/lsYnVVNK/VYm9GBExcV7FLH3DIKkxWvpvCU4MvAh0LvdZGC/mDfBn7vgveOUDhz\nC9JCIYF/Z/rVVcoOqm6UYqzdCrxD4WzvuenXT5Swj6oPpRhrUFiy/iTwQwpP0rSWqoOqO4sdc5+k\n8ITD94AtofXuElz4B7ucwtMJF142+RqF2wjSYjnWVC6ONZVbRcZcJSYuXgUsBfIXvH+SwjPqUqk4\n1lQujjWVW1nGXC093SBJksqoEiHhFIV7vpEL3o9QWPBBKhXHmsrFsaZyK8uYq0RIeAsY4v2rPv0s\ncKj83VEdc6ypXBxrKreaHnMfoLCOwY0UJltsm/5+5rGMTgqPbXQBGyk8tvGPzP+okHQhx5rKxbGm\ncqvbMddB4Q90lsLlkJnv984q88sUFoCYBAY5fwEIaaE6cKypPDpwrKm8OnDMSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk1YD/D6E/y1/azPUnAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-6,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"green\")\n", + "errorbar(fqd, p2, yerr=p2e, fmt='o', ms=10, color=\"black\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 1.149e+03 8.511e+00 inf -- 6.871e+02 -- -0.76415 -1.33875 -2.62568 -2.91642 -3.79922 -3.72781 -4.42422 -6.83403 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1\n", + " 3 3.083e+01 1.011e+01 2.462e+00 -- 6.895e+02 -- -0.722947 -1.31306 -2.64209 -2.92939 -3.79892 -3.74348 -4.4401 -6.53403 0.112591 0.202668 0.237888 0.184561 0.247154 0.169837 0.149615 -0.977256\n", + " 5 2.313e+01 1.184e+01 2.138e+00 -- 6.917e+02 -- -0.689217 -1.28746 -2.64829 -2.93823 -3.79051 -3.75521 -4.45318 -6.83403 0.122108 0.284555 0.367997 0.266931 0.379308 0.236851 0.196816 2.03535\n", + " 7 1.836e+01 1.371e+01 1.807e+00 -- 6.935e+02 -- -0.66115 -1.2633 -2.64623 -2.94323 -3.77682 -3.76343 -4.4638 -6.53403 0.129539 0.350049 0.485494 0.345407 0.493126 0.299979 0.241096 -2.67313\n", + " 9 2.046e+01 1.572e+01 1.610e+00 -- 6.951e+02 -- -0.637504 -1.24117 -2.63838 -2.94489 -3.76048 -3.76869 -4.47217 -6.83403 0.135502 0.402878 0.588 0.418868 0.588605 0.358702 0.28198 -1.29684\n", + " 11 3.541e+01 1.788e+01 1.456e+00 -- 6.966e+02 -- -0.617387 -1.22121 -2.62698 -2.94377 -3.7434 -3.77151 -4.47878 -7.13403 0.140359 0.445949 0.67527 0.486465 0.667539 0.412608 0.319287 1.3562\n", + " 13 8.288e+02 2.020e+01 1.291e+00 -- 6.978e+02 -- -0.60014 -1.20337 -2.61379 -2.94045 -3.72685 -3.77239 -4.48389 -6.83403 0.144381 0.48146 0.748601 0.54777 0.732508 0.461524 0.352994 -0.12492\n", + " 15 6.267e+01 2.266e+01 1.179e+00 -- 6.990e+02 -- -0.585259 -1.18747 -2.60004 -2.9355 -3.71148 -3.77179 -4.48775 -7.13403 0.147758 0.511044 0.809901 0.602807 0.786107 0.50562 0.383157 -2.33832\n", + " 17 5.670e+01 2.527e+01 1.086e+00 -- 7.001e+02 -- -0.572351 -1.17335 -2.58649 -2.92939 -3.6976 -3.77007 -4.49056 -7.43403 0.150636 0.53593 0.861183 0.651797 0.830596 0.545107 0.409928 1.85585\n", + " 19 6.344e+01 2.802e+01 9.867e-01 -- 7.011e+02 -- -0.561107 -1.1608 -2.57356 -2.92251 -3.68525 -3.76757 -4.49259 -7.13403 0.153107 0.557037 0.9042 0.695116 0.867766 0.580281 0.433567 -2.38363\n", + " 21 7.571e+01 3.089e+01 9.220e-01 -- 7.020e+02 -- -0.551274 -1.14965 -2.56148 -2.91518 -3.6744 -3.76453 -4.49398 -7.43403 0.155257 0.575074 0.940495 0.733284 0.89908 0.611551 0.454317 1.34492\n", + " 22 4.003e-01 2.319e+04 1.251e+01 -- 6.895e+02 -- -0.46504 -1.05058 -2.44998 -2.83968 -3.57966 -3.73073 -4.50329 -4.43403 0.174105 0.730184 1.24835 1.06835 1.1647 0.888615 0.636009 2.63401\n", + " 23 3.602e-01 6.251e+01 2.137e+01 -- 7.109e+02 -- -0.479175 -1.05499 -2.40759 -2.71044 -3.63212 -3.67843 -4.55868 -4.7139 0.243794 0.662729 1.29622 1.06228 1.10731 0.828249 0.484699 2.85439\n", + " 24 1.324e-01 3.847e+01 7.851e-01 -- 7.117e+02 -- -0.473576 -1.05695 -2.43181 -2.73925 -3.6054 -3.70634 -4.40662 -4.87766 0.183146 0.709437 1.27054 0.992921 1.08464 0.839337 0.659286 2.73599\n", + " 25 1.821e-01 8.521e+00 1.578e-01 -- 7.118e+02 -- -0.475023 -1.05607 -2.43744 -2.74267 -3.61814 -3.70001 -4.50477 -4.97221 0.199534 0.699185 1.24387 0.993811 1.07721 0.861017 0.572018 2.42745\n", + " 26 2.014e-01 5.280e+00 6.998e-02 -- 7.119e+02 -- -0.474604 -1.05634 -2.44031 -2.7453 -3.60481 -3.70497 -4.4716 -5.01385 0.194772 0.702203 1.23578 0.990364 1.07625 0.849061 0.623206 1.98547\n", + " 27 1.559e-01 8.470e-01 5.248e-02 -- 7.119e+02 -- -0.474838 -1.05633 -2.44133 -2.7456 -3.61013 -3.70353 -4.4991 -4.96485 0.195398 0.70079 1.23042 0.988953 1.0694 0.8531 0.602048 1.5856\n", + " 28 1.154e-01 1.799e+00 3.734e-02 -- 7.120e+02 -- -0.474876 -1.05636 -2.44221 -2.74624 -3.6043 -3.70638 -4.49561 -4.88587 0.194273 0.700465 1.22605 0.986774 1.06378 0.847619 0.626675 1.33843\n", + " 29 7.922e-02 1.175e+00 2.365e-02 -- 7.120e+02 -- -0.474959 -1.05637 -2.44284 -2.74635 -3.60609 -3.70691 -4.50684 -4.82345 0.193792 0.699958 1.22274 0.984729 1.05776 0.847888 0.625222 1.18395\n", + " 30 5.978e-02 9.905e-01 1.545e-02 -- 7.120e+02 -- -0.475014 -1.05638 -2.44337 -2.74658 -3.60376 -3.70854 -4.50832 -4.7745 0.193235 0.699587 1.22004 0.983324 1.05292 0.845739 0.637938 1.09015\n", + " 31 4.332e-02 8.004e-01 9.908e-03 -- 7.120e+02 -- -0.475061 -1.05639 -2.4438 -2.74665 -3.60426 -3.70921 -4.5135 -4.73769 0.192849 0.699306 1.21807 0.982147 1.04865 0.845744 0.640636 1.02498\n", + " 32 3.306e-02 6.233e-01 6.372e-03 -- 7.120e+02 -- -0.475099 -1.05639 -2.44413 -2.74676 -3.60331 -3.71016 -4.51536 -4.70979 0.19251 0.699065 1.21644 0.981352 1.04524 0.844821 0.647708 0.980583\n", + " 33 2.501e-02 5.124e-01 4.073e-03 -- 7.120e+02 -- -0.475129 -1.0564 -2.4444 -2.74681 -3.6034 -3.71069 -4.51806 -4.68842 0.192252 0.698889 1.21522 0.980704 1.04238 0.844743 0.650651 0.948169\n", + " 34 1.931e-02 3.988e-01 2.597e-03 -- 7.120e+02 -- -0.475154 -1.0564 -2.44461 -2.74688 -3.603 -3.71126 -4.51949 -4.67205 0.192037 0.69874 1.21423 0.980247 1.04011 0.844313 0.654788 0.924451\n", + " 35 1.493e-02 3.244e-01 1.651e-03 -- 7.120e+02 -- -0.475173 -1.0564 -2.44478 -2.74692 -3.60297 -3.71164 -4.52101 -4.65936 0.19187 0.698628 1.21347 0.97988 1.03824 0.844226 0.657098 0.906602\n", + " 36 1.163e-02 2.542e-01 1.047e-03 -- 7.120e+02 -- -0.475189 -1.0564 -2.44491 -2.74696 -3.60279 -3.71199 -4.52198 -4.64952 0.191733 0.698535 1.21286 0.979613 1.03676 0.844016 0.659591 0.893069\n", + " 37 9.093e-03 2.048e-01 6.628e-04 -- 7.120e+02 -- -0.475201 -1.0564 -2.44501 -2.74699 -3.60275 -3.71224 -4.52287 -4.64183 0.191626 0.698464 1.21238 0.9794 1.03556 0.843944 0.661216 0.882678\n", + " 38 7.134e-03 1.613e-01 4.191e-04 -- 7.120e+02 -- -0.475212 -1.0564 -2.4451 -2.74701 -3.60265 -3.71246 -4.52351 -4.63582 0.191539 0.698406 1.212 0.979241 1.03461 0.843836 0.662747 0.874652\n", + " 39 5.608e-03 1.291e-01 2.647e-04 -- 7.120e+02 -- -0.475219 -1.05641 -2.44516 -2.74703 -3.60262 -3.71262 -4.52405 -4.6311 0.191471 0.698362 1.21171 0.979114 1.03385 0.843785 0.663834 0.868413\n", + " 40 4.418e-03 1.020e-01 1.670e-04 -- 7.120e+02 -- -0.475226 -1.05641 -2.44521 -2.74705 -3.60257 -3.71276 -4.52445 -4.62739 0.191416 0.698326 1.21147 0.979017 1.03325 0.843726 0.664783 0.863542\n", + " 41 3.485e-03 8.130e-02 1.053e-04 -- 7.120e+02 -- -0.475231 -1.05641 -2.44525 -2.74706 -3.60255 -3.71286 -4.52479 -4.62447 0.191373 0.698297 1.21128 0.978941 1.03276 0.843692 0.665491 0.859727\n", + " 42 2.753e-03 6.436e-02 6.636e-05 -- 7.120e+02 -- -0.475235 -1.05641 -2.44529 -2.74707 -3.60252 -3.71295 -4.52504 -4.62216 0.191338 0.698275 1.21113 0.978881 1.03238 0.843658 0.666084 0.856731\n", + "********************\n", + "-0.475235 -1.05641 -2.44529 -2.74707 -3.60252 -3.71295 -4.52504 -4.62216 0.191338 0.698275 1.21113 0.978881 1.03238 0.843658 0.666084 0.856731\n", + "0.00699188 0.00954622 0.0841246 0.0745967 0.124782 0.148601 0.368254 0.278607 0.0954532 0.101842 0.352028 0.291475 0.397613 0.407863 0.879459 0.681533\n", + "-0.064356 -0.00407965 -0.00327632 -0.000885349 0.00210339 -0.00248053 -0.0014596 0.0217369 -0.00315135 -0.00176922 -0.000952405 -0.000682482 -0.00194583 -0.000139415 0.000655392 -0.00209613\n", + "********************\n" + ] + } + ], + "source": [ + "Cx = clag.clag('cxd10r', [[t1,t2]], [[l1,l2]], [[l1e,l2e]], dt, fqL, p1, p2)\n", + "p = np.concatenate( ((p1+p2)*0.5-0.3,p1*0+0.1) ) # a good starting point generally\n", + "p, pe = clag.optimize(Cx, p)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "ERROR:root:Line magic function `%autoreload` not found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 7.120e+02 7.118e+02 -4.752e-01 -4.717e-01 0.444 +++\n", + "+++ 7.120e+02 7.114e+02 -4.752e-01 -4.700e-01 1.35 +++\n", + "+++ 7.120e+02 7.116e+02 -4.752e-01 -4.709e-01 0.796 +++\n", + "+++ 7.120e+02 7.115e+02 -4.752e-01 -4.704e-01 1.04 +++\n", + "+++ 7.120e+02 7.116e+02 -4.752e-01 -4.706e-01 0.912 +++\n", + "+++ 7.120e+02 7.116e+02 -4.752e-01 -4.705e-01 0.975 +++\n", + "+++ 7.120e+02 7.115e+02 -4.752e-01 -4.705e-01 1.01 +++\n", + "\t### errors for param 1 ###\n", + "+++ 7.120e+02 7.118e+02 -1.056e+00 -1.052e+00 0.401 +++\n", + "+++ 7.120e+02 7.115e+02 -1.056e+00 -1.049e+00 1.14 +++\n", + "+++ 7.120e+02 7.117e+02 -1.056e+00 -1.050e+00 0.702 +++\n", + "+++ 7.120e+02 7.116e+02 -1.056e+00 -1.050e+00 0.903 +++\n", + "+++ 7.120e+02 7.115e+02 -1.056e+00 -1.050e+00 1.02 +++\n", + "+++ 7.120e+02 7.116e+02 -1.056e+00 -1.050e+00 0.959 +++\n", + "+++ 7.120e+02 7.116e+02 -1.056e+00 -1.050e+00 0.988 +++\n", + "+++ 7.120e+02 7.115e+02 -1.056e+00 -1.050e+00 1 +++\n", + "\t### errors for param 2 ###\n", + "+++ 7.120e+02 7.119e+02 -2.445e+00 -2.403e+00 0.347 +++\n", + "+++ 7.120e+02 7.115e+02 -2.445e+00 -2.382e+00 1.08 +++\n", + "+++ 7.120e+02 7.117e+02 -2.445e+00 -2.393e+00 0.631 +++\n", + "+++ 7.120e+02 7.116e+02 -2.445e+00 -2.387e+00 0.829 +++\n", + "+++ 7.120e+02 7.116e+02 -2.445e+00 -2.385e+00 0.946 +++\n", + "+++ 7.120e+02 7.115e+02 -2.445e+00 -2.384e+00 1.01 +++\n", + "\t### errors for param 3 ###\n", + "+++ 7.120e+02 7.119e+02 -2.747e+00 -2.710e+00 0.245 +++\n", + "+++ 7.120e+02 7.117e+02 -2.747e+00 -2.691e+00 0.695 +++\n", + "+++ 7.120e+02 7.115e+02 -2.747e+00 -2.682e+00 1.08 +++\n", + "+++ 7.120e+02 7.116e+02 -2.747e+00 -2.686e+00 0.87 +++\n", + "+++ 7.120e+02 7.116e+02 -2.747e+00 -2.684e+00 0.97 +++\n", + "+++ 7.120e+02 7.115e+02 -2.747e+00 -2.683e+00 1.02 +++\n", + "+++ 7.120e+02 7.115e+02 -2.747e+00 -2.684e+00 0.996 +++\n", + "\t### errors for param 4 ###\n", + "+++ 7.120e+02 7.117e+02 -3.603e+00 -3.540e+00 0.596 +++\n", + "+++ 7.120e+02 7.111e+02 -3.603e+00 -3.509e+00 1.86 +++\n", + "+++ 7.120e+02 7.115e+02 -3.603e+00 -3.525e+00 1.09 +++\n", + "+++ 7.120e+02 7.116e+02 -3.603e+00 -3.532e+00 0.813 +++\n", + "+++ 7.120e+02 7.116e+02 -3.603e+00 -3.528e+00 0.942 +++\n", + "+++ 7.120e+02 7.115e+02 -3.603e+00 -3.526e+00 1.01 +++\n", + "+++ 7.120e+02 7.116e+02 -3.603e+00 -3.527e+00 0.976 +++\n", + "+++ 7.120e+02 7.115e+02 -3.603e+00 -3.527e+00 0.994 +++\n", + "\t### errors for param 5 ###\n", + "+++ 7.120e+02 7.119e+02 -3.713e+00 -3.639e+00 0.357 +++\n", + "+++ 7.120e+02 7.116e+02 -3.713e+00 -3.602e+00 0.966 +++\n", + "+++ 7.120e+02 7.113e+02 -3.713e+00 -3.583e+00 1.46 +++\n", + "+++ 7.120e+02 7.114e+02 -3.713e+00 -3.592e+00 1.19 +++\n", + "+++ 7.120e+02 7.115e+02 -3.713e+00 -3.597e+00 1.08 +++\n", + "+++ 7.120e+02 7.115e+02 -3.713e+00 -3.599e+00 1.02 +++\n", + "+++ 7.120e+02 7.116e+02 -3.713e+00 -3.600e+00 0.992 +++\n", + "\t### errors for param 6 ###\n", + "+++ 7.120e+02 7.117e+02 -4.525e+00 -4.341e+00 0.622 +++\n", + "+++ 7.120e+02 7.111e+02 -4.525e+00 -4.249e+00 1.92 +++\n", + "+++ 7.120e+02 7.115e+02 -4.525e+00 -4.295e+00 1.13 +++\n", + "+++ 7.120e+02 7.116e+02 -4.525e+00 -4.318e+00 0.843 +++\n", + "+++ 7.120e+02 7.116e+02 -4.525e+00 -4.306e+00 0.978 +++\n", + "+++ 7.120e+02 7.115e+02 -4.525e+00 -4.301e+00 1.05 +++\n", + "+++ 7.120e+02 7.115e+02 -4.525e+00 -4.304e+00 1.01 +++\n", + "+++ 7.120e+02 7.115e+02 -4.525e+00 -4.305e+00 0.996 +++\n", + "\t### errors for param 7 ###\n", + "+++ 7.120e+02 7.118e+02 -4.620e+00 -4.343e+00 0.54 +++\n", + "+++ 7.120e+02 -inf -4.620e+00 -4.204e+00 inf +++\n", + "+++ 7.120e+02 7.115e+02 -4.620e+00 -4.274e+00 1.18 +++\n", + "+++ 7.120e+02 7.116e+02 -4.620e+00 -4.308e+00 0.803 +++\n", + "+++ 7.120e+02 7.116e+02 -4.620e+00 -4.291e+00 0.974 +++\n", + "+++ 7.120e+02 7.115e+02 -4.620e+00 -4.282e+00 1.07 +++\n", + "+++ 7.120e+02 7.115e+02 -4.620e+00 -4.287e+00 1.02 +++\n", + "+++ 7.120e+02 7.115e+02 -4.620e+00 -4.289e+00 0.998 +++\n", + "\t### errors for param 8 ###\n", + "+++ 7.120e+02 7.119e+02 1.913e-01 2.390e-01 0.269 +++\n", + "+++ 7.120e+02 7.117e+02 1.913e-01 2.629e-01 0.595 +++\n", + "+++ 7.120e+02 7.116e+02 1.913e-01 2.748e-01 0.803 +++\n", + "+++ 7.120e+02 7.116e+02 1.913e-01 2.808e-01 0.917 +++\n", + "+++ 7.120e+02 7.116e+02 1.913e-01 2.838e-01 0.977 +++\n", + "+++ 7.120e+02 7.115e+02 1.913e-01 2.853e-01 1.01 +++\n", + "\t### errors for param 9 ###\n", + "+++ 7.120e+02 7.119e+02 6.983e-01 7.492e-01 0.276 +++\n", + "+++ 7.120e+02 7.117e+02 6.983e-01 7.746e-01 0.62 +++\n", + "+++ 7.120e+02 7.116e+02 6.983e-01 7.874e-01 0.82 +++\n", + "+++ 7.120e+02 7.116e+02 6.983e-01 7.937e-01 0.936 +++\n", + "+++ 7.120e+02 7.115e+02 6.983e-01 7.969e-01 0.997 +++\n", + "\t### errors for param 10 ###\n", + "+++ 7.120e+02 7.116e+02 1.211e+00 1.563e+00 0.938 +++\n", + "+++ 7.120e+02 7.111e+02 1.211e+00 1.739e+00 1.91 +++\n", + "+++ 7.120e+02 7.113e+02 1.211e+00 1.651e+00 1.4 +++\n", + "+++ 7.120e+02 7.115e+02 1.211e+00 1.607e+00 1.16 +++\n", + "+++ 7.120e+02 7.115e+02 1.211e+00 1.585e+00 1.05 +++\n", + "+++ 7.120e+02 7.116e+02 1.211e+00 1.574e+00 0.993 +++\n", + "\t### errors for param 11 ###\n", + "+++ 7.120e+02 7.117e+02 9.788e-01 1.270e+00 0.74 +++\n", + "+++ 7.120e+02 7.113e+02 9.788e-01 1.416e+00 1.49 +++\n", + "+++ 7.120e+02 7.115e+02 9.788e-01 1.343e+00 1.1 +++\n", + "+++ 7.120e+02 7.116e+02 9.788e-01 1.307e+00 0.912 +++\n", + "+++ 7.120e+02 7.115e+02 9.788e-01 1.325e+00 1 +++\n", + "\t### errors for param 12 ###\n", + "+++ 7.120e+02 7.116e+02 1.032e+00 1.430e+00 0.828 +++\n", + "+++ 7.120e+02 7.111e+02 1.032e+00 1.628e+00 1.84 +++\n", + "+++ 7.120e+02 7.114e+02 1.032e+00 1.529e+00 1.29 +++\n", + "+++ 7.120e+02 7.115e+02 1.032e+00 1.479e+00 1.05 +++\n", + "+++ 7.120e+02 7.116e+02 1.032e+00 1.455e+00 0.935 +++\n", + "+++ 7.120e+02 7.116e+02 1.032e+00 1.467e+00 0.99 +++\n", + "\t### errors for param 13 ###\n", + "+++ 7.120e+02 7.119e+02 8.436e-01 1.048e+00 0.276 +++\n", + "+++ 7.120e+02 7.117e+02 8.436e-01 1.150e+00 0.604 +++\n", + "+++ 7.120e+02 7.116e+02 8.436e-01 1.201e+00 0.808 +++\n", + "+++ 7.120e+02 7.116e+02 8.436e-01 1.226e+00 0.92 +++\n", + "+++ 7.120e+02 7.116e+02 8.436e-01 1.239e+00 0.977 +++\n", + "+++ 7.120e+02 7.115e+02 8.436e-01 1.245e+00 1.01 +++\n", + "\t### errors for param 14 ###\n", + "+++ 7.120e+02 7.115e+02 6.665e-01 1.546e+00 1 +++\n", + "\t### errors for param 15 ###\n", + "********************\n", + "-0.475238 -1.05641 -2.44531 -2.74708 -3.6025 -3.71301 -4.52525 -4.62034 0.191311 0.698257 1.21102 0.978834 1.03208 0.843636 0.666538 0.854372\n", + "0.00475354 0.00682415 0.0617908 0.0635266 0.0755408 0.112636 0.220195 0.331549 0.0939739 0.0986604 0.363072 0.346135 0.434851 0.401558 0.879854 3.38957\n", + "********************\n" + ] + } + ], + "source": [ + "%autoreload\n", + "p, pe = clag.errors(Cx, p, pe)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "phi, phie = p[nfq:], pe[nfq:]\n", + "lag, lage = phi/(2*np.pi*fqd), phie/(2*np.pi*fqd) \n", + "cx, cxe = p[:nfq], pe[:nfq]" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 3.15567684, 3.85069114, 3.46079358, 1.80469275, 1.2276475 ,\n", + " 0.64741975, 0.33000748, 0.27290686])" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAFrCAYAAACE+GArAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAFtlJREFUeJzt3X9sXed9H+CPE8tWG69TGtWkncVWxFaWN3vzyMitzUBV\nMDcohs0ZsIElgQwrubZGm83QNmw1UpjN5CEDhq1xBWwrtEFogWBX1ooVTbFpS/+Q4kFiNpX0Ov9i\n3ZGmp9oiHWVR2jiVI8TZH5e0KYoUeV/eew/v5fMAF7o89z3nfCW9oj48533fkwAAAAAAAAAAAAAA\nAAAAAAAAAAAAAABA1ziY5HeSvJ7knSSfWqXN5xY//3aS00n+fLuKAwA2730tPPb3J3kuyWcWv/7e\nis9/Mcnhxc8PJJlP8rtJbmthTQBAB3onyaPLvr4pycUk/3jZtluSfCPJz7WxLgBgE1p5ReJGPpqk\nJ8mXl237TpKvJHm4kooAgIZVFSR6F39dWLH9zWWfAQBb3M1VF7CKlWMpltyx+AIAGnNx8dV0VQWJ\n+cVfe5a9X+3rJXfceeedb7zxxhstLwwAutDrqU9saHqYqCpIvJp6YPhkkt9f3HZLkh/PtQMwl9zx\nxhtv5Itf/GLuvffeNpXYPIcPH87TTz/dkefazPEa3Xej7TfSbr02N/q8nX9fzaavNbe9vrY2fa25\n7VvZ115++eV8+tOf/nDqV/U7Kkh8IMmPLPt6b5IHknw9yYUkTyf5bJI/TPJ/Ft9/K8l/WOuA9957\nb/r7+1tVb8vs2rWrbXU3+1ybOV6j+260/UbardfmRp+38++r2fS15rbX19amrzW3fav7Wiu9v4XH\nHkxyLsljqY97+MnF9x9M8ttJzibZmeSXkzye5JtJRpKsdv/ijiSPPfbYY7njjs4cJnH//fd37Lk2\nc7xG991o+420W6/NWp/XarWMjIxsqI6tSF9rbnt9bW36WnPbt6qvXbx4MceOHUuSY2nBFYmbmn3A\nFulPMjk5Odmx6Z3O8eijj+ZLX/pS1WWwDehrtMPU1FQGBgaSZCDJVLOPX9X0TwCgCwgSsEInX2qm\ns+hrdANBAlbwzZ120dfoBoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQ\nTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUE\nCQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAA\nAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCg\nmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJ\nEgBAMUECACgmSAAAxQQJAKCYIAEAFKsySHwuyTsrXm9UWA8A0KCbKz7/C0keWfb1d6sqBABoXNVB\n4rtJ3qy4BgCgUNVjJH4kyetJZpPUkny02nIAgEZUGSS+muRvJ/lkkp9N0pvkXJIfrLAmAKABVd7a\n+K/L3r+YZCLJTJK/k+QLlVQEADSk6jESy307yfNJfnitBocPH86uXbuu2TYyMpKRkZEWlwYAW1+t\nVkutVrtm2+XLl1t6zptaevTG3Jr6FYlfS/LPVnzWn2RycnIy/f39bS8MADrV1NRUBgYGkmQgyVSz\nj1/lGIl/meRg6gMsfzTJbya5LclvVFgTANCAKm9tfDj1mRq7k3wt9TESP5bkQoU1AQANqDJIGNgA\nAB1uKw22hLZaPijpypUree2113L33Xdn586dSQzkBdgIQYJta3lQWBqMVKvVDOgFaEDVK1sCAB3M\nFQmgq7hlBe0lSABdxS0raC9BArghP+EDN2KMBHBDIyMjOXr0aHbv3p3Z2dm88sormZ2dze7du3P0\n6FEhArY5VySANS0sLGR4eDjT09OZn59/d/vMzExmZmZy6tSp7N+/PydOnEhPT0+FlQJVESSAVS0s\nLOThhx/O7Ozsmm3m5+czPz+fwcHBnD17VpiAbcitDWBVw8PDNwwRy83MzGR4eLjFFQFbkSABXOfV\nV1/N9PR0Q/tMT09nbm6uNQUBW5YgAVznqaeeumZMxEbMz8/nyJEjLaoI2KoECeA658+fb+t+zTY3\nN5exsbEMDQ0lSYaGhjI2NuaKCbSAwZbAda5evdrW/ZrFLBNoP0ECuM6OHTvaul8zmGUC1XBrA7jO\ngQMHivZ78MEHm1zJxpllAtUQJIDrjI+Pp7e3t6F9ent78+STT7aoohszywSqI0iwrRmUt7o9e/Zk\n//79De2zf//+7NmzpzUFrcMsE6iOMRJsSwblre/EiRMZHBzMzMzMum37+vryzDPPtKGq1XX6LBPo\nZK5IsO0sDco7c+bMmj/Fzs/P58yZMxkcHMzCwkKbK9waenp6cvbs2Rw6dGjN2xy9vb05dOhQzp07\nl9tvv73NFb6nU2eZQDcQJNh2DMrbuJ6enpw+fToTExMZHR1NX19fkvoViNHR0UxMTOT06dOVhoik\nM2eZQLcQJNhWDMors2fPnhw/fjwnT55Mkpw8eTLHjx+vbEzESp04ywS6hTESbCubGZR3/PjxFlW1\ntdVqtdRqtSTJlStXsm/fvjzxxBPZuXNnkmRkZCQjIyNVlpjx8fGcOnWqob/bKmeZQDcRJNhWDMpr\n3FYICutZmmXSSJCocpYJdBO3NthWDMrrXidOnHh3DMd6qp5lAt1EkGBbMSive3XSLBPoJoIE24pB\ned2tU2aZQDe5qeoCNqg/yeTk5GT6+/urroUONjc3l4ceeqjhQXkTExPup3egqampDAwMxPcOtrOl\nfwdJBpJMNfv4rkiwrXTa0s8AW50gwbZjUB5A8wgSbDsG5QE0jyDBtmRQHkBzWJCKbW1p6eelwUgn\nT540KA+gAa5IAADFBAkAoJhbG0BXqeohYyvP+9prr+Xuu+/eUg83g1YQJICuUtV/2MvPuzTmplar\nGXND13NrAwAoJkgANMnc3FzGxsYyNDSUJBkaGsrY2Fjm5uaqLQxayK0NgE1aWFjI8PBwpqenr3mO\ny8zMTGZmZnLq1Kns378/J06cSE9PT4WVQvMJEgCbsLCwkIcffjizs7Nrtpmfn8/8/HwGBwdz9uxZ\nYYKu4tYGwCYMDw/fMEQsNzMzk+Hh4RZXBO0lSAAUevXVVzM9Pd3QPtPT08ZM0FUECYBCTz311DVj\nIjZifn4+R44caVFF0H6CBECh8+fPt3U/2IoECYBCV69ebet+sBWZtQFQaMeOHW3dbyXLcrMVuCIB\nUOjAgQNF+z344INNOf/IyEiOHj2a3bt3Z3Z2Nq+88kpmZ2eze/fuHD16VIigLW6quoAN6k8yOTk5\nad16msZPc2zW3NxcHnrooYYGXPb29mZiYiJ79uzZ1LnXWgRr+XksgkXy3rNfkgwkmWr28d3aYNsS\nFNisPXv2ZP/+/Q0Fif379zclRFgEi63CrQ2ATThx4kT6+vo21Lavry/PPPPMps9pESy2EkECYBN6\nenpy9uzZHDp0KL29vau26e3tzaFDh3Lu3LncfvvtmzqfRbDYatzaANiknp6enD59OnNzczly5Eie\nffbZzMzMpK+vLwcPHsz4+Pimb2cs2cwiWMePH29KDduJsVTrM9gSoMmWBre14nvW/fffnxdeeKHh\n/e677748//zzTa1lu2nl32srtXqwpVsbAB3EIlhsNW5tADTBykvg+/btyxNPPNH0S+BVL4IFKwkS\nAE3QrnvlBw4cKLq10axFsJYsjQc5f/58rl69mh07duTAgQNNHQ9CZxAkADrI+Ph4Tp061fAiWE8+\n+WRTzn+jhbBeeOGFnDp1ykJY24wgAdBBqloEK7EQFqsz2BKgw1SxCFZiISxWJ0gAdJh2L4KVWAiL\ntQkSAB1oaRGsiYmJjI6OvnuFoq+vL6Ojo5mYmMjp06ebEiKSzS2E1Qy1Wi2PPPJI7rrrrtx22225\n5ZZbctttt+Wuu+7KI4888u6MGdpPkADoULVaLY8//nguXbqUvXv3Zt++fdm7d28uXbqUxx9/vKn/\nuZ4/f76t+y23sLCQY8eO5cUXX8yFCxfy1ltv5erVq3nrrbdy4cKFvPjiizl27FgWFhY2fa7VzM3N\nZWxsLENDQ0mSoaGhjI2NudqyyGBLgA7VzuWZq1oIq8oBnmvNUJmZmcnMzIwZKotckQBgXVUthFXV\nAM+lAHPmzJk1b+nMz8/nzJkzGRwcbNnVkE4gSACwrgMHDhTtt5mFsKoc4GmGysYJEgCsa3x8fM0Z\nImvZ7EJYVQ3wNEOlMVshSPxCkleT/GmS30vy8WrLAWClpYWwGrHZhbCqGuBZ9QyVTlN1kPipJF9I\n8lSSB5L89ySnknykyqIAuF67F8KqaoBnlTNUOlHVQeIfJvn3SY4n+YMk/yDJhSQ/X2VRAFyv3Qth\nVTXA06PaG1Pl9M9bkvQn+fyK7V9O8nD7ywFgPUsLYbXj6Z9VPenUo9obU2WQ2J3k/UlWzpl5M0lj\nI3oAaKs9e/bk+PHjLT1HVU863SqPau8UVd/aAIBVVTHAM6lmhkonq/KKxKUk302ycjmwniQXV9vh\n8OHD2bVr1zXb2rmyGwDtdeLEiQwODmZmZmbdts160mmVj2rfrFqtdt3S6JcvX27pOW9q6dHX99Uk\nk0k+s2zbS0l+K8kvLdvWn2RycnIy/f39bSwPgKotLCzkE5/4RGZnZ/P2229f9/mtt96avXv35syZ\nM017SNnCwkJDAaZZT1lthampqQwMDCTJQJKpZh+/6lsbv5LkZ5KMJrk39amgfy7Jr1VZFABbR09P\nT1566aVMT09ndHQ09913X+65557cd999GR0dzfT0dF566aWm/kdexaPaO1XVD+06meRDScaT3JHk\n+SR/NfUpoADwrnYM8Fxu5QyVZ599NjMzM+nr68vBgwebOkOlk1UdJJLk3y6+AGDLWQowS7cITp48\n6Tb7MlXf2gAAOpggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACi2FdaRAIAtafmzK65cuZJ9+/bl\niSeeyM6dO5N43lMiSADAmgSF9bm1AQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCY\nIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkS\nAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEA\nFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAx\nQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMk\nAIBiVQaJuSTvrHh9vsJ6AIAG3Vzhub+X5Mkk/27ZtrcqqgUAKFBlkEiSbyV5s+IaAIBCVY+R+MUk\nl5I8l+SzSXZUWw4A0Igqr0j8apLJJN9I8qNJ/nmSjyb52QprAgAa0Owg8bkk4+u0+ViSqSRPL9v2\nQuqB4jeT/JPF99c5fPhwdu3adc22kZGRjIyMFJYLAN2jVqulVqtds+3y5cstPedNTT7ehxZfN/Ja\nkrdX2f7hJBdSvzpxfsVn/UkmJycn09/fv+kiAWC7mJqaysDAQJIMpP6DfFM1+4rE1xdfJf7y4q8X\nm1QLANBiVY2R+LEkDyU5neSbSQ4k+ZUkv53kjyqqCQBoUFVB4u0kQ6mPp7g19dsdx5L8i4rqAQAK\nVBUknkv9igQA0MGqXkcCAOhgggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIE\nAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAA\nxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBM\nkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJ\nAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAA\nigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQrFVB4peSnEvy7STfWKPNXUl+J8m3knwt\nya8m2dGiemDDarVa1SWwTehrdINWBYkdSZ5J8m/W+Pz9Sf5zku9LMphkOMnfTPKvWlQPbJhv7rSL\nvkY3uLlFx/3c4q8/vcbnn0xyb5KfSDK/uO0fJfn1JJ9N/SoFALDFVTVG4qEkz+e9EJEkX05ya5KB\nSipqoXb+1NHsc23meI3uu9H2G2m3Xptu/UlQX2tue31tbfpac9t3cl+rKkj0JllYse0bSb6z+FlX\n8Q+uue07+R9cq+lrzW2vr61NX2tu+07ua43c2vhckvF12nwsydQGj3dTA+dOkrz88suN7rIlXL58\nOVNTG/1j2Vrn2szxGt13o+030m69Njf6vJ1/X82mrzW3vb62Nn2tue1b2dda/X9nI/+Zf2jxdSOv\nJXl72dc/neQLST64ot0/TfKpJA8s2/bBJF9P8okkX1nR/o4k55N8uIF6AYC615McSHKx2Qdu5IrE\n1xdfzTCR+hTRnrx3i+OTqYeQyVXaX0z9D+COJp0fALaTi2lBiGilu1K/2jCe5I+T/KXFrz+w+Pn7\nkvzvJL+7uP2vJPm/qa8lAQBsc7+e5J3F13eX/XpwWZuPpL4g1VtJLiV5OhakAgAAAAAAAABYz59J\n8j+TPJfkhSR/r9py6GIfSXImyYtJfj/J36q0GrrdbyX5f0n+Y9WF0LX+WpLpJK8k+bsV11Kp9yXZ\nufj++5LMJvmh6sqhi/Um+YuL738oyYXU+xy0wo+n/o1ekKAVbk7yB6kvr3Bb6mHiBxs5QFVLZLfC\nO0muLL7//iRXl30NzTSf+vTlJPla6j8tNvQPDxrwlXiQIa3zYOpXVy+m3s/+S+rrOm1YNwWJJPmz\nqV9qXlqT4k+qLYdt4GOprxD7etWFABS4M9d+//qjNLiKdLcFiW+mvvjVR5N8JskPV1sOXe5DSX4j\nyc9VXQhAoe9t9gBVBomDqS9I9XrqtyU+tUqbX0jyapI/TfJ7ST6+7LO/n/rAyqlcv5DVm6kPhnsg\n0Jq+dmuS/5Tk80m+2pKq6USt+r626W/2dK3N9rk3cu0ViI+kg66w/mSSI0n+Ruq/+UdXfP5TqT97\nYyzJPak//OtPUv9Nrub2JD+w+P4HUr+HfU9zS6ZDNbuv3ZSkluSXW1EsHa3ZfW3JoRhsyeo22+du\nTn2A5Z2pz358Jdc/aLMjrPab/x9J/vWKbS+l/hPgavpTT/L/a/E12swC6RrN6GsfT33J96nU+9xz\nSf5CE2ukOzSjryXJf0v9Kutbqc8QGmhWgXSd0j7311OfufGHSX6mZdW12Mrf/C2pz7pYeYnm6dRv\nWUApfY120ddot0r63FYdbLk7yfvz3iPGl7yZ+hx+aBZ9jXbR12i3tvS5rRokAIAOsFWDxKXU70H3\nrNjek/qiGdAs+hrtoq/Rbm3pc1s1SHwnyWSuX13rJ5Kca385dDF9jXbR12i3ru9zH0h9nYcHUh8g\ncnjx/dKUlKHUp6yMJrk39Skrf5z1p0nBSvoa7aKv0W7bus8dSv03/U7ql16W3h9f1ubnU19E40qS\n87l2EQ3YqEPR12iPQ9HXaK9D0ecAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYIv6/4MFR6Gr\nqPGoAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "\n", + "xscale('log'); ylim(-10,10)\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=10,color=\"black\")\n", + "\n", + "lag" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGYCAYAAAB/DYmkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xl8FPX9x/FXIECQ04hyqATQBgGPmHjggeJRD7yqRjDV\nKkSx2upPNEZj0apVPBul1qvVxguNEi2e1drDux5IbL3wKAQQwaME8Iwcye+Pz6y72ewmuzuzO3u8\nn4/HPHYzO8cnM9nsZ7/z/X4GRERERERERERERERERERERERERERERERERERERERERERERERERERE\nREREJH1NBFqjTLv5F5aIiEjuyvc7AB9cCDwbNu9dPwIRERHJdbmYiHwEvO53ECIiIgLd/A7AB3l+\nByAiIiK5ZyLWH+RTYD2wFnga2MvHmERERCRHlADXA0diycdUrG/IeuAg/8ISERHJXbl+mWIA8Daw\nCtg5yjJDnUlERETis9KZosrFzqqh1gJPAj8HegHfh70+dNiwYStWrFiR8sBERESywELgADpJRnI9\nEQnVFmHe0BUrVjBnzhzGjBkT00ZmzJjB7NmzvY0si2Xi8fI75lTs3+t9eLE9N9tIZN141vH7byIT\nZeIx8zvmTHvvL1y4kBNPPHEMdlVBiUgUmwJHAG8C66ItNGbMGEpLS2Pa4MCBA2NeVjLzePkdcyr2\n7/U+vNiem20ksm486/j9N5GJMvGY+R1zJr73Y5FLich9QBPQCDQDPwKqgM2Bk3yMK6dVVFT4HULc\n/I45Ffv3eh9ebM/NNhJZ1+/znO0y8fj6HXMmvvdjkUudVS8ApgAjgb5YMvIicBWwIMo6pcCCBQsW\nxJwhHnnkkTz22GPuoxWRjKH3vUhHjY2NlJWVAZRhjQAR5VKLyDXOJCIiImkiFyurJpXfTXciknp6\n34skTomIx/QPSST36H0vkjglIiIiIuIbJSIiIiLiGyUiIiIi4hslIiIiIuIbJSIiIiLiGyUiIiIi\n4hslIiIiIuKbXKqs6on6+nrq6+sBaGlpYenSpRQVFVFQUABYPQHVFBAREYmNEpE4hSYagTr69fX1\nGXcXSRERkXSgSzMiIiLiGyUiIiIi4hslIiIiIuIbJSIiIiLiGyUiIiIi4hslIiIiIuIbJSIiIiLi\nGyUiIiIi4hslIiIiIuIbVVYVkbjpVgci4hUlIiISN93qQES8okszIiIi4hslIiIiIuIbJSIiIiLi\nG/UREQmjjpgiIqmjREQkjDpiioikji7NiIiIiG+UiIiIiIhvlIiIiIiIb5SIiIiIiG+UiIiIiIhv\nlIiIiIiIb5SIiIiIiG+UiIiIiIhvlIiIiIiIb5SIiIiIiG+UiIiIiIhvlIiIiIiIb3I9ETkVaAW+\n8jsQERGRXOTF3Xf7AHsBuwODgc2BAcAa4AvgU+A14F/Atx7szytbAr8FVgD9fY5FREQkJyWaiGwO\nnAhMBkqd7eR1sc56YAEwF7gPS1L8dBvwLJYwlfsci4iISE6K99LMNkAdsAyoxVpBetA+Cfkaa2X4\nJmzdHsB44HpgKfAnZ3t+OBGYAPySrhMoERERSZJYW0Q2A64ATglZ53vgn8Cr2KWX/wDNWMtHQA9g\nEFAC7IYlLvsDBcA0LCGoA2Y666bCYGA2UIMlTCIiIuKTWBORD4FNnefPA3OABuDLLtZbD6x0pqec\neQOA44ATgH2Bnzs/D4o5anduBt7DLs2IiIiIj2JNRDYFngQuxfp5uLEWuMOZypxtHuZym7EqBw4H\ndopnpRkzZjBw4MB28yoqKhg9erSHoYmIiGSm+vp66uvr281bs2ZNTOvGmojsBrwRX1gxWQAcAeyS\nhG2H6wvcBNwIfAYEMouezuMAYAMd+7Ywe/ZsSktLO2ywsbExKYGKiIhkkoqKCioqKtrNa2xspKys\nrMt1Y+2smowkJJXbB7v0swVwHtYfJTAdjw1BXg3cm4I4RERExOFFHZFMsRLYD2gLmZeHdVrdFzgE\n+J8PcYmIiOSsXEpEvsc62oabBmwEXkhtOCIiIuK2xHtPYKwzFUR4vTdWN2Q58B02WuUsl/v0Whvt\nW0lEAKirq6O83GrdlZeXU1dX53NEIiLZx20i8hPgHaxCaWuE1/8MzACGAb2A7YDfYR1G08U0VOJd\nwtTV1VFdXU1TUxMATU1NVFdXKxkREfGY20TkYOdxHrAu7LXDQl5fDjxCsIDYL4E9XO5bJGlqa2tp\nbm5fY6+5uZna2lqfIhIRyU5uE5HAuJxI/SumOY8fAuOAY5zH97FOoqe63LdI0mzYsCGu+SIikhi3\nicgWWP+KRRG2+2Pn+U3AV87ztc7PAHu63LdI0uTnR+7HHW2+iIgkxm0iEijL3hI2vwTohyUpT4a9\n9o7zuLXLfYskTVVVFYWFhe3mFRYWUlVV5VNEIiLZyW0iEugXEn6fmH2cx+VAU9hrgdaR7i73LZI0\nlZWVXHfddYwaNQqAUaNGcd1111FZWelzZCIi2cVtIrIE6+8xPmz+Ec7jixHWCXzN/MLlvkWSqrKy\nkoaGBgAaGhqUhIiIJIHbRORZ5/FMrJYIwJHAROf5XyKsM855XOly3yIiIpLh3CYivwfWA4OBt7ES\n6Y9grSSfAA9HWOcg5/Ftl/sWERGRDOc2EfkQOBH4Fks+Apdd1gAVWFn1UEMIJiL/dLlvERERyXBe\njEVswOqIHIYlGiuAx7A724bbEbgfG00T6bKNiIiI5BCviiJ8BsRS+/oZZxIRERFxfWlGREREJGFu\nE5H3gfOxzqoiIiIicXGbiBQDVwMfA48CR6FCZSIiIhIjt4nIm85jPlbEbB5WTfU6YDuX2xYREZEs\n58Xdd0uA3wGrnHmDgSrgXeBf2F12+7rcj4iIiGQhLzqrvgWcAwwDyrGb3G0kWPr9j1gV1TuBCR7s\nT0RERLKEl6Nm1gN/xi7RbA3UAB84r/UBTgaex4qg1QBDPdy3iIiIZKBkDd/9FLgWGAPsCdxB8K67\n2wJXAkuBJ4CjycAOruvWwVtv9QG2Z8WKnqxaZfNEckldXR3l5eUAlJeXU1cXSzkhEZEgrwqadeZV\nZ3oMu0wzJGTfk5xpBVCL3btmQwpicm3lSpg2bTTwNkccEZzfsyf07Qv9+nWcEpnfs6dvv6JIp+rq\n6qiurqa52YooNzU1UV1dDaA7FYtIzJKdiBQBU4GTgBFYvxGwZOPv2J14t8b6l9Ri9605EFid5Lhc\nGzoU5s59j8mTK7n55nsZMuRHfPUVfP01fPVV+ykwb+XKjvO/D78bT5iePWNLXGJNcnr0SM3xkexX\nW1v7QxIS0NzcTG1trRIREYlZMhKR3sCxwDRgX9pf/vkI+BNwF/C589oBQDWWgOwMXAqcnYS4PNWz\nJ2yzTQvwGuPHf0VpaWLbWbeuY/ISKZmJNH/Fio7zu7o81KtX4q0zkeYpscldGzZEbryMNl9EJBIv\nE5E9sORjMtA/ZH4L8DBwO3ZzvFCtwN+c6XfAWVhn17RPRLzSsycUFtrkhXXr4ktmAtOXX8Inn3Sc\nv3595/sLJDZuL0EFnuen4mKheCI/ysmKNl9EJBK3/zGGAT/DLr+MDnvtP1gn1TnA2hi2dTeWiGzt\nMqac1rMnbLaZTV4IJDbxttisXQvLl3ec31ViU1DgzSWowDx9JiZPVVVVuz4iAIWFhVRVVfkYlYhk\nGrf/ppfR/tLLV0A9loC8Eee2vnQeM24ETTbzOrH5/vvEWmzWrIGPP+44v6urAKGJTSL9bD7+uAAo\n8OaXzzKBfiCzZs1i8eLFjBo1ipkzZ6p/iIjExW0iEkhCXsEuvcwFvk1wW58ClUCby5gkjfXqZdOg\nQe631dYWucWmq07DX30Fq1fDsmUd53dMbMYCa6msXMekSbDPPrDnntC/f4SAclBlZSUlJSWUlZXR\n0NBAaaKdpUQkZ7lNRGZjCchCD2L5GuvEKhKTvDzvE5tAi00gQZk//wNOPfVGttjiCurq4KqroFs3\nKC21pGSffWDvvb1rMRIRyTVuE5FzPYlCJA3k5dmlnIIC2Hxzm7dhwzfALVx99SnsvPOmfPQRvPCC\nTQ89BNdfb8vtsEMwMdlnHxgyJOpuREQkhLryicQoLw+Ki2069VSbt3RpMDF55hm4+WabX1wcTEr2\n3ReGD/cvbhGRdKZERCRMfX099fX1ALS0tFBcXExNTQ0FBdZptaKigoqKCgCKiuBnP7MJrGjdiy/C\n889bcnLHHfywXGhisu22ltiIiOQ6LxOR/YGfADsCg7DCZl39qx3l4f5FPBGaaMRr6FCYPNkmgFWr\n4KWXgonJffdBa6tduglNTMaOtb4nIiK5xotEZDDwAFZFVURCbLYZHHWUTWCF415+OXg555xzrLZK\nYSFMmGBJyT77wE47qQaKiOQGt//qegB/wUqzA/wbu4HdJOfne4FCoBQY6sxrBN5Bw3QlB/XvD4ce\nahPAt9/Cq68GE5Nf/QpaWqyGyd57B1tNdtlFN0AUkezkNhGZSjAJqcSG326PJSJtwMnOa3nAkcAt\nwBjgKqzsu0hO22QT2H9/m8CGD7/xRjAxmTULLrwQeveGPfYIJia7727riohkOrdXpY91Hp+m8xog\nbcCjwD7Aeqyce7HLffuqrq6O8vJyAMrLy6mrq/M5IskGvXrBXntZ8vHUU1Z4bf58uOIKq/z6u99Z\n0jJwoLWY/OpX8PTTVvdERCQTuU1ESpzHOVFeD++suggrgrYJGXxju7q6Oqqrq2lqagKgqamJ6upq\nJSPiufx8uyxz7rnw6KPwv//BW2/BDTfAsGFQV2eXeQYOhF13haoqWy7k9i8iImnNbSJSiLV2LA6Z\nF3oj+kiNx/90Hg90uW/f1NbWtrvRF0BzczO1tbU+RSS5ols3K572y1/C3Lk2XPiDD+C222C77aCh\nAX7yE+sku+OOcOaZttynn/oduYhIZG77iKzDhumGJh9fhjzfEvgwbJ2WkNcy0oYod1qLNl8kWUKL\nrE2fbvOWLOm8yFpgZI6KrIlIOvDi7rvbYUN4Az7D7hvTF9idjonIWOcx1aNmSoBZWGfazYHvgA+A\nm4H74tlQfpRxldHmi6TSiBE2nXSS/bxihRVZe+EFq2cSXmQtkJioyJqI+MHtpZlG53HnkHltwAvO\n8xlAr5DXBgLnO8+9uFFePAZgidOFwKHAScASbIjxzHg2VFVVRWFhYbt5hYWFVFVVeRKoiJeGDYMp\nU6xl5J134IsvYN48OOYYePddOO00ay0JLHfLLbZca6vfkYtILnD7Ff4fwE+Bw4ErQ+bfig3h3Rl4\nGxsx0wc4guAlmXtc7jtezztTqCeBkcBpWGtJTCorKwGYNWsWixcvZtSoUcycOfOH+SLpbNAg60fy\nk5/Yz2vXwr/+Faz+evbZsGGD9TOZMCE4ZLikBLp39zd2Eck+bhORR4BLgK2AbbBRMWAf8HVYbZFt\ngfCmgmewZCUdrAK2iHelyspKSkpKKCsro6GhgdLS0iSEJpJ8AwZELrIWSExUZE1EksltIrIaGBHl\ntenAK87jOGdfH2ItIb8DNrrcd6LygO7ApsBxwMHA//kUi0jaiVRkbf786EXWfvSjIQQLJ4uIxCeZ\nvSvbgD85Uzq5FbsUA5YMnUf6tM6IpJ1evawlJFBAbcMGePPNYGIyZ85g4H3mzl3DTjvp8o2IxCcX\n7/c5C9gF68NyO3A9cIGvEYlkkPz89sXTnnjiHeB+rrlmOHvsAf/+t98RikgmycXxph87E1hpeoDL\nsT4tX0RaYcaMGQwcOLDdvIqKCkaPHp2sGEUyRv/+G4EzqKvbj+uvH80uu1iH18sus7L0IpL96uvr\nqa+vbzdvzZo1Ma2bi4lIuPnA6djomYiJyOzZsyN2Rm1sbIywtEhu2mmnb2hshOuvtySkocGGDB9x\nhN+RiUiyVVRUUFFR0W5eY2MjZWVlXa4bayLSRHIKkI1KwjbjtR/WV2RRVwuKSOd69IALLoDJk+EX\nv4Ajj4Sjj4Ybb4SttvI7OhFJR7EmIkVJjSI1/gisxVpAPgMGYaNmJgPXYsN4RcQDI0fCX/5irSJn\nnw1jxtgdhM88U51ZRaS9WBORroqP7eRMAGuAN4HPnZ8HY+XVA50s/gP40Z3tX8A04GQnlq+dOE4E\n7vchHpGslpdnLSMHHQQzZ8I558A998Af/wgxtNaKSI6INRGZ2slr04AKYDlWuGweEH73t3zgaOC3\n2L1mfo91Dk2lu5xJRFJo4EDrK3LSSVZOfrfd4Kyz4PLLrUiaiOQ2t8N3dwH+gF3WGA800DEJwZnX\n4CyzCqvbsavLfYtIBtl9d3jjDbjmGrj9drtcM28etKX69pciklbcJiLnYK0dVwIrYlh+pbNsD+Bc\nl/sWkQzTowecdx68957du+aYY+Coo2DZMr8jExG/uE1E9sFG07waxzqvOY97udy3iGSooiJ4/HF4\n6CFYsADGjrVhvxsitaeKSFZzm4hs7jz2imOdwG2yNu90KRHJanl5cOyxsHAhVFZaS8muu8Lrr/sd\nmYikkttE5AvsJnKT4lgnsOz/XO5bRLJA//5WZ+S11yw5GT/ehvmuXet3ZCKSCm4TkX86j+cAe8ew\n/F7OsqHrioj80BpSWwt33WWdWR96SJ1ZRbKd20TkGmA9UAD8HfgdVjMkL2SZPGBnYDaWfBQA64Cr\nXe5bRLJMfr7VG1m40EbZHHccHH44LFnid2QikixuE5H3sAJhG7G+H2cBC4BvgU+w2iLfAm8A/4eN\nltmA1SVZ6HLfIpKltt7ahvY+8gi89ZZ1Zr32Wli/3u/IRMRrbhMRgAewyzKBO8DlYZ1XhwLDnOeB\nFpJGZ9kHPNiviGS5o46yob6nnw4XXmgVWV95xe+oRMRLXiQiYENyd8EKll0EPAg840wPADOB3Z1l\n1CdeRGLWr58N7Z0/H3r1gr32gjPOgBjvMC4iaS7WEu+xeh0lGiKSBKWl8OqrcMstdu+aefNg9myY\nMsVG24hIZvKqRUREJOm6d7f71CxcCHvvDRUVcMghsGiR35GJSKKUiIhIxtlySxva+/jj8P77sP32\ncNVVsG6d35GJSLxiTUSSfYM63QBPROJ2+OHWmfXMM+Hii+3yzUsv+R2ViMQj1kTkNeAxrEaIl0qB\nJ4jvXjUiIj/o0weuu87uWdO3L0yYANOnQ3Oz35GJSCxiTURWA4djNUL+BpwE9Elwn/2BSqy42RtY\nyffVCW5LRASAnXaCl1+2zqxz58J228F996kyq0i6izURKQb+ALQCBwB3AZ8BjwAXOvM2j7C9bsBg\n4GDgYuBJYCVwBzARK252m7N9ERFXune3ob3vvw/77QcnnggHHQQffeR3ZCISTayJyCrgDGAMcDdW\n1n0T4EhgFlYv5FNn/mpgGbDG+XkF8BRwGXAo0Bv4HqhztvcLQI2oIuKZoUPhwQfhqadsRM0OO8Dl\nl8P33/sdmYiEi3fUzH+BacBwoBqYj7WS5IVMA4CtsEswgXk4y70OnOesfyqgQXcikjSHHALvvGP3\nr/nNb6CkBF54we+oRCRUogXNPgNqnakfdlfd3bCy7ptjycga4AusReR14GXgG5fxiojEZZNNbGjv\nT39qpeL33RemTbMOrptt5nd0IuJFZdWvgKedSUQkLe2wA7z4ItxxB1xwgdUg+e1v4aSTVJlVxE8q\naCYiOaNbNzjtNOvMetBBMHUq7L8/fPCB35GJ5C4lIiKScwYPtqG9zzwDH38Mu+0Gb7/td1Qiucnr\nm96JiKS9+vp66uvrARg+PI/ly69i1103Z8KE8+ndexUVFRVUVFT4HKVIblAiIiJxC/0gb2lpobi4\nmJqaGgoKCgDS/oM8NL7GxkbKyg5k8OAlfP75nbz4IvTv73OAIjlEiYiIxC3dE434reT3v/8v06eP\npbwcnnwSevTwOyaR3KA+IiIiwDbbtDBvHjz3HPz85yoNL5IqSkRERBz77Qd33mnT5Zf7HY1IbtCl\nGRGRECecAEuXwsyZUFQEJ5/sd0Qi2U2JiIhImAsvhCVL4NRTYdgw+PGP/Y5IJHvp0oyISJi8PLjl\nFjjwQDj2WHjrLb8jEsleSkRERCLIz4e5c2HbbWHSJFi+3O+IRLKTEhERkSj69bOhvN27WzKydq3f\nEYlkH7d9RC4B4h3k1ga0AGuBj4AFwJcu4xARSYqhQ+Gpp2DPPaG8HP7yF9UYEfGSF4mIW+uAx4Bf\nAf/1YHsiIp4aOxYeecRulDd9ug3v1R17RbyRDpdmegLlwL+BA32ORUQkookT4a674O674bLL/I5G\nJHu4TUS6ASOB152f5wFHA1sDvZ1pOHAM8IizzGvAtkAhsA9wK9AKbAI0AJu5jElEJCl++lO48kpL\nRO680+9oRLKD20sz/YBngFHAccDDEZZZ7kyPAMcCDzjrlAEvOdNjwJPAAOBMQN83RCQt1dRYjZHT\nToMtt7TLNSKSOLctIjOAH2GtGpGSkHAPA7dhict5IfP/Csxxnh/iMiYRkaTJy4Obb7YEpLwc/vMf\nvyMSyWxuE5HJzuO8ONb5s/N4dNj8x5zHbV1F1LkDgLuBD4FvCLbUlCZxnyKSZfLz4cEH4Uc/gsMO\nU40RETfcJiIjseG48YyuDwzVLQqbv9R57O8yps78HOuzcgNwKHA2sAXwKrBfEvcrIlmmb1+rMZKf\nD4ceqhojIolym4isB/KAHeJYZ/uQdSPFssZlTJ05E0s4bgVewC4V/RhYhQ0fFhGJ2ZAhVldk+XIr\nBb9und8RiWQet4nI287jeUBBDMv3Bqqd5++EvTbKefzCZUyd+TzCvG+AhcBWSdyviGSpQI2RF1+0\nGiNt8ZZ4FMlxbhORPzmP44BnCbZ2RLKDs8zYsHUDAjVE3ia1BmB9RN5N8X5FJEvsu6/VGLnnHrj0\nUr+jEcksbofv3oMVIzsM2B34D1aYbAHB1ofBwC7ATiHrPYF1Gg0YSLDj61MuY4rXzVhLzawU71dE\nskhFBSxbZsN7i4qgstLviEQyg9tEpA2rDfJ7YDrWX2RnZ4q2/O3AWWHzuwNHOa+/4TKmeFwO/BTr\nO/JmCvcrIlno/PPb1xg5+GC/IxJJf24TEbB7xfwc+ANwGjZEdpuwZRYB/wD+CDRG2MYq4DkPYonH\nJcBMrJPqLZ0tOGPGDAYOHNhuXkVFBaNHj05edCKScfLy4Pe/h48/thojL74IJSV+RyWSfPX19dTX\n17ebt2ZNbGNPvEhEAhqB053nBdjlFrBRMC0e7scLl4RMV3e18OzZsykt7VhqpLExUk4lIrksPx8e\neMDuTTNpErz6Kgwf7ndUIslVUVFBRUVFu3mNjY2UlZV1uW6ybnrXAnzqTOmWhFyMJSCXO5OIiKf6\n9oUnnoCePS0ZifGLoUhOSoe776ZSFXYfm6eBvwDjwyYREU8MGQJPPQUrVqjGiEhnvLw0kwkOxzrE\nHkLHe9q0YZ1mRUQ8MWaM1Rj58Y/h1FPh7rutH4mIBHmZiOwP/ATYERiEDYnt6i03qovXvaYy7iKS\nUvvsYwlIRYUN671cF4RF2vEiERkMPADs68G2RESyzvHHW42RCy6wZOTUU/2OSCR9uO0j0gPraxFI\nQv7t/BxwL/AksDJkXiNWCC20oJmISMrV1dVRXl4OQHl5OXV1dUnbV3U1nHEGnH46PP100nYjknHc\nJiJTCRYvq8RKpdc4P7cBJwNHYPdxORpLSMYAjwPTXO5bRCRhdXV1VFdX09TUBEBTUxPV1dVJS0by\n8uDGG+1OvccdB2+qhKII4D4ROdZ5fBq4q5Pl2oBHgX2wu+7eDRS73LeISMJqa2tpbm5uN6+5uZna\n2tqk7TNQY2S77eCww+xyjUiuc5uIBGoGzonyenhn1UXAbGAT4GyX+xYRSdiGDRvimu+VPn2sxkiv\nXqoxIgLuE5FCrLVjcci80NHym0RY55/O44ERXhMRSYn8/Mh99aPN99LgwcEaI8ccA99/n/RdiqQt\nt4nIurBHgC9Dnm8ZYZ2WTl4TEUmJqqoqCgsL280rLCykqqoqJfvfbjt49FF4+WU45RRoa0vJbkXS\njtvUfxmwHTaEN+Az4GugL7A78GHYOmOdR73tRMQ3lZWVAMyaNYvFixczatQoZs6c+cP8VJgwAe65\nx4b3jhgBV1wR+7qhNxlraWlh6dKlFBUVUVBQAES+94dIOnKbiDRiicjOwFPOvDbgBWASMAOYCwQa\nHgcC5zvPF7rct4iIK5WVlZSUlFBWVkZDQ0PEm1sm25Qp1mn1/POtxsj06bGtF5poBG4uVl9f78vv\nIOKG20sz/3AeDw+bf6vzuDPwNnAdcIvzfDvntXtc7ltEJCucdx784hdWZ+Spp7peXiSbuE1EHsEu\nz2wFbBMy/0kgMBh/W+xmc6cT7BfyDMFkRUQkpwVqjEyaZDVGGhv9jkgkddwmIquBEcBwbGhuqOnO\n9DrwDXZ55m2gGmtB2ehy3yIiWaN7d6ivh7FjrcbI0qV+RySSGm4Tkc60AX8CxgP9sJvg7QTUAskd\nqC8ikoH69IHHH4feva0C6+rVfkckknzJTESiGYzdm2YfH/YtIpLWAjVGPvtMNUYkNyS/ck9HhwB3\nYi0m3X3YvyvhQ+aKi4upqanRkDkR8czo0VZj5MADobIS5syxfiQi2ciPRCSj305KNEQkFfbe22qM\nTJliNUZmzfI7IpHk8CMRERGRGEyeDB9/bMN7i4rgtNP8jkjEe0pERETS2LnnwpIlVmNkq61siK9I\nNvGjs6qIiMQoLw9mz4bDD7cWkgUL/I5IxFtKRERE0lygxsi4cZaQLFnid0Qi3lEiIiKSATbZJFhj\nZNIk1RiR7KFEREQkQ2yxRbDGyNFHq8aIZAclIiIiGWT0aHjsMXj1VZg2DVpb/Y5IxJ14Rs2cjBUh\nc2svD7YhIpKz9trLipxNnmzDeo87zu+IRBIXTyISqIaa0QXJRESyQXk5/Pa3UFUFeXmD/A5HJGHx\n1hHxMglRQiMi4sI559gImmuu2Ro42O9wRBISTyJS6fG+vbjMIyKSs/Ly4IYboLHxS15++T5WrFhJ\naanfUYnEJ55E5K5kBSEiIonp3h2uuGIJ++3Xn/PPH8mBB4JzD06RToXfxHXp0qUUFRWl/CauKvEu\nIpLh+vf5ojEyAAAgAElEQVTfCJSzaNF8ZsyA227zOyLJBKGJRmNjI2VlZdTX11Oa4mY1Dd8VEckK\njVRXf8wf/mB37RXJFGoRERHJEkcfvYpPPini9NOhpAR23NHviES6phYREZEMVldXR3l5OQDHHVfO\nbrvdTXExHHssrF3rc3AiMVAiIiKSoerq6qiurqapqQmApqYmLrroXKZMaeDzz63yapvGJ0qaUyIi\nIpKhamtraW5ubjevubmZOXMu5Z57YN48qK31JzaRWCkRERHJUBs2bIg6/6ij4IILoKYGXnghxYGJ\nxEGJiIhIhsrPjzzeIDD/iitgwgSYMgVWrkxlZCKxUyIiIpKhqqqqKCwsbDevsLCQqqoqAPLzob7e\nKrAefzxEaUAR8ZWG74pIzgmvKFlcXExNTU3KK0q6VVlpd96YNWsWixcvZtSoUcycOfOH+QBDhsCD\nD8J++8GvfgXXXutXtCKRKRERkZyTKYlGLCorKykpKaGsrIyGhoaIVTEnTLAEpKoKxo+HY47xIVCR\nKLy+NLMNcCJwHnAxsLnH23erL3At8AzwBdAKXOJrRCIiKXDOOVZbZNo0+Ogjv6MRCfIqESkBngc+\nBO7GPuwvpWMichaWAPwX6OHRvuMxCJju7HueM0+j7EUk6+XlQV2dXao59lj49lu/IxIxXiQihwKv\nABOAPGci5DHUPcAmwCjgcA/2Ha8lwKbAfsCFPuxfRMQ3/fvDww/DokVwxhkqdibpwW0iMhh4AOgF\nLAQOA/o7r0X6E18LPO48P9Tlvt2KlCiJiGS17beHP/7Rbox3++1+RyPiPhGZAfQDlgN7A08BX3ex\nznPOY5nLfYuISAJOOMFaRM46C954w+9oJNe5TUQCrRo3AKtjXGeh8zjC5b5FRCRBN9wAO+0E5eWw\napXf0Uguczt8dyR2CeZfcawTuB9kP5f7TpkZM2YwcODAdvOyafifiOSeXr3goYegtBR+9jN44gno\nphKXkqDQ2jwBa9asiWldt4lIT+fx+zjW6es8fuNy3ykze/bsiGPzRUQy2fDhcN99cOihMGsWXHyx\n3xFJpor05byxsZGysq57YbjNfz/DOn0Oj2OdnZ3HT1zuW0REXDr4YLjkEpueecbvaCQXuW0ReQVL\nQg4HHoth+TzgVOf5iy73LSIiHrj4YnjlFfjpT6Gx0VpKki28zP7SpUspKirKuDL74p7bRGQOMAU4\nGbgDeL2L5a8HdnCe3+Vy34k6FOhDsI/KOKDcef4k8J0fQYmI+KVbN5gzB8rKYPJkeOEF6Nmz6/Xc\nCE00Ak349fX1ugyeg9xemnkSK5few3k8GxgS8noPYEtgMvCS8zrAg8BrLvedqFuAucCfsI62xzk/\nP0j6laQXEUmJQYOs8+qbb9o9aURSxYs+0lOABVghsxsI9v3IAxqBZVjRsz2d+a8QvDzjh5HY790N\n6B72fJmPcYmI+GrXXWH2bLjpJrj/fr+jkVzhRSKyFtgLmAV8SfuKpaEl378BrgYmkkEjZkREcsnp\np8OJJ8L06fDuu35HI7nAbR+RgHXY3XavAfYFdgG2wFoZvgDeBP5BsIaIiIikobw8uO02+Pe/7eZ4\n8+dDv4yp+iSZyKtEJOBrrN/Ikx5vV0REUqRPH7s53i67wCmnwIMPWoIikgyqoyciIh0UF8Odd0JD\nA9x4o9/RSDZTIiIiIhEdeyycey6cdx68/LLf0Ui28vLSzCBgD2xUSj+sf0hXfuPh/kVExGNXXw2v\nv271Rd58E7bYwu+IJNt4kYgMxQqVHYslH7FeSWxDiYiISFrr0cP6iJSWwvHHWxn4fK97F2YoVYf1\nhts/p82xO+8WJbCuuj6JiGSAYcPggQfggAPg17+GK6/0O6L0oOqw3nCbiFxGMAlpAG4F3gLWAK0u\nty0iIlGEfxsvLi6mpqYmad/GJ06Eq66CCy6A8ePhyCM927TkOLeJyOHO473Y/WZERCQF/Gj2r662\nm+OddJLdHG/UKPfbrKur44orrgCgvLyciy66iMrKSvcblozhdtTMFlhfjzoPYhERkTSWl2dDegcN\nshE137m8RWhdXR3V1dU0NTUB0NTURHV1NXV1+kjJJW4TkRXO49duAxERkfQ3cKAVO3v/fTjrLHfb\nqq2tpbm5ud285uZmamtr3W1YMorbROR5rNPpjh7EIiIiGWCnneDWW+FPf7IpURs2bIhrvmQnt4lI\nLbAeqAIK3IcjIiKZYOpUuzHeL39p9UUSkR9lHHC0+ZKd3CYi7wCnANsBfwNGu45IREQywo03wrhx\nUF4Oq1fHv35VVRWFhYXt5hUWFlJVVeVRhJIJvEg75wBNwOPAu9jw3Q+Bb2NYV12jRUQyVEEBPPQQ\nlJXBySfDI49Atzi+3gZGx8yaNYvFixczatQoZs6cqVEzOcaLRGQHrLLqQOfnEmfqShtKREREMtrI\nkXDvvXD44XDNNXDhhfGtX1lZSUlJCWVlZTQ0NKgYWA5ym4iMBJ4FQtvWvia2gmZtLvctIiJp4LDD\n4KKLbNp9d9h/f78jkkziNhG5GEtC2oDfArcAS90GJSIimeXSS+HVV+1+NG++CVtu6XdEkincdlY9\nwHmcDVyAkhARkZzUvTvcfz/06mV36l2/3u+IJFN4VVn1YQ9iERGRDLb55tDQAPPnw/nn+x2NZAq3\nichK53Gd20BERCTzjR8PtbUwezbMnet3NJIJ3CYif8Uqq+7mQSwiIpIFzjzT+oqccoqVghfpjNtE\n5LfAV8D5wGbuwxERkUyXlwe33w5bb203x/tadyOTTrhNRBYBxwL9gZeBg1xHJCIiGa9vX7s53tKl\ncNpp0KaCDRKF2+G7z2KdVb8AioGngdXAR8RWWVWjzUVEstSYMXZTvOOPh732svvSZKO6ujquuOIK\nAMrLy7noootUHTYObhORfSPM25TY+owoPxYRyXJTpsC//gXnnGOl4MeP9zsib9XV1VFdXU1zczMA\nTU1NVFdXAygZiZHbROQFF+sqERERyQHXXWdDeo87DhobbZhvtqitrXWSkDwCH2vNzc3U1tYqEYmR\n20RkohdBiIhI9urZ04bylpbCCSfAU0/B3Ln11NfXA9DS0kJxcTE1NTUUFBQAUFFRQUVFhZ9hR7Rh\nAyxaBO++a9PHH18DDMduPv8ddg/YJaxYsYYbb7R78YwYYY99+/oZeXR+X1ry4qZ3IiIindpqK6iv\nh4MOgssug9/8Jj0TjYANG2Dx4mDCEZg++ADWOZWzCgth48Yh2FiNO4DewAhgJN9+W8L558P33we3\nudlmlpCEJieBx6Ii6N07tb8jpMelJSUiIiKSEgccAJdfDjNnWl+RSZP8jgg2bgy2cLz3XvuEI5BE\nFBbCuHGw554wfbo9HzcOttgC7rzzLaqrL/rhg9yWL+S6665j6tSRfPopLFkCTU3Bx6YmWLAAli2z\nhCdgyJCOCUrg+fDh1rLkteClpaBUX1pSIiIiIilTUwOvvAInnmj9RUaMSM1+N27s2MLx3ntWcC2Q\ncGy6qSUYe+wBp54KY8faz4MHW22USAIf1rNmzWLx4sWMGjWKmTNn/jB/2DCb9tyz47obNsCKFe2T\nlMDjSy/B8uXBYc95eXYjwUitKSNH2mv5CXyibwjNhGKYnwyxhj085PmyKPMTsazrRUREJFt06wb3\n3GP9RcrL7QPX6RbiiUDCEdq68e677ROOgQMtwdh9d6isDLZwdJZwdKayspKSkhLKyspoaGigtLQ0\npvXy862lY/hw2DfCGNR16+DjjzsmKf/9L/z977ByZfttbb11xyQl8Dh0qB37jjFETgOizU+GWPe0\nhOAol+5R5scj0L24e1cLiohIdtl0Uyt2tueeMGMG3HZb/NvYuNE+lENbNwIJR0uLLROacEybFkw4\nhgxJLOFItZ49YZttbIrku+/s8k54i8rbb8Njj8H//td+W0VFHZOUo4++mhUrqlmz5oMfli0sLKSq\nqiqJv1l78aQ80U5boqczA/4MREQkGUpL4aabrM/FnnvCSSdFXm7jRvtwDb+ksnBhMOEYMMASjF13\nhalTg5dUhg7NjIQjUb17w+jRNkXy9dd27MJbVObPt1FMa9YAHAEcQV7ed7S1NTFy5LFcdFF1Wo6a\nqSRyy4ebSFVHREQkh51yihU7O/102HFH6NevY6fR99+3b/4QTDjKyixxCbRwZHvCkai+fWH77W2K\nZM2a0D4pq7j++sd56KH7Yr605JVYE5G7gFYseZgPvBcyX0REJG55eXDzzdZpdeedg/P79w8mHD/7\nWTDhGDZMCYeXBg6EkhKbioo+5/rra4AfpzyOeHuj6E9AREQ807u3FTh79FEYNcouq2y5pRKOXBJv\nIpLpl1P6AlcAxwGFwPvA1cCDfgYlIpLLhg61yzOSm3KtjsifgV2AC4APgROAeqCb8ygiIiIplEuJ\nyCTgQKCCYAvI80ARcJ0zr9Wf0ERERHJThPImWeto4CugIWz+ncAwYPeURyQiIpLjcikR2R5YSMdW\nj7edx3GpDUdEREQSGTXzV2C9y/0GKquOcrmdeGwG/DfC/OaQ10VERCSFEukjsqVH+870ETgiIiLi\nUiKJyArAi9vypToRWUXkVo/CkNcjmjFjBgMHDmw3r6KigoqKCu+iExERyVD19fXU17cffLrGash3\nKZE6IgcD78a5Xjp4Cxsx0432/UR2cB7fibbi7NmzU17yVkREJFNE+nLe2NhIWVlZl+sm0lk1Uy+p\nzMMKmpWHzZ8KfAK8luqAREREcl0u1RF5GvgbcCvQH1iEtZAchBU2y9QES0REJGPlUiICcAwwC/gN\n1jdkIXA8MNfPoERERHJVriUi3wAznElERER8lmuJiIiIiCdCR4q0tLRQXFxMTU0NBQUFgEZXxiqR\ngmYiIiI5T4mGN+JJRAJVUJcnIxARERHJPfEkIkuSFYSIiIjkply66Z2IiIikGSUiIiIi4hslIiIi\nIuIbJSIiIiLiGyUiIiIi4hslIiIiIuIbJSIiIiLiGyUiIiIi4hslIiIiIuIbJSIiIiLiGyUiIiIi\n4hslIiIiIuIbJSIiIiLiGyUiIiIi4hslIiIiIuIbJSIiIiLiGyUiIiIi4hslIiIiIuIbJSIiIiLi\nGyUiIiIi4hslIiIiIuIbJSIiIiLiGyUiIiIi4hslIiIiIuIbJSIiIiLiGyUiIiIi4hslIiIiIuIb\nJSIiIiLiGyUiIiIi4hslIiIiIuIbJSIiIiLiGyUiIiIi4pt8vwMQERGR1Kuvr6e+vh6AlpYWiouL\nqampoaCgAICKigoqKiqSHocSERERkRyUqkSjK7o0IyIiIr7JpUSkL3At8AzwBdAKXOJrRCIiIjku\nlxKRQcB0oAcwz5nX5vVOAtfbRCR36H0vkrhcSkSWAJsC+wEXJmsn+ockknv0vhdJXC4lIqHy/A5A\nREREcjcRkTSRid8k/Y45Ffv3eh9ebM/NNhJZ1+/znO0y8fj6HXMmvvdjoUREfOX3GzsRfsecif+M\nlIhIuEw8vn7HnInv/Vhkah2RicA/Y1y2BHjLzc4WLlwY87Jr1qyhsbHRze5ySiYeL79jTsX+vd6H\nF9tzs41E1o1nHb//JjJRJh4zv2POtPd+rJ+dmdpXYggwKcZl5wGrw+YNAj4HLgV+08m6Q4H5wJZx\nxiciIiKwEDgAWBltgUxtEfkUqEvBflYCu2IJiYiIiMRnJZ0kIZC5iUgqdXkQRUREJDG5logcCvQB\n+jk/jwPKnedPAt/5EZSIiIjkhiastHsrsDHs+XAf4xIRERERERERERERERERERGR7NMTuBNYBqwF\nXgH28DUiEUmVM4BGYB1wic+xiPhOJd79kQ8sBvYEBgC3Ao8Bvf0MSkRSYgXwa+ARoM3nWEREfrAK\n2MHvIEQkZW5HLSIiahFJE9thrSGL/A5EREQklZSI+G8T4F7gcuBbn2MRERFJKSUiqXEC8JUzPRky\nvwfQALwDXOVDXCKSXNHe+yIineoLXAs8A3yBVV+Ndi23LzAb+AQrEf8mMCWGfXQDHsDuDqyEUCQ9\npOK9H3A71mlVJKfpAzCyQcB0rMVinjMvWu/2PwMnAZcChwDzgXqgoot9/AEYDByP/bMTEf+l4r3f\nHSjARs/1cJ7rf7GIRLUZlihE+uYyyXkt/FvQX4HlRP/nUuSs9w3BZtuvgL08iFdEvJGM9z5Y4tIa\nNp3kMlYRyWKDiP7P6HasIFn4P51AK4eKlIlkLr33RVJAzYHubA8spOOllbedx3GpDUdEUkTvfRGP\nKBFxZzOgOcL85pDXRST76L0v4hElIiIiIuIbJSLurCLyN5/CkNdFJPvovS/iESUi7rwFjKHjcQzc\nM+ad1IYjIimi976IR5SIuDMPK2pUHjZ/Klbk6LVUByQiKaH3vohH8v0OII0dCvQB+jk/jyP4T+dJ\nrJLi08DfgFuB/thN6yqAg7DSzrrFt0jm0XtfRNJCE8FiQxvDng8PWa4PVuZ5BdCClXmenNJIRcRL\neu+LiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI\nSEqMAB7yO4h01s3vAERERLLUj4HngUK/A0ln+X4HICIikmXKgMuBZcB3PsciIik0FWh1puH+hiKS\n9noCH2Dvl/IEtzEVvee68hzwzziWvwk7nvckJZo0pEsz2WsiwX8QsUwn+xJlcrT5HUCcJpK750r8\ncw7wI+At3PdhyLT3XDq7EvgeOAEY73MsKaFEJHe0xTBlumz4HSA3zpX4ayBQg/0tXeJzLNLeCuB2\nIA+4yudYUkJ9RHLDLc7UmU9SEUiS3e1MmSxXzpX462xgAPBf4FGfY5GOrgfOBPYF9gFe8Dec5FIi\nkhs+B97zOwiJic6VJFsv4BfO8zl+BiJRLQFeBvYCZpDliYguzYiI5JbDgc2xyzJKRNJX4Nwchp2v\nrKVERDrTE/vm9CzwBbAO+BR4EutIldfJundhHSubutjHVDrvdX9pyOtgzckXA28Ca2jfebOrbYXa\nG6jDmqa/Ab4GFgI3AqM6WS+eeFIl0ZgSPQYBmwJXA+9jQxQ/B/5GcATGVDo/H3fhzd9IgFfntACo\nBhqBr5zpNeCXQPcuYg3YC7gDG5XyJfbeWQ48jr2nBjjL9cDeU63AUzFsd/uQWGtijCXcZOfxbWBx\nF8t2dY5jsT1wEfBX7Bh8j52bj7C/gd2jrOflsRmG/R6NwFqC/8veBu7H3h/9wtbZDXgljunwGGKM\nx5+dxx7AMR5vWyQlJhJ8U/46gfVHYP/EQ0drbAz7+QXsH1UkdznLdPWPbmrItjtLRDYC22IfWuEx\nnRTjtsCape+OsI3Q3+17YFqU9eOJJ1YTcXeu4o3J7TEAGIt1qou2/h3YP/fOzsddePM34uU53QL4\nd9h2Qrf7KJ0n4L2xD7bOYmmlfQfRa5x567EPzM5c7yy7DhjaxbLRBD7c/9DFcrGc46l0fm4m0v73\njnY8rowSgxfHZgKWfHQVw2FdbD9RzxHf8N1Qi7DY6j2LJg2pj4hE0hf4BzDS+Xke9k1zBfbNMtCJ\nam/sG94+BL9NJkse8DD2D+ZG4DFgNTb8cGkc25kLHIHF+zDQgH0QdgNKseux22H/ZD8D/pJAPMvi\niMdLscbk9hgMwL7dDnF+fgBLBD4HRgPnApXADl7+cp3w8pzOc5b9Hfa33ez8fDEwxtnPdOCPEdbv\nhiUqBzo/f4h1PH4D+Bb7IN0TOI72I5/uwFpgumMJ49VR4usBnOg8fwZYGWW5zmyHJVsAr3eynFfn\nOB9rnXoC+zB+H2sh2gJrwfg/oAhrwfgQS05DuT02vZzY+zn7vRVr4f3cWWcEsAfW4pCOo9Few/4P\n7+N3ICKJmEgw078ZGIe98SNN4dcfrwtZ97Io2783ZJnTI7x+F962iAS+FR0YYZlYt3UKwW/HR0TZ\nRgH2j6oV+zYSfvkynnhiNZHEz1W8MXlxDGpD9ndBhPXzgadDlklmi4jX57SFyP/0N8U+3FqxFpNI\nzg7ZzkPYB10keXRszXjOWe/9KOsAHB2y/aM7Wa4zJxE8lrt2spxX53gzoH8n++mBJTytWEtepO4C\nz5H4sdk/ZP6kTtbvTsdLM155FUsoEnEBweO7tWcRiaTIRDo2iUabQpuJe2Hfolux66fRmqH7Yf1G\nWoF3Irx+F94nIre72FYedk26Fbihi+2MCdnOAS7iidVEEjtX8cbkxTHohbUStGJ9UKLZEksOkpmI\nJOOcXtfJNq50ltlAxw/Xblj/h1as9WmTLuIJd2JIDHtGWeYx5/XPiL2vSrjQD7aRUZbx8hzHYseQ\nbZRGeN3NsflpyLb7JhhfIoZjCVagcu1GrO/SX7FWmFidGrL+Lt6GmD7UWTV3xFogq4xgR7q7iN5c\n+RXWJA72T35IlOW8dJ+LdccC22C/z4NdLLsQ+0echzXbJiOezrgpZtZZTF4cgzKsGBZ0XrPlE6yJ\nPJm8PqdtdH78FjiPeXT8MCkh2IfhduxSTDwewjoWQ+S+LIOBQ53nc7APpkSEtqg1R1kmmee4F/Yh\nPRZr4RtH8HMoD9gpwjpujs2KkG1XxhmrG8uAg7HLWN2w5GhbZ96SOLYTOEd5ZPHIGSUiueFS7I0Q\nbfpNyLLbO49tdN2cGPr69lGX8kYbVoo6UYFvE3nAv+i65SFwt8xoCZbbeKK5lNjPVbwxeXEMAn0C\n2oD5XfwunfVB8ILX5xQ6b/5fHfI8vBl/Z+exjcRqPrRgnVzBRrX0Dnv9Z9j5b8P6ayVqQMjzr6Is\n4/U57gNcCPwH6y+yBGtFfQtrdW0MWXazCOu7OTYvEWxxm439z6rBktFol87SyZchzwdEXSrDKRGR\ncKG3q/6si2UDr+cRffSMl1Z3vUhUW4Q8j7WEehsd/+l5FU+ydBaTF8cg9Dx/3kUsXb3uVjLOaUsn\nr7WGPA+/NDIo5HkinUgheFmtHx2HxwZaAuYD7ya4fQi2LED0vhtenuMRWLIxC0tw8ui8lS/auUn0\n2GzA+g4tdH7eFbvE9jI2kuYvQAXp+1kYmnysibpUhtOoGckkbnq1h35wHEHszaOdvfnTsZd9ZzF5\nfQz8/v2TcU799B/s8k8Z9uF6rzN/d+zyJ7hrDQHr1xVQSNfHwu05vhdLRlqBO7ERLAudONY7y+QR\nvJwSrU+am2OzEEuCjnCmfbHRfwXAIc50LtaZ9Yso2/BL4IthG+kXm2eUiEi4VSHPh2CdAaMJbeIO\nv94c+PbY1TeNPjHG5VbgTdyGfRPKxTLqXhyD0PM8BOuAF83gLrbl9m8knc5p6IfEMGwoaiLuwD5s\n98U+wJcQ/Mb/Le7rSawIeb45kTsKe3WOt8MKu4HdvO3iKMsVRpkfzs2xacWGVgfuqzME61fyC2eb\nZVhdlXQrHBba0vapb1EkWbo2R4l/AiNg8ohe8TBgN+exjY4jZwLXnwfSudGxh+ZKoPd/HsF/jrnG\ni2Pwdsg2Ohv+SQyvu/0bSadzGujnkIe7mg/3Yx+qedhooQLgeOe1PxO9X0esAn068rAOtpF4dY7H\nOY9tWEtINLGOBvHy2HyKtdDsQfDcHYZ1pk0ngXO0giy+2aUSEQm3gGBz7clE/xvpR7BU9Ht07E+y\nOGS54ijb6Akcm1iYcXsT+Nh5/nPS7x9OKnhxDBYQ7Ifys06W2xI4qIttuf0bSadz+p+QWE4l8Za+\n0NFoJ2PFz/pjH+Z/chOg40OC79Xdoizj1TkObXHv7HhEqkMUSTKOzQaCnYvz6TopTrXAOXrR1yiS\nTImIhFuHNYGCfaOJVLciD7iJYA/3myIs83zIslVRtvE7Ei9THa82rMMcWP2Ee+n8g6sAqyCbTQmL\nF8dgHfZNEuzbWnWE9fKxzoVdjUpw+zeSTue0jWANkq2Ae4j++3ej87/7wPuvCCtxDpa0PR958bgF\ntjM+yutenePA5ak8ot9/6QzgqE62ES7eY7M3NsQ7mp7YpR6w+9+kUz+MwdjvCVbUTSTjTCQ4bPHX\nca7bF7suHFj/YazZshT7dvpsyGsvEb2D2cshy93pxFQKTAnZRmCZWO4105WpXWwL7BtVIKZFwPnY\nP6IS7J/WNKzTW6CoW3hhqnjiidVEEj9XEH9Mbo9Bf6xOQmAb92H1EUqxpvLXnfmv0fX58OJvJFXn\ndGLIcpEuv+QRrBLaig0F/j/sstHOWJ+Ey7AP6EgJfqh3Q7bTCszsYvl4HEPw94jWEuXVOX4rbBuT\nnG0chZXib8VaJOL5+4/n2FzqxPYscB7WglOKnZNpIfG3YtVk08npWFzf076viEjGmIi7D7ci7JJL\nZ3UZXqDzpszRBG+wFT5txL5Bnhwyz6tEJNq2wEZazMaaZLuqO/ElHb89xxNPrCbi7lxdSnwxuT0G\n0PGGaOHnNpab3oE3fyOpOqcTQ7YTKREBG34amhhF+726Os/nhiy/HrsM4pUeBMvVd1aXJp5zHO3c\n7IR1gI92LP6NdRyN5+8/nmNzSSf7Dv1dGrDWkXTyEhbfn7taUCRd7Uvs//Si6YH1Kg/cJKoF+8f0\nJFY6ORbDsPunNGG3Ef/UWf8Q5/WuPqwuCXm9K7F88AWMwe7WuQD4H9YcvRr7Bnc3cAKRr2vHE0+s\n3J6rRGNK9BgEBG4R/wHWifAz4O9YawbE1kIF7v9G3P4+sR6/0PMULREJmOjs879Yk/932CiPR4it\nD8kWBD8oo92kz42LnG0v6mK5rs5xLOdma+zmf03Y/5AvgFeAcwh++Mfz9x/PsemD3XvmZqxlrQkr\nqvYN9rvfT/DvLJ2MIHhMJvgbiohI5ppK7ImhtHcAwQ/b8AJeXhhA8H4y6TZktSvJPjbp4Ebs93vW\n70BERDLZVJSIJOo+7NgFblefDOc7+0jGrQqSKRXHxk9bYi1HG4neoVhERGIwFSUiiRiBXVZqJTgy\nJBl6YJdcNmJDYTPBCFJzbPx0E3ZOOrvhoIiIxGAqSkRitSXwI2xURyN23L4hdcPb05mOjYiIJGQq\nXf72EZMAAABnSURBVI9iEvMcHUdyRKqtkoueQ8cmq+leMyKSLG1hjxJd4C6032J1RmYTvLFbrtOx\nERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERER8dn/A8VI\nNygXy0FjAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from scipy.optimize import curve_fit\n", + "\n", + "# Define model function to be used to fit to the data above:\n", + "def tophat_time(x, *p):\n", + " mean, width = p\n", + " if x>(mean+width): y=0\n", + " if x<(mean-width): y=0\n", + " if x==(mean+width) | x==(mean-width): y=5\n", + " return y\n", + "\n", + "def tophat_freq(f, *pars):\n", + " A,T,t0 = pars\n", + " #return A*T*sinc(pi*f*T)*exp(-i*2*pi*f*t0)\n", + " return A*T*sinc(pi*f*T)*cos(2*pi*f*t0)\n", + "\n", + "x=np.logspace(fqd[0],fqd[-1],200)\n", + "\n", + "# p0 is the initial guess for the fitting coefficients\n", + "p0 = [3, 3, 3]\n", + "coeff, var_matrix = curve_fit(tophat_freq, fqd, lag, p0)\n", + "fit = tophat_freq(fqd, *coeff)\n", + "\n", + "\n", + "mpl.rcParams['xtick.labelsize']=12\n", + "mpl.rcParams['ytick.labelsize']=12\n", + "xscale('log'); xlim(.009,.6)\n", + "xlabel(\"Fourier Frequency (days$^{-1}$)\",fontsize=20)\n", + "ylabel(\"Time Lag (days)\",fontsize=20)\n", + "\n", + "\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=5,color=\"black\")\n", + "plot(fqd,fit)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAGJCAYAAACZwnkIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xm8lHP/x/HXadWe9j2FtCBOKTe3CnGXLdluRyHiVoSy\npBApRJFKZStlPbdst72QpezuslQkbkJZSqlI+zm/Pz7X/GbONDNn5lzXzDXL+/l4XI9rzrV9PzMt\n8znfFUREREREREREREREREREREREREREREREREREREREREREREREREREREREREREMtHRwEPACmAz\nsAr4D5Af5/0NgNnAWuf+94CjPI9SREREJA5zgDeBwUA34FQsOdkOHFnKvZWBJcD3QAGWJD3r3Nst\nSfGKiIiIRNUgwrFqwM/Aa6XcezFQBHQNOVYeWAp84El0IiIiIh54A/iylGteA76IcHwElvA09joo\nERERSVw5vwPwWS2sj82yUq7bH/g8wvElzr6Dl0GJiIhI2eR6YjMNqALcUsp1dYD1EY4HjtX1MigR\nEREpmwp+B+CjscBZwBDgE59jEREREQ/kamJzI3AdcC0wPY7r12G1NuHqhJyPpjHqgyMiIlIWPztb\n3HIxsbkxZLstznuWAAdGOH6As18a5b7GTZo0+emnn35KLEIREREBWA0cQgLJTV7yYklLo4CbsGao\nGxO4bxBWs3Mo8JFzrALwKbAJOCzKffnAokcffZR27dqVKeBsMXToUCZNmuR3GGlBn4XR5wC9evVi\n7dq11K9fn7lz5/odju/0d8LoczBffvkl/fv3B+gELI73vlyqsbkSS2rmAi9jSUqowHw0M4FzgNbA\nj86xB4FLgCexId5rsblt9gV6llZwu3btyM+Pd4Lj7FS7du2c/wwC9FkYfQ5QqVKl/9/n+mcB+jsR\noM/BnVxKbE4AioFezhaqGJtwD2ykWDlK1mZtx2YbHg/cDVTFOhz3BhYmL2QRERFJRC4lNqUtmxBw\nnrOFWwMM8CwaERER8Vyuz2MjIiIiWUSJjaREQUGB3yGkDX0WRp+DhNPfCaPPwZ1cGxWVavnAokWL\nFqkjmIjsplmzZqxevZqmTZuyatUqv8MRSSuLFy+mU6dOkOCoKNXYiIiISNZQYiMiIiJZQ4mNiIiI\nZA0lNiIiIpI1lNiIiIhI1lBiIyIiIllDiY2IiIhkDSU2IiIikjWU2IiIiEjWUGIjIiIiWUOJjYiI\niGQNJTYiIiKSNZTYiIiISNZQYiMiIiJZo4JHz2kDdAUaAvWBWsAGYC3wC/Ah8I1HZYmIiIhEVNbE\npiJwAnAG0A1oBOTFuL4YS3DeBuYALwI7y1i2iIiISESJJja1gMuBwVjtTLzygMbAmc72KzAdmAJs\nTDAGERERkYjiTWwqAcOAa4DaIce/BD7Ampo+A9YB64FNWBJUB6gHHAR0wZqr2mJJ0U3OM28HJgI7\n3L2V9LV5s98RiIiI5IZ4E5ulwD7O6++Ax4FHga9i3LPO2b4G3gfucY63BfoDZwF7AeOAgVg/nax0\n//1wxBF+RyEiIpL94h0VtQ+wBDgN2BsYReykJpblwPXOc05znrtPzDsy3OOPw5IlfkchIiKS/eJN\nbM4AOgLPeFh2sfO8g5znZ60WLWDwYCgq8jsSERGR7BZvYvNUEmMoTvLzfTdiBLz7Ljz0kN+RiIiI\nZDdN0JcChxwC/frB1VfDunV+RyMiIpK9lNikyB13wM6dMHKk35GIiIhkLy8Tm5rY6KYHsAn45gMt\nw65pCrQHWntYbkZo1AhuuQUeeADef9/vaERERLKTV4nNYOAHLKkZCBwH9ACqhV13JDZ0fBk2x01O\nGTQIOnWyjsQ7Ne+yiIiI57xIbK4HpmE1NtuAxTGuLcRmHa4MnOpB2RmlfHm49174/HOYOtXvaERE\nRLKP28SmIzaDMFjS0hjoHOP6XQSHjPd0WXZG6tzZamxGjYLVq/2ORkREJLu4TWwuxdaB+gg4G1vR\nuzTvOfsDXZadsW65BapWhSuu8DsSERGR7OI2senh7KcC8U4/952zb+Ky7IxVuzbceSfMmQOvvup3\nNCIiItnDbWLTBJtgb1kC9/zl7PdwWXZG69cPevSASy6BrVv9jkZERCQ7uE1sAmN7yidwT11nv9Fl\n2RktLw+mT4fvv4fx4/2ORkREJDu4TWxWYX1s2iZwT2Cd6/+5LDvjtWsHV10Ft94K33zjdzQiIiKZ\nz21i86azPzvO62sDFzmv57ssOytcf71N3jdkCBQX+x2NiIhIZnOb2NyL9bHpiU3SF0s94DmgIbAd\nuM9l2VmhalW4+26YNw+eftrvaERERDKb28RmCTABa46aCjwLnOmcywMOA/oB04FvCDZDjQZ+dFl2\n1jjxRDjpJBg6FP74w+9oREREMpcXMw+PxJKaPKAP8HjIufuBR4BB2MzEAHcCt3lQblaZMgXWr4fR\no/2OREREJHN5kdgUA5cBxwJvEH0+m3eBXsDVHpSZdVq2hBtugMmTbckFERERSVwFD5/1urPVBA4G\nGmDDwNcCnwG/eVhWVrriCnj4YVtyYeFCKOfl2usiIiI5wMvEJmAT8HYSnpv1KlWyuW2OPBJmz4bz\nz/c7IhERkczitk5gT0+ikP/XowecfTYMHw7r1vkdjYiISGZxm9j8gg3hPoMcXyLBSxMmwK5dMGKE\n35GIiIhkFreJTUXgRODfwK/AbOAYbISUlFHDhjYb8YwZ8N57pV8vIiIixm1icw8QaDCpAZwDzAVW\nA3cBnV0+P2f961/QubN1JN65s/TrRURExH1icwnQGKu1KcRW7s4DGgGXAx8CXwE3AHu7LCunlC8P\n994LS5bYzMQiIiJSOi8GFO8EXsJmGG4I9AdeAXZhSc6+2EzDK4APgEuB+h6Um/U6dYKLL7b5bVav\n9jsaERGR9Of1TCmbsZmHj8dqcoYA7zvn8oAuwGSsqeoVj8uOR3VgPPAqNr9OEXBjnPcOcK6PtDXw\nOtCAm2+GatVg2LBklSAiIpI9kjkF3G/YGlGHA62B64EvnHMVsJmKU60ecCHW6flZ51iia2oPAA4N\n29Z7FN9uateGO++EJ5+0hTJFREQkumRM0BfJSuAZoArQBKidonIjxRGYe6cucEEZnrEUWOxVQPE4\n6yyYOROGDLE+N3toYL2IiEhEyZ60vwlwJbAIWAZcRzCp2ZbksktT1iHpKR/KnpdnMxJ//z3cfnuq\nSxcREckcyUhsagEDsQUxvwcmYGtH5WHNPvOB87GOxpnoRazD9DrgaaBDKgpt2xauvhrGjYNvvklF\niSIiIpnHq8SmMnAq1tz0C/AA0ANbBBPgE+AqoBk2gd9s4A+Pyk6Vn4GbsaStBzAKOAQb6XVAKgK4\n7jpo3NiapIoT7RkkIiKSA9z2sekJnAWcgq3qHeo7bITUY8Byl+Wkg3nOFvAONsx9CTAG6JvsAKpW\ntTltTjwRnnoKTj892SWKiIhkFreJzathP68D5mDJTC4sBvA98C42MiolTjgB+vSBoUOhVy+oUSNV\nJYuIiKQ/L0ZFbQGex5KZuVj/k1wTs2Fo6NCh1K5dciBYQUEBBQUFZSps8mRo3x5uvBEmTizTI0RE\nRNJGYWEhhYWFJY5t2LChTM9ym9gMwPrV/OnyOZmqNXAEJZuodjNp0iTy8/M9K7RlS5uN+Lrr4Nxz\noWNHzx4tIiKScpF+2V+8eDGdOnVK+FluOw8/TOYlNb2B07D1rcBGNZ3mbFWcYzOBHUDzkPteA0YC\nJwFHYWthLcRqqEYlPeoww4bBfvvZIplFRakuXUREJD2laoK+dDIdaOm8LgZOd7ZioBXwA5bwlaPk\nnDVLsPWwmmMJ0BrgdWAskPIB2JUq2dw2PXrArFkwcGCqIxAREUk/uZjYtIrjmvOcLdQVSYjFle7d\n4ZxzYPhw61Bcr57fEYmIiPgr3qaoImy17l0xjpdlE5cmTLCmqBEj/I5ERETEf4n0sckj8nICeS42\ncalBA5uNeOZMePddv6MRERHxV7xNUWOcffiw5jHhFyZAc+d65MIL4cEHrSPx4sVQIRcbGEVERIg/\nsRmd4HFJofLl4Z57oEsXmDIFrki73kAiIiKpkezVvSVFOnWCiy+2SftWrfI7GhEREX+4TWy6A92A\nqgncs0fIfeKhm2+GatVsjhsREZFc5DaxedPZ9krgnmYh94mHatWyJRaeegrmzvU7GhERkdRTU1SW\nKSiAo46CIUNgyxa/oxEREUktPxKbQJmaxyYJ8vJg2jT44Qe4/Xa/oxEREUktPxKbwHIGG30oOye0\nbWuzEY8bB19/7Xc0IiIiqZPojCctQl6HTrDXhNIXw6wM7IOtrQTwRYJlSwKuvRYee8yapObOtZoc\nERGRbJdoYrOS3SfWywPmJfCMwFfswwmWLQmoWhXuvhtOPBGefBLOOMPviERERJKvLE1RkZZESGQZ\nha3AeGBmmaOWuJxwApx8MgwdCps2+R2NiIhI8iVaY3O+sy/GkpQHnZ+vB36KcV8xltD8BHxC6c1W\n4pHJk6FdO5u47667/I5GREQkuRJNbGaH/RxIbJ4DlrmORjzXooUlNSNHwrnnwkEH+R2RiIhI8rgd\nFXUUcCTwnQexSJIMG2YjpS6+GIqK/I5GREQkedwmNm8BbwN/uQ9FkqViRVsk8/33bRVwERGRbKWZ\nh3NEt27WFHXNNfDbb35HIyIikhyJ9rGJpRxwENARqAtUoeTIqUjGeFi+lGL8eHj+eUtuZmpMmoiI\nZCGvEpsBwI3YBH7xTgVXjBKblGrQwGYjHjQIzj8fDj/c74hERES85UVT1K3Y6KiWxJ/UkOC14pEL\nL4QuXSy52bHD72hERES85Tax6QqMcF6/hjVF5Ts/FwPlgfpAb2xIOMA72BIM6t/jg3LlrCPxF1/A\nlCl+RyMiIuItt8nFYGf/PXAC8DkQWg9QDKzDllzoC1wC/B2YC1RyWbaUUX4+XHKJzW+zapXf0YiI\niHjHbWIT6KUxhWBCE6uJ6R7gaeBALMkRn4wdCzVq2HILIiIi2cJtYtMYq5VZGnIsdAq4ihHuedTZ\na1lGH9WqBRMnwtNPwyuv+B2NiIiIN9wmNoHEZU3IsdB1oOpHuOdHZ7+Py7LFpTPPhKOPhiFDYMsW\nv6MRERFxz21isxZreqoZcuxXgrU27SLc08jZ13BZtriUlwfTplk/m9tu8zsaERER99wmNoGFL9uG\nHNvmHM8DzoxwTz9n/7PLssUD++0Hw4dbYrNihd/RiIiIuOM2sVno7I8KO/5vZ38eMBboAHQBpgEF\nzjn17EgT114LTZvaSKniYr+jERERKTu3ic1/nP0JlGyOmgKsdJ5/HTYM/H2Cw8N/B8a5LFs8UqUK\nTJ0Kr78Oc+b4HY2IiEjZuU1slmK1NX0pOQJqs3P8XefnPILDwAP3/IikjeOOg759Ydgw2LTJ72hE\nRETKxovZf98CXscm4gu1EjgCaA+cjjVBdcLmsPnMg3LFY5MnW1Jzww1+RyIiIlI2qVjWYDk2Kd8T\nwCcpKE/KqHlzm4347rvh00/9jkZERCRxWq9JShg6FNq1g8GDoaio9OtFRETSiRIbKaFiRVsk84MP\nYOZMv6MRERFJTIU4rzsXWzrBaw8n4Zni0hFHwIABcM01cPLJUD/S/NEiIiJpKN7EZhaW2MRa4DJR\nxSixSVvjx8Nzz1ly8+CDfkcjIiISn0SaorxMapLxPPFQ/fo2G/GsWfDOO35HIyIiEp94a2xaJzUK\nSUsXXGC1NYMHw+LF1v9GREQkncWb2KxMZhCSnsqVs47EnTvbHDdXXeV3RCIiIrFpVJTEdPDBMGQI\njB4NP2quaBERSXNKbKRUY8dCzZo2x42IiEg68zKxqQkMBB4AXgTmAy3DrmmKLbGgPjsZpGZNmDgR\nnnkGXn7Z72hERESi8yqxGQz8gCU1A4HjgB5AtbDrjsQWwVwG1PGobEmBf/4TevaESy+FLVv8jkZE\nRCQyLxKb64FpWI3NNmBxjGsLgV+BysCpHpQtKZKXB9OmwapVMG6c39GIiIhE5jax6Qjc5LwuBBoD\nnWNcvwt4xnnd02XZkmJt2tiEfbffDitW+B2NiIjI7twmNpdiE+19BJwNbIjjnvec/YEuyxYfjBwJ\nzZrBJZdAcTIW2RAREXHBbWLTw9lPBeJdC/o7Z9/EZdnigypVYOpUeP11eOIJv6MREREpyW1i0wRb\n82lZAvf85ez3cFm2+KR3bzjlFBg2DDZu9DsaERGRILeJzU5nXz6Be+o6ez++EqsD44FXgbVYLdON\nCdzfAJjt3LsZa1Y7ytsQM8OkSfDHH3DDDX5HIiIiEuQ2sVmF9bFpm8A9Rzj7/7ksuyzqARcCFYFn\nnWPx9hSpjM3NcyRwGXASNsJrLtDN2zDTX/PmNhvx1KnwySd+RyMiImLcJjZvOvuz47y+NnCR83q+\ny7LLYiWwJ5acjEzw3oFAB+AMbATYfOA0YAVWC5RzLr8c2re3RTKL4u1hJSIikkRuE5t7sRqPntgk\nfbHUA54DGgLbgftclu1WXoLX9wWWAx+GHNsFPAp0wYa655SKFW2RzA8/hBkz/I5GRETEfWKzBJiA\nJQlTseadM51zecBhQD9gOvANwWao0UCmLam4P/B5hONLnH2HFMaSNv7+dzjvPBgxAtas8TsaERHJ\ndV7MPDwSS2rygD7A4yHn7gceAQZhMxMD3Anc5kG5qVYHWB/heOBY3QjncsLtt9v+mmv8jUNERMSL\nxKYY60x7LPAG0eezeRfoBVztQZmSRurXt+Rm9mxYuNDvaEREJJdV8PBZrztbTeBgbGh0eWxo9GfA\nbx6W5Yd1RF64s07I+Zw1cCA8+KB1JP7kE+t/IyIikmpuE5tZWI3NK8CTzrFNwNsun5uOlhB5GYgD\nnP3SaDcOHTqU2rVrlzhWUFBAQUGBd9H5rFw560jcqZPNcXO16uVERCROhYWFFBYWlji2YUM8qzTt\nLtGRQeGKsMTmeGw+l0xSD1iDdWQeE8f1g7BO0Idia2OBJYafYsncYRHuyQcWLVq0iPz8fLfxZoSh\nQ+GBB2D5cpvrRkSia9asGatXr6Zp06asWrXK73BE0srixYvp1KkTQCdgcbz3ue1jsxZLjn5x+ZxU\n6o3NP3Oi83MH5+fTgCrOsZnADiD0q/lBbOmIJ4ECbIj7HGBfQN1mHWPGQK1aNseNiIhIqrlNbL5w\n9i3dBpJC07GEZCZW23S68/MTQH3nmnLOFlqjtR04GpuU8G7geWxOnt6Ausw6ataEu+6CZ5+Fl17y\nOxoREck1bhObR5z9AJfPSaVWBBOX8mGvf3CuOS/s54A12HutB1QFDsdGgkmIM86AY46BSy+Fv/4q\n/XoRERGvuE1sZmNLC/QBbsJ9nx3JAnl5tobU6tUwbpzf0YiISC5xOyrq78AdWBPOKGwdpSewGXp/\nx5YciGWBy/IlTbVpY7MRjxsH/fvDfvv5HZGIiOQCt4nNW1g/lUBNzX7ADc7rWKtm5znny7ssX9LY\niBHw6KNwySXw2mtWkyMiIpJMXsw8HO3rKi/GFus+yRJVqliT1Pz58O9/+x2NiIjkArc1Nke5uDdW\njY5kid694dRT4cor4YQToEYNvyMSEZFs5kVTlEhMEydaH5tbb1VnYhERSS4vmqJEYmrRwlb+njgR\nvvnG72hERCSbKbGRlBg+HBo2tCYpERGRZFFiIylRtSrccQc8/zy8+qrf0YiISLaKN7F5EVvQMRk6\nA5p8Pwecfjp0724LZe7Y4Xc0IiKSjeJNbI4DPgaexZYR8EI3bL2lj7D1liTL5eXB5Mnw1VcwbZrf\n0YiISDaKN7EZgy0C2QebLfh/2BIKByXwjIrAIcCtwEpsMckTgK3OsyQHdOwI//oXjB4Na9f6HY2I\niGSbeId7j8bWhRoN9McWkhwFXA9sAT7BllH4DVgP/AHUBOpgC0YeDHQEKhOcmG8XtojmaHZfbFKy\n2NixNmHfddfB/ff7HY2IiGSTROaxWYmtbD0GuAw4G9iT4CrX8TZRrcMSminOMyXH1KsHY8bA5ZfD\noEGQn6zeWyIiknPKMirqW2Ao0Bg4HpiA9ZPZGeX6ncAHwHisr04T4AqU1OS0wYOhfXu47DIo1hzU\nIiLiETczD28HXnE2sAUt62ErfdcCNgBrsRqa0lb5lhxToYJ1JO7Z05qlCgr8jkhERLKBl/PY7AJ+\nBZYC7wLLgDUoqZEojj4a+vaFq6+GzZv9jkZERLKBJugTX915J/z2G9x2m9+RiIhINlBiI75q1Qqu\nugomTIDvvvM7GhERyXRKbMR3I0faSKmrrvI7EhERyXRKbMR31arB+PHwzDPwxht+RyMiIplMiY2k\nhYICOPxwm9tmZ7SJA0REREqhxEbSQl4eTJkCy5bBvff6HY2IiGQqJTaSNvLzYeBAuOEGWLfO72hE\nRCQTKbGRtHLLLVBUBKNG+R2JiIhkIiU2klYaNIAbb4T77oPPPvM7GhERyTRKbCTtDBkCbdrA0KFa\nR0pERBKjxEbSTsWKMGkSvPUWPP2039GIiEgm8TKxORJ4BPga+BNbI6p92DXdgIuB/h6WK1noH/+A\nE0+0Sfu2bPE7GhERyRReJDZVgSeA+UA/YG/nWF6Ea4uBqcBDwL4elC1Z7M474aefbLkFERGReHiR\n2DwOnO68/hiY6LyO1DtiIfAFlvSc4kHZksX23ReGDbMFMn/4we9oREQkE7hNbPoAJzmvLwa6AqWt\n+PMfZ9/dZdmSA66/HmrVguHD/Y5EREQygdvEZoCz/zcQ73yxHzv7di7LlhxQo4bV2DzxBCxY4Hc0\nIiKS7twmNl2dfWEC9/zs7Bu4LFtyxNlnQ5cucNllsGuX39GIiEg6c5vY1MP60iTSAyLw1aSh5hKX\ncuVsHanPPoMZM/yORkRE0pnb5OIPZ189gXuaOXutBiRx69oVzj0XrrsOfv/d72hERCRduU1svsFG\nOHVK4J7ezn6Zy7Ilx4wbB9u2wejRfkciIiLpym1i84qzvwgoH8f1HYBzndcvuSxbckzjxrY45rRp\nsExpsYiIROA2sZmGzTLcDpgNVI5x7bHAq841vwEzXZYtOejyy6FVK60jJSIikblNbNYCFziv+wHf\nAvc4P+cBlwMPYJPyzQUaA0XA2cBml2VLDqpcGe66C15/HZ57zu9oREQk3XgxMmkONvPwJixxuSjk\n3IXAQKCt8/MmbMbheR6UKznq+OOhVy+44grYutXvaEREJJ14NeT6aWyNqBuARQSHdAcsBW4B9gGe\n96hMyVF5eVZr8+OPMHFi6deLiEju8HIumXXAzcAhwB5AQ6AJ1qfmQGAU1rdGxLW2bW3CvltvhdWr\n/Y5GRETSRbImyduF9b/5BdiRpDIkx91wA1SrBtdc43ckIiKSLjT7r2SsWrWsxuaxx+C99/yORkRE\n0oHbxKYS0N7Z9ohwvgowEVgFbMFGR13qskyR/3feedCpkzVLFRX5HY2IiPjNbWJzMtYx+E1sGHe4\nZ4ChBPvatAUmA1NclisCBNeRWrQIZs3yOxoREfGb28TmH87+WWB72LnjQ86vAv4D/OT8fAnwN5dl\niwBw2GHQrx9cey1s3Oh3NCIi4ie3iU1gjagFEc6d5+xXYEspnOLsl2OT910Q4R6RMrn9dti8GcaM\n8TsSERHxk9vEpgFQDPwvwnOPcV5PJbgK+EbnZ4DDXJZdFtWBScBqrM/PJ8A/47hvANbUFmlrkIxA\nJTFNm1qNzZQpsHy539GIiIhf3CY29Zx9+PyvBwE1sKQnfLHLpc6+ucuyy+IZ4BxgNNAL+BgoBAri\nvH8AcGjYtt7rIKVsrrgCWrSwvYiI5KYKLu/fjo18qhd2vJuzXwV8F3YuUHsTz2rgXjoO6IklMU84\nx94GWgITnGOljatZCixOVoDizh57wJ13Qt++8NJLtvSCiIjkFrc1Niux/jKHhh0/0dkvjHBPHWe/\n1mXZieqLJVVPhh2fhY3a6hrHM/K8Dkq81acP9OwJw4bB9vDu7CIikvXcJjZvOvsh2Fw2ACcBPZzX\nL0e4p4Oz/9ll2YnaH/iS3Wtlljj7DpTuRWAntnzE03HeIymUlweTJsG338LkyX5HIyIiqeY2sbkb\nWzKhIZYg/IYN687DOug+HeGeY539kgjnkqkukfvDrA85H83P2DpYA7GkbRS2JtYHwAHehShe6NAB\nLr4Yxo6FX37xOxoREUklt4nNCqA/8BeWzASamTZgfVm2hV3fiGBi84bLslNpHrZy+cvAO8B04Ais\nc7QGGKehm26CSpVg5Ei/IxERkVRy23kYrM/KAmxCvkbYJHzPE7l25EDgcSwhiNRMlUzriFwrUyfk\nfCK+B95l9/5Fkgb23BNuvhkGD7atSxe/IxIRkVTwIrEB+BV4MI7rXnU2P3yO1SKVo2Q/m0BT0tLd\n7ohPcWkXDB06lNq1a5c4VlBQQEFBvKPMpSwuvBDuvdfWkXrvPVt+QURE0k9hYSGFhYUljm3YsKFM\nz8qlUT69sFqiM4E5IcfnYp2AWxBHkhKiNZYszQNOjXJNPrBo0aJF5OfnJxywuLdgAXTvDg89BOec\n43c0IiU1a9aM1atX07RpU1atWuV3OCJpZfHixXTq1AlslYO4p1rxqsYmE8wFXgPuAWpisyUXYH1+\n+hFMamZik/i1Bn50jr2G9QlaBvyJ1fIMx0ZIjUpN+FIW3brBGWfANdfY/DY1avgdkYiIJJOXiU09\nbGHLVtisw/FMwJfqjrenALc45dbBhn+H1+CUc7bQ2qwlWPLTHJuQcA3wOjAW+CbpUYsrEyZA27Zw\nyy1w221+RyMiIsnkRWLTELgLOA1LZuJt3vJjRNFmYKizRXMewQU8AzRJfwZr0cJqbG69FS64APbZ\nx++IREQkWdx2p9wTm134TCxJSqTPTi717xGfXX01NGqkdaRERLKd28RmBBD4/fdVrINuAyzJKRfH\nJpISVavCHXfACy/AvHl+RyMiIsniNrno4+xfwpKaV7HZh0tbTFIk5U47zUZIDR0KO3b4HY2IiCSD\n28SmJdZXZpoHsYgkVV4eTJkCK1bA1Kl+RyMiIsngNrH509lrRR7JCAceCBddBKNHw5o1fkcjIiJe\nc5vYfI4xxz2pAAAgAElEQVR1Am7pQSwiKTF2LJQvD9dd53ckIiLiNbeJzX3OXnO6SsaoWxfGjIGZ\nM2HRIr+jERERL7lNbOYAhUBfQOsoS8YYNAg6dIDLL4fiRBbSEBGRtOZ2gr5u2BIEe2Ez+vbFVu9e\nDvwVx/0LXJYvUiYVKsDkyXD00VBYCGed5XdEIiLiBbeJzVvYqKjAZHudnQ1iLyiZ55yPZ9kFkaQ4\n6ig45RQYPhz69IFq1fyOSERE3PJikrxoMwjnxdhi3SeSMnfcAb/9BuPG+R2JiIh4wW2NzVEu7lXP\nBvFdq1a23MKECXD++dC6td8RiYiIG140RYlktBEjYPZsS3CeftrvaERExA2t1yQ5r1o1GD8ennkG\n3njD72hERMQNJTYiwJlnwuGH2/DvnTv9jkZERMrKbVNUuM5AT6ADUMc5th5YCrwOaDo0SUuBdaQ6\nd4Z774UhQ/yOSEREysKrxOZA4H6gS4xrbgU+Ai7ClmIQSSv5+TBwINxwAxQU2AzFIiKSWbxoiuqJ\nJSyhSc1O4FdnC1Ts5wFdgQ+de0TSzi23QFERjBrldyQiIlIWbhObesCTQCWgCJiBJS/VgMbOVtU5\n9oBzTWVsKQb9Pixpp0EDuPFGuO8++Owzv6MREZFEuU1sLgdqATuA44F/AR87PwfsdI5dBBzn/Fwb\nGOqybJGkGDIE2rTROlIiIpnIbWJzvLOfCsyL4/pXgSnO6+Ncli2SFBUrwqRJ8Pbb8NRTfkcjIiKJ\ncJvYtMZmEH4+gXteCLlXJC394x9w4olw1VXwVzzLuYqISFpwm9js4ez/TOCewNdEZZdliyTVxInw\nyy+23IKIiGQGt4nNL9hop/wE7jnI2f/qsmyRpNpnHxg2DG6/HX74we9oREQkHm4Tm4XO/hqgZhzX\n13SuBXjHZdkiSXfddVC7tq0jJSIi6c9tYnOfs2+NJTmxJujr4lwT6FtzX4xrRdJCjRpw220wZ451\nJhYRkfTmdubhd4DpwMXAAcD7wBfYJHyBpqZG2Dw27UPum45qbCRD9O8P06fb8O9Fi6B8eb8jEhGR\naLxYUuEyrEPwlVh/mw7OFkkRcCcwwoNyRVKiXDlbR6prV3jgARg0yO+IREQkGi+WVCgChmOdgu8F\nvolwzdfAPc4112BDxEUyRpcuMGAAXH89/P6739GIiEg0XiQ2AUuwJqk2QBWgibNVAfYDLsFW+RbJ\nSOPGwfbttuSCiIikJy8Tm1DbsKHgvzivRTJeo0a2OOb06bBUKbqISFpKVmIjkpUuvxxat4ahQ7WO\nlIhIOvIysakInIb1s1kILHO2hVj/mlPxprOyiG8qVYK77oL58+E///E7GhERCedVotEXuBvrUxPJ\n4djq3j8BlwLPelSuSModfzz07g1XXmn7PfYo/R4REUkNL2pshgFPUzKp+Q6by+ZDYGXI8SbAU849\nIhnrrrvgxx/hzjv9jkREREK5TWwOBQJLBG7ChnI3APYG/uZsrYGGzrlN2Fw347FJ+0Qy0n77WX+b\nW2+FVav8jkZERALcJjZXOM/YBByGJTm/RbhurXPub8615bEJ/UQy1qhRUL06jNB0kyIiacNtYnOE\ns78dW0qhNF8Ct4XdK5KRatWyuW0eewzee8/vaEREBNwnNntiswi/kcA9bzn72i7LFvHdgAHQqRNc\ndhkUFfkdjYiIuE1sfsb6zJT1XpGMFlhHatEimDXL72hERMRtYvOas++RwD3dnf2bLssWSQuHHQb9\n+sG118LGjX5HIyKS29wmNndiK3tfg60HVZo2zrV/ERxNJZLxbr8dNm+GMWP8jkREJLe5TWy+Ak7H\nmqPex+anqRPhujrAUOeaPOAMYLnLskXSRtOmVmMzZQos199sERHfuJ15+E2s8/AaYF+sBmcCNkHf\nGudcQ6AVwSTqG+AqZ4vmKJdxiaTcFVfAzJkwbBi8/DLklbX3mYiIlJnbxKZ7hGPlsAn69o5yzz7O\nFo2WFpSMtMceNhNx377w0ktwwgl+RyQiknvcJjYLPImiJCU2krH69IGePa3W5phjoHJlvyMSEckt\nbhObHl4EIZIt8vJg8mQ48EDbDx/ud0SSrnbuhK1b7fUff9hEjy1bwl57QePGUL68r+GJZCyvVvcW\nEUf79nDJJTB2LJx9tn1JiQR88w08+CDMng3r1tmxP/+E/v2D11SsCM2bW5Kz117BhCfwumlTqKD/\nvUUi0j8NkSQYPdp+Ax850r7AJLdt2QLPPAMzZsBbb9lyHP36wVNPwZo1lvwuXw7ffw8rV9oWeL1k\nCbz4ol0XUL68JT7hCU/gdbNmlhyJZLJNm8p2XyoSmz2AvwN1sdFSH6WgzGiqAzdjQ9TrYEPObwOe\niOPeBtiq5McDVYHPgOtJbDkJyRF77gm33AKDBsHgwdBVa9nnpE8/tWTmscdgwwbo3h0eeQROPRWq\nVIHnngteW706dOhgWyR//WXJTnjy89VXMG8e/PJL8Npy5axWJzzhCfzcvLn6f0n6KC6G1ath8eKS\n2+rVZXue28SmJTAE6/A7Dvg97PyhwNNAI2z+mmLgE+AU4AeXZZfFM0BnbJLAFUA/oBAbyVUY477K\nwHygJnAZNpR9CDAX6ElyOlFLhrvgArj3XltH6v337ctGst+GDVBYaAnN4sXQqJEluOefD/vuW/bn\nVq0K7drZFsnWrfDDDyVre1auhO++gzffhJ9+si8QsL5gTZpEr/Fp0cJG+Yl4rbjY/k6GJzFr19r5\nevUgP9+a8atXh+uvT7wMtzNtDMPmrlmMJQyhagBfYzUd4b4ADgJ2uiw/EccBLwIFlKyhmQd0AFoA\n0ZYxvBiYCvwN+NA5Vh6rtfkTS+AiyQcWLVq0iPz8fFfBS2ZauBC6dbPmqHPP9TsaSZbiYvuznjHD\nmpe2bYPjj7fktnfv6M1CzZo1Y/Xq1TRt2pRVq1YlNcbt2+HHH3dv6gq8XrWq5EKujRpF7t8T2Fet\nmtRwJQvs2gVff717EhNYeqZpU0tiQremTYNzgC1evJhOnToBdMLyjLi4rbE5xtk/F+HcvwgmNVOw\nJptjsSShPTAAmOGy/ET0Bf4Angw7Pgt4HOiKzYwc7d7lBJMagF3Ao8CtQGO0qKdEcMQR8M9/wogR\ncMopUKOG3xGJl375BR56yDoDr1gBe+8No0ZZEtukid/RlVSpksW3d5QZxnbssOQmUj+fDz+0pGjX\nruD19etH79y8117227bkjh074MsvSyYwn35qS80AtGplicvw4bY/+GBo2DA5sbhNbFo7+/9GOHeG\ns38WW04B4HmgPtbH5VRSm9jsD3zJ7rUyS5x9B6InNvsDb0c4HnqvEhuJaMIE2G8/uPlmW1NKMtvO\nndanZcYMeOEFG5102mnW7Ni9e+Y2OVasaF8+rVpFPr9zpzVnRartWbzYmsF27AheX7du9Kauli2t\nA7Vkpq1brVN7IIH55BP4/HOrqczLgzZtLHk5+WTbH3QQ1Im02FKSuE1sGmD9Zn4NO14TqzoqxmpE\nQj2BJTYdXZadqLrYcg7h1oecj6ZOyHWJ3is5rnlzq7G5+WZrmnDTz0L88+23VjMza5Z9wXfsCJMm\n2eimPff0O7rkq1DB+t60aBH5/K5dVoMVqanrxRft523bgtfXrr170tOihTVFNGtmTWGay8d/f/4J\nn31Wsibmiy8s0S1f3qa3yM+36Qry8+3fhd81024Tm0D44X/9Dsc65O4E3go796OzT2H+JuKvq6+2\nL8UrrrDf8iUzbN0Kzz5rtTNvvAE1a8JZZ1mCmp+v9cBClS9vSUnTpnD44bufLyqCX3+N3NQ1b569\n3rKl5PMaN7YkJ9rWuLE1sYk3Nmyw2pfQJOarr6wPWaVKcMABNsJz8GD7+3/AATa6L924TWw2YglK\neGtyD2f/Oda5NpKtLstO1Doi16zUCTkf695oq5aXdq8IVarAHXfA6adD27bWZBHYmjb1OzoJ9/nn\nlsw8+ij8/rv1lXroIWtyUqfZsilXzhKRxo3h0AjDLYqLYf166+cTaVu61PZ/hnyj5OVZP41ALU+k\nrWnT9Pzy9dvatbt36v32WztXpYo1Hx19tP1Slp9vNTOZkkS6TWyWAt2w4duBDsTlCfaveTPCPYEk\nKLz5Ktk+x0ZElaNkP5sDnP3SGPcuAQ6McDyeexk6dCi1a9cucaygoICCgoJYt0mWOfVU+M9/4JVX\nYMECuP9+O966dclEZ6+9fA0zZ23aZMO0Z86Ejz+GBg3gwgttmPZ++/kdXfbLy7N+OXXrWnNGNJs2\nRU9+Fiyw/e9hE4/UrRs96Qm89rv5JFmKi63pNDyJCQzCq1nTOvL26RMcmbTffqlvBiwsLKSwsOSs\nKxs2bCjTs9xWpF4GTML60tyJzedyDnCac74r8HHYPWOB67BRUj1dlp+IXsDLwJnAnJDjcwkO9462\nAOcgYDo2rDswwWAF4FNgE3BYlPs03FuiWrPG/iN++23bljhd0Vu0sASnWzfb77OPmjySpbgY3nvP\namfmzLGmp969YeBAW5092bP3pnK4dy7ZvNkmd1u1KrgP30Jncgb7go/V7NWsmfULSud/i8XF1rQX\nnsQE3mvdutCpU8nh1a1apW+Hd7+Ge98PXAS0A64CriSYLL3A7kkN2NBpKDl0OhXmAq8B92Cdm/+H\n1eAci03UF0hqZmLJWWuC/YEeBC7BhoqPANZiw9b3JbXJmWSRBg2saeM059eAdevgnXeCic5jj1m/\nhMaNS9botG2b3v+5ZoI1a+Dhhy2h+eor+8995EgYMMC+wCSzVatmI3PatIl+zbZtVpMRKelZtsz6\n/fz8c8m5fapW3b2mJ3yrVy81iUJRUeQ5YgKVHE2aWOIyaFAwiWnWLDf+73Cb2GzFvtjvBk5ynrcd\nG/k0JML13bE5bMAmxku1U4BbgDFY/5gv2b0Gp5yzhf7xbweOxpZUuBtbUuEToDewMOlRS06oW9eq\ng/v0sZ83bgwmOgsWwJNP2siT+vWDtTndu8P++6fvb1zpZNcuePVVS2aef94+s1NOgWnT4Mgj9Rnm\nmsqVYw9vBxv588svkZOfb7+1f5erV9t1AZUqRU58Qo8lOuJr587Ic8QE+hvttZclLlddFZwjplGj\nMn0sWcHL3G0PLFlYB2yLck0rbBmGYiwhiDbTb7ZQU5R45s8/rdkkUKPz0Uc2b0idOta5NZDodOyo\nYbKhVq4MDtNetcpGclxwgQ3TruvzRA1qisp8RUVWAxitySuwbQ0ZLlPaiK+KFUsOsf788+D9gTli\nAtvBB6d2jphU8qspKtRW4KdSrvnO2UQkQdWrw7HH2ga2KOIHHwRrdEaOtOr1mjXh738PJjr5+bm3\n0vO2bdZRe+ZMeP11++wKCiyh6dw5N6rjJTXKlbPakUaNrP9KJNFGfAWSoWXLbGbn0BFf5coF54g5\n66zgHDE1a6bmfWWyVKzuLSJJULUqHHWUbWBf5h99FKzRuekmS36qVbN5RQIdkg85JHtXdl661JKZ\nRx6xPkuHH261Naefbp+DiB8SHfH111+W1GhqgbLxMrGpic0ofCi2dlIV4Hzg+5BrmgK1sNqdbz0s\nWyTnVa5sTVJHHGEr4u7YAYsWBROd226D666zVZv/9rdgjU7Xrpk9z8cff8ATT1jfmQ8/tD5I551n\nw7SjrYQtko5q1rSERtzxKrEZDIzDkpuAYiD8d6QjgYexPjhNibxMgYh4oGJFmwjt0EPhmmusA+Kn\nnwYTnUmTYPRo6+zYpUsw0TnssPSv3Sguhvfft9qZJ56w33B79bKVtU88MXMmEhMR73kxDuB6YBqW\n1GwjdgefQmxivsrYIpgikiIVKlj/kiuvtFFB69ZZojNhgg09v+8+679Tu7bV6IwYYZMJbtrkd+RB\na9fCxInQoYM1M82fb6sFr1wJL79skyAqqRHJbW5rbDoCNzmvC7G5XjYQfbTTLuAZrIanJ/CAy/JF\npIzKlbP2/o4d4bLLrBbkiy+CkwY+9JCtRl6unI28CNToHHFEahd93LXLOgDPmAHPPWf9FU4+GSZP\ntinfNUxbREK5TWwuxYaMfwScTXzDt9/DEptISxSIiE/y8qwmpEMHW+SuuNgmAAs0Xc2ZY7UleXlw\n4IHBzsjdulm/Fq99/70N0Z41C374weIaP95WEa5Xz/vyRCQ7uE1sejj7qcQ/J01guHf4wpkikkby\n8oKzt154YXC69kCi88ILMGWKXdu+fcnZkcs6Odi2bdZMNnOmTaZXtWpwmHaXLhqmLSKlc5vYNME6\nCS9L4J6/nP0eLssWkRTKywvO1DpggB378cdgojN/Ptxzjx1v06bk7MjNm8d+9hdfWDLz8MPw22/W\nx+eBB+CMM7J3cUIRSQ63ic1OrCNwIvOcBub63OiybBHxWfPm1jTUv7/9/PPPJRf2nDHDjrdqtfsK\n5ps3W/PWjBk2wqluXTj3XFuAUkNeRaSs3CY2q4C2zvbfOO85wtn/z2XZIpJmGjeGf/7TNrBRTAsX\nBhOdhx6yJq3mzeH33y25OeYYS3BOOil7Jw4UkdRxm9i8iSU1ZwOPxnF9bWw1cID5LssWkTRXv74t\nNHnKKfbz779borNggU1Gdu650LKlvzGKSHZxm9jcCwzChm4PBu6JcW094GmgIbZa9n0uyxaRDLPn\nnlYzc9JJfkciItnK7QwQS4AJ2JDvqcCzwJnOuTzgMKAfMB34hmAz1GjgR5dli4iIiJTgxZIKI4Gq\nwBCgj7MF3B/h+juB2zwoV0RERKQEL+bsLAYuA44F3iD6fDbvAr2Aqz0oU0RERGQ3Xq7u/bqz1QQO\nBhpgw8DXAp8Bv3lYloiIiMhuvExsAjYBb8dx3alYZ2IRERERT6R6+bg8rHPxEmBOissWERGRLJeM\nGptIygNnAdcC+6WoTBEREckxZUlsqgIXYJ2FAyvAfA+8ADwMbAu7/kxgLLB3yLHtwENlKFtEREQk\nqkQTm/2Bl4FmYccPAE4ALgeOBn4FWgCPEJy7BmArMBO4HVuOQURERMQziSQ2VYHn2D2pCdUeW1ph\nIDa8u6lzfDM20/AELOkRERER8VwinYfPAVo5r98AugE1sISnM/Bv59zRWALUFJvTZjrQGrgKJTUi\nIiKSRInU2ARWd1kB9AZ2hJxbjHUOro1NwtfROd8Xa7oSERERSbpEamwOdPYTKZnUhLo15PWDKKkR\nERGRFEoksamLLZ+wPMY1Xzr7YuD5sgYlIiIiUhaJJDaVnX2spRHWhbxenXg4IiIiImWXzJmHdybx\n2SIiIiK7SfWSCiIiIiJJk+gEfXnAxcCaGOfjuS5gTILli4iIiERVliUVLvboumKU2IiIiIiH/GyK\nyiv9EhEREZH4JVJjc5THZRd7/DwRERHJcYkkNm8lKwgRERERL2hUlIiIiGQNJTYiIiKSNZTYiIiI\nSNZQYiMiIiJZQ4mNiIiIZA0lNiIiIpI1lNiIiIhI1lBiIyIiIllDiY2IiIhkDSU2IiIikjWU2IiI\niEjWUGIjIiIiWUOJjYiIiGQNJTYiIiKSNXItsakOTAJWA1uAT4B/xnnvAKAoytbA60BFREQkcRX8\nDiDFngE6A9cAK4B+QCGW4BXG+YwBwPKwY+s9ik9ERERcyKUam+OAnsBg4AHgbeBfwGvABOL/LJYC\nH4VtO70ONtsUFsabN2Y/fRZGn4OE098Jo8/BnVxKbPoCfwBPhh2fBTQBusb5nDwvg8oV+ocapM/C\n6HOQcPo7YfQ5uJNLic3+wJdYn5hQS5x9hzif8yJWQ7MOeDqB+0RERCTJcqmPTV3gmwjH14ecj+Vn\n4GbgA2ATcCAwwvn5MIIJkoiIiPgkUxObHsAbcV57EPC5B2XOc7aAd4CXsIRmDNbUJSIiIj7K1MRm\nOXBBnNf+4OzXEblWpk7I+UR9D7wLHBrroi+//LIMj84uGzZsYPHixX6HkRb0WRh9DrB9+/b/3+f6\nZwH6OxGgz8GU9bszlzrC3gcUALUp2c/mTOBxrDnpgzI89xWgI9YBOVxj4GOgaRmeKyIikutWA4dg\n3UHikkuJTS/gZSyRmRNyfC7WAbgFUJzgM1tjzVzzgFOjXNPY2URERCQxP5NAUpOL5mFNThcARwL3\nY7U3BWHXzQR2AM1Djr0GjAROAo4CLscyyQ1A+6RGLSIiIhJBNWxJhZ+ArdiSCmdEuG4WsAurxQmY\niE3OtxHYDqwCHgL2SWK8IiIiIiIiIiLiFTeLbWaT6sB44FVgLdbsd6OvEfnjaKx2bwWwGavt+w+Q\n72dQPjgImyLhe+AvrFn4PWzNtlx3Afbv4w+/A0mxHkRfXLiLf2H55u9YX9D12L+RFcD1vkaUerOJ\n/ncirr8XmTrcO915sdhmNqgHXAh8CjyL/eedaAftbHARUB+4C1jmvL4SG4X3D+BN/0JLqVrY9AuP\nYUl/dezfxiPAXsAtvkXmr6bAHVgTeU2fY/HLSHb/d7DMj0B8dBbwMPAEcDbwJ9bVIdcGn4wBpocd\nywNewCoKPk55RMJxWFYZXkMzD/tNPZeWsQhVF/tcbvA7EB80iHCsGtbT/7UUx5KO3sdqcXLVC1ji\nP4vcrbE5xec4/NYUS2Sm+h1ImuqO/T25KZ6Lc/VLNpm8Wmwz2+TS1ALh1kQ4thlbu6xZimNJR+uw\n9ddyUX/gCOAScvvfSC6/d7Da7KrA7X4HkqYGYonNzHguVmLjPa8W25TsVgvrY5Nr1e1gX2IVsCa5\ni7HmuDt8jcgfDbG+eCOwZqhcNg2bYmMjNrfY4f6Gk3LdsAS/PdZ0vwP4FbgHqOFjXOmgFnAaMJ/g\nSgKSYiuwzl/hGmPJzjWpDSdt1CN3m6IieRTYBhzsdyA+uJdgR8Ad2JxQuegpYEHIz7PJvaaog7Cp\nNE7CkpkBWLK/AzjWv7BSbjnWWXgj9h3RDbgKq9ld6GNc6WAQ9n9FpKlZJEWU2ESmxCZoLPZZXOx3\nID5pjtVW9cI6Ce4i9/5dnIbNpbVfyLHZ5F5iE0mgk/knfgeSQiuw/xOGhx2/zDl+VMojSh8fY835\nFf0OJJe9D3wY4XgH7C9ovIt3ZhslNuZG7HMY4XcgaWQ6Nullfb8DSZHqwC/YVAi1Q7bHscSmFta5\nPJfdg/07qex3ICnyPvZ+O4Ydb+McvzLlEaWHA7H3PzGRm9THxnufA+3Y/bM9wNkvTW04kkZuDNlu\n8zmWdPIx1uemld+BpEg9bKTcVdh8JYHtTCyh+R0bAi+5Mz3Ep6Wcz5XPIdxAZz/D1yiEXkRuD5wL\n/Eju9v7P9RqbUSQwXDHHPIz1qajrdyApUhkbvtotZOsOvIL1s+hGbq8/tyc2NcYivwNJoZ7Y/w8j\nw44Pc47nWmdqsH8n67DarIRogj7vzcXmJrkHm2zrf9gim8dik5HlWubdG/stNNCzvwPWvwBsFtot\nfgSVYldiCc1crP/VoWHnP0h5RP64H+sc+TE24qMecDr2S8B47D+xXLANeDvC8fOw/kYLIpzLVo8B\n3wGLsVqrfbF/L/WBc3yMK9VeB17EfvErh3Vn6Oz8/ALwrn+h+eZkLMlVbU2aiHexzVzwHcERMLvC\nXreIcV82eZOS7z102+VjXKk2APtCX4P1qVkPvIHNuCo219Umv4NIsWuwpOZ3gkOcnwI6+RmUT/YA\nxmGTVW7H/u+8mdztNDsP+/eQ6/3NRERERERERERERERERERERERERERERERERERERERERERERERE\nREREREREREREctwAgks85MoyF6HqYutUFQGHuHjObOcZ33kQU7rpjL23deTOYqWSocr5HYCIlNle\nRF5/KtEtsDBrri3QGnAzttjei9gCnW5l4+f4X2zR2j2xz0tERMRzexFcSDPSFr7YZqTzu4BzQ17n\nWo3NPtjii7uAg1w+azb2OX7r8jnpqhP2/rYDe/sci0hUFfwOQETKbBWwf5RzedjquE2A1cA/Yjzn\nC+Ahb0PLGNcB5YH5wKc+x5LuFmGrs3fHPrfz/Q1HRERyzUqyuwbBrYbANuwzOseD580m+z/vgdh7\n3ALU9zkWkYjUx0ZEclV/oCLwF/C0z7FkiiexZLAy9vmJpB0lNiIygNijot5yzr3p/Lw3cA9WM7EF\n+B54EGgVdt/+wCznuq3AD8B04v9N/3igEKt52gJsxJqLxmG1LW6d4exfBzbHcX17rMnuR+z9/Ag8\nho0YiseewHnAo1jz359Yf5VfgLnAhViiFclE7M9gJ9a8WJpFzvXLI5xrA9wNLA2J4Sfss52JfS6V\nojx3E/CG8/qMKNeIiIgkxUriaxoZQOzOw285598AemIJRmiH5EBS9BtwgHNPf4LNPOHXfQc0jhFP\nLeyLPlLn58DPG4HepbyvWGpgSUIRMDKO688k+H7C49mOJSyzif15ryT2eyrCEpJISVu7kGuuKSXW\nA0OuHR527vQo7yM8jvYxnj/KuWYbUK2UWERERDyzEm8Tm6+A9c5zL8ZqKg4D7iT4xfghcDiWNCzF\nvvA7YR1OHyL4xVkYJZZK2JDrwBfn/cBJ2IilrsAwrOYn0M+jrCOZehF8z0eXcm1XbORUEdZsdQv2\nHjsDQ7Dajm3AJ8T+vH8A3gOuxZKyfOBQ4CzgZYKfzZtR7n/XOf9lKfHeRTDhCk2SGmI1NEXAz1gH\n4KOBjs57PAu4F/iV2InNsQQ/u2NLiUVERMQzK/E2sQk0bUSaoO32kGvWAwuBPSJc9wTBL916Ec6P\ndc5vALpEiXdPYJlz3dtRrinNDQTfc2lNY/91rt0K/D3C+SYEk61Yn3dpQ6QHhDzjqFLO/y3KMyoC\na51rngs7dz7B9xwrcalE5D+7gIYhcYyKcZ2IiIinVuJ9YhPtN/SWIdfsBPaLcl2PkLJODDtXHUto\nioDLS4m5d8hzyjKnyj0h98fqa9iF4PuaHOO60yk9sYnHYucZUyKcq0qwGfD+KPefEhJHn7Bz1xJs\nMnSjYkgZU10+S8Rz6jwsIvH6HXg1yrnvsWYOgM+xZqtIPnf2eeze2bg7UBObufeJUmJZGPI6Wu1F\nLOAa3TkAAAUzSURBVIFamk3YF3Q0PZ19MdYROppnsaQsXnlAI6wj7/4h20/O+QMj3PMXwSa8M4Aq\nEa45z9n/is2kHCrw7DpY815Z7SD4Z60h35J2lNiISLy+LuV84It9RRzXgHXgDRUYXZSHfQkXxdg2\nhVzbqJS4Iqnl7P8o5bpAZ+jtwGcxrtuJ9bEpzfFYwrERe4/LsWQvsB3nXBepmQ5ghrOvCZwadq4R\n1ncIbOTVrrDzzxP8/J/FJiUcivX1SfS7IPD514p5lYgPlNiISLz+KuV8oOYj1nWhtSPlw841CHld\nHMcWuC5SzUVpAl/wNUu5bk9nv57S14BaE+NcHpaUvIAlL9WJ/p4g+nv6L8EE67ywc+dgn2kxNmw7\n3Hqspma1E8+R2DDy/2K1cU9hiVc8AglNIrVUIimhJRVEJF0EEp1irBZhR5z3rS1DWYF7amC/4MVq\njgrE5Mb5BJcg+ASYhI0gW40lgoHnPwScjSUe0czA5qHpjvVt+t45Hkh0PiTy/DUA72DrY52KJVhH\nAM2wz+EUZ5vn7LdEeUZFgsO8y/LZiySVEhsRSRehX5K/YV/6yfJTyOv6WJ+USNY7+7pYshErwYk1\naeCFzv4bbIj8tijX1YnxjIBHgQnYyKUBwE3YsPFAh+0HS7l/G/C4s4H1dToeG7reBltX7Bbgiij3\nhzaT/RJHvCIppaYoEUkXgT4qedg8Mcn0UUhZsebCWeLsK5VyXYVSzndw9s8RPanJw2qqSrOR4BIQ\n5zj7QG3QZuDfcTwj1HfY6KZDsIVVIfaswqHv88MEyxJJOiU2IpIu5hNc2uCyJJcVmOwOos+XA7bc\nAljScW6M6/oCtWOcD9SOx5qp9yRiz8gc6gFnvxdwAvBP5+enCI5YStQfWH8biDxXUUDg89qBTTgo\nklaU2IhIutiI9R0Ba665i9h9TWoBl5axrM0Ev8QPjXHdx9jcMgCDiVyT1Bi4o5TyAiPFTiRyArQ3\nto5WvBZgo9TysDltAiPMYjVDHUvsEWS1CCYt38W4rquzX0TpHcpFREQ8sxLv14qKp7zS+ngEhmzf\nEOFcRYK1KUXYCKBLsRl/D8I6zA7Cmls2467z6hVOGZuJPTqqCzbcO3xJhUOIf0mFK0Pe0xfYZ94F\n6AaMxkYXBZKteCf5G07JIfCxhtmDrWW1HRtufhm2nMLBTgwXO3EFnhUtYayFzcBchA0VFxERSZmV\nBBedjGUAwS80vxMbsOaaQkp+aUfbvimlrFjqYyN/igj2UYnmTIJf6OHbNuf+WURPSiqw+8Keoduf\n2Eil2TGeEa4BwYSrCBhRyvWzKP3z3EXkWY8DLiCY4GlyPklLaooSyV6R5keJdl3oPtpz4i0vHrGu\n2wwUYDMK34fVJGzEJsH7HasZmYElAu3iLC+StcBjzuv+pVz7b6x24xFstNY2rKPtE1htUmnJ3E5s\n5NFlWK3MZiw5+Bpb3iEf6xCcyLDyNQT7AO3EhorHMgx7nw9iTWyrnPfxFzZT9CznvcTq39TP2Rei\nod4iIiJpZ2+CtR7xjEhKJ+WwOWyK2H35hGToRLCGqizrc4mIiEgKTCd1yYGXjiHYhNQ3BeW94JR1\nTwrKEhERkTKqg00IuAvrEJwpXsUSjVXsvjyF1zoTXBk8nkkERURERGKqji2HkA9MJlhbM8zPoERE\nRETKYgC7j2JahJbGESlBo6JERDJDYMTULmxo/d1AT2xElIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI\niIj8X3twQAIAAAAg6P/rfoQKAAAAAAAAAAAADAUxXstalbIxDwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "time_fit = irfft(fit)\n", + "\n", + "mpl.rcParams['xtick.labelsize']=12\n", + "mpl.rcParams['ytick.labelsize']=12\n", + "ylabel(\"Response (relative)\",fontsize=20)\n", + "xlabel(\"Time (days)\",fontsize=20) \n", + "\n", + "ylim(-0.5,2)\n", + "xlim(0,7)\n", + "\n", + "plot(time_fit)\n", + "plot([3.99,3.99], [-50, 50], color='k', linestyle='-', linewidth=2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lag/data/clag_analysis-origbins-9157A.ipynb b/lag/data/clag_analysis-origbins-9157A.ipynb new file mode 100644 index 0000000..1fa3cb8 --- /dev/null +++ b/lag/data/clag_analysis-origbins-9157A.ipynb @@ -0,0 +1,825 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X18VPWd9/9XSAKSRBRwbFEoxFBYg1pNKhD6s+qCqFBy\n1UI35PGzbbjorle73V2vSzK22u7P31W07aRre117tbXXlpL21zWmWnYXoevderNU7mro9sb4kxID\nyO2MiDcQhNyc64/vHOcmM8lM5szMOTPv5+ORR2BmMufkmzPnfM73+/l+viAiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjJm+4GhBF//K4/7JCIiIi42Fbg46msxJnj4\neD53SkRERLzju8DefO+EiIiIeMN44A3gy/neEREREXFOWRbf+5PABUD7CK+ZFv4SERGR9BwNf+Vc\nSRbf+0ngPeA/JXl+2iWXXHLkyJEjWdwFERGRgnUYuJY8BBDZ6nmYiUmWvG2E10w7cuQIP/vZz7j8\n8suztBsS78477+S73/1uvnejqKjNc09tnntq89x65ZVXuP322y/F9N4XTPCwBjgObB3thZdffjl1\ndXVZ2g2Jd+GFF6q9c0xtnntq89xTmxeXcVl6zzXATzDTNEVERKSAZCN4WAJMB36chfcWERGRPMvG\nsMVTQGkW3ldERERcIBs9D+Jizc3N+d6FoqM2zz21ee6pzYtLNqdqjqYO6Orq6lKSjYiISBr27NlD\nfX09QD2wJ9fbV8+DiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiI\npEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIik\nRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpKUs3zsgIlJIOjrMF8B778GBAzBzJpx3nnmsudl8\niXiZeh5ERBzU3AybN5vvZ8/C3r3wzjvw6qsmmOjogMbGSIAh4kXqeRARcVgoFOKppwK8/no3UMqh\nQ4McPlzL97/vZ/FiX753TyRj6nkQEXFQMBikoaGJ9vaV9PZuBOZy+LAF/Ae33HIDzc1/RSgUyvdu\nimREwYOIiIPuvruNnp4HgMuA1cBKYCvwNAMDv+eRR5ppaGhSACGepuBBRMRBu3d3AwuANuABYCFQ\nEn52HLCInp778fsDedpDkcwpeBARcdDAQCkmWLCDiEQWhIMMEW9S8CAi4qCyskHAAuwgIpFx4SBD\nxJsUPIiIOGj+/FpgF2AHEYkMhYMMEW9S8CAi4qBAwE9NzT3ARcDOJK/aFQ4yRLxJwYOIiIN8Ph87\ndnSyenUVZWX/GXgRGAo/OwTsoKbmXgIBf/52UiRDCh5ERBzm8/no6PgeTzzx78A/c+mlK4BGqqtX\n0NKyiR07OvH5VCxKvEsVJkVEHBS7toWPOXPamDwZDh+GGTNg6VJQ3CBep54HEREHRa9tcd55MHcu\nTJoEc+bAhAla20IKg3oeRESyQKtnSiFTz4OIiIikRcGDiIiIpEXDFiIiWRSbQAkHDsDMmSYfAjS8\nId6k4EFExCGjBQo33AD33mteU1eXt90UyZiCBxERh0T3IuzZA/X1JlCYMSOE3x/gRz/qBkpZtWqQ\n66+vJRDwq96DeJKCBxERB4VCJlB44QUTKNx2Wx8nT4Z4990fAgGghN7eIXp7d7NtW5MKRoknKWFS\nRMQhwWCQhoYm2ttX0tu7BdjMwYNX8+67DwELiayyOQ5YSE/P/fj9gbztr8hYKXgQEXHI3Xe30dPz\nALGBwivh/yeygN27u3OybyJOUvAgIuIQEwgsiHu0lEggEW8cAwOl2d0pkSxQ8CAi4hATCMQHCoOA\nleQnhigrG8zuTolkgYIHERGHmEAgPlCoBXYl+YldzJ9fm92dEskCBQ8iIg4xgUB8oOAH7gG2A0Ph\nx4aAHdTU3Esg4M/hHoo4Q8GDiIhDAgE/NTX3ADuIBApTgXVUVd3BzJm3Ao1UV6+gpWWTpmmKZ6nO\ng4iIQ3w+Hzt2dIbrPKynt7eU6mq7INSzvP66j/p6eOwxVZgUb1PwICLiIJ/Px8aNbe9XmPz852Hn\nTli71pSsnjMHvvxlrW0h3paN4OFS4FvALcBEYC+wFtiThW2JiLhG/NoWc+bA889HAoU1axQoSGFw\nOniYDLwI/BsmeAgCNcBbDm9HRMR11IsgxcLp4OFu4ACmp8F20OFtiIiISB45PduiEegCHgWOY4Yq\nPu/wNkRERCSPnA4eLgO+ALwKLAV+APxP4LMOb0dERETyxOlhi3HAbuCr4f//FrgC+C/ATxP9wJ13\n3smFF14Y81hzczPNGjgUERGho6ODDjsTN+ytt/KbSphstZax2g88BfxF1GNfAO4Fpse9tg7o6urq\nok4TnkVERFK2Z88e6uvrAerJw2xGp3seXgT+JO6xOZigQkSkaMVP4zxwAGbOVL0H8Sang4fvYAq4\nfwWTNDkf+PPwl4hI0WpuhiVLQuHqk9309pbS329Xn/SrTLV4itPBw0vAbcA3gL8FXgP+BugY6YdE\nRApdMBhk0aLV9PQ8AASAEnp7h+jt3c22bU1a50I8JRsLY20FrsJUl5wHbMjCNkREPOXuu9vCgcNC\nIulm44CF9PTcj98fyN/OiaRJq2qKiOTA7t3dwIIkzy4IPy/iDQoeRERyYGCglOQT3MaFnxfxBgUP\nIiI5UFY2CFhJnh0KPy/iDQoeRERyYP78WmBXkmd3hZ8X8QYFDyIiORAI+KmpuQfYAQyFHx0CdlBT\ncy+BgD9/OyeSJgUPIiI54PP52LGjk49/fBMVFSuARiZOXMGkSZuYPr2TtWt9NDZGCkmJuJnTdR5E\nRCQJn8/HCy+0sWcP1NfDP/wD3H47PPggqEq/eImCBxGRHIguT/3OOyEmTQrw53/eDZRy3XWDfPSj\ntTz2mCpNijdo2EJEJAeam2HzZvjRj4IcOtTEO++s5MyZLcBm+voe59//fSUNDU2EQqF876rIqBQ8\niIjkkCpNSiHQsIVIBrRSoqTLVJJMFiAsYPfu9bncHZExUfAgkoHo4MBOguvoUPKbJKdKk1IINGwh\nkqFQKMSaNa2sWrUcaGTVquWsWdOqsWtJSJUmpRCo50EkA1pmWdI1f34t3d27MDkP8VRpUrxBPQ8i\nGVDym6RLlSalEKjnQSQDSn4TSC9x1q406fcHeOGF9fT2llJdPcj119cSCKinSrxBwYNIBpT8JpBe\n4qwJNHxAG7NnQ3m5CTROnIC1azVDR7xBwxYiGVDym9hSTZy1i0U1N5ueiblzzeOvvmp6LTo60BoX\n4nrqeRDJgJLfBMaWONvcDEuWhMLDF9309pbS328PX6hMtbibeh5EMqDkN4GxJc4Gg0EaGppob19J\nb68pU93b+zjt7SpTLe6n4EEkA1pmWcBOnF2Q5NkF4edjaaaOeJmGLUTSEJ9V//vfw8CAj9LSNioq\nYNIkk/y2axdYlpLfCp19PBw4kH7irGbqiJcpeBBJQ6Ks+q4uk1UfCkXGr6GU118f5KmnalmyROPX\nhcrOW/jwh49gEmcTBRCJE2c1U0e8TMGDSJrig4RVqwaZP38mu3a9zP7930KVJouHnSj59tvzgJ1A\nQ4JXJU6cjczUST3gEHEL5TyIpKijA26+OcisWcOT3Do7T7N//zfQ+HVxieQtfBu4l+GJsy8mTZw1\nAcWuJO+smTribgoeRFLU3AxTpnydvr71DA8S3iDxXSckS5gT74skSvqATmATYBJn4RNccMFfJu11\nCgT8XHxx4pk6FRX3cuSIX4m24loKHkRSFAwG+cUvniVxkKDx62IUm7dgqkbCVmAz8EsGBj7E2rW+\nhEGAz+fjD3/oZPXqn1FVVQdcCXyUqqq/orFxHj/7mZJtxb2U8yCSorvvbqO//xISBwkavy5Go+Ut\nzJw5yObNyX/esix+/etXOHXqIUwPRgmnTg3xyCO7+fWvlSsj7qWeB5EUmS7q8SQuR12LSZhLROPX\nhSqTvIWODqivV60H8SYFDyIpMl3UyS4WfuAu4EVUaTLCXqehsRGWLjXrOCxdGnnM62P6mVQYbW6G\nSZPSLy4l4gYKHkRSZLqoW4FEF4s/UlYWYvXqR6iuNglz1dUraGnZVNRdz83NsGFDiKlTW9m3bzl7\n9zayb99ypk5tZcOGkOfH9O0Koy0tm8b0d1etB/Eq5TyIpMgsgvUaJqs+AKzHJEoOAhfh8y3l9Om/\n1zLLUcayYJQXxFYa9XHgQBsXXwy9vTBjhuldSeXXUq0H8SoFDyIpCgT8/PKXTQSD9wPfwnTcDQG7\nqKi4lyuv7CzaICGZ2PUbbLFj+hs3tuVp78bOriy5alWAl17qpq+vlIkTB5k0qZaSEj8dHWaGxWjH\ng1ZlFa9S8CCSIntqnakuuZ7e3lKqq+0llL15B51thbp+Q6IelTNnhjhzZjeHDqXeoxII+Nm2rYme\nnvsxuQ+RgNTkTHRm9fcQGSsFDyJp8Pl8bNzY9v66Fo89Zta1sMUvnHXggBm+OO8881ix9UwU6pi+\nUz0qds6EAlLxGgUPIimKDgx6e6GyEm6+2fz/zBm47DKYNQvOng3x3nsBXn+9m97eUvr77YtB8S2Q\nVahj+k71qJhjyhSXUq6MeImCB5EUJTuR270Q7e0wfXphJgiOVaGO6TvVo6LgQLxKUzVFxigUCrFm\nTSurVi0HGlm1ajkf+9ifhcevVfQHMquD4GaRHpVEvNujIpIqBQ8iYxAMBmloGL665r59JlBIrPiK\n/mRaB8GttCKmFDsNW4iMQfKEuSoKMUEwE6MlmXqRZklIsVPwIDIGyRPmCjNBcKziZ5/MmQNf/rL3\nZ59oloQUOwUPImOQPGHO7s4urATBsfJqcJCKQuxREUmVggeRMUg+BdEPNAFfBxqI7s6eOPFejhzp\npLGxsC+qxaBQe1REUqXgQWQMkk9B9AHrmD37Xs6dK+PgwROUlQ0wMFDFxRdP4pJLAkVZ76HQOB0c\nqLiYeI2CB5ExGClhrqLi21x66ffZvftLwA8YGFgAlHDgwBDt7cVR70EXw/TYa2WYHAoVFxP3S5YW\nngt1QFdXVxd1GigUDwqFYk/2kYQ5P35/gPb2lSTOfdhBS8smVy0IlY2L/Ujto4thrNi1MkywaYLR\n3dTU3FPwwaakb8+ePdTX1wPUA3tyvX0FDyJjMNrFds+e5Rw+vIVksy5qa1fw8stbc7W7KXHyYq+L\nYXrWrGn1VLAp+Zfv4EHDFiJjMNqd+Ny53loQKtEqkZmU1S7UpbizpVBXH5XCpQqTIlnglfLFHR3Q\n2Aj19dEX+8zLapuL4YIkzxZfpc3RFOrqo1K4FDyIZIFXyhc3N8OGDSHeffc5RrrYP/poN42NJtCw\nh2tGMtrFcP/+0rTer9B5JdgUsSl4EMkCrywIZa/R8fbbk4m92IeAVmA58EnOnj3I1KmtbNgQSilx\ncvjFMPr9Gunv703r/QqdV4JNEZvTwcN9mDNk9NcRh7ch4npeWRAqkpswnsjFPogpdLUSMIt+DQz8\nlvb2lTQ0NBEKhUZ939iL4fD36+9P7/3cwh7maWyEpUth7lzzPdNeFK8EmyI2p2db3Ad8ClgS9dgg\ncCLBazXbQgqWV+oczJu3nO7uLZjKmCuBGuDTwAPAogQ/kVrmfygUoqHBroPxC2AVhTKTIFtTUDW1\nVdJRiLMtBjG3GiJFyy3BQbz4oOaPf7RzE/zAbZi73fMwpbUTSS3zP3rhqH/8xyfp708WHHhrJoHT\ns1Js5u/iA9qYPRvKy02weeIErF3r3uNJilc2gocPA4eBs5h+y3uA3ixsR0TSZFcyXLUqwEsvddPf\nfxAzXOEDrgGagW+SaeZ/9MWwvPxV+vsLYyZBtqagKjgQr3E6eNgJfAbYC3wQ+CqwHZgHvOnwtkRc\nzY1DF7F3zq3An2HG2RcBr2F6HDJfVjz6d5s3b5Du7uTvd+TIYFqLhdntevgwHDwIZ87AhAlw9ixM\nnAgf+hBceml22lf1GEQMp4OHJ6L+/TLmrNQDfA74TqIfuPPOO7nwwgtjHmtubqZZYbh4nBvXK4jc\nOV8GrAbuxsT49wP2EIazy4rHLiIWwlx8u8Pbe5cPftBiw4ZQyu0R3a5vvPEb3njjBGfPmsXHLrpo\nEldddVXW2lf1GCQfOjo66IjLxn3rrbfytDe58xTwvQSP1wFWV1eXJVKIjh8/btXU3GjBDguGLLAs\nGLRgh1VTc6MVDAZzvk+1tcvC+7IuvF+WBcHw/68IPxe04EYLtof3197vX41pv4PBYLgdtoTfN749\ntqf1vpF23erI+6Uj0n5Wgq9Bq7Z2mePbFEmkq6vLwnQR5mXGQbbrPEzA3MYczfJ2RFwndnw886qN\nTojcOUdXgDS5CXALpsfBB3QCmwAzzRQWM3v2vWNKCLSTJ2fPbgPWM7w9GtJqj0i7PoeZFZLZ+6VD\n9RhEDKeDh28DHweqMWemx4Aq4CcOb0fE9dxYojlSvClR97sfk9+8A5iKCSgeB77CxIklXHbZo6xd\n60u7lkFHB6xd6+PYsUpGmsXx2GPdKb13pF1z376qxyBiOJ3zcCnQAVyEGdzcgbkteN3h7Yi4nhvH\nxyP5B4mSIu0eh29RXv4X9PdXR9UaGHthKztxce7cUvbuLWF43sMgUMvFFw+klOAYadfct2/0FNQX\nXlgfV4/BPcW/RLLN6eBBWY4iYZG7/LHPWnBSRwccOeKnoqKJvr4ZmMlR8T0BPmAlF11Uwvnntzla\na8D8vscxp4lInQRz576L11/fQig0euJkpF1z376qxyBiaEnuAuTGKYLFKHaWQbzcj4+bWQrw1399\nOY8//gKnT38GM6LYgBnBNBfxmho7t8HZ7Zv28BPJU7CZPIX+/h+lVCch0q7OzgpJhT47IobT5anT\nofLUWaRSt/kXW6J5AYkv0Ln7WwSDQa68cjXB4APh/XkD+Bamsu1JJk68mGuvvYrHHsvOMRIKhbj0\n0hvo7/8DyXoLamtX8PLLW0d9H9Ou6zBpVvHtu5OKiq9y7bWdHD3qcyRwVkAubpPv8tQKHgpQbCGg\nBUS6hndTU3OPqxZmKnRuCuLWrGmlvX0lydaYmDZtEx/9qLnrz9bFcPbs5fT0JA8O5sxp5NVXN4/6\nPna7Pvvsbzh48ARlZabOw8yZk2homA2MY9eu1+jtLaWiYpApU2qpqfFnFEy46W8pku/gQcMWBShb\nJXQlPW4bHx+tOuLkyevZPPp1e8w6OuD4ccg0T8Fu18OH2+jrg8rKSIXJd98NsmnTas6diwTOfX3H\n6evzc+zYDQwMzKK/n7Qv+tla00JE0qciUVkyWiGbysrF1vTp66zKymVWefkKq7JymTV9+jpr6dKg\n9fDD+d57yZY5c1YkOSbM15w5K7K+Dy0t0cWp4r+2Wy0t6xx+/+NJCkmlV6gr2/udiYcftqwVK8zX\nTTdZ1pw55rv9mD7ThanQi0RJHow8RfAN+voOc+jQSk6f3kJ//2ZOn36cQ4dW8vzzTbS3h2hsJO25\n/OJ+kVkKieRm9ke26yQMr63RRuJCUukV6nJjzQ5bczNs2BBi6tRW9u1bzt69jezbt5ypU1vZsCGk\nXAzJCg1bFKCRpwj+dyxrA4nWGTh3zuK11z7N9u2Pqgu2ALlh9keqdRLGmqA4PHB2ZiErN9bssI00\npNLZ2cR113UyYYJPSZ3iKAUPBSj5RSIIPAv8ffjfq4mfb79v304aGjSGW4gCAT/btiWf/REIdGZ9\nH1LNAxnromLDA+fML/qmPoa7anZEi81xir0hOHNGNwSSHQoeClDyi0QrpghoCbHdubZxwCIlVRYo\nN1RHTPXud6wJisMD59Qv+iP1dpx//mWcOmUvXR4vv2taRBJhi+OGQNNm3UE5DwXIvki0tGyiutos\nbFRdvYILLngZGI85mbp3DFeyw15j4sSJNmbP3sqcOZuZPXsrJ060jWnNimxKZ1Gxjg5obDRfvb1+\nysujcypqMZU0E4m96CfLHaio+CJlZS8B64DtxOZqvMisWV/O65oWkSGVZPkdi/K2EFs2KMfDHdTz\nUICSdQ1v394IzMVU5Ru5O/fNN0tpbDT/U3SfGbfcKXnpbzbatNLoXIXoIY4//KGb/v5yqqq+AJRx\n6tSFlJVtYWDgRySqpBk9VJO8t2MN8HfAh8OP309kTY6LWLjwirze0UeGapzJ73A7TZsVTdXMMTOF\n0566dsOI0zlra5dZwWDQamlZZ1VXL7NghVVdvcxqaVmX8vQ2iVBbpiedaaXHjx+3amoST8csL7/R\namjotqZPX2dVVIzc9smnY4489bmqallep0NG9jv/U3Fzwc3TZnMp31M180nBQ45FPnRBC6634MWk\nH8Cmpi8kPSGnMz9eRr64ub0t81VDYLRaJdEX7NEuJhMmrLMqKy1ryhTLqqy0rIsusqy6uuH7n3yb\n7r4oB4PB8PE1+g1BIRjt2CiU33M0+Q4elPNQRAIBPxdffA+wD7P08lcZPoZr5tuXlJSmPOYsI0tn\n/N5t8jW+bHIRdmFmD7QCy4HG8Pc1fOITs97fdvIaDCHgF5w79wSnTzdywQXL+fSnW+nuDtHVBZs3\nxw7jJJ+Omf/6GCOxc5xmz7YwuR6J5Dep00lunjZbTJTzUER8Ph9/+IPJtt+6tZtQqJzS0i9SUlIG\nfIAJE2Dy5FpqajrZtq2FkRMqC2P8NBfSGb93m2yNL4+WB7J8uZ/nnruNAweGgAeJXb57Jzt3fuX9\n5bsjF5PoaYoDwEFgI5bVltJ+J6+PYiddxi9fDm64KNs5Tpdd9iiHDzdx5kz+puLmgtuWupfc07BF\njjz8sGUtXRq0pkxZZ5WWLrNKSlZY48Yts8rK1llTpgQTduG6oZRxofBqWz78sGVNm/alEYe3Mhlf\nHikPJJ1tm27sY1ZsGep1FmxPa7+TD38ELWiw4Ffh4SZ72Gm748NOmQ4TFUNujXIejHwPW+STgocs\ns4OGadO+YJWU/MmIY+7xJ63x4zWu6BSvjtEeP37cKi+vzcq+p5IHkmq7mYvJZ+MuKOm3eSR3YPuw\nIOG88z5mTZv2pVGTLp0w1gCgWNa4GOnv5PYcIiflO3jQsEUBW7w4yNe+tpqjR2cAP2a0VTajK/qd\nO3cEM37qvqI4XuOGstBjcffdbfT3X8JI48sHDpSydGn6009HW/m1ri7Am2+mNrYdCPj5x3+8gf7+\n6GG29MfFn3nGR01NJ2fPBnjzza9x5swJYADLquLcuUmcPXse117b/v6y3tlYHTWTYSIvTcXNRPTf\n6eTJ9Zw7V8r48YPvD7k+84yvKNqhmKnnIcsi3Xuj34UNvxMMhruBXyya6D5bd25evVMyd/4jHTvH\nrLKyj4zpbnzkXoVj1gUXfMQqL78ipd6Dhx+2wvsQ/fzYe3vyOTtGXfKSKvU8iGPik9BeeMFO1Bv9\nLmz4naAPMyMjANwLvEd19ZScljLONbvY0KpVAV56qZu+vlJef32Q8vJarrnGT0eHqcKY7h1evstC\nZ7bIlF1ULH7dhAFgPwMDP2FgYAHRd8g//3kT117b+f4deqLtJM+YDwLNvP32Q8BjUduOF+mxaW6G\n9euhu9uKes/alH42kdF6RbJZuj0XybVuKVomMlbqeciC2PHSupTvwkYbXx4/fllBjp9Gi73jPG6Z\npLtbLVhilZXVWqtXf2lMd51uGIseyzh6bFGxLVZqCYlBCz5rVVXVj7id5Mdb9PvavV+j99gMv2NP\n/WcT/975yVHJVXJtvhMr3fCZ8Lp89zzkk4IHhw3vbrVPgqN3hXp1RoCTIhcg+4IZ3239oquHGZIZ\nazf8yEXFEl1gk7Xb8O2kXs0xGD5+zUWupOQKa/r0ddbSpcGYC0zioaFjFnzWKiurtWBZyhfIfH4W\nchG4uKVoWb4DGK9T8KDgwTHDT8jRJ/9Ed2G/SjuzvZBF2qCwxp3HOo4eDAatiy+2j5tb446PRBfY\n1LeTPA9kyZgv3PEXo4qKZdb06eus668PWnPmWNYVV1jWBz5gvq68MnK3W1dnHqury/9Mo1zkPLgh\nr8ItAYyX5Tt4UIXJAjK80p4fsCtKdgCbgE8AN1FWdiWrVz/yfvZ2pKIfDK/qt5j9+09z880hV628\n6LTIOHxhrTiavAIjjPT72EXFWlo2UVZ2jNgchURVF1Pfjp0xP336JiorV1Be3khl5QrKyk4meF9b\n8gJAiVYM/djHtnLNNW1MmuTjvvvg97+H3/8+xK23tnLqVKRa5lVXtfLcc69w1VWmimZkplEiu3jn\nndqsfQ4CAT81NdGrgkJ05VcnVu9MfDzYn/mv097+b1RVLWfGjNasfea9XHVV8k89Dw5L3N0a3e1b\nZ02cuMyaNMncjUWPL0buBOPHtlMfK/a6SM9DYQ3hjLUbPnpcurIy/m480d1r5u2Wzbvi5He7W62y\nsrlRj9s9dVssuMuyh0zgBquq6gqru7t7zPuQiky78+36LtOnr7MqK5dZpaUrrNLSZVZ5+TqrvDyY\n4O+U+nCTU9TTmbl89zzkk4IHh9gn+aqqsSc92iecior4sW1vd9mnI52prV7ixIk6tYTE+KGN9LeT\nzWmtyQOTRMmfL1twVYILanaDaCcSCY8fPx4ebored5P/AXMsmBv1+OiL5GXjM68cq8wpeFDw4Ihg\nMGjNnp35SaCY7wgiF67PJriYeDeAcuJuPvaifix8wf1TC64MX5DmW5WVVzlyEUp25/3QQ8GYO+ry\n8hVWZeWyhAmUiSQ/thM9nv+8gLGKTXRdZ8F1Fsy2YKtlAj77+LZ7HG7M+We+mM8zTlHwoOAhY5Hu\n2F9aiRMjU58lUMx3BJFy3l8Ml/PO/loGueDE3Xwqpc7PO+9j1sSJH894O8nuvJcuTXRHnXr3evJj\nO9Hj+b+4jbUXInatj60WXBH+m8QnUNtBRO4/825I2vQ6BQ8KHjIW+0GMndoGN1gVFdendGdmWboj\nsBXSNLL4MfB079ijjXbSnzbti45sZyzbHu2Ck17PgzuC6JF6YZIFFpWVK6IChXVWpGch+vcMWlCf\n4PHcfOar2oiKAAAgAElEQVQT92SZmiolJbXWtGlfcuSYKWT5Dh5UYbIAxFal8wHR1e+GmDVrBU8+\nmVoVQ6+uw+Ake4ljaGP2bCgvJ2trGeSC2d/442JsRquAOHnyel5+eWvG24lmV0R87rnMqi8mP7YT\nLbmd32WfOzrghz/s5le/amZw8IfErnOxi1/+sonnn/8egcCPeeGFbnp7S+nvN1VLL730LHv32m31\ndaAq/HtEV/X0Afa6JWOvxjlW9mybvr7/h2PHnsOyNr7/O1rWEEeP7qaiooklSzrD+yoSoZ4Hhzg5\n1ODVdRgkN0Y71ioqVmSlSmAwGLQmTVqY0XGe/Njeapkkwuh1XO6y8pn3cvz4cauq6ooR9mGLdf75\niRI6d4R/zq6XsSKqZyG+h8H+/+h1YLJFwxdjp54HyZi5C3LmLinf6zCIuw0/1qLXuyilv7+XqVNb\nCQT8KR0rqayzsHixWWnynXcmkslxHn1sP/vs1zh48ASlpe8xOGi/3+cpKRkHnM95553HuXNPMzj4\nA8wd+ThMvYVd4XoLnaP+bpm4++42Tp3ykbg3AOA53n33ByRaf+PUqW8xbtx/Y2jIwvSgXI7pWYjv\nYYj+v72OzXpMD8W7zJ5tsX37o45+5pOvv5NIbG+S1uRwFxWJKgCxBZ7ipdftGF9s54Mf3Mzbb7fz\nyCMwbVoLZWWNWS8gI+4Ve6wFgSZgJbAF2Ex//29pb19JQ0MToVBo1PdrboYNG0JMnWoKNNmFm6ZO\nbWXDhhDNzdEFherJ5Di3j+0jR1oJhYaA+xkcnIZZrv4VoBvL+h2W9SDnn1/Cddc9wvTp/xRTxGr6\n9E3vL/ucTWZ4yB5uSOQVYodZot1CVdV4TKGpWmAxpljcjeHvdgEqu4jcdmAqZljrceArTJxYwmWX\nPcratT5HP+Pxf+9z5+KLj0WLXTo9lWNFioOGLRySzaEGlZGVaLHH2l0ZdzmncnxFEh2d6V6PdJW7\nt8vcDA+NlMg42vDRUquiwp5tYX+/y4LFFlxtQa0FV1olJddZ48dfb02cuNTKRWJw8vV3Rk/W1Lko\nVr6HLfJJwYODsjU7QGOSEi165kZJyRUpn/iTGe34MjM3oi+U8bOJllmTJl2d1nEeCUbcO7PI7ONI\nwdkNI+77pZcus5YuDVpTpqyzxo2zA4YrLFhojRu31JoyZZ115ZVBq64utytbJl9/Z/Tzi85FsfId\nPCjnoQBkc3bAaNn1o2W4S2GJnrkxd+6r7N2bWpdzMrHHV2z+BAzw7rtHuPTSD7B3r4Xp3h4+m2ho\naAVr1/pSPs4ja5hEzz4Y2/5ni5kZ8qeYYYX7MWtR2HkXOykrO8zAQPwMEdsubrqplo0bnZlh46Th\n5xM/Zugr/nccnluic5G7KHgoANlMFIqcaBPJ7wlW8suJRN3I8RUEVgMPYE/ZgyHefnsng4N3MHwq\npW0Xq1bVsnHjWPY7v9MxRxII+Nm2rYmennXAL4hOZKyqeoMnntjI5z53Lz09o1903WT4+cRHbLLm\nMaqrP5gwQVvnIndRwqSMKHKiTSS/J1gndXTAzTeHmDGjlaqq5Ywfr8TQ0TiRqBs5vtowgUP8KouL\nOHXqW5x//n/BqZUmI/vtXKKx03w+H62tnUyf/hwVFa8ApZSVDTJt2kdZtOhZ/vqvP0ZFxfBVSXOV\n0DlWic8ndg/J44wf/0Fmz97KiRNtw5I1i+VcJKNTzoMHFMs4o5Kx0udEom6qi5FVVi52rHJlZL/t\nZMKxl3PPFicWyEp3e05VIR1JJueTYjkXpSrfOQ/5pODBA4qlaJROTOlz4oITOb6WJGl78+V0OWg7\nwfhDHzLJhGVlJplw5sylritDnotAIlfBcybnk2I5F6VKwYOCB9crpHUektGaHvlhByBlZfU5a3/7\nYlxXZ1kXXWRZlZWWNWWK+X7RRdb7MxDctK5Ctj+DuQyeM/ldiuFclKp8Bw/Jsk9yoQ7o6urqoq6u\n6AInzyiWqm5z5zayd+/mpM/PmdPIq68mf14ys2ZNK+3tK0lcUXEHLS2b2LjRXTMHciUYNBU2TaGs\nBdjJpLCbiRPvYdq0TmpqfBl9JufNW0539xaSJY/W1q5wZM2STM4nxXIuStWePXuor68HUz1tT663\nr9kWMqJi+UA6WeJb0heZXeCt2QO5EKmwGR1YnQB+wZkzFq+91ohlTQnPUEitLHi8XM1kyOR8Uizn\nIq9Q8CCjKoaIvxBXE/XS381eZfHs2QAnT67n3LlSxo8fZPLk2vdnD7hlX3NteH2D4dNazWqbu9m2\nrYkdO9Jfg0bBs3iJch48pNDHGgs1GSsXf7dcZeoXq+ErmTqfn6CEYe/Jd85DPil48IhimcZYaAFS\nrv5uxXJ85MvwZF7nk3sLNXguZPkOHlQkysM6OqCx0XwtXQpz55rv9mNOFTaKHXONLuCzkJ6e+/H7\nk5WM9Y741UTnzNmctFiNV+Tq71YMx0c+xRbjCgFv4nR+gr1ceUvLJqqrVwCNTJy4lIqKr3D0aDmX\nXro2b0XTVMBN4qnnwQG5uFvWNEZn5Kp7P9fTH3V8ZFekV2CLZYpa3eh4e0dPX50yJWiVln7Bgj/J\nWW/SSLUsli49bl18sXq24qnnQcYsGAzS0NBEe/tKenu3AJvp7X2c9vaVNDQ0EQqFHNmOaso7Y/Hi\nID09TRw6tJLTp7fQ37+Z06cf59ChlfT0NLFkiTN/L3s7AwOTycXfTcdHdtnJpBUVbZj1H+pxuqx2\nczNs3gz/+q9BJk9uYnDwNPBjctWb1NwMGzaEmDq1lX37lrN3byP79i1n6tRWpkz5OsGgerYkQj0P\nGcpVkpPuLJ2Rjb9Xoju2adNSK/msngdvibRz0EpcVvtXGd+Jp1ou3Om/6Uh5MyUltTq+ElDPg4yZ\nmcK1IMmzC8LPZ86JBZAkO3+vRHdsb7zxRHg7ufm76fjIjUgPj70S5SbA5CfACsrKvpTxoliRYzS6\nNykEtALL39/W3r1HHM03iM2beSO8vRXAA1jWeNSzVVy+jKny8p0kz6vnIUPDp3BlZz0AZWI7Ixt/\nr8R3bPZ2sneHGk3HR27koocncoza2zoePobiewScXTws8rsl2t6t6nlIoFB7Hq4F/gL4HSRdQ1Uy\nlKslau0xV68t/+s22fh7JZ7pYG8n0R3qJygr+0tH/26JMvWrq1fQ0rJpTAWLJLFc9PBEjlF7W8mX\nSncy3yDSq5Joe/NQz5b7ZKPCZBXwM+DzwNey8P4SlquqiKYSoQ/zwS4sHR3Q3h6iuzvAyZPdMZUN\na2v9tLQ4V9kwG3+v4dUHIXLiX4gJIKL/bju4/fZNbNzo3AXdVLI025k9G8rLTSXLEydg7Vp3VbL0\nslyU8I4co36gCRNIJAsQFrB79/qMtwnRQYt9PIfC37uBAWAL8COgAZUuL1w/Af4u/O/ngQeTvE7D\nFhlSd3HmclngKBt/r8RDIcmGK3RceFkupvrGHqPHLFiYk6HRSKLmiiRDF8cs+KwFc6yysmWqYGrl\nf9jC6Z6H1cDVmGEL0JBFVmk9gMwlXnQodhqYU6s5ZuPvlXhNAnu44luUlPwFllVNRcUgH/1oLY89\npmEEr8pFD6A9BOX3B3jhhW56e08x/PiyOTc0GulVsXs64j+TH8Dcl77I7bf/c9GusOomTgYPM4D/\nASwBzoUfK2GUZb/vvPNOLrzwwpjHmpubadZVb1SFPJyQK4m7/W3OdcuCc3+v6AWvTp6MHqKA2O7e\nc4wbN4HKyrlcc42fSZN8GkaQEcUPQZ040co772R/aNQOrI8e/TR9fV0k/4w0sHv3A45s00s6Ojro\niJva8tZbb+Vpb5z3ScxAVH/U1xAme+scw4MIDVtI3uVqxorT7MqiH/rQYstUAvyVBUeTZMYXdyU+\nGbtcD40Gg0GrvPxqT34mcy3fwxZOzrZ4BrgC+Ej462rgJUzy5NVoCENcKFczVpzS0QE33NDNtGlL\naG9fycGDTwP/DvwTptNvParEJ07J9UyaZ57xMX78xXjpM1msnAweTmH6Su2vl4E+zCouzlQrEnGY\nVwoc2YsD3XXXF3nhhUYGBx8iEiT4gG8DMzHZ6Ik4VzRMioe9YNzvftfG22+3U1Y2lwMH4Cc/eZVp\n01qYOtXZxamam+HTn74KL3wmi122K0za3SoirhQI+KmpuQfYgRllI/x9R3gamD9/OxfFXq/i6NHT\nmPSiRGPQWmNCnBW/5sXAwEqGhrZgWZsZHHycN990dl0W8M5nsthlO3i4EfhvWd6GyJh5pQBWZFbI\nG8D5JA4SvDUEI96Ry2XXVXTMG7JRJErEM7wyYyUyK6SUSJAQH0DUAjtJPHSh7l4Zu1zOSlLRMW9Q\n8CDiAZHyvYPA5cROzwQzRbMPaMEspaxKfOKcXC67ruDAG7SqpsfYiXMzZrRSVbWc8eMbqapazowZ\nziYuibvErjmwGIgeEw5iSgl/BtgG/DPwCeAmSkquZNq0h101BCPe47VZSZJ96nnwmMWLg3zta6s5\ndOgBTDdiCf39Q5w+vZsJE5pYsqQTk30vI4kutPTee3DggOkaPe8885jb7n6GrzmwDvgFZmrmEeB7\nRHoiIkMwlrWDm292di0LKT6R46+GSBEyewjtIk6enEVHx8ifmVyuIyOFTUWi0vDww5a1YoVlTZ9u\n14BPVEBlu9XSsi7fu+oZdqGl6uplFqywqquXWS0t61xZTGn4mgPrwksVL7FgjpYslqwKBoPWzJkf\ns6AhQRGyF61Zsz4+6ucml+vIFINCKhIlWdTcDBs2hHj33ecwK+olkt25/IU0ZBIMBmloaKK9fSW9\nvVuAzfT2Pk57+0oaGpoIhZybeuaE2Az0/wy8SnV1CS0tV1NTMxtN0ZRs8vl8NDRcg6knMnx57v37\nvznqjItcztiQ7NOwhUcEg0EWLVrN229PJl8XikIaMsnlglhOGCkD/fjx5eRi8SIpXh0dsGXLa4xc\nhGzkGRfpztjw2tBisVHPg0dELnbjyVfiUiHdOZgTWX56cBIZrVcHTLGezZvhqafg1VfN982bYdUq\nb1TJFO9qboZLLslsxkW6Mzbs3tapU1vZt285e/c2sm/fcqZObWXDhpAChzxT8OARkYtd/i4Ubrvg\nZiKXU89SYVeQPHRoJadPb6G/fzOnTz/OoUOjV/BTRT7JhdgZFyGgFVgONALLeO21gyMOX6Y7Y8Nr\nQ4vFRsGDR0Qudn5ip+kR/v5i1i8UbrvgZsJtU88y6dXxSpVM8bbIOjD21OCVgLmowxYGBr4/YqCb\n7joyhdTTKc7SbIs01NYui8pQDoaz7c0sAbjVKiv7iLV0adB6+OFc7YO3s/pbWtw1a6WQ2lYKU2TG\nz2fDs37S++yku7y3PhMj02wLSUls1G6XU96Kifq/xu2338STT2Z3nrRXVqBMhdu6+gupV0cKk93D\nVVb2MokXZoORhi/T7SHTZ8LdNNvCIwIBP9u2NdHTcz8m7yD3pYfdsA9OsU9kZ88GOHlyfUzBGvtE\nlsuErMgwimZMiDvZ68DMnXsJe/emf1FPdx0ZfSbcTcGDR7jhYueGfXCK2xbEilTwS3RH561eHSls\nubqo6zPhbgoePMINFzs37EMhSFSmt7y8j9LSpxgc/AHmZOndXh0pbLm6qBdST2chUs6DSI4lmpbZ\n1/cUg4PfpKrqDmbOvBVopLp6BS0tm9ixoxOfTzMmxB1ylS+kWUTulmzgKhfqgK6uri7q6vKSLCqS\nF2vWtNLevpLEd247mDZtE5bVxrlzIfr6AvT3m0WIzjtPiwiJO4RCIfz+AC+80E1vbynV1YNcf30t\ngYBfgW6O7Nmzh/r6eoB6YE+ut6+eBykqblifY7RiW5Mnd/Pb3waZPLmJ995byeDgRgYH53L6tMWh\nQ//B00/fwF13/ZXn1hORwtDRAWvX+jhxoo3Zs7cyZ85mZs/eyokTbaxd69MxWSSU8yBFxQ3rc6Qy\nBS1SIOcyYDUQ2V/LGuLo0Z1UVHhrPREpDPaaEnbuTl9fgO3bI0ts/+Y3tbS3q3es0KnnweXccKdc\nSNxQtS5xdUu73O8y9u49xE9+8gSmd6INEzgMX8lQVfYknzIpqS7ep+DB5dz4AY0PaMrKGiktXUJp\n6Q2Ult5MWZl7Axw3rM8xvNhWdLnfrcAeLKsaEyzkf39FEnFDIC75o+DB5dz4AY0PaAYHf8TQ0BBD\nQ99kaOgJBgfzH+Ak44aqdcOz1duA+4n9G9u9E/nfX5FE3BCIS/4oeHA5N35Ahwc0ybrW3XcH4oYF\nseKnoMETDJ95YfdO5H9/RRJxQyAu+aPgweXc+AGNDWhCwHO4LcBJxg3rczQ3w5NP+nj99TZOndrK\nnDn2EEU0e/XUi4CdSd5JVfYkf9wQiEv+KHhwOTd+QCMBjT1WPxm3BTjJuG1BLEj2N/YBnUAl8Bng\nRdyyvyKQeiCupO/CpODB5dxwpxwvcrGzhyvGE7n42bMGlgONwDJee+2ga04SbqpaZ59U9+8/jQlm\n4vmAzzBt2s1Mn/7Ped9fkWipBuJuTPoWb6sDrK6urnwvi+5qwWDQqqm50YLtFgy+v5Y9bLdqam60\ngsFgzveppWWdBTssWGbBkAX2/49bcGP430NR+/pi3vbVzY4fPx7+2/4y3G7xf2O1m7jXww9b1tKl\nQWvKlHXWuHGLLbjagissWGjBDVZJyfXWuHFLw4+/GD6u47+2Wy0t6/L9q3hSV1eXhblry0uJZvU8\nuJyb7pRtkTuOc5jhCnt8vpXhswZUkyCZSOLprZghik3ACkyPzWIqKu5R74K4lp2788orrVRXDwE/\nAH4H/AummJmZfQWXAA1J3sVdOVGSOlWYdDk3rmRpBzQHDtzKwIBFZHz+VhKv1wDmJLE+Z/voBeak\naQdU8X/jIWbNWsGTTypwEHeLnX0FsbOvQNONC5N6HiRt9h3H7bffSCQfw4e5w9BJIlVunEkjkq7R\nZ1+5L+lbMqfgQcZseMKUThLpcONMGpF0jT77yn1J35I5BQ8yZvH5GCUlR0g8awB0khjOjTNpRNI1\n8uwriOREuWd6tGROwYOMWXyxo+PHn6Km5qvoJJEaN9acEElXJAi2hy+ig+IQJq9nHPBF4ErgGsaN\nu5UpUzTd2MuUMCmOsXsizp4NcPLk+veX6J08ufb9k4SW6I1Qe0khCAT8bNvWRE+PPXzhxwxf3AX8\nHdHLyZvgeBfV1feyY4cfn0+Bg1cly9bKhTqgq6uri7q6vExTFRGRDHV0QHt7iGefvZWBgV9jLish\n4NOYwGFRgp/aQUvLJjZudM8sMq/Zs2cP9fX1APXAnlxvX8MWIiIyZslnX1Wi+g6FS8GDiIhkbHgO\nj6YiFzIFD1JUQqEQa9a0Mm/ecubObWTevOWsWdNKKKT6+iKZGL7UfC+aily4FDxI0XjooSCzZjXR\n3r6S7u4t7N27me7ux2lvX8msWU388IcKIETGKn72VUvLLWgqcuFS8CBFY9euNvr67LK50WtvLKSv\n73527tTaGyJO0VTkwqbgQYpGbBndeErgEnGSGxf1E+eozoMUDa0lIZI7blzUT5yjngcpGlpLQkTE\nGQoexHFundGgtSRERJyh4EEc5eYZDUrgEhFxhoIHcZSbZzQogUtExBlKmBRHmRkLyQKEBezevT6X\nuxNDCVwiIs5Qz4M4SjMaREQKn4IHcZRmNIiIFD4FD+Ko2BkNIaAVWA40AovZv/80N98coqMjX3so\nIiKZUvAgjorMaNgKNAErgS3AZuDf6Ov7Bj09TSxZonUkRES8yung4QvAb4G3w1/bgVsc3oa4mD2j\noaKiDVjP8FkXDfT03I/fr3UkRES8yung4XXgbqAOqAeexdxyznN4O+JS9sp6s2ZVAg1JXqV1JERE\nvMzpqZpb4v7/VUxvxHzgZYe3JS6mWRciIoUrm3UeSoFPAxOAbVncjrhQZNZFogBCsy5ERLwsG8HD\nlZj6vxOAM8CfAfuysB1xsfnza+nu3gXUYIpGdWPiyUHgIk6enEVHhxnmEBERb0nWr5yJcmAGcAGm\n5+FLwA3AnrjX1QFd1113HRdeeGHME83NzTTrquJpoVCIa6+9jQMHhoAHgQWYw20I2MmsWV9h9+7H\n8PlUElpEZCQdHR10xM1vf+utt9i2bRuY/ML462vWZSN4iPc0sB/487jH64Curq4u6urqcrAbkksd\nHXDXXX/F0aPNwKIEr9hBS8smNm5UqWgRkXTt2bOH+vp6yFPwkIs6D+NytB1xkeZmmDz5NTTjQkSk\n8Did8/AN4JeYKZvnA6uB64H7Hd6OeIBmXIiIFCangwcf8FNgGqZI1G+BmzH1HqTIaMaFiEhhcjp4\n+LzD7yceFplxsTDBs7vC62CIiIjXKBdBsmbhQj8VFfdgZu4OhR8dAnZQUXEvCxf687dzIiIyZtks\nEiVF7o47fHzqU534/QF2717PwEApZWWDzJ9fSyDQqWmaIiIepeBBssrn82k6pohIgdGwhYiIiKRF\nwYOIiIikRcMWUhRCoVA496I7LvfCr9wLEZE0KXiQgvfQQ0Huums1fX0PYBbpMmtsdHfv5uc/b+LB\nBzu54w4FECIiqdKwhRS8XbvawoHDQiIFq8YBC+nru5+dOwP52zkREQ9S8CAFz6yhsSDJs1pjQ0Qk\nXQoepOBpjQ0REWcpeJCCF1ljIxGtsSEiki4FD5IzHR1w880hZsxopapqOePHN1JVtZwZM1q5+eYQ\nHR3Z2a5ZQ2NXkme1xoaISLoUPEjOLF4cpKeniUOHVnL69Bb6+zdz+vTjHDq0kp6eJpYsCWVlu4GA\nn5qaxGts1NTcSyCgNTZERNKh4EFy5u672+jpSTzroafnfvz+7Mx6eOYZHzU1nUyfvonKyhWUlzdS\nWbmC6dM3UVPTyTPPaJqmiEg6VOdBcsbMakgWICxg9+71WdluczM0N/sArbEhIuIE9TxIzgyf9RAC\nWoHlwCfZt+8ga9a0EgplZ/hCREScoeBBciZ21kMQaAJWAluAzZw791va21cya1YTP/yhAggREbdS\n8CA5EzvroQ1Q1UcRES9S8CA5s3Chn4oKe9bDy6jqo4iINyl4kJy54w4f+/d30tKyifHjj6GqjyIi\n3qTgQXLK5/OxcWMbs2dPQ1UfRUS8ScGD5IWqPoqIeJeCB8mLXFR9zFc5bBGRQqciUZIXdtXHs2cD\nnDy5nnPnShk/fpDJk2vfr/rY3Dy29w6FQvj9AbZv/w29vYfp79+IKU5VQn//EKdP72bChCaWLOkE\nVF1SRCRdCh4kL5ys+mgHC7t3dxMKDfDGGwexrI2YnIr1mOmgtthy2Bs3quqkiEi6NGwhnvbQQ0Fm\nzWqivX0l3d1bCIWuwrJ+DNQAz6PpoCIizlPwIJ62a1cbfX12sak3gOeAyzDVKyej6aAiIs5T8CCe\nZnoPFhApdz0Z+DameuV4NB1URMR5Ch7Es0KhEIcOvYnpXbDLXY8H7IBC00FFRLJBwYPkVSgUYs2a\nVubNW87cuY3Mm7c8pZU17VyHd96ZiOldiA4YzmECCj+QaDroi1RU3MvChZlPBxURKUaabSF589BD\nQe66a3U4Z8FMpYQhurt38/OfN/Hgg53ccUfiqZSRXIdfYHoX7OW+/cANmIDCB3SG33t9+DUDXHDB\nEf74x6fx+TRNU0RkLNTzIHkTm+yY3sqakVwHu3fhXSIBw59iehsI/78N2ApsBr7GbbfdpMBBRCQD\nCh4kbyIBQCIjT6U0MyVKiPQuWEQChr8Fvko2q1eKiBQzBQ+SN5EAIJHkUylDoRDHjx8hMpPCBzxK\nJGCYigkofgEsBq6houJWpk/f9H71ShERGTvlPEjemKmSFokDiNiplHYVySee+A3Hjx/GsuYDO4GG\n8Cui8xvuoaTkPSoqpjB58keprfXT0jL2ctciIhJLwYPkzfz5tXR37yK2fLQtMpUyNrHSLjldg6nr\ncD9m6GMcpsfhk1RUdPHgg5uTJluKiEhmFDxI3ixc6OfnP2+iry86ABgCdoWnUnYC0YmVdsnpNkxv\nhWZSiIjkg4IHyZs77vDxqU91hhe1Ws/AQCllZYPMn19LIND5fgBgEifXMbzk9PCFtT7wgUYFDiIi\nWaaESckrn8/Hxo1tPP98O4sWzQVg+/ZXueGGlveLRZnESZWcFhFxC/U8SN6NVizqggvKMRUkA0RK\nTo+cJyEiItmjngfJu9GKRVVWniWVktOq4SAikhvqeZC8MzkNdjXJUPjf3dhJkIcPv0FJiYVlJS85\nXVZ2hJqap3nmGU3JFBHJNgUPkneRYlFBYDUmtyEyfHHmzE5KSz/P4OAOYBHDEyV3cPvtm9i4UYmS\nIiK5oGELybtIsSh7We344YtFDA5+m9LSL5Co5LRWyBQRyS31PEjeRYpFRQ9fxLuFmpoHWbRo04jT\nOkVEJPsUPEjeBQJ+tm1roqdn5LUuoIKNG9uSPC8iIrmiYQvJu2ee8VFT00lZ2UlUw0FExP0UPEje\nNTfDk0/6uP32GzE1HBJRDQcREbdQ8CCusXChn4qKRDUclBQpIuImynkQ10h1rQsREckv9TwUmY6O\njnzvwojstS5efnkrr766mZdf3srGjW2eDhzc3uaFSG2ee2rz4uJ08PAV4NfAO8Bx4J+AOQ5vQzKg\nD3juqc1zT22ee2rz4uJ08PBx4O+BBcBNmGGRp4AKh7cjIiIieeJ0zsOtcf9fg6k5XAf8yuFtiYiI\nSB5kO+fhwvD3N7O8HREREcmRbM62KAG+A2zD1B1O6JVXXsniLki8t956iz179uR7N4qK2jz31Oa5\npzbPrXxfO5PVAnbC9zDDGP8XcCTB89MwyZWXZnEfRERECtVh4FrgaK43nK3g4e+BRkwC5YERXjct\n/CUiIiLpOUoeAodsKAH+F/A6UJPnfREREREP+D5wEtPj8MGor/PyuVMiIiLiXkPAYPh79Ndn87lT\nIiIiIiIiIiIiIiIiIiIiUtTuY3guQ3z9hsuBzcBbmMWxdgAz4l7TADwLnMIkVz5HbELl/gTbeSDu\nPaAc+f8AAAV6SURBVD4EPB5+jxDwP4DyMf5ebnYfmbX5rAQ/b3+tjHqPycD/F36Pt4CfAhfEbUdt\nHuFEm+9P8LyO87GfWy4BHgaOYdprD7HtDTrOo91Hbtp8f4Lt6Dgfe5vXYBacDAJvA53AxXHv4brj\n/D7gd+Edtb+mRj1fA5wAvgl8BHMSvRWIXku5AfPL+DGNVAN8Chgf9Zpe4N647VRGPV8K/B54Jryd\nxcAh4H9m+gu60H1k1ubj4n72YuBrmIMuerGyfwV+i1nQbGF4m5ujnlebRzjV5jrOI+4j83PLc8BO\n4KPh5+8FBoCro16j4zziPnLT5jrOI+4jszavBHqAx4B5wBWYQGIXsTWbXHec3wf8ZoTnHwF+Msp7\n7AT+31Fe0wv8zQjP34o5QD8Y9VgTcAaoGuW9veY+Mm/zeL8B/iHq/5djIuBrox5bEH7sw+H/q80j\nnGhz0HEe7T4yb/N3gf877rE3MIvzgY7zePeR/TYHHefR7iOzNl+KaavodrkQcwwvDv8/Z8d5ugtj\nfRhTDvM1oAOojnqfZcAfgSeB45hA4T9F/ezFwHxMF8l2TFfX88DHEmznbsxB+BvgHmK7UxowUdOx\nqMeeAiYA9Wn+Pl6QSZvHq8dEmhuiHmvA3BX/OuqxXeHHFkW9Rm3uXJvbdJxHZNrmW4DVmC7bceF/\nj8ecY0DHeSLZbnObjvOITNp8AmAB56IeO4sJDOzrqCuP81uA2zDdJYsxXVZHgSmYCGYIM37yN8BV\nmANmEFMwCkz3yRDmIPoc5oT6IPAeMDtqO3cC12G6ZNZixnai79r+N/BEgv17DxM9FZJM2zze94E/\nxD12D/Bqgte+Gn4/UJs73eag4zyaE20+EdMNO4Q5ub5F5G4MdJzHy0Wbg47zaJm2+UWYNv4Opu0r\nMRWdh4AfhF/jieO8AvOL/1fM+hRDwM/iXvMvmIQaMFHPELA+7jW/ZXgCTbRPhX9ucvj//xsTmcUr\nxIMtXrptHm0i5sD7r3GPp3qwqc2da/NEdJxHjKXNN2GSy24ErgT+FpOQfUX4eR3nI8tGmyei4zxi\nLG1+E7APE1T0Y4Y5XsIsRAk5PM7THbaI1ofp+piN6U0YYPjS2/8/JqsTIot3xL/mlajXJLIr/N3u\nnTgGfCDuNZMx3WXHKGzptnm0VZiL2U/jHj/G8Gxdwo8di3qN2ty5Nk9Ex3lEum1+OfBJzJ3tc+Gf\n/e+Yk+pfhl+j43xk2WjzRHScR4zl3PJ0+PU+TLLl54DpmGEQyOFxnknwMAGoxQQF/Zgxlj+Je80c\nzFQdwt+PJHjN3KjXJHJN+LsdfGzHRLbRv/xSzNhPV4r77lXptnm0tZgo9kTc4zsw03jiE2wuwLQ1\nqM2dbvNEdJxHpNvm9nlsMO41Q0Sy0HWcjywbbZ6IjvOITM4tb2Kmci7GBBL2bApXHuffxoy9VId3\n5nFMl6w9B/WT4Y1/HhMZfQnTIIui3uNvwj+zMvyarwOniSSNLMR04VwdfuzPMFNI/inqPcZhpp48\nHX7dYuAgZp5qoXGizQk/N4g5QBL5JfAfxE7t+Zeo59Xmzra5jvNYmbZ5KeaO7QXMSbMGuAvT/rdE\nbUfHeUQu2rwBHefRnDi3rMEcuzXA7Zgei7a47bjuOO/AZImexRwAjzI8SloD7MV0x+wBViR4n7vD\nO3oK+BWxDXMNJnI6GX6PVzDjaPGrcs7ANPxpTON9l8IsKuJUmz/AyL07F2KKirwd/vopMCnuNWrz\niEzbXMd5LCfa/LLwzx3FnFt+w/BphDrOI3LR5jrOYznR5t/AtPdZzJDGnQm2o+NcRERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERE8ur/ANBpVY9jW9RvAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import sys\n", + "import getopt\n", + "sys.path.insert(1,\"/usr/local/science/clag/\")\n", + "import clag\n", + "%pylab inline\n", + "\n", + "from scipy.stats import norm\n", + "from scipy.stats import lognorm\n", + "\n", + "ref_file=\"lc/1367A.lc\"\n", + "echo_file=\"lc/9157A.lc\"\n", + "\n", + "\n", + "dt = 0.01\n", + "t1, l1, l1e = np.loadtxt(ref_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.00964867, 0.02886003, 0.0556922 , 0.08632291, 0.13380051,\n", + " 0.20739079, 0.32145572, 0.49825637])" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "\n", + "fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029, \n", + " 0.25819945, 0.40020915, 0.62032418])\n", + "# fqL = np.logspace(np.log10(0.0006),np.log10(1.2),11)\n", + "nfq = len(fqL) - 1\n", + "fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.)\n", + "\n", + "\n", + "fqd\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.342e-01 5.077e+01 inf -- -5.530e+02 -- 1 1 1 1 1 1 1 1\n", + " 2 7.674e-01 5.065e+01 8.300e+01 -- -4.700e+02 -- 0.653018 0.587019 0.568277 0.567457 0.566281 0.566085 0.565773 0.566163\n", + " 3 3.298e+00 5.043e+01 8.075e+01 -- -3.893e+02 -- 0.414806 0.209135 0.141159 0.13784 0.133393 0.132728 0.131612 0.132761\n", + " 4 1.572e+00 5.010e+01 7.754e+01 -- -3.117e+02 -- 0.322539 -0.0834456 -0.273066 -0.284295 -0.297612 -0.299435 -0.302479 -0.300412\n", + " 5 5.908e-01 4.964e+01 7.386e+01 -- -2.379e+02 -- 0.302357 -0.214604 -0.654658 -0.688754 -0.723838 -0.729279 -0.736418 -0.733888\n", + " 6 3.713e-01 4.877e+01 6.953e+01 -- -1.683e+02 -- 0.284419 -0.200357 -0.96379 -1.05472 -1.13798 -1.15477 -1.17031 -1.16748\n", + " 7 2.709e-01 4.671e+01 6.269e+01 -- -1.056e+02 -- 0.277768 -0.185001 -1.13047 -1.34026 -1.52128 -1.56845 -1.6043 -1.60101\n", + " 8 2.135e-01 4.361e+01 5.281e+01 -- -5.282e+01 -- 0.277012 -0.185189 -1.16375 -1.49463 -1.83211 -1.9477 -2.03737 -2.03476\n", + " 9 1.764e-01 3.767e+01 4.019e+01 -- -1.264e+01 -- 0.282161 -0.184207 -1.17891 -1.53049 -2.01851 -2.24569 -2.46562 -2.46922\n", + " 10 1.508e-01 2.738e+01 2.645e+01 -- 1.382e+01 -- 0.289545 -0.182463 -1.18795 -1.52893 -2.08812 -2.41103 -2.87498 -2.90486\n", + " 11 1.349e-01 1.468e+01 1.390e+01 -- 2.772e+01 -- 0.293547 -0.180898 -1.1897 -1.52803 -2.10944 -2.46526 -3.22702 -3.34288\n", + " 12 1.358e-01 5.365e+00 5.378e+00 -- 3.309e+01 -- 0.295456 -0.179941 -1.19052 -1.52801 -2.11928 -2.48294 -3.46233 -3.79368\n", + " 13 1.868e-01 1.338e+00 1.633e+00 -- 3.473e+01 -- 0.297315 -0.17923 -1.19104 -1.52666 -2.12491 -2.48975 -3.55567 -4.30889\n", + " 14 6.248e-01 2.604e-01 4.517e-01 -- 3.518e+01 -- 0.299091 -0.178645 -1.191 -1.52463 -2.12805 -2.4915 -3.5672 -5.11363\n", + " 15 2.744e+02 2.611e-01 7.022e-02 -- 3.525e+01 -- 0.300248 -0.178286 -1.19075 -1.52307 -2.12961 -2.49161 -3.56337 -8\n", + " 16 2.745e+02 2.782e-01 4.368e-04 -- 3.525e+01 -- 0.300566 -0.178158 -1.19062 -1.52252 -2.13009 -2.49151 -3.5617 -8\n", + " 17 2.745e+02 2.805e-01 6.410e-05 -- 3.525e+01 -- 0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n", + "********************\n", + "0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n", + "0.238931 0.202434 0.232634 0.177249 0.153039 0.132988 0.297259 3285.23\n", + "-0.000915535 -0.00131061 -0.00195128 -0.00497899 -0.0226059 -0.0776175 -0.280541 -0.000206646\n", + "********************\n" + ] + } + ], + "source": [ + "P1 = clag.clag('psd10r', [t1], [l1], [l1e], dt, fqL)\n", + "p1 = np.ones(nfq)\n", + "p1, p1e = clag.optimize(P1, p1)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 3.525e+01 3.480e+01 3.006e-01 5.395e-01 0.891 +++\n", + "+++ 3.525e+01 3.431e+01 3.006e-01 6.590e-01 1.87 +++\n", + "+++ 3.525e+01 3.458e+01 3.006e-01 5.993e-01 1.34 +++\n", + "+++ 3.525e+01 3.469e+01 3.006e-01 5.694e-01 1.11 +++\n", + "+++ 3.525e+01 3.475e+01 3.006e-01 5.545e-01 0.997 +++\n", + "\t### errors for param 1 ###\n", + "+++ 3.525e+01 3.476e+01 -1.781e-01 2.430e-02 0.973 +++\n", + "+++ 3.525e+01 3.421e+01 -1.781e-01 1.255e-01 2.07 +++\n", + "+++ 3.525e+01 3.451e+01 -1.781e-01 7.491e-02 1.48 +++\n", + "+++ 3.525e+01 3.464e+01 -1.781e-01 4.961e-02 1.21 +++\n", + "+++ 3.525e+01 3.470e+01 -1.781e-01 3.696e-02 1.09 +++\n", + "+++ 3.525e+01 3.473e+01 -1.781e-01 3.063e-02 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.781e-01 2.747e-02 1 +++\n", + "\t### errors for param 2 ###\n", + "+++ 3.525e+01 3.511e+01 -1.191e+00 -1.074e+00 0.276 +++\n", + "+++ 3.525e+01 3.495e+01 -1.191e+00 -1.016e+00 0.598 +++\n", + "+++ 3.525e+01 3.485e+01 -1.191e+00 -9.870e-01 0.8 +++\n", + "+++ 3.525e+01 3.479e+01 -1.191e+00 -9.725e-01 0.91 +++\n", + "+++ 3.525e+01 3.476e+01 -1.191e+00 -9.652e-01 0.968 +++\n", + "+++ 3.525e+01 3.475e+01 -1.191e+00 -9.616e-01 0.997 +++\n", + "\t### errors for param 3 ###\n", + "+++ 3.525e+01 3.482e+01 -1.522e+00 -1.345e+00 0.865 +++\n", + "+++ 3.525e+01 3.432e+01 -1.522e+00 -1.257e+00 1.86 +++\n", + "+++ 3.525e+01 3.459e+01 -1.522e+00 -1.301e+00 1.32 +++\n", + "+++ 3.525e+01 3.471e+01 -1.522e+00 -1.323e+00 1.08 +++\n", + "+++ 3.525e+01 3.476e+01 -1.522e+00 -1.334e+00 0.97 +++\n", + "+++ 3.525e+01 3.473e+01 -1.522e+00 -1.329e+00 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.522e+00 -1.331e+00 0.998 +++\n", + "\t### errors for param 4 ###\n", + "+++ 3.525e+01 3.481e+01 -2.130e+00 -1.977e+00 0.874 +++\n", + "+++ 3.525e+01 3.429e+01 -2.130e+00 -1.901e+00 1.91 +++\n", + "+++ 3.525e+01 3.457e+01 -2.130e+00 -1.939e+00 1.35 +++\n", + "+++ 3.525e+01 3.470e+01 -2.130e+00 -1.958e+00 1.1 +++\n", + "+++ 3.525e+01 3.476e+01 -2.130e+00 -1.968e+00 0.983 +++\n", + "+++ 3.525e+01 3.473e+01 -2.130e+00 -1.963e+00 1.04 +++\n", + "+++ 3.525e+01 3.474e+01 -2.130e+00 -1.965e+00 1.01 +++\n", + "+++ 3.525e+01 3.475e+01 -2.130e+00 -1.966e+00 0.997 +++\n", + "\t### errors for param 5 ###\n", + "+++ 3.525e+01 3.474e+01 -2.491e+00 -2.358e+00 1.01 +++\n", + "+++ 3.525e+01 3.512e+01 -2.491e+00 -2.425e+00 0.263 +++\n", + "+++ 3.525e+01 3.496e+01 -2.491e+00 -2.392e+00 0.579 +++\n", + "+++ 3.525e+01 3.486e+01 -2.491e+00 -2.375e+00 0.781 +++\n", + "+++ 3.525e+01 3.480e+01 -2.491e+00 -2.367e+00 0.893 +++\n", + "+++ 3.525e+01 3.477e+01 -2.491e+00 -2.363e+00 0.952 +++\n", + "+++ 3.525e+01 3.476e+01 -2.491e+00 -2.361e+00 0.982 +++\n", + "+++ 3.525e+01 3.475e+01 -2.491e+00 -2.360e+00 0.997 +++\n", + "\t### errors for param 6 ###\n", + "+++ 3.525e+01 3.507e+01 -3.561e+00 -3.413e+00 0.363 +++\n", + "+++ 3.525e+01 3.484e+01 -3.561e+00 -3.339e+00 0.814 +++\n", + "+++ 3.525e+01 3.468e+01 -3.561e+00 -3.301e+00 1.13 +++\n", + "+++ 3.525e+01 3.477e+01 -3.561e+00 -3.320e+00 0.962 +++\n", + "+++ 3.525e+01 3.473e+01 -3.561e+00 -3.311e+00 1.04 +++\n", + "+++ 3.525e+01 3.475e+01 -3.561e+00 -3.315e+00 1 +++\n", + "\t### errors for param 7 ###\n", + "+++ 3.525e+01 3.524e+01 -8.000e+00 -6.000e+00 0.0178 +++\n", + "+++ 3.525e+01 3.515e+01 -8.000e+00 -5.000e+00 0.187 +++\n", + "+++ 3.525e+01 3.494e+01 -8.000e+00 -4.500e+00 0.618 +++\n", + "+++ 3.525e+01 3.466e+01 -8.000e+00 -4.250e+00 1.18 +++\n", + "+++ 3.525e+01 3.482e+01 -8.000e+00 -4.375e+00 0.851 +++\n", + "+++ 3.525e+01 3.475e+01 -8.000e+00 -4.312e+00 1 +++\n", + "********************\n", + "0.300605 -0.178131 -1.19059 -1.52241 -2.13019 -2.49148 -3.56144 -8\n", + "0.253864 0.205597 0.228999 0.191096 0.1638 0.131949 0.246154 3.6875\n", + "********************\n" + ] + } + ], + "source": [ + "p1, p1e = clag.errors(P1, p1, p1e)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAGp1JREFUeJzt3X9s4/d93/HnxZaj5dxOi12RZ+98bLhdaBhJDbLSHzrb\n5TIn2IY26dBOIbFsiLTCQdoOuHUrcMMgzZCAYS2G9uqua3FbD9kQjNQNaDYH2LXFUKW5UVqnimm7\nbmadUT+W5kxmTXvr6kSpVnt/UHeR1I9+8I7fL389HwAhivx8vp+3cJ+TXvx+P9/vFyRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvSA/iGwBvwh0AQ+A1zsakWSJKkn3AT+NvA08H7gs8AW\n8K4u1iRJknrQ48BbwHPdLkSSJJ3sHTGONbb39fdjHFOSJPW4M7QON/xqtwuRJEmn83BM4/xz4BmO\nP9Rwbu8hSZLa88beo6PiCAk/DXw38AJw+4g255544onbt28f9bYkSTrGl4EJOhwUogwJZ2gFhI8A\neWD7mLbnbt++zac//WmefvrpCEvqvMuXL3P16tW+HO9BttVu33ban6btSW2Oez/uf7NOca51vr1z\nLcy51vn2Uc611157jY997GNP0tob3zch4WeAIq2Q8CaQ3Hv9DrAT6vD000+TzWYjLKnzxsbGYq25\nk+M9yLba7dtO+9O0PanNce/H/W/WKc61zrd3roU51zrfPuq5FpWHItz2Z4F3AjPA39/3+CLwm4fa\nngM+8YlPfIJz5/pvWcL73ve+vh3vQbbVbt922p+m7Ultjnq/VCpRLBZPXUsvca51vr1zLcy51vn2\nUc21N954g2vXrgFco8N7Es50cmMPIAusr6+v92XqVn/58Ic/zKuvvtrtMjQEnGuKQ7VaJZfLAeSA\naie3Hed1EiRJUh8xJGjo9OvuX/Uf55r6nSFBQ8df3IqLc039zpAgSZKCDAmSJCnIkCBJkoIMCZIk\nKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnI\nkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAg\nSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmS\nggwJkiQpyJAgSZKCDAmSJCkoypDwAvBZ4MvAW8BHIhxLkiR1WJQh4V3AF4Af2vv+7QjHkiRJHfZw\nhNv+xb2HJEnqQ65JkCRJQYYESZIUZEiQJElBUa5JaNvly5cZGxs78FqxWKRYLHapIkmSekepVKJU\nKh147c6dO5GNdyayLR/0FvC9wKtHvJ8F1tfX18lmszGVJElS/6tWq+RyOYAcUO3ktqPck3AW+Iv7\nvn8P8CzwVeBLEY4rSZI6IMqQMAH8yt7zt4Gf2Hv+KWA2wnElSVIHRBkSPocLIyVJ6lv+EZckSUGG\nBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJ\nkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhT0cLcLkKJQKpUolUoA7OzssL29zYUL\nFxgdHQWgWCxSLBa7WaIk9TxDggbS/hBQrVbJ5XKUSiWy2WyXK5Ok/uHhBkmSFGRIkCRJQYYESZIU\nZEiQJElBhgQNrK2tLWZnZ5mengZgenqa2dlZtra2uluYJPUJz27QwGk2mxQKBWq1Go1G497r9Xqd\ner3OzZs3yWQylMtlEolEFyuVpN5mSNBAaTabTE1NsbGxcWSbRqNBo9Hg0qVLVCoVg4IkHcHDDRoo\nhULh2ICwX71ep1AoRFyRJPUvQ4IGxubmJrVara0+tVrNNQqSdARDggbG4uLigTUIp9FoNFhYWIio\nIknqb4YEDYy1tbVY+0nSoDMkaGDs7u7G2k+SBp0hQQNjZGQk1n6SNOgMCRoYExMT99VvcnKyw5VI\n0mAwJGhgzM/Pk0wm2+qTTCaZm5uLqCJJ6m+GBA2MVCpFJpNpq08mkyGVSkVTkCT1OUOCBkq5XCad\nTp+qbTqdZmlpKeKKJKl/GRI0UBKJBJVKhXw+f+Shh2QyST6fZ2VlhfHx8ZgrlKT+YUjQwEkkEiwv\nL7O6usrMzMy9PQvpdJqZmRlWV1dZXl42IEjSCbzBkwZWKpXi+vXrVKtVcrkcN27cIJvNdrssSeob\nUe9J+EFgE/g68OvAcxGPJ0mSOiTKkPBR4CeBReBZ4BZwEzgf4ZiSJKlDogwJPwL8K+A68DvA3wO+\nBHwywjElSVKHRBUSHgGywC8fev2XgamIxpQkSR0U1cLFx4GHgOah178CtHdJPOk+lEolSqUSADs7\nO1y8eJErV64wOjoKQLFYpFgsdrNESep5nt2ggWQIOJ3DYWp7e5sLFy4YpiQBcCai7T4CvAl8P/Af\n9r3+U8D7gb90qH0WWH/++ecZGxs78Ia/pKR43D1VdH193VNFpR61P9jfdefOHW7dugWQA6qdHC+q\nPQl/DKwDH+JgSPgg8JmjOl29etVfTpIkHSH0wfluwI9ClGc3/ATwA8AM8DSt0yH/PPBzEY4pqU1b\nW1vMzs4yPT0NwPT0NLOzs2xtbXW3MEldF+WahBvAY8A8cA74b8Bfo3UapKQuazabFAoFarUajUbj\n3uv1ep16vc7NmzfJZDKUy2USiUQXK5XULVEvXPzZvYekHtJsNpmammJjY+PINo1Gg0ajwaVLl6hU\nKgYFaQh5gydpCBUKhWMDwn71ep1CoRBxRZJ6kSFBGjKbm5vUarW2+tRqNdcoSEPIkCANmcXFxQNr\nEE6j0WiwsLAQUUWSepUhQRoya2trsfaT1L8MCdKQ2d3djbWfpP5lSJCGzMjISKz9JPUvQ4I0ZCYm\nJu6r3+TkZIcrkdTrDAnSkJmfnyeZbO9mrMlkkrm5uYgqktSrDAnSkEmlUmQymbb6ZDIZUqlUNAVJ\n6lmGBGkIlctl0un0qdqm02mWlpYirkhSLzIkSEMokUhQqVTI5/NHHnpIJpPk83lWVlYYHx+PuUJJ\nvcCQIA2pRCLB8vIyq6urzMzM3NuzkE6nmZmZYXV1leXlZQOCNMSivsGTpB6XSqW4fv36vXvS37hx\ng2w22+2yJPUA9yRIkqQgQ4IkSQrycIM0xEqlEqVSCYCdnR0uXrzIlStXGB0dBaBYLFIsFrtZoqQu\nMiRIQ8wQIOk4Hm6QJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAk\nSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElB\nhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUFFVI+EfACvA14A8iGkOSJEUoqpAwAiwB/yKi7UuS\npIg9HNF2X977+vGIti9JkiLmmgRJkhQU1Z4ESeq4UqlEqVQCYGdnh+3tbS5cuMDo6CgAxWKRYrHY\nzRKlgdJOSHgZmD+hzXcC1fuuRpKOsT8EVKtVcrkcpVKJbDbb5cqkwdROSPhp4N+e0Gb7AWrh8uXL\njI2NHXjNTwaSJLXs35t21507dyIbr52Q8NW9R2SuXr3qJwJJko4Q+uB8d69aFKJak/AU8O69rw8B\n3wGcAb4IvBnRmJIkqYOiOrthgdbahJeBs8AXgHUgmqgjaWhsbW0xOzvL9PQ0ANPT08zOzrK1tdXd\nwqQBFNWehI/jNRIkdVCz2aRQKFCr1Wg0Gvder9fr1Ot1bt68SSaToVwuk0gkulipNDg8BVJSz2s2\nm0xNTbGxsXFkm0ajQaPR4NKlS1QqFYOC1AFeTElSzysUCscGhP3q9TqFQiHiiqThYEiQ1NM2Nzep\n1Wpt9anVaq5RkDrAkCCppy0uLh5Yg3AajUaDhYWFiCqShochQVJPW1tbi7WfpG8yJEjqabu7u7H2\nk/RNhgRJPW1kZCTWfpK+yZAgqadNTEzcV7/JyckOVyINH0OCpJ42Pz9PMplsq08ymWRubi6iiqTh\nYUiQ1NNSqRSZTKatPplMhlQqFU1B0hAxJEjqeeVymXQ6faq26XSapaWliCuShoMhQVLPSyQSVCoV\n8vn8kYcekskk+XyelZUVxsfHY65QGkzeu0FSX0gkEiwvL7O1tcXCwgKf//znqdfrpNNpXnjhBebn\n5yM7xFAqlSiVSgDs7Oywvb3NhQsXGB0dBaBYLFIsFiMZW+qmM90uYE8WWF9fXyebzXa7Fkl9oFqt\nksvliPv3RrfGlY5yd04COaDayW17uEGSJAUZEiTpFLa2tpidnWV6ehqA6elpZmdnvZGUBpprEiTp\nGM1mk0KhQK1WO3CjqXq9Tr1e5+bNm2QyGcrlMolEoouVSp1nSJDUNw4vILx48SJXrlyJbAFhs9lk\namqKjY2NI9s0Gg0ajQaXLl2iUqkYFDRQDAmS+kbcZxEUCoVjA8J+9XqdQqHA8vJyxFVJ8XFNgiQF\nbG5uUqvV2upTq9Vco6CBYkiQpIDFxcUDaxBOo9FosLCwEFFFUvwMCZIUsLa2Fms/qRcZEiQpYHd3\nN9Z+Ui8yJEhSwMjISKz9pF5kSJCkgImJifvqNzk52eFKpO4xJEhSwPz8/JF3nDxKMplkbm4uooqk\n+BkSJCkglUqRyWTa6pPJZCK7E6XUDYYESTpCuVwmnU6fqm06nWZpaSniiqR4GRIk6QiJRIJKpUI+\nnz/y0EMymSSfz7OyssL4+HjMFUrRMiRI0jESiQTLy8usrq4yMzNzb89COp1mZmaG1dVVlpeXDQga\nSN67QZJOIZVKcf36darVKrlcjhs3bpDNZrtdlhQp9yRIkqQg9yRI0gnivkW11CsMCZJ0AkOAhpWH\nGyRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUlBUISEF/DywAXwN+J/Ay8BIRONJ\nkqQOi+piSu8FzgAv0QoI7wP+JXAW+NGIxpQkSR0UVUj4pb3HXVvAPwM+iSFBkqS+EOeahDHgqzGO\nJ0mSHkBc925IAz8M/EhM40lSXzt8U6nt7W0uXLjgTaUUq3b3JLwMvHXC4/AN1p8AfhG4AVx/gFol\naWgUi0VeeeUVHn/8cTY2Nnj99dfZ2Njg8ccf55VXXjEgKBZn2mz/2N7jONvAN/aePwEsA6vAx4/p\nkwXWn3/+ecbGxg68YVqWNGyazSaFQoFarUaj0fhT7yeTSTKZDOVymUQi0YUK1S379zDddefOHW7d\nugWQA6qdHK/dkNCOJ2kFhDXgY8Dbx7TNAuvr6+tks4d3REjS8Gg2m0xNTbGxsXFi23Q6TaVSMSgM\nuWq1Si6XgwhCQlQLF58EPkdrr8KPAgkgufeQJB2hUCicKiAA1Ot1CoVCxBVpmEW1cPGDtBYrvgf4\n3X2vvw08FNGYktTXNjc3qdVqbfWp1WpsbW2RSqWiKUpDLao9CZ/a2/ZDe1/fse97SVLA4uJicA3C\ncRqNBgsLCxFVpGHnvRskqUesra3F2k86iSFBknrE7u5urP2kkxgSJKlHjIzc3z3w7refdBJDgiT1\niImJifvqNzk52eFKpBZDgiT1iPn5eZLJ9s4UTyaTzM3NRVSRhp0hQZJ6RCqVIpPJtNUnk8l4+qMi\nY0iQpB5SLpdJp9OnaptOp1laWoq4Ig0zQ4Ik9ZBEIkGlUiGfzx956CGZTJLP51lZWWF8fDzmCjVM\nDAmS1GMSiQTLy8usrq4yMzNzb89COp1mZmaG1dVVlpeXDQiKXFSXZZYkPaBUKsX169fv3cDnxo0b\n3gRPsTIkSFIP2n9L4J2dHS5evMiVK1cYHR0FoFgsUiwWu1mihoAhQZJ6kCFAvcA1CZIkKciQIEm6\np1Qq8eKLL/LUU0/x6KOP8sgjj/Doo4/y1FNP8eKLL947BKLh4OEGSRIAzWaTa9euUavVDtyyend3\nlzfffJPd3V2uXbvGBz7wARKJRBcrVVwMCZIkms0mU1NTbGxsHNmm0WjQaDS4dOkSlUrFoDAEPNwg\nSaJQKBwbEPar1+sUCoWIK1IvMCRI0pDb3NykVqu11adWq7G1tRVNQeoZhgRJGnKLi4sH1iCcRqPR\nYGFhIaKK1CsMCZI05NbW1mLtp/5hSJCkIbe7uxtrP/UPQ4IkDbmRkZFY+6l/GBIkachNTEzcV7/J\nyckOV6JeY0iQpCE3Pz9PMplsq08ymWRubi6iitQrDAmSNORSqRSZTKatPplMhlQqFU1B6hmGBEkS\n5XKZdDp9qrbpdJqlpaWIK1IvMCRIkkgkElQqFfL5/JGHHpLJJPl8npWVFcbHx2OuUN1gSJAkAa2g\n8NJLL/HMM89w/vx5zp49y8jICGfPnuX8+fM888wzvPTSSwaEIeINniRJ9xSLRYrFYrfLUI9wT4Ik\nSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkK\niiokvApsA18HbgP/BjgX0ViSJCkCUYWEXwH+BnAR+D4gDfxCRGNJkqQIRHUXyKv7nn8J+DHgM8BD\nwJ9ENKYkSeqgONYkvBv4m8AyBgRJkvpGlCHhx4A/An4P+HbgoxGOJUmSOqydkPAy8NYJj+y+9j8O\nPAt8CPgG8O+BMw9csSRJikU7f7Qf23scZ5tWIDjsSVprE54DVgLvZ4H1559/nrGxsQNvFItFisVi\nG2VKkjSYSqUSpVLpwGt37tzh1q1bADmg2snx4vpkf55WgPgu4Fbg/Sywvr6+TjabDbwtSZJCqtUq\nuVwOIggJUZzdMLn3+M/AHwDvARaALwKrEYwnSZIiEMXCxa8Bfx34T0AN+Hngt2jtRfh/EYwnSZIi\nEMWehN8G/nIE25UkSTHy3g2SJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ\nkoIMCZIkKciQIEmSggwJkiQpKIp7N0iSdGqlUolSqQTAzs4O29vbXLhwgdHRUQCKxSLFYrGbJQ4t\nQ4Ikqav2h4BqtUoul6NUKpHNZrtcmTzcIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ6rqtrS1mZ2eZ\nnp4GYHp6mtnZWba2trpb2JDz7AZJUtc0m00KhQK1Wo1Go3Hv9Xq9Tr1e5+bNm2QyGcrlMolEoouV\nDidDgiSpK5rNJlNTU2xsbBzZptFo0Gg0uHTpEpVKxaAQMw83SJK6olAoHBsQ9qvX6xQKhYgr0mGG\nBElS7DY3N6nVam31qdVqrlGImSFBkhS7xcXFA2sQTqPRaLCwsBBRRQoxJEiSYre2thZrP90fQ4Ik\nKXa7u7ux9tP9MSRIkmI3MjISaz/dH0OCJCl2ExMT99VvcnKyw5XoOIYESVLs5ufnSSaTbfVJJpPM\nzc1FVJFCDAmSpNilUikymUxbfTKZDKlUKpqCFGRIkCR1RblcJp1On6ptOp1maWkp4op0mCFBktQV\niUSCSqVCPp8/8tBDMpkkn8+zsrLC+Ph4zBXKkCBJ6ppEIsHy8jKrq6vMzMzc27OQTqeZmZlhdXWV\n5eVlA0KXeIMnSVLXpVIprl+/TrVaJZfLcePGDbLZbLfLGnruSZAkSUGGBEmSFGRIkCRJQYYESZIU\n5MJFSVJXlUolSqUSADs7O1y8eJErV64wOjoKQLFYpFgsdrPEoWVIkCR1lSGgd3m4QZIkBRkSJElS\nUNQh4Z3AbwBvAe+PeCzpVO4e+5Si5lxTv4s6JPw48OWIx5Da4i9uxcW5pn4XZUj4q8CLwD+IcAxJ\nkhSRqEJCArgG/C3g6xGN0RPi/qTQyfEeZFvt9m2n/WnantRmED/BOdc63965FuZc63z7fp1rUYSE\nM8CngJ8FqhFsv6f4n6nz7fv1P1PUnGudb+9cC3Oudb59v861dq6T8DIwf0KbCeAS8CjwTw+9d+ak\nAV577bU2yukNd+7coVqNLwt1crwH2Va7fdtpf5q2J7U57v24/806xbnW+fbOtTDnWufbRznXovzb\neeIf7n0e23scZxsoA98DvL3v9YeAPwE+DcwE+p0D1oAn26hHkiS1fJnWB/U3OrnRdkLCaZ0HvmXf\n908CvwR8H/BrwO0j+p3be0iSpPa8QYcDQlxSeJ0ESZL6TlxXXHz75CaSJEmSJEmSJEmSJEmx+xbg\nvwJfAH4b+OHulqMBdh74HPDfgd8Evr+r1WjQfQb4feDfdbsQDazvBmrA68Df6XItkXkHMLr3/M8A\nG8C3da8cDbAk3zwT59uAL9Gac1IUvovWL3FDgqLwMPA7tC4v8CitoPDudjYQ19kND+otYGfv+buA\n3X3fS53UAH5r7/n/pvUpr63/VFIbfhX4o24XoYE1SWuv6Bu05tl/BD7Uzgb6JSQA/Flau3//F/BT\nwP/tbjkaAt9J64Jj3u5cUj96goO/v36XNq9s3E8h4f8A3wF8O/BDwF/objkacI8B/xp4qduFSNJ9\neuBrFEUVEl4APksrwbwFfCTQ5geBTVq3kv514Ll97/1dWosUq8DIoX5fobWw7NmOVqx+FcVceyfw\nC8A/Af5LJFWrH0X1e82LzekoDzrnbnNwz8F5emTP6F8BFoDvpfWDffjQ+x8FvgHMAu8FfpLW4YPz\nR2xvHPjWveffSuuY8Xs7W7L6VKfn2hmgBPzjKIpVX+v0XLsrjwsXFfagc+5hWosVn6B1luDrwJ+L\nvOo2hX6wXwN+5tBr/4PWJ7eQLK0E/ht7j9CdJKVOzLXnaN2xtEprzn0BeKaDNWowdGKuQevmd18B\n3qR1Jk2uUwVq4NzvnPseWmc4fBH4gciqewCHf7BHaJ2dcHi3yVVahxGk++VcU1yca4pbV+ZcNxYu\nPg48BDQPvf4VWueoS53iXFNcnGuKWyxzrp/ObpAkSTHqRkj4PVrHfBOHXk/QuuCD1CnONcXFuaa4\nxTLnuhES/hhY509f9emDwEr85WiAOdcUF+ea4tbXc+4sresYPEtrscXlved3T8uYpnXaxgzwNK3T\nNv6Qk08Vkg5zrikuzjXFbWDnXJ7WD/QWrd0hd59f39fmk7QuALEDrHHwAhDSaeVxrikeeZxrilce\n55wkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVIf+P9cYZ1EAfTlhQAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-4,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"black\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X18lPWd7//XJCFAghAsw41EiwZBoHYRNEJAXQ+Iov15\nV7WNdV342ZX2+DuWbfuA07PbfdA9PT170rO1x91u0d2zRmuNVVrvagWkFooQjU2wZQklGqGQADIg\n4SYBcje/P75zzV1mwkzmumaumXk/H488lJnJXJMrV67rc32/n+/nAyIiIiIiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIkO2D+iP8fXPGfxMIiIi4mKfAsaHfS3CBA/XZ/JD\niYiISPb4IdCS6Q8hIiIi2aEYOAr810x/EBEREbFPkYPvfScwBqgd5DWTAl8iIiKSnEOBr7TzOPje\nG4CzwB1xnp900UUXHTx48KCDH0FERCRntQPXkIEAwqmRh09jkiXvGuQ1kw4ePMizzz7LjBkzHPoY\nEm3lypX88Ic/zPTHyCva5+mnfZ5+2ufptXv3bh544IHJmNH7nAkelgMfA6+f74UzZsxgzpw5Dn0M\niVZWVqb9nWba5+mnfZ5+2uf5pcCh91wOPI1ZpikiIiI5xIngYTFQDvy7A+8tIiIiGebEtMVGoNCB\n9xUREREXcGLkQVysuro60x8h72ifp5/2efppn+cXJ5dqns8coLGxsVFJNiIiIkloampi7ty5AHOB\npnRvXyMPIiIikhQFDyIiIpIUBQ8iIiKSFAUPIiIikhQFDyIiIpIUBQ8iIiKSFAUPIiIikhQFDyIi\nIpIUBQ8iIiKSFAUPIiIikhQFDyIiIpIUJ7pqiojkrbqdddT9Rx0AZ3vP8qcTf+LTYz7NiKIRAFR/\npprqK9VESrKbggcRERtVX1nN4omLuefRe3iv6T3OnDzDB/0fwHAYWTqSHVN2UHtnLcuqlimIkKyl\n4EFExEZHjhyhamkVrVe0QjdwG/jL/eCBrv4uutq7GP7kcBbfvTjTH1VkyJTzICJio9XfWU3rVa2w\nD1gEXAx4Ak8WmH+3XtXKqjWrMvURRVKm4EFExEYN7zdAOeDD/DeWyYHXiWQpBQ8iIjbqpdeMNFhf\nsRQEXieSpRQ8iIjYqIgi8BP6iqU/8DqRLKXgQUTERpWzK6EN8GL+G0t74HUiWUrBg4iIjWrW1FCx\nowKmAL8GDgD9gSf7zb8rdlRQs6YmUx9RJGUaNxMRsdGmw5uoeLiCcy+f45PiTzjzqzPQB/5iPyNH\njeSa2dewbv06vF5vpj+qyJApeBARsVH1laaCZF1V/EqTD216SJUmJaspeBARcYAVRIjkIgUPIiIO\nUq8LyUUKHkREbFK3s47a7bU0v9zM8f3H6fZ3U+wpZvTE0eCB3mO9+Lp89JT1cMPVN1Czpka5D5KV\nFDyIiNhk0YRFfPvJb9N2VRtcC3ig51QPnT/rhJuBheaxvf172du+l623bKV+fb0CCMk6WqopImKT\nYF+L8H4W9ZjAQT0uJIcoeBARsUmwr0U49biQHKTgQUTEJsG+FuHU40JykIIHERGbBPtahFOPC8lB\nCh5ERGwS7GsRTj0uJAc5ETxMBp4FjgKdwA5gjgPbERFxlWBfi/B+FvOBDcB+1ONCcobdwcNYYBtw\nDrgFmAF8HeiweTsiIq7j9XqpX1/PsuHLuHT9pfAceH/tZdK0SUz60yRK15Uy7GfDKF1XSnl7ORUP\nV7Dp8KZMf2yRpNk92bYa+BPwUNhj+23ehoiIKwWrSS6EqfOmMuzEMFWTlJxkd/BwO7AeeBG4HmgH\n/gX4N5u3IyLiOupnIfnC7mmLy4CvAnuAJcCPgceBB23ejoiIiGSI3SMPBUAD8LeBf/8e+AzwFeAZ\nm7clIiIiGWB38HAQaI567I/A5+N9w8qVKykrK4t4rLq6mupqDf2JiIjU1dVRV1cX8VhHR2bXIcSr\nezZUP8VUcL8+7LHHgGswLWHCzQEaGxsbmTNHKzlFJLfF67g59pKxzLxzJsuqlilfQhLW1NTE3Llz\nAeYCTenevt0jD48B24FvYZImK4G/CnyJiOStmB03+3vobO9k+JPDWXz34kx/RJGE2Z0w+TvgLqAa\n2An8DfA1oG6wbxIRyXUxO26qu6ZkKSeKqr8e+BIRkYCG9xvgpjhPToaGTequKdlDvS1ERNIgZsdN\ni7prSpZR8CAikgYxO25a1F1TsoyCBxGRNIjouNkJbMSsT3sOeAb2HdnHzU/cTN1OpYiJ+ynUFRFJ\ng5o1NWy9ZSutZ1rNmrRFmBwID9APXe1dtD7ZqlUXkhU08iAikgabDm+i4uEKShpKTOCgVReSxRQ8\niIikQfWV1WxYsYEp46dAeZwXTQ6syhBxOQUPIimo21nHzU/czMVLL2bUrFEUzyxm1KxRXLz0Ys1f\nS0xadSG5QDkPIilQ1UBJVnDVRawAQqsuJEto5EEkBaoaKMmKWHURrT3wvIjLKXgQSUHD+w2av5ak\n1KypoWJHBRwA+gMP9gMHoGJHBTVrajL46UQSo+BBJAWavxZILvfFWnVR3l5O6bpShv1sGKXrSilv\nL6fi4Qo2Hd6UwZ9EJDGaXBNJgeavBZLLfam+sprqK6upq4ps0f3xnz7m+OPHaX65mdo7a9WiW1xN\nIw8iKdD8tcDQcl8WTVhE65OttE1uo/PeTnq+0EPnPZ20TW4zxaImKtlW3EvBg0gKIuavT2FKDj8L\nPAOe1zxs2LNBSzZznM/n46U3Xko690XJtpLNNKYqkoS6nZFDzWf7z+Lv9uN504O/yw93ECw57O/3\nc6j9ECVPlmjJZo5au3kt31jxDbo8XUnnvqhFt2QzjTyIJCF6qLnvi330P9CPf2wgcNBdZF5598V3\n6bquCwpJumOmkm0lmyl4EElQ3c46Zt8/O/ZQcxdaspmHgkt1vSSd+xJMto3usPlTYAO0H2vXdJe4\nloIHkQQtmrCIo7uOxg4SPOguMg8FRw8WAL9mYO2G/VCytYR5980b8L2VsyvhA+BFYAZwf+CrGpgJ\nBV0FSpoU11LwIJKg1d9ZTU9JT+wgwU/Sw9aS/YKjB6XAvcBuoA4zgvAcjPn1GPa9vY8VN6wY8L3z\n7ptH4VuFcTtsnlpyStNd4loKHkQS1PB+Q/y57SEMW+cLn8/H8keWM2vBLKYvmM6sBbNY/shyfD5f\npj9ayiKW6pYCS4AvYUYQboC7brsLr9cb83tX3LCCiksqNN0lWUnBg0iCeumNHyQsADYA+1HJ4TBr\nN69lysIp1J6rpfmmZlqWtNC8uJnac7VMWTiFJ7Y8kemPmJKUS00XoekuyUoKHkQSVEQRVBF7bvsY\n0AWT/jRJJYfDBFcjxBiW77qui3deeCeDn27orHLUV1Rfwd6OvfA6sBb4Nyh4roAL912Y0O89OO0R\ni6a7xMUUPIgkqHJ2JRxn4Nx2HdAIk2ZP4h8f+0f2bt7Ll278Ep8u+zQlJ0toe6aNjWs35sQwfbJy\ntXGYtWT3kymf0P8X/fAVzNfNcOnoS/lj3R/ZsGLDectLq0KpZCsFDyIJCg5RfwIsxsxtfxG4HioK\nK/j987/nxLETOT1Mn6xcrWVgV3VIddiUbKUxMZEEWd0Qz718Dt82H+d6zpk1+gXwUelHXHz9xRT2\nFtJ1Q2CY3hI1TB8r8z5X5WrjMLuqQ4YfU8frj9Pt76bYU8zYS8YGpz2qvWqOJe6TnX+5IhlgdUNk\nBRw5coSqpVW0/nkrlIPf4+dc/zl4hsGH6fOs5HDl7Eqa25ojgylLFg/L2zWiEn5MiWQTTVuIDEHc\nYeticnKYfqhydVheiY6S7xQ8iAxB3ERAFYuKYA3Ll7eX59QqFCU6Sr7LrzOZiE3iDltbdSAuxuRD\nbAN8mNd2Q/fYbnw+X9zCQbkmV4fl5903jxcefsEsQ52MuQ3rB9oD5aifHFiOWiSXaORBZAjiDltb\nPQ72MLBnwYPw4ZwP83LVRa5ZccMK9r29j2XDlzFz00ymbZzGzE0zWTZ8Wdxy1IOx6kZcvPRiRs0a\nRfHMYkbNGsXFSy/m5iduVoMscR2NPIgMQdxEwFKgCgp/XUjf5/qyatWFz+dj1ZpVNLzfQC+9FFFE\n5exKatbUJD1SUrezjtrttTS/3Mzx/ZGrCGbeOZNlVcvOWwPB7bxeL0/96Clb3mvRhEV8+8lv03ZV\nG1wLeKCnv4fO9k6GPzmcxXerQZa4i0YeRIZg3n3zKNlaEjMRsOR3JYyfOD6riiPZXUbaKqLUNrmN\nzns76flCD533dNI2uY3WJ1vVLTKKXXUjRNJFwYPIEJxv2PqC0guyatWF3WWkdTFMTq5W4pTcpWkL\nkSEabNg6W4ojWdMLb736FjwU50VDqE8xoIhSVPLoc6eeAxjSlEguytVKnJK77B55WIMZvA3/Omjz\nNkRcL1uW8lnTC73FURevTmAj8FPgedjdujup5L2Ii+FpBiSPdv9Vd96W7I5FdSMk2zgxbfEfwMSw\nrysd2IaIq2VLcaTg9EIh5uLVCfwSeIqIi71/hT+pfIWIi+F2YBE50VnTqVUR2RJsilicCB76gCNh\nX8cc2IaIq7m1OFL0xa92Xa2Za/cCH2BGCHqAO0gpXyHiYugjZ+bznUoEzZZgU8TiRPBwOdAOfIRp\nVnypA9sQcbXqK6vZsGIDB944wOldp+lu7ub0rtMceONAQq2anRJx8bu1M1ROewHwJmaEoIuUL/YR\nq1E8ODaf7/P5WP7IcmYtmMX0BdOZtWAWyx9Z7lj7c6cSQd0abIrEY/dE2jvAXwAtmCmLv8UMWs7C\nNDIWyRturHUQvPiNBdZhzgB+TH2K0ZigwYaL/YobVnD323ezas0qnjv1HN3+bvOe0VU3++Gjzo+4\n+YmbE94f1n5t+GkDHbs7zCjJTaH3a25v5oWFL/CDJ39gey0Nu7ppRsvVSpySu+wOHtaH/f8uoB5o\nBf4SeCzWN6xcuZKysrKIx6qrq6muzu4CMiJuLPwTvPhZowy7CZXTLjSfMdifI8WVIuGrUWrbakMB\nyyIiLva97b1myD/B/WHt146+jtD0isXhQlxaFSGZUFdXR11dZD5NR0dHhj6N4XQKbxewE5ga7wU/\n/OEPmTNnjsMfQyT9Ioa4LdYQN2aI264KhYkKXvx8mAv4hZg8h0WYOXY/kf05og0hea9mTQ1bb9lK\na1+r2c6FmODFGn3wQ2tJK4+ufpS6fz9/wmFwv/6WtLc/z5YluJJbYt1QNzU1MXfu3Ax9IueLRA0H\nZgKHHN6OiOu4sfBPxMXPg5muuBczAnEKEzRY/Tmik/f2B5o+3Zdc0ydrPr/oWJEZfYju+VENXA0/\ne+1nCS3bDO5XB3Mp4tGqCBHD7uDhfwPXY5Ikr8UMUo4CnrZ5OyKu57Yh7rqddRwfedxc/MJbh5cC\nS4AHMUHDMeDzmIDiOeAZ8Kz1ML9j/pCaPlnJo5ddctmgyzb9t/sTWrYZ3K8ZaH8+aFnyIQRWItnK\n7r+uyZgVFuMwg5L1wDzMn5qkiRsT9fKR24a4F01YxPAjw03HzwsZODVhjUJshDEnxzBh0gSKxg+9\nOVa0IopC0yWxlCc21RDcr/GmVwIFrtpPtjN9wfSUGnyF8/l8vPPCO5SPKefwpsOc7T7LiJIRTPzU\nRKqurqLmbVXLlPxh99lLVyQXcGOiXj6K23kTMjLEvfo7q9lXuc8EDpuBV4DbMVMABZg76E+g5EwJ\n/+up/2V7smHl7Eqa1zenPBoT3K8LCOVrTDbfzyngZ8DNcKL8BCc8J+AUNG9q5unPPI33Ii/jSsYl\nHUys3byWb6z4hun/cSvBZM/u9m56t/Yy7755Chwkr6gxVg4631r0R1c/mta18fnKbUPcwVyBUuA2\nYDnwR8xY4XNQ/K/FwcZeTrQLn3ffPDynPSlPNQT36ycMmF7h34GbCR37p4GfA1eD/6t+jtx5ZEjd\nQu1uHGa3dNe7EIl3D5AOc4DGxsZGrbaw2awFs2i+Kc4d3seYO7O7MMlr2zF1QPuBU1A2o4zK+ys1\ntWETn8/HqjWraHi/gV56bRtCH4rpC6bTsqQl7vPTNk5jz7Y9jn6G6oeqed7zfOzRmAOwbPiy4AqU\nwfYdEPO57b/bTsvSltCxvxGTnJnA9gYz6N9UP8zcNJNd23YlsAfsFzEqYiWS9gPtJkh1ot6FZF7Y\naou5QFO6t691RTkobqLeaUwKqxU4xFhz39HekdSaexncYJ03080NORiP/8PjvHfLe7TSGppqCFzo\nKnZUULPeBAYRF8Q4BaBi7dfpC6ZH/nyD5VgksZzzXO85VyW/hosYFYkqwtXV3cXXv/x1fvHNX+iG\nQGylaYscFLdD33bMkHU5g2a9p1JmV9zLDcsMEy3DPNRpggHHfpLLOWMN/8+/az4f7f3ItV0vg9NR\nMbqX8iB03dCVUt8Nt3GqOZkkRyMPOShuop6PUC8Dm+7IJHvMu28eLzz8grkoR931l2wtYd6Tzudg\nJFqGOZky0OGriw7vPRy5AiOJapnxRjt4BbiI+IWz2jJb3yE40hh+Q2DJcFEyJygh3B008pCD4ibq\n9RF5Mh3kjuyTc58oureJW+6UVtywgn1v72PZ8GXM3DSTaRunMXPTTEeTJIcqmRoZ4c2+er/Ua2pV\n7Mcc89ZyzliiRlvijnZ0YYKJOIWzhr0+LKNdL4OjLTnUvXQwTjUnk+Ro5CEHhTclatgUSihr97dz\nYtyJyCJBce7IRntGmxOyovuUuelOaSg5GJlI+gxeELuIbKTlB8ZB+yft1O2so/rK6oFlwO8NfM9v\nMEs3d2PyfMKXpEblWMAgox0eTKk7631/G/ZZvDBs7DA2Hd5EtTcz+QTBkcYMVNzMBKeak0lyNPKQ\no6yLxK5tu9izbQ+7tu3irqV3mdqfvwZKGPSOrL+vX9G9TbL5Tmnt5rVMWTiF2nO1NN/UTMuSliEt\ndYxlsOWFlbMr4QNil7KeCQVdBcE5/OCcf6A4FC8DhzGBwx3AQ5glqdZyzh9D2QdlA1pdxx3tsAJt\nqxLnlwKf5UvAYphy4ZSMJiLWrKmhYkcFdOPavAw7ua1ya75S8JAHrGHzDX/cgGejB+YDwzBzudbw\nLkTUIOjs78yLIdB0cGOPi0TU7azj77/7947UNzhfUDJrySxG/XZU3KTeU0tOBYOuXnpN4BAeaEwk\n1HFzFOai/wCmBPftcOdn7mTDig0RF/24icZJTH3YIdmaDVYSaklRScYTYtMh7u8JcipIcjvt5Rxm\nJZLt/NlODu88jP8Ov6musR3owNxJvQxFI4souKAAT5+HQn8hFMGhI4cU3dskW++UFk1YxNFdR2Fh\nnBekMEQckV9gCQtKXnv+NfwX+BPqmllEkZlOCE8WHEJCcESicfiSxz5MSe87OO/UR6oSWaIanZti\nJaE+ccUTfP3hr2c0ITYd3Fa5NV9p5CGHWYlkhz45ZAKH6Luw5cBd8MAdD3BgywHKLyin64Yuur7Q\nZV6Xh9G9E5X6svVOafV3VtNT0hMKfKxpgZ9ipgB+Arv37KZ0RmnSSaCDjsaUwfYt2+nq6Eoo6Kqc\nXWn69oa/3xDm/4OJxi1EjmI8CCwDGoEfQ+FzhTGXl9ohlUqW2ZQQmwq3VW7NV+48a8mQhSe3tbW3\ncXLxSZPgdZ47uAFJZ/GaDkHORvcRd31VBKtvNq9v5ul1TzNv4TxeWftK0kmCbrhTGkrSY8P7DVCI\nCXw6iSwqFvi3/04/XeVdoSTQDzvp+G4H+y7ax5qiNXG3M2ghs59D76295rhNYJnlvPvm8fRLT+P3\nhEVoSSzRtFiJxlU3V/Hhog8jf18XYJIuD8BfDP8Lx5Y8ppoMmGhCrJsqnyYrXkJ45exKNSdLI408\n5JDoeeSTxSdD5WrPcxc24E5wAbGXpuVwdB+867Oqb87AJMU9CP6v+KkfWz+kJMFM3ykNNemxl95Q\nEBldVCxWkbEu8/jpm0/TsrRl0O0MWsjMet8Ecw1W3LCCyy++PPL9hpin4PV6KR5ZnLEclXRMcTmZ\nBJuoVJcvx0oIf+pHTylwSCMFDzlkwJCn9WXdhcUSuAuLOGlZ870e4HVgLXjWepi2flrODYGGCwZQ\ng1TfHEqSYKaHk1Oq1liFCSIPEnlBjVVTIIn9FrfaZfj7JhHAVl1dFfl+8b63BUZtGMX2322PmJba\nvXt3cLrqg/0fZCxHJR1TXG5o8hVem6Pz3k56vtBD5z2dtE1uy6lqmLlM0xY5ZMCQpxU0JDAF0fB+\nQ+zh6UDClr/dT9vWtpxuPRwMoByovpnJHhdDHQqvnF1J8/FmU9+gjsgLaqzRrCT2W82aGrbesnVg\nj4u+sPctZUBtheJTxdx/1/0DhqcHVM8sxXTc3AS8CoVjCynsL6TnVA+nP3ealvKWUDLih83UXlcL\ndwY+/3MkXGPCbnZNcUVPS9AD/b399NPPvrZ98J+jvsG6YTgCtZ21vLj5RcZeMpaZd850pCfGgGlS\nyMlqmLlMIw85wufz0fZxW+QJ3Qoa4t2F7Q/dwQXvBG2+684mEY2jsnB1RDxDHQqPaH09gtAdcSem\nhkL0HXIS+y1ej4ui7qg77/DaCl+EqZdOjTk8HXN0p34myxYs48iuI/Tu6eX+Jffj/5x/4LG9DxM4\nWI97SbjGhN2CNRtijLZU7KhIqJJlcFqio5ZmfzMtbS20tLbw4YwP+ej4R/Rf0B85yvhL4ClC03Qr\ncHwUIFuXL0uIgoccYJ0sTvadjDzxWkHDJ5i7sN0EC+V41nqY3zE/OGwevFBED0+Hy/E/6mAAlcA0\nTzYZ6lB4+AV5TM8Ys2+s5kvjGTjtkMR+q76ymg0rNnDgjQOc3nWa7uZuTu86zQO3PzBorsLxEcfj\nzpNvOrxp0HnwuBes6CmYBcCbJFRjwm6JNg4bzLsvvkvX1V3mRuBS4Awm2XNf4GeykmCt32UPoZoY\naSpilq3LlyVEwUMOCM5hWs17LNaw727g5zD649HMHD+TZbcs4+P/+JjtP98ePLFaF4rRhaPz9o86\neNd3nuqb2bbSJJVumtZ0ywfvfWD2jXVRXcLA0axxpLzfBksuHfmbkfQe6h3yPHncC1b0iEkpMJqM\nBNHRQVX7lnbu/fN7GX1yNPue2cd3v/Ld4NLheMuKt/9uO+zF/J72EeqkawVJ0UmwXen/WSMC2ugl\nwM/Cx+0fp7Q8Wpyn4CEHBO+oYk1PjASugJLiEmr+b82gWcler5fyCeU5ddedDOuub9KnJuF5xROz\n+maiQ8duYsdqD2vfFB0rMsdaeGBahznpHwZeIqXtxEsu/WL/F5kwagK+Kt+Q75DjjsDEGjEpJONB\n9Pdf/j6TPjsp5qqIyZWTKZ9XHvO5Dw58AEcJBQxWJ13ryzpPWKOMGZimCwa0sdqI3w8nFp9I28oP\nGZrcvRLkkeAdVYwEM/wwuns0H773YUKJjm6oSZApVqW+uqpQi+fj7xyn299NsaeYsZeMDQ4dZ6oJ\n0lDYsS7e2jfTn5lOi6fFPFiKuRBZSYXDgEIo2VKCZ5iHC0ou4MLhF553O/FqDmx+eTNerzdUf6O7\nK6GKk/HErCB5CDjBwITiIdSJsNPazWv51le/Rd9tfTGTCnvG9MDVxHzOP9wfe7VVeI+O8CTYDPys\nwQTXkV1x24hbOVa5uLIrFyh4yAERiX5WgpmlH8o3lSe8QiJmFvwpYBMM+3gYWy/ZyqwFs7KmoMxQ\nWBdKcuicZddqj4hj7TQxV+Z0tXdRsaOC+jfqz3t8JFKOOTgtt5WU7pCDx/aZVjNkX4W5+74Fcye+\niNAxb03BZCiIfvfFd+kb0Rc/WOok/nOTMEGRFRRYP0v4qqtSzKhkgqux7GKVzG9+uTn4/twZ58VR\nAWH49x7fHxnUO7UqROLTtEUOSGVOO1p0wlbBswXwNHA19KzoofXW1rQXlBH3iDjWBlmZk2iiXSI1\nB4LTcikmsgYbSDWUhPIBFgHTGDgF04aZuspQYa+G9xtC0w2xFAzy3EJCoyleQp10pxA5rZnEaiy7\nhNd36KruggsH+TmiAkLVhnAXjTzkgLhr5ofQuCf6rnv5I8upPVerYUUBoo61I6RcDyOiBkV4M6rA\nCMSznc9SPLY4tIQyhTtk69ie9cwsmsubzdSete0YI3aXv3E5VcOrMlICuZfe804nxH1uJIyfOJ5j\nrx+j78a+0CjLXkKF3/oC3281/Po8UA9sMe/tOe0x5djfTr4c+2AG1HdIYspEtSHcRcFDDrDuqM69\nfI7j9fbO0adaaz+bZHO9/3QJP9baO9sj+0mESzDRLpivE2cKpLe9F8/rHnOBWYBJrgufXugH2qDk\n7cS7Rga3eZ5EQYaRsYtREUWDT52UDPJcO9x6463UrKnhnkfvoXF4I+c2n6Ovrw+KYWTZSC6cciEz\n75zJ3VfcbUZ36gPH/Hhnj/kB55MkAsJ8OhdlAwUPOcDJOfp8WY89lFbI+Sj8WJu1YBbN/uaUEu2C\nORThUyAWKzlwQk/oAhOdENwNU8dOZfvb2xO+2AW3meGkyMFUzq6kuaN5YC5GIFgqOFzAp7Z/yqw+\niTPa6PV62VK35bzbso7r8OB54Z0LHQmeB5xP4gWEMdqI58u5KFso50EGla3tpJPlhnr/2caOXJvg\ne8TqlWFZHJZ/MBIzvVANXGeWIH/zsW8mdXELbnOIzbPSYd598yj5XYmZbmgGfgKsBX4MvA6jPjWK\noklFTNo3acjFpMKlq1nWgPNJ+JLf56D434rj9n3Jl3NRtlDwIIOyMxnTzVQuN3l21I8IFuYK72kR\n7QK49NJLbWssFvzcU3Bt59hgvYuyZUw8PRHPaQ/chulJ8VU4ee9JDl16iBMHTvCP//KPwQqdB944\nwIYVG5JedZCu4Dnm+cTKN7kB7r/9/ri1aPLlXJQtFDzIoDLdTjpdNCSaPDu6hQaLT0X3tAjXDyOG\njbCtBXP4hXmadxqjN42m+F+LGf2T0a7qHGstr73lulvw3x7Vk+MMsBu6urtY9dCqYHXJoVZlTFfw\nnMr5JF/ORdki3ukyHeYAjY2NjcyZMyeDH0POx+fz8ejqR3njrTc4030GCmHksJEsvXEpj//D4zmR\nTDhrwSwqhOpzAAAgAElEQVSab4o/fz9z00x2bduV9s+VqnQlgaa6nZireiwHYNnwZXmbST/g2AxP\nLrUqRIblCQwlP2f6gum0LGmJ+/y0jdPYs23PkD5/tFSOFSU1hzQ1NTF37lyAuUBTurevSSI5r5/v\n+jmvbnuVrsVdwZNVd383z7c/z6sLX82JZMJcrKyZriRQO7YzoKX2IIlz+SZiVKwTk2C4GFuXT0cU\n/4pmcz5BKgXLMtnaXiJp2iLLxWuOY2dTmXxIJrSjFXIi0vH7sqTr92bHduyYAslVwQu71QfCg+1T\nDDHzCayGVc9A28dtjh6r55POvxtJjEYesli67izzYX21k7UyLOn6fVllfN969S14KM6LbPy92XV8\n6K4ytuCo2G7MVEWKZbpjiRj5KcMUi9qHKSB1E5z0nKS5v9nRpcvxpiRm3jSTNavXaBm1yyh4yGIR\nd3wWB6o/5kMyYTr6WTj1+4o+6dINhz4+RG9xen5v+XB8ZFKwqucnrebi6UB9Cqt52u0P3867r7yL\nf7LfBA5pqiwbEVhXYep+HIHm9c3wPHBX+j6LJMbJaYv/ihn4fczBbeS1dGVIa321PZz4fcVan98y\nrIVTS06ZttJp+L3p+HCWNSpW2F8YWaY7lhTyc7xeL1dcdAX+O/zQRehYtaYvforp+7EFXnr9JWem\nRsdikkFnAF8CHsT0v9AyatdxKni4BngY+APxTyuSonTd8Wl9tT2c+H3FzDc4ijnZpqkIko4PZ1Vf\nWc2GFRuYXj49VKbboUZWwQDXKt1t5VnMAO4PfZ1YfMLW4lHB7cZrtqaRLddxIngYBTwLfBk47sD7\nS0C67vhyfX11upKxnPh9xRzNsE78aeqWmK5k03wXDNLCqzJaXUCfgak7pqacXBoMcK2pkUE6p9qZ\ndBvcrlVpNHy0owONbLmQE8HDj4BfAm+R2ToSOS9dd3y5nAmfrrK84MzvK+ZohnXij3WReQ7G/HqM\nrb+36DbuqZZKltgigrSoMt0VF1awfUPi/T3iCQa41qjVYGXDnZga9RBajmqNdkxFI1suZHfI9kVg\nNmbaAjRl4ah0ro3P1Uz4dCWdgr2t060kyX1790Umz3UC3YQaSUW3mj4Adw2/y9aCOulINpX0rAgK\nruywGlalacoguF0/pvFZeJO0JJpnSfrYGTxcDPwfTPmS7sBjgzW9BWDlypWUlZVFPFZdXU11dWp/\nBPnAypBetWYVDZuiKq69nX8V14YinctQ7Tr5f//l7/Otr36Lvtv6TH8GK1CwKg9a0xU62eaUdARp\nETckn8eMVqWheFRwuyVdcIjIgNcaQdsGbIHis8VMvWRqXp3n6urqqKuri3iso6MjQ5/GsHNa4U7g\nF5gWNxYr37sPGE7kSITKU0vGpbMsb6p8Ph+3P3w772x5B+7GBAzWEO8iTPfFmWGPb8MMO4e3rrZh\naFtyW/jS37b2Nk4uPpmWY8oqg//868+bBmBxuOlvMpMyXZ7azpyHTcBngD8LfM0GfodJnpyNpjDE\nhbJlmaGVm/HO3ndgDKF56PC8htaox5dglrvdDzwIxSOLFTjIeVlTlLu27aLm6RqTLN3CwFUXD8KH\ncz60LTfI6/Vy+1/fTumnSrPibzLf2Rk8nMbc+1hfuzCrhT8J/FvEdbJlmWEwN6MLKCZyzNAKFMrQ\nkjaxlZUsPXX31LSsuqi+spp7b7w3K/4m853TvS2svG8RV8qWZagR6+9j/VV1AqdiPG7RHZsMkdfr\npXhkcdoKNWXL32S+c/pscqPD75+X1JbWPtmSdBqx/n4coSRJCCVKjo96PJzu2CQFweMvOu8hsKzz\nbM/ZhN4nkXNXtvxN5jvdimQRK2Hu3bffNSVk1SQmJbFOZFWzq1wZhEWsv59C5GoKq5DPhcRe0tYG\nJW9rlYUMXRFFoSB1ERHnHtph7yt7eWLLE4Oee5JpDJerS8NziVpyZ4nwhDn/Hf6MtcfOlda46SwO\nZYdgbsYCTLBQhckkqgM+xAwpp6kolOSfytmV8CZx8x78t/vPe+5JV4t4SQ8FD1kiImEuQ01isu2C\nOxg3nsgGC8yC88CfYNbf78MMHVsLo62fIXqVxQMwYfIE142kSHaZd988PIc88c895ec/9wylMVyu\n3KzkIgUPWWJAw5pYHM6od+MFd6jS1ZE0UecLzIBQifD6mUxjGjPHz2TZLcuYNmWaEiXFUStuWMFl\nUy6LrGQa3mmzDtra2wa9qCfbGC6XblZykYKHLDGgYU0sDl8o3HbBTUW6OpImKpHALHz9/Z5te9i1\nbRdP/egpqq6u0tI2cdzwouHm3BOr02Y1nFx8ctCLerI1VXLpZiUXKXjIEgMa1sTi8IXCbRfcVLit\nOFQqgZmWtkk6BPNuhthpM9maKrl0s5KLFDxkiYiEuTS0WY7FbRfcVLitOFQqgVkudz0V9wgGqQcZ\n0kU92SA3l25WclH2nO3z3ICGNfXAFqAfPKc9zFs4j1fefsXRxLhg57scqCOQzo6ksUQvEx3QHTNc\nAoGZlraJ06z6C1PnT+Wk52TsFw1yUU+2fkNEm+5oWXazkou097NExB9efeAPb3x6i0Nl+oJrp0wW\noom53n0DKvAkruf1eimfUE6zv3lIF/VkgtxculnJRQoeskim7y5zpfJbpotDRSSCWRZiktD+E2ZI\nuABTbnoT0A7PD3+e5156jhElI5j4qYlUXe3OYlaS+9J1Uc+lm5VcpOAhC7ipHHWmA5hUJVPlzikN\n7zeYbUfzAq8DfVBQVEB/dz/cApyAs4vOQjl0e7o52X+SlvYWtt6ylfr19QogJK0iLuplmCnUIwSn\nUPcs3IPP50v5uMyVm5VcFS8dJR3mAI2NjY3MmTMngx/D3Y4cOULV0ipar2oN1XkIRN8VOyoydvFw\nU0CTjOWPLKf2XG3su6YDsGz4MseDo+kLptOypCX0QHjZX+t3vAGYiakWOYO4n/f6zuvZUrfF0c8r\nEm1Aqfyoc1PJ1hKVyndYU1MTc+fOBZgLNKV7+1pt4XL3fu1eEzjEWBbVelUr9zx6T9o/05EjR5h/\ny/zI4i3zm6ndVsvkz05m6rVTXVsJzg3LvwasWom19O0o5nP6GPTzHt1/1LHPKRKP1+vliouuyGip\nfMksBQ8ud3T/UdddPAYENKeBnwNXQ8+KHlpvbXVtJTg3LP8asEw0VoDgifqKRcvVJIPcEIhL5ih4\ncDk3XOyiRQQ0nYQ6OWbBHYgbalUMWO8eK0DwR33FouVqkkHJnJvUoyL3KHhwOTdc7KIFTxpWmVoP\nkcFEeM37LfDS6y+55iThhuJQ4UWdpr0xjYLjBQN/x1Yl0QxWFBUZTKLnJvWoyE0KHlzODRe7aMGT\nhjVXX0xkMBFe8/5+OLH4hGtOEm4p5ez1ern23mtpO9FG/0X9A3/HViXRTxO7oqhKT0uGRZybom8a\nnoID+w8w/drprF62Wj0qcpCCB5dzy8UuXPCkYc3VW0PrQ6x5n05uKuUcrPewhIEBwkhgPhT+ppDx\npeMZvWk0xf9azOifjGba+mkqPS0ZFzw3tRB503A7UAinbj5Fy9IWThafVG5EDtKEqcu5ca1zcJ13\nX5cJEqyhdR+x6xeAOUlscsdJwi21KoL1HjzAvcA24LcEl7yN6RnDB3/4wNVLXyV/Weemqpur+HDR\nh+amwcqBWkxoebGSfnOSgocs4JaLncU6aVx+7eWc8J8wQ+wvYkYZdJJIWETCWSlmBCLMhI0TFDiI\nq3m9XopHFpuRBateSXgOFIRGJtWjIqdo2kKGxOv18mfX/pkZcSjF3DmfwXXJnW7mxmRYkWQFg+Do\nHCgwIxHduC5vS1Kn4EGGbN3j66jYUWHm6kcCl6KTRBLcmAwrkqxgEBydA2UlUFvJvy7K25LUKXiQ\nIfN6vdSvrw8mH44/PR7PKx7Yj04SCXBjMqxIsoJBsJXbYOVAWSMR0zAjk7uBOsxqjGdgatNUJf1m\nMY2LSkqi8zGCPS9cktzpZm5MhhVJVjCBurvLjDhYOVAQSqCOzunph+JNxTrGs5gaY0leydaGXiJu\n5vP5zKqLOWGrLuqAL8f/nmkbp7Fn2540fcLco8ZYImmiSncizvB6vXzzsW+GpuFGBr6UEJyzFDxI\n3ggWZXJxESuRbBVdgG1092glBOcwBQ+SN9QFUMRZVg7Urm27qHm6RgnBOUzjRmI7t+YVuLFDqUiu\nUkJwblPwILZau3kt31jxDTM9YJVe7ofm9mZeWPgCP3jyBxlbmhVcj65KdyJp4bbquGIfTVuIrdyc\nV6CiTCIi9lDwILZyc16BijKJiNhD47Riq4i8gk5Mp0gf5jE/tHW34fP5MjLfqTlYERF72B08fBX4\nCjAl8O9dwN8D623ejrhUMK+gE9NhbxERuQ8n208yZeGUjOU+aA5WRCR1dk9bHABWY6pHzgXeAl4F\nZtm8HXGpYF6BVdfehbkPIiKSGruDh19iRhlagQ+BvwVOAcpEyxPBvIKDuDb3QUREUuNkzkMhppfa\ncGCrg9sRF7HyCqbOn8pJz8mYeQ944WzP2Yx+ThERGTongocrgXpM0HAGuA8zCiF5wuv1Uj6hnObT\nzTHzHmiHA788kLHESRERSY0TSzX/CHwWM1Xxz8DzmBwIySOVsyvhTeLmPfTc1sM9j96Tsc8nIiJD\n58TIQw/wUeD/dwDXYFZh/FWsF69cuZKysrKIx6qrq6murnbgo0m6zLtvHk+vexp/eZy2euVwdNPR\n9H4oEZEsVFdXR11dXcRjHR0dGfo0RrxK/3b6NbAPeCjq8TlAY2NjI3PmaGAiF029diqtt7bGfX7a\nxmns2bYnjZ9IRCQ3NDU1MXfuXDArG5vSvX27Rx7+J/ArzJLNC4AvAjcA/8Pm7UgWGF40XL0kRERy\nkN05D17gGUzewybMlMXNmHoPkmfUS0JEJDfZHTx8GbgUGAFMAJZgpi0kD6mXhIhIbtK4sThGvSRE\nRHKTggdxlFt6Sfh8PhPEvB8VxKxRECMikiwFD5Lzjhw5QtXSKlqvao0oVtXc3szWW7ZSv75eAYSI\nSBKcKBIl4ir3fu1eEzjEKFbVelWrilWJiCRJwYPkvKP7jw7apOvofhWrEhFJhoIHSSufz8fyR5Yz\na8Espi+YzqwFs1j+yHJ8Pp9j2+ylN345tILA8yIikjDlPEjaZCr3oIgiFasSEbGRRh4kbTKVe6Bi\nVSIi9lLwIGkzIPegE9gI/BTYCu9seceRKQwVqxIRsZfGayVtInIPTgPrMC27A1MY3f3d1LbX2j6F\noWJVIiL2UvAgaRORe7AdEzhcHPYCawoDM4WxpW6Lbdt2S7EqEZFcoGkLSZtxl4wL5R740PJJEZEs\npeBB0mbd4+uo2FFhcg88aPmkiEiWUvAgaeP1eqlfX8+y4csoPlVspjBisXH5ZCbqSoiI5DrlPEha\nhece1LbVRuY8WFJcPmk1wdresJ29B/bS87ke9bQQEbGRRh4kI+xcPhk+ulBxTQWTr5xMbUctLb4W\nEziop4WIiK008iAZYdfyybWb1/KNFd+g67ouqAJexKzi2I4JGAZLytykpEwRkaFQ8CAZY8fyyXdf\nfNcEDmMxdSM8wF5MALEVJWWKiDhA0xaSUakkNPp8Pl564yUzumDVjSgGjmIe85OWpEwRkXyjs6dk\nTCqNsoLTFZ4u830+zHtYRag8gBdTVyJOUua4S8Y58WOJiOQ8jTxIxqTSKCs4XVHIwIChO/DYAuDX\nDEzK3A8VOypY9/g6J34sEZGcp+BBMmZAo6xwg1SZjJiusEYXrCmKBZiGW21AKXAvsBuoA54DnoGp\nO6ZqmaaISAoUPEjGRDTKihaV0GjlRky/ZjqTr5zMCc8J873W6EIJoYDhPuCXwH5gJLAEqAaug5Li\nEr752DcVOIiIpEA5D5IxEY2yooUlNAbzG67uMrkNnwN+i/lea3RhM/AKcDtmROJB4G3gLfCc8zBx\n/ERuXnCzumiKiNhAwYNkTOXsSprbms9bZfLdF981gUN47YbwZMhS4DbMdMU24C0YyUguvehSKm+t\npGaNAgYRETspeJCMmXffPF54+AWT+FgG1ANHgH7wnPawZ+EefD4fDe83mFGG8NoNCwgVhJqMmYAb\nCVwBFWcrlNMgIuIgBQ+SMVaVyf+y6r/wi2d/EdGDwt/vp769nvm3zDdH6XEiazdY0xXbMFMYgWWe\nY3rGUP+eAgcREScpeJCM8nq9HDp7KNSDwpp68AEeaO1upfBMIYxhYO2GUkwypOUA3DX8LgUOIiIO\n02oLybjgks3TmKmIGcD9ga8HoW9iX0K1G5JtqCUiIkOjkQfJuOCSTavEdHgCZQFmdOEpQiMO0dMV\n3TChZAI7396pUQcRkTTQyINkXHDJpo/YRaMC+Q0FLxfErN1QcWEFOzcrcBARSReNPEjGjbtknBlV\nsEpMxzIBplw2hetHXD+whfd6LcUUEUknBQ+SceseX8f8W+bT2t06aNGoEcNGpNzCW0REUmf3tMW3\ngPeAk8DHwEvANJu3ITnG6/VSv76eCSUTzAhELOqCKSLiGnYHD9cD/wRci1mxXwRsxHQeEInL6/Wy\nc/NOKnZUDFxJcUBdMEVE3MTuaYulUf9ejqkZOAfTaUAkLmsEYtWaVcprEBFxMadzHsoC//3E4e1I\njvB6vcprEBFxOSeXanqAxzDdCJod3I6IiIikkZMjD/8MzAIWOrgNERERSTOngod/Aj6HSaA8ONgL\nV65cSVlZWcRj1dXVVFdXO/TRREREskddXR11dXURj3V0dGTo0xjxSvKk8n7/BNwB/DnQOshr5wCN\njY2NzJkzx+aPISIikruampqYO3cuwFygKd3bt3vk4UeYosF3YPojTgw83gGctXlbIiIikgF2J0x+\nBRgNbMZMV1hf99m8HREREckQu0ce1GhLREQkx+liLyIiIklR8CAiIiJJUfAgIiIiSVHwICIiIklR\n8CAiIiJJUfAgIiIiSVHwICIiIklR8CAiIiJJUfAgIiIiSVHwICIiIklR8CAiIiJJUfAgIiIiSVHw\nICIiIklR8CAiIiJJUfAgIiIiSVHwICIiIklR8CAiIiJJUfAgIiIiSVHwICIiIklR8CAiIiJJUfAg\nIiIiSVHwICIiIklR8CAiIiJJUfAgIiIiSVHwICIiIklR8CAiIiJJUfAgIiIiSVHwICIiIklR8CAi\nIiJJUfAgIiIiSVHwICIiIklR8CAiIiJJUfAgIiIiSVHwICIiIklxIni4HngNaAf6gTsc2IaIiIhk\niBPBQwmwA3gk8G+/A9sQERGRDHEieFgP/B3wsgPvLZK1fD4fy5cvZ9asWUyfPp1Zs2axfPlyfD5f\npj+aZIB1PEyfPp0LLriAgoICCgsLKS4upqysjOrqah0b4loeh9+/H7gTeDXGc3OAxsbGRubMmePw\nxxCfz8eqVatoaGigt7eXoqIiKisrqampwev1Dnjd9u3bOXz4MGfPnmXEiBFMnDiRqqqqAa/PN7t3\n7+b2229n//79+P1mUG3EiBGMHz+ewsJCAPr7++nv7+fo0aPB/Td27Fja29vp7e1NaDvDhg3jtttu\n48knn8zI/g4/Xs6ePcuxY8cAGDduHIWFhfT391NQYO494h1L+cLn8/Hwww/z+uuv09PTM+hrPR5P\n8DhJ9FiwvsfjiTxd+/1++vr6Il5XWlrKpEmT4v6txjsPrFq1ipqaGn77299y4MABenp68Hg8DBs2\njEsuuYRXX32VGTNmJPR5JT2ampqYO3cuwFygKd3bV/CQA3w+H48++iivv/46p06dcnRb1gnK7/fT\n2dk54PmioiIA+vr68Pv9eDweioqKGDlyZNYEILECqOLiYvr7++nq6krrZykqKqK8vJzjx48D5uI9\nfPhwPvvZzwLmBHLw4EFOnz4d8/ujgxDrWHnttddi/v6c+hmiL3wejycYlFp//3/4wx+CF9TwAOzM\nmTMD3jP6wgnEvMBG83g8FBcXU1BQgN/vx+/3c+7cubivP992/H5/wkFAug0bNozJkydz7Ngxzp49\nm/JnnTJlCiUlJcFjL/r3NZRgMlaQ2t/fP+jvxfqdWOeXfA1w8j54uO666ygrK4t4orq6murqaoc/\nWvZKZ7DgNI/HQ0lJCRMnTqSwsNDxu9jwwODgwYN0dnYG7+xKSkq48cYbaWxs5MCBA7ZvO5OKioqY\nPHlyUqMfIqmoqKigvr4+7t/xkSNHqKqqorW11ZbtFRUV8Yc//CEnA4i6ujrq6uoiHuvo6GDr1q2Q\nr8GDRh6Sc+TIESorK/nTn/6U6Y/iuIKCguAwrHWMNDU1cfjw4Zh3oxC6ox03bhx+vx+fzxf3rlxE\nnLVs2TKeeuqpmM8tX76c2tpaW7c3depUPvjgA1vf060yPfJQlO4NSmpWr16dF4EDmKHQU6dOcerU\nKVpaWhL+vu7ubk6ePOngJxORRLz55ptxn2toaLB9e/v377f9PSU2J4KHUuDysH9fBswGjgG5NRac\nAYP9MYqIuElpaWnc5w4ePGj79s6XsCr2cWKp5jWYIZQmTI2HHwT+/zsObCvvRCdviYi41WBJuRdd\ndJHt27NWsojznAgeNgfetwAoDPv//9eBbeWdCy+8MNMfQUQkITfddFPc5yorK23f3pQpU2x/T4lN\nOQ9ZprKykubm5kx/DAlTWloaXC0Cses8jBs3joKCAgoKCujt7Y1Yknb27FmtgMgT4TUbYi1XbWho\nCNZZiPU94WLVeRg5ciTd3d0JDd8XFhZSUFDg2FB/RUUFNTU1cZ+vqalh69attq62ePXVWLn54gQF\nD1mmpqaGzZs3s2/fPkfe3zpRFRQUDHrR6+/vT1udgHQrLCwcdHqoqKiIyy67zNGaFYMVaUqmzkOq\nPB4PF1xwAbfeeit/93d/R01NTXCZa6LbzOU6D9E/T/jfi/Wzp7uAVvSx4/P5OHv2bPBzjhw5kqVL\nl/L4448DDFo8LlZRKbvqPHi9Xurr6xOq83C+GhVTpkzhV7/6VU4u03Qrp5dqDkZLNYcovM7D6dOn\n8fv9FBQUMGrUKG699VYef/zxtBdhij7JgDmh9PT0cPDgwaxIZPJ4PNxxxx1873vfC14ks73KZqKV\nRUXcTsdypEwv1VTwIBkRK9jo6enh2LFjnDlzht7e3ohyu+HDunv37g2Whh6K6NGVbAwKRCS/ZTp4\n0LSFZITX641bPOZ8zlefX3cmIiLOUvAgWWewwGOoAYmIiCTOiaWaIiIiksMUPIiIiEhSFDyIiIhI\nUhQ8iIiISFIUPIiIiEhSFDyIiIhIUhQ8iIiISFIUPIiIiEhSFDyIiIhIUhQ8iIiISFIUPIiIiEhS\nFDyIiIhIUhQ8iIiISFIUPIiIiEhSFDyIiIhIUhQ8iIiISFIUPIiIiEhSFDyIiIhIUhQ8iIiISFIU\nPIiIiEhSFDyIiIhIUhQ8iIiISFIUPIiIiEhSFDyIiIhIUhQ8iIiISFIUPIiIiEhSFDzkmbq6ukx/\nhLyjfZ5+2ufpp32eX5wKHv4zsBc4A/wOWOjQdiRJ+gNPP+3z9NM+Tz/t8/ziRPDwBeAx4L8Ds4Gt\nwBvAxQ5sS0RERNLMieDh68C/Af8O7AH+GjgAfNWBbYmIiEia2R08FANzgI1Rj28EqmzeloiIiGRA\nkc3vNw4oBD6OevwIMDHWN+zevdvmjyCD6ejooKmpKdMfI69on6ef9nn6aZ+nV6avnR6b3+8ioA0z\nyvBO2OP/DXgQuCLssUnAe8Bkmz+DiIhIPmgHrgEOpXvDdo88HAX6gAlRj09g4A93CPNDT7L5M4iI\niOSDQ2QgcHDKO8CPoh5rBv5HBj6LiIiIZIH7gHPAcmAGZtnmSbRUU0RERAbxVUyRqLOYvAYViRIR\nEREREREREREREREREZFMWQP0R30djHrNDOBVoAOTJFnPwETJ+cBbwGngOPAbYETY8/tibOd7Ue9x\nCfBa4D18wP8Bhg3x53KzNaS2z6fE+H7r6/Nh7zEW+EngPTqAZ4AxUdvRPg+xY5/vi/G8jvOhn1su\nAp4DDmP2VxOR+xt0nIdbQ3r2+b4Y29FxPvR9XgG8hCm8eAL4GTA+6j1cd5yvAf4Q+KDW16fCnq8A\njgH/APwZ5iS6FPCGvWY+5odZhdlJFcDdmLLWlr3A30RtpzTs+UJgJ7ApsJ1FmMJUj6f6A7rQGlLb\n5wVR3zse+DbmoCsJe583gN8D1wLzAtt8Nex57fMQu/a5jvOQNaR+bvkNZpn41YHn/wboxTTns+g4\nD1lDeva5jvOQNaS2z0uBVmAdMAv4DCaQeJfIgo+uO87XADsGef554OnzvMc7wHfO85q9wNcGeX4p\n5gANL3f9BUz771Hnee9ss4bU93m0HcC/hv17BiYCvibssWsDj10e+Lf2eYgd+xx0nIdbQ+r7/BTw\npajHjmKWjIOO82hrcH6fg47zcGtIbZ8vweyr8P1ShjmGFwX+nbbjPNnGWJdjymF+BNQBl4a9z63A\nB8AGTG+Ld4A7wr53PFCJGSLZjhnq2gwsiLGd1ZiDcAemtHX4cMp8TNR0OOyxjcBwYG6SP082SGWf\nR5uLiTT/b9hj8zF3xe+FPfZu4LGqsNdon9u3zy06zkNS3ee/BL6IGbItCPx/MeYcAzrOY3F6n1t0\nnIekss+HA36gO+yxc5jAwLqOuvI4vwW4CzNcsggzZHUIuBATwfRj5k++BnwWc8D0AdcHvn9e4DVH\ngb/EnFB/gKkFMTVsOyuB6zBDMg9h5nbC79qeBNbH+HxnMdFTLkl1n0f7F+A/oh77b5jW6dH2BN4P\ntM/t3ueg4zycHft8JGYYth9zcu0gdDcGOs6jpWOfg47zcKnu83GYffwYZt+XAv8c+L4fB16TFcd5\nCeYH/2tMf4p+4Nmo17yCSagBE/X0A9+Nes3vGZhAE+7uwPeNDfz7SUxkFi0XD7Zoye7zcCMxB95f\nRz2e6MGmfW7fPo9Fx3nIUPb5LzDJZTcCVwJ/h0nI/kzgeR3ng3Nin8ei4zxkKPv8JuBDTFDRg5nm\n+DqwB4wAAAJfSURBVB2hlhBpO86TnbYI14UZ+piKGU3oxfSwCPdHTFYnhJp3RL9md9hrYnk38F9r\ndOIwAxtvjcUMlx0mtyW7z8Pdg7mYPRP1+GEGZusSeOxw2Gu0z+3b57HoOA9Jdp/PAO7E3Nn+JvC9\nf485qT4SeI2O88E5sc9j0XEeMpRzy5uB13sxyZZ/CZRjpkEgjcd5KsHDcGAmJijowcyxXBH1mmmY\npToE/nswxmumh70mlqsC/7WCj+2YyDb8h1+CmftpTPCzZ6tk93m4hzBR7LGox+sxy3iiE2zGYPY1\naJ/bvc9j0XEekuw+t85jfVGv6SeUha7jfHBO7PNYdJyHpHJu+QSzlHMRJpCwVlO48jj/35i5l0sD\nH+Y1zJCstQb1zsDGv4yJjP4/zA6pCnuPrwW+5/OB1/x3oJNQ0sg8zBDO7MBj92GWkLwU9h4FmKUn\nbwZetwjYj1mnmmvs2OcEnuvDHCCx/Ap4n8ilPa+EPa99bu8+13EeKdV9Xoi5Y9uCOWlWAN/A7P9b\nwraj4zwkHft8PjrOw9lxblmOOXYrgAcwIxbfj9qO647zOkyW6DnMAfAiA6Ok5UALZjimCfh/YrzP\n6sAHPQ28TeSOuQoTOR0PvMduzDzaiKj3uBiz4zsxO++H5GZREbv2+fcYfHSnDFNU5ETg6xlgdNRr\ntM9DUt3nOs4j2bHPLwt83yHMuWUHA5cR6jgPScc+13EeyY59/j8x+/scZkpjZYzt6DgXERERERER\nERERERERERERERERERERERERERERERERERERERERERERERERERERERGRjPr/AQ2wljtxbPAZAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t2, l2, l2e = np.loadtxt(echo_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o', color=\"green\")\n", + "errorbar(t2, l2, yerr=l2e, fmt='o', color=\"black\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.359e-01 7.161e+01 inf -- -2.181e+02 -- 1 1 1 1 1 1 1 1\n", + " 2 7.742e-01 7.111e+01 8.740e+01 -- -1.307e+02 -- 0.564074 0.564103 0.564133 0.564559 0.565233 0.56464 0.564848 0.564132\n", + " 3 3.436e+00 7.050e+01 8.697e+01 -- -4.372e+01 -- 0.13087 0.128441 0.128217 0.128912 0.13058 0.129543 0.129728 0.127363\n", + " 4 1.429e+00 6.964e+01 8.635e+01 -- 4.262e+01 -- -0.295217 -0.304667 -0.307069 -0.306748 -0.303835 -0.30536 -0.305448 -0.310246\n", + " 5 5.887e-01 6.841e+01 8.530e+01 -- 1.279e+02 -- -0.704126 -0.731704 -0.741301 -0.742618 -0.738088 -0.740228 -0.740922 -0.748518\n", + " 6 3.715e-01 6.674e+01 8.354e+01 -- 2.115e+02 -- -1.07182 -1.14488 -1.17363 -1.17921 -1.17251 -1.17519 -1.17707 -1.18728\n", + " 7 2.720e-01 6.454e+01 8.085e+01 -- 2.923e+02 -- -1.35117 -1.52737 -1.60252 -1.61695 -1.60778 -1.61012 -1.61437 -1.62665\n", + " 8 2.151e-01 6.151e+01 7.746e+01 -- 3.698e+02 -- -1.49897 -1.84925 -2.02742 -2.05591 -2.04475 -2.04475 -2.05353 -2.06755\n", + " 9 1.795e-01 5.724e+01 7.348e+01 -- 4.433e+02 -- -1.55318 -2.06643 -2.44779 -2.49458 -2.48325 -2.47853 -2.49523 -2.5119\n", + " 10 1.552e-01 5.129e+01 6.861e+01 -- 5.119e+02 -- -1.57472 -2.15815 -2.85964 -2.92873 -2.92176 -2.90848 -2.9396 -2.96289\n", + " 11 1.358e-01 4.343e+01 6.173e+01 -- 5.736e+02 -- -1.57452 -2.1858 -3.24732 -3.34792 -3.35575 -3.328 -3.38557 -3.42282\n", + " 12 1.168e-01 3.415e+01 5.061e+01 -- 6.242e+02 -- -1.56805 -2.20666 -3.56401 -3.72207 -3.774 -3.72255 -3.82733 -3.8877\n", + " 13 9.496e-02 2.420e+01 3.428e+01 -- 6.585e+02 -- -1.56623 -2.22075 -3.74568 -3.98216 -4.14916 -4.05587 -4.24428 -4.34169\n", + " 14 6.665e-02 1.351e+01 1.640e+01 -- 6.749e+02 -- -1.5696 -2.22354 -3.78328 -4.0829 -4.4261 -4.2599 -4.58517 -4.75399\n", + " 15 2.964e-02 4.358e+00 4.427e+00 -- 6.793e+02 -- -1.57425 -2.21978 -3.77127 -4.13056 -4.55417 -4.30434 -4.77899 -5.07083\n", + " 16 3.872e-03 6.183e-01 4.700e-01 -- 6.798e+02 -- -1.57487 -2.21895 -3.77396 -4.16245 -4.5755 -4.2897 -4.83862 -5.22114\n", + " 17 1.291e-03 1.659e-01 1.113e-02 -- 6.798e+02 -- -1.57331 -2.22027 -3.78214 -4.16768 -4.57631 -4.28246 -4.85735 -5.23199\n", + " 18 5.326e-04 6.959e-02 1.219e-03 -- 6.798e+02 -- -1.57311 -2.22061 -3.78349 -4.168 -4.57225 -4.27943 -4.86362 -5.23031\n", + " 19 2.494e-04 2.982e-02 2.268e-04 -- 6.798e+02 -- -1.57309 -2.22069 -3.78429 -4.1678 -4.56992 -4.2784 -4.86621 -5.23009\n", + " 20 1.140e-04 1.317e-02 4.436e-05 -- 6.798e+02 -- -1.57306 -2.22073 -3.78469 -4.16784 -4.56878 -4.27802 -4.86734 -5.22989\n", + "********************\n", + "-1.57306 -2.22073 -3.78469 -4.16784 -4.56878 -4.27802 -4.86734 -5.22989\n", + "0.237078 0.201135 0.284718 0.248327 0.252841 0.150914 0.188371 0.222107\n", + "0.000184037 -0.000586923 -0.00230695 0.00112283 0.00799663 0.00635492 -0.0131691 -0.000270457\n", + "********************\n" + ] + } + ], + "source": [ + "P2 = clag.clag('psd10r', [t2], [l2], [l2e], dt, fqL)\n", + "p2 = np.ones(nfq)\n", + "p2, p2e = clag.optimize(P2, p2)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 6.798e+02 6.794e+02 -1.573e+00 -1.336e+00 0.88 +++\n", + "+++ 6.798e+02 6.789e+02 -1.573e+00 -1.217e+00 1.85 +++\n", + "+++ 6.798e+02 6.791e+02 -1.573e+00 -1.277e+00 1.33 +++\n", + "+++ 6.798e+02 6.793e+02 -1.573e+00 -1.306e+00 1.09 +++\n", + "+++ 6.798e+02 6.793e+02 -1.573e+00 -1.321e+00 0.984 +++\n", + "+++ 6.798e+02 6.793e+02 -1.573e+00 -1.314e+00 1.04 +++\n", + "+++ 6.798e+02 6.793e+02 -1.573e+00 -1.317e+00 1.01 +++\n", + "+++ 6.798e+02 6.793e+02 -1.573e+00 -1.319e+00 0.998 +++\n", + "\t### errors for param 1 ###\n", + "+++ 6.798e+02 6.794e+02 -2.221e+00 -2.020e+00 0.889 +++\n", + "+++ 6.798e+02 6.789e+02 -2.221e+00 -1.919e+00 1.88 +++\n", + "+++ 6.798e+02 6.791e+02 -2.221e+00 -1.969e+00 1.35 +++\n", + "+++ 6.798e+02 6.792e+02 -2.221e+00 -1.994e+00 1.11 +++\n", + "+++ 6.798e+02 6.793e+02 -2.221e+00 -2.007e+00 0.996 +++\n", + "\t### errors for param 2 ###\n", + "+++ 6.798e+02 6.793e+02 -3.785e+00 -3.500e+00 0.976 +++\n", + "+++ 6.798e+02 6.787e+02 -3.785e+00 -3.358e+00 2.11 +++\n", + "+++ 6.798e+02 6.791e+02 -3.785e+00 -3.429e+00 1.49 +++\n", + "+++ 6.798e+02 6.792e+02 -3.785e+00 -3.465e+00 1.22 +++\n", + "+++ 6.798e+02 6.793e+02 -3.785e+00 -3.482e+00 1.1 +++\n", + "+++ 6.798e+02 6.793e+02 -3.785e+00 -3.491e+00 1.04 +++\n", + "+++ 6.798e+02 6.793e+02 -3.785e+00 -3.496e+00 1.01 +++\n", + "\t### errors for param 3 ###\n", + "+++ 6.798e+02 6.796e+02 -4.168e+00 -4.044e+00 0.34 +++\n", + "+++ 6.798e+02 6.794e+02 -4.168e+00 -3.982e+00 0.75 +++\n", + "+++ 6.798e+02 6.793e+02 -4.168e+00 -3.951e+00 1.01 +++\n", + "+++ 6.798e+02 6.794e+02 -4.168e+00 -3.966e+00 0.876 +++\n", + "+++ 6.798e+02 6.793e+02 -4.168e+00 -3.958e+00 0.942 +++\n", + "+++ 6.798e+02 6.793e+02 -4.168e+00 -3.954e+00 0.976 +++\n", + "+++ 6.798e+02 6.793e+02 -4.168e+00 -3.952e+00 0.993 +++\n", + "\t### errors for param 4 ###\n", + "+++ 6.798e+02 6.794e+02 -4.568e+00 -4.316e+00 0.875 +++\n", + "+++ 6.798e+02 6.788e+02 -4.568e+00 -4.189e+00 2.1 +++\n", + "+++ 6.798e+02 6.791e+02 -4.568e+00 -4.252e+00 1.41 +++\n", + "+++ 6.798e+02 6.792e+02 -4.568e+00 -4.284e+00 1.13 +++\n", + "+++ 6.798e+02 6.793e+02 -4.568e+00 -4.300e+00 0.996 +++\n", + "\t### errors for param 5 ###\n", + "+++ 6.798e+02 6.794e+02 -4.278e+00 -4.127e+00 0.875 +++\n", + "+++ 6.798e+02 6.789e+02 -4.278e+00 -4.052e+00 1.83 +++\n", + "+++ 6.798e+02 6.791e+02 -4.278e+00 -4.089e+00 1.36 +++\n", + "+++ 6.798e+02 6.792e+02 -4.278e+00 -4.108e+00 1.1 +++\n", + "+++ 6.798e+02 6.793e+02 -4.278e+00 -4.118e+00 0.986 +++\n", + "+++ 6.798e+02 6.793e+02 -4.278e+00 -4.113e+00 1.04 +++\n", + "+++ 6.798e+02 6.793e+02 -4.278e+00 -4.115e+00 1.02 +++\n", + "+++ 6.798e+02 6.793e+02 -4.278e+00 -4.116e+00 1 +++\n", + "\t### errors for param 6 ###\n", + "+++ 6.798e+02 6.794e+02 -4.868e+00 -4.679e+00 0.799 +++\n", + "+++ 6.798e+02 6.788e+02 -4.868e+00 -4.585e+00 1.9 +++\n", + "+++ 6.798e+02 6.792e+02 -4.868e+00 -4.632e+00 1.28 +++\n", + "+++ 6.798e+02 6.793e+02 -4.868e+00 -4.656e+00 1.03 +++\n", + "+++ 6.798e+02 6.793e+02 -4.868e+00 -4.668e+00 0.908 +++\n", + "+++ 6.798e+02 6.793e+02 -4.868e+00 -4.662e+00 0.966 +++\n", + "+++ 6.798e+02 6.793e+02 -4.868e+00 -4.659e+00 0.996 +++\n", + "\t### errors for param 7 ###\n", + "+++ 6.798e+02 6.796e+02 -5.230e+00 -5.119e+00 0.305 +++\n", + "+++ 6.798e+02 6.795e+02 -5.230e+00 -5.063e+00 0.696 +++\n", + "+++ 6.798e+02 6.793e+02 -5.230e+00 -5.036e+00 0.953 +++\n", + "+++ 6.798e+02 6.793e+02 -5.230e+00 -5.022e+00 1.1 +++\n", + "+++ 6.798e+02 6.793e+02 -5.230e+00 -5.029e+00 1.02 +++\n", + "+++ 6.798e+02 6.793e+02 -5.230e+00 -5.032e+00 0.988 +++\n", + "+++ 6.798e+02 6.793e+02 -5.230e+00 -5.030e+00 1.01 +++\n", + "********************\n", + "-1.57305 -2.22075 -3.78488 -4.16779 -4.56826 -4.27788 -4.86784 -5.22982\n", + "0.253747 0.213705 0.289194 0.215344 0.268522 0.161511 0.209074 0.199524\n", + "********************\n" + ] + } + ], + "source": [ + "p2, p2e = clag.errors(P2, p2, p2e)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X9w1Pd95/EnBgVdc60J9rGLTawN2yNLYuxUioiLApV7\nTab1JWkvaYl2kruJCONc6x5D7+I5rh10HnHXaRumSVM3zVDM9XqxV3DT5mpmTO02FTUVck6VEtsU\nts6tkAw2u5RQ3NaJXNlwf3wlI+GvkFbsd38+HzM7Erufz34/wAfx2u/38/28QZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSTfovwBDwN8DBeDrwLqKjkiSJFWFI8C/A9YDdwGHgTHgByo4\nJkmSVIVuBS4DH6z0QCRJ0vxuKuOxVkx9vVjGY0qSpCq3hOByw19UeiCSJGlhlpXpOA8D7+X6lxpW\nTz0kSVJxzk09SqocIeG3gY8AW4CX52iz+rbbbnv55ZfnelmSJF3HS0A7JQ4KUYaEJQQB4aeBTmD8\nOm1Xv/zyy3zta19j/fr1EQ6p9Hbu3MmXvvSlmjzejbxXsX2Lab+QtvO1ud7r5f47KxXnWunbO9fC\nOddK3z7KuXbq1Ck+/elP305wNr5mQsLvAGmCkPAqEJ96/hIwEdZh/fr1tLa2Rjik0luxYkVZx1zK\n493IexXbt5j2C2k7X5vrvV7uv7NSca6Vvr1zLZxzrfTto55rUVka4XsfBpYD3cB/mvH4DvDsNW1X\nA5/73Oc+x+rVtbcsYcOGDTV7vBt5r2L7FtN+IW3nazPX65lMhnQ6veCxVBPnWunbO9fCOddK3z6q\nuXbu3Dn27dsHsI8Sn0lYUso3uwGtwPDw8HBNpm7Vlo997GM8/vjjlR6GGoBzTeUwMjJCW1sbQBsw\nUsr3Luc+CZIkqYYYEtRwavX0r2qPc021zpCghuMPbpWLc021zpAgSZJCGRIkSVIoQ4IkSQplSJAk\nSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCGRIkSVIoQ4IkSQplSJAkSaEMCZIkKZQhQZIk\nhTIkSJKkUIYESZIUypAgSZJCGRIkSVIoQ4IkSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIU\nypAgSZJCRRkStgCHgZeAy8BPR3gsSZJUYlGGhB8AvgU8MPXrKxEeS5IkldiyCN/7T6YekiSpBrkm\nQZIkhTIkSJKkUIYESZIUKso1CUXbuXMnK1asmPVcOp0mnU5XaESSJFWPTCZDJpOZ9dylS5ciO96S\nyN55tsvAzwCPz/F6KzA8PDxMa2trmYYkSVLtGxkZoa2tDaANGCnle0d5JuHtwL+c8eu1wPuA7wJn\nIjyuJEkqgShDQjvw51PfXwF+c+r73we2RXhcSZJUAlGGhKO4MFKSpJrlf+KSJCmUIUGSJIUyJEiS\npFCGBEmSFMqQIEmSQhkSJElSKEOCJEkKZUiQJEmhDAmSJCmUIUGSJIUyJEiSpFCGBEmSFCrKAk9S\nxWSez5A5kQFg4vUJxl8Zp+XmFpqXNQOQvjNNekO6kkOUpKpnSFBdSm+4GgJGzo3Qtq+NzCcytK5u\nrfDIJKl2eLlBkiSFMiSobo2NjbHtgW1s/fhWeAy2fnwr2x7YxtjYWKWHJkk1wcsNqjuFQoGu7V1k\nL2bJvycPPxk8nyNH7myOI586Qmplir79fcRiscoOVpKqmCFBdaVQKLDpvk2M3jMK7w9psAbya/Lk\nz+fpuK+DgScGDAqSNAcvN6iudG3vCgLCqnkaroLcPTm6tneVZVySVIsMCaobp0+fJnsxO39AmLYK\nshezrlGQpDkYElQ39uzdE6xBKEJ+fZ7evb0RjUiSapshQXVj6LkhWFNkpzUw9OxQJOORpFpnSFDd\nmHxjsvhOS2Dy8iL6SVIDMCSobjQtbSq+0xVoumkR/SSpARgSVDfa72qHs0V2Ogsb794YyXgkqdYZ\nElQ3eh7sIX4yXlSf+Kk4uz+/O6IRSVJtMySobiQSCVIrU3B+gR3OQ2plikQiEeWwJKlmRR0SfgE4\nDXwf+CvggxEfTw2ub38fyWeS8weF85B8JsnBRw6WZVySVIuiDAmfBL4I7AHeBxwDjgDvjPCYanCx\nWIyBJwbofLGT+FNxOANcmXrxCnAG4k/F6Xyxk+NHjrNq1UJ3XpKkxhNlSPiPwH7gAPA3wC8R/Mj+\n+QiPKRGLxeg/3M/go4N0N3eTfDIJj0HyySTdzd0MPjpI/+F+A4IkzSOqAk9vA1qBX73m+aeATREd\nU5olkUhw4OEDjJwboW1fG4fuP0Tr6tZKD0uSakZUZxJuBZYChWuePw8Ut/xckiRVhKWiVZcyz2fI\nnMgAMPH6BOtuWceuP9tF87JmANJ3pklvSFdyiFXh2j+n8VfGabm5xT8nSQAsieh93wa8Cvws8Mcz\nnv8t4C7g3mvatwLDmzdvZsWKFbNeSKfTpNP+kJKiMjY2Ru8Xenl65GlyF3MkVybZ0rqFngd7vD1U\nqjKZTIZMJjPruUuXLnHs2DGANmCklMeLKiQAPAMMAw/MeO4k8HXgV65p2woMDw8P09rqNWOpHAqF\nAl3bu8hezAbVM2cWxzoL8ZNxUitT9O3vIxaLVWyckq5vZGSEtrY2iCAkRHm54TeB/0WwP8IzwP0E\nP4a+GuExJS1AoVBg032bGL1nFN4f0mAN5NfkyZ/P03FfBwNPDBgUpAYU5S2Qh4CdQA/wLYKNlO4j\nuA1SUgV1be8KAsJ8d4Gugtw9Obq2d5VlXJKqS9Q7Lv4u8C6gGWgH/jLi40max+nTp8lezM4fEKat\nguzFLGNjY1EOS1IVsnaD1GD27N0TrEEoQn59nt69vRGNSFK1MiRIDWbouaHZixQXYg0MPTsUyXgk\nVS9DgtRgJt+YLL7TEpi8vIh+kmqaIUFqME1Lm4rvdAWablpEP0k1zZAgNZj2u9rhbJGdzsLGuzdG\nMh5J1cuQIDWYngd7iJ8sroRK/FSc3Z/fHdGIJFUrQ4LUYBKJBKmVqaDc2kKch9TKlFs0Sw3IkCA1\noL79fSSfSc4fFM5D8pkkBx85WJZxSaouhgSpAcViMQaeGKDzxU7iT8WDfVCvTL14BTgD8afidL7Y\nyfEjx1m1aqE7L0mqJ5aKlhpULBaj/3B/UAVyby9PPzmjCmTbFnoetQqk1OgMCVIDyzyfIXMiAx2w\n9gNrWfrKUlpubuHCsgvsGNxB+h/SpDdYql1qVIYEqYGlNxgCJM3NNQmSJCmUIUGSJIUyJEiSpFCG\nBEmSFMqQIEmSQhkSJElSKEOCJEkKZUiQJEmhDAmSJCmUIUGSJIUyJEiSpFCGBEmSFMqQIEmSQhkS\nJElSKEOCJEkKZUiQJEmhogoJvwIcB74H/F1Ex5AkSRGKKiQ0AQeBr0T0/pIkKWLLInrfh6a+fiai\n95ckSRFzTYIkSQplSJAkSaGKudzwENAzT5v3AyOLHo0kXUfm+QyZExkAJl6fYPyVcVpubqF5WTMA\n6TvTpDekKzlEqa4UExJ+G3hsnjbjNzAWdu7cyYoVK2Y9l06nSaf9Ry8J0hvS/OgP/ii9X+jl6ZGn\nyV3M8cbKN9jSuoWeB3tIJBKVHqIUqUwmQyaTmfXcpUuXIjveksjeOfAZ4IvAO+Zp1woMDw8P09ra\nGvGQJNWiQqFA1/Yushez5N+ThzUzXjwL8ZNxUitT9O3vIxaLVWycUrmNjIzQ1tYG0EaJz+ZHdXfD\nHcDKqa9LgbsJAsl3gFcjOqakOlUoFNh03yZG7xkNLmpeaw3k1+TJn8/TcV8HA08MGBSkEohq4WIv\nQZp5CHg78C1gmCDlSFJRurZ3BQFh1TwNV0Hunhxd27vKMi6p3kUVEj4z9d43EZxJmP76dETHk1Sn\nTp8+TfZidv6AMG0VZC9mGRsbi3JYUkPwFkhJVW3P3j3BGoQi5Nfn6d3bG9GIpMZhSJBU1YaeG5q9\nSHEh1sDQs0ORjEdqJIYESVVt8o3J4jstgcnLi+gnaRZDgqSq1rS0qfhOV6DppkX0kzSLIUFSVWu/\nqx3OFtnpLGy8e2Mk45EaiSFBUlXrebCH+Ml4UX3ip+Ls/vzuiEYkNQ5DgqSqlkgkSK1MwfkFdjgP\nqZUpt2iWSiCqHRelipq5v/nExATj4+O0tLTQ3DxVCMiaIDWlb38fHfd1kLsnd/39Es5D8pkkB48c\nLNvYpHoWde2GhbJ2gyIzva+586u2zardsH6qdsMS4ApB7YZTQe2Gg48cZNWqhe68tDCZ5zM80v8I\nLxx5gYtnL/JPb/wTb1v6NlauWcm6n1rHZ+/9rNUnVTG1WLtBkkoqFovRf7ifsbExevf28vSTQRXI\n5MokW9q20PNoNFUgC4UC+35539XCUvcEz08yyatnX2Xy4CT7/nQfP77/x60XobpjSFDdGhsbo7e3\nl6efDnYD37p1K1u2bKGnx5LCtSyRSHDg4QOMnBuhbV8bh+4/ROvqaM4QWVhKjc7LDao7hUKBrq4u\nstks+fxbt/ONx+OkUin6+iwpXGsyz2fInJhaa/L6BOOvjNNycwvNy6bWmtyZLulp/3s/ei9H7zi6\nsLoR56HzxU76D/eX7PjSQni5QVqgQqHApk2bGB0dnbNNPp8nn8/T0dHBwICf/GpJekNpQ8D1vFlY\nKuwMQphVkP12UFjKM1WqF94CqbrS1dV13YAwUy6Xo6vLksIKZ2EpyZCgOnL69Gmy2WxRfbJZSwor\nnIWlJEOC6siePXtC1yBcTz6fp7fXT356KwtLSYYE1ZGhocV9gltsP9U3C0tJhgTVkcnJxX2CW2w/\n1TcLS0mGBNWRpqbFfYJbbD/VNwtLSYYE1ZH29vZF9du40U9+eisLS0mGBNWRnp4e4vEiP/nF4+ze\n7Sc/hevb30fymeT8QWG6sNQjFpZSfTEkqG4kEglSqVRRfVIpP/lpbrFYjIEnBuh8sZP4U3E4Q1BQ\niqmvZyD+VJzOFzs5fuR4yQtLSZVmSFBd6evrI5lMLqhtMpnk4EE/+en6pgtLDT46SHdzN8knk/AY\nJJ9M0t3czeCjg/Qf7jcgqC65LbPqSiwWY2BgYEG1Gw4eLH1JYdWnN2tGdMDaD6xl6StLabm5hQvL\nLrBjcAfpfyjfdtFSORkSVHdisRj9/f2zqkDmcjmSyaRVILUo5awZIVUTQ4LqViKR4MCBA29WSDt0\n6JBVRiWpCK5JkCRJoTyToLqUyWTIZDIATExMsG7dOnbt2kVzczMA6XSadNrTx5J0PVGFhASwG7gX\niAMvA18D/jvgHriKnCFAkm5cVCHh3cAS4H7g/wEbgN8D3g48GNExJUlSCUUVEp6cekwbA/YCP48h\nQZKkmlDOhYsrgO+W8XiSJOkGlCskJIFfBL5apuNJUs0bGxtj2wPb2LB5A6lNKTZs3sC2B7YxNjZW\n6aGpQRR7ueEhoGeeNu8HRmb8+jbgT4BDwIEijydJDadQKHBv172M/v0or7W+Bj9x9bUTZ0/w2Cce\nY+0PraW/r59YLFa5garuLSmy/S1Tj+sZB16b+v42oB8YBD5znT6twPDmzZtZsWLFrBdcpS5F59pb\nRcfHx2lpafFW0QoqFApsum8To/eMwvV2DZ+qPDnwxIBBoYHM/Dc77dKlSxw7dgygjdkf0m9YsSGh\nGLcTBIQh4NNcrZ0WphUYHh4edkc8qczcvrq63PvRezl6x9HrB4Rp56HzxU76D/dHPCpVs+ldZYkg\nJER1d8PtwFGCuxoeBGbG3LdW3JFUdoVCIbQQVi6XI5fLceTIEVKpFH19fX5SLZPTp0+TvZgNLtou\nxCrIfjvL2NiYgU6RiGrh4ocIFiv+OHCWYDOll4GXIjqepCIUCgU2bdrE0aNHQytlAuTzeY4ePUpH\nRweFQqHMI2xMe/buIf+e4j5H5dfn6d3bG9GI1OiiCgm/P/XeS6e+3jTj15IqrKuri9HR0QW1zeVy\ndHV1RTwiAQw9NwRriuy0BoaeHYpkPJIFnqQGc/r0abLZbFF9stmst92VweQbi9i1fglMXna3e0XD\nkCA1mD179sx5iWEu+Xye3l5PaUetaWlT8Z2uQNNNi+gnLYAhQWowQ0OLOzW92H5auPa72oNVXMU4\nCxvv3hjJeCRDgtRgJicXd2p6sf20cD0P9hA/GS+qT/xUnN2f3x3RiNToDAlSg2lqWtyp6cX208Il\nEglSK1NwfoEdzkNqZcrbHxUZQ4LUYNrb2xfVb+NGT2mXQ9/+PpLPJOcPClM7Lh585GBZxqXGZEiQ\nGkxPTw/xeJGntONxdu/2lHY5xGIxBp4YYP3J9Sx/fDmc4ep+tVeAM7D88eWsP7me40eOs2rVQrZm\nlBYnqh0XJVWpRCJBKpUq6g6HVMpT2uUUi8U42X8y2DJ7by9D3xhi8vIkTTc10X53Oz1/GO2W2WNj\nY/R+oZeh54aYfGOSpqVNtN/VTs+DbtXdaKKs3VAMazdIZVQoFOjo6CCXy83bNplMcvy4n1gbQaFQ\noGt7F9mL2WDnx5kbO52F+Mk4qZUp+va7VXc1ibJ2g5cbpAYUi8UYGBigs7NzzksP8Xiczs5OA0KD\nmK4+efSOo+Q/nH/rzo9rIP/hPEfvOErHfW7V3SgMCVKDisVi9Pf3Mzg4SHd3N8lkEgjOHHR3dzM4\nOEh/f78BoUF0be+avzw1wCrI3ZOja7tbdTcC1yRIDS6RSHDgwIE3T1keOnTIy34NxuqTmoshQWpg\nmUyGTCYDwMTEBOvWrWPXrl00NzcDkE6nSafTlRyiyuBGqk8eePhARKNSNTAkSA3MECCYqj75E0V2\nWgND33Cr7nrnmgRJanBWn9RcDAmS1OCsPqm5GBIkqcFZfVJzMSRIUoOz+qTmYkiQpAZn9UnNxZAg\nSbL6pEIZEiRJb1af7Hyxk/hT8dDqk/Gn4nS+2Gn1yQbiPgmSJGBqq+7D/XNXn3zUKpCNxpAgSZol\nkUi4k6IALzdIkqQ5GBIkSVIoQ4IkSQplSJAkSaEMCZIkKVRUIeFxYBz4PvAy8AfA6oiOJUmSIhBV\nSPhz4OeAdcAngCTwRxEdS5IkRSCqfRK+NOP7M8CvA18HlgJvRHRMSZJUQuVYk7AS+BTQjwFBkqSa\nEWVI+HXgH4ELwLuAT0Z4LEmSVGLFhISHgMvzPFpntP8N4H3Ah4HXgP8DLLnhEUuSpLIo5j/tW6Ye\n1zNOEAiudTvB2oQPAsdDXm8Fhjdv3syKFStmvZBOp0mn00UMU5Kk+pTJZMhkMrOeu3TpEseOHQNo\nA0ZKebxyfbJ/J0GA+DHgWMjrrcDw8PAwra2tIS9LkqQwIyMjtLW1QQQhIYq7GzZOPf4S+DtgLdAL\nfAcYjOB4kiQpAlEsXPwe8G+APwOywCPAcwRnEV6P4HiSJCkCUZxJOAH8qwjeV5IklZG1GyRJUihD\ngiRJCmVIkCRJoQwJkiQplCFBkiSFMiRIkqRQhgRJkhQqin0SJElasMzzGTIngnoEE69PMP7KOC03\nt9C8rBmA9J1p0hus4VMJhgRJUkWlN1wNASPnRmjb10bmExlaV1vLp9K83CBJqrixsTG2PbCNrR/f\nCo/B1o9vZdsD2xgbG6v00BqaZxIkSRVTKBTo2t5F9mKW/Hvy8JPB8zly5M7mOPKpI6RWpujb30cs\nFqvsYBuQIUGSVBGFQoFN921i9J5ReH9IgzWQX5Mnfz5Px30dDDwxYFAoMy83SJIqomt7VxAQVs3T\ncBXk7snRtb2rLOPSVYYESVLZnT59muzF7PwBYdoqyF7MukahzLzcIKlmZDIZMpmpW+UmJhgfH6el\npYXm5qlb5dJp0mlvlasFe/buCdYgFCG/Pk/v3l4OPHwgolHpWoYESTVjZggYGRmhra2NTCZDa6u3\nytWaoeeG4CeK7LQGhr4xFMl4FM7LDZKkspt8Y7L4Tktg8vIi+mnRDAmSpLJrWtpUfKcr0HTTIvpp\n0QwJkmrK2NgY27ZtY+vWrQBs3bqVbdvcdKfWtN/VDmeL7HQWNt69MZLxKJxrEiTVhEKhQFdXF9ls\nlnz+6oK3XC5HLpfjyJEjpFIp+vrcdKcW9DzYw5FPHSG/ZuGLF+On4ux+dHeEo9K1DAmSql6hUGDT\npk2Mjo7O2Safz5PP5+no6GBgwE13ql0ikSC1MkX+fH5ht0Geh9TKFIlEIuqhaQYvN0iqel1dXdcN\nCDPlcjm6utx0pxb07e8j+UwSzs/T8Dwkn0ly8JGDZRmXrjIkSKpqp0+fJpvNFtUnm3XTnVoQi8UY\neGKAzhc7iT8VhzPAlakXrwBnIP5UnM4XOzl+5DirVi105yWViiFBUlXbs2fPrDUIC5HP5+nt7Y1o\nRCqlWCxG/+F+Bh8dpLu5m+STSXgMkk8m6W7uZvDRQfoP9xsQKsQ1CZKq2tDQ4jbPWWw/VUYikeDA\nwwcYOTdC2742Dt1/iNbVbpJVaZ5JkFTVJicXt3nOYvtJusozCZKqWlPT4jbPWWw/lV/m+QyZE1M1\nOV6fYN0t69j1Z7toXjZVk+PONOkN1uSoBEOCpKrW3t7OiRMniu63caOb7tSK9AZDQLWK+nLDcuDb\nwGXgroiPJakO9fT0EI/Hi+oTj8fZvdtNd6QbFXVI+A3gpYiPIamOJRIJUqlUUX1SKTfdkUohypDw\nUwSFQD8f4TEkNYC+vj6SyeSC2iaTSQ4edNMdqRSiCgkxYB/wb4HvR3QMSQ0iFosxMDBAZ2fnnJce\n4vE4nZ2dHD/upjtSqUSxcHEJ8PvA7wIjQCKCY0hqMLFYjP7+fsbGxujt7eXpp58ml8uRTCbZsmUL\nPT09kV1iyGQyZDJTq+8nJhgfH6elpYXm5qnV9+k06bQL71R/lhTR9iGgZ5427UAH8HPAjxEsWEwA\no8CPAM/O0a8VGN68eTMrVqyY9YL/+CSFGRkZoa2tjeHhYVpbo990pxLhRLrWzMA67dKlSxw7dgyg\njeDDeckUExJumXpczzjQB3yUqztwAywF3gC+BnSH9GsFhsv1j11S7StXSJirRPW0eDxuiWpV1PS/\nBSIICcVcbvju1GM+O4BfmfHr24Enga3AN4s4niRVlCWq1eiiWJNw5ppff2/qaw54OYLjSWoQ164N\nWLduHbt27YpsbcBiSlT39/eX7PhSpZVrx8Ur8zeRpOsr5xqlGylRXetrFKbXXwwNDTE5OUlTUxPt\n7e2uv2hA5QgJYwRrEiSpZtxIieoDBw5ENKpoFQoF7r33XkZHR3nttddmvXbixAkee+wx1q5dS39/\nv5dVGoRVICUpRKOVqJ5ef3Hq1Km3BIRpr732GqdOnaKjo4NCoVDmEaoSDAmSFKLRSlQvZv2F6p8h\nQZJCNFKJ6htZf6H6ZkiQpBDt7e2L6leLJapvZP2F6pshQZJCNFKJ6kZbf6GFMyRIUohGKlHdaOsv\ntHDl2idBkmpOX18fHR0d5HK5eduWukR1OYtKNdL6i5kyz2fInJj6M359gvFXxmm5uYXmZVN/xnem\nSW9o7NpBhgRJmsN0ieqF1G44ePBgSUtUzwwB03vzZzKZSOpUtLe3c+LEiaL71eL6i5nSG66GgJFz\nI7TtayPziQytq60hNM3LDZJ0HdMlqgcHB+nu7iaZTALBmYPu7m4GBwfp7+8vaUAot0Zaf6HiGBIk\naR6ZTIYdO3Zw4cIF1q5dy7p161i7di0XLlxgx44dbyndWypjY2Ns27aNrVu3ArB161a2bdtW8lsP\nG2n9hYrj5QZJmkc5a0bA3OWpc7kcuVyOI0eOlLw8dSXXX6h6eSZBkqrI9PbIR48enXPvgnw+z9Gj\nR0u6PfL0+ov169ezfPny0DbLly9n/fr1HD9+vKYvr2jhDAmSVEUquT1yLBbj5MmTZLNZuru7ufPO\nO3n3u9/NnXfeSXd3N9lslpMnTxoQGoiXGySpSlRLeepEIlGzlSxVWp5JkKQq4fbIqjaGBEmqEm6P\nrGpjSJCkKuH2yKo2hgRJqhKNuj2yqpchQZKqRCOVp1ZtMCRIUpVwe2RVG2+BlKQqMb09cjF3ONTD\n9sjlrHip4ngmQZKqSF9f35tFpOZTL9sjp9NpvvzlL3PrrbcyOjrKCy+8wOjoKLfeeitf/vKXDQgV\n5JkESaoilSxPXQmVqFOhhfNMgiRVmUYoTw2Vq1OhhTMkSFKVmt4e+dChQwAcOnSIAwcO1PwahGmV\nrFOhhTEkSJLK7kbqVKh8DAmSpLKzTkVtiGrh4hhwxzXP/RrwyxEdT5LqyrW3Ba5bt45du3bVzW2B\n1qmoDVGFhCvAbuD3Zjz3akTHkqS6U+shYD7WqagNUd4C+Y/A+QjfX5JUo6xTURuiXJPwn4ELwLcI\nLjP4NytJAqxTUSuiCgm/BXwS6AQeBnYCX4noWJKkGmOditpQTEh4CLg8z6N1qu2XgGPACeAR4N8D\nnwXeUYpBS5Jq23SdimLUQ52KWlPMmoTfBh6bp834HM9/c+rrDwNzLk3duXMnK1asmPVcvS/ekaRG\n1dfXR0dHB7lcbt629VKn4kbNvOtl2qVLlyI73pLI3nm2jwCPE9wWeTbk9VZgeHh4mNbW1pCXJUn1\naK7aDdOirFMx8z/c86+c55t//U0+8N4PsOrm4Di18iF1ZGSEtrY2gDZgpJTvHcWahHuAXwLeB7wL\n2Ap8FfhjwgOCJKlBVbJOxczqky+NvwTfhZfGX7L65AxRnEn4EYJFiilgOcEliAzwG8DEHH08kyBJ\nDerajaPGx8dpaWmJdOOohZ7BqIXqk1GeSSjX5Yb5GBIkSWUxXX1yIcWlkskkAwMDVR0Uau1ygyRJ\nVcvqkwtnSJAkNQyrTxbHkCBJahhWnyyOIUGS1DCsPlkcQ4IkqWFYfbI4hgRJUsOw+mRxDAmSpIZh\n9cniGBIkSQ3D6pPFMSRIkhqG1SeLY0iQJDWUvr6+N2tEzKfRq08aEiRJDSUWizEwMEBnZ+eclx7i\n8TidnZ0cP348kuJStcKQIElqONdWn1yTWAPAmsSayKtP1hJDgiSpIWUyGXbs2MGFCxe4/Y7b4Ra4\n/Y7buXDhAjt27HizMmUjW1bpAUiSVAkzS1CPnBuhbV8bX7n/K7SuthrxNM8kSJKkUIYESZIUypAg\nSZJCGRK5efLRAAAEtElEQVQkSVIoQ4IkSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIUypAg\nSZJCGRIkSVIoQ4IkSQplSJAkSaGiDAn/Gvgm8D3gb4E/jPBY0oJZI17l4lxTrYsqJHwC+APgEeAu\nYBPwaETHkoriD26Vi3NNtW5ZRO/5W8Dngf8x4/nvRHAsSZIUkSjOJLQCtwFXgG8BLwNPAO+N4FgV\nV+5PCqU83o28V7F9i2m/kLbztanHT3DOtdK3d66Fa9S5xvPRHatW51oUIWHt1NeHgF7gI8DfAUeB\nd0RwvIpq1H9M/uAuP+da6ds718I16lwzJLxVMZcbHgJ65mnTztXg8d+Ar0993w2cBX4O2DdX51On\nThUxnOpw6dIlRkZGavJ4N/JexfYtpv1C2s7X5nqvl/vvrFSca6Vv71wL14hz7dTfnoIJOPXcKThX\n+mNFOdei/L9zSRFtb5l6XM84wSLFbwAfBI7PeO0Z4E+B3SH9VgNDwO1FjEeSJAVeIvigvsCIszDF\nnEn47tRjPsPAa0CKqyGhCUgQhIgw5wh+c6uLGI8kSQqco8QBIUpfBM4AHwLeDewnGPzNlRyUJEmq\nvGXAF4A88ArwJLC+oiOSJEmSJEmSJEmSJEl6qx8E/i/BDo4ngF+s7HBUx95JsPHXXwPPAj9b0dGo\n3n0duAj870oPRHXrI0AWeAH4bIXHEpmbgOap7/8ZMAr8i8oNR3UsTlCUDII5doZgzklR+DGCH+KG\nBEVhGfA3BNsL/HOCoLCymDeIslR0KV0GJqa+/wFgcsavpVLKA89Nff+3BJ/yivpHJRXhL4B/rPQg\nVLc2EpwVPUcwz54APlzMG9RKSIBgj4VngRcJqkz+Q2WHowbwfoJdSV+q9EAkaRFuY/bPr7MUubNx\nLYWEV4C7gXcBDwA/XNnhqM7dAvxP4P5KD0SSFunKjb5BVCFhC3CYIMFcBn46pM0vAKeB7wN/RVDr\nYdp/IFikOEKwpfNM5wkWlr2vpCNWrYpiri0H/gj4VYKaIxJE93Pthn+Qq27d6Jx7mdlnDt5JlZwZ\n/UmCMtE/Q/Ab+9g1r3+SoL7DNoJtm79IcPngnXO83yrgh6a+/yGCa8bvLu2QVaNKPdeWABngv0Yx\nWNW0Us+1aZ24cFHhbnTOLSNYrHgbwV2CLwDviHzURQr7jX0T+J1rnjtJ8MktTCtBAv/21KO7lANU\n3SjFXPsg8AbBp71vTT3eW8Ixqj6UYq5BsGX9eeBVgjtp2ko1QNWdxc65jxLc4fAdYHtko7sB1/7G\n3kZwd8K1p02+RHAZQVos55rKxbmmcqvInKvEwsVbgaVA4ZrnzxPcoy6VinNN5eJcU7mVZc7V0t0N\nkiSpjCoREi4QXPONXfN8jGDDB6lUnGsqF+eayq0sc64SIeGfgGHeuuvTh4Dj5R+O6phzTeXiXFO5\n1fScezvBPgbvI1hssXPq++nbMrYS3LbRDawnuG3j75n/ViHpWs41lYtzTeVWt3Ouk+A3dJngdMj0\n9wdmtPl5gg0gJoAhZm8AIS1UJ841lUcnzjWVVyfOOUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSpBrw/wHPHATciaTfPgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-6,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"green\")\n", + "errorbar(fqd, p2, yerr=p2e, fmt='o', ms=10, color=\"black\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.263e+02 8.743e+00 inf -- 7.200e+02 -- -0.936223 -1.49944 -2.78774 -3.1451 -3.64922 -3.68468 -4.51464 -6.91491 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1\n", + " 3 4.860e+01 9.447e+00 3.012e+00 -- 7.230e+02 -- -0.89632 -1.47767 -2.84644 -3.16314 -3.6728 -3.70288 -4.53842 -6.61491 0.0812657 0.222203 0.312409 0.206336 0.095992 0.137977 -0.0249432 2.12014\n", + " 5 1.834e+02 1.086e+01 2.400e+00 -- 7.254e+02 -- -0.863738 -1.45362 -2.88196 -3.17521 -3.69408 -3.71906 -4.5538 -6.91491 0.0679893 0.320406 0.548492 0.312861 0.089923 0.174248 -0.146165 0.867841\n", + " 7 2.704e+01 1.233e+01 1.965e+00 -- 7.273e+02 -- -0.83671 -1.42964 -2.88961 -3.18149 -3.71318 -3.73336 -4.56179 -6.61491 0.0582761 0.398604 0.784091 0.415604 0.0825065 0.208572 -0.259049 -2.48409\n", + " 9 8.381e+01 1.445e+01 1.699e+00 -- 7.290e+02 -- -0.814012 -1.40696 -2.87289 -3.18272 -3.73036 -3.74595 -4.56372 -6.91491 0.0510133 0.460993 0.990591 0.511606 0.0740674 0.240773 -0.360623 -2.05029\n", + " 11 5.382e+01 1.673e+01 1.479e+00 -- 7.305e+02 -- -0.794769 -1.38613 -2.84208 -3.17997 -3.74567 -3.75695 -4.56136 -7.21491 0.0454691 0.511132 1.15265 0.598735 0.0649178 0.270666 -0.449551 2.56611\n", + " 13 5.234e+02 1.913e+01 1.324e+00 -- 7.318e+02 -- -0.778329 -1.36729 -2.80694 -3.1744 -3.75929 -3.7665 -4.55618 -7.51491 0.041178 0.551805 1.27263 0.676139 0.0552576 0.298158 -0.525871 1.32105\n", + " 15 2.636e+02 2.168e+01 1.189e+00 -- 7.330e+02 -- -0.764197 -1.35038 -2.77293 -3.16703 -3.77138 -3.7748 -4.54947 -7.21491 0.0378314 0.585121 1.36044 0.743875 0.0453504 0.323244 -0.590433 1.29064\n", + " 17 1.149e+02 2.437e+01 1.088e+00 -- 7.341e+02 -- -0.751986 -1.33529 -2.74211 -3.15871 -3.78208 -3.78199 -4.54208 -6.91491 0.03521 0.612663 1.4256 0.802584 0.0353532 0.345957 -0.644618 -1.31496\n", + " 19 6.722e+01 2.722e+01 9.849e-01 -- 7.351e+02 -- -0.741387 -1.32184 -2.71491 -3.15002 -3.79154 -3.78825 -4.53464 -6.61491 0.0331641 0.635624 1.47504 0.853226 0.0254728 0.36641 -0.689866 1.22418\n", + " 21 2.720e+01 3.023e+01 9.444e-01 -- 7.360e+02 -- -0.732157 -1.30986 -2.69111 -3.14143 -3.79983 -3.79362 -4.52741 -6.31491 0.0315615 0.654913 1.51347 0.896759 0.0156921 0.384625 -0.727661 -0.72188\n", + " 23 1.618e+01 3.340e+01 8.070e-01 -- 7.368e+02 -- -0.724091 -1.29919 -2.67035 -3.13314 -3.80709 -3.79838 -4.52086 -6.01491 0.0303421 0.671224 1.54392 0.93425 0.00644024 0.400889 -0.759178 1.24133\n", + " 24 8.891e+01 4.172e+02 8.637e+00 -- 7.455e+02 -- -0.65346 -1.20411 -2.48868 -3.0558 -3.86972 -3.83787 -4.45774 -5.36047 0.0208476 0.809948 1.7913 1.25651 -0.0861695 0.542223 -1.02272 0.0117388\n", + " 25 3.521e+01 9.060e+00 9.410e-01 -- 7.464e+02 -- -0.661625 -1.20837 -2.49819 -3.05016 -3.85526 -3.84511 -4.44606 -4.62172 0.0636491 0.75819 1.74668 1.16355 0.00391259 0.465285 -0.857723 -1.03192\n", + " 26 2.800e-01 2.694e+00 4.013e-01 -- 7.468e+02 -- -0.659925 -1.20808 -2.49692 -3.04136 -3.86296 -3.86865 -4.52444 -4.7803 0.0440885 0.773556 1.74836 1.18011 0.141663 0.501264 -1.01577 -0.968135\n", + " 27 1.118e-01 1.396e+00 6.852e-02 -- 7.469e+02 -- -0.660557 -1.20802 -2.49682 -3.04782 -3.86407 -3.85635 -4.50129 -4.79491 0.0494721 0.769251 1.75312 1.18102 0.159998 0.494797 -0.942213 -0.697092\n", + " 28 6.066e-02 5.475e-01 7.813e-03 -- 7.469e+02 -- -0.660375 -1.20798 -2.49707 -3.04899 -3.85699 -3.85319 -4.501 -4.80785 0.0481904 0.770454 1.74927 1.18272 0.163201 0.485505 -0.957511 -0.619169\n", + " 29 2.205e-02 2.173e-01 1.373e-03 -- 7.469e+02 -- -0.660499 -1.20797 -2.4971 -3.05002 -3.85533 -3.85154 -4.49936 -4.80815 0.048302 0.77034 1.75136 1.18473 0.158919 0.484615 -0.950396 -0.581613\n", + " 30 2.005e-02 7.267e-02 2.580e-04 -- 7.469e+02 -- -0.660478 -1.20797 -2.49717 -3.05009 -3.85287 -3.85128 -4.49884 -4.81171 0.0482529 0.770456 1.75045 1.18445 0.155414 0.48385 -0.951932 -0.569748\n", + " 31 1.192e-02 5.990e-02 5.760e-05 -- 7.469e+02 -- -0.660494 -1.20797 -2.49717 -3.05021 -3.85235 -3.85102 -4.49839 -4.81176 0.0482126 0.770461 1.75114 1.18511 0.152299 0.483729 -0.950569 -0.563021\n", + "********************\n", + "-0.660494 -1.20797 -2.49717 -3.05021 -3.85235 -3.85102 -4.49839 -4.81176 0.0482126 0.770461 1.75114 1.18511 0.152299 0.483729 -0.950569 -0.563021\n", + "0.015038 0.00527965 0.0219253 0.14394 0.404753 0.263604 0.317912 0.460201 0.139209 0.0769038 0.175352 0.449778 0.985963 0.654083 0.765981 0.99603\n", + "0.0218905 0.0599 -0.0352934 0.00081409 0.00482364 -0.00014268 0.0010011 -0.00637734 0.00136757 0.00106954 -0.00732663 -0.00116 -0.00186662 -0.000327004 -0.000366653 0.00318593\n", + "********************\n" + ] + } + ], + "source": [ + "Cx = clag.clag('cxd10r', [[t1,t2]], [[l1,l2]], [[l1e,l2e]], dt, fqL, p1, p2)\n", + "p = np.concatenate( ((p1+p2)*0.5-0.3,p1*0+0.1) ) # a good starting point generally\n", + "p, pe = clag.optimize(Cx, p)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "ERROR:root:Line magic function `%autoreload` not found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 7.469e+02 7.467e+02 -6.605e-01 -6.530e-01 0.383 +++\n", + "+++ 7.469e+02 7.463e+02 -6.605e-01 -6.492e-01 1.15 +++\n", + "+++ 7.469e+02 7.466e+02 -6.605e-01 -6.511e-01 0.685 +++\n", + "+++ 7.469e+02 7.465e+02 -6.605e-01 -6.502e-01 0.892 +++\n", + "+++ 7.469e+02 7.464e+02 -6.605e-01 -6.497e-01 1.01 +++\n", + "+++ 7.469e+02 7.464e+02 -6.605e-01 -6.499e-01 0.95 +++\n", + "+++ 7.469e+02 7.464e+02 -6.605e-01 -6.498e-01 0.981 +++\n", + "+++ 7.469e+02 7.464e+02 -6.605e-01 -6.497e-01 0.997 +++\n", + "\t### errors for param 1 ###\n", + "+++ 7.469e+02 7.467e+02 -1.208e+00 -1.205e+00 0.378 +++\n", + "+++ 7.469e+02 7.464e+02 -1.208e+00 -1.204e+00 1.1 +++\n", + "+++ 7.469e+02 7.466e+02 -1.208e+00 -1.205e+00 0.668 +++\n", + "+++ 7.469e+02 7.465e+02 -1.208e+00 -1.204e+00 0.864 +++\n", + "+++ 7.469e+02 7.464e+02 -1.208e+00 -1.204e+00 0.977 +++\n", + "+++ 7.469e+02 7.464e+02 -1.208e+00 -1.204e+00 1.04 +++\n", + "+++ 7.469e+02 7.464e+02 -1.208e+00 -1.204e+00 1.01 +++\n", + "\t### errors for param 2 ###\n", + "+++ 7.469e+02 7.467e+02 -2.497e+00 -2.486e+00 0.424 +++\n", + "+++ 7.469e+02 7.461e+02 -2.497e+00 -2.481e+00 1.65 +++\n", + "+++ 7.469e+02 7.465e+02 -2.497e+00 -2.483e+00 0.847 +++\n", + "+++ 7.469e+02 7.463e+02 -2.497e+00 -2.482e+00 1.18 +++\n", + "+++ 7.469e+02 7.464e+02 -2.497e+00 -2.483e+00 1 +++\n", + "\t### errors for param 3 ###\n", + "+++ 7.469e+02 7.467e+02 -3.050e+00 -2.978e+00 0.391 +++\n", + "+++ 7.469e+02 7.463e+02 -3.050e+00 -2.942e+00 1.19 +++\n", + "+++ 7.469e+02 7.466e+02 -3.050e+00 -2.960e+00 0.703 +++\n", + "+++ 7.469e+02 7.464e+02 -3.050e+00 -2.951e+00 0.918 +++\n", + "+++ 7.469e+02 7.464e+02 -3.050e+00 -2.947e+00 1.04 +++\n", + "+++ 7.469e+02 7.464e+02 -3.050e+00 -2.949e+00 0.98 +++\n", + "+++ 7.469e+02 7.464e+02 -3.050e+00 -2.948e+00 1.01 +++\n", + "+++ 7.469e+02 7.464e+02 -3.050e+00 -2.948e+00 0.996 +++\n", + "\t### errors for param 4 ###\n", + "+++ 7.469e+02 7.468e+02 -3.852e+00 -3.650e+00 0.275 +++\n", + "+++ 7.469e+02 7.465e+02 -3.852e+00 -3.549e+00 0.847 +++\n", + "+++ 7.469e+02 7.462e+02 -3.852e+00 -3.498e+00 1.35 +++\n", + "+++ 7.469e+02 7.464e+02 -3.852e+00 -3.523e+00 1.07 +++\n", + "+++ 7.469e+02 7.464e+02 -3.852e+00 -3.536e+00 0.948 +++\n", + "+++ 7.469e+02 7.464e+02 -3.852e+00 -3.530e+00 1.01 +++\n", + "\t### errors for param 5 ###\n", + "+++ 7.469e+02 7.467e+02 -3.851e+00 -3.719e+00 0.406 +++\n", + "+++ 7.469e+02 7.463e+02 -3.851e+00 -3.653e+00 1.18 +++\n", + "+++ 7.469e+02 7.466e+02 -3.851e+00 -3.686e+00 0.714 +++\n", + "+++ 7.469e+02 7.464e+02 -3.851e+00 -3.670e+00 0.922 +++\n", + "+++ 7.469e+02 7.464e+02 -3.851e+00 -3.662e+00 1.04 +++\n", + "+++ 7.469e+02 7.464e+02 -3.851e+00 -3.666e+00 0.981 +++\n", + "+++ 7.469e+02 7.464e+02 -3.851e+00 -3.664e+00 1.01 +++\n", + "+++ 7.469e+02 7.464e+02 -3.851e+00 -3.665e+00 0.996 +++\n", + "\t### errors for param 6 ###\n", + "+++ 7.469e+02 7.467e+02 -4.498e+00 -4.339e+00 0.402 +++\n", + "+++ 7.469e+02 7.463e+02 -4.498e+00 -4.260e+00 1.2 +++\n", + "+++ 7.469e+02 7.465e+02 -4.498e+00 -4.300e+00 0.719 +++\n", + "+++ 7.469e+02 7.464e+02 -4.498e+00 -4.280e+00 0.934 +++\n", + "+++ 7.469e+02 7.464e+02 -4.498e+00 -4.270e+00 1.06 +++\n", + "+++ 7.469e+02 7.464e+02 -4.498e+00 -4.275e+00 0.995 +++\n", + "\t### errors for param 7 ###\n", + "+++ 7.469e+02 7.466e+02 -4.813e+00 -4.582e+00 0.567 +++\n", + "+++ 7.469e+02 7.458e+02 -4.813e+00 -4.466e+00 2.24 +++\n", + "+++ 7.469e+02 7.463e+02 -4.813e+00 -4.524e+00 1.15 +++\n", + "+++ 7.469e+02 7.465e+02 -4.813e+00 -4.553e+00 0.813 +++\n", + "+++ 7.469e+02 7.464e+02 -4.813e+00 -4.539e+00 0.968 +++\n", + "+++ 7.469e+02 7.464e+02 -4.813e+00 -4.531e+00 1.05 +++\n", + "+++ 7.469e+02 7.464e+02 -4.813e+00 -4.535e+00 1.01 +++\n", + "+++ 7.469e+02 7.464e+02 -4.813e+00 -4.537e+00 0.989 +++\n", + "+++ 7.469e+02 7.464e+02 -4.813e+00 -4.536e+00 1 +++\n", + "\t### errors for param 8 ###\n", + "+++ 7.469e+02 7.468e+02 4.824e-02 1.178e-01 0.265 +++\n", + "+++ 7.469e+02 7.466e+02 4.824e-02 1.526e-01 0.589 +++\n", + "+++ 7.469e+02 7.465e+02 4.824e-02 1.700e-01 0.794 +++\n", + "+++ 7.469e+02 7.465e+02 4.824e-02 1.787e-01 0.907 +++\n", + "+++ 7.469e+02 7.464e+02 4.824e-02 1.831e-01 0.963 +++\n", + "+++ 7.469e+02 7.464e+02 4.824e-02 1.853e-01 0.993 +++\n", + "\t### errors for param 9 ###\n", + "+++ 7.469e+02 7.464e+02 7.705e-01 8.474e-01 1.02 +++\n", + "+++ 7.469e+02 7.468e+02 7.705e-01 8.089e-01 0.265 +++\n", + "+++ 7.469e+02 7.466e+02 7.705e-01 8.281e-01 0.586 +++\n", + "+++ 7.469e+02 7.465e+02 7.705e-01 8.378e-01 0.788 +++\n", + "+++ 7.469e+02 7.465e+02 7.705e-01 8.426e-01 0.899 +++\n", + "+++ 7.469e+02 7.464e+02 7.705e-01 8.450e-01 0.957 +++\n", + "+++ 7.469e+02 7.464e+02 7.705e-01 8.462e-01 0.986 +++\n", + "+++ 7.469e+02 7.464e+02 7.705e-01 8.468e-01 1 +++\n", + "\t### errors for param 10 ###\n", + "+++ 7.469e+02 7.464e+02 1.751e+00 1.926e+00 0.955 +++\n", + "+++ 7.469e+02 7.460e+02 1.751e+00 2.014e+00 1.89 +++\n", + "+++ 7.469e+02 7.462e+02 1.751e+00 1.970e+00 1.4 +++\n", + "+++ 7.469e+02 7.463e+02 1.751e+00 1.948e+00 1.17 +++\n", + "+++ 7.469e+02 7.464e+02 1.751e+00 1.937e+00 1.06 +++\n", + "+++ 7.469e+02 7.464e+02 1.751e+00 1.932e+00 1.01 +++\n", + "\t### errors for param 11 ###\n", + "+++ 7.469e+02 7.465e+02 1.185e+00 1.635e+00 0.84 +++\n", + "+++ 7.469e+02 7.461e+02 1.185e+00 1.860e+00 1.62 +++\n", + "+++ 7.469e+02 7.463e+02 1.185e+00 1.747e+00 1.22 +++\n", + "+++ 7.469e+02 7.464e+02 1.185e+00 1.691e+00 1.03 +++\n", + "+++ 7.469e+02 7.464e+02 1.185e+00 1.663e+00 0.932 +++\n", + "+++ 7.469e+02 7.464e+02 1.185e+00 1.677e+00 0.979 +++\n", + "+++ 7.469e+02 7.464e+02 1.185e+00 1.684e+00 1 +++\n", + "\t### errors for param 12 ###\n", + "\t### errors for param 13 ###\n", + "+++ 7.469e+02 7.465e+02 4.836e-01 1.138e+00 0.903 +++\n", + "+++ 7.469e+02 7.461e+02 4.836e-01 1.465e+00 1.67 +++\n", + "+++ 7.469e+02 7.463e+02 4.836e-01 1.301e+00 1.29 +++\n", + "+++ 7.469e+02 7.464e+02 4.836e-01 1.219e+00 1.1 +++\n", + "+++ 7.469e+02 7.464e+02 4.836e-01 1.179e+00 0.999 +++\n", + "\t### errors for param 14 ###\n", + "+++ 7.469e+02 7.465e+02 -9.510e-01 -1.852e-01 0.856 +++\n", + "+++ 7.469e+02 7.462e+02 -9.510e-01 1.976e-01 1.43 +++\n", + "+++ 7.469e+02 7.463e+02 -9.510e-01 6.198e-03 1.17 +++\n", + "+++ 7.469e+02 7.464e+02 -9.510e-01 -8.952e-02 1.02 +++\n", + "+++ 7.469e+02 7.464e+02 -9.510e-01 -1.374e-01 0.937 +++\n", + "+++ 7.469e+02 7.464e+02 -9.510e-01 -1.134e-01 0.978 +++\n", + "+++ 7.469e+02 7.464e+02 -9.510e-01 -1.015e-01 0.998 +++\n", + "\t### errors for param 15 ###\n", + "********************\n", + "-0.66049 -1.20797 -2.49719 -3.05019 -3.85156 -3.85104 -4.49824 -4.81261 0.048236 0.77047 1.75092 1.18493 0.150483 0.48362 -0.95096 -0.560876\n", + "0.0107478 0.0038354 0.014397 0.101761 0.321854 0.186386 0.223452 0.276776 0.137021 0.0762971 0.180879 0.498941 2 0.694997 0.849478 4.9864\n", + "********************\n" + ] + } + ], + "source": [ + "%autoreload\n", + "p, pe = clag.errors(Cx, p, pe)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "phi, phie = p[nfq:], pe[nfq:]\n", + "lag, lage = phi/(2*np.pi*fqd), phie/(2*np.pi*fqd) \n", + "cx, cxe = p[:nfq], pe[:nfq]" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.79565312, 4.2489229 , 5.00370082, 2.18467546, 0.17899829,\n", + " 0.37113758, -0.47082688, -0.17915708])" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAFrCAYAAACE+GArAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAF8ZJREFUeJzt3X9snPd9H/C3E8tWK69TGtWknclWxFalKmTLpMitpcCl\nMTcohi0ZsEElgQwrtVZB203QNmw1MpjNZKwDhq1xBXQbtEFugWAnad2Gpti0pX9QySYpmypmXeKK\ndUdKmmrr6CqL0sapHCHW/jjSoShS4n15d8+R93oBB5LPfZ+7D6WvqDef748nAQAAAAAAAAAAAAAA\nAAAAAAAAAAAAAIA145kkv5nktSRvJ/nYIm0+Nfv8N5OMJ/mhThUHAKzcu9r42t+d5EtJfm7269sL\nnv/5JIdmn9+dpJ7kt5I80saaAIBV6O0kH5339QNJriX5+/OOPZTka0kOdLAuAGAF2nlF4l7en6Qv\nyefmHftWks8n2VNJRQBA06oKEv2zH2cWHH9j3nMAQJd7sOoCFrFwLsWcx2YfAEBzrs0+Wq6qIFGf\n/dg37/PFvp7z2OOPP/7666+/3vbCAGANei2NhQ0tDxNVBYlLaQSGjyT5ndljDyX50dw5AXPOY6+/\n/no+85nPZPv27R0qsXUOHTqUl156aVW+10per9lzl9t+Oe3u1+Zez3fy76vV9LXWttfXlqavtbZ9\nO/vaxYsX8/GPf/x9aVzVX1VBYkOSH5j39dYkH0zy1SRXk7yU5JNJfj/J/5n9/BtJ/u1SL7h9+/bs\n3LmzXfW2zcaNGztWd6vfayWv1+y5y22/nHb3a3Ov5zv599Vq+lpr2+trS9PXWtu+3X2tnd7dxtfe\nm+Rskk+kMe/hx2c/f0+S30hyJsn6JL+Q5GCSrycZSbLY+MVjST7xiU98Io89tjqnSXzgAx9Yte+1\nktdr9tzltl9Ou/u1Wer5Wq2WkZGRZdXRjfS11rbX15amr7W2fbv62rVr13L06NEkOZo2XJF4oNUv\n2CY7k1y4cOHCqk3vrB4f/ehH89nPfrbqMugB+hqdMDExkV27diXJriQTrX79qpZ/AgBrgCABC6zm\nS82sLvoaa4EgAQv44U6n6GusBYIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKC\nBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgA\nAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQ\nTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUE\nCQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAA\nAIoJEgBAMUECACgmSAAAxR6sugCAVqrVaqnVakmSmzdv5sqVK3nyySezfv36JMnIyEhGRkaqLBHW\nFFckgDVlZGQkR44cyaZNmzI9PZ1XX30109PT2bRpU44cOSJEQItVeUXiU0nGFhyrJ3m886UAa8HM\nzEyGh4czOTmZer3+zvGpqalMTU3l1KlTGRwczPHjx9PX11dhpbB2VD208ZUkz837+ttVFQKsbjMz\nM9mzZ0+mp6eXbFOv11Ov17N3796cOXNGmIAWqHpo49tJ3pj3+Gq15QCr1fDw8D1DxHxTU1MZHh5u\nc0XQG6oOEj+Q5LUk00lqSd5fbTnAanTp0qVMTk42dc7k5GQuX77cnoKgh1QZJL6Y5K8n+UiSn07S\nn+Rsku+tsCZgFXrxxRfvmBOxHPV6PYcPH25TRdA7qpwj8V/mff5KknNJppL8jSSfrqQiYFU6f/58\nR88DvqPqyZbzfTPJl5N8/1INDh06lI0bN95xzJpw4NatWx09D7rV/H1U5ty4caOt79lNQeLhJD+U\n5AtLNXjppZeyc+fOzlUErArr1q3r6HnQrRb75XpiYiK7du1q23tWOUfinyV5Jo0Jlj+c5NeTPJLk\n1yqsCViFdu/eXXTeU0891eJKoPdUGSTel8ZKjckk/z7JzSQ/kuRqhTUBq9DY2Fj6+/ubOqe/vz8v\nvPBCmyqC3lHl0IaJDUBLbNmyJYODg02t3BgcHMyWLVvaVxT0iKr3kQC6XK1Wy3PPPZcnnngijzzy\nSB566KE88sgjeeKJJ/Lcc8/dNbGrKsePH8/AwMCy2g4MDOTEiRNtrgh6gyABLGlmZiZHjx7NK6+8\nkqtXr+bNN9/MrVu38uabb+bq1at55ZVXcvTo0czMzFRdavr6+nLmzJkMDQ0tOczR39+foaGhnD17\nNo8++miHK4S1SZAAFjV374rTp08vOWRQr9dz+vTp7N27t2vCxPj4eM6dO5fR0dF3rlAMDAxkdHQ0\n586dy/j4uBABLSRIAItarfeuqNVqOXjwYK5fv56tW7dm27Zt2bp1a65fv56DBw92zVAMrBXdtI8E\n0CVWcu+Kqicw2qQOOssVCeAu7l0BLJcgAdzFvSuA5RIkgLu4dwWwXIIEcBf3rgCWS5AA7uLeFcBy\nCRLAXdy7AlguQQK4y9y9K5rh3hXQmwQJYFHuXQEshyABLMq9K4DlECSAJfX19eXAgQPZsWNHNm/e\nnA0bNmTdunXZsGFDNm/enB07duTAgQNCBPQwW2QD92TLaeBeXJEAAIoJEgBAMUECACgmSAAAxQQJ\nAKCYIAEAFBMkAIBiggQAUEyQAACK2dmSnlWr1VKr1ZIkN2/ezJUrV/Lkk09m/fr1SezoSHP0J3rV\nA1UXsEw7k1y4cOFCdu7cWXUtrEETExPZtWtX9DFaQX+im8z1xyS7kky0+vUNbQAAxQQJAKCYIAEA\nFBMkAIBiggQAUEyQAGiRy5cvZ//+/dm3b1+SZN++fdm/f38uX75cbWHQRvaRAFihmZmZDA8PZ3Jy\nMvV6/Z3jU1NTmZqayqlTpzI4OJjjx4+nr6+vZe9r7wq6gSABsAIzMzPZs2dPpqenl2xTr9dTr9ez\nd+/enDlzpmVhYn5QmNsroFar2buCjjK0AbACw8PD9wwR801NTWV4eLjNFUFnCRIAhS5dupTJycmm\nzpmcnDRngjVFkAAo9OKLL94xJ2I56vV6Dh8+3KaKoPMECYBC58+f7+h50I0ECYBCt27d6uh50I0E\nCYBC69at6+h50I0ECYBCu3fvLjrvqaeeanElUB1BAqDQ2NhY+vv7mzqnv78/L7zwQpsqgs4TJAAK\nbdmyJYODg02dMzg4mC1btrSnIKiAIAGwAsePH8/AwMCy2g4MDOTEiRNtrgg6S5AAWIG+vr6cOXMm\nQ0NDSw5z9Pf3Z2hoKGfPns2jjz7a4QqhvQQJgBXq6+vL+Ph4zp07l9HR0XeuUAwMDGR0dDTnzp3L\n+Pi4EMGa5KZdAC2yZcuWHDt27J0baJ08edINtFjzXJEAAIoJEgBAMUECAChmjgQALKFWq6VWqyVJ\nbt68mStXruTJJ5/M+vXrkyQjIyMZGRmpssTKCRIAsIT5QWFuEm2tVjOJdh5BAqAFFv7mum3btjz/\n/PN+c2XNEyToaZcvX87hw4fzhS98IUmyb9++PPPMMxkbG7ONMU0RFOhVggQ9aWZmJsPDw5mcnEy9\nXn/n+NTUVKampnLq1KkMDg7m+PHj6evrq7BSgO4mSNBzZmZmsmfPnkxPTy/Zpl6vp16vZ+/evTlz\n5owwAbAEyz/pOcPDw/cMEfNNTU1leHi4zRUBrF6CBD3l0qVLmZycbOqcycnJXL58uT0FAaxyhjbo\nKS+++OIdcyKWo16v5/Dhwzl27FibqoLVxd4KzOeKBD3l/PnzHT0P1qKRkZEcOXIkmzZtyvT0dF59\n9dVMT09n06ZNOXLkiBDRY1yRoKfcunWro+fBWmPFEwsJEvSUdevWdfQ8WEuseGIxhjboKbt37y46\n76mnnmpxJdAaly9fzv79+7Nv374kjU3V9u/f35YJwlY8sRhBgp4yNjaW/v7+ps7p7+/PCy+80KaK\noMzMzEyeffbZPP3003n55ZczNTWVpPEf+Msvv5ynn346zz77bGZmZlryflY8sRRBgp6yZcuWDA4O\nNnXO4OCg7bLpKnNDDKdPn15yFVK9Xs/p06ezd+/eloSJlax4Ym0TJOg5x48fz8DAwLLaDgwM5MSJ\nE22uCJpTxRCDFU8spRuCxM8muZTkT5L8dpIPV1sOa11fX1/OnDmToaGhJYc5+vv7MzQ0lLNnz+bR\nRx/tcIWwtKqGGKx4YilVB4mfSPLpJC8m+WCS/5bkVJLNVRbF2tfX15fx8fGcO3cuo6Oj71yhGBgY\nyOjoaM6dO5fx8XEhgq5T1RCDFU8speog8XeT/Jskx5L8XpK/k+Rqkp+psih6x5YtW3Ls2LGcPHky\nSXLy5MkcO3bMnAi6VlVDDL284qmTK2NWoyqDxENJdib53ILjn0uyp/PlAHS/qoYYenHFU6dXxqxW\nVW5ItSnJu5Ms/Bt4I0lzvRWgR1Q1xDC34qmZYZXVvOLJ5lvLV/XQBgBNqHKIoZdWPNl8a/mqvCJx\nPcm3kyyMcH1Jri12wqFDh7Jx48Y7jrnLHNBLxsbGcurUqaauDLRqiGFuxdNi99qY/16Dg4M5ceJE\nyycrX758OYcPH8758+dz69atrFu3Lrt3787Y2FhLr3ysZGVM1Vdg5t+Zdc6NGzcqqqYzvpjkVxYc\n+90k/3jBsZ1Jbl+4cOE2tMOFCxdu62OsFkNDQ7eTLPsxNDTU8houXbp0e3R09PbAwMDtJLcHBgZu\nj46O3r506VLL36ter9/evn377YcffnjR7+/hhx++vX379tv1er0l7zc6OtrUn+/cY3R0tCXv32pz\nP99m/y9tuaqHNn4pyU8lGU2yPY2loH8myb+qsiiAblb1EEOtVsvBgwdz/fr1bN26Ndu2bcvWrVtz\n/fr1HDx48K7fiFdibq7CxYsX89Zbby3a5q233srFixdbtounzbeaU/XdP08meW+SsSSPJflykr+Y\nxhJQABZR9RBDJ4eUS+YqjI+Pr+g9bb7VnKqvSCTJv0zy/iTrk+xO8t+rLQeg+/XCpmpV7eJp863m\ndEOQAKDQWt5UrapdPHt5860SggQAXamquQq9uPnWSggSAHSlquYqzG2+1YzVvPnWSgkSAHSlKucq\nVL0yZjURJADoSlXOVZhbGTM0NLTkMEd/f3+GhoZy9uzZVT2pdaUECQC6UtVzFXphZUwrVL2PBAAs\nqltuFDa3MmZiYiK7du3KyZMns3NnWzaJXJVckQCga5mr0P0ECQC6lrkK3U+QAKCr9fX15cCBA9mx\nY0c2b96cDRs2ZN26ddmwYUM2b96cHTt25MCBA0JERcyRAKDrdfL+HjTHFQkAoJggAQAUEyQAgGKC\nBABQTJAAAIoJEgBAMUECAChmHwl6Vq1WS61WS5LcvHkz27Zty/PPP5/169cnsW4dYDkECXqWoACw\ncoY2AIBiggQAUMzQBgAswVyq+xMkAGAJgsL9GdoAAIoJEgBAMUECACgmSAAAxQQJAKCYVRsAq5Sl\niXQDQQJglRIU6AaGNgCAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQ\nTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUE\nCQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAA\nAIoJEgBAsSqDxOUkby94/GKF9QAATXqwwve+neSFJP963rE3K6oFAChQZZBIkm8keaPiGgCAQlXP\nkfj5JNeTfCnJJ5Osq7YcAKAZVV6R+OUkF5J8LckPJ/knSd6f5KcrrAkAaEKrg8Snkozdp82Hkkwk\neWnesa+kESh+Pck/mP38LocOHcrGjRvvODYyMpKRkZHCcgFg7ajVaqnVanccu3HjRlvf84EWv957\nZx/3ciXJW4scf1+Sq2lcnTi/4LmdSS5cuHAhO3fuXHGRANArJiYmsmvXriTZlcYv8i3V6isSX519\nlPjzsx+vtagWAKDNqpoj8SNJnk4ynuTrSXYn+aUkv5HkDyqqCQBoUlVB4q0k+9KYT/FwGsMdR5P8\n04rqAQAKVBUkvpTGFQkAYBWreh8JAGAVEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCY\nIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkS\nAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEA\nFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAx\nQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMk\nAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYu0KEv8wydkk30zytSXaPJHk\nN5N8I8kfJvnlJOvaVA8sW61Wq7oEeoS+xlrQriCxLsmJJP9iieffneQ/JfmuJHuTDCf5q0n+eZvq\ngWXzw51O0ddYCx5s0+t+avbjTy7x/EeSbE/yY0nqs8f+XpJfTfLJNK5SAABdrqo5Ek8n+XK+EyKS\n5HNJHk6yq5KK2qiTv3W0+r1W8nrNnrvc9stpd782a/U3QX2tte31taXpa61tv5r7WlVBoj/JzIJj\nX0vyrdnn1hT/4FrbfjX/g2s3fa217fW1pelrrW2/mvtaM0Mbn0oydp82H0oysczXe6CJ906SXLx4\nsdlTusKNGzcyMbHcP5bueq+VvF6z5y63/XLa3a/NvZ7v5N9Xq+lrrW2vry1NX2tt+3b2tXb/39nM\nf+bvnX3cy5Ukb837+ieTfDrJexa0+0dJPpbkg/OOvSfJV5M8m+TzC9o/luR8kvc1US8A0PBakt1J\nrrX6hZu5IvHV2UcrnEtjiWhfvjPE8ZE0QsiFRdpfS+MP4LEWvT8A9JJraUOIaKcn0rjaMJbkj5L8\nudmvN8w+/64k/zvJb80e/wtJ/m8ae0kAAD3uV5O8Pfv49ryPz8xrszmNDaneTHI9yUuxIRUAAAAA\nAAAAwP38qST/M8mXknwlyd+qthzWsM1JTid5JcnvJPlrlVbDWvcfk/y/JP+u6kJYs/5Skskkryb5\nmxXXUql3JVk/+/l3JZlO8n3VlcMa1p/kz85+/n1JrqbR56AdfjSNH/SCBO3wYJLfS2N7hUfSCBPf\n28wLVLVFdju8neTm7OffneTWvK+hleppLF9Okj9M47fFpv7hQRM+HzcypH2eSuPq6rU0+tl/TmNf\np2VbS0EiSf50Gpea5/ak+ONqy6EHfCiNHWJfq7oQgAKP586fX3+QJneRXmtB4utpbH71/iQ/l+T7\nqy2HNe69SX4tyYGqCwEodHulL1BlkHgmjQ2pXktjWOJji7T52SSXkvxJkt9O8uF5z/3tNCZWTuTu\njazeSGMy3AcD7elrDyf5D0l+MckX21I1q1G7fq6t+Ic9a9ZK+9zrufMKxOasoiusP57kcJK/ksY3\n/9EFz/9EGvfe2J/kB9O4+dcfp/FNLubRJN8z+/n3pDGG/YOtLZlVqtV97YEktSS/0I5iWdVa3dfm\nDMVkSxa30j73YBoTLB9PY/Xjq7n7RpurwmLf/P9I8isLjv1uGr8BLmZnGkn+f80+RltZIGtGK/ra\nh9PY8n0ijT73pSQ7Wlgja0Mr+lqS/Nc0rrK+mcYKoV2tKpA1p7TP/eU0Vm78fpKfalt1bbbwm38o\njVUXCy/RvJTGkAWU0tfoFH2NTqukz3XrZMtNSd6d79xifM4baazhh1bR1+gUfY1O60if69YgAQCs\nAt0aJK6nMQbdt+B4XxqbZkCr6Gt0ir5Gp3Wkz3VrkPhWkgu5e3etH0tytvPlsIbpa3SKvkanrfk+\ntyGNfR4+mMYEkUOzn88tSdmXxpKV0STb01iy8ke5/zIpWEhfo1P0NTqtp/vcUBrf9NtpXHqZ+/zY\nvDY/k8YmGjeTnM+dm2jAcg1FX6MzhqKv0VlD0ecAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\noEv9fyxujbZnILDhAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "\n", + "xscale('log'); ylim(-10,10)\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=10,color=\"black\")\n", + "\n", + "lag" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGYCAYAAACQz+KaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xl4XGXZ+PFvuhGW0hLWshUCtGBFS8Mii1BwYXfBigYQ\nSgTU160Sy1tFLL4sirVaVEC2gAgOkh+CSAEB2QQRsQEELbKVshTKUlrWQJf8/njOmEk6k8zMmcyZ\nyXw/13WuMzlzljvnzHLPc54FJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmDx17ADcAS\n4G3gMeB7iUYkSVING5Z0AGV2BHAZ8DvgC8CbwLbAmCSDkiRJtWEzQvLxy6QDkSRJtWkmsArYIulA\nJElStyFJB1BGewOvAu8DHgSWA4uB84CRCcYlSZJqxKOECqvLgP8lJCffBt4C/pJgXJIk1bRaqsA6\nBKgHTgV+HC27C3gPmAPsB9yWZbsxWMFVkqRivBBNfaqlZORVQsuZP/VaflM034nVk5Exm2666aJF\nixYNdGySJA1G84GP0E9CUkvJyIPAbn0835Vl2ZhFixZx+eWXs8MOO+R1kGnTpjFnzpxi4qtJ1Xi+\nko65HMcv9TFKsb84+yhm20K3Sfp1UW2q8XwlHXO1vffnz5/PUUcdtQPh7oLJSORq4EvAQcBDGcsP\njub35dpwhx12YNKkSXkdZPTo0Xmvq+o8X0nHXI7jl/oYpdhfnH0Us22h2yT9uqg21Xi+ko65Gt/7\n+aqlZORW4Hrg+4T6I/cBO0d//xG4J7nQaldzc3PSIRQs6ZjLcfxSH6MU+4uzj2K2Tfo6D3bVeH6T\njrka3/v5qkvkqMmpJ/Q3cgSh2Oh54ArgB4Smvr1NAubNmzcv70zxE5/4BNddd11popVUNXzvSz11\ndHTQ1NQE0AR09LVuLZWMAHQC34kmSZJUAWqp07OySLoYT1IyfO9LxTMZKTE/kKTa5HtfKp7JiCRJ\nSpTJiCRJSpTJiCRJSpTJiCRJSpTJiCRJSpTJiCRJSpTJiCRJSpTJiCRJSlStdQcvqQRSqRSpVAqA\nzs5OFi5cyNixY6mvrwdCB2B2AiYpXyYjkgqWmWykB8NKpVJVNyS8pMrgbRpJkpQokxFJkpQokxFJ\nkpQokxFJkpQokxFJkpQokxFJkpQokxFJkpQokxFJkpQokxFJkpSoWktGJgOrcky7JheWJEm1q1a7\ng/8OcHuvZf9KIhBJkmpdrSYjjwN/TzoISZJUe7dp0uqSDkCSJAW1moycAywHlgE3AXsmG45Undra\n2pgyZQoAU6ZMoa2tLeGIJFWjWrtNsxSYA9wBvApsB0yP/j4YuDmpwKRq09bWxvTp01myZAkACxYs\nYPr06QC0tLQkGZqkKlNrJSMPAicC1wH3AJcCewAvAGclF5ZUfWbPnv3fRCRtyZIlzJ49O6GIJFWr\nWisZyWYZMBf4ErAG8G7vFaZNm8bo0aN7LGtubqa5ubksAUqVaMWKFQUtlzR4pVIpUqlUj2VLly7N\ne3uTkZ66si2cM2cOkyZNKncsUkUbNiz7x0eu5ZIGr2w/0Ds6Omhqaspr+1q7TZPNesChwAPAewnH\nIlWN1tZWGhoaeixraGigtbU1oYgkVata+wlzBbAA6ACWECqwtgIbAkcnGJdUddKVVM844wyeeuop\nGhsbOfnkk628KqlgtZaM/BP4HPBVYB1CQvIX4EhgXoJxSVWppaWFiRMn0tTURHt7u7czJRWl1pKR\ns7DVjCRJFcU6I5IkKVEmI5IkKVEmI5IkKVEmI5IkKVEmI5IkKVEmI5IkKVGlaNq7NrAnsBuwMaED\nsVGEEXJfBl4E7gP+CrxdguNJAypzjIXOzk4WLlzI2LFjqa+vBxyXSJJKrdhkZEPgKOBwYFK0n7p+\ntllO6FjsKkJPqC8XeWxpQGUmG+mxFVKplB16SdIAKfQ2zTZAG/AMMJtQGjKcnonIm8Ai4K1e2w4H\nPgT8FFgIXBztT5Ik1bB8S0bWB04HvpixzbvAbcDfCLdhHiJ0r748Y7vhwAbARGBXQvKyH1APHEso\nXWkDTo62lSRJNSbfZOQxwui2AHcClwPtwOv9bLcceCGaboyWjQI+SxgPZh/gS9HfG+QdtSRJGjTy\nvU2zHjAX2AXYl3CLpb9EJJdlwEXRfnaJ9tvQ5xaSJGnQyrdkZFfgHwNw/HnAocDOA7BvSQOkd4uj\ncePGMWPGDFscSSpKvsnIQCQi5dy/pBIy2ZBUSnZ6JkmSEmUyIkmSEhU3GRkBvC+a6rM8vyahX5Hn\ngHeAfwNfj3lMSZI0iMRNRj4FPALcDqzK8vzvgWnApsAawPbA2cDPYx5XGnBtbW1MmTIFgClTptDW\n1pZwRJI0OMVNRvaP5tcA7/V67uCM558DriX0zArwVWD3mMeWBkxbWxvTp09nwYIFACxYsIDp06eb\nkEjSAIibjDRF87uyPHdsNH8MmAAcFs0fJXQff1zMY0sDZvbs2SxZ0rNT4CVLljB79uyEIpKkwStu\nMrIR0AU8mWW/H4se/xJ4I3q8LPobYI+Yx5YGzIoVKwpaLkkqXtxkJN2Fe2ev5ROBkYREZW6v5x6J\n5lvEPLY0YIYNy94FT67lkqTixU1G0vVEeo8rs3c0fw5Y0Ou5dCnJ0JjHLoXjCBVv3+hvRdWW1tZW\nGhp6jlLQ0NBAa2trQhFJ0uAVNxl5mlD/40O9lh8azf+SZZv0J/zLMY8d12bATwiVarsSjkUVpqWl\nhVmzZtHY2AhAY2Mjs2bNoqWlJeHIJGnwiZuM3B7Nv0boawTgE8Dk6PENWbaZEM1fiHnsuH5FiP8W\nQkIl9dDS0kJ7ezsA7e3tJiKSNEDiJiO/AJYDGwMPA68QmvDWAc8DV2fZ5uPR/OGYx47jKODDhCbG\nJiKSJCUobjLyGOGL/W3Cl3r6FsxSoBl4t9f6m9CdjNwW89jF2hiYA8ygu98TSZKUkFI0DWgn9DNy\nMCHZWARcByzJsu4HgN8S6mhku4VTDucQuqX/VULHlyRJGUrVTnExkE/XlDdHU1KmAIcAH0wwBkmS\nlKGWOk1Yh9Dh2s8JydPoaPmIaD4KWAG81XvDadOmMXr06B7LmpubaW5uHrBgJUmqFqlUilQq1WPZ\n0qVL894+buXNRwklIr8mfMFXsq2Ap/pZ51pCt/Vpk4B58+bNY9KkSQMVlypYR0cHTU1N+BqQpMKk\nPz8JQ8d09LVu3JKRccCPgNOBGwmJyfXAypj7HQgvAPvSs0+ROkJF1n2AAwitgSRJUhnFTUYeAHaK\n9nNoNC0GLgcuJpScVIp3gTuzLD+WkDxlG+xPkiQNsFKM2jsROBt4NVq2MdAK/Av4K6HL9XViHmcg\ndWEPrJIkJSZuMgLwT+BbwKaE1ipzCSUN6W7iLyDcIrmE0NFYpTkWWDfpICRJqlWlbE2zHPh9NG0C\nHE34oh8PrA0cE01P0F3pNeku4aXVZNYK7+zsZNy4ccyYMYP6+nrAllSSVGrl6Ar9Q0AL8DlgZMby\nFYQ+Ry4mdJJWiZVebU0jSVIRCmlNU4rbNP35G3ACcCTwYsbyYcBBhPFrFhJu9dRSvyeSJImBT0bG\nAjOBJ4E/EG7fQCgVuQl4Nvp7U2A2cB+w3gDHJEmSKshAJCNrEgbP+zMhCZkJbE24JfQ4oV+PzQml\nIlsD+wO3RtvuBJw6ADFJkqQKVcpkZHe6W85cRuhgbAjQCVwBTCZUZv0x8FK0zSrgFsJIvr+Ilh1a\nwpgkSVKFi1tHY1PgC8BUQqKR6SHgIkIHaMvy2Nevga8DW8SMSZIkVZG4ycgz9CxdeQNIEZKQfxS4\nr9ej+dCYMUmSpCoSNxlJJyL3AhcCVwFvF7mvFwlNgO0NVZKkGhI3GZlDSELmlyCWN4FLS7AfSZJU\nReImIyeWJApJklSzytHpmSRJUk4mI5IkKVGl7H59P+BTwAeADQidn/U39k1jCY8vSZKqUCmSkY2B\nK4F9SrAvSZJUY+ImI8OBGwjduAM8CCwidPUO8BuggTD67ZhoWQfwCDbhlSRJxK8zMpXuRKSFkHTM\niP7uAo4hdO++OfBpQlfxOwB/BI6NeWxJkjQIxE1GPhPNb6LvPkK6CKP27g0sJ3T9Pi7msRP3xhuw\nfDl0WcYjSVLR4t6mmRjNL8/xfB09b8c8Sego7fvAN4Gvxjx+Yrq6YPRoWLUKhgyBNdeE+vq+p/7W\nKWYfa6wRji9JUrWKm4w0EJKNpzKWvZfxeC3grV7b3EZIRj4a89iJu+IK6OzMPr3zzurLXn8dXnqp\n73WWLy88jhEj4ic1xSZGw4ZBXX9tpiRJ6kPcZOQ9QhPezATk9YzHmwGP9dqmM+O5qlVXB5//fOn3\nu3IlvPtu7mQln6Qn1/NvvNH/OoXechoypPSlPYU8b6mQJFW/Uozauz2heW/aYsI4M+sAu7F6MvK+\naJ5ETYuJwBnA+4ENgXeA/wDnAFckEM9qhg6FtdYKU7l1dYWSmUITnnzWeeMNePnlvtd5773+Y+xt\n+PDSJT251tlwQxg7NlwbSVLpxU1GOgjJyE7AjdGyLuAuQvPeaYSRfN+NnhsNnBQ9LsXgeoUaRUig\nrgCeJyRMRxKaIG9FSFRqVl1duOUzYgSsu275j59ZKlSKkqDM6dVX+17nnXf6LhVaYw3YbjvYfnsY\nP757Pn58MudKkgaTuMnIn4EjgEOAMzOWn0dIRnYCHia0pFmb0Mw3fXvmspjHLsad0ZRpLrA1cAI1\nnowkLelSoRUrVk9W3nkHXnwRHn0U/vOfML/kEli0qHvbMWNWT1K23x623NLbSJKUj7jJyLXATEI/\nItsQWstA+IJvI/Q9si3Q2mu7mwkJS6V4Fdgo6SCUnLq6cMtn+HAYObLncx/8IOy/f89lr78Ojz3W\nM0m5556QqLwblQPW18O4cdlLU9ZZpzz/lyRVg7jJyGuE2xvZHA/cG80nRMd6jFAicjawMuax46gD\nhgLrAZ8F9ge+kWA8qjLrrgs77xymTCtXwjPP9ExS/vMfuOuuUMKSttlm2UtTNt/c0pRySKVSpFIp\nADo7O1m4cCFjx46lvr4egObmZpqbm5MMUaoptdoo81eE2zIQkqJvExKk3iYB8+bNm8ekSZMAP8RU\nvGXLQmKSmaQ8+ig8/nh35d011+wuPclMUsaNg7XXTjb+waqjo4OmpiYy3+eS4ku/t4AmQh3TnEo5\nam81OQO4gHBr5hPAT4F64Kz+NsxMNtInOpVK+SGmfo0aBbvuGqZMK1fC00+vnqTccQcsXty93hZb\nrJ6kjB8fSlPs60VSNavVZOTZaILQlT3AaYR6Li/3XnnatGmMHj26x7Lm5mbGjx8/kDGqRgwdCtts\nE6aDDur53NKlqycpt90G55/f3UHe2mtnr5syblwylYEl1Z7MuwZpS5cuzXv7Wk1Gersf+DKhVc1q\nycicOXOylnx0dPRZ6iTFNno07LZbmDKtWBFKU3rXTbn11tCfS9qWW2avm7LpppamSCqdbFUUMm7T\n9CvfZGQBA9NJWeMA7LMY+xLqjjzZ34pSJRg2DLbdNkyHHNLzuSVLVq+bcsstcN55IYmB0JonW92U\n7bYL9VYkqZzyTUbGDmgU5XMBsIxQErIY2IDQmuZw4MeEJr5SVWtogN13D1Om5cthwYLVb/vcfDO8\n8kpYp64u9DabrTRlk00sTZE0MPJNRvrroOyD0QSwFHgAeCn6e2NCN+zpShcPAQ8WEGMp/RU4Fjgm\niufNKJajgN8mFJNUFsOHh3ok48bBoYf2fO7VV1dPUm66Cc45p7s0ZeTI7EnKttuGPlUkqVj5JiNT\n+3juWKAZeI7Qudk1wIosx/k08BPC2DS/IFQWLbdLo0lShvXXhz32CFOm5cvhqadWr5tyww3hdhCE\nflEmT4YTToBPfSp0nS9JhYhbgXVn4HzgFeBDwKIc660A2oG7gXmE3lcfJtwukVShhg/vrlvS2yuv\nhOTkkUcglQqjWG+wAUydCscfH0pgJCkfcft6/BYhoTmT3IlIpheidYcDJ8Y8tqQEbbAB7LUXfPnL\ncOed8O9/w9FHQ1tbSF723TckKenu8SUpl7jJyN6EVjZ/K2Cb+6L5njGPLamC7LADzJ4Nzz8Pv41q\nYB1xROj6vrU1lKJIUjZxk5ENo3khd4lH9NpW0iBSXw/NzXD77aF+SUsLXHZZSFb23hsuvzyMhixJ\naXGTkZcJ49sc1N+KGdLrvhLz2JIq3Lhx8OMfw3PPwe9+ByNGwBe+EEpLpk2Df/0r6QglVYK4ycht\n0fxbwF55rL9ntG7mtpIGuTXWgMMPDz3EPv54aHmTSsH73x/qnVx2Gbz9dtJRSkpK3GTkLGA5YZC5\nWwkj306k52jAdcBOwBxCAlIPvAf8KOaxJVWhbbeFH/0Inn0W2tvD+DnHHBO6qP/61+Hhh5OOUFK5\nxU1G/k3oQGwloS7I1wlNd98Gnif0PfI28A/gG4RWNCsI/ZbMj3lsSVVsxAiYMiX0APvkk/A//xOS\nkw98IPQee8kl8NZbSUcpqRziJiMAVxJu0aRHjasjVGgdA2waPU6XlHRE615ZguNKGiQaG+HMM0Np\nydVXhwECv/jFUFry1a/CQw8lHaGkgVSqUXvvI3SAtivwUWBHYL3ouSWEDs5uxU7OJPVh+HA47LAw\nPf00XHxxmM49F3bdNXSm9vnPh4H+al3mkO2dnZ0sXLiQsWPHUh/1zZ9tFFWpUpUqGUn7ezRJUixb\nbQWnnQYzZ8LcuXDBBaHi67e+BUceGR5PmpR0lMnJTDbSQ7WnUikm1fJJUdUqxW0aSRoww4bBJz8Z\nEpIFC+DEE+H666GpCXbeOSQpb7yRdJSS4jAZkVQ1xo6FH/wg3MK57joYMwa+8pUwP+EE+Mc/oKsr\n6SglFSrfZGSXAY1i4PcvaRAZNgwOPRT++EdYuBBOOgluugl22SXcujnvPFi2LOkoJeUr32TkPuA6\nQh8ipTQJuJ7CxraRpP/afHP4/vfDLZy5c0Ppyde/HlrifPGLcN99lpZIlS7fZOQ14BBCHyK3AEcD\naxd5zHWBFkIHaP8gdA//WpH7kiQAhg6Fgw6Ca68NpSXf+Q78+c/woQ/BxIlwzjmwdGnSUUrKJt9k\nZBxwPrAK+AhwKbAYuBb4TrRswyz7GwJsDOwPnALMBV4ALgImEzpA+1W0f0kqic02g+99L3SmduON\nsM028M1vhtKSY4+Fe++1tESqJPk27X0V+AowGzgZOAJYC/hENGW+rV8H3iCUgIyMlmV2Dw/wLnAF\n8EPgyWICl6T+DB0KBxwQphdegEsvhQsvDPMJE0Kl1w98YGjSYUo1r9DWNE8AxwJbAtMJnZitIiQb\n6WkUsDkhGUkvI1rv78C3o+2Pw0REUpmMGRNu3TzxROiCfocdoLUVDjhgR+Aili0zKZGSUmynZ4sJ\npSSzCaUfexJ6Xx1DuF0zClgKvAwsIiQh9wCONCEpUUOGwMc+Fqaf/ey3nHbac7z77nF87GOdnHTS\n9Zx55iFJhyjVnFL0wPoGcFM0SVJVaGtr4/TTp/Paa0uAX7JyZYof/vAAHnvsfq66aheG2AuTVDa+\n3STVpNmzZ7NkyZLor2cJdepncfXVu3DQQfDSS8nFJtWaWktGPgL8GniMcMvoOUKLIAdzkGrMihUr\nei8Bvstmm32Rjo7QHPjOO5OITKo9tZaMfIlQefZnwIHAN4GNCJ2u7ZtgXJLKbNiw7HepR436Gw8+\nCOPHw377wf/9H6xcWebgpBpTa8nI1whJx3nAXcDVwMcITZe/m2BcksqstbWVhoaGHssaGhpobW1l\n003h1ltDz66nngof/3hoGixpYNRaMpLtLvBbwHxCc2RJNaKlpYVZs2bR2NgIQGNjI7NmzaKlpQUI\nfZTMnBl6cf33v8Ntm1tuSTJiafCqtWQkm1GEOiP/SjoQSeXV0tJCe3s7AO3t7f9NRDLtuy889FBI\nRvbfH04+GVarbiIpFpMROAdYEzgj6UAkVaaNNgrdyp95Jpx1FkyeDM8+m3RU0uBR68nIaYSu7b8F\nPJBwLJIq2JAhMGNGaGGzcGEoKbn++qSjkgaHUnR6Vq1mEsbZ+S5wbl8rTps2jdGjR/dY1tzczPjx\n4wcuOkkVac894cEHw4B7hx4KJ54IP/whjBiRdGRSclKpFKlUqseypQUMk12rycjMjOlH/a08Z84c\nJk1avSuSjo6O0kcmqeKtvz784Q9w9tlw0klw991w5ZWw9dZJRyYlo7m5mebm5h7LOjo6aGpqymv7\nWrxNcwohCTktmiSpYHV1MG0a3HMPvPwy7LQTXH110lFJ1anWkpFW4AeEcXRuAD7Ua5KkguyyC3R0\nhIH3pkyBr30NOjuTjkqqLnFv08wEugrcpgvoBJYBjwPzgNdjxpGvQ6LjHxBNveNyDHFJBRs9Gq66\nCn71K/jWt+Cvf4Xf/Q622y7pyKTqUIpkJK73gOsIFUmfKMH++mKX75IGRF0dfOUrsPvucPjhMGkS\nnH8+HHFE0pFJla8SbtOMAKYADwIfTTgWSYpl4kSYNw8++Uk48kg47jh4++2ko5IqW9xkZAiwNfD3\n6O9rgE8DWxA6EluTMDDdYYTRcQHuA7YFGoC9CePErALWAtqB9WPGJEmJGjkSfvMbuPhi+O1vYddd\nQ5fykrKLm4yMBG4GmoDPAp8B/gA8D7wbTc8REpHDonV2jrbpAu4GvgocTEhIRhEGs5OkqlZXBy0t\ncP/90NUFO+8Ml1wSHkvqKW4yMg3YjlC6kU+jtquBXwGNwLczlv8JuDx63LtiqSRVrQkTQkJyxBEh\nOTnmGHjzzaSjkipL3GTk8Gh+TQHb/D6af7rX8uui+baxIpKkCrPWWnDRRXD55fD730NTUxh8T1IQ\nNxnZmnC7ZVkB26Sb8Y7ttXxhNF83ZkySVJGOPDL0SbLmmrDbbqEpsLdtpPjJyHKgDtixgG3en7Ft\ntljy78xekqrMuHHwt7/BF78YmgJ/7nOwrJCfc9IgFDcZeTiafxuoz2P9NYHp0eNHej3XGM1fjhmT\nJFW0+no45xxob4c//Sn0SfKPfyQdlZScuMnIxdF8AnA73aUe2ewYrfO+XtumpfsYeRhJqgFTpsAD\nD4SB9/bYIwy8520b1aK4PbBeRuiw7GBgN+AhQudl84CXonU2JjTn/WDGdtcDv874ezTdlWFvjBmT\nJFWNxsYw6u+MGWHgvdtuC02AGxqSjkwqn7jJSBehb5FfAMcT6o/sFE251r8Q+Hqv5UOBT0bPW1gp\nqaaMGAE//SlMngxTp4ZeXK+8MpSWSLWgFN3Bvwd8iVD6cQHwZJZ1noye2wX4MqtXXn0VuAO4E3ir\nBDFJUtX5xCfgwQdhiy1g773hrLNg1aqko5IGXtySkUwdhEQDQmXW0dHjpYRReiVJ/dhyS7jjDpg5\nM9y6ueMOuOwy2HDDpCOTBs5ADZTXCbwYTSYiklSA4cPhzDPhppvCoHsTJ8KddyYdlTRwSlkyIkkq\nof33D7dtjjoK9tsvlJacfDIMHZp0ZBoMUqkUqVQKgM7OThYuXMjYsWOprw89dTQ3N9Pc3FyWWExG\nJKmCbbop3HILnH46nHpqKCG5/HIYMybpyFTtMpONjo4OmpqaSKVSTJo0qeyxlDIZ2Q/4FPABYANC\nB2d1/WzT2M/zklTzhg4NpSJ77x26lJ84MSQkH/tY0pFJpVGKZGRj4EpgnxLsS5KUw777hts2X/hC\nuIXzne/AD36QdFRSfHErsA4HbqA7EXkw+jvtN8Bc4IWMZR2EztIyOz2TJOVho43gxhtDBdezzgoJ\nyosvDk86LCmWuCUjU+nu4KwFuJTQJfxBhA7MjomeqwM+AZwL7AD8ELg65rElqSi9K+6NGzeOGTNm\nJFJxrxhDhoRmvx/+MDQ3wxFH7AB4z0bVK24y8plofhMhEcmlC/gDYXC8eYRSkYeBx2IeX5IKVunJ\nRr723DOMbfPJT77FPffM5YYbniOBuodSbHFv00yM5pfneL53BdYngTnAWsA3Yx67GOsAPwZuJowO\nvAqYmUAcklQS668PP/3pk8DlnHLK1px9dtIRSYWLm4w0EEo9nspY9l7G47WybHNbNP9olucG2gaE\nMXSGA9dEyxwjU1JVGzYMoIVjjnmRadPgu9919F9Vl7i3ad4jNOHNTEBez3i8GavfiunMeK7cngbW\nix6vDxyXQAySNCC+8Y1F7LjjJnz72/DSS/CrX6UTFamyxX2ZPgNsT2jem7YYeJNwS2Q3Vk9G3hfN\nk87b++sDRZKqTmtrGMempQVeeQVSKVhzzaSjkvoW9zZNRzTfKWNZF3BX9HgasEbGc6OBk6LH82Me\nW5KUxdFHwx/+ADffDAccAEuXJh2R1Le4ycifo/khvZafF813IrSamUVo1vswoSQFQl8jkqQBcPDB\ncOut8PDDsM8+8MIL/W8jJSVuMnIt4VbN5sA2GcvnAm3R422BVuDLdNcTuZnuhEWSNAD22AP+8hd4\n9dXQDPiJJ5KOSMoubp2R14Ctcjx3PHBvNJ8QHesxQonI2cDKmMcum2nTpjF69Ogey5qbmxk/fnxC\nEUlSfiZMgHvuCd3H77ln6L3VvkhUapkdCaYtLeD+4EDWs+4CLo6mqjZnzpysoxh2dHRkWVuSKsvY\nsXD33XDQQTB5Mlx7Ley3X9JRaTDJ1pFgeiTgfMS9TVOMjQlj2eydwLElqSZtsAHcdhvsvjsceCBc\n7YAcqiBJtEA/ALiEUHIyNIHjHwisDYyM/p4ATIkezwXeSSAmSRpw66wDf/wjHHMMfPazcN558KUv\nJRNL7/GBFi5cyNixY6tmfCCVVhLJSNL9e5wLjI0edwGfjaYuYGtChdx+tbW1cfrppwMwZcoUvve9\n79HS0lL6aCWphEaMgCuuCH2RfPnLsHgxnHIK1JX5kzkz2UgX56dSqay3xDX41WLffFvH3UFbWxvT\np09nyZIlACxYsIDp06cDmJBIqnhDhsDZZ8PGG8P3vhd6a/35z8NyKQm+9Iowe/bs/yYiaUuWLGH2\n7NkJRSRJhamrg5NPhgsuCLdrjjgC3n036ahUq0xGirBixYqClktSpTr+eGhvDy1sDjkE3ngj6YhU\ni0xGijBoq/qCAAAgAElEQVQsx8hTuZZLUiU77DC46Sb4+99Dk9+XX046ItUak5EitLa20tDQ0GNZ\nQ0MDra2tCUUkSfFMngx33gnPPgt77QVPP510RKolJiNFaGlpYdasWTQ2NgLQ2NjIrFmzrLwqqapN\nnBh6a12xIvTW+sgjSUekWmEyUqSWlhba29sBaG9vNxGRNChss01ISDbaCD784fBYGmiFVHI4htAX\nR1x7lmAfkqQBsskmcMcd8MlPwkc/Giq4HtJ7bHaphApJRtK9pibdaZkkaYCNGhUqtR5xBHzqU3Dx\nxaHnVmkgFHqbppSJiEmNJFWw+vpQKtLSAlOnwqxZSUekwaqQkpFSV4ooxS0fSdIAGjoUzj8/9NZ6\n0kmht9azzrK3VpVWIcnIpQMVhCSpctXVwWmnhUqt3/hG6Ifkwgth+PCkI9NgYS9dkqS8fP3rsMEG\noe7IK6/AVVfBWmslHZUGAwvaJEl5a26G668PrW0+9jHoNUyXVBSTEUlSQT7+cbjtNvjPf2DvveH5\n54vfV1tbG1OmTAFgypQptLW1lShKVROTEUlSwXbdFe6+Owyst8ceITEpVFtbG9OnT2fBggUALFiw\ngOnTp5uQ1CCTEUlSUbbfPvTQOnJkGM/m/vsL23727Nks6XWfZ8mSJcyePbuEUaoamIxIkoq2+eZw\n112w3Xaw775wyy35b7tixYqClmvwMhmRJMXS0AC33gr77AMHHwxXXpnfdsOGZW/QmWu5Bi+TEUlS\nbGutBddeG1rbHHEE/OIX/W/T2tpKQ0NDj2UNDQ20trYOUJSqVCYjklTFKqk1yvDhcMklcOKJoXO0\n738fuvroa7ulpYVZs2bR2NgIQGNjI7NmzXIU9BpkWZgkVal0a5R0JdB0axQgsS/0IUPgJz/p7j5+\n8WI499zQrXw2LS0tTJw4kaamJtrb25k0aVJ5A1ZFsGREkqpUJbdGmT49lJJcfDEcfjh0diYdkSpZ\nqZORbYCjgG8DpwAblnj/ca0DzAGeB94BHgA+l2hEklSkSm+NMnUqXHMN3HADHHggvP560hGpUpUq\nGZkI3Ak8Bvwa+DFwKqsnI18HXgaeAJIYYun3wNGE2A4A7gdSQHMCsUhSLNXQGuXQQ0Nz3wcfhMmT\nw20bqbdSJCMHAvcCHwbqoomMeabLgLWARuCQEhy7EAcBHwW+AlxISJ5OAG4BZuEtK0lVplpao+y1\nV+iLZPFi2HNPeOqppCNSpYn7BbwxcCWwBjAfOBhYN3ouWx3qZcAfo8cHxjx2oT4NvAG091p+CbAp\nsFuZ45GkWKqpNcqOO4beWocMCd3HP/hg0hGpksRNRqYBI4HngL2AG4E3+9nmjmjeFPPYhXo/IWFa\n1Wv5w9F8QnnDkaT4WlpaaG8Pv7Ha29srMhFJ22qrMJ7N5puHDtLuvDPpiFQp4iYj6dKNnwGv5bnN\n/Gi+VcxjF2p9INtg10synpckDaCNNoLbbw8D7e2/f6jgKsWt5bQ14XbMXwvYZlk0Hxnz2GUzbdo0\nRo8e3WNZc3Mz48ePTygiSapeI0fC9dfDMcfAlCnw3e/6W7DapVIpUqlUj2VLly7Ne/u4yciIaP5u\nAdusE83finnsQr1K9tKPhozns5ozZ07Wjng6OjpKE5kk1Zg11oArroANNoDTTx8LnMajj67JttvC\nuuv2u7kqTHNzM83NPRumdnR00NSUX42MuMnIYmDLaMq3OtJO0fz5mMcu1D8JTXiH0LPeyI7R/JEy\nxyNJNW3o0DCGzYoVizj//O9y5JGh5sBGG8G222af1lsv4aAzZJYGdHZ2snDhQsaOHUt9fT2Q/Qu6\n0vXVff9AipuM3EtIRA4Brstj/TrguOjxX2Ieu1DXAMcDU4CrMpZPJSRG95U5HkmqeXV1cMIJL3L+\n+RO47LJ7GTp0e554Ap54Ah5/HG68EV5+uXv9hobuxGS77XomKuuvH/ZXLpnJRroUIJVKVWSX9l1d\nsGwZPPssPPdcmGc+fuKJ9wFv8sorTyYSX9xk5HJCD6bHABcBf+9n/Z/SXRJxacxjF+omQp8i5xGa\nHz9JKCn5OHAk2ZsiS5LKYikTJrxNtu/xZcvgySf5b5KSnm6/HV54oXu9UaNyl6hsvHF5E5Vye/31\n3IlG+vGbGW1dhwyBTTcNLZtWrFjAa6/9GfgXJ5xwOzNnfqPsrbLiJiNzgZsJX+g3AzOB32U8PxzY\nDNgT+AawR7T8dyRTEnEYcAbwf4S6IvOBz9OzpESSVEFGjYJJk8iaqLz5ZuhE7fHHeyYq99wTvoDT\n1l67Z3KSWaoyZkz4cq5Ub77Zd5Lx7LM9u9qvq4NNNoEttgjT/vt3P9588zAfMwaGDesebPH110PD\n0meeIZHBFkvRZ/DngFsJ/Yb8jFD6AeGWTEfG47R76b5VU25vEfpGmZbQ8SVJrF7fYty4ccyYMaPg\n+hbrrAMf+ECYenvnnZCo9C5R+d3vYOHC7voRa64J22yTvURl881zjzhcCm+/3X+i0btRysYbdycW\n++3XM8nYYotQ4jE8zwFX+hpssdqSkWWEko9TCGPPZNaDzkxC3gJ+QSg9WV6C40qSqlQ5KneuuSZM\nmBCm3t59F55+urtuSjpRueaasHzlyrDeiBHQ2Lh6krLddrDllqF0IZd33oHnn+870eiVB7Dhht3J\nxd57Z0801lijVGeocgZbLNVoSu8RkpGzgH2AnYGNgKGEgfEeAP5Mdx8jkiQlZo01YPz4MPW2fHko\nOeldonLjjaGkZXn0c3rYMNh6a6LmyJsDv+TEExv/W3/jlVd67nf99bsTiz326JlkbLEFbLYZRAVD\nZVMpgy2W+mhvEuqRzC3xfiVJKovhw7tLQHpbuTLd+qTndP/9I4EPs2JFHbvsAocd1rOexuabw1pr\nlf1f6VdrayvTp0/vcasmicEWK2ecaUmSKtzQoWGMna22go9+tHt5R8d8mpqa+PnP51Vk095c0vVC\nzjjjDJ566ikaGxs5+eSTq641jSRJqmItLS1MnDiRpqYm2tvbE0mmSpmMbADsThivZiShvkh//q+E\nx5ckSVWoFMnIGEJz3s8QEpB8u5XpwmREkqSaF7eblw0JI/Z+jpDYFNK/3SDuC0+SVCva2tqYMmUK\nAFOmTKGtrS3hiKpP3GTkB8DY6HE7sB/hds2waN/9TZIkVa10D6YLFiwAYMGCBUyfPt2EpEBxE4JD\novlvCKUjdwBL6DkqriRJg1JfPZgqf3GTkY0IdT9MASVJNadSejCtdnGTkUXR/M0+15IkaRCqlB5M\nq13cZOROQkXULEMUSZI0uLW2ttLQ0NBjWRI9mFa7uMnIbMKgd61AmXvUlyQpWS0tLcyaNYvGxkYA\nGhsbmTVrVtl7MK12cZORR4AvAtsDtwBZhhySJGnwamlpob29HYD29nYTkSKU4qbW5cAC4I/Av4B/\nAo8Bb+exrVdMkqQaV4pkZEdCD6yjo78nRlN/ujAZkSSp5sVNRrYGbgcya++8CSyl/75GumIeW5Ik\nDQJxk5FTCIlIF/AT4FxgYdygJElS7YibjHwkms8B/jfmviRJUg0qVQ+sV5cgFkmSVIPiJiMvRPP3\n4gZSBusAPwZuBl4m1GmZmWhEkiQpdjLyJ0IPrLuWIJaBtgFwPDAcuCZaZiVaSZISFjcZ+QnwBnAS\nsH78cAbU08B6wL7Ad5INRZIkpcWtwPok8BngKuAe4BuE2yCVri7pACRJ1S2VSpFKpQDo7Oxk3Lhx\nzJgxg/r6MDpKc3Mzzc3NSYZYNeImI7cTbnW8DIwDbgJeAx4nvx5Y94t5fEmSEmGyUTpxk5F9sixb\nj/zqkFhfQ5IkxU5G7oqxbZxkZDJwW57rTiSMlyNJkipQ3GRkcimCKMKjwHF5rvts3INNmzaN0aNH\n91jW3NzM+PEOUixJUmb9mbSlS5fmvX0pBspLwotAW7kONmfOHCZNmrTa8o6OjnKFIElSxcpWf6aj\no4Ompqa8to/btFeSJCmWai0ZKdaBwNrAyOjvCcCU6PFc4J0kgpIkqZblm4xsmfH4mRzLi/FM/6uU\n1LnA2OhxF/DZaOoCtk4gHkmSal6+ycjTdLd+GZpjeSHqou2G9rdiiW1d5uNJkqR+FHKbJlevpcX2\nZmovqJIkKe9kpIXsJSAtMY5tp2eSJCnvZORSYBUhgbgf+HfGckmSpKIV2rTXWyuSJKmkCk1GvLUi\nSZJKyk7PJElSokxGJElSokxGJElSokxGJElSogodm6YO+BOwPOZx0z2wNsbcjyRJqnLFDJS3WYmO\nXZUtc1KpFKlUCoDOzk7GjRvHjBkzqK+vB7IPoyxJknIrJhlZBKwowbGrMhkx2ZAkqbQKTUa6gP2B\nfw1ALJIkqQYVU4G1Kks0JElSZbI1jSRJSpTJiCRJSpTJiCRJSpTJiCRJSlShyUjdgEQhSZJqViFN\ne9O9pT43EIFIkqTaVEgy8vRABSFJksqrknoUL6YHVkmSVOUqqUfxWqrA+hHg18BjwFuE203XApOS\nDEqSpFpXS8nIl4AtgZ8BBwLfBDYC/gbsm2BckiTVtFq6TfM14KVey24CngC+C9xe9ogkSVJNlYz0\nTkQg3K6ZD2xe5lgkSVKklpKRbEYR6ow4CrEkSQmp9WTkHGBN4IykA5EkqVZVa52RycBtea47Efhn\nluWnAUcQ6pI80NcOpk2bxujRo3ssq6QmUZIkJSmzz5K0pUuX5r19tSYjjwLH5bnus1mWzQROJlRc\nPbe/HcyZM4dJk2wBLElSNtl+oHd0dNDU1JTX9tWajLwItBW57cyM6Ucli0iSJBWl1uqMnEJIQk6L\nJkmSlLBqLRkpRivwA0LfIjcAH+r1/N/KHpEkSaqpZOQQoAs4IJoydQFDyx6RJEmqqWTELt8lSapA\ntZSMSNKgUUnDv0txmYxIUhUy2dBgUmutaSRJUoUxGZEkSYkyGZEkSYkyGZEkSYkyGZEkSYkyGZEk\nSYkyGZEkSYkyGZEkSYkyGZEkSYkyGZEkSYkyGZEkSYkyGZEkSYkyGZEkSYkyGZEkSYkyGZEkSYky\nGZEkSYkyGZEkSYkyGZEkSYkyGZEkSYmqpWRkIjAXWAi8DbwK/BU4MsmgJEmqdbWUjIwCngG+AxwI\nHA08DfwGOLlUB0mlUqXalaQq4ntfKl4tJSN3Al8Bfhs9ngscAdwHnFCqg/iBJNUm3/tS8WopGcnl\nVWBF0kFIklSrajEZqQOGARsC/wPsD/wk0YhqWDX+mkw65nIcv9THKMX+4uyjmG2Tvs6DXTWe36Rj\nrsb3fr5qMRk5D3gPWAycDXw7WqYEJP3mLkbSMVfjB5LJiHqrxvObdMzV+N7P17BEjhrfZOC2PNed\nCPwz4+8zgAuAjYBPAD8F6oGzcu1g/vz5eQe2dOlSOjo68l6/1lXj+Uo65nIcv9THKMX+4uyjmG0L\n3Sbp10W1qcbzlXTM1fbeL+S7s64kRyy/TYCD8lz3GuC1Pp4/FzgO2Ax4uddzY4D7o+ckSVJh5gMf\nAV7oa6VqTUZK6VjgYuBDwN+zPD8mmiRJUmFeoJ9ERMFlwHJg/aQDkSSpFlVrnZFiXAAsI9x2WQxs\nAHwWOBz4MaGJryRJ0oCZSujs7CVCa5olhEqwRyQYkyRJkiRJkiRJkiRJkmrHCOASwijCy4B7gd0T\njUhSuXwF6CDUXZuZcCxSRajF7uArwTDgKWAPYBShO/rrgDWTDEpSWSwCvg9cC3QlHIsk9fAqsGPS\nQUgqmwuxZEQCLBmpFNsTSkWeTDoQSZLKzWQkeWsBvwFOA95OOBZJksrOZKQ8jgTeiKa5GcuHA+3A\nI8APE4hL0sDK9d6XpH6tQ+gi/mbCSL6ryH1vdx1gDvA88A7wAPC5PI4xBLiSMKqwSaFUGcrx3k+7\nkFCRVap5fglmtwFwPKHk4ppoWa5a778HjgZOBQ4gjH2TApr7Ocb5wMbA5wkfeJKSV473/lCgntCq\nbnj02M9iSX1an5AsZPsFc1D0XO9fQ38CniP3B8zYaLu36C7CfQPYswTxSiqNgXjvQ0heVvWajo4Z\nq6RBbgNyfyBdSOi0rPcHT7q0w47MpOrle18qE4sG43k/MJ/Vb7M8HM0nlDccSWXie18qIZOReNYH\nlmRZviTjeUmDj+99qYRMRiRJUqJMRuJ5ley/gBoynpc0+Pjel0rIZCSefwI7sPp5TI8x80h5w5FU\nJr73pRIyGYnnGkLHR1N6LZ9K6AjpvnIHJKksfO9LJTQs6QAq2IHA2sDI6O8JdH/wzCX0uHgTcAtw\nHrAuYaC7ZuDjhG6gHR5cqj6+9yVVjAV0d0i0stfjLTPWW5vQJfQioJPQJfThZY1UUin53pckSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSRVrK+D/JR1EpRuSdACSJA1SHwPu\nBBqSDqTSDUs6AEmSBpkm4DTgGeCdhGORVGZTgVXRtGWyoUgVbwTwH8L7ZUqR+5iK77n+3AHcVsD6\nvyScz8sGJJoK5W2awWsy3R8S+UzHJBLlwOhKOoACTaZ2r5WS8y1gO+CfxK/TUG3vuUp2JvAucCTw\noYRjKRuTkdrRlcdU7QbD/wC1ca2UrNHADMJraWbCsainRcCFQB3ww4RjKRvrjNSGc6OpL8+XI5AB\n9utoqma1cq2UrG8Co4AngD8kHItW91Pga8A+wN7AXcmGM/BMRmrDS8C/kw5CefFaaaCtAfxP9Pjy\nJANRTk8D9wB7AtOogWTE2zSSVFsOATYk3KIxGalc6WtzMOF6DWomI+rLCMIvqNuBl4H3gBeBuYTK\nVXV9bHspobLlgn6OMZW+a+OfmvE8hKLlU4AHgKX0rNDZ374y7QW0EYqp3wLeBOYDPwca+9iukHjK\npdiYij0HaesBPwIeJTRffAm4he6WGVPp+3pcSmleI2mluqb1wHSgA3gjmu4DvgoM7SfWtD2Biwit\nVV4nvHeeA/5IeE+NitYbTnhPrQJuzGO/78+IdUaesfR2eDR/GHiqn3X7u8b5eD/wPeBPhHPwLuHa\nPE54DeyWY7tSnptNCf9HB7CM7s+yh4HfEt4fI3ttsytwbwHTIXnEWIjfR/PhwGEl3rdUNpPpfmN+\nv4jttyJ8kGe24ljZ6++7CB9W2VwardPfh93UjH33lYysBLYlfHH1junoPPcFoYj611n2kfm/vQsc\nm2P7QuLJ12TiXatCY4p7DgDeR6hol2v7iwgf8H1dj0spzWuklNd0I+DBXvvJ3O8f6DsJX5Pw5dZX\nLKvoWWn0rGjZcsKXZl9+Gq37HjCmn3VzSX/Bn9/Pevlc46n0fW0m0/P/znU+zswRQynOzYcJCUh/\nMRzcz/6LdQeFNe3N9CQhtlTJoqlQ1hlRNusAfwa2jv6+hvCLcxHhF2a6YtVehF96e9P9q3Kg1AFX\nEz5kfg5cB7xGaJq4sID9XAUcSoj3aqCd8GU4BJhEuD+7PeGDdjFwQxHxPFNAPKWUb0xxz8Eowq/c\nTaK/ryQkAy8B44ETgRZgx1L+c30o5TW9Jlr3bMJre0n09ynADtFxjgcuyLL9EEKy8tHo78cIlZH/\nAbxN+DLdA/gsPVtEXUQoiRlKSBp/lCO+4cBR0eObgRdyrNeX7QkJF8Df+1ivVNd4GKGU6nrCF/Kj\nhJKijQglGd8AxhJKMh4jJKiZ4p6bNaLYR0bHPY9Q0vtStM1WwO6EkodKbKV2H+FzeO+kA5GKNZnu\njP8cYALhzZ9t6n0/clbGtj/Isf/fZKzz5SzPX0ppS0bSv44+mmWdfPf1Rbp/JR+aYx/1hA+rVYRf\nJb1vZRYST74mU/y1KjSmUpyD2RnH+98s2w8DbspYZyBLRkp9TTvJ/sG/HuELbhWh5CSbb2bs5/8R\nvuyyqWP1Uo07ou0ezbENwKcz9v/pPtbry9F0n8td+livVNd4fWDdPo4znJD0rCKU6GWrOnAHxZ+b\n/TKWH9TH9kNZ/TZNqfyNkFQU43/pPr9blCwiqYwms3rxaK4ps8h4DcKv6VWE+6m5iqRHEuqRrAIe\nyfL8pZQ+Gbkwxr7qCPeoVwE/62c/O2Ts5yMx4snXZIq7VoXGVIpzsAahtGAVoU5KLpsREoSBTEYG\n4prO6mMfZ0brrGD1L9ghhPoQqwilUGv1E09vR2XEsEeOda6Lnl9M/nVXesv8cts6xzqlvMb5+EDG\nPiZleT7OuTkiY9/rFBlfMbYkJFnpHm5XEuoy/YlQGpOv4zK237m0IVYWK7DWjnw70Wqiu3LdpeQu\nunyDUDwO4YN+kxzrldIVMbZ9H7AN4f/5XT/rzid8GNcRinAHIp6+xOnwrK+YSnEOmggdZkHffbo8\nTyguH0ilvqZd9H3+5kXzOlb/QplId52GCwm3ZQrx/wiVjSF73ZaNgQOjx5cTvpyKkVmytiTHOgN5\njdcgfFG/j1DSN4Hu76E64INZtolzbhZl7LulwFjjeAbYn3BLawghQdo2WvZ0AftJX6M6BnmLGpOR\n2nAq4c2Qa/q/jHXfH8276L9oMfP59+dcqzS6CN1WFyv9q6IO+Cv9l0CkR9nMlWTFjSeXU8n/WhUa\nUynOQbqOQBdwfz//S191Ekqh1NcU+r4V8FrG495F+jtF8y6K6xOik1DxFUJrlzV7Pf8FwvXvItTf\nKtaojMdv5Fin1Nd4beA7wEOE+iNPE0pT/0kofe3IWHf9LNvHOTd3013yNofwmTWDkJDmuo1WSV7P\neDwq51qDgMmIessc6npxP+umn68jd6uaUnqt/1Vy2ijjcb7drXex+gdfqeIZKH3FVIpzkHmdX+on\nlv6ej2sgrmlnH8+tynjc+zbJBhmPi6lYCt232EayetPZdInA/cC/itw/dJcwQO66HKW8xlsREo4z\nCElOHX2X9uW6NsWemxWEukTzo793Idxuu4fQwuYGoJnK/S7MTECW5lxrELA1japJnNrumV8eh5J/\nUWlfHwCVWPu+r5hKfQ6S/v8H4pom6SHCraAmwhfsb6LluxFuhUK8UhEI9bzSGuj/XMS9xr8hJCSr\ngEsILVvmR3Esj9apo/vWSq46anHOzXxCInRoNO1DaBVYDxwQTScSKri+nGMfSUn/OOyi8mIrKZMR\n9fZqxuNNCBUEc8ks7u59/zn9K7K/Xxxr5xlXXOk3chfhF1EtdrleinOQeZ03IVTKy2XjfvYV9zVS\nSdc084tiU0Iz1WJcRPjC3YfwJf403b/83yZ+fxOLMh5vSPbKw6W6xtsTOn+DMODbKTnWa8ixvLc4\n52YVodl1ehyeTQj1TP4n2mcTod+VSutcLLPE7cXEoiiDSi2aUnLSLWPqyN0zYtqu0byL1VvUpO9H\nj6Zv4/MPLZZ0q4A6uj8ga00pzsHDGfvoq2koeTwf9zVSSdc0Xe+hjnh9QvyW8MVaR2hFVA98Pnru\n9+Su55GvdB2POkKl22xKdY0nRPMuQolILvm2EinluXmRUFKzO93X7mBCBdtKkr5GixjkA2SajKi3\neXQX3R5D7tfISLq7lf43q9cveSpjvXE59jEC+ExxYRbsAeDZ6PGXqLwPnXIoxTmYR3e9lC/0sd5m\nwMf72Vfc10glXdOHMmI5juJL/DJbqR1D6CBtXcIX+sVxAow8Rvd7ddcc65TqGmeWvPd1PrL1U5TN\nQJybFXRXOB5G/4lxuaWv0V8SjaIMTEbU23uE4lAIv2yy9WtRB/yS7prvv8yyzp0Z67bm2MfZFN+l\ndaG6CJXoIPSv8Bv6/vKqJ/Q0O5iSllKcg/cIvygh/GqbnmW7YYQKh/21Voj7Gqmka9pFdx8lmwOX\nkfv/H0Lfr/v0+28soTt0CInbndlXL1h6Px/K8XyprnH6VlUducdr+grwyT720Vuh52YvQvPvXEYQ\nbvtAGC+nkuplbEz4PyF0/CZVpcl0N2n8foHbrkO4T5ze/mpCEeYkwq/U2zOeu5vclc7uyVjvkiim\nScDnMvaRXiefsWn6M7WffUH4ZZWO6UngJMKH0UTCB9exhIpw6Y7fendeVUg8+ZpM8dcKCo8p7jlY\nl9CPQnofVxD6T5hEKDb/e7T8Pvq/HqV4jZTrmk7OWC/brZg6unsTXUVoJvwNwi2knQh1FH5A+JLO\nluRn+lfGflYBJ/ezfiEOo/v/yFUiVapr/M9e+zgo2scnCd32ryKUTBTy+i/k3JwaxXY78G1CSc4k\nwjU5NiP+VYReZyvJlwlxvUvPuiNSVZlMvC+4sYTbL33123AXfRdrjqd7UK7e00rCL8ljMpaVKhnJ\ntS8ILTDmEIpn++uX4nVW/xVdSDz5mky8a3UqhcUU9xzA6oOo9b62+QyUB6V5jZTrmk7O2E+2ZARC\n09TM5CjX/9XfdT4xY/3lhFsipTKc7q7t++q3ppBrnOvafJBQKT7XuXiQUJm0kNd/IedmZh/Hzvxf\n2gmlJJXkbkJ8v+9vRamS7UP+H3y5DCfUNk8PLNVJ+HCaS+hmOR+bEsZbWUAYgvzFaPsDouf7+8Ka\nmfF8f/L58kvbgTDK5zzgFULR9GuEX3K/Bo4k+33uQuLJV9xrVWxMxZ6DtPTw8v8hVCxcDNxKKNWA\n/EqqIP5rJO7/k+/5y7xOuZKRtMnRMZ8gFP+/Q2j9cS351SnZiO4vy1wD+8XxvWjfT/azXn/XOJ9r\nswVhwMAFhM+Ql4F7gW/RnQAU8vov5NysTRir5hxCCdsCQsdrbxH+99/S/TqrJFvRfU4+nGwoklTd\nppJ/cqiePkL3F27vTr5KYRTd489UWnPW/gz0uakEPyf8f7cnHYgkVbupmIwU6wrCuUsPdT8QToqO\nMRDDGgykcpybJG1GKEFaSe5KxpKkPE3FZKQYWxFuMa2iu8XIQBhOuP2yktBMthpsRXnOTZJ+Sbgm\nfQ1SKEnK01RMRvK1GbAdobVHB+G8vUX5mr5XMs+NJKloU+m/dZOCO1i9hUe2vldq0R14bgY9x6aR\nNFC6es2VW3r02rcJ/ZDMoXswuFrnuZEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSctlMDAAAAAKSURBVJIkqQr9f23jV5XuCWdGAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from scipy.optimize import curve_fit\n", + "\n", + "# Define model function to be used to fit to the data above:\n", + "def tophat_time(x, *p):\n", + " mean, width = p\n", + " if x>(mean+width): y=0\n", + " if x<(mean-width): y=0\n", + " if x==(mean+width) | x==(mean-width): y=5\n", + " return y\n", + "\n", + "def tophat_freq(f, *pars):\n", + " A,T,t0 = pars\n", + " #return A*T*sinc(pi*f*T)*exp(-i*2*pi*f*t0)\n", + " return A*T*sinc(pi*f*T)*cos(2*pi*f*t0)\n", + "\n", + "x=np.logspace(fqd[0],fqd[-1],200)\n", + "\n", + "# p0 is the initial guess for the fitting coefficients\n", + "p0 = [3, 3, 3]\n", + "coeff, var_matrix = curve_fit(tophat_freq, fqd, lag, p0)\n", + "fit = tophat_freq(fqd, *coeff)\n", + "\n", + "\n", + "mpl.rcParams['xtick.labelsize']=12\n", + "mpl.rcParams['ytick.labelsize']=12\n", + "xscale('log'); xlim(.009,.6)\n", + "xlabel(\"Fourier Frequency (days$^{-1}$)\",fontsize=20)\n", + "ylabel(\"Time Lag (days)\",fontsize=20)\n", + "\n", + "\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=5,color=\"black\")\n", + "plot(fqd,fit)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAGJCAYAAACZwnkIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XeYU2Xax/Fvhqq0kSpVxbIiguyAgi7FBRSwoCKyjJQF\nbCuriGVVBERFsJdVBMsC9rGsXVcQwYa7WAAFVFZdBQFREAQU6TPvH/fJm0xIMsmck5xM8vtc17lO\n5rTnTii556kgIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIlIR9QAe\nAb4EtgKrgReBggTvbwg8DKx37v830N3zKEVEREQS8AzwFnAh0BU4E0tOdgJ/LOPeasBSYCVQiCVJ\nLzj3dk1RvCIiIiIxNYxyrAawFphTxr0jgWKgY9ixSsAyYIEn0YmIiIh4YB7wRRnXzAE+j3L8aizh\naex1UCIiIpK8PL8D8FkdrI/NZ2VcdySwJMrxpc6+tZdBiYiISPnkemJzH7APMKmM6+oCG6McDx6r\n52VQIiIiUj6V/Q7ARxOBs4GLgMU+xyIiIiIeyNXEZgIwFrgGmJrA9RuwWptIdcPOx9IY9cEREREp\nj7XOlrBcTGwmhG03J3jPUqBtlONtnP2yGPc1btKkyffff/99chGKiIgIwBrgaJJIbgKpiyUjjQeu\nx5qhJiRx31+wmp1OwIfOscrAJ8AW4LgY9xUACx9//HFatWpVroCzxejRo7n77rv9DiMj6LMwufg5\n9O7dm/Xr19OgQQNmzZoF5ObnEIs+C6PPwXzxxRcMHjwYoD2wKNH7cqnG5nIsqZkF/AtLUsIF56OZ\nDgwFWgKrnGMzgL8Cz2JDvNdjc9scCvQsq+BWrVpRUJDoBMfZKT8/P+c/gyB9FiYXP4eqVav+/z74\n3nPxc4hFn4XR5+BOLiU2pwAlQG9nC1eCTbgHNlIsj9K1WTux2YZvBe4F9sU6HPcB3ktdyCIiIpKM\nXEpsylo2IWi4s0VaBwzzLBoRERHxXK7PYyMiIiJZRImNpEVhYaHfIWQMfRZGn4PR5xCiz8Loc3An\n10ZFpVsBsHDhwoXqCCYiNGvWjDVr1tC0aVNWr17tdzgiGW3RokW0b98ekhwVpRobERERyRpKbERE\nRCRrKLERERGRrKHERkRERLKGEhsRERHJGkpsREREJGsosREREZGsocRGREREsoYSGxEREckaSmxE\nREQkayixERERkayhxEZERESyhhIbERERyRpKbERERCRrVPboOYcBHYFGQAOgDrAJWA/8AHwAfO1R\nWSIiIiJRlTexqQKcAgwAugL7A4E415dgCc47wDPAq8DucpYtIiIiElWyiU0d4BLgQqx2JlEBoDEw\n0Nl+BKYC9wCbk4xBREREJKpEE5uqwKXAVUB+2PEvgAVYU9OnwAZgI7AFS4LqAvWBdsAxWHPV4VhS\ndL3zzFuAO4Fd7t6KiIiI5LpEE5tlwCHO62+BJ4HHgf/GuWeDs30F/AeY5hw/HBgMnA0cCNwEnIP1\n0xEREREpt0RHRR0CLAX6AwcD44mf1MSzHBjnPKe/89xD4t4hIiIikoBEa2wGAP/0uOwS4HngBeBM\nj58tIiIiOSjRGhuvk5pwJSl+voiIiOQITdAnIiIiWUOJjYiIiGQNr2YeBqgNnAV0wuas2QcYAawM\nu6YpNgx8O/CNh2WLiIiIeJbYXIgN264ddqwEqBFx3R+BR4EdWJKz0aPyRURERDxpihoH3IclNTuA\nRXGuLcJmHa6GRkKJiIiIx9wmNkdhMwiDJS2NgQ5xrt+DDfEG6OmybBEREZFS3CY2F2PrQH0IDMFW\n9C7Lv519W5dli4iIiJTiNrE53tlPAYoTvOdbZ9/EZdkiIiIipbhNbJpgnYQ/S+Ke35x9dZdli4iI\niJTiNrHZ7ewrJXFPPWe/2WXZIiIiIqW4TWxWY31sDk/ini7O/n8uyxYREREpxW1i85azH5Lg9fnA\nBc7ruS7LFhERESnFbWJzP9bHpic2SV889YGXgEbATuABl2WLiIiIlOI2sVkK3IY1R00BXgAGOucC\nwHHAIGAq8DWhZqjrgFUuyxYREREpxYslFcYA+wIXAac5W9CDUa6/A7jZg3JFRERESvFiSYUSYBRw\nIjCP2PPZvA/0Bv7mQZkiIiIie/Fyde83na028HugITYMfD3wKfCTh2WJiIiI7MXLxCZoC/BOCp4r\nIiIiEpfbpqj9PIlCRERExANuE5sfsCHcA9ASCSIiIuIzt4lNFeBU4CngR+Bh4ARsqLeIiIhIWrlN\nbKYBG5zXtYChwCxgDXAX0MHl80VEREQS5jax+SvQGKu1KcJW7g4A+wOXAB8A/wWuBQ52WZaIiIhI\nXF7MY7MbeA2bYbgRMBh4HdiDJTmHYjMNfwksAC4GGnhQroiIiEgpXiQ24bYCTwInYzU5FwH/cc4F\ngGOAv2NNVa97XHYiagK3Am9g8+sUAxMSvHeYc320raHXgYqIiEjyvE5swv2ErRH1B6AlMA743DlX\nGZupON3qA+dhnZ5fcI6VJPmMYUCniG2jR/GJiIiIC6mYoC+aFcDzwD5AEyA/TeVGiyM490494Nxy\nPGMZsCiZG3buLEcpIiIikrRU1tiAJTGXAwuBz4CxhJKaHSkuuyzlHZKe9H3XXAO7d5ezNBEREUlY\nKhKbOsA52IKYK4HbsLWjAlizz1xgBNbRuCJ6FeswvQF4Dmhd1g3vvgvnngvFsZYHFREREU941RRV\nDTgFGxnVx/k53GLgCWxI+FqPyky3tcCN2MiuLUBb4Grn5+OApbFuvOEGGDcOateGv/8dApq+UERE\nJCXcJjY9gbOBftiq3uG+xUZIPQEsd1lOJpjtbEHzsWHuS4EbgDNi3di7N9SvDxdcAPn5luiIiIiI\n99wmNm9E/LwBeAZLZv7t8tkVwUrgfWxkVFznnw+bN8OVV0KdOnD55akPTkREJNd40RS1DXgZS2Zm\nYf1Pck3cIeOjR48mP9/6TB96KFxxBSxfXshDDxWmJTgREZFMVlRURFFRUaljmzZtKtez3CY2w7Bh\n3L+6fE5F1RLoQukmqr3cfffdFBQUAFBSAqNGwX33QY8eMHBgGqIUERHJYIWFhRQWlv5lf9GiRbRv\n3z7pZ7lNbB51eb8f+gA1sEU7wUY19Xdev4bVQE3HFvRsCaxyzs3BRnp9hiVybYArsRqq8YkWHghY\nB+LNm2HIEKhVC04+2d0bEhEREZOuCfoyyVTgAOd1CXCWs5UABwHfYcPg8yg9Z81SbNRXc2yiwXXA\nm8BE4OtkAsjLgxkz4JdfoH9/mDULunUr/xsSERERk4uJzUEJXDPc2cJd5mUQlSvDU0/BKafYNm8e\nHH20lyWIiIjknkQn6CvGVuveE+d4ebacVq0avPgitGljQ8I/+8zviERERCq2ZGYeDhB9OYGAiy3n\n1agBr70GzZvDCSfAN9/4HZGIiEjFlWhTVHBKuchhzW6mmkt2Ve2std9+MHs2dO1qI6Xmz4emTf2O\nSkREpOJJNLG5LsnjkqRGjWDOHOjc2Wpu3nkHGjTwOyoREZGKJdWre0sSWrSAN9+EDRusz83mzX5H\nJCIiUrG4TWy6AV2BfZO4p3rYfRLhsMPgjTesr82pp8Jvv/kdkYiISMXhNrF5y9kOTOKeZmH3SRRH\nHQX/+hcsWgRnngk7d/odkYiISMWgpqgMdeyxNhR83jwYPBj25PzgeBERkbL5kdgEy9RXdRl69oSn\nn4bnn4cLLrB1pkRERCQ2PxKb4HIG6hqbgNNPh5kzYfp0uPxyJTciIiLxJLukQouw1+ET7DWh7BW+\nqwGHYGsrAXyeZNk5a8gQW1fqr3+F/Hy49lq/IxIREclMySY2K9h7Yr0AMDuJZwQTooq4MrhvRo60\n4d/XXAN16sAll/gdkYiISOYpzyKYsZZVSNR24B5gejnKzmlXXw2bNsHo0VCrFowY4XdEIiIimSXZ\nxCb4VVqCJTMznJ/HAd/Hua8ES2i+BxZTdrOVRBEIwM03w5YtcN55ltycdZbfUYmIiGSOZBObhyN+\nDiY2LwFamzoNAgG47z5LbgYNsuSmd2+/oxIREckM5WmKCtcdq4351oNYJEF5efDww9ahuF8/W0Cz\nSxe/oxIREfGf2+HebwPvAJr4P82qVIFnnoFOneCUU2yWYhERkVynmYcrsOrV4aWXoFUr6NULvvjC\n74hERET85bYpKlwe0A44CqgH7EPZo6Vu8LD8nFSrlq0r1a0bnHACzJ8PBx7od1QiIiL+8CqxGQZM\nwCbwS3TodwlKbDxRt66tCN6liy3D8N570Lix31GJiIiknxdNUZOx0VEHkNx8NslcK2Vo3BjefBN2\n7LCamw0b/I5IREQk/dwmNh2Bq53Xc7CmqALn5xKgEtAA6IMNCQeYjy3BoP49HjvwQJgzB378Efr0\nsVFTIiIiucRtcnGhs18JnAIsAXaFnS8BNmBLLpwB/BXoDMwCqrosW6I4/HAb/v3f/0LfvrBtm98R\niYiIpI/bxOYPzv4eQglNvCamacBzQFssyZEUKCiA116DDz6AAQNg166y7xEREckGbhObxlitzLKw\nY8Vhr6tEuedxZz/AZdkSR+fO8MILVnszdCjs2eN3RCIiIqnnNrEJJi7rwo6FrwPVIMo9q5z9IS7L\nljL06gVFRTaR38iRUBK5LruIiEiWcZvYrMeanmqHHfuRUK1Nqyj37O/sa7ksWxJw5pkwfTo8+CBc\ndZWSGxERyW5uE5vgwpeHhx3b4RwPAAOj3DPI2a91WbYkaNgw+Pvf4bbb4Kab/I5GREQkddxO0Pce\ncAK2GOZDYcefAtoAw4EfnJ9rAH8GCp1rXndZtiRh1CjYvBnGjoXateGii/yOSERExHtuE5sXsdmD\nT8Gao7Y4x+8BzgMOBMYC1zjHgyOmfgZUd5Bm48bBpk1w8cWW3Awd6ndEIiIi3nKb2CzDamsqU3oE\n1Fbn+GPYkPBAxD1DCHUiljQJBOD222HLFhg+3NaZOuMMv6MSERHxjhdrRb0d4/gKoAvW/6a1U9aX\nwGIPypRyCgTg/vttVuKBA+HVV20JBhERkWzg5eresSx3NskQlSrBo49abc3pp9syDMcd53dUIiIi\n7mm9phxVtSo8+yx06AAnnQSffOJ3RCIiIu4psclh++4Lr7wChx4KJ54IX37pd0QiIiLuJNoU9Wds\n6QSvPZqCZ0oSateG11+Hbt2gZ0+YPx9atPA7KhERkfJJNLGZiSU28Ra4TFYJSmwyQv361s+mc2dL\nbt57Dxo18jsqERGR5CXTFOVlUpOK54kLTZrAm2/C1q3WLPXzz35HJCIikrxEa2xapjQKyQgtW1rN\nTdeu1qF4zhyoWdPvqERERBKXaGKzIpVBSOY44giYNQu6d7eh4K++CtWr+x2ViIhIYjQqSvbSoYMl\nNO+/b5P47drld0QiIiKJUWIjUXXtCs89B6+9BiNGQHGx3xGJiIiUzcuZh2sDZwGdgMbAPsAIYGXY\nNU2BOsB24BsPy5YUOOkkeOIJq7WpXRumTLElGURERDKVV4nNhdhq3bXDjpUANSKu+yM2xHsHluRs\n9Kh8SZEBA2zRzPPOgzp1YPJkvyMSERGJzYumqHHAfVhSswNYFOfaIuBHoBpwpgdlSxqcey7ccQfc\ndBPccovf0YiIiMTmNrE5CrjeeV2ENUF1iHP9HuB553VPl2VLGl12GVx7LVx9ta0OLiIikoncNkVd\njE209yEwBEiki+m/saarti7LljS77jrYtAlGjrQ+N2ef7XdEIiIipblNbI539lNILKkB+NbZN3FZ\ntqRZIAB33WV9boYOtcn7+vb1OyoREZEQt01RTbBOwp8lcc9vzl7TvlVAeXnw0EM2ed+AATBvnt8R\niYiIhLhNbHY7+0pJ3FPP2W92WXZ51ARuBd4A1mO1TBOSuL8h8LBz71asWa27tyFmvsqVbRj48cdb\njc0HH/gdkYiIiHGb2KzG+tgcnsQ9XZz9/1yWXR71gfOAKsALzrGSBO+tBszFhqyPAvpiI7xmAV29\nDTPzVatmE/i1awd9+sCSJX5HJCIi4j6xecvZD0nw+nzgAuf1XJdll8cKYD8sORmT5L3nAK2BAdgI\nsLlAf+BLrBYo59SoYTMTH3igrQj+9dd+RyQiIrnObWJzP1bj0RMb6RRPfeAloBGwE3jAZdluJTuH\n7hnAciC84WUP8DhwDDbUPefUqQOzZ8N++0HPnrBqld8RiYhILnOb2CwFbsOShClY885A51wAOA4Y\nBEwFvibUDHUdUNG+Ao8EojW4LHX2rdMYS0Zp0ADmzLHXJ5wA69b5G4+IiOQuL2YeHoMlNQHgNODJ\nsHMPAo8BfyG03MIdwM0elJtudYm+BETwWL0o53JGs2bw5puweTP06mXz3YiIiKSbF4lNCdaZ9kRg\nHrHns3kf6A38zYMyJQMdcgi88QasXAmnnAJbt/odkYiI5BovV/d+09lqA7/HhkZXwoZGfwr85GFZ\nftiA1dpEqht2Pue1aQOzZkGPHtCvH7z8so2gEhERSQe3ic1MrMbmdeBZ59gW4B2Xz81ES4m+DEQb\nZ78s1o2jR48mPz+/1LHCwkIKCwu9iy6DHHOMJTR9+tiyC08/bXPfiIiIRFNUVERRUVGpY5vK2ach\n2ZFBkYqxxOZkbD6XiqQ+sA7ryHxDAtf/BesE3QlbGwssMfwES+aOi3JPAbBw4cKFFBQUuI23wnnl\nFau1GTwYpk+3WYtFclmzZs1Ys2YNTZs2ZfXq1X6HI5LRFi1aRPv27QHaA4sSvc/tV816LDn6weVz\n0qkPNv/Mqc7PrZ2f+wP7OMemA7uA5mH3zcCWjngWKMSGuD8DHApclfKoK6BTT4VHH4VHHrFVwUVE\nRFLNbQPB50A34ACs5qIimIrFC1bbdJazlQAHAd9hCV8epWu0dgI9sMn47gX2BRZjidJ76Qi8Iios\ntLltxoyBYcPgiCP8jkhERLKZ2xqbx5z9MJfPSaeDCCUulSJef+dcMzzi56B12HutjyU2f8BGgkkc\no0dDixZw7bV+RyIiItnObWLzMLa0wGnA9bjvsyNZqGpVmDDB1pb6+GO/oxERkWzmtimqM3A70AAY\nj62j9DQ2Q+/P2JID8bzrsnypIAYPhltugXHjbDi4iIhIKrhNbN7G+qYEa2p+BwQbHOKtmh1wzldy\nWb5UEJUrw8SJcNZZ8O670DXn1kMXEZF08GIAbqzmp0CcLd59kqX69YOCAhg7Fkripb0iIiLl5LbG\npruLe/XVlmPy8mDSJJu4b9Ys24uIiHjJi6YokYT16gWdO1utTa9emrRPRES8pa8VSatAACZPhsWL\nbZSUiIiIl5TYSNp16QK9e9u8Nrt3+x2NiIhkEyU24osbb4Tly+Hxx/2OREREskmiic2r2IKOqdAB\neC1Fz5YM1b499O8P110HO3b4HY2IiGSLRBObk4CPgBewZQS80BV4GVspW+NjctANN9g6Ug895Hck\nIiKSLRJNbG7AFoE8DZst+H/YEgrtknhGFeBoYDKwAngLOAXY7jxLckyrVjBkiDVLbd3qdzQiIpIN\nEh3ufR22LtR1wGBsIcnxwDhgG7bK9RLgJ2Aj8AtQG6iLLRj5e+AooBqhifn2YItoXsfei01Kjpgw\nAZ58EqZMgauu8jsaERGp6JKZx2YFtrL1DcAoYAiwH6FVrhNtotqAJTT3OM+UHHbQQXD++baO1AUX\nQH6+3xGJiEhFVp5RUd8Ao4HGwMnAbVg/mVgDd3cDC4Bbsb46TYDLUFIjjrFjYft2uOMOvyMREZGK\nzs3MwzuB150NbEHL+thK33WATcB6rIamrFW+JYc1bgyjRsFdd8HFF0PDhn5HJCIiFZWX89jsAX4E\nlgHvA58B61BSIwm48kqoVAluusnvSEREpCLTBH2SEerWhSuugKlTbQi4iIhIeSixkYwxejTUrg0T\nJ/odiYiIVFRKbCRj1KoF11wDM2bAV1/5HY2IiFRESmwko1x4oXUmnjDB70hERKQiUmIjGaV6dVv1\nu6gIPv3U72hERKSiUWIjGWfYMDj4YBg/3u9IRESkolFiIxmnShVbIPOVV2DBAr+jERGRikSJjWSk\ngQOhTRublVhERCRRSmwkI+Xl2arf8+bB3Ll+RyMiIhWFEhvJWKeeCh072hDwkhK/oxERkYpAiY1k\nrEAAJk2CDz+El1/2OxoREakIvExs/gg8BnwF/IqtEXVExDVdgZHAYA/LlSzWowd07w7jxsEerTom\nIiJl8CKx2Rd4GpgLDAIOdo4FolxbAkwBHgEO9aBsyQGTJsGyZfD0035HIiIimc6LxOZJ4Czn9UfA\nnc7raL0i3gM+x5Kefh6ULTmgUyfo29cm7tu1y+9oREQkk7lNbE4D+jqvRwIdgSvKuOdFZ9/NZdmS\nQyZOhG++gZkz/Y5EREQymdvEZpizfwq4P8F7PnL2rVyWLTmkbVsoLLSJ+7Zt8zsaERHJVG4Tm47O\nviiJe9Y6+4Yuy5Ycc/318MMPMG2a35GIiEimcpvY1Mf60nyXxD3BsS0aai5JOeQQGDECbroJfvnF\n72hERCQTuU0ugl8vNZO4p5mz3+CybMlB48dbUnP33X5HIiIimchtYvM1NsKpfRL39HH2n7ksW3JQ\n8+YwciTcfjtsUGosIiIR3CY2rzv7C4BKCVzfGviz8/o1l2VLjhozBoqL4dZb/Y5EREQyjdvE5j5s\nluFWwMNAtTjXngi84VzzEzDdZdmSoxo0gNGj4d57Ye3asq8XEZHc4TaxWQ+c67weBHwDBMesBIBL\ngIewSflmAY2BYmAIsNVl2ZLDLr8cqle3WYlFRESCvBiZ9Aw28/AWLHG5IOzcecA5wOHOz1uwGYdn\ne1Cu5LD8fLjqKnjwQfj2W7+jERGRTOHVkOvnsDWirgUWEhrSHbQMmAQcAmidZvHERRdBvXo2v42I\niAh4O5fMBuBG4GigOtAIaIL1qWkLjMf61oh4okYNW/X7scfg88/9jkZERDJBqibJ24P1v/kB0LKF\nkjLnnQctWtgCmSIiIpr9Vyq0qlVhwgR47jlYuNDvaERExG9uE5uqwBHOVj3K+X2AO4HVwDZsdNTF\nLssUKWXwYDj8cGuWEhGR3OY2sTkd6xj8FjaMO9LzwGhCfW0OB/4O3OOyXJH/V7kyTJwIs2bBu+/6\nHY2IiPjJbWLTy9m/AOyMOHdy2PnVwIvA987PfwWOdVm2yP/r1w8KCmDsWCgp8TsaERHxi9vEJrhG\nVLTfk4c7+y+xpRT6Ofvl2OR950a5R6Rc8vJssr75863mRkREcpPbxKYhUAL8L8pzT3BeTyG0Cvhm\n52eA41yWXR41gbuBNVifn8XAnxK4bxjW1BZta5iKQCV5vXpB585Wa1McrWFURESyXmWX99d39tsj\njrcDamFJT+Ril8ucfXOXZZfH80AH4CqsJmkQUIQlYkUJ3D8Mq3EKt9HD+MSFQAAmT4auXeH556F/\nf78jEhGRdHOb2OzERj7Vjzje1dmvBiInvA/W3iSyGriXTgJ6AoXA086xd4ADgNucY2X9nr8MWJSq\nAMW9Ll2gd28YPx5OP906FouISO5w2xS1Ausv0yni+KnO/r0o99R19utdlp2sM7Ck6tmI4zOxUVsd\nE3hGwOugxHs33gjLl8Pjj/sdiYiIpJvbxOYtZ38RNpcNQF/geOf1v6Lc09rZr3VZdrKOBL5g71qZ\npc6+NWV7FdiNLR/xXIL3SJq1b2/NUNddBzt2+B2NiIikk9vE5l5syYRGWILwEzasO4B10H0uyj0n\nOvulUc6lUj2i94fZGHY+lrXYOljnYEnbeGxNrAVAG+9CFK/ccAOsWgUPPeR3JCIikk5uE5svgcHA\nb1gyE2xm2oT1ZYn8fXl/QonNPJdlp9NsbOXyfwHzgalAF6xz9A0+xiUxtGoFQ4ZYs9TWrX5HIyIi\n6eLFWlHPAgdj89KMA0YAh2AJQKS2wJPAI0RvpkqlDUSvlakbdj4ZK4H32bt/kWSICRNg40aYMqXs\na0VEJDt4NWbkR2BGAte94Wx+WILVIuVRup9NsClp2V53JKbMeW5Hjx5Nfn5+qWOFhYUUFhaWs0hJ\nxEEHwfnnwy23wAUXQMQfgYiIZIiioiKKikrPurJp06ZyPSuXRvn0xmqJBgLPhB2fhXUCbkECSUqY\nlliyNBs4M8Y1BcDChQsXUlBQkHTA4t7atXDwwXD55baelIifmjVrxpo1a2jatCmrV6/2OxyRjLZo\n0SLat28PtspBwlOteNEUVVHMAuYA07Bmsz8CD2J9fq4klNRMxzpEh08gOAcYg4346g5cgg1l3411\nJJYM1bgxjBoFd90F69b5HY2IiKSal9OX1ccWtjwIm3U4kQn40t3xth8wySm3Ljb8O7IGJ8/Zwmuz\nlmKzFDfHJiRcB7wJTAS+TnnU4sqVV8K0aXDTTZbgiIhI9vIisWkE3AX0x5KZRJu3/BhRtBUY7Wyx\nDCe0gGfQZSmLSFKubl244gpbJPOyy6C5H4t5iIhIWrhtitoPa5IZiCVJyfTZyaX+PeKz0aOhVi31\nsxERyXZuE5ursaHdYKOdemOrXVcm1KQTbxNJi1q14JprYMYM+Oorv6MREZFUcZtcnObsX8OSmjew\n2YfLWkxSJO0uvNA6E0+Y4HckIiKSKm4TmwOwvjL3eRCLSEpVrw7XXgtFRbBkid/RiIhIKrhNbH51\n9j+4DUQkHYYNs3ltxmuQvohIVnKb2CzBOgEf4EEsIilXpYotkPnyy7Bggd/RiIiI19wmNg84+6Fu\nAxFJl4EDoU0bGDvW70hERMRrbhObZ4Ai4AxsZl6RjJeXZ6t+z5sHc+f6HY2IiHjJ7QR9XbElCA7E\nZvQ9A1u9eznwWwL3v+uyfJFyOfVU6NjRhoAvWAABzaokIpIV3CY2b2OjooJfCx2cDeIvKBlwziey\n7IKI5wIBm4m4Z0/rb3PaaWXfIyIimc+LSfJi/a4biLPFu08kLXr0gO7dYdw4KNbMSyIiWcFtjU13\nF/fGq9ERSYtJk+DYY+Gpp+Dss/2ORkRE3PKiKUqkwurUCfr2tYn7zjrLhoOLiEjFpfWaJOdNnAjf\nfAMzZ/pYw3kmAAAgAElEQVQdiYiIuKXERnJe27ZQWGgT923f7nc0IiLihtumqEgdgJ5Aa6Cuc2wj\nsAx4E1jocXkinrj+ejj8cJg2DS691O9oRESkvLxKbNoCDwLHxLlmMvAhcAG2FINIxjjkEBgxAiZP\nhnPPhVq1/I5IRETKw4umqJ5YwhKe1OwGfnS23c6xANAR+MC5RySjjB8Pv/wCd9/tdyQiIlJebhOb\n+sCzQFWgGPgHlrzUABo7277OsYeca6phSzHUc1m2iKeaN4eRI+H222HDBr+jERGR8nCb2FwC1AF2\nAScD5wMfOT8H7XaOXQCc5PycD4x2WbaI58aMscn6br3V70hERKQ83CY2Jzv7KcDsBK5/A7jHeX2S\ny7JFPNegAYweDffeC2vX+h2NiIgky21i0xKbQfjlJO55JexekYxz+eVQvbrNSiwiIhWL28SmurP/\nNYl7gqt+V3NZtkhK5OfDVVfBgw/Ct9/6HY2IiCTDbWLzAzbaqSCJe9o5+x9dli2SMhddBPXq2fw2\nIiJScbhNbN5z9lcBtRO4vrZzLcB8l2WLpEyNGrbq92OPweef+x2NiIgkym1i84Czb4klOfEm6DvG\nuSbYt+aBONeK+O6886BFC1sgU0REKga3Mw/PB6YCI4E2wH+Az7FJ+IJNTftj89gcEXbfVFRjIxmu\nalWYMAGGD4eFC6F9e78jEhGRsnixpMIorEPw5Vh/m9bOFk0xcAdwtQfliqTc4MFwyy3WLPX6635H\nIyIiZfFiSYVi4EqsU/D9wNdRrvkKmOZccxU2RFwk41WuDBMnwqxZ8O67fkcjIiJl8XJ176VYkxTY\nUO79nNc/Azs8LEckrfr1g4ICGDvWkptAwO+IREQkFi9qbKLZgQ0F/wElNVLB5eXZZH3z51vNjYiI\nZK5UJTYiWaVXL+jc2Wptiov9jkZERGLxMrGpAvTH+tm8B3zmbO9h/WvOxNumL5G0CQRg8mRYvBie\nf97vaEREJBavEo0zgHuBJjHO/wFb3ft74GLgBY/KFUmbLl2gd28YPx5OP906FouISGbxosbmUuA5\nSic132Jz2XwArAg73gT4p3OPSIVz442wfDk8/rjfkYiISDRuE5tOwG3O6y3YUO6GwMHAsc7WEmjk\nnNuCzXVzKzZpn0iF0r499O8P110HO9QtXkQk47hNbC5znrEFOA5Lcn6Kct1659yxzrWVsAn9RCqc\nG26AVavgoYf8jkRERCK5TWy6OPtbsKUUyvIFcHPEvSIVSqtWMGSINUtt3ep3NCIiEs5tYrMfNovw\nvCTuedvZ57ssW8Q3EybAxo0wZYrfkYiISDi3ic1arM9Mee8VqZAOOgjOP9/Wkdq0ye9oREQkyG1i\nM8fZH5/EPd2c/Vsuyxbx1dixsH073HGH35GIiEiQ28TmDmxl76uA3yVw/WHOtb8RGk0lUiE1bgyj\nRsFdd8G6dX5HIyIi4D6x+S9wFtYc9R9sfpq6Ua6rC4x2rgkAA4DlLssW8d2VV0KlSnDzzWVfKyIi\nqed27tS3sM7D64BDsRqc27AJ+tY55xoBBxFKor4GrnC2WLq7jEskLerWhSuusEUyL70Umjf3OyIR\nkdzmNrHpFuVYHjZB38Ex7jnE2WIpcRmTSFqNHg333AMTJ8KDD/odjVQku3fDV19By5ZQrZrf0Yhk\nB7eJzbueRFGaEhupUGrVgmuugb/9zbZDD/U7Isl0u3fDmDHwyCOwdi1UqQJt2sDRR0OHDra1bm3H\nRSQ5bhOb470IQqSiu/BCuPNOm9/mySf9jkYy0S+/wG+/2esff4T774dBg+CUU+Cbb+Cjj+D9921G\n6+JiqF4d2rUrnez87nfWp0tEYtP6xCIeqF4drr0WLrgArr4a2rb1OyLJBCUllqzMmAHPPBOaqbpu\nXVizxv7eRPr1V/jkE/j4Y0t2Zs+Ge++1czVrQkFB6WTn4IMhUN7ZxESykP45pFYBsHDhwoUUFBT4\nHYuk2K5dttxC69bw0kt+RyN++v57ePRRS2i++goOPBBGjICpU5vxww9raNq0KatXr074eZs2waJF\noWTn449hxQo7l59vCU54stO8uZIdqfgWLVpE+/btAdoDixK9Lx01NtWBzkA9bLTUh2koM5aawI3Y\nEPW62JDzm4GnE7i3IbYq+cnAvsCnwDiSW05CsliVKrZA5qBBsGABdOrkd0SSTjt3wquvWjLz+utQ\ntaqtBP/AA9CtG+Tl2evyyM+H7t1tC1q/HhYuDCU7jzwCN91k5xo23DvZ2X9/9+9RpCJwm9gcAFyE\ndfi9Cfg54nwn4Dlgf6x2qARYDPQDvnNZdnk8D3TAJgn8EhgEFGEjuYri3FcNmAvUBkZhQ9kvAmYB\nPUlNJ2qpgAYOtDltxo6FuXP9jkbSYelSmDkTHnsMfvoJjjkGpk6FP/3JEpJUadAAeve2Lej77y3R\nCSY7991nMQE0a1Y62WnfHurVS118In5xm9j0Ay7HqoiujDhXC3gRq+kICmDNM/8C2gG7XZafjJOw\nJKSQUA3NO1hydptzrDjGvecArYFjgQ+cY29jtTa3YgmcCHl5tur3aadZYtOjh98RSSps2gRFRVY7\n8/HHlmQMHQrDh8ORR/oXV5Mm0LevbWB9fL77LtR89dFHcOutsHmznW/ZsnSyU1AAtWv7F7+IF9wm\nNic4+2g9Cs4nlNTcgzXZnAiMBI4AhgH/cFl+Ms4AfgGejTg+E3gS6IjNjBzr3uWEkhqAPcDjwGSg\nMVrUUxynngodO9oQ8AUL1NchWxQXw1tvWTLz/PPW9HTSSfb65JOt6SnTBAJwwAG29e9vx4qL4X//\nK53sTJhgI7YCARt5FZ7stGsH++7r7/sQSYbbxKals/84yrkBzv4FbDkFgJeBBlgflzNJb2JzJPAF\ne9fKLHX2rYmd2ByJ1e5ECr9XiY0A9uUwaRL07AmvvBL67VkqppUr4eGHrblp5Uo47DC47joYMsRq\nSCqavDyba+nQQ+Hss+3Ynj2wfHnpZOeZZyx5q1TJOsSHJztt22ZmIicV2549Nirwl19s+/zz8j3H\nbWLTEOs382PE8dpYL+YSrEYk3NNYYnOUy7KTVQ9bziHSxrDzsdQNuy7ZeyUH9ehhHT3HjrV5SvLc\nrsomabVtG7z4otXOzJ0LNWpYn5kRI+DYY7OvFi6YvLRuDcOG2bGdO+Gzz0onO48+apMLVq1qyU14\nsnPEEVBZE4jklJIS2L49lIhE27ZsiX8+fAtOh+CW27+GtZx95JRRf8A65O7G+qKEW+Xsoy2WKZI1\nJk2yL8Gnngr9ZiyZq6TERhnNmGH9ZzZtgi5d7Of+/W0OmVxStSr8/ve2nX++Hdu2DZYsCSU7775r\nI71KSmCffeza8GTnsMOU1Gea3btL14okk3hEu37Pnvjl1axps7NHbk2bWn+uaOeC26pV5fu/021i\nsxlLUCIrZI939kuAX2Pcu91l2cnaQPSalbph5+PdG2vV8rLulRzVqZM1Q117LZx1lqbHz1Tr18MT\nT1gCs3SpNS9deKHVXBx2mN/RZZZ99rH+Yx07ho79+issXhxKdl5/3dZOA/tyat++dLJz0EHZV+OV\nSiUl1v+pvIlH5LZtW/zyqlaNnmTUqWPzI8VLRIJbMGGpUcNdYrso4ZlrSnOb2CwDumKjo4IdiCsR\n6l/zVpR7gklQZPNVqi3BRkTlUbqfTRtnvyzOvUuBaHPJJnIvo0ePJj9i3GdhYSGFhYXxbpMsMHGi\ndb6cOTP0W6/4b/dueOMNS2ZeftmO9e1rQ/VPPFFNKsmoWdNqtrp0CR37+Wf7UgomO88+C7ffbufq\n1g3NrRNMdpo2TV2yU1xsk2fu2mV/7ql67eXzduwonYwUxxqvi31usWpFDjgguUSkVi3/+k4VFRVR\nVFR61pVNmzaV61lu/yqNAu7G+tLcgc3nMhRw+t/TEfgo4p6JwFhslFRPl+Unozc2zHwg8EzY8VlY\n598WxF6A8y/AVGxYd3CCwcrAJ8AW4LgY92nmYWHQIHjnHfj66+hT6Ev6fPWVJZmPPGJzvrRpY/1m\nBg2yIdup1qxZM9asSX7m4Wywbp019YX32fnhBzu3//6W4NSt630CUZKiZZUrVbJa2MqVbe/V68qV\nbaX3RBORfffN3uY+v2YefhC4AGgFXIHNaRNMll5h76QGbOg0lB46nQ6zgDnANKxz8/+wGpwTsYn6\ngn/9p2PJWUtC/YFmAH/FhopfDazHhq0fSnqTM6mArr8eDj8cpk2DSy/1O5rc8+uv8M9/Wu3Me+9Z\nlfqgQZbQFBSoWSRdGjaEPn1sC1qzJjSh4Mcf2zD0yC/8GjW8SRa8Tj709yZzuU1stmNf7PcCfZ3n\n7cRGPl0U5fpu2Bw2ALNdll0e/YBJwA1Y/5gv2LsGJ8/Zwv/a7gR6YJPx3YstqbAY6AO8l/KopUI7\n5BD7Ep08Gc49137LktQqKYF//9uSmaefttEWPXvayuunn259RcR/TZvadtppfkci2cSLluS1WNNT\ndSxZ2ADsiHHtd0B3rHZkvgdlJ2srNqfO6DjXDHe2SOuwSQVFkjZ+vA2Vvftuey2psXZtaPHJL7+0\nPgZ/+xv8+c+2EKWIZD8vu8htB74v45pvnU0kpzRvDiNHWgfKatWgRYvQ1rixtddL+ezcCa+9Flp8\nskoVOPNMa/o7/vjs7X8gItGp779ImowZY/0IJk8OrdUDltQ0a1Y62WnRwpKh4Os6dfyLO1MtWxZa\nfHL9ehthM2WKLUSaysUnRSSzeZnY1MZmFO6ErZ20DzACWBl2TVOgDla7842HZYtkvAYNbEIzsMRm\n1SpboDBymz/fOlXuDlsitnbtvROf8K1Jk9yYJ2fzZpvwcMYM+PBDqF/fljYYPtxGOImIeJXYXAjc\nhCU3QSVAjYjr/gg8ivXBaUr0ZQpEsl6dOrbFWgl6zx4bChst8VmwwNbx2Rj2rycvz5q04iU/++1X\nMUdyFBfD229bMvPcc9b01KePvT7lFK1ZJCKleZHYjMNGGYElLJ9h87dEUwTcBjTCFsF8yIPyRbJO\npUqhESPHHhv9ml9/LV3rE/7644/t5507Q9fXqBG9mSu4NWtm/X8yxcqVNt/MzJmwYoUt2jhhAgwd\nWjEXnxSR9HCb2BwFXO+8LsLmetnE3itoB+0BnsdqeHqixEak3GrWhFatbIumuNgmRYtW67N4Mbz0\nkvVNCbf//vH7+jRokNpan+3bQ4tPvvmmTT42YIANl//DHypmjZOIpJfbxOZibL6XD4EhxE5owv0b\nS2yiLVEgIh7Jy7NEZf/94Zhjol+zbRusXh09+VmyxPbbw1Z1q149em1PeBKU7BwxJSWWaM2YYWs2\nbdoEnTvD9Om2xlauLT4pIu64TWyOd/ZTSCypgdBwb1Umi/hsn32siefQQ6OfLymBn36Knvh8/jnM\nmmVzx4SrXz9+X59GjSzp+uknS2RmzoRPP7U+Qn/5i3UE1uKTIlJebhObJlgn4c+SuOc3Z69Vc0Qy\nXCBgzU8NGtgqzdHs2GGjuKIlP3Pm2H7r1tD1VapYf57Vqy1x6tsXJk2CXr20+KSIuOf2v5HdQDVs\nRe9E1XP2m+NeJSIVQrVq0LKlbdGUlNhqz+EdnFeutA7A6Vp8UkRyh9vEZjVwuLN9nOA9wcXt/+ey\nbBGpAAIBW7W5bl1o187vaEQk27mdbPwtZz8kwevzsdXAAea6LFtERESkFLeJzf1YH5ue2EineOoD\nL2Fz2OwEHnBZtoiIiEgpbhObpdiEewFsZNQLwEDnXAA4DhgETAW+JtQMdR2wymXZIiIiIqV4MQZh\nDLAvcBFwmrMFPRjl+juAmz0oV0RERKQUtzU2YE1Ro4ATgXnEns/mfaA38DcPyhQRERHZi5ezRrzp\nbLWB3wMNsWHg64FPgZ88LEtERERkL6mYDmsL8E4C150JPJeC8kVERCRHedEUlYwA1rl4KfBMmssW\nERGRLJeuCcwrAWcD1wC/S1OZIiIikmPKk9jsC5yLdRZu7hxbCbwCPArsiLh+IDARODjs2E7gkXKU\nLSIiIhJTsonNkcC/gGYRx9sApwCXAD2AH4EWwGOE5q4B2A5MB27BlmMQERER8Uwyic2+2MzBkUlN\nuCOAx4FzsOHdTZ3jW7GZhm/Dkh4RERERzyXTeXgocJDzeh7QFaiFJTwdgKeccz2wBKgpNqfNVKAl\ncAVKakRERCSFkqmx6evsvwT6ALvCzi3COgfnY5PwHeWcPwNruhIRERFJuWRqbNo6+zspndSEmxz2\negZKakRERCSNkkls6mHLJyyPc80Xzr4EeLm8QYmIiIiURzKJTTVnH29phA1hr9ckH46IiIhI+aVy\n5uHdKXy2iIiIyF7SvaSCiIiISMokO0FfABgJrItzPpHrgm5IsnwRERGRmMqzpMJIj64rQYmNiIiI\neMjPpqhA2ZeIiIiIJC6ZGpvuHpdd4vHzREREJMclk9i8naogRERERLygUVEiIiKSNZTYiIiISNZQ\nYiMiIiJZQ4mNiIiIZA0lNiIiIpI1lNiIiIhI1lBiIyIiIllDiY2IiIhkDSU2IiIikjWU2IiIiEjW\nUGIjIiIiWUOJjYiIiGQNJTYiIiKSNZTYiIiISNbItcSmJnA3sAbYBiwG/pTgvcOA4hhbQ68DFRER\nkeRV9juANHse6ABcBXwJDAKKsASvKMFnDAOWRxzb6FF8IiIi4kIu1dicBPQELgQeAt4BzgfmALeR\n+GexDPgwYtvtdbDZpqgo0bwx++mzMPocjD6HEH0WRp+DO7mU2JwB/AI8G3F8JtAE6JjgcwJeBpUr\n9A81RJ+F0edg9DmE6LMw+hzcyaXE5kjgC6xPTLilzr51gs95Fauh2QA8l8R9IiIikmK51MemHvB1\nlOMbw87Hsxa4EVgAbAHaAlc7Px9HKEESERERn1TUxOZ4YF6C17YDlnhQ5mxnC5oPvIYlNDdgTV0i\nIiLio4qa2CwHzk3w2u+c/Qai18rUDTufrJXA+0CneBd98cUX5Xh0dtm0aROLFi3yO4yMoM/C5OLn\nsHPnzv/fB997Ln4OseizMPocTHm/O3OpI+wDQCGQT+l+NgOBJ7HmpAXleO7rwFFYB+RIjYGPgKbl\neK6IiEiuWwMcjXUHSUguJTa9gX9hicwzYcdnYR2AWwAlST6zJdbMNRs4M8Y1jZ1NREREkrOWJJKa\nXDQba3I6F/gj8CBWe1MYcd10YBfQPOzYHGAM0BfoDlyCZZKbgCNSGrWIiIhIFDWwJRW+B7ZjSyoM\niHLdTGAPVosTdCc2Od9mYCewGngEOCSF8YqIiIiIiIiIiFfcLLaZTWoCtwJvAOuxZr8Jvkbkjx5Y\n7d6XwFastu9FoMDPoHzQDpsiYSXwG9Ys/G9szbZcdy727+MXvwNJs+OJvbjwMf6F5ZvOWF/Qjdi/\nkS+Bcb5GlH4PE/vvREJ/LyrqcO9M58Vim9mgPnAe8AnwAvafd7IdtLPBBUAD4C7gM+f15dgovF7A\nW/6FllZ1sOkXnsCS/prYv43HgAOBSb5F5q+mwO1YE3ltn2Pxyxj2/nfwmR+B+Ohs4FHgaWAI8CvW\n1SHXBp/cAEyNOBYAXsEqCj5Ke0TCSVhWGVlDMxv7TT2XlrEIVw/7XK71OxAfNIxyrAbW039OmmPJ\nRP/BanFy1StY4j+T3K2x6edzHH5riiUyU/wOJEN1w/6eXJ/Ixbn6JZtKXi22mW1yaWqBSOuiHNuK\nrV3WLM2xZKIN2PpruWgw0AX4K7n9bySX3ztYbfa+wC1+B5KhzsESm+mJXKzExnteLbYp2a0O1scm\n16rbwb7EKmNNciOx5rjbfY3IH42wvnhXY81Quew+bIqNzdjcYn/wN5y064ol+EdgTfe7gB+BaUAt\nH+PKBHWA/sBcQisJSJp9iXX+itQYS3auSm84GaM+udsUFc3jwA7g934H4oP7CXUE3IXNCZWL/gm8\nG/bzw+ReU1Q7bCqNvlgyMwxL9ncBJ/oXVtotxzoLb8a+I7oCV2A1u+/5GFcm+Av2f0W0qVkkTZTY\nRKfEJmQi9lmM9DsQnzTHaqt6Y50E95B7/y76Y3Np/S7s2MPkXmITTbCT+WK/A0mjL7H/E66MOD7K\nOd497RFljo+w5vwqfgeSy/4DfBDleGvsL2iii3dmGyU2ZgL2OVztdyAZZCo26WUDvwNJk5rAD9hU\nCPlh25NYYlMH61yey6Zh/06q+R1ImvwHe79HRRw/zDl+edojygxtsfd/ZzI3qY+N95YArdj7s23j\n7JelNxzJIBPCtpt9jiWTfIT1uTnI70DSpD42Uu4KbL6S4DYQS2h+xobAS+5MD/FJGedz5XOIdI6z\n/4evUQi9id4eOAtYRe72/s/1GpvxJDFcMcc8ivWpqOd3IGlSDRu+2jVs6wa8jvWz6Epurz+3HzY1\nxkK/A0mjntj/D2Mijl/qHM+1ztRg/042YLVZSdEEfd6bhc1NMg2bbOt/2CKbJ2KTkeVa5t0H+y00\n2LO/Nda/AGwW2m1+BJVml2MJzSys/1WniPML0h6RPx7EOkd+hI34qA+chf0ScCv2n1gu2AG8E+X4\ncKy/0btRzmWrJ4BvgUVYrdWh2L+XBsBQH+NKtzeBV7Ff/PKw7gwdnJ9fAd73LzTfnI4luaqtyRCJ\nLraZC74lNAJmT8TrFnHuyyZvUfq9h297fIwr3YZhX+jrsD41G4F52IyrYnNdbfE7iDS7CktqfiY0\nxPmfQHs/g/JJdeAmbLLKndj/nTeSu51mZ2P/HnK9v5mIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI\niIiIiIiIiIiIiIiIiIiIiIiIiEiOG0ZoiYdcWeYiXD1snapi4GgXz3nYeca3HsSUaTpg720DubNY\nqVRQeX4HICLldiDR159KdgsuzJprC7QG3YgttvcqtkCnW9n4OX6MLVq7H/Z5iYiIeO5AQgtpRtsi\nF9uMdn4P8Oew17lWY3MItvjiHqCdy2c9jH2O37h8TqZqj72/ncDBPsciElNlvwMQkXJbDRwZ41wA\nWx23CbAG6BXnOZ8Dj3gbWoUxFqgEzAU+8TmWTLcQW529G/a5jfA3HBERyTUryO4aBLcaATuwz2io\nB897mOz/vM/B3uM2oIHPsYhEpT42IpKrBgNVgN+A53yOpaJ4FksGq2Gfn0jGUWIjIsOIPyrqbefc\nW87PBwPTsJqJbcBKYAZwUMR9RwIzneu2A98BU0n8N/2TgSKs5mkbsBlrLroJq21xa4CzfxPYmsD1\nR2BNdquw97MKeAIbMZSI/YDhwONY89+vWH+VH4BZwHlYohXNndifwW6sebEsC53rl0c5dxhwL7As\nLIbvsc92Ova5VI3x3C3APOf1gBjXiIiIpMQKEmsaGUb8zsNvO+fnAT2xBCO8Q3IwKfoJaOPcM5hQ\nM0/kdd8CjePEUwf7oo/W+Tn482agTxnvK55aWJJQDIxJ4PqBhN5PZDw7sYTlYeJ/3iuI/56KsYQk\nWtLWKuyaq8qItW3YtVdGnDsrxvuIjOOIOM8f71yzA6hRRiwiIiKeWYG3ic1/gY3Oc0diNRXHAXcQ\n+mL8APgDljQsw77w22MdTh8h9MVZFCOWqtiQ6+AX54NAX2zEUkfgUqzmJ9jPo7wjmXoTes89yri2\nIzZyqhhrtpqEvccOwEVYbccOYDHxP+/vgH8D12BJWQHQCTgb+Behz+atGPe/75z/oox47yKUcIUn\nSY2wGppiYC3WAbgHcJTzHs8G7gd+JH5icyKhz+7EMmIRERHxzAq8TWyCTRvRJmi7JeyajcB7QPUo\n1z1N6Eu3fpTzE53zm4BjYsS7H/CZc907Ma4py7WE3nNZTWMfO9duBzpHOd+EULIV7/Mua4j0sLBn\ndC/j/LExnlEFWO9c81LEuRGE3nO8xKUq0f/sghqFxTE+znUiIiKeWoH3iU2s39APCLtmN/C7GNcd\nH1bWqRHnamIJTTFwSRkx9wl7TnnmVJkWdn+8vobHEHpff49z3VmUndgkYpHzjHuinNuXUDPggzHu\n7xcWx2kR564h1GToRpWwMqa4fJaI59R5WEQS9TPwRoxzK7FmDoAlWLNVNEucfYC9Oxt3A2pjM/c+\nXUYs74W9jlV7EU+wlmYL9gUdS09nX4J1hI7lBSwpS1QA2B/ryHtk2Pa9c75tlHt+I9SENwDYJ8o1\nw539j9hMyuGCz66LNe+V1y5Cf9Ya8i0ZR4mNiCTqqzLOB7/Yv0zgGrAOvOGCo4sC2JdwcZxtS9i1\n+5cRVzR1nP0vZVwX7Ay9E/g0znW7sT42ZTkZSzg2Y+9xOZbsBbeTnOuiNdMB/MPZ1wbOjDi3P9Z3\nCGzk1Z6I8y8T+vxfwCYlHI319Un2uyD4+deJe5WID5TYiEiifivjfLDmI9514bUjlSLONQx7XZLA\nFrwuWs1FWYJf8LXLuG4/Z7+RsteAWhfnXABLSl7BkpeaxH5PEPs9fUwowRoecW4o9pmWYMO2I23E\namrWOPH8ERtG/jFWG/dPLPFKRDChSaaWSiQttKSCiGSKYKJTgtUi7ErwvvXlKCt4Ty3sF7x4zVHB\nmNwYQWgJgsXA3dgIsjVYIhh8/iPAECzxiOUf2Dw03bC+TSud48FE5wOiz18DMB9bH+tMLMHqAjTD\nPod+zjbb2W+L8YwqhIZ5l+ezF0kpJTYikinCvyR/wr70U+X7sNcNsD4p0Wx09vWwZCNeghNv0sDz\nnP3X2BD5HTGuqxvnGUGPA7dhI5eGAddjw8aDHbZnlHH/DuBJZwPr63QyNnT9MGxdsUnAZTHuD28m\n+yGBeEXSSk1RIpIpgn1UAtg8Man0YVhZ8ebCWersq5ZxXeUyzrd29i8RO6kJYDVVZdlMaAmIoc4+\nWBu0FXgqgWeE+xYb3XQ0trAqxJ9VOPx9fpBkWSIpp8RGRDLFXEJLG4xKcVnBye4g9nw5YMstgCUd\nf45z3RlAfpzzwdrxeDP19iX+jMzhHnL2BwKnAH9yfv4noRFLyfoF628D0ecqCgp+XruwCQdFMooS\nG/i8h6MAAAKNSURBVBHJFJuxviNgzTV3Eb+vSR3g4nKWtZXQl3inONd9hM0tA3Ah0WuSGgO3l1Fe\ncKTYqURPgA7G1tFK1LvYKLUANqdNcIRZvGaoE4k/gqwOoaTl2zjXdXT2Cym7Q7mIiIhnVuD9WlGJ\nlFdWH4/gkO1ro5yrQqg2pRgbAXQxNuNvO6zD7F+w5patuOu8eplTxlbij446BhvuHbmkwtEkvqTC\n5WHv6XPsMz8G6Apch40uCiZbiU7ydyWlh8DHG2YPtpbVTmy4+ShsOYXfOzGMdOIKPitWwlgHm4G5\nGBsqLiIikjYrCC06Gc8wQl9ofic2YM01RZT+0o61fV1GWfE0wEb+FBPqoxLLQEJf6JHbDuf+mcRO\nSiqz98Ke4duv2Eilh+M8I1JDQglXMXB1GdfPpOzPcw/RZz0OOpdQgqfJ+SQjqSlKJHtFmx8l1nXh\n+1jPSbS8RMS7bitQiM0o/ABWk7AZmwTvZ6xm5B9YItAqwfKiWQ884bweXMa1T2G1G49ho7V2YB1t\nn8Zqk8pK5nZjI49GYbUyW7Hk4CtseYcCrENwMsPK1xHqA7QbGyoez6XY+5yBNbGtdt7Hb9hM0TOd\n9xKvf9MgZ1+EhnqLiIhknIMJ1XokMiIpk+Rhc9gUs/fyCanQnlANVXnW5xIREZE0mEr6kgMvnUCo\nCemMNJT3ilPWtDSUJSIiIuVUF5sQcA/WIbiieANLNFaz9/IUXutAaGXwRCYRFBEREYmrJrYcQgHw\nd0K1NZf6GZSIiIhIeQxj71FMC9HSOCKlaFSUiEjFEBwxtQcbWn8v0BMbESUiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIpKF/g/omU5buU02AwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "time_fit = irfft(fit)\n", + "\n", + "mpl.rcParams['xtick.labelsize']=12\n", + "mpl.rcParams['ytick.labelsize']=12\n", + "ylabel(\"Response (relative)\",fontsize=20)\n", + "xlabel(\"Time (days)\",fontsize=20) \n", + "\n", + "ylim(-0.5,2)\n", + "xlim(0,7)\n", + "\n", + "plot(time_fit)\n", + "plot([3.93,3.93], [-50, 50], color='k', linestyle='-', linewidth=2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lag/data/clag_analysis-origbins-noLFerrors-1928A.ipynb b/lag/data/clag_analysis-origbins-noLFerrors-1928A.ipynb new file mode 100644 index 0000000..66c0287 --- /dev/null +++ b/lag/data/clag_analysis-origbins-noLFerrors-1928A.ipynb @@ -0,0 +1,800 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X18VPWd9/9XSAKSRBRwbFEoxFBYg1pNKhD6s+qCqFBy\n1UI35PGzbbjorle73V2vSzK22u7P31W07aRre117tbXXlpL21zWmWnYXoevderNU7mro9sb4kxID\nyO2MiDcQhNyc64/vHOcmM8lM5szMOTPv5+ORR2BmMufkmzPnfM73+/l+viAiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjJm+4GhBF//K4/7JCIiIi42Fbg46msxJnj4\neD53SkRERLzju8DefO+EiIiIeMN44A3gy/neEREREXFOWRbf+5PABUD7CK+ZFv4SERGR9BwNf+Vc\nSRbf+0ngPeA/JXl+2iWXXHLkyJEjWdwFERGRgnUYuJY8BBDZ6nmYiUmWvG2E10w7cuQIP/vZz7j8\n8suztBsS78477+S73/1uvnejqKjNc09tnntq89x65ZVXuP322y/F9N4XTPCwBjgObB3thZdffjl1\ndXVZ2g2Jd+GFF6q9c0xtnntq89xTmxeXcVl6zzXATzDTNEVERKSAZCN4WAJMB36chfcWERGRPMvG\nsMVTQGkW3ldERERcIBs9D+Jizc3N+d6FoqM2zz21ee6pzYtLNqdqjqYO6Orq6lKSjYiISBr27NlD\nfX09QD2wJ9fbV8+DiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiI\npEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIik\nRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpKUs3zsgIlJIOjrMF8B778GBAzBzJpx3nnmsudl8\niXiZeh5ERBzU3AybN5vvZ8/C3r3wzjvw6qsmmOjogMbGSIAh4kXqeRARcVgoFOKppwK8/no3UMqh\nQ4McPlzL97/vZ/FiX753TyRj6nkQEXFQMBikoaGJ9vaV9PZuBOZy+LAF/Ae33HIDzc1/RSgUyvdu\nimREwYOIiIPuvruNnp4HgMuA1cBKYCvwNAMDv+eRR5ppaGhSACGepuBBRMRBu3d3AwuANuABYCFQ\nEn52HLCInp778fsDedpDkcwpeBARcdDAQCkmWLCDiEQWhIMMEW9S8CAi4qCyskHAAuwgIpFx4SBD\nxJsUPIiIOGj+/FpgF2AHEYkMhYMMEW9S8CAi4qBAwE9NzT3ARcDOJK/aFQ4yRLxJwYOIiIN8Ph87\ndnSyenUVZWX/GXgRGAo/OwTsoKbmXgIBf/52UiRDCh5ERBzm8/no6PgeTzzx78A/c+mlK4BGqqtX\n0NKyiR07OvH5VCxKvEsVJkVEHBS7toWPOXPamDwZDh+GGTNg6VJQ3CBep54HEREHRa9tcd55MHcu\nTJoEc+bAhAla20IKg3oeRESyQKtnSiFTz4OIiIikRcGDiIiIpEXDFiIiWRSbQAkHDsDMmSYfAjS8\nId6k4EFExCGjBQo33AD33mteU1eXt90UyZiCBxERh0T3IuzZA/X1JlCYMSOE3x/gRz/qBkpZtWqQ\n66+vJRDwq96DeJKCBxERB4VCJlB44QUTKNx2Wx8nT4Z4990fAgGghN7eIXp7d7NtW5MKRoknKWFS\nRMQhwWCQhoYm2ttX0tu7BdjMwYNX8+67DwELiayyOQ5YSE/P/fj9gbztr8hYKXgQEXHI3Xe30dPz\nALGBwivh/yeygN27u3OybyJOUvAgIuIQEwgsiHu0lEggEW8cAwOl2d0pkSxQ8CAi4hATCMQHCoOA\nleQnhigrG8zuTolkgYIHERGHmEAgPlCoBXYl+YldzJ9fm92dEskCBQ8iIg4xgUB8oOAH7gG2A0Ph\nx4aAHdTU3Esg4M/hHoo4Q8GDiIhDAgE/NTX3ADuIBApTgXVUVd3BzJm3Ao1UV6+gpWWTpmmKZ6nO\ng4iIQ3w+Hzt2dIbrPKynt7eU6mq7INSzvP66j/p6eOwxVZgUb1PwICLiIJ/Px8aNbe9XmPz852Hn\nTli71pSsnjMHvvxlrW0h3paN4OFS4FvALcBEYC+wFtiThW2JiLhG/NoWc+bA889HAoU1axQoSGFw\nOniYDLwI/BsmeAgCNcBbDm9HRMR11IsgxcLp4OFu4ACmp8F20OFtiIiISB45PduiEegCHgWOY4Yq\nPu/wNkRERCSPnA4eLgO+ALwKLAV+APxP4LMOb0dERETyxOlhi3HAbuCr4f//FrgC+C/ATxP9wJ13\n3smFF14Y81hzczPNGjgUERGho6ODDjsTN+ytt/KbSphstZax2g88BfxF1GNfAO4Fpse9tg7o6urq\nok4TnkVERFK2Z88e6uvrAerJw2xGp3seXgT+JO6xOZigQkSkaMVP4zxwAGbOVL0H8Sang4fvYAq4\nfwWTNDkf+PPwl4hI0WpuhiVLQuHqk9309pbS329Xn/SrTLV4itPBw0vAbcA3gL8FXgP+BugY6YdE\nRApdMBhk0aLV9PQ8AASAEnp7h+jt3c22bU1a50I8JRsLY20FrsJUl5wHbMjCNkREPOXuu9vCgcNC\nIulm44CF9PTcj98fyN/OiaRJq2qKiOTA7t3dwIIkzy4IPy/iDQoeRERyYGCglOQT3MaFnxfxBgUP\nIiI5UFY2CFhJnh0KPy/iDQoeRERyYP78WmBXkmd3hZ8X8QYFDyIiORAI+KmpuQfYAQyFHx0CdlBT\ncy+BgD9/OyeSJgUPIiI54PP52LGjk49/fBMVFSuARiZOXMGkSZuYPr2TtWt9NDZGCkmJuJnTdR5E\nRCQJn8/HCy+0sWcP1NfDP/wD3H47PPggqEq/eImCBxGRHIguT/3OOyEmTQrw53/eDZRy3XWDfPSj\ntTz2mCpNijdo2EJEJAeam2HzZvjRj4IcOtTEO++s5MyZLcBm+voe59//fSUNDU2EQqF876rIqBQ8\niIjkkCpNSiHQsIVIBrRSoqTLVJJMFiAsYPfu9bncHZExUfAgkoHo4MBOguvoUPKbJKdKk1IINGwh\nkqFQKMSaNa2sWrUcaGTVquWsWdOqsWtJSJUmpRCo50EkA1pmWdI1f34t3d27MDkP8VRpUrxBPQ8i\nGVDym6RLlSalEKjnQSQDSn4TSC9x1q406fcHeOGF9fT2llJdPcj119cSCKinSrxBwYNIBpT8JpBe\n4qwJNHxAG7NnQ3m5CTROnIC1azVDR7xBwxYiGVDym9hSTZy1i0U1N5ueiblzzeOvvmp6LTo60BoX\n4nrqeRDJgJLfBMaWONvcDEuWhMLDF9309pbS328PX6hMtbibeh5EMqDkN4GxJc4Gg0EaGppob19J\nb68pU93b+zjt7SpTLe6n4EEkA1pmWcBOnF2Q5NkF4edjaaaOeJmGLUTSEJ9V//vfw8CAj9LSNioq\nYNIkk/y2axdYlpLfCp19PBw4kH7irGbqiJcpeBBJQ6Ks+q4uk1UfCkXGr6GU118f5KmnalmyROPX\nhcrOW/jwh49gEmcTBRCJE2c1U0e8TMGDSJrig4RVqwaZP38mu3a9zP7930KVJouHnSj59tvzgJ1A\nQ4JXJU6cjczUST3gEHEL5TyIpKijA26+OcisWcOT3Do7T7N//zfQ+HVxieQtfBu4l+GJsy8mTZw1\nAcWuJO+smTribgoeRFLU3AxTpnydvr71DA8S3iDxXSckS5gT74skSvqATmATYBJn4RNccMFfJu11\nCgT8XHxx4pk6FRX3cuSIX4m24loKHkRSFAwG+cUvniVxkKDx62IUm7dgqkbCVmAz8EsGBj7E2rW+\nhEGAz+fjD3/oZPXqn1FVVQdcCXyUqqq/orFxHj/7mZJtxb2U8yCSorvvbqO//xISBwkavy5Go+Ut\nzJw5yObNyX/esix+/etXOHXqIUwPRgmnTg3xyCO7+fWvlSsj7qWeB5EUmS7q8SQuR12LSZhLROPX\nhSqTvIWODqivV60H8SYFDyIpMl3UyS4WfuAu4EVUaTLCXqehsRGWLjXrOCxdGnnM62P6mVQYbW6G\nSZPSLy4l4gYKHkRSZLqoW4FEF4s/UlYWYvXqR6iuNglz1dUraGnZVNRdz83NsGFDiKlTW9m3bzl7\n9zayb99ypk5tZcOGkOfH9O0Koy0tm8b0d1etB/Eq5TyIpMgsgvUaJqs+AKzHJEoOAhfh8y3l9Om/\n1zLLUcayYJQXxFYa9XHgQBsXXwy9vTBjhuldSeXXUq0H8SoFDyIpCgT8/PKXTQSD9wPfwnTcDQG7\nqKi4lyuv7CzaICGZ2PUbbLFj+hs3tuVp78bOriy5alWAl17qpq+vlIkTB5k0qZaSEj8dHWaGxWjH\ng1ZlFa9S8CCSIntqnakuuZ7e3lKqq+0llL15B51thbp+Q6IelTNnhjhzZjeHDqXeoxII+Nm2rYme\nnvsxuQ+RgNTkTHRm9fcQGSsFDyJp8Pl8bNzY9v66Fo89Zta1sMUvnHXggBm+OO8881ix9UwU6pi+\nUz0qds6EAlLxGgUPIimKDgx6e6GyEm6+2fz/zBm47DKYNQvOng3x3nsBXn+9m97eUvr77YtB8S2Q\nVahj+k71qJhjyhSXUq6MeImCB5EUJTuR270Q7e0wfXphJgiOVaGO6TvVo6LgQLxKUzVFxigUCrFm\nTSurVi0HGlm1ajkf+9ifhcevVfQHMquD4GaRHpVEvNujIpIqBQ8iYxAMBmloGL665r59JlBIrPiK\n/mRaB8GttCKmFDsNW4iMQfKEuSoKMUEwE6MlmXqRZklIsVPwIDIGyRPmCjNBcKziZ5/MmQNf/rL3\nZ59oloQUOwUPImOQPGHO7s4urATBsfJqcJCKQuxREUmVggeRMUg+BdEPNAFfBxqI7s6eOPFejhzp\npLGxsC+qxaBQe1REUqXgQWQMkk9B9AHrmD37Xs6dK+PgwROUlQ0wMFDFxRdP4pJLAkVZ76HQOB0c\nqLiYeI2CB5ExGClhrqLi21x66ffZvftLwA8YGFgAlHDgwBDt7cVR70EXw/TYa2WYHAoVFxP3S5YW\nngt1QFdXVxd1GigUDwqFYk/2kYQ5P35/gPb2lSTOfdhBS8smVy0IlY2L/Ujto4thrNi1MkywaYLR\n3dTU3FPwwaakb8+ePdTX1wPUA3tyvX0FDyJjMNrFds+e5Rw+vIVksy5qa1fw8stbc7W7KXHyYq+L\nYXrWrGn1VLAp+Zfv4EHDFiJjMNqd+Ny53loQKtEqkZmU1S7UpbizpVBXH5XCpQqTIlnglfLFHR3Q\n2Aj19dEX+8zLapuL4YIkzxZfpc3RFOrqo1K4FDyIZIFXyhc3N8OGDSHeffc5RrrYP/poN42NJtCw\nh2tGMtrFcP/+0rTer9B5JdgUsSl4EMkCrywIZa/R8fbbk4m92IeAVmA58EnOnj3I1KmtbNgQSilx\ncvjFMPr9Gunv703r/QqdV4JNEZvTwcN9mDNk9NcRh7ch4npeWRAqkpswnsjFPogpdLUSMIt+DQz8\nlvb2lTQ0NBEKhUZ939iL4fD36+9P7/3cwh7maWyEpUth7lzzPdNeFK8EmyI2p2db3Ad8ClgS9dgg\ncCLBazXbQgqWV+oczJu3nO7uLZjKmCuBGuDTwAPAogQ/kVrmfygUoqHBroPxC2AVhTKTIFtTUDW1\nVdJRiLMtBjG3GiJFyy3BQbz4oOaPf7RzE/zAbZi73fMwpbUTSS3zP3rhqH/8xyfp708WHHhrJoHT\ns1Js5u/iA9qYPRvKy02weeIErF3r3uNJilc2gocPA4eBs5h+y3uA3ixsR0TSZFcyXLUqwEsvddPf\nfxAzXOEDrgGagW+SaeZ/9MWwvPxV+vsLYyZBtqagKjgQr3E6eNgJfAbYC3wQ+CqwHZgHvOnwtkRc\nzY1DF7F3zq3An2HG2RcBr2F6HDJfVjz6d5s3b5Du7uTvd+TIYFqLhdntevgwHDwIZ87AhAlw9ixM\nnAgf+hBceml22lf1GEQMp4OHJ6L+/TLmrNQDfA74TqIfuPPOO7nwwgtjHmtubqZZYbh4nBvXK4jc\nOV8GrAbuxsT49wP2EIazy4rHLiIWwlx8u8Pbe5cPftBiw4ZQyu0R3a5vvPEb3njjBGfPmsXHLrpo\nEldddVXW2lf1GCQfOjo66IjLxn3rrbfytDe58xTwvQSP1wFWV1eXJVKIjh8/btXU3GjBDguGLLAs\nGLRgh1VTc6MVDAZzvk+1tcvC+7IuvF+WBcHw/68IPxe04EYLtof3197vX41pv4PBYLgdtoTfN749\ntqf1vpF23erI+6Uj0n5Wgq9Bq7Z2mePbFEmkq6vLwnQR5mXGQbbrPEzA3MYczfJ2RFwndnw886qN\nTojcOUdXgDS5CXALpsfBB3QCmwAzzRQWM3v2vWNKCLSTJ2fPbgPWM7w9GtJqj0i7PoeZFZLZ+6VD\n9RhEDKeDh28DHweqMWemx4Aq4CcOb0fE9dxYojlSvClR97sfk9+8A5iKCSgeB77CxIklXHbZo6xd\n60u7lkFHB6xd6+PYsUpGmsXx2GPdKb13pF1z376qxyBiOJ3zcCnQAVyEGdzcgbkteN3h7Yi4nhvH\nxyP5B4mSIu0eh29RXv4X9PdXR9UaGHthKztxce7cUvbuLWF43sMgUMvFFw+klOAYadfct2/0FNQX\nXlgfV4/BPcW/RLLN6eBBWY4iYZG7/LHPWnBSRwccOeKnoqKJvr4ZmMlR8T0BPmAlF11Uwvnntzla\na8D8vscxp4lInQRz576L11/fQig0euJkpF1z376qxyBiaEnuAuTGKYLFKHaWQbzcj4+bWQrw1399\nOY8//gKnT38GM6LYgBnBNBfxmho7t8HZ7Zv28BPJU7CZPIX+/h+lVCch0q7OzgpJhT47IobT5anT\nofLUWaRSt/kXW6J5AYkv0Ln7WwSDQa68cjXB4APh/XkD+Bamsu1JJk68mGuvvYrHHsvOMRIKhbj0\n0hvo7/8DyXoLamtX8PLLW0d9H9Ou6zBpVvHtu5OKiq9y7bWdHD3qcyRwVkAubpPv8tQKHgpQbCGg\nBUS6hndTU3OPqxZmKnRuCuLWrGmlvX0lydaYmDZtEx/9qLnrz9bFcPbs5fT0JA8O5sxp5NVXN4/6\nPna7Pvvsbzh48ARlZabOw8yZk2homA2MY9eu1+jtLaWiYpApU2qpqfFnFEy46W8pku/gQcMWBShb\nJXQlPW4bHx+tOuLkyevZPPp1e8w6OuD4ccg0T8Fu18OH2+jrg8rKSIXJd98NsmnTas6diwTOfX3H\n6evzc+zYDQwMzKK/n7Qv+tla00JE0qciUVkyWiGbysrF1vTp66zKymVWefkKq7JymTV9+jpr6dKg\n9fDD+d57yZY5c1YkOSbM15w5K7K+Dy0t0cWp4r+2Wy0t6xx+/+NJCkmlV6gr2/udiYcftqwVK8zX\nTTdZ1pw55rv9mD7ThanQi0RJHow8RfAN+voOc+jQSk6f3kJ//2ZOn36cQ4dW8vzzTbS3h2hsJO25\n/OJ+kVkKieRm9ke26yQMr63RRuJCUukV6nJjzQ5bczNs2BBi6tRW9u1bzt69jezbt5ypU1vZsCGk\nXAzJCg1bFKCRpwj+dyxrA4nWGTh3zuK11z7N9u2Pqgu2ALlh9keqdRLGmqA4PHB2ZiErN9bssI00\npNLZ2cR113UyYYJPSZ3iKAUPBSj5RSIIPAv8ffjfq4mfb79v304aGjSGW4gCAT/btiWf/REIdGZ9\nH1LNAxnromLDA+fML/qmPoa7anZEi81xir0hOHNGNwSSHQoeClDyi0QrpghoCbHdubZxwCIlVRYo\nN1RHTPXud6wJisMD59Qv+iP1dpx//mWcOmUvXR4vv2taRBJhi+OGQNNm3UE5DwXIvki0tGyiutos\nbFRdvYILLngZGI85mbp3DFeyw15j4sSJNmbP3sqcOZuZPXsrJ060jWnNimxKZ1Gxjg5obDRfvb1+\nysujcypqMZU0E4m96CfLHaio+CJlZS8B64DtxOZqvMisWV/O65oWkSGVZPkdi/K2EFs2KMfDHdTz\nUICSdQ1v394IzMVU5Ru5O/fNN0tpbDT/U3SfGbfcKXnpbzbatNLoXIXoIY4//KGb/v5yqqq+AJRx\n6tSFlJVtYWDgRySqpBk9VJO8t2MN8HfAh8OP309kTY6LWLjwirze0UeGapzJ73A7TZsVTdXMMTOF\n0566dsOI0zlra5dZwWDQamlZZ1VXL7NghVVdvcxqaVmX8vQ2iVBbpiedaaXHjx+3amoST8csL7/R\namjotqZPX2dVVIzc9smnY4489bmqallep0NG9jv/U3Fzwc3TZnMp31M180nBQ45FPnRBC6634MWk\nH8Cmpi8kPSGnMz9eRr64ub0t81VDYLRaJdEX7NEuJhMmrLMqKy1ryhTLqqy0rIsusqy6uuH7n3yb\n7r4oB4PB8PE1+g1BIRjt2CiU33M0+Q4elPNQRAIBPxdffA+wD7P08lcZPoZr5tuXlJSmPOYsI0tn\n/N5t8jW+bHIRdmFmD7QCy4HG8Pc1fOITs97fdvIaDCHgF5w79wSnTzdywQXL+fSnW+nuDtHVBZs3\nxw7jJJ+Omf/6GCOxc5xmz7YwuR6J5Dep00lunjZbTJTzUER8Ph9/+IPJtt+6tZtQqJzS0i9SUlIG\nfIAJE2Dy5FpqajrZtq2FkRMqC2P8NBfSGb93m2yNL4+WB7J8uZ/nnruNAweGgAeJXb57Jzt3fuX9\n5bsjF5PoaYoDwEFgI5bVltJ+J6+PYiddxi9fDm64KNs5Tpdd9iiHDzdx5kz+puLmgtuWupfc07BF\njjz8sGUtXRq0pkxZZ5WWLrNKSlZY48Yts8rK1llTpgQTduG6oZRxofBqWz78sGVNm/alEYe3Mhlf\nHikPJJ1tm27sY1ZsGep1FmxPa7+TD38ELWiw4Ffh4SZ72Gm748NOmQ4TFUNujXIejHwPW+STgocs\ns4OGadO+YJWU/MmIY+7xJ63x4zWu6BSvjtEeP37cKi+vzcq+p5IHkmq7mYvJZ+MuKOm3eSR3YPuw\nIOG88z5mTZv2pVGTLp0w1gCgWNa4GOnv5PYcIiflO3jQsEUBW7w4yNe+tpqjR2cAP2a0VTajK/qd\nO3cEM37qvqI4XuOGstBjcffdbfT3X8JI48sHDpSydGn6009HW/m1ri7Am2+mNrYdCPj5x3+8gf7+\n6GG29MfFn3nGR01NJ2fPBnjzza9x5swJYADLquLcuUmcPXse117b/v6y3tlYHTWTYSIvTcXNRPTf\n6eTJ9Zw7V8r48YPvD7k+84yvKNqhmKnnIcsi3Xuj34UNvxMMhruBXyya6D5bd25evVMyd/4jHTvH\nrLKyj4zpbnzkXoVj1gUXfMQqL78ipd6Dhx+2wvsQ/fzYe3vyOTtGXfKSKvU8iGPik9BeeMFO1Bv9\nLmz4naAPMyMjANwLvEd19ZScljLONbvY0KpVAV56qZu+vlJef32Q8vJarrnGT0eHqcKY7h1evstC\nZ7bIlF1ULH7dhAFgPwMDP2FgYAHRd8g//3kT117b+f4deqLtJM+YDwLNvP32Q8BjUduOF+mxaW6G\n9euhu9uKes/alH42kdF6RbJZuj0XybVuKVomMlbqeciC2PHSupTvwkYbXx4/fllBjp9Gi73jPG6Z\npLtbLVhilZXVWqtXf2lMd51uGIseyzh6bFGxLVZqCYlBCz5rVVXVj7id5Mdb9PvavV+j99gMv2NP\n/WcT/975yVHJVXJtvhMr3fCZ8Lp89zzkk4IHhw3vbrVPgqN3hXp1RoCTIhcg+4IZ3239oquHGZIZ\nazf8yEXFEl1gk7Xb8O2kXs0xGD5+zUWupOQKa/r0ddbSpcGYC0zioaFjFnzWKiurtWBZyhfIfH4W\nchG4uKVoWb4DGK9T8KDgwTHDT8jRJ/9Ed2G/SjuzvZBF2qCwxp3HOo4eDAatiy+2j5tb446PRBfY\n1LeTPA9kyZgv3PEXo4qKZdb06eus668PWnPmWNYVV1jWBz5gvq68MnK3W1dnHqury/9Mo1zkPLgh\nr8ItAYyX5Tt4UIXJAjK80p4fsCtKdgCbgE8AN1FWdiWrVz/yfvZ2pKIfDK/qt5j9+09z880hV628\n6LTIOHxhrTiavAIjjPT72EXFWlo2UVZ2jNgchURVF1Pfjp0xP336JiorV1Be3khl5QrKyk4meF9b\n8gJAiVYM/djHtnLNNW1MmuTjvvvg97+H3/8+xK23tnLqVKRa5lVXtfLcc69w1VWmimZkplEiu3jn\nndqsfQ4CAT81NdGrgkJ05VcnVu9MfDzYn/mv097+b1RVLWfGjNasfea9XHVV8k89Dw5L3N0a3e1b\nZ02cuMyaNMncjUWPL0buBOPHtlMfK/a6SM9DYQ3hjLUbPnpcurIy/m480d1r5u2Wzbvi5He7W62y\nsrlRj9s9dVssuMuyh0zgBquq6gqru7t7zPuQiky78+36LtOnr7MqK5dZpaUrrNLSZVZ5+TqrvDyY\n4O+U+nCTU9TTmbl89zzkk4IHh9gn+aqqsSc92iecior4sW1vd9mnI52prV7ixIk6tYTE+KGN9LeT\nzWmtyQOTRMmfL1twVYILanaDaCcSCY8fPx4ebored5P/AXMsmBv1+OiL5GXjM68cq8wpeFDw4Ihg\nMGjNnp35SaCY7wgiF67PJriYeDeAcuJuPvaifix8wf1TC64MX5DmW5WVVzlyEUp25/3QQ8GYO+ry\n8hVWZeWyhAmUiSQ/thM9nv+8gLGKTXRdZ8F1Fsy2YKtlAj77+LZ7HG7M+We+mM8zTlHwoOAhY5Hu\n2F9aiRMjU58lUMx3BJFy3l8Ml/PO/loGueDE3Xwqpc7PO+9j1sSJH894O8nuvJcuTXRHnXr3evJj\nO9Hj+b+4jbUXInatj60WXBH+m8QnUNtBRO4/825I2vQ6BQ8KHjIW+0GMndoGN1gVFdendGdmWboj\nsBXSNLL4MfB079ijjXbSnzbti45sZyzbHu2Ck17PgzuC6JF6YZIFFpWVK6IChXVWpGch+vcMWlCf\n4PHcfOar2oiKAAAgAElEQVQT92SZmiolJbXWtGlfcuSYKWT5Dh5UYbIAxFal8wHR1e+GmDVrBU8+\nmVoVQ6+uw+Ake4ljaGP2bCgvJ2trGeSC2d/442JsRquAOHnyel5+eWvG24lmV0R87rnMqi8mP7YT\nLbmd32WfOzrghz/s5le/amZw8IfErnOxi1/+sonnn/8egcCPeeGFbnp7S+nvN1VLL730LHv32m31\ndaAq/HtEV/X0Afa6JWOvxjlW9mybvr7/h2PHnsOyNr7/O1rWEEeP7qaiooklSzrD+yoSoZ4Hhzg5\n1ODVdRgkN0Y71ioqVmSlSmAwGLQmTVqY0XGe/Njeapkkwuh1XO6y8pn3cvz4cauq6ooR9mGLdf75\niRI6d4R/zq6XsSKqZyG+h8H+/+h1YLJFwxdjp54HyZi5C3LmLinf6zCIuw0/1qLXuyilv7+XqVNb\nCQT8KR0rqayzsHixWWnynXcmkslxHn1sP/vs1zh48ASlpe8xOGi/3+cpKRkHnM95553HuXNPMzj4\nA8wd+ThMvYVd4XoLnaP+bpm4++42Tp3ykbg3AOA53n33ByRaf+PUqW8xbtx/Y2jIwvSgXI7pWYjv\nYYj+v72OzXpMD8W7zJ5tsX37o45+5pOvv5NIbG+S1uRwFxWJKgCxBZ7ipdftGF9s54Mf3Mzbb7fz\nyCMwbVoLZWWNWS8gI+4Ve6wFgSZgJbAF2Ex//29pb19JQ0MToVBo1PdrboYNG0JMnWoKNNmFm6ZO\nbWXDhhDNzdEFherJ5Di3j+0jR1oJhYaA+xkcnIZZrv4VoBvL+h2W9SDnn1/Cddc9wvTp/xRTxGr6\n9E3vL/ucTWZ4yB5uSOQVYodZot1CVdV4TKGpWmAxpljcjeHvdgEqu4jcdmAqZljrceArTJxYwmWX\nPcratT5HP+Pxf+9z5+KLj0WLXTo9lWNFioOGLRySzaEGlZGVaLHH2l0ZdzmncnxFEh2d6V6PdJW7\nt8vcDA+NlMg42vDRUquiwp5tYX+/y4LFFlxtQa0FV1olJddZ48dfb02cuNTKRWJw8vV3Rk/W1Lko\nVr6HLfJJwYODsjU7QGOSEi165kZJyRUpn/iTGe34MjM3oi+U8bOJllmTJl2d1nEeCUbcO7PI7ONI\nwdkNI+77pZcus5YuDVpTpqyzxo2zA4YrLFhojRu31JoyZZ115ZVBq64utytbJl9/Z/Tzi85FsfId\nPCjnoQBkc3bAaNn1o2W4S2GJnrkxd+6r7N2bWpdzMrHHV2z+BAzw7rtHuPTSD7B3r4Xp3h4+m2ho\naAVr1/pSPs4ja5hEzz4Y2/5ni5kZ8qeYYYX7MWtR2HkXOykrO8zAQPwMEdsubrqplo0bnZlh46Th\n5xM/Zugr/nccnluic5G7KHgoANlMFIqcaBPJ7wlW8suJRN3I8RUEVgMPYE/ZgyHefnsng4N3MHwq\npW0Xq1bVsnHjWPY7v9MxRxII+Nm2rYmennXAL4hOZKyqeoMnntjI5z53Lz09o1903WT4+cRHbLLm\nMaqrP5gwQVvnIndRwqSMKHKiTSS/J1gndXTAzTeHmDGjlaqq5Ywfr8TQ0TiRqBs5vtowgUP8KouL\nOHXqW5x//n/BqZUmI/vtXKKx03w+H62tnUyf/hwVFa8ApZSVDTJt2kdZtOhZ/vqvP0ZFxfBVSXOV\n0DlWic8ndg/J44wf/0Fmz97KiRNtw5I1i+VcJKNTzoMHFMs4o5Kx0udEom6qi5FVVi52rHJlZL/t\nZMKxl3PPFicWyEp3e05VIR1JJueTYjkXpSrfOQ/5pODBA4qlaJROTOlz4oITOb6WJGl78+V0OWg7\nwfhDHzLJhGVlJplw5sylritDnotAIlfBcybnk2I5F6VKwYOCB9crpHUektGaHvlhByBlZfU5a3/7\nYlxXZ1kXXWRZlZWWNWWK+X7RRdb7MxDctK5Ctj+DuQyeM/ldiuFclKp8Bw/Jsk9yoQ7o6urqoq6u\n6AInzyiWqm5z5zayd+/mpM/PmdPIq68mf14ys2ZNK+3tK0lcUXEHLS2b2LjRXTMHciUYNBU2TaGs\nBdjJpLCbiRPvYdq0TmpqfBl9JufNW0539xaSJY/W1q5wZM2STM4nxXIuStWePXuor68HUz1tT663\nr9kWMqJi+UA6WeJb0heZXeCt2QO5EKmwGR1YnQB+wZkzFq+91ohlTQnPUEitLHi8XM1kyOR8Uizn\nIq9Q8CCjKoaIvxBXE/XS381eZfHs2QAnT67n3LlSxo8fZPLk2vdnD7hlX3NteH2D4dNazWqbu9m2\nrYkdO9Jfg0bBs3iJch48pNDHGgs1GSsXf7dcZeoXq+ErmTqfn6CEYe/Jd85DPil48IhimcZYaAFS\nrv5uxXJ85MvwZF7nk3sLNXguZPkOHlQkysM6OqCx0XwtXQpz55rv9mNOFTaKHXONLuCzkJ6e+/H7\nk5WM9Y741UTnzNmctFiNV+Tq71YMx0c+xRbjCgFv4nR+gr1ceUvLJqqrVwCNTJy4lIqKr3D0aDmX\nXro2b0XTVMBN4qnnwQG5uFvWNEZn5Kp7P9fTH3V8ZFekV2CLZYpa3eh4e0dPX50yJWiVln7Bgj/J\nWW/SSLUsli49bl18sXq24qnnQcYsGAzS0NBEe/tKenu3AJvp7X2c9vaVNDQ0EQqFHNmOaso7Y/Hi\nID09TRw6tJLTp7fQ37+Z06cf59ChlfT0NLFkiTN/L3s7AwOTycXfTcdHdtnJpBUVbZj1H+pxuqx2\nczNs3gz/+q9BJk9uYnDwNPBjctWb1NwMGzaEmDq1lX37lrN3byP79i1n6tRWpkz5OsGgerYkQj0P\nGcpVkpPuLJ2Rjb9Xoju2adNSK/msngdvibRz0EpcVvtXGd+Jp1ou3Om/6Uh5MyUltTq+ElDPg4yZ\nmcK1IMmzC8LPZ86JBZAkO3+vRHdsb7zxRHg7ufm76fjIjUgPj70S5SbA5CfACsrKvpTxoliRYzS6\nNykEtALL39/W3r1HHM03iM2beSO8vRXAA1jWeNSzVVy+jKny8p0kz6vnIUPDp3BlZz0AZWI7Ixt/\nr8R3bPZ2sneHGk3HR27koocncoza2zoePobiewScXTws8rsl2t6t6nlIoFB7Hq4F/gL4HSRdQ1Uy\nlKslau0xV68t/+s22fh7JZ7pYG8n0R3qJygr+0tH/26JMvWrq1fQ0rJpTAWLJLFc9PBEjlF7W8mX\nSncy3yDSq5Joe/NQz5b7ZKPCZBXwM+DzwNey8P4SlquqiKYSoQ/zwS4sHR3Q3h6iuzvAyZPdMZUN\na2v9tLQ4V9kwG3+v4dUHIXLiX4gJIKL/bju4/fZNbNzo3AXdVLI025k9G8rLTSXLEydg7Vp3VbL0\nslyU8I4co36gCRNIJAsQFrB79/qMtwnRQYt9PIfC37uBAWAL8COgAZUuL1w/Af4u/O/ngQeTvE7D\nFhlSd3HmclngKBt/r8RDIcmGK3RceFkupvrGHqPHLFiYk6HRSKLmiiRDF8cs+KwFc6yysmWqYGrl\nf9jC6Z6H1cDVmGEL0JBFVmk9gMwlXnQodhqYU6s5ZuPvlXhNAnu44luUlPwFllVNRcUgH/1oLY89\npmEEr8pFD6A9BOX3B3jhhW56e08x/PiyOTc0GulVsXs64j+TH8Dcl77I7bf/c9GusOomTgYPM4D/\nASwBzoUfK2GUZb/vvPNOLrzwwpjHmpubadZVb1SFPJyQK4m7/W3OdcuCc3+v6AWvTp6MHqKA2O7e\nc4wbN4HKyrlcc42fSZN8GkaQEcUPQZ040co772R/aNQOrI8e/TR9fV0k/4w0sHv3A45s00s6Ojro\niJva8tZbb+Vpb5z3ScxAVH/U1xAme+scw4MIDVtI3uVqxorT7MqiH/rQYstUAvyVBUeTZMYXdyU+\nGbtcD40Gg0GrvPxqT34mcy3fwxZOzrZ4BrgC+Ej462rgJUzy5NVoCENcKFczVpzS0QE33NDNtGlL\naG9fycGDTwP/DvwTptNvParEJ07J9UyaZ57xMX78xXjpM1msnAweTmH6Su2vl4E+zCouzlQrEnGY\nVwoc2YsD3XXXF3nhhUYGBx8iEiT4gG8DMzHZ6Ik4VzRMioe9YNzvftfG22+3U1Y2lwMH4Cc/eZVp\n01qYOtXZxamam+HTn74KL3wmi122K0za3SoirhQI+KmpuQfYgRllI/x9R3gamD9/OxfFXq/i6NHT\nmPSiRGPQWmNCnBW/5sXAwEqGhrZgWZsZHHycN990dl0W8M5nsthlO3i4EfhvWd6GyJh5pQBWZFbI\nG8D5JA4SvDUEI96Ry2XXVXTMG7JRJErEM7wyYyUyK6SUSJAQH0DUAjtJPHSh7l4Zu1zOSlLRMW9Q\n8CDiAZHyvYPA5cROzwQzRbMPaMEspaxKfOKcXC67ruDAG7SqpsfYiXMzZrRSVbWc8eMbqapazowZ\nziYuibvErjmwGIgeEw5iSgl/BtgG/DPwCeAmSkquZNq0h101BCPe47VZSZJ96nnwmMWLg3zta6s5\ndOgBTDdiCf39Q5w+vZsJE5pYsqQTk30vI4kutPTee3DggOkaPe8885jb7n6GrzmwDvgFZmrmEeB7\nRHoiIkMwlrWDm292di0LKT6R46+GSBEyewjtIk6enEVHx8ifmVyuIyOFTUWi0vDww5a1YoVlTZ9u\n14BPVEBlu9XSsi7fu+oZdqGl6uplFqywqquXWS0t61xZTGn4mgPrwksVL7FgjpYslqwKBoPWzJkf\ns6AhQRGyF61Zsz4+6ucml+vIFINCKhIlWdTcDBs2hHj33ecwK+olkt25/IU0ZBIMBmloaKK9fSW9\nvVuAzfT2Pk57+0oaGpoIhZybeuaE2Az0/wy8SnV1CS0tV1NTMxtN0ZRs8vl8NDRcg6knMnx57v37\nvznqjItcztiQ7NOwhUcEg0EWLVrN229PJl8XikIaMsnlglhOGCkD/fjx5eRi8SIpXh0dsGXLa4xc\nhGzkGRfpztjw2tBisVHPg0dELnbjyVfiUiHdOZgTWX56cBIZrVcHTLGezZvhqafg1VfN982bYdUq\nb1TJFO9qboZLLslsxkW6Mzbs3tapU1vZt285e/c2sm/fcqZObWXDhpAChzxT8OARkYtd/i4Ubrvg\nZiKXU89SYVeQPHRoJadPb6G/fzOnTz/OoUOjV/BTRT7JhdgZFyGgFVgONALLeO21gyMOX6Y7Y8Nr\nQ4vFRsGDR0Qudn5ip+kR/v5i1i8UbrvgZsJtU88y6dXxSpVM8bbIOjD21OCVgLmowxYGBr4/YqCb\n7joyhdTTKc7SbIs01NYui8pQDoaz7c0sAbjVKiv7iLV0adB6+OFc7YO3s/pbWtw1a6WQ2lYKU2TG\nz2fDs37S++yku7y3PhMj02wLSUls1G6XU96Kifq/xu2338STT2Z3nrRXVqBMhdu6+gupV0cKk93D\nVVb2MokXZoORhi/T7SHTZ8LdNNvCIwIBP9u2NdHTcz8m7yD3pYfdsA9OsU9kZ88GOHlyfUzBGvtE\nlsuErMgwimZMiDvZ68DMnXsJe/emf1FPdx0ZfSbcTcGDR7jhYueGfXCK2xbEilTwS3RH561eHSls\nubqo6zPhbgoePMINFzs37EMhSFSmt7y8j9LSpxgc/AHmZOndXh0pbLm6qBdST2chUs6DSI4lmpbZ\n1/cUg4PfpKrqDmbOvBVopLp6BS0tm9ixoxOfTzMmxB1ylS+kWUTulmzgKhfqgK6uri7q6vKSLCqS\nF2vWtNLevpLEd247mDZtE5bVxrlzIfr6AvT3m0WIzjtPiwiJO4RCIfz+AC+80E1vbynV1YNcf30t\ngYBfgW6O7Nmzh/r6eoB6YE+ut6+eBykqblifY7RiW5Mnd/Pb3waZPLmJ995byeDgRgYH53L6tMWh\nQ//B00/fwF13/ZXn1hORwtDRAWvX+jhxoo3Zs7cyZ85mZs/eyokTbaxd69MxWSSU8yBFxQ3rc6Qy\nBS1SIOcyYDUQ2V/LGuLo0Z1UVHhrPREpDPaaEnbuTl9fgO3bI0ts/+Y3tbS3q3es0KnnweXccKdc\nSNxQtS5xdUu73O8y9u49xE9+8gSmd6INEzgMX8lQVfYknzIpqS7ep+DB5dz4AY0PaMrKGiktXUJp\n6Q2Ult5MWZl7Axw3rM8xvNhWdLnfrcAeLKsaEyzkf39FEnFDIC75o+DB5dz4AY0PaAYHf8TQ0BBD\nQ99kaOgJBgfzH+Ak44aqdcOz1duA+4n9G9u9E/nfX5FE3BCIS/4oeHA5N35Ahwc0ybrW3XcH4oYF\nseKnoMETDJ95YfdO5H9/RRJxQyAu+aPgweXc+AGNDWhCwHO4LcBJxg3rczQ3w5NP+nj99TZOndrK\nnDn2EEU0e/XUi4CdSd5JVfYkf9wQiEv+KHhwOTd+QCMBjT1WPxm3BTjJuG1BLEj2N/YBnUAl8Bng\nRdyyvyKQeiCupO/CpODB5dxwpxwvcrGzhyvGE7n42bMGlgONwDJee+2ga04SbqpaZ59U9+8/jQlm\n4vmAzzBt2s1Mn/7Ped9fkWipBuJuTPoWb6sDrK6urnwvi+5qwWDQqqm50YLtFgy+v5Y9bLdqam60\ngsFgzveppWWdBTssWGbBkAX2/49bcGP430NR+/pi3vbVzY4fPx7+2/4y3G7xf2O1m7jXww9b1tKl\nQWvKlHXWuHGLLbjagissWGjBDVZJyfXWuHFLw4+/GD6u47+2Wy0t6/L9q3hSV1eXhblry0uJZvU8\nuJyb7pRtkTuOc5jhCnt8vpXhswZUkyCZSOLprZghik3ACkyPzWIqKu5R74K4lp2788orrVRXDwE/\nAH4H/AummJmZfQWXAA1J3sVdOVGSOlWYdDk3rmRpBzQHDtzKwIBFZHz+VhKv1wDmJLE+Z/voBeak\naQdU8X/jIWbNWsGTTypwEHeLnX0FsbOvQNONC5N6HiRt9h3H7bffSCQfw4e5w9BJIlVunEkjkq7R\nZ1+5L+lbMqfgQcZseMKUThLpcONMGpF0jT77yn1J35I5BQ8yZvH5GCUlR0g8awB0khjOjTNpRNI1\n8uwriOREuWd6tGROwYOMWXyxo+PHn6Km5qvoJJEaN9acEElXJAi2hy+ig+IQJq9nHPBF4ErgGsaN\nu5UpUzTd2MuUMCmOsXsizp4NcPLk+veX6J08ufb9k4SW6I1Qe0khCAT8bNvWRE+PPXzhxwxf3AX8\nHdHLyZvgeBfV1feyY4cfn0+Bg1cly9bKhTqgq6uri7q6vExTFRGRDHV0QHt7iGefvZWBgV9jLish\n4NOYwGFRgp/aQUvLJjZudM8sMq/Zs2cP9fX1APXAnlxvX8MWIiIyZslnX1Wi+g6FS8GDiIhkbHgO\nj6YiFzIFD1JUQqEQa9a0Mm/ecubObWTevOWsWdNKKKT6+iKZGL7UfC+aily4FDxI0XjooSCzZjXR\n3r6S7u4t7N27me7ux2lvX8msWU388IcKIETGKn72VUvLLWgqcuFS8CBFY9euNvr67LK50WtvLKSv\n73527tTaGyJO0VTkwqbgQYpGbBndeErgEnGSGxf1E+eozoMUDa0lIZI7blzUT5yjngcpGlpLQkTE\nGQoexHFundGgtSRERJyh4EEc5eYZDUrgEhFxhoIHcZSbZzQogUtExBlKmBRHmRkLyQKEBezevT6X\nuxNDCVwiIs5Qz4M4SjMaREQKn4IHcZRmNIiIFD4FD+Ko2BkNIaAVWA40AovZv/80N98coqMjX3so\nIiKZUvAgjorMaNgKNAErgS3AZuDf6Ov7Bj09TSxZonUkRES8yung4QvAb4G3w1/bgVsc3oa4mD2j\noaKiDVjP8FkXDfT03I/fr3UkRES8yung4XXgbqAOqAeexdxyznN4O+JS9sp6s2ZVAg1JXqV1JERE\nvMzpqZpb4v7/VUxvxHzgZYe3JS6mWRciIoUrm3UeSoFPAxOAbVncjrhQZNZFogBCsy5ERLwsG8HD\nlZj6vxOAM8CfAfuysB1xsfnza+nu3gXUYIpGdWPiyUHgIk6enEVHhxnmEBERb0nWr5yJcmAGcAGm\n5+FLwA3AnrjX1QFd1113HRdeeGHME83NzTTrquJpoVCIa6+9jQMHhoAHgQWYw20I2MmsWV9h9+7H\n8PlUElpEZCQdHR10xM1vf+utt9i2bRuY/ML462vWZSN4iPc0sB/487jH64Curq4u6urqcrAbkksd\nHXDXXX/F0aPNwKIEr9hBS8smNm5UqWgRkXTt2bOH+vp6yFPwkIs6D+NytB1xkeZmmDz5NTTjQkSk\n8Did8/AN4JeYKZvnA6uB64H7Hd6OeIBmXIiIFCangwcf8FNgGqZI1G+BmzH1HqTIaMaFiEhhcjp4\n+LzD7yceFplxsTDBs7vC62CIiIjXKBdBsmbhQj8VFfdgZu4OhR8dAnZQUXEvCxf687dzIiIyZtks\nEiVF7o47fHzqU534/QF2717PwEApZWWDzJ9fSyDQqWmaIiIepeBBssrn82k6pohIgdGwhYiIiKRF\nwYOIiIikRcMWUhRCoVA496I7LvfCr9wLEZE0KXiQgvfQQ0Huums1fX0PYBbpMmtsdHfv5uc/b+LB\nBzu54w4FECIiqdKwhRS8XbvawoHDQiIFq8YBC+nru5+dOwP52zkREQ9S8CAFz6yhsSDJs1pjQ0Qk\nXQoepOBpjQ0REWcpeJCCF1ljIxGtsSEiki4FD5IzHR1w880hZsxopapqOePHN1JVtZwZM1q5+eYQ\nHR3Z2a5ZQ2NXkme1xoaISLoUPEjOLF4cpKeniUOHVnL69Bb6+zdz+vTjHDq0kp6eJpYsCWVlu4GA\nn5qaxGts1NTcSyCgNTZERNKh4EFy5u672+jpSTzroafnfvz+7Mx6eOYZHzU1nUyfvonKyhWUlzdS\nWbmC6dM3UVPTyTPPaJqmiEg6VOdBcsbMakgWICxg9+71WdluczM0N/sArbEhIuIE9TxIzgyf9RAC\nWoHlwCfZt+8ga9a0EgplZ/hCREScoeBBciZ21kMQaAJWAluAzZw791va21cya1YTP/yhAggREbdS\n8CA5EzvroQ1Q1UcRES9S8CA5s3Chn4oKe9bDy6jqo4iINyl4kJy54w4f+/d30tKyifHjj6GqjyIi\n3qTgQXLK5/OxcWMbs2dPQ1UfRUS8ScGD5IWqPoqIeJeCB8mLXFR9zFc5bBGRQqciUZIXdtXHs2cD\nnDy5nnPnShk/fpDJk2vfr/rY3Dy29w6FQvj9AbZv/w29vYfp79+IKU5VQn//EKdP72bChCaWLOkE\nVF1SRCRdCh4kL5ys+mgHC7t3dxMKDfDGGwexrI2YnIr1mOmgtthy2Bs3quqkiEi6NGwhnvbQQ0Fm\nzWqivX0l3d1bCIWuwrJ+DNQAz6PpoCIizlPwIJ62a1cbfX12sak3gOeAyzDVKyej6aAiIs5T8CCe\nZnoPFhApdz0Z+DameuV4NB1URMR5Ch7Es0KhEIcOvYnpXbDLXY8H7IBC00FFRLJBwYPkVSgUYs2a\nVubNW87cuY3Mm7c8pZU17VyHd96ZiOldiA4YzmECCj+QaDroi1RU3MvChZlPBxURKUaabSF589BD\nQe66a3U4Z8FMpYQhurt38/OfN/Hgg53ccUfiqZSRXIdfYHoX7OW+/cANmIDCB3SG33t9+DUDXHDB\nEf74x6fx+TRNU0RkLNTzIHkTm+yY3sqakVwHu3fhXSIBw59iehsI/78N2ApsBr7GbbfdpMBBRCQD\nCh4kbyIBQCIjT6U0MyVKiPQuWEQChr8Fvko2q1eKiBQzBQ+SN5EAIJHkUylDoRDHjx8hMpPCBzxK\nJGCYigkofgEsBq6houJWpk/f9H71ShERGTvlPEjemKmSFokDiNiplHYVySee+A3Hjx/GsuYDO4GG\n8Cui8xvuoaTkPSoqpjB58keprfXT0jL2ctciIhJLwYPkzfz5tXR37yK2fLQtMpUyNrHSLjldg6nr\ncD9m6GMcpsfhk1RUdPHgg5uTJluKiEhmFDxI3ixc6OfnP2+iry86ABgCdoWnUnYC0YmVdsnpNkxv\nhWZSiIjkg4IHyZs77vDxqU91hhe1Ws/AQCllZYPMn19LIND5fgBgEifXMbzk9PCFtT7wgUYFDiIi\nWaaESckrn8/Hxo1tPP98O4sWzQVg+/ZXueGGlveLRZnESZWcFhFxC/U8SN6NVizqggvKMRUkA0RK\nTo+cJyEiItmjngfJu9GKRVVWniWVktOq4SAikhvqeZC8MzkNdjXJUPjf3dhJkIcPv0FJiYVlJS85\nXVZ2hJqap3nmGU3JFBHJNgUPkneRYlFBYDUmtyEyfHHmzE5KSz/P4OAOYBHDEyV3cPvtm9i4UYmS\nIiK5oGELybtIsSh7We344YtFDA5+m9LSL5Co5LRWyBQRyS31PEjeRYpFRQ9fxLuFmpoHWbRo04jT\nOkVEJPsUPEjeBQJ+tm1roqdn5LUuoIKNG9uSPC8iIrmiYQvJu2ee8VFT00lZ2UlUw0FExP0UPEje\nNTfDk0/6uP32GzE1HBJRDQcREbdQ8CCusXChn4qKRDUclBQpIuImynkQ10h1rQsREckv9TwUmY6O\njnzvwojstS5efnkrr766mZdf3srGjW2eDhzc3uaFSG2ee2rz4uJ08PAV4NfAO8Bx4J+AOQ5vQzKg\nD3juqc1zT22ee2rz4uJ08PBx4O+BBcBNmGGRp4AKh7cjIiIieeJ0zsOtcf9fg6k5XAf8yuFtiYiI\nSB5kO+fhwvD3N7O8HREREcmRbM62KAG+A2zD1B1O6JVXXsniLki8t956iz179uR7N4qK2jz31Oa5\npzbPrXxfO5PVAnbC9zDDGP8XcCTB89MwyZWXZnEfRERECtVh4FrgaK43nK3g4e+BRkwC5YERXjct\n/CUiIiLpOUoeAodsKAH+F/A6UJPnfREREREP+D5wEtPj8MGor/PyuVMiIiLiXkPAYPh79Ndn87lT\nIiIiIiIiIiIiIiIiIiIiUtTuY3guQ3z9hsuBzcBbmMWxdgAz4l7TADwLnMIkVz5HbELl/gTbeSDu\nPaAc+f8AAAV6SURBVD4EPB5+jxDwP4DyMf5ebnYfmbX5rAQ/b3+tjHqPycD/F36Pt4CfAhfEbUdt\nHuFEm+9P8LyO87GfWy4BHgaOYdprD7HtDTrOo91Hbtp8f4Lt6Dgfe5vXYBacDAJvA53AxXHv4brj\n/D7gd+Edtb+mRj1fA5wAvgl8BHMSvRWIXku5AfPL+DGNVAN8Chgf9Zpe4N647VRGPV8K/B54Jryd\nxcAh4H9m+gu60H1k1ubj4n72YuBrmIMuerGyfwV+i1nQbGF4m5ujnlebRzjV5jrOI+4j83PLc8BO\n4KPh5+8FBoCro16j4zziPnLT5jrOI+4jszavBHqAx4B5wBWYQGIXsTWbXHec3wf8ZoTnHwF+Msp7\n7AT+31Fe0wv8zQjP34o5QD8Y9VgTcAaoGuW9veY+Mm/zeL8B/iHq/5djIuBrox5bEH7sw+H/q80j\nnGhz0HEe7T4yb/N3gf877rE3MIvzgY7zePeR/TYHHefR7iOzNl+KaavodrkQcwwvDv8/Z8d5ugtj\nfRhTDvM1oAOojnqfZcAfgSeB45hA4T9F/ezFwHxMF8l2TFfX88DHEmznbsxB+BvgHmK7UxowUdOx\nqMeeAiYA9Wn+Pl6QSZvHq8dEmhuiHmvA3BX/OuqxXeHHFkW9Rm3uXJvbdJxHZNrmW4DVmC7bceF/\nj8ecY0DHeSLZbnObjvOITNp8AmAB56IeO4sJDOzrqCuP81uA2zDdJYsxXVZHgSmYCGYIM37yN8BV\nmANmEFMwCkz3yRDmIPoc5oT6IPAeMDtqO3cC12G6ZNZixnai79r+N/BEgv17DxM9FZJM2zze94E/\nxD12D/Bqgte+Gn4/UJs73eag4zyaE20+EdMNO4Q5ub5F5G4MdJzHy0Wbg47zaJm2+UWYNv4Opu0r\nMRWdh4AfhF/jieO8AvOL/1fM+hRDwM/iXvMvmIQaMFHPELA+7jW/ZXgCTbRPhX9ucvj//xsTmcUr\nxIMtXrptHm0i5sD7r3GPp3qwqc2da/NEdJxHjKXNN2GSy24ErgT+FpOQfUX4eR3nI8tGmyei4zxi\nLG1+E7APE1T0Y4Y5XsIsRAk5PM7THbaI1ofp+piN6U0YYPjS2/8/JqsTIot3xL/mlajXJLIr/N3u\nnTgGfCDuNZMx3WXHKGzptnm0VZiL2U/jHj/G8Gxdwo8di3qN2ty5Nk9Ex3lEum1+OfBJzJ3tc+Gf\n/e+Yk+pfhl+j43xk2WjzRHScR4zl3PJ0+PU+TLLl54DpmGEQyOFxnknwMAGoxQQF/Zgxlj+Je80c\nzFQdwt+PJHjN3KjXJHJN+LsdfGzHRLbRv/xSzNhPV4r77lXptnm0tZgo9kTc4zsw03jiE2wuwLQ1\nqM2dbvNEdJxHpNvm9nlsMO41Q0Sy0HWcjywbbZ6IjvOITM4tb2Kmci7GBBL2bApXHuffxoy9VId3\n5nFMl6w9B/WT4Y1/HhMZfQnTIIui3uNvwj+zMvyarwOniSSNLMR04VwdfuzPMFNI/inqPcZhpp48\nHX7dYuAgZp5qoXGizQk/N4g5QBL5JfAfxE7t+Zeo59Xmzra5jvNYmbZ5KeaO7QXMSbMGuAvT/rdE\nbUfHeUQu2rwBHefRnDi3rMEcuzXA7Zgei7a47bjuOO/AZImexRwAjzI8SloD7MV0x+wBViR4n7vD\nO3oK+BWxDXMNJnI6GX6PVzDjaPGrcs7ANPxpTON9l8IsKuJUmz/AyL07F2KKirwd/vopMCnuNWrz\niEzbXMd5LCfa/LLwzx3FnFt+w/BphDrOI3LR5jrOYznR5t/AtPdZzJDGnQm2o+NcRERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERE8ur/ANBpVY9jW9RvAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import sys\n", + "import getopt\n", + "sys.path.insert(1,\"/usr/local/science/clag/\")\n", + "import clag\n", + "%pylab inline\n", + "\n", + "from scipy.stats import norm\n", + "from scipy.stats import lognorm\n", + "\n", + "ref_file=\"lc/1367A.lc\"\n", + "echo_file=\"lc/1928A.lc\"\n", + "\n", + "\n", + "dt = 0.01\n", + "t1, l1, l1e = np.loadtxt(ref_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.005 , 0.01861938, 0.04473305, 0.06933623, 0.10747115,\n", + " 0.16658029, 0.25819945, 0.40020915, 0.62032418])" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "\n", + "fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029, \n", + " 0.25819945, 0.40020915, 0.62032418])\n", + "# fqL = np.logspace(np.log10(0.0006),np.log10(1.2),11)\n", + "nfq = len(fqL) - 1\n", + "fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.)\n", + "\n", + "\n", + "fqL\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.342e-01 5.077e+01 inf -- -5.530e+02 -- 1 1 1 1 1 1 1 1\n", + " 2 7.674e-01 5.065e+01 8.300e+01 -- -4.700e+02 -- 0.653018 0.587019 0.568277 0.567457 0.566281 0.566085 0.565773 0.566163\n", + " 3 3.298e+00 5.043e+01 8.075e+01 -- -3.893e+02 -- 0.414806 0.209135 0.141159 0.13784 0.133393 0.132728 0.131612 0.132761\n", + " 4 1.572e+00 5.010e+01 7.754e+01 -- -3.117e+02 -- 0.322539 -0.0834456 -0.273066 -0.284295 -0.297612 -0.299435 -0.302479 -0.300412\n", + " 5 5.908e-01 4.964e+01 7.386e+01 -- -2.379e+02 -- 0.302357 -0.214604 -0.654658 -0.688754 -0.723838 -0.729279 -0.736418 -0.733888\n", + " 6 3.713e-01 4.877e+01 6.953e+01 -- -1.683e+02 -- 0.284419 -0.200357 -0.96379 -1.05472 -1.13798 -1.15477 -1.17031 -1.16748\n", + " 7 2.709e-01 4.671e+01 6.269e+01 -- -1.056e+02 -- 0.277768 -0.185001 -1.13047 -1.34026 -1.52128 -1.56845 -1.6043 -1.60101\n", + " 8 2.135e-01 4.361e+01 5.281e+01 -- -5.282e+01 -- 0.277012 -0.185189 -1.16375 -1.49463 -1.83211 -1.9477 -2.03737 -2.03476\n", + " 9 1.764e-01 3.767e+01 4.019e+01 -- -1.264e+01 -- 0.282161 -0.184207 -1.17891 -1.53049 -2.01851 -2.24569 -2.46562 -2.46922\n", + " 10 1.508e-01 2.738e+01 2.645e+01 -- 1.382e+01 -- 0.289545 -0.182463 -1.18795 -1.52893 -2.08812 -2.41103 -2.87498 -2.90486\n", + " 11 1.349e-01 1.468e+01 1.390e+01 -- 2.772e+01 -- 0.293547 -0.180898 -1.1897 -1.52803 -2.10944 -2.46526 -3.22702 -3.34288\n", + " 12 1.358e-01 5.365e+00 5.378e+00 -- 3.309e+01 -- 0.295456 -0.179941 -1.19052 -1.52801 -2.11928 -2.48294 -3.46233 -3.79368\n", + " 13 1.868e-01 1.338e+00 1.633e+00 -- 3.473e+01 -- 0.297315 -0.17923 -1.19104 -1.52666 -2.12491 -2.48975 -3.55567 -4.30889\n", + " 14 6.248e-01 2.604e-01 4.517e-01 -- 3.518e+01 -- 0.299091 -0.178645 -1.191 -1.52463 -2.12805 -2.4915 -3.5672 -5.11363\n", + " 15 2.744e+02 2.611e-01 7.022e-02 -- 3.525e+01 -- 0.300248 -0.178286 -1.19075 -1.52307 -2.12961 -2.49161 -3.56337 -8\n", + " 16 2.745e+02 2.782e-01 4.368e-04 -- 3.525e+01 -- 0.300566 -0.178158 -1.19062 -1.52252 -2.13009 -2.49151 -3.5617 -8\n", + " 17 2.745e+02 2.805e-01 6.410e-05 -- 3.525e+01 -- 0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n", + "********************\n", + "0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n", + "0.238931 0.202434 0.232634 0.177249 0.153039 0.132988 0.297259 3285.23\n", + "-0.000915535 -0.00131061 -0.00195128 -0.00497899 -0.0226059 -0.0776175 -0.280541 -0.000206646\n", + "********************\n" + ] + } + ], + "source": [ + "P1 = clag.clag('psd10r', [t1], [l1], [l1e], dt, fqL)\n", + "p1 = np.ones(nfq)\n", + "p1, p1e = clag.optimize(P1, p1)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 3.525e+01 3.480e+01 3.006e-01 5.395e-01 0.891 +++\n", + "+++ 3.525e+01 3.431e+01 3.006e-01 6.590e-01 1.87 +++\n", + "+++ 3.525e+01 3.458e+01 3.006e-01 5.993e-01 1.34 +++\n", + "+++ 3.525e+01 3.469e+01 3.006e-01 5.694e-01 1.11 +++\n", + "+++ 3.525e+01 3.475e+01 3.006e-01 5.545e-01 0.997 +++\n", + "\t### errors for param 1 ###\n", + "+++ 3.525e+01 3.476e+01 -1.781e-01 2.430e-02 0.973 +++\n", + "+++ 3.525e+01 3.421e+01 -1.781e-01 1.255e-01 2.07 +++\n", + "+++ 3.525e+01 3.451e+01 -1.781e-01 7.491e-02 1.48 +++\n", + "+++ 3.525e+01 3.464e+01 -1.781e-01 4.961e-02 1.21 +++\n", + "+++ 3.525e+01 3.470e+01 -1.781e-01 3.696e-02 1.09 +++\n", + "+++ 3.525e+01 3.473e+01 -1.781e-01 3.063e-02 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.781e-01 2.747e-02 1 +++\n", + "\t### errors for param 2 ###\n", + "+++ 3.525e+01 3.511e+01 -1.191e+00 -1.074e+00 0.276 +++\n", + "+++ 3.525e+01 3.495e+01 -1.191e+00 -1.016e+00 0.598 +++\n", + "+++ 3.525e+01 3.485e+01 -1.191e+00 -9.870e-01 0.8 +++\n", + "+++ 3.525e+01 3.479e+01 -1.191e+00 -9.725e-01 0.91 +++\n", + "+++ 3.525e+01 3.476e+01 -1.191e+00 -9.652e-01 0.968 +++\n", + "+++ 3.525e+01 3.475e+01 -1.191e+00 -9.616e-01 0.997 +++\n", + "\t### errors for param 3 ###\n", + "+++ 3.525e+01 3.482e+01 -1.522e+00 -1.345e+00 0.865 +++\n", + "+++ 3.525e+01 3.432e+01 -1.522e+00 -1.257e+00 1.86 +++\n", + "+++ 3.525e+01 3.459e+01 -1.522e+00 -1.301e+00 1.32 +++\n", + "+++ 3.525e+01 3.471e+01 -1.522e+00 -1.323e+00 1.08 +++\n", + "+++ 3.525e+01 3.476e+01 -1.522e+00 -1.334e+00 0.97 +++\n", + "+++ 3.525e+01 3.473e+01 -1.522e+00 -1.329e+00 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.522e+00 -1.331e+00 0.998 +++\n", + "\t### errors for param 4 ###\n", + "+++ 3.525e+01 3.481e+01 -2.130e+00 -1.977e+00 0.874 +++\n", + "+++ 3.525e+01 3.429e+01 -2.130e+00 -1.901e+00 1.91 +++\n", + "+++ 3.525e+01 3.457e+01 -2.130e+00 -1.939e+00 1.35 +++\n", + "+++ 3.525e+01 3.470e+01 -2.130e+00 -1.958e+00 1.1 +++\n", + "+++ 3.525e+01 3.476e+01 -2.130e+00 -1.968e+00 0.983 +++\n", + "+++ 3.525e+01 3.473e+01 -2.130e+00 -1.963e+00 1.04 +++\n", + "+++ 3.525e+01 3.474e+01 -2.130e+00 -1.965e+00 1.01 +++\n", + "+++ 3.525e+01 3.475e+01 -2.130e+00 -1.966e+00 0.997 +++\n", + "\t### errors for param 5 ###\n", + "+++ 3.525e+01 3.474e+01 -2.491e+00 -2.358e+00 1.01 +++\n", + "+++ 3.525e+01 3.512e+01 -2.491e+00 -2.425e+00 0.263 +++\n", + "+++ 3.525e+01 3.496e+01 -2.491e+00 -2.392e+00 0.579 +++\n", + "+++ 3.525e+01 3.486e+01 -2.491e+00 -2.375e+00 0.781 +++\n", + "+++ 3.525e+01 3.480e+01 -2.491e+00 -2.367e+00 0.893 +++\n", + "+++ 3.525e+01 3.477e+01 -2.491e+00 -2.363e+00 0.952 +++\n", + "+++ 3.525e+01 3.476e+01 -2.491e+00 -2.361e+00 0.982 +++\n", + "+++ 3.525e+01 3.475e+01 -2.491e+00 -2.360e+00 0.997 +++\n", + "\t### errors for param 6 ###\n", + "+++ 3.525e+01 3.507e+01 -3.561e+00 -3.413e+00 0.363 +++\n", + "+++ 3.525e+01 3.484e+01 -3.561e+00 -3.339e+00 0.814 +++\n", + "+++ 3.525e+01 3.468e+01 -3.561e+00 -3.301e+00 1.13 +++\n", + "+++ 3.525e+01 3.477e+01 -3.561e+00 -3.320e+00 0.962 +++\n", + "+++ 3.525e+01 3.473e+01 -3.561e+00 -3.311e+00 1.04 +++\n", + "+++ 3.525e+01 3.475e+01 -3.561e+00 -3.315e+00 1 +++\n", + "\t### errors for param 7 ###\n", + "+++ 3.525e+01 3.524e+01 -8.000e+00 -6.000e+00 0.0178 +++\n", + "+++ 3.525e+01 3.515e+01 -8.000e+00 -5.000e+00 0.187 +++\n", + "+++ 3.525e+01 3.494e+01 -8.000e+00 -4.500e+00 0.618 +++\n", + "+++ 3.525e+01 3.466e+01 -8.000e+00 -4.250e+00 1.18 +++\n", + "+++ 3.525e+01 3.482e+01 -8.000e+00 -4.375e+00 0.851 +++\n", + "+++ 3.525e+01 3.475e+01 -8.000e+00 -4.312e+00 1 +++\n", + "********************\n", + "0.300605 -0.178131 -1.19059 -1.52241 -2.13019 -2.49148 -3.56144 -8\n", + "0.253864 0.205597 0.228999 0.191096 0.1638 0.131949 0.246154 3.6875\n", + "********************\n" + ] + } + ], + "source": [ + "p1, p1e = clag.errors(P1, p1, p1e)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAGp1JREFUeJzt3X9s4/d93/HnxZaj5dxOi12RZ+98bLhdaBhJDbLSHzrb\n5TIn2IY26dBOIbFsiLTCQdoOuHUrcMMgzZCAYS2G9uqua3FbD9kQjNQNaDYH2LXFUKW5UVqnimm7\nbmadUT+W5kxmTXvr6kSpVnt/UHeR1I9+8I7fL389HwAhivx8vp+3cJ+TXvx+P9/vFyRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvSA/iGwBvwh0AQ+A1zsakWSJKkn3AT+NvA08H7gs8AW\n8K4u1iRJknrQ48BbwHPdLkSSJJ3sHTGONbb39fdjHFOSJPW4M7QON/xqtwuRJEmn83BM4/xz4BmO\nP9Rwbu8hSZLa88beo6PiCAk/DXw38AJw+4g255544onbt28f9bYkSTrGl4EJOhwUogwJZ2gFhI8A\neWD7mLbnbt++zac//WmefvrpCEvqvMuXL3P16tW+HO9BttVu33ban6btSW2Oez/uf7NOca51vr1z\nLcy51vn2Uc611157jY997GNP0tob3zch4WeAIq2Q8CaQ3Hv9DrAT6vD000+TzWYjLKnzxsbGYq25\nk+M9yLba7dtO+9O0PanNce/H/W/WKc61zrd3roU51zrfPuq5FpWHItz2Z4F3AjPA39/3+CLwm4fa\nngM+8YlPfIJz5/pvWcL73ve+vh3vQbbVbt922p+m7Ultjnq/VCpRLBZPXUsvca51vr1zLcy51vn2\nUc21N954g2vXrgFco8N7Es50cmMPIAusr6+v92XqVn/58Ic/zKuvvtrtMjQEnGuKQ7VaJZfLAeSA\naie3Hed1EiRJUh8xJGjo9OvuX/Uf55r6nSFBQ8df3IqLc039zpAgSZKCDAmSJCnIkCBJkoIMCZIk\nKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnI\nkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAg\nSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmS\nggwJkiQpyJAgSZKCDAmSJCkoypDwAvBZ4MvAW8BHIhxLkiR1WJQh4V3AF4Af2vv+7QjHkiRJHfZw\nhNv+xb2HJEnqQ65JkCRJQYYESZIUZEiQJElBUa5JaNvly5cZGxs78FqxWKRYLHapIkmSekepVKJU\nKh147c6dO5GNdyayLR/0FvC9wKtHvJ8F1tfX18lmszGVJElS/6tWq+RyOYAcUO3ktqPck3AW+Iv7\nvn8P8CzwVeBLEY4rSZI6IMqQMAH8yt7zt4Gf2Hv+KWA2wnElSVIHRBkSPocLIyVJ6lv+EZckSUGG\nBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJ\nkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhT0cLcLkKJQKpUolUoA7OzssL29zYUL\nFxgdHQWgWCxSLBa7WaIk9TxDggbS/hBQrVbJ5XKUSiWy2WyXK5Ok/uHhBkmSFGRIkCRJQYYESZIU\nZEiQJElBhgQNrK2tLWZnZ5mengZgenqa2dlZtra2uluYJPUJz27QwGk2mxQKBWq1Go1G497r9Xqd\ner3OzZs3yWQylMtlEolEFyuVpN5mSNBAaTabTE1NsbGxcWSbRqNBo9Hg0qVLVCoVg4IkHcHDDRoo\nhULh2ICwX71ep1AoRFyRJPUvQ4IGxubmJrVara0+tVrNNQqSdARDggbG4uLigTUIp9FoNFhYWIio\nIknqb4YEDYy1tbVY+0nSoDMkaGDs7u7G2k+SBp0hQQNjZGQk1n6SNOgMCRoYExMT99VvcnKyw5VI\n0mAwJGhgzM/Pk0wm2+qTTCaZm5uLqCJJ6m+GBA2MVCpFJpNpq08mkyGVSkVTkCT1OUOCBkq5XCad\nTp+qbTqdZmlpKeKKJKl/GRI0UBKJBJVKhXw+f+Shh2QyST6fZ2VlhfHx8ZgrlKT+YUjQwEkkEiwv\nL7O6usrMzMy9PQvpdJqZmRlWV1dZXl42IEjSCbzBkwZWKpXi+vXrVKtVcrkcN27cIJvNdrssSeob\nUe9J+EFgE/g68OvAcxGPJ0mSOiTKkPBR4CeBReBZ4BZwEzgf4ZiSJKlDogwJPwL8K+A68DvA3wO+\nBHwywjElSVKHRBUSHgGywC8fev2XgamIxpQkSR0U1cLFx4GHgOah178CtHdJPOk+lEolSqUSADs7\nO1y8eJErV64wOjoKQLFYpFgsdrNESep5nt2ggWQIOJ3DYWp7e5sLFy4YpiQBcCai7T4CvAl8P/Af\n9r3+U8D7gb90qH0WWH/++ecZGxs78Ia/pKR43D1VdH193VNFpR61P9jfdefOHW7dugWQA6qdHC+q\nPQl/DKwDH+JgSPgg8JmjOl29etVfTpIkHSH0wfluwI9ClGc3/ATwA8AM8DSt0yH/PPBzEY4pqU1b\nW1vMzs4yPT0NwPT0NLOzs2xtbXW3MEldF+WahBvAY8A8cA74b8Bfo3UapKQuazabFAoFarUajUbj\n3uv1ep16vc7NmzfJZDKUy2USiUQXK5XULVEvXPzZvYekHtJsNpmammJjY+PINo1Gg0ajwaVLl6hU\nKgYFaQh5gydpCBUKhWMDwn71ep1CoRBxRZJ6kSFBGjKbm5vUarW2+tRqNdcoSEPIkCANmcXFxQNr\nEE6j0WiwsLAQUUWSepUhQRoya2trsfaT1L8MCdKQ2d3djbWfpP5lSJCGzMjISKz9JPUvQ4I0ZCYm\nJu6r3+TkZIcrkdTrDAnSkJmfnyeZbO9mrMlkkrm5uYgqktSrDAnSkEmlUmQymbb6ZDIZUqlUNAVJ\n6lmGBGkIlctl0un0qdqm02mWlpYirkhSLzIkSEMokUhQqVTI5/NHHnpIJpPk83lWVlYYHx+PuUJJ\nvcCQIA2pRCLB8vIyq6urzMzM3NuzkE6nmZmZYXV1leXlZQOCNMSivsGTpB6XSqW4fv36vXvS37hx\ng2w22+2yJPUA9yRIkqQgQ4IkSQrycIM0xEqlEqVSCYCdnR0uXrzIlStXGB0dBaBYLFIsFrtZoqQu\nMiRIQ8wQIOk4Hm6QJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAk\nSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElB\nhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUFFVI+EfACvA14A8iGkOSJEUoqpAwAiwB/yKi7UuS\npIg9HNF2X977+vGIti9JkiLmmgRJkhQU1Z4ESeq4UqlEqVQCYGdnh+3tbS5cuMDo6CgAxWKRYrHY\nzRKlgdJOSHgZmD+hzXcC1fuuRpKOsT8EVKtVcrkcpVKJbDbb5cqkwdROSPhp4N+e0Gb7AWrh8uXL\njI2NHXjNTwaSJLXs35t21507dyIbr52Q8NW9R2SuXr3qJwJJko4Q+uB8d69aFKJak/AU8O69rw8B\n3wGcAb4IvBnRmJIkqYOiOrthgdbahJeBs8AXgHUgmqgjaWhsbW0xOzvL9PQ0ANPT08zOzrK1tdXd\nwqQBFNWehI/jNRIkdVCz2aRQKFCr1Wg0Gvder9fr1Ot1bt68SSaToVwuk0gkulipNDg8BVJSz2s2\nm0xNTbGxsXFkm0ajQaPR4NKlS1QqFYOC1AFeTElSzysUCscGhP3q9TqFQiHiiqThYEiQ1NM2Nzep\n1Wpt9anVaq5RkDrAkCCppy0uLh5Yg3AajUaDhYWFiCqShochQVJPW1tbi7WfpG8yJEjqabu7u7H2\nk/RNhgRJPW1kZCTWfpK+yZAgqadNTEzcV7/JyckOVyINH0OCpJ42Pz9PMplsq08ymWRubi6iiqTh\nYUiQ1NNSqRSZTKatPplMhlQqFU1B0hAxJEjqeeVymXQ6faq26XSapaWliCuShoMhQVLPSyQSVCoV\n8vn8kYcekskk+XyelZUVxsfHY65QGkzeu0FSX0gkEiwvL7O1tcXCwgKf//znqdfrpNNpXnjhBebn\n5yM7xFAqlSiVSgDs7Oywvb3NhQsXGB0dBaBYLFIsFiMZW+qmM90uYE8WWF9fXyebzXa7Fkl9oFqt\nksvliPv3RrfGlY5yd04COaDayW17uEGSJAUZEiTpFLa2tpidnWV6ehqA6elpZmdnvZGUBpprEiTp\nGM1mk0KhQK1WO3CjqXq9Tr1e5+bNm2QyGcrlMolEoouVSp1nSJDUNw4vILx48SJXrlyJbAFhs9lk\namqKjY2NI9s0Gg0ajQaXLl2iUqkYFDRQDAmS+kbcZxEUCoVjA8J+9XqdQqHA8vJyxFVJ8XFNgiQF\nbG5uUqvV2upTq9Vco6CBYkiQpIDFxcUDaxBOo9FosLCwEFFFUvwMCZIUsLa2Fms/qRcZEiQpYHd3\nN9Z+Ui8yJEhSwMjISKz9pF5kSJCkgImJifvqNzk52eFKpO4xJEhSwPz8/JF3nDxKMplkbm4uooqk\n+BkSJCkglUqRyWTa6pPJZCK7E6XUDYYESTpCuVwmnU6fqm06nWZpaSniiqR4GRIk6QiJRIJKpUI+\nnz/y0EMymSSfz7OyssL4+HjMFUrRMiRI0jESiQTLy8usrq4yMzNzb89COp1mZmaG1dVVlpeXDQga\nSN67QZJOIZVKcf36darVKrlcjhs3bpDNZrtdlhQp9yRIkqQg9yRI0gnivkW11CsMCZJ0AkOAhpWH\nGyRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUlBUISEF/DywAXwN+J/Ay8BIRONJ\nkqQOi+piSu8FzgAv0QoI7wP+JXAW+NGIxpQkSR0UVUj4pb3HXVvAPwM+iSFBkqS+EOeahDHgqzGO\nJ0mSHkBc925IAz8M/EhM40lSXzt8U6nt7W0uXLjgTaUUq3b3JLwMvHXC4/AN1p8AfhG4AVx/gFol\naWgUi0VeeeUVHn/8cTY2Nnj99dfZ2Njg8ccf55VXXjEgKBZn2mz/2N7jONvAN/aePwEsA6vAx4/p\nkwXWn3/+ecbGxg68YVqWNGyazSaFQoFarUaj0fhT7yeTSTKZDOVymUQi0YUK1S379zDddefOHW7d\nugWQA6qdHK/dkNCOJ2kFhDXgY8Dbx7TNAuvr6+tks4d3REjS8Gg2m0xNTbGxsXFi23Q6TaVSMSgM\nuWq1Si6XgwhCQlQLF58EPkdrr8KPAgkgufeQJB2hUCicKiAA1Ot1CoVCxBVpmEW1cPGDtBYrvgf4\n3X2vvw08FNGYktTXNjc3qdVqbfWp1WpsbW2RSqWiKUpDLao9CZ/a2/ZDe1/fse97SVLA4uJicA3C\ncRqNBgsLCxFVpGHnvRskqUesra3F2k86iSFBknrE7u5urP2kkxgSJKlHjIzc3z3w7refdBJDgiT1\niImJifvqNzk52eFKpBZDgiT1iPn5eZLJ9s4UTyaTzM3NRVSRhp0hQZJ6RCqVIpPJtNUnk8l4+qMi\nY0iQpB5SLpdJp9OnaptOp1laWoq4Ig0zQ4Ik9ZBEIkGlUiGfzx956CGZTJLP51lZWWF8fDzmCjVM\nDAmS1GMSiQTLy8usrq4yMzNzb89COp1mZmaG1dVVlpeXDQiKXFSXZZYkPaBUKsX169fv3cDnxo0b\n3gRPsTIkSFIP2n9L4J2dHS5evMiVK1cYHR0FoFgsUiwWu1mihoAhQZJ6kCFAvcA1CZIkKciQIEm6\np1Qq8eKLL/LUU0/x6KOP8sgjj/Doo4/y1FNP8eKLL947BKLh4OEGSRIAzWaTa9euUavVDtyyend3\nlzfffJPd3V2uXbvGBz7wARKJRBcrVVwMCZIkms0mU1NTbGxsHNmm0WjQaDS4dOkSlUrFoDAEPNwg\nSaJQKBwbEPar1+sUCoWIK1IvMCRI0pDb3NykVqu11adWq7G1tRVNQeoZhgRJGnKLi4sH1iCcRqPR\nYGFhIaKK1CsMCZI05NbW1mLtp/5hSJCkIbe7uxtrP/UPQ4IkDbmRkZFY+6l/GBIkachNTEzcV7/J\nyckOV6JeY0iQpCE3Pz9PMplsq08ymWRubi6iitQrDAmSNORSqRSZTKatPplMhlQqFU1B6hmGBEkS\n5XKZdDp9qrbpdJqlpaWIK1IvMCRIkkgkElQqFfL5/JGHHpLJJPl8npWVFcbHx2OuUN1gSJAkAa2g\n8NJLL/HMM89w/vx5zp49y8jICGfPnuX8+fM888wzvPTSSwaEIeINniRJ9xSLRYrFYrfLUI9wT4Ik\nSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkK\niiokvApsA18HbgP/BjgX0ViSJCkCUYWEXwH+BnAR+D4gDfxCRGNJkqQIRHUXyKv7nn8J+DHgM8BD\nwJ9ENKYkSeqgONYkvBv4m8AyBgRJkvpGlCHhx4A/An4P+HbgoxGOJUmSOqydkPAy8NYJj+y+9j8O\nPAt8CPgG8O+BMw9csSRJikU7f7Qf23scZ5tWIDjsSVprE54DVgLvZ4H1559/nrGxsQNvFItFisVi\nG2VKkjSYSqUSpVLpwGt37tzh1q1bADmg2snx4vpkf55WgPgu4Fbg/Sywvr6+TjabDbwtSZJCqtUq\nuVwOIggJUZzdMLn3+M/AHwDvARaALwKrEYwnSZIiEMXCxa8Bfx34T0AN+Hngt2jtRfh/EYwnSZIi\nEMWehN8G/nIE25UkSTHy3g2SJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ\nkoIMCZIkKciQIEmSggwJkiQpKIp7N0iSdGqlUolSqQTAzs4O29vbXLhwgdHRUQCKxSLFYrGbJQ4t\nQ4Ikqav2h4BqtUoul6NUKpHNZrtcmTzcIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ6rqtrS1mZ2eZ\nnp4GYHp6mtnZWba2trpb2JDz7AZJUtc0m00KhQK1Wo1Go3Hv9Xq9Tr1e5+bNm2QyGcrlMolEoouV\nDidDgiSpK5rNJlNTU2xsbBzZptFo0Gg0uHTpEpVKxaAQMw83SJK6olAoHBsQ9qvX6xQKhYgr0mGG\nBElS7DY3N6nVam31qdVqrlGImSFBkhS7xcXFA2sQTqPRaLCwsBBRRQoxJEiSYre2thZrP90fQ4Ik\nKXa7u7ux9tP9MSRIkmI3MjISaz/dH0OCJCl2ExMT99VvcnKyw5XoOIYESVLs5ufnSSaTbfVJJpPM\nzc1FVJFCDAmSpNilUikymUxbfTKZDKlUKpqCFGRIkCR1RblcJp1On6ptOp1maWkp4op0mCFBktQV\niUSCSqVCPp8/8tBDMpkkn8+zsrLC+Ph4zBXKkCBJ6ppEIsHy8jKrq6vMzMzc27OQTqeZmZlhdXWV\n5eVlA0KXeIMnSVLXpVIprl+/TrVaJZfLcePGDbLZbLfLGnruSZAkSUGGBEmSFGRIkCRJQYYESZIU\n5MJFSVJXlUolSqUSADs7O1y8eJErV64wOjoKQLFYpFgsdrPEoWVIkCR1lSGgd3m4QZIkBRkSJElS\nUNQh4Z3AbwBvAe+PeCzpVO4e+5Si5lxTv4s6JPw48OWIx5Da4i9uxcW5pn4XZUj4q8CLwD+IcAxJ\nkhSRqEJCArgG/C3g6xGN0RPi/qTQyfEeZFvt9m2n/WnantRmED/BOdc63965FuZc63z7fp1rUYSE\nM8CngJ8FqhFsv6f4n6nz7fv1P1PUnGudb+9cC3Oudb59v861dq6T8DIwf0KbCeAS8CjwTw+9d+ak\nAV577bU2yukNd+7coVqNLwt1crwH2Va7fdtpf5q2J7U57v24/806xbnW+fbOtTDnWufbRznXovzb\neeIf7n0e23scZxsoA98DvL3v9YeAPwE+DcwE+p0D1oAn26hHkiS1fJnWB/U3OrnRdkLCaZ0HvmXf\n908CvwR8H/BrwO0j+p3be0iSpPa8QYcDQlxSeJ0ESZL6TlxXXHz75CaSJEmSJEmSJEmSJEmx+xbg\nvwJfAH4b+OHulqMBdh74HPDfgd8Evr+r1WjQfQb4feDfdbsQDazvBmrA68Df6XItkXkHMLr3/M8A\nG8C3da8cDbAk3zwT59uAL9Gac1IUvovWL3FDgqLwMPA7tC4v8CitoPDudjYQ19kND+otYGfv+buA\n3X3fS53UAH5r7/n/pvUpr63/VFIbfhX4o24XoYE1SWuv6Bu05tl/BD7Uzgb6JSQA/Flau3//F/BT\nwP/tbjkaAt9J64Jj3u5cUj96goO/v36XNq9s3E8h4f8A3wF8O/BDwF/objkacI8B/xp4qduFSNJ9\neuBrFEUVEl4APksrwbwFfCTQ5geBTVq3kv514Ll97/1dWosUq8DIoX5fobWw7NmOVqx+FcVceyfw\nC8A/Af5LJFWrH0X1e82LzekoDzrnbnNwz8F5emTP6F8BFoDvpfWDffjQ+x8FvgHMAu8FfpLW4YPz\nR2xvHPjWveffSuuY8Xs7W7L6VKfn2hmgBPzjKIpVX+v0XLsrjwsXFfagc+5hWosVn6B1luDrwJ+L\nvOo2hX6wXwN+5tBr/4PWJ7eQLK0E/ht7j9CdJKVOzLXnaN2xtEprzn0BeKaDNWowdGKuQevmd18B\n3qR1Jk2uUwVq4NzvnPseWmc4fBH4gciqewCHf7BHaJ2dcHi3yVVahxGk++VcU1yca4pbV+ZcNxYu\nPg48BDQPvf4VWueoS53iXFNcnGuKWyxzrp/ObpAkSTHqRkj4PVrHfBOHXk/QuuCD1CnONcXFuaa4\nxTLnuhES/hhY509f9emDwEr85WiAOdcUF+ea4tbXc+4sresYPEtrscXlved3T8uYpnXaxgzwNK3T\nNv6Qk08Vkg5zrikuzjXFbWDnXJ7WD/QWrd0hd59f39fmk7QuALEDrHHwAhDSaeVxrikeeZxrilce\n55wkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVIf+P9cYZ1EAfTlhQAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-4,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"black\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl8VPeZ5/tPaUcSQmALgxEgIiyCMJjFkVkcO91isTsT\n4jhxYtGZdHGdsboT98TdmYHM7UmaTPd9zb3qxOlJJzfGEw+y23ElNt2TkKRtiJJggwET4zgmiFgg\nI0AyWGJHEqCSVPPH0SlVlWo7VadWfd+vV71sVMs5tZ7n/H7P73lARERERERERERERERERERERERE\nREREREREREREREREREREREREREREREREREQkZh3AcJDLd1K4TyIiIpLGbgKm+lzqMYKHe1K5UyIi\nIpI5/hFoS/VOiIiISGYoAM4BX0n1joiIiIh98hL42A8Ak4DmMLeZPnIRERERa86MXJLOkcDH3glc\nBz4e4vrpt95663vvvfdeAndBREQka3UBHyIFAUSiRh5mYyRLfiLMbaa/9957PPfcc8yfPz9BuyGB\nHn/8cf7xH/8x1bsxrug1Tz695smn1zy5jh49ymc/+9kZGKP3WRM8bATeB34e6Ybz589n6dKlCdoN\nCVReXq7XO8n0miefXvPk02s+vuQk6DE3As9gLNMUERGRLJKI4GE1UAn8rwQ8toiIiKRYIqYtdgG5\nCXhcERERSQOJGHmQNNbQ0JDqXRh39Jonn17z5NNrPr4kcqlmJEuBQ4cOHVKSjYiIiAVvvvkmy5Yt\nA1gGvJns7WvkQURERCxR8CAiIiKWKHgQERERSxQ8iIiIiCUKHkRERMQSBQ8iIiJiiYIHERERsUTB\ng4iIiFii4EFEREQsUfAgIiIilih4EBEREUsUPIiIiIglCh5ERETEEgUPIiIiYomCBxEREbEkL9U7\nICKSTVyHXbh+76LrShenrpzimvsahXmF3Bi8wYT8Ccwqm8WMshk03N5Aw8KGVO+uSEwUPIiI2Khh\nYQOrp61m05ZNnNt/jnNnznGDGwzmDXLzLTez6K5FNG1poqKiItW7KhIzBQ8iIjbq7u5m5f0raf9g\nO1wEPgqDlYPggJPDJ2nuambPfXvY//J+BRCSsZTzICJio81f30z7knboAOqBmYBj5Moc49/tS9rZ\ntGVTqnZRJG4KHkREbHTwrYNQCfRg/DeYGSO3E8lQCh5ERGw0iDFF4b0EkzNyO5EMpeBBRMRGeeSB\nh9FLMMMjtxPJUAoeRERsVLe4DjqBCoz/BtM1cjuRDKXgQUTERk1bmqj+bTVUAb8ETgPDI1cOG/+u\n/m01TVuaUrWLInFT8CAiYqOKigr2v7wfZ7mTWZNnwc8h76k8+D7M/vlsnIVOLdOUjKdJNxERG3kr\nTC7qor+qnxJ3ibfCZF9+H2+Xvc0jLY+owqRkNAUPIiI2aliooECyn6YtRERExBIFDyIiImKJggcR\nkQRyHXaxbus6Zt4/k9IFpRTUFlC6oJSZ989k3dZ1uA67Ur2LIpYp50FExCZmsiTA9cHrnLx8kumO\n6fzm27+h/8P9cBfgAPewm76uPgqfKmT1g6tTu9MiMdDIg4iITRoWNvD06qe5ae9NHP/Ocdr+qY1D\nTYeMwEENsiSLaORBRMQm3nbcS9rhfsABvc/1hm+Q1aIGWZJ5FDyIiNjE2457ps8fc1CDLMk6mrYQ\nEbGJtx23LzXIkiyk4EFExCbedty+1CBLspCCBxERm3jbcftahdEg6xRqkCVZQ8GDiIhNvO24fZUA\nDwGHoPSZUnge5rw8Rw2yJKMpeBARsYm3HXdgG+4LUHytmGX/eRk1f1nD3Mfmcv7u8zzS8oiKRElG\nSkSmzgzg/wPuAyYAbcAjwJsJ2JaISNpoOdtC9aPV3PjxDS7uv8iAZ4ACRwGTZ02m9q9rca50qmmW\nZAW7g4fJwGsYM3z3Ad1ANXDJ5u2IiKQdb0fNxlTviUhi2R08bAZOYow0mE7ZvA0RERFJIbtzHtYD\nh4AXgfcxpio+b/M2REREJIXsDh4+APwF8A6wFvge8G3gczZvR0RERFLE7mmLHOAg8F9H/v074Hbg\nz4Fng93h8ccfp7y83O9vDQ0NNDQoqUhERMTlcuFy+a/KuXQptamEoSqux6oD2AU86vO3vwD+hrFF\nW5cChw4dOsTSpUtt3g0RkfQSrF337EmzKcorAqDh9gatxJCovfnmmyxbtgxgGSlYzWj3yMNrwAcD\n/laDEVSIiIxbDQsbWD1tNZu2bOKVN17hxKUTuMvd3HvnvTRtaVKxKMkodgcP3wL2Af8FI2myDvgP\nIxcRkXErWLvuE8MnONF1gj337VG1SckodidMvgF8AmgADmNMV3wJUAk1ERnX/Np1mxPGOcBMaF/S\nzqYtm1K4dyLWJKLC5M9HLiIiMuLgWwdhTYgrZ8DBloNJ3R+ReKi3hYhIEgRt123KGbleJEMoeBAR\nSYKg7bpNwyPXi2QIBQ8iIkkQtF23qWvkepEMoeBBRCQJQrbrPg0TXp3Ae4veY71rvVp0S0ZQ8CAi\nkgQVFRXsf3k/zkIns346C56EvKfyYCdMLZvKrW/fytOrn1ahKMkImmQTEUkCs8LkjYU36PlFD3wU\nBiuNJMqTwydp7mpWvQfJGBp5EBFJgoaFDexo2MGth2/l2j3XVO9BMppGHkTioH4FYpXqPUg2UPAg\nEgf1KxCrVO9BsoGCB5E4qF+BWOWt9xAsgFC9B8kQynkQiYP6FYhVqvcg2UDBg0gcDr51ECpDXDlj\n5HoRH+HqPVT/tpqmLU0p3DuR6Ch4EImD5q8FjMTZdVvXMfP+mZQuKKWgtoDSBaXMvH8m67au8yv8\n1HK2hepHq6nsqqRkewn5P8qnZHsJlV2VVD9aTcvZlhQ+E5HoaHJNJA6avxaA+lvq+epTX6VzSSfc\nBTjAPeymr6uPwqcKWf3gau9tGxYaK3BcK10072um9cetXDx1kfdPvs/Fb1+k9cetND/QjHOlUyt1\nJG1p5EEkDpq/Fogt96X+lnran2qnc0YnfQ/14f6Mm75P9dE5o5P2p9pZPW31mPuIpAsFDyJx0Py1\nQGy5L0q2lUym4EEkDub89ZSOKeQ8lwNPYlx2wokrJ/hgwwfHzHlL9nAddrHetZ6TV05azn1Rsq1k\nMk3IiljgOuw/Tz3gGaDAUUDZLWUU5hRy7aPXjAOCA4aHh7nQdcEYgn5QQ9DZyCwSdtvf3GY590XJ\ntpLJNPIgYkGoeeozF85w7V71Kxhvuru7WXHfCi6XXbac++JNtg1GybaS5hQ8iETJddjF4g2Lg89T\n96Mh6HHIm7ewFvglY3NfToXOfYmUbHul7IqmuyRtKbQViVL9LfWcO3IO7g5ypQMNQY9D3iZXDuAh\n4DXg1ZF/D8Mk9yT2/yZ4ifKmLU3suW8P7dfa4QRwbuR+A1A6WMquXbuYP39+8p6MiAUaeRCJ0uav\nb8Zd7A4eJHjQEPQ45Je3UIIxAvGnwAbgszA4cZBHWh4JOoJQUVHBjn/ewcQ9E6F25D4bgM9B77pe\nPvbZj9HT05OkZyJijYIHkSgdfOsg5BI8SKhA9R7GoUh5C7PLZrOjYUfQYk+uwy7WfXkdV9deVa6M\nZBwFDyJRGmQwdJCwCtgJnEL1HnxYKducieIpEtawsIGyK2XKlZGMpOBBJEp55MFKgifGnYe8G3k8\nzMPMeXkOPA9zXp6Ds9A5rttyZ3sVxXiLhGm5pmQqTcSKRKlucR2tF1vHJsZ5gGLIrc6lra6NuR+Z\nS/7lfGZPms35vPM80vIIDbc3jMs+BX5VFE3msDzGsPy2725L1e7FzKz38caLb3Dp0iX4OUbQUAA5\nRTmUzy73NrlqqAj9vqs3imQqfTJFouTNjl/SDqsxDoLDQJdxlrl/x/gdYQjFuxohmBlwsCUzh+XN\nRlgXllwwVt+MrK6gC+b8dg77XdF9FuoW19Ha2eofXJmUKyNpTNMWIlGqqKhg/8v7cRY6Q05NZPsc\nv1XZOixvV18K9UaRTKWRB5EouQ67cP3eBXdDye0llFws4Wr+VX7Gz3jxf77IByZ/gOmO6ez91l76\nP9wfsTXzeJCtw/J2jaiYvVFu/PgGF/ePljufPGtyVNMeIqmSmd9ckRRoWOift9DT08OmLZt45Y1X\nOHfpHL3lvbzrftcIHLJsjj9W2Tosb9eIivcz1Wjfvokkg4IHkRh0d3ez8v6VxtD1/YADTgyfgGcJ\nv/QuQ+f4Y+XNE6EdZjAmT6Tp5cwcls/WERWRaCnnQSQGIee8C8jKOf5YRZMnkoniqe8gkg0UHovE\nIOSct1mmWmekgH+eyNzl2bOENVtHVESiNb5+yURsEnLO26xAmWVz/LEKzBPJFkp0lPFOwYNIDELO\nea8CXgT+GJgM7Ae6gWFw9DrYuXAn67auw7nSmZUH1fFCiY4y3il4EIlByFUEJcBKmPCrCVzvvY7n\n4x5vy2bPsIczXWcofqo465dseqcrgOuD1zl5+SSzJ82mKK8IIGOnKxLFrFjZ+uNWLp7yH8mofaBW\nwaaknVCpXcmwFDh06NAhli5dmsLdELGup6eHFfetMJImg8x5f2jxh/ih44fBpy9Og7PQmVZLNhNx\nsPddynri0gnmlM/h3jvvpWlLU8YmSiaK3+qdSvwqVlb/tjqjk0slMd58802WLVsGsAx4M9nb18iD\nSAwizXnveWoPfCzEndNwyWbDwgZWT1vtd7B3l7tjPtiHWsp6ousEe+7bo4NhgGztASLZS8GDSAwi\nzXnPe3ZeRi3ZtPtgr4OhNdnaA0Syl+o8iCSAN6EymDRasmn24pizao4tvRpMB986GL5Y1ls6GPrK\n1h4gkr3sDh62YMzU+V7es3kbImkvU4oI1d9ST/tT7fQP9vsf7PuAXcAPgD3wzL88Y6m515iDoe/j\n/RCOth8dt83CgsmUYFPElIhP5O8xGhabhhKwDZG0lilFhLzTC3sYPdj3AtuBevxWinR2dUbd3Mtv\nKasNj5cuErWKJFt7gEj2SsS0xRDGynbzcj4B2xBJa2ZCZWVXJSXbS8j/UT4l20uo7Kr0FhFKB97p\nBbMyZh9GnYp64prC8Bt52Rf/46WLhoUNPL36aW7aexPHv3Octn9q4/h3jnPT3pt4evXTMS+nVGtu\nyTSJGHm4DegCbgCvA/83cCIB2xFJW+laRMisJ/DGi29w+fRlhq4OGQf0CuAYxoHeQdzNvfxGXrrJ\nmmTARK0iUcVKyTR2Bw8HgH8PtAHTgP+K8XO0ALhg87ZExKL6W+r56lNf5cKSC7AEIwfBg1EZsxlY\nj/8URqAok/d8D4ZdfV14HCEm9ONIBkxFYaVErSJJ12BTJBS7g4eXff7/CEZx3nbgz4Bv2bwtkbSW\njlUDvQe/yRh5CFMZ7cVRhv8URhzNvXwPhgtWLaDV02o8Xh/wGtCDtxDSu33vWirZbb6uh390mLOH\nzxpVPO8yHs897Kavqy9huRRaUiliSHQKbz9wGJgb6gaPP/445eXlfn9raGigoUFDdJLZzLP8ziWd\nSTu4ReI9+P0CIw9hCqM5DrmMTmHY2NzLmwxoBiw+iZMMw2DXIO1PtUf9epiv65mhM/BxklpLQksq\nJRVcLhcul/+qpEuXLqVobwyJLk9diDHy8CTw9wHXqTy1ZLWNX9xI843mtCpRPW/VPNrWthnTFRvw\nHw04DvwFRshvBhS+K0U6ofot66WSvaW8h9rhTuJ+Pbyv66s+zyHQMNS21HLktSNR72c0FqxaQOua\n1qRuUySYVJentnu1xTeAe4A5GOda24FS4BmbtyOS9tKxUJLfEkrzAFgCrMUYH+wc+fdDwFHABTwP\nPAvFrxbHtFLEzH/IO59nvB6+NR+eH/lvK7z4yxejqvngfV19n0OgBI0CZEr9DpFEs3vaYgbGz83N\nGLOa+4HlGAuQRMaVdBvidh12cXHCRePgFyyvwbedeCVGQGFDcyYz/2Hes/No62sLOnVBFwz8bIDV\n0yJPXXhfVxtyM6zKlPodIolm98hDA8ZXqhDj5+ch4A82b0MkI6Rb1cD6W+op7C6EncAExp5BmyMO\nhyDv6Tzba1PkkWdMj4So+eD+qDuqmg/e19XMzQgmQaMAmVK/QyTRVPM0C6Vjlv94lG5VAzd/fTMd\ndR1GkuRu4CcYSzMrGT2DvgDVudXs/639XS/rFtfR+m+txohGMJXRrVbwvq7mSEmI3IxEjAJoSaWI\nIdEJk+EoYTJB/ArZmHPDNgw/izXeRMElwYe4k/0+jEn2C1g26bjsYMaSGQkLMHt6epixZAbu/+AO\neZuaXTW889o7ER/H+7qWY0yOdgPDkNObw83zbia3IJcrZ65wffg6ngGPMVKRC448B0U5RZYDaQXk\nkm5SnTCpkYcsFKmQzR0P30FuQa5+BBMs3aoGjsnBMBMlR9y26zbeeSn8gTseLWdbKCgrwO1xx5Wn\nYL6uF1+8yOXTlxl2DOPIcZAzLYfSu0q59JNLDNw7AHdjBEhmjsVIIN033Gd5uWw6LrsVSSWNPGSh\nsMvJrkL+c/m4/53bWHe/D+9Zm6PXwbSF01j40EIFEVkoHZYZJnr56pjH3wXMx77loWm07NakUZHx\nKdUjD4lojCUpFjbL/1VGA4ftGD+sfwp8Djx/7uFM1RmjYE8UWe+SWdJhmWG0DaBch12s27qOmffP\npHRBKQW1BZQuKI3YxnvM8tgebFkum47Lbk1mW/XOGZ30/Ukf7slu+gb66Gzr5Bdf+wVf/qsvq/W5\n2E7BQxYKmeXfC3Rg/AhmUadDiU46dG6MdrWC3wHxoT7cn3HT96k+Omd0hg1uxwTONtSCcB120XGp\nI62W3foaU3JcJwSSBMp5yEIhs/z3ARMxfgR7UI3+caaiooL9L+9n05ZNvPLyK5y4dII55XO49857\naXq5KSnJm9GuVoi1AZVfESywVAsi1PB/2S1lXOu5lvSaEtEaU3I8ieW6U0HTNOlBIw9ZKOQZ5nsY\n/QsCKwwGUo3+rOQ67OKRlkc4f/d55j42l5q/rGHuY3M5f/d5Hml5JK2Gta1ME/hOcbSdaPOfmrFQ\nCyLUaMeZC2fw3OoJ/Tidqa0s6R1tsWmKJt3FOiol9tLIQxYKleV/ffg6QxVDoSsMmoah73of67au\nU3Rvg3Q5U/Ke9WcAK9U5/VZC3I4xdG9WyQysmhmmImTI0Y5+jAZc5qqNgJoS+T/Pp+lw6ipLBi05\nHiiLTggS1RZdrFHwkIVCDQ0vWLWA1pWtxo/gJMJ2Trx70d288dQbWppmAy3zs857QOzHv4W3B7gZ\nui504TrsomFhw9iDyUMj99kDDEHu9VwKXy3Ek+fh2vC1kFM1IdttOzA69JiP+6rPvlRA/uT8pC+7\n9eWdpkxBue5UUFv09KBpi3GkbnEdXMT4ESzAqDB4iqDJc44cx+gPshIq4+J3cMuw1zLWVQ/xqltc\nB8cwRg3mY3TP3IBRAL8WcvpzvMPT3ikOs+HWj4FzwCAwBENDQ/Tn9nNj+AZ5U/O4fN9l3l709pip\nmpCjHeZB2ayL8acj+/KnwGqomlKV0hEd7zRlMSlfTZMM6dYzZrzKjlBUIurp6eH6tevk/1s+7o+6\n4X7gGrAX+BVwHYrLi5lSNYXqR6vZ89Qe+FiIB1N0b0kmnyklatQk0lTOg59+kO2f3U7vut6gw9NX\n1171Dk8PMuhfDGoNo/9ejbc41PDwMMNdw0z+2WRefvnlMQmiY5ItTWbeRJqUGQ9kTlP2v9DP2Z+c\nxbPeE3GKJpOFfJ8gq0ZY0p1GHrJcT08PKz6xgltqb+GHOT/E/e/dRquy54F/AY5D+axy1m5Zy/df\n+D6nXzrNzsadlBSVKLq3SaaeKbkOu1i8YXFCRk0iJb0BeCZ6okoADNpwK4alyCHrYKzCaCYWYpTO\nziWusYz0NCxsYGfjTr75j99kzd+vofK97G7alQ71SkQjD1ntyd1P8uXGL9M/od9I+DLPnHwbE52G\nBwofYO3KtTTva2bTpk1cPHWRvnN9oy2TAym6tyRTz5Tqb6nn3JFzRpnnYOIYNYmU9HbghQPMmDyD\nNkdb8AfwCbqCNtyKYSmyX7vtgJ4ZXIOcX+ZAvn9/DLvLjMcz0jNemnapLXp60MhDFnv9xdfp/3C/\nkXQW4Qwu8EyQuYy76D5R8/uZeqa0+eubcRf79KEwcwp+gDFy9c/Q+k4rubflkjc/z9JrFXYpZjk8\n97+f41j7sahamjdtaSLfnR93cShz+H/6u9NxPOPwK7bEF2F49TBzyuZw5tUz9B7p9Y7S2ZnvkMn5\nMcmitujpIT1PeSQmgfPIfef64C+I6od0zJlgqHbHWRzdj1nytw/c3W762vro+loXhxcepvmhZstL\nK1N9phTrUtGDbx0crQsSKqfgARiuHB5tOHW8jzNbzrC3fC9/5vizkNsJOZXTC/wLDP7JILQSVa5B\n0IZbMaw8MM/cN769keYPNKdkKWAm58cky3gZYUl3GnnIImNGD8oZXVIW4QxuzJlgCcaqjKMYZ5lb\nyfroPlFlflN9phRXqWczWTAwhyBYTkG/8fehjw7R/5n+sNsJWULd93HvBn5JxHLaDQsbeOiPHoq5\nOFSgVPaxSEZ+TKpW0KTbPkh8NPKQRcaMHphBQxTZ4vve2jf2R8unZXPNrhreeS1x7ZrTQaLK/Kb6\nTCmuUs8rMQIp8D8jDpZT4Hvgj7CdkCXUfR/XDGB9ais4LjuYsWTGmFyDMaM7FopDBUplgmsy8mPS\noe5IOuyDxEfBQxYZM+RpBg2hpiA6ofot44f0Iw98ZPRHqw//wjzD8G7fu6zbui6rK0v6lfnNoqHj\nWIfC6xbX0Xqx1TiAu4icU2DhdQs5lTMU8Lg+ASzAbbtu452XxgaxgVVVrw9fx5PjgV8DuUaSYx55\nUA6dhZ3MvGcmw45hChwFFE4vxLHEgee3Hm6cuTGaLByiQFUiF8eEDKrAtvyYoMHkNeAotF9o55Zl\nt1A8sTihFVBVJTLzKXjIImPOmHyDhk9iZI+/AgyDo9fBtIXTvGdw3h8tc8jenNseCR4GuwaNoecs\nPiPI1jK/sZ5Jew/wS9qhiMgNpyy8bqFKqN8YuMGgJ8T+hjnzjmZ0p7u7m5X3rzSez0jtB/ewm77j\nfeQ9k8fg+kFjquQXGAWqzJEUn+8BXdD+83a2vrKVxnvtH0qyIz8mMMfl+vB1PAMePMMePHjgKvCY\nzx168fvOexweI38lgaMAyu3IfMp5yBI9PT28f+Z9/3lk37yFnwAnoKSghMqaStb8tzV881vf9GaL\ne6vU+Q7Zj7Nsb++qiChyRDJJyPwCCPt8fHM18vryRnMI+oABxuYUWHjdzNoEp186Te+RXgZaB+g9\n0stn1382YStTQq5k6MAIHMy/ryLs92Doo0MceOFAzPsRjh35MfW31PPWd96ic0onfZP6GOofYvjS\nMJ6VI2/OJJ/n1MfoCUYSv/OZWvtERmXWr6AE5a3nUNY/NrfBHPY9Dc5CZ8ihQPNH6+Tfn2SwMsQX\nN8vPCLxnfcXtaV1R0KpYh8J9z+Z7enpYcd8K2q+1G2fkqzCSGX2nwm4m7tct3Jn31Nen0vFnHcy8\nf2ZMDcZCnu0GTreUAGWET5pM0PfAjvyYzV/fTPeibuN9WgkcBz6BcRJRj5E/4ruCxkHSn2um1j6R\nUXqHsoC3nsMUIuY2hGL+aM17dl5UhXmyUbaW+bVjKNx8bc584wz99f1GgDAD/0ZR18BxzIHn4564\ntxM4nTF51mSqP1dN6zOtdN/VHVOSXciz3WDTLblB/mZK0vcgriW2HozfgaMYwVAlxvu0htFcKDOY\n2EPSn6tfQBuYYzUAHXkdWZ9jlekUPGQB7xmVg7Gd/4Yhry+P6r+NrhLeeD4jMAMo10qfH+0DAQcw\nmysKJkPYA3KUz8d8bRY8u4DWylbjjwHJjAxD8Y+Kmdw1Oe7tBDvz3vjFjbxy1ysxJ9mF/GwHy99I\ncYdK12EXW1/eyt4n9jL00aExwdKVf7zCwNUBb0VY39f6wqUL4GY0YChgNEAyp2VeHNnQmtQ8V29A\na45kBeSW9Hf1Z32OVabL3iPBOOJ3RhX4gw58YNcH2Nm4M6rHSka2d7pL9dJKu9n5fMacvQecNfZf\n7mcyk1n1H1fZdtZonoH/asev4JEQN4pieD3kZzvYUuYUN8Oqv6WeR7/9qBE4BAmWriy9wqFvH+Lq\n2qtjAov8t/KNaRczWPAEXMxcKHMFTQqea9CRrIDnqFUX6U0Jk1kg1oS4YLyJkxEK88j45PdZ62VM\ny2xPoydi8Slf0RQLMotcDRbEl2Tn99m+ilFq+xmgDfhX/BtfrSBpzbCC2fz1zfTm9YbORThhdBYN\nluTovsVtJLSawYKZi+JbOKsEmDByvZm/EvidP5WY59rT08OuJ3fR+Wwng32Dlgpy9fT0sPGLG1mw\nagHzVs1jwaoFbPziRnp6emzdR4lMwUMWsLN3QmC2d+4Pc8l5LoecX+Vw4soJpt8zXZXgxjG/z1oM\nnSsDRVP90rtKwiyVHUwUQfKY3hVVI4/3cYwRDbPb7LPGpWBaAYVHCyl8oTDpVUEPvnVwdLohmHOE\nPuiuBscVx2jAMAcjOKjCP0gwgwnfVVkuvK9B8avFtj/XJ3c/SdXdVTTfaKZ1TSsDEweiDggD79u2\nto3W1a0032im6u4qtr6y1bb9lMg0bZEF7OydEDjEHWxtfKLXgEv68vusdRP3Wv1oigV5c3riHF4f\n07vCTBgM0W12Q+GGlA2ZDzIYPhchXE2NiVA0pYiBnw8w9EdDo6suTozc5+cYxbg8wDsYwVMlxvMf\n+d0o3lPME089YXstC29yd2AV3CjyLcbcF7yflf4P93PghQMJqb0hwSl4yAJ2JMSFokpw4sv3s9bV\n14XHEWIoIMosfb/lk0Eqmz7X9xwFkwv8E/2CrCYq3lvM8qeWR/UcvNs0Vx8Ek+JlyXnkhV/6ak5L\nhDjoTimbwoL/tIA3XnyDSzmXGP7VsPFaFUBOaQ7ls8u586E7efCDD3LghQMcbDnIIIPkkUfd4jqa\n9jZRUVFh+/MKWQU3ioBQhaXSi4KHLJDIBD99YcWX72dtwaoFtHpa48rS9yZgBlQ59K1s6vi5wz/R\nL2A10SQH3w35AAAgAElEQVT3JI795ljUBzvvNtO4kmjd4jpaL7WOraUxEizl9eYx2DkY8qC7Zvka\ntjVui+o3IZln62Gr4EYYNVVhqfSi4EHCGi9f2FjX1I9ndqzM8SZghmmq5b7FPXp2Gria6DR8ovAT\nls6SvdtM8XLMcJq2NPFvf/xvdK/sNlqTm8HSAORez6Xui3Uc/5fjdNOdkjbvsRqzXNY3IHwF6IOS\nySVBR03H8zLydKRXW8IaL19Ydfmzzo5cG28AEq6p1mpwPBO8+FTxnuinK8ZsM8XLMcNpOdvC4scW\nG8Hs5YsM5I0Esx8wgtmamTWUTi81rrdhqjJZwXPQgDPKKrhaRp5esuOXXxJmvHxhldthnR25Nt4A\nZKg9bALgnDlzuKfwHlvm5pd/ejkvPPoC/Xf2B58WiDEoCcblcuFyGSuSrl+/zsmTJ5k9ezZFRUUA\nNDQ00NAw9jXynR4KPLD/+n/8mtccr9l6YE9W8BxPwGlnYrjET8GDhDVevrDK7bDOjlwbv54qYbpp\nFuUX2Ra8Nd7byIN7H2TTlk3sq9jH2ZazXB+4TlFxEdNumsbKO1fGlTD4l3/5l7z4olHC0e12c+XK\nFXJychgcHGR4eJizZ8/y4IMP0tQU3TaScWBPVvAcT8CZyMRwsS5UrJ8MS4FDhw4dYunSpSncDQln\nvOQCzFs1j7a1IXp6ADW7anjntXeSuEfjy8YvbqT5RnPwEa4Iw9np6OjRo6xfv54TJ04wNDQU9DbV\n1dXs378/YgAR9LUxV6a8B44hB8UTi+P6Ti5YtYDWNaGTX2tbajny2hFLjymJ9eabb7Js2TKAZcCb\nyd6+ikRJWA0LG3CudFL7QC2TZ02mwFHAgGeAi6cu0vrjVpr3NWdFoSg7q3Smi2iqN9ol3sp/yz+9\nnOI9xUErmxbvKWb5p+OfQkiWI0eOsGjRIo4fPx4ycABob29n06bIhbQOvnXQvyCUb2XPPwPPI54x\nhbWsGi+J0WIfBQ8SUTRVADOdnVU600Wy3jc7Kv813ttIx94OnIVOaltqqdlVQ21LLc5CJx17OzKq\n+M8DDzzA4GB0B9vt27d7cyJCGXNgt6GyZ6BsDJ4lsRQ8SER+86E2/Vilm2zs6ZGs982v8l/AdszK\nf9GoqKhg23e3ceS1I7zz2jscee0I2767LSHFihLp1KlTUd926tSpQRMmffkd2PswKkVa6AcRjaDB\ncx9G/49n4ejpoykrS5/METSJnoKHDJasL9WYYVNfMf5YpZvAnh6J6GWQrPfL3M5zO55Lyvs2Hj4f\nVng8oU7hxzpx4gRbt4YfmfEe2M3pignYPsXgN210FfgZsA1bp0YiCTX1dUfuHVk/8pmJFDxksGQN\nS4+H+dCGhQ3sbNzJ6ZdO03ukl4HWAXqP9HL6pdPsbNxpS1Jost4vu7pQRms8fD6scDiiz0P3eDwc\nOBB+ZMY7KvYLjOmKOBuEBWNOGy0/v9xoGubG6HmRpNHGcFNfi+oXZf3IZyZS8JDBkjUsrflQeyTq\n/Qo8Y6upq7GlC2W09PkY5XK5yM3NtXSfffv2hb3eHBXLO59njPD4ttYOFEd+TkVFBR+89YNGMa5+\nkjqa5Df11Y8xXeIC9mAknWpkK+0kMnj4Csas8bcSuI1xLVnDxdmYTJgKiXi/gp2xXc6/nNCDTCB9\nPkbV19dz8803W7rP2bNnw15vjop9YNYHRhuE+bbWZuS/p+JfmeL9jPr2/TBzH36A0a7bBW0dbYmZ\nGvVdSbJh5DIZjWyloUSdEnwIeBR4m9DnJBKnZA0Xj5dCUYmWiPcrZJviCF0oq9+y733T58Pgcrn4\nwhe+wKVLlyzd7/r161HdzjvCY1ODsGC8n1Gz70cfIRuWtT/VblvlSe92g/U4SeMeJONZIkYeSoHn\ngM8DFxPw+DIiWcPFyUgmTJVkZnIn4v0KOpph/tiaB5mjGEPAzxuXvJfybH3fsvnzYUV9fT29vb2W\n72eWqo7Eb4TH7Afxpxhn5/fCJz5qrUFYMN7PqDlqlYBloWG324PxefYd7biKRrbSUCJCtu9i5Or+\nCvhaAh5fRiSr70QiW36nWjIbYiXi/Qo6muHb8ClIF8rPFn7WaNdsk2z+fFixefPmqOs7+BoaGmL9\n+vUh+1yYvD05PtyfsF4c3s+oOWoFSSnb7t2ug7GjHf0j+/LHGIHFOB3ZSjd2jzw8DCwG/svIvzVl\nkUDZVJUvVZJZwyIRtSTGjGb0YWTK/wQ4Zd92JLKDB2M7kE6fPp2nn346Yr2HZBTS8n5GLwCfBAZJ\n2tRo9W+rYQBjOsZ3tMMcQfsD8Cw4nnaMy5GtdGPnyMNM4H8AqzE+AuCfdhPU448/Tnl5ud/fIkXg\nYvBt8GNHt8HxKJkNsexq7OPbb+TsibOjowy9jJ6x3Ysx5PwqRuBwFcrnl6uBUALFMuoAcPz4caqq\nqvjQhz7EmTNnwnbdNAtpJUrgZ7RvoC8p+Qbmds984wz9Z/r9R8tgdARtGOa3zB93fTZ8u7OarObW\n2M3OxlgPAP8K+BZzNxeLDQGF+J8jqTGWpFymNcRyHXax9eWt7H1iL0MfHTIy0bdjDOkeBWrJmuZS\nmWbBggW0trbGfP/S0lJ6e3uZM2cO9957b9RdNxMp2Q3Lenp6mLFkBu7/4A55m3T7TqZKNjXGagFu\nB+4YuSwG3sBInlyMpjAkDWVSjYKenh5+8sRPePX/fdUIHGZipCebQ7rtaD18CtXVxZdjZCZbnjhx\ngubmZlasWBF1Y7FEGVN5chfGL/qz4Pipg3fOvmPrPracbaGgrCBjvpPjmZ3BQy/Q6nM5gpHqcmHk\n3yJpJ1NqFJj1HH702x/hKfP4BwnmkG45Wg+fQk1NTZZrPIQTbdfNRBpTeXI+xgqPz4Hnzz3sn7w/\n6uZn0WhY2MBDf/RQRnwnx7tEV5g0F42JpCU7khhdLhfr169n/fr1rF27lnnz5rF27Vrv3yJ1TYyG\nt55DP1BA8CAh3LdNZ2wJV1FRQWtrKw8//DClpaW2PGasSZh28qs8GWfzs2hkY5O6bJTo4OGPgL9O\n8DZEYmZHjYKGhgaefvppbrrpJo4fP05bWxvHjx/npptuiiqLPhp+lf+CBQl9GGnKOmNLGZfLxX33\n3cevf/1rioqKKC4utlyqOlCsSZh2S2bzM9UNyQx2JkxapYTJGPX09BgrLN4KWGGxJfUJVuNRd3c3\nK1eupL29fcx11dXV7N+/P+73xZvY+QPgZvwTI81VFisZLeoTpNLj/pfj3w+xpqenhxUrVgT9bESj\ntraWI0dSv7Ig0xKLx4NsSpiUJAjXfc7OucfxIFQLYKsJYJs3bw55cLBr3tqv8t8c/HsbmAFDDWMr\nSj4Lxa8U64wtRSoqKti/fz9Op5M5c+ZYvn+8SZh28X7+Avtc/ADYCV3nuyJWY01mNVdJPE2CZpCe\nnh6++dffDN7LwGfu0Y5iMeH2IRtGPZ7c/SRfbvyy8Vr61Oxv7Wrlhbtf4Imnnoj6dYw0L23HvPWY\nyn8rMdKQXwUuM1qrIrCi5DBUtVSxs3Fn3Psg1vmuzy8pKcHhcODxRJcGVl1dTVNTeszv1y2uo/VY\n62ig6vOdoQtyduVEbCmfzGqukngaecgQ5ojD8YvHU7YcL5tGPfwaSsWZAHbhwoWw17e3t8edNDmm\n8l8HRh8As6qKVlmkhMvlYt26dcycOZPS0lIKCgooLS1l5syZrFu3DoAdO3awY8cODh8+zG233Rbx\nMfPz83E6nbZMd9mlaUsTpa+WhuxzcXXt1YjVWJNZzVUST8FDhvAe7EJl2kPCDxR2HnBTzc4EsLKy\nsrDXz5gxI+6kSb8kspdKyL+YT0lBCZU1lZTcVKJVFilSX19Pe3s7nZ2d9PX14Xa76evro7Ozk/b2\ndlav9j+bzsuL/F643W6eeeYZpk+fzk033cS6detsWbETj5azLXgmeuL6zlj9zmmaI70peMgQ3i9e\nCpfjJTPjOtHsaI9tnnVGSoY7depUxDyKSD+UADsbd3L6pdP0HulloHWA3iO9nH7ptNbFp5DVfJdo\ncxg8Hg9DQ0NcuHAhaBCSbA0LG5gxecbodyYw98EFnV2dYT/nVr9z9bfU0/5UO50zOul7qA/3Z9z0\nfaqPzhmdRjvwCNMkklgKHjKE94tndkwMJsEHCjsOuOkinsqSZtDwhS98gV27djE0NBTytmAst4uU\nNBnPD6XWxaeO1XyXpqYmpk6damkb7e3t3HHHHSkfffB+Z3ox8m7mY7QD3wA0wJXVV8JOX1r9zmma\nI70peMgQ3i/eKvwz7Rn576nEHygyqZRzJPFUlqyvr+ett96y1JjmueeeCzv8HM8PpdbFp06kfJfA\n6ysqKvj973/vt/pi1qxZ5OSE/yk+d+5cykcfvN8ZM2nS4vSl1e9cNo10ZiMFDxnC+8Uz29MGLsd7\nNfHL8TKllHM04jlb37x5M93d3Za2Nzg4yJ49e7hy5UrQ6+P5oWxY2BBySmNn404aFqqDZqJEyncJ\nvN7lcvHII49w/vx55s6dS01NDW63m+Hh4RCPYHC73SkvVe3tc/EeMX1W/fpkBHznivcUs/zTy/1u\nn00jndkoc04Vx7mmLU3suW8P7bQbBYBG2tMmswDQmH0IKELU9HLmDI/H0x77F7/4RUzbvHbtGn/1\nV3/Fv/7rv+J0Ov2SKPVDmZkiHfQDrw9ssQ1GN84zZ85E3FaqS1U33tvIg3sfZO6KuVxxBA+Cw31W\nzftv2rKJgy0BS733jl3q7R3pTHA7cImNXv0MEc/BLpv2wS4NCxuMM3ILJTFcLhfNzc2cPXs25u1e\nu3aNPXv2sGbNGjZ+caO3XkbHiQ79UGagSNMNka6H6EtQp0Op6oqKCipvqaTV0xrTZ7WioiLqFt7e\n2ibB2oFn2EhnNtIvUoaI5WCXjfuQSvX19Xz1q1+NmCAZybVr1/jK17/C0GeGRovt7MSYEtIP5bgT\nzfJNK7dLtGQd1Jd/ejkvPPqCsTw8YKSzeE8xy59aHuERJJHS49MokkSxVskMtyzPqqEbQ/4/vndj\nZLD/McZ8cg5wFWgB3oN/nvzPvLjgRSbPmkztA7U4VzqVy5BkvtUir1+/zsmTJzl58mTY+/T19QV9\nnObmZlpbW7l48SL9/f1RbT9dSlUna/rS6jSHJJcaY8m44leW2uxS6XM2E64s9YIFC2htbbVnR3KB\nrwb8rQ/YCwUdBVTOqOT06dO4/50bJmNkuHcb++rodTBt4TQWPrRQQUSS9fT0sGnTJl555RVOnDhB\naWkpvb29IW/vdDrZts1/mD5cI7VQJk6cSHt7e1ocMF2HXTTva6b1x61cePcC165eg2HIKcyhqKSI\nZXcsY/u3t6fFvmYzNcaSiOxq4CTxVcm0dc45WEvt14Bz4Mn1cL7n/GjgsB1jTf2fAp8Dz597OFN1\nRoVykqy7u5sVK1bQ3NzMiRMnAMIGDlOnTg3am8LqCFZubi7Lli2jpSU9ltyaq3v+ZvPfAOD5Ew+e\nP/cw9H8N0fdQH6+WvJpx5erFOgUPaS5d+0kEBjTz6uZx29LbmHfXvLQOcOJZEhlqmWVM8n3+P6Do\njvvzbi7nXzb2M8ya+nQvlBOp70Oqix5ZZeWgX1payu7du4OefUezasLhcJCbm0tRURG1tbU8+uij\ncZc4t1s2lasX6xQ8pLl0/IKOCWhWttHW08bxpcdpu78tbQKcYOJZEllaWmrfjtzq8/+hAgQHRvOr\nDC2UY7XvQ7qzslSyt7eXtWvXBg2QIo1g1dTUMDw8zODgINeuXePtt99Ou8ABVMRpvFPwkObS8Qs6\nJqCJseJcKsRTJTOaZXdROwH8N+D/B95l7Hts9jBxkJH1H1wuF4sXLw7b96GqqiojRiDMEZR33nnH\n0v3KysqCHvQjrZpIl1UVkag2yfim4CHNpeMX1C+g6cM4EKZZgBOK1SqZLpeLRYsWUVRURFtbW1Tb\nyMvLi+4AMAyOiw4jYTPwPTZ7mKSwEVo86uvrOXfuXNjb9Pf3Z8QIhDmCYnWJbqgRhkirJtJlVUUk\nVgJx5W1lHwUPaS4d+0l4Axpzrn4CcXXbSyarZakvX77MsWPHuHHjRsTHrq2txePx4Ha7cbvdeDwe\nnE5n2Pt43B7y+/PHvsdmD5MJJK0kuJ05Cps3b8btdke8XSaMQMS6RDdUANnU1ER1dXXQ66qrq4Mm\nWaajaAPxdM3bkvgoeEhz6dhPwhvQmNMVucTVbS+ZrDaR2r17N9evX4/qsYOdMUYzT+52u8e+x2YP\nkyHgfwOniKofQDzC5Sjs2rWLz3/+81EHElbyA9JlBCJU8PTss8/G9HihRhBaWlqorq6msrKSkpIS\n8vPzKSkpobKykuLiYurr6zMiydQvEL+KcdLwHPAs5P00j917dzPvrnlsdm5Ou7wtiV96jnmKVzpW\nWfNWmOvBqJBoDrEfZTT3wRTwIxGqhkKyWK2S+fLLL0d1u+LiYpYvH/teRLW8sxhjlKEe//f4PBS7\ni/n6//o6R3YdSXihnEhn2P39/fT391NYWBjxQG91WWt7ezubNm0aUxMhnMBiSwMDAxQUFDB58mRq\na2vH9A+JxKwg2tk5GslFM3oSTLgRhGD9LUxmDYjAfejr64vqdU8mMxA//4PzXDp6CT6O8XvQB4Pb\nB+n4UIcxnfk84ac1W9JnWlOip+AhzaVjlTVvQDPUb5xJrMIYcQDjxyOYDP2RuHbtWsTb5Ofn09HR\nEfS9iCr3IQ9jlOE14FW8hasmuSdx7DfHjMf9uMUdj0G0owXRHOhjSfprbm5mx44d3HnnnVEd+EMd\n7GM90NpVQbS8vJzq6mpaWlosr5IItw+xBFiJZAbiG9/eSHNN8+hJg28CNWRs0q+Ep+AhA1hpJpMM\nZkBz2123cdlzeXSI3cW4/JFwOBwhg7i6urrIVSlvxXgN1/r/+ZZdtyQkOAx1xh7t9AxE7iwa1fMO\n4sKFC1FPYdh9oLWja+XDDz8c19RCpJGuaEfCkungWwdHTxrMBGrfkwjflUOB0jjpV8JTzoPEpKKi\ngk/c/4nRufoSjOS+NEvujNeECRMi3qaoqCjkdU1NTVRVVYW+swO4BBwO+HsCX69QuQ1WVhMUFhYG\n/buZN7Bz504cjtiq35sH/kgiHeytBgN2VBD92c9+FlfwEKnPxdmzZ7nppptizn9IROGusAnUMDqt\nGYyavmUsBQ8Ss+WfXk7xnuLRlQtZ9CNh/sgODAxEvO20adNCXtfS0sLEiRMpKCgIfgMPcA74QMDf\nE/h62TE8f+rUKdavXz/mYGMGJmfOnMHjCRVJRhbNgT/Swf7o0aOWDo521Fe49dZb4yroFM3oz4UL\nF9izZ09UFU97enrYuHEjCxYsYN68eWzZsoX9+/fbWrgrZAI1GCMRbuAnBE36DbbCSTKDggeJWeO9\njXTs7cBZ6KS2pZapvVNx/MSRlJUBiWYeBKPJeQgXPDQ0NPD222+zYcOG0A9gLm+FpLxedgzPOxwO\nnn766TEHSrvyBqIZBYh0sDeXzUZ7cLSjvkK8AUi4USxf165dY/fu3WFv8+STT1JVVeWdompra6Ot\nrY2rV68GvX17ezt33HGH5dEH74owsxqqeRJhjkQsApzAHzCSJ58Fvgflx8qDrnCSzJB548iSVgLz\nMbztrtMkuTNW0R4Ep06dyvbt2yPeLtIBu6CtgKpdVUl5vSIdmHNychgeHg57G7fbze23387vf/97\nv/20IzCB0Adh33yNs2fPWnrMSHkQTU1N7NmzJ67gJ94AZNq0aVH3UHnppZfCXv/6669H3e7bdO7c\nOcujDyETqCfhnzjpm9NzGh4ofIBtjemTyyWZYyngOXTokEfs9fzzz3vWrl3rqays9JSUlHjy8/M9\nJSUlnsrKSs/atWs9zz//fELum01qa2vNNK+QlylTpkT9mtTU1IR9rJqamiQ8K+P9LSkpCbsveXl5\nEZ+7eSkuLvb7nOTm5kZ933CX6dOne6ZMmeLJycnx+7vD4RjzN6uXwsJCz8KFC8e8b+ZnP9bHr66u\n9nR3d8f1/txzzz1Rby83NzfsY0XzGQ52mTRpksfpdFp6Lt3d3Z5JcyZ5+Fs8bMHDf8bDdEb/HXj5\nGp7albVxvVbj3aFDh8z3bGmog2wiadoiC8XTkCjbmhnFwuVy0dHREfY2+fn5/OEPf2Dnzp1RzXGn\nsp+Bb5Lc5z//efr6+sLe/lOf+lTUTcD6+/tjTroMZfbs2RQWFnLhwoUxIyAejyfiqEgkN27c4PDh\nw2zYsAGHw+G9bNiwgV27dll+/OLiYiorK73LM+Oxfft28vPzI98QGBoawuFwUFRUxKJFi8ZMN8Sa\nAHr58mWam5upqqpi69boCrsFTaCeyLhcfTVeKHjIQtEsYUvEfdOd67CLdVvXMfP+mZQuKKWgtoDS\nBaXMvH8m67auw3XYhcvl4u/+7u8iDve63W5Lr0Uq+xn4BoSRntfEiRP5yEc+wp133pmQfYmmudjp\n06cjBm/pwOFw0NraSl9fH6dPn446kAynpaWFm2++2dJ9bty4wdWrV8cE9vEGpP39/Rw4EH31xzEJ\n1AnqyxKYBLpgwQI2blSfjGRT8JCF4lnCZvfyt3RSf0s97U+10zmjk76H+nB/xk3fp/ronNFJ+1Pt\nXNl3hb/7u7/j6NGjUT2eldeiqamJqVOnBr0uNzeXjo6OhJUetpLEODw8TFlZGY8++ijFxcW27seE\nCROiWr4Z78hCsng8npBtt2PV0NDA7373O8vt3zs6Orj11lv9VpXYEZBa+YwHJlCXDZTZvvoqWBJo\na2ur5ZESiZ+ChywUabiyszN0o6pI97VjLXyqbP76ZtqXtAetsd++pJ1fH/g1J0+ejPrxrLwWLS0t\nzJ8/n9zc3DHXDQ0N0dramrApISsHgBkzZnjLJ4etT2HRhAkTWLx4sS3TGukkVNvteLS0tMS0zHVw\ncNBvejFcAy4rj2mFmUB95LUjHP/NcUtN6KIRLgnU6kiJxEfBQxaKNFx55cqVkFF6KufmE82vlXig\nGfDTf/mppex0K69FQ0MDc+bMCXnw7O7uTtiUkJUDgO9zsnMqZXBwkPPnz9v2eOkiEcF0Q0MDM2bM\niPn+7e3tzJ07lyVLltDf38/06dP9GnCVl5dHNX0E8X3frTahi0Y2j4xmGgUPWSiaH/1QUXoq5+YT\nzVsJL5gc602QrL4Wqfrhs3IA8H1O4aZarHK73ZaXVmaCY8eOJaTzZbxB+pUrV+jq6uLMmTNcvnyZ\nb37zmwwMDNDb28vFixc5e/YsTqeTSZMmhX2ceL7vDQsb2Nm4k9Mvnab3SC8DrQP0Hunl9EuncZY5\naf5PzZYrXWbzyGimUfCQhZYvXx7VfHWwg1W4oc5wnQJN0SQlpoq3El4wwzDkjn5IPVQXzXAuXLgQ\n1/WxivYAEPj+trS0sHjxYiorK20ZcQpVnCiTeSwWooqWnUF6sBOFiooKtm3bxrFjx+L6vscq1lVd\n2TwymmkUPGShxsZGOjo6KCsrC3u7YFF6S0sL1dXVVFZWUlJSQl5envdy5swZlixZEjazOVJS4upp\nqVvq6a2EF0wXoQOLAFVVVXR0dNDYaK29eKT3I9L1sYo09x1qqWFDQwM7d+7k9OnTvPfee3HPn6ea\nw+EgNzc36iH7WNi1IsnOUR8IPaoV+H03pzZ8Pw+JWN0Q66qubB4ZzTQKHrJURUUFlZWhJvgNwaJ0\n3wPGN77xDQoKChgcHGRwcJD+/n66urrCZjZHSkrctCV1Sz3HLCUDv3LQBUUh+k/4yMnJ4Stf+UpM\n1R8jrSJI1CqDcAeItWvX8v3vfz/iUkPzMeJZgeHxeJg4cWLM949HQUEBt99+O5MmTYqr50Y07Jh+\nMkd9pkyZYkuwE2o43/f73tvb653aMD8Ply9fTsjqhlin8MKNqsYyGiixU/CQxeKN0iNlNj/22GNj\n5igjJSUefCt1CU2BS8lqdtVQ21KLs9BJx94OZlXOivgY8+bNi3mEINJBIFFnxJEOEOFWC5gFpjZt\n2sRrr71mudxxoOHhYW8QE2zlSaIMDw9z9epVLly4EHPwkJeXR2VlZcQAyo55d/M9O3/+PENDQ9TU\n1MT1eLEO5ydqdUOk1+j48eNBRzfMUVWn00ltbS01NTXU1tbidDpjGg2UzKTy1AnW3d3tqa6ujrmU\nbrTlbX0fq2ZlzWgJ2v+Mh5V4uA0PNcZ/y2aXxV3CNxGef/55T3l5edjnWV5eHld57mnTpoV9/GnT\nptn4jOzx/vvvh/wMxXIJLMPd3d1tqRx2qi6+n/FI34vaWvvLLkfapsPhCHu90+lMyHZjfa7R/rYU\nFxd7nnzyyZi2ke1UnloSJpr5zHCiPYPynaP0JiWaHfXmAxtGLg1wZfUVqu6uYusr6VXMpb6+nvLy\n8pDXV1VV0dbWFtea/ilTpsR1fSrY1SXTFHgGHGtNA7vl5eVRWFjo9zeHw0FhYeGY70sq5t0jPeZd\nd92VkOH8RK1uiPY1Uu2G8eMvgN8Bl0cu+4D7QtxWIw9pzkpjHfMMxPkFp4dHRkYcHiF4U5xH8Di/\nENuZUKI4nc6wz2/69OlxNwWLtI1Yzw4TKdbmSlaeY0FBgS2PHensO9zFSmOyeEf0YhHNNru7uz1O\np9NTW1vrqamp8dTW1lpucBUoUSMPTz75pKe4uNjSb4v4y7aRh9PAZownswz4FbADWGDzdiQJrJxB\nmWcg3qTE90jb3IdgIiVwTZ48Oe5KgokqUe3b+KqoqMiv2VNOTg5FRUXMnDmTRYsWsWjRIktr6+1c\nNx+49M/M4o92G5FyDeJZrWIlJyDeEb1YRLNNc/nlkSNHeOeddzhy5Ajbtm2Lq7V7okZZfHMXCgrC\nJypfv35dvSzGqfPAxiB/18hDmgt3thN48T076O7u9pRVlwUfdRi51KxMTgvqaCWjZfbzzz/vmT9/\nfsht5OfnxzS/+/7773umTp0a8T0qKiryVFRUWDpjtmPkIS8vb0xL9+9973tRn3mal7KyspDPs7q6\n2q8OvmAAABinSURBVPPwww/HvI/pOOqTDsKNEDgcDs/06dMTProRakRpvOdDpHrkIZFygYcxZr/n\nBrlewUOae/755z1r1671VFZWRkxqKygo8Dz22GPe+9aurPXwtwRNmmQFnpoPpU/w8Nhjj3lycnKS\nMnT6mc98Jux2qqqqwg47P//8856PfOQjnuLi4riG6YNdgh1AI0215OXlefLz8z0lJSVjAoRwIj1u\nqPfAHJqfM2eOB/DMmTPH+xpZCXZ9L4maasgW5ms+bdq0hBzIY/kshPvMjhfZGDwsxAgY3MAV4E9C\n3E7BQwbp7u72VFZWhj2ItLa2em/v/ILTwwY8VGHkPvwtxqjD14x/507L9Ty5Oz3OGn7/+98nLFs9\n0KRJkyz/QObm5nqmT5/umTZtmic/P9/WgMH3EixAStT8fiwjGtOmTfN87GMf83zsYx/zrFmzxlNT\nU+NZs2aN92+PPfaYN9gtKSnx5OfnR3xf8/Lyog54xrtE5ezEGvSF+syOF6kOHhJRy/MPwCJgEvAQ\n8EPgI8CbwW78+OOPj8lyN7v6SfpoaWkJ29hocHCQ9evXc+zYMcDIffjnh/+ZoY8OGQWjTCMFo4Y+\nOsSBFw7QeG/q12U/8MADYTP+8/LybCvTe+3aNcv3GRoa4syZM7ZsP5xwFUdv3LjBxYsXGRgYoKCg\ngMmTJ3vn2mP5rsaSSzFlyhR27Nhh6T4LFiygtbU15PU1NTXs3LnT8r6MR4nqzRLsM+bxeKL6jIyX\nXhYul2tMTtKlS5dStDfJ8wvgfwb5u0YeMkykrHiHw+F3JlpTVzM64hB4+Rqe2pXpcdYQTba/XWem\ndq0sSMQlmWdxsYw8xHJmm4krXNJVMvKCTNF+PjTykLqRh2TUechJ0nYkwTwR1uN7PB7/krV5hO1i\nOUjqzxpcLlfEbpr5+fm2jYRNmDDBlsdJhGT2BbC6rVhrFaicsX2S2ZQq2hEF9bJIHbsP6v8d+DBQ\nhZH78P8A9wI/sHk7kgIOR6hIYJRvUZdIXSzzEjJrZk19fX3EoCia5x2t+++/37bHslOyD6ThmnWV\nlpZSU1NjS+lhlTO2TzKLY0UTiCj4Sy27f70rgGeB6RhFon4HrMOo9yAZbtasWRw/fjzi7cy5z7rF\ndbR2tvrnPJi6RrpcptiXvvSliLeZNStyz4tolZSU2PZY8SooKGDu3LnU1dXR1NQUVz0Aq8LlUpgH\nd7tGe8z6BxKf5cuX88ILLwTtdWH3gbyuri5srsrcuXPZt29fUj+zkj6U85BhNmzYENU8pDn3+eTu\nJz3FNcXGaouv4bfaorimOKWrLSLVXPC9bNiwwdZtp0veg+b7xapEVLEMtZ1kV/HMNKnOebBvPNa6\npcChQ4cOsXRp1ixTzXpHjx7ljjvuCJsnUFtby5EjRwCjiuCmLZs4+NZBBhkkjzzqFtfRtCW5Z7qB\nuru7qa6upre3N+ztZs+eTUdHh63bnjRpEleuXLH1Ma2qrq5m//79OnOTtORyubxtwBM9MpWp3nzz\nTZYtWwZGNeegqxkTKfWTzpJR5s+fzyc/+Ul++MMfhrzN6dOnmTdvHmDMXdbV1bH7x7vT6kD1pS99\nKWLgAImZZpg2bVpKg4e8vLy4llmKwMiJwaZNHDx4kMHBQe933Y4pMC3Xl3A0bZGBvve973kmTJhg\neYg81aVku7u7Pc4vOD21K2s9FXOCl2gOdknE0P4999yj6QrJaOHKi6f6uz5epHraQksoxZLXX389\npkJHqWyt++TuJ6m6u4rmG820rmmlpyy6hjoOhyMh2dwbNmyI2OQpXrm5uUH/rgx1iYbZtCxUM6rX\nX389aOIkGN/1zZs3q4mVJIxGHjJQPI2SUlXQxdsmfMvIpSK6/X3ggQcStk/d3d2eqqqqhI0u1NTU\nJCWxTbJPNKMKVn8HNBphv1SPPCjnQSyJpxxsd3e3jXsSvYNvHYQ1Pn8Yju5+Z8+eTcj+gLF88OLF\niwl7/CtXrmh5osQk0qjCgQMHLP8OmPdTXY3soWkLsSSeKnLnzp0brT6ZRIMM+q8rivJTn+ikxmim\nfyZMmBBT8llZWVksuyQSVQ+LWH4H9u3bF3YqRDKLggexJN4qcrt372bjFzeyYNUC5q2ax4JVC9j4\nxcT+gIypdHlrdPdLddMdh8PBt771LZYsWUJlZSUlJSXk5+dHlS8xPBzl8IpIgEif+8HBwZh+B44d\nO+ZdftnW1kZrayvNzc3+Je0lYyh4EEuWL18eV7nmH/3rj7yJi21r22hd3UrzjWaq7q5i6yuJ+QGp\nW1wHnT5/mAnkR76fnbX6g4nU56KsrIzGxkZ27tzJ6dOn6e3tZWBggO9///sUFBSEvW9fX5+duyrj\nSDQ9LML1DAnFE6IMfCqTqSV2Ch7EksbGRm677baY7+8p8hgHbzP+GGnR3f/hfg68kJgfkOWfXk7x\nnmI4jZHvMBuI4ncv0U135s+fH9P1DQ0NVFVVhb3vxIkTY90tGeduvvnmiNcH6xkSzwqiWNt5S+oo\neBDLVq5cGfudC0P8fcZIYmMCNN7bSMfeDpyFTiZ+dyJ8F6PzShjJWNLodDpDjj5MmDABp9MZ8r7J\n7HAo48v27dtDNi2rrq5m+/btwGjPkCNHjvDOO+/Q0dER8n6RpHqKUKxT8CCWxTJk6eWbb9AH7MLo\nufpDOH7ieMLyHyoqKtj23W3cMvmWsLfLz89PWsfFxsZGTp48GbTj48mTJ8NuP5kdDmV8qaioYP/+\n/UE/l+FKmgfeL9LUmi8Fu5lHvS0kJr6lac+dO0dPT0/k1tY5Djz3e+BDQC+wHagHKjE+icNAFxTv\nKeaJp56g8V77D96FhYUMDAyEvL6goIAbN27Yvl27bd26lb/+678O2eHwiSee0LI4SampU6dGfSLg\ndDq1tNgi9baQjBTY5tg3mLh+/Trnz58HjPnRwsJC6urquO64zg9zRnpi7MMIHHzbdQfkPyQieIgU\n4ES6Pl00Njby4IMPJqy3gEi8wgXpvlT1NDMpeBBbBAYTwWx9ZSs7Ht1B/4f7oRv/wk2+ZsDBlsTk\nP0RaKRLPSpJki+Y1F0lXOTk5fO5zn1Owm6GU8yBJ45u4WHC9IPSkWc5IYacEmDVrVlzXi0h0CgtD\nZUcbbr75ZrZt26bAIUMpeJCkMhMX586a61+4ydfwSGEnG/T09PgVpXr/0vthb69EQxF7RLPkUzKX\npi3Edi6XC5fLBcD169c5efIks2fPpqioCDDqFNQtrqO1s9U/58HUNVLYKU5P7n6SLzd+2ZgmWYMx\n0rEa+D3wU8jz5OFwOHA4HMyaNYsdO3ZErL0gItGpq6ujtbU17PWSuRQ8iO0aGhpoaGgARjOCXS6X\n36qaK7de4YVHXzAO7DMwxsB8Vlssfyr6BKqenh42bdnEwbcOGtMdbhgeHKb7fDf9a/rHJmUuAibD\nZws/y7bvKmdAJBGWL1/OCy+8EHJFkJIkM5uCB0mKLVu20N7e7rcq4I0fv0HTd5o42GIc9PPIo25x\nHU17o0+g6u7uZuX9K2lf0m6MLvRhLAFdCfwaYxloMAlMyhQRrQjKdqrzIAlhLt386U9/6l22GciO\negT3NtzLqyWvGqMLfcALwCqMpaA5wOd8bmwWpXoPGIaC/gI2fGaDfshEJOOkus6DEibFdt3d3axY\nsYLm5uaQgQPY0xDn3KlzxuhCL/AiRjh8AqOGRC6jSZm/Ab4F/A7oAc7DwLUBmpubmT17trr6iYhY\noOBBbLd582ba29ujuu2+fftibtHd09ND5/udRsBgFp0qAM5hBBQVjHbT/B2EWv157do1nnnmmaj2\nV0RElPMgCWClQ96Jkydou9E2uhpiGFq7Wtlz3x72vxy6jr53JcVQvzG60IPxGJ6Rx3FgTF+8iBFU\nRIhFwmWFi4iIP408iO2sdMhzT3AHbdHdvqSdT/3HT4W83+svvm6s1LgVY3TBDBgqgAGMIKIEeAg4\nCkRoV3Ht2rWo91lEZLxT8CC2s9Qhz4GRyBhoxkg+QwgH3zpoTE2sAn7JaMCwauTxzOmKEmBy9Lsj\nIiKRKXgQ21kq/nIR+Afg68B/x5hm6GNMiWrfSpHVddX84d0/GIGHObrgwQgYSoBPAz8DTmHUjugk\nogkTJkS/zyIi45yCB7FdU1MT1dXV1u7kwZhaOAJ8A/jNaInq7u5uVty3guYbzbSubOXdnncZLhoe\nXUlhBgy/BE4DN2Es0TwKPDvymBGosqSISPQUPIjtKioq2L9/P06nkzlz5gCQn58f/QN4gNbREtUP\nfekhowjUFEYTIM1cB5NvfsOzMOHFCdQ6anH+iZPq2ZEDGafTGf3+iYiMcwoeJCHMdtHbt28HYPr0\n6dYe4AQs/7RRvvbcqXNG3oJZx8E31+E0xtQEwATgg1A9pZqTB09y5LUjbPvuNnJzc8NuqqamJq5C\nVSIi442WaortAhtj1dTU0NXVZflxDrxwgAdrHzRyH8w6Dnvwz3V4DXh15G8eKBsoY/9vRpd4dnd3\n895774XdzsqVKy3vm4jIeKbgQWzn2xjLtHHjRpqbm6N/EAc032hmz317yM3LNRIrzToOZi2HEmCt\nz32GobKlkoqKCm957FCNeUw5OTlq0CMiYpGCB0mK5cuX84Mf/AC32x3dHTzAT6G9uJ2iG0XGlIRZ\nx6GTsa28RxpitXW24XBE37Ll5ptv1pSFiIhFynmQpGhsbOSTn/yktTtNBz4H1//oOlxitI5DYK7D\nVeDbwAkYdEdfoAqMaRUREbFGIw+SNG+//ba1O7yHEd7WYPSmMEccAnMdOjCKRMVAwYOIiHUaeZCk\nsVK22riDz//fB/k/yzdGHCZg5Do0AGXEHDgAFBUVxX5nEZFxSiMPkjSWylaDkST5BnAnMBFmzprJ\nPYX3cLDlIIMMcuXMFc52nI1rn0pKSuK6v4jIeKSRB0kaS2WrTadH/jsMRflFbPvuNnb/eDcra1bS\nf75/tMpkjNatWxffA4iIjEMKHiRpli9fTnFxsbU7mSUauoyKk//wD//A9OnTaW5u5sqVK7bsk4iI\nWBP9mjb7LQUOHTp0iKVLl6ZwNySZzPoLBw8e5NixY9Et3SwFrkMuuQwNDtm2LxMnTrQlABERSbY3\n33yTZcuWASwD3kz29u0eefgvwG+AK8D7wP/GyJUXAUbLVh85coTbbrstujv1AoPYGjiAUSBKRESs\ns/vX8x7gn4C7MOoB5gG7AItj1TIe3HzzzSndfmFhYUq3LyKSqexebXF/wL83At0YUxR7bd6WZLjt\n27czbdo0hoeHI984AVIdvIiIZKpEj9uWj/z3QoK3IxmooqKCuXPnJuSxoylRreBBRCQ2iQweHMC3\nMPogtiZwO5LBEtHR0uFw8L3vfY/u7m6qq6uD3qa6utrbLlxERKxJZPDwHWABRh1AkaBiWr4ZwW23\n3UZjYyMVFRXs378fp9NJbW0tNTU11NbW4nQ62b9/tG23iIhYk6ilmv8ErMdIoDwZ4jZLgUMf/vCH\nKS8v97siWEtnyV49PT2sX7+eAwcO2PJ4TqeTbdu22fJYIiKp5nK5cLlcfn+7dOkSe/bsgRQt1bQ7\neHBgBA4fBz4CtIe5reo8iJ/q6mrefffduB6juLiYJ554Qm22RSSrpbrOg92rLb6LMU3xcaAPmDby\n90uA2hdKWJWVlZaDh4KCAoqKipg2bRorV66kqalJ0xEiIglmd/Dw5xjdBnYH/N0JPGvztiTLbN++\nnRUrVtDeHm7AyjBz5kwOHTqkQEFEJAXsTpjMAXJH/ut7UeAgEfkmONbU1FBaWup3fU5ODmVlZTz8\n8MMKHEREUkgtuSWtmOWrRUQkfam4v4iIiFii4EFEREQsUfAgIiIilih4EBEREUsUPIiIiIglCh5E\nRETEEgUPIiIiYomCBxEREbFEwYOIiIhYouBBRERELFHwICIiIpYoeBARERFLFDyIiIiIJQoeRERE\nxBIFDyIiImKJggcRERGxRMGDiIiIWKLgQURERCxR8CAiIiKWKHgQERERSxQ8iIiIiCUKHkRERMQS\nBQ8iIiJiiYIHERERsUTBg4iIiFii4EFEREQsUfAgIiIilih4EBEREUsUPIiIiIglCh5ERETEEgUP\nIiIiYomCB/k/7d19iGV1Hcfxd2u5uhvpVm5ZGeqotaammLqjJMmgqBA+YkGCLOt/BqsECYpxe8CC\noicqwShoCycxEh+wUvEBRF2s2XzAyZ5cKp3JfBhzLTfdsT++v8v53bPHWc+ce8+dh/cLLjP3nN95\nuB++c+Z3f+eceyVJqsXOgyRJqsXOgyRJqsXOgyRJqsXOgyRJqsXOgyRJqsXOgyRJqsXOgyRJqsXO\nwzIzPj4+7F1Ydsy8fWbePjNfXgbReTgZuAV4CpgFzhrANjRP/oG3z8zbZ+btM/PlZRCdh1XAVuCS\n9Pz1AWxDkiQNyVsHsM5fp4ckSVqCvOZBkiTVMoiRh1omJyeHvQvLyszMDBMTE8PejWXFzNtn5u0z\n83YN+3/nWwa8/lngbODminn7Aw8B7x/wPkiStBQ9BRwHTLW94WGOPEwRL3r/Ie6DJEmL1RRD6DjA\n8E9bDO2FS5Kk+RlE52E1cGj2/GDgaOA54O8D2J4kSVrkPkFc6zAL7Mx+//EQ90mSJEmSJEmSJEmS\nJC1fHYrrF7qPp0tt1hGf6TAD/Bt4ADig1GYUuAvYDrwA3A3slc3fVrGdq0vr+CDx5VvbgX8B3wHe\nNs/XtZB1aJb5gRXLdx/nZetYA/w0rWMG2AzsU9qOmRf6kfm2ivnW+fyPLe8DrgOmibwm6M0brPNc\nh3Yy31axHet8/pmPADcCzwAvAtcDa0vrWHB13gEeSTvafbwrmz9C3FHxNeCjxEH0DGC/rM0o8WI+\nT4Q0ApwL7Jm1eRK4srSd1dn8PYBHgTvTdsaAfwDfbfoCF6AOzTJfUVp2LXAVUXSrsvX8CngYOAFY\nn7aZf7CXmRf6lbl1XujQ/NhyN/Ag8LE0/0rgNeJOry7rvNChncyt80KHZpmvBv4C/AL4CHAE0ZHY\nQu8HPi64Ou8Q35b5Rn4O/GQ363gQ+OJu2jwJbJpj/hlEgb43m/Yp4L/A23ez7sWmQ/PMy7YCP8ye\nryN6wMdl005I07q33Jp5oR+Zg3We69A885eAz5SmPQtsSL9b5706DD5zsM5zHZplfhqRVZ7LvkQN\nj6XnrdV53S/GOpT4OMy/AuPAQdl6zgT+BPwG+CfRUTgrW3YtcDwxRHI/MdR1D3BSxXYuJ4pwK3AF\nvcMpo0SvaTqbdjuwEji25utZDJpkXnYs0dP8UTZtlHhX/FA2bUuadmLWxsz7l3mXdV5omvmtwKeJ\nIdsV6fc9iWMMWOdVBp15l3VeaJL5SuB14H/ZtB1Ex6D7f3RB1vnpwDnEcMkYMWQ1BbyT6MHMEudP\nNgFHEQWzEzg5Lb8+tXkWuIg4oH4TeAU4JNvOpcDHiSGZjcS5nfxd27VUf+X3K0TvaSlpmnnZD4DH\nStOuAJ6oaPtEWh+Yeb8zB+s814/M9yaGYWeJg+sMxbsxsM7L2sgcrPNc08zfTWT8LSL71cD30nLX\npDaLos5XES/8MuL7KWaBn5Xa3ERcUAPR65kFvlJq8zC7XkCTOzcttyY9v5bomZUtxWIrq5t5bm+i\n8C4rTX+zxWbm/cu8inVemE/mvyQuLjsFOBL4AnFB9hFpvnU+t0FkXsU6L8wn81OBPxOdileJ0xy/\nBb6f5rdW53VPW+T+Qwx9HEKMJrwGPF5q8wfiqk4ovsOi3GYya1NlS/rZHZ2YBt5TarOGGC6bZmmr\nm3nufOKf2ebS9Gl2vVqXNG06a2Pm/cu8inVeqJv5OuLbezcS7+YeBb5EHFQvSW2s87kNIvMq1nlh\nPseWO1L7/YiLLS8CPkCcBoEW67xJ52ElcDjRKXiVOMfy4VKbw4hbdUg/n65o86GsTZVj0s9u5+N+\nomebv/jTiHM/v3uT+75Y1c08t5HoxT5Xmv4AcRtP+QKbfYiswcz7nXkV67xQN/PucWxnqc0sxVXo\n1vncBpF5Feu80OTY8jxxK+cY0ZHo3k2xIOv8G8S5l4PSztxCDMl270E9O238YqJn9FkikBOzdWxK\ny5yX2nwZeJniopH1xBDO0WnaBcQtJDdm61hB3HpyR2o3BvyNuE91qelH5qR5O4kCqXIb8Ht6b+25\nKZtv5v3N3Drv1TTzPYh3bPcSB80R4HNE/qdn27HOC21kPop1nuvHsWUDUbsjwIXEiMXXS9tZcHU+\nTlwluoMogBvYtZe0AfgjMRwzAXyyYj2Xpx3dDtxHbzDHED2nF9I6JonzaHuV1nEAEfzLRHjfZml+\nqEi/Mr+auUd39iU+VOTF9NgMvKPUxswLTTO3znv1I/OD03JTxLFlK7veRmidF9rI3Drv1Y/Mv0rk\nvYM4pXFpxXasc0mSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA3V/wH3ZI5B18zP\nyQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t2, l2, l2e = np.loadtxt(echo_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o', color=\"green\")\n", + "errorbar(t2, l2, yerr=l2e, fmt='o', color=\"black\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.344e-01 7.393e+01 inf -- -3.944e+02 -- 1 1 1 1 1 1 1 1\n", + " 2 7.685e-01 7.351e+01 8.622e+01 -- -3.082e+02 -- 0.624092 0.584331 0.567607 0.567004 0.567011 0.567373 0.565602 0.572165\n", + " 3 3.322e+00 7.320e+01 8.468e+01 -- -2.235e+02 -- 0.335696 0.192847 0.135867 0.134225 0.133328 0.135054 0.130916 0.142995\n", + " 4 1.578e+00 7.233e+01 8.258e+01 -- -1.409e+02 -- 0.188517 -0.142584 -0.293749 -0.297289 -0.300771 -0.296754 -0.30398 -0.289444\n", + " 5 6.020e-01 7.051e+01 7.959e+01 -- -6.131e+01 -- 0.148668 -0.367563 -0.714785 -0.72349 -0.733746 -0.726833 -0.738389 -0.724505\n", + " 6 3.768e-01 6.774e+01 7.540e+01 -- 1.409e+01 -- 0.144731 -0.462001 -1.10711 -1.13381 -1.16285 -1.15289 -1.1711 -1.16069\n", + " 7 2.756e-01 6.360e+01 6.924e+01 -- 8.333e+01 -- 0.174356 -0.494567 -1.42737 -1.5044 -1.58181 -1.57067 -1.60086 -1.59803\n", + " 8 2.179e-01 5.635e+01 5.976e+01 -- 1.431e+02 -- 0.217323 -0.511297 -1.61338 -1.7878 -1.97301 -1.97114 -2.02736 -2.03849\n", + " 9 1.801e-01 4.421e+01 4.621e+01 -- 1.893e+02 -- 0.246071 -0.522108 -1.67034 -1.93112 -2.29163 -2.33219 -2.45077 -2.48259\n", + " 10 1.570e-01 2.842e+01 3.021e+01 -- 2.195e+02 -- 0.26181 -0.527692 -1.69937 -1.95215 -2.46868 -2.6103 -2.87208 -2.92966\n", + " 11 1.534e-01 1.394e+01 1.638e+01 -- 2.359e+02 -- 0.270025 -0.532175 -1.71636 -1.93588 -2.49871 -2.76037 -3.29811 -3.38966\n", + " 12 1.967e-01 4.790e+00 7.494e+00 -- 2.434e+02 -- 0.270795 -0.536861 -1.72096 -1.92459 -2.47931 -2.79803 -3.75141 -3.90973\n", + " 13 5.458e-01 9.532e-01 2.865e+00 -- 2.462e+02 -- 0.26859 -0.539948 -1.7231 -1.91925 -2.46297 -2.79554 -4.30331 -4.67867\n", + " 14 1.056e+02 2.730e-01 7.004e-01 -- 2.469e+02 -- 0.26685 -0.541445 -1.72405 -1.91702 -2.45339 -2.78988 -5.27857 -7.23243\n", + " 15 5.573e+02 3.423e-01 3.921e-02 -- 2.470e+02 -- 0.266108 -0.541837 -1.72399 -1.91704 -2.44871 -2.78749 -8 -8\n", + " 16 5.573e+02 3.538e-01 2.319e-04 -- 2.470e+02 -- 0.265884 -0.541836 -1.72403 -1.91735 -2.44747 -2.78719 -8 -8\n", + " 17 5.573e+02 3.544e-01 3.124e-05 -- 2.470e+02 -- 0.265818 -0.541848 -1.72407 -1.91742 -2.44724 -2.78718 -8 -8\n", + "********************\n", + "0.265818 -0.541848 -1.72407 -1.91742 -2.44724 -2.78718 -8 -8\n", + "0.236518 0.210143 0.256686 0.193866 0.180651 0.167701 4558.58 3532.49\n", + "-0.003073 -0.00781145 -0.023497 -0.0612628 -0.14201 -0.354433 -0.000171646 -0.000375339\n", + "********************\n" + ] + } + ], + "source": [ + "P2 = clag.clag('psd10r', [t2], [l2], [l2e], dt, fqL)\n", + "p2 = np.ones(nfq)\n", + "p2, p2e = clag.optimize(P2, p2)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 2.470e+02 2.466e+02 2.658e-01 5.023e-01 0.855 +++\n", + "+++ 2.470e+02 2.461e+02 2.658e-01 6.206e-01 1.8 +++\n", + "+++ 2.470e+02 2.463e+02 2.658e-01 5.615e-01 1.29 +++\n", + "+++ 2.470e+02 2.465e+02 2.658e-01 5.319e-01 1.06 +++\n", + "+++ 2.470e+02 2.465e+02 2.658e-01 5.171e-01 0.957 +++\n", + "+++ 2.470e+02 2.465e+02 2.658e-01 5.245e-01 1.01 +++\n", + "+++ 2.470e+02 2.465e+02 2.658e-01 5.208e-01 0.983 +++\n", + "+++ 2.470e+02 2.465e+02 2.658e-01 5.226e-01 0.997 +++\n", + "\t### errors for param 1 ###\n", + "+++ 2.470e+02 2.465e+02 -5.419e-01 -3.317e-01 0.963 +++\n", + "+++ 2.470e+02 2.460e+02 -5.419e-01 -2.266e-01 2.03 +++\n", + "+++ 2.470e+02 2.463e+02 -5.419e-01 -2.792e-01 1.46 +++\n", + "+++ 2.470e+02 2.464e+02 -5.419e-01 -3.054e-01 1.2 +++\n", + "+++ 2.470e+02 2.464e+02 -5.419e-01 -3.186e-01 1.08 +++\n", + "+++ 2.470e+02 2.465e+02 -5.419e-01 -3.251e-01 1.02 +++\n", + "+++ 2.470e+02 2.465e+02 -5.419e-01 -3.284e-01 0.991 +++\n", + "\t### errors for param 2 ###\n", + "+++ 2.470e+02 2.468e+02 -1.724e+00 -1.596e+00 0.302 +++\n", + "+++ 2.470e+02 2.467e+02 -1.724e+00 -1.532e+00 0.653 +++\n", + "+++ 2.470e+02 2.466e+02 -1.724e+00 -1.499e+00 0.873 +++\n", + "+++ 2.470e+02 2.465e+02 -1.724e+00 -1.483e+00 0.993 +++\n", + "\t### errors for param 3 ###\n", + "+++ 2.470e+02 2.465e+02 -1.917e+00 -1.724e+00 0.929 +++\n", + "+++ 2.470e+02 2.460e+02 -1.917e+00 -1.627e+00 1.98 +++\n", + "+++ 2.470e+02 2.463e+02 -1.917e+00 -1.675e+00 1.41 +++\n", + "+++ 2.470e+02 2.464e+02 -1.917e+00 -1.699e+00 1.16 +++\n", + "+++ 2.470e+02 2.465e+02 -1.917e+00 -1.711e+00 1.04 +++\n", + "+++ 2.470e+02 2.465e+02 -1.917e+00 -1.718e+00 0.984 +++\n", + "+++ 2.470e+02 2.465e+02 -1.917e+00 -1.714e+00 1.01 +++\n", + "+++ 2.470e+02 2.465e+02 -1.917e+00 -1.716e+00 0.998 +++\n", + "\t### errors for param 4 ###\n", + "+++ 2.470e+02 2.466e+02 -2.447e+00 -2.267e+00 0.864 +++\n", + "+++ 2.470e+02 2.460e+02 -2.447e+00 -2.176e+00 1.9 +++\n", + "+++ 2.470e+02 2.463e+02 -2.447e+00 -2.221e+00 1.33 +++\n", + "+++ 2.470e+02 2.464e+02 -2.447e+00 -2.244e+00 1.09 +++\n", + "+++ 2.470e+02 2.465e+02 -2.447e+00 -2.255e+00 0.972 +++\n", + "+++ 2.470e+02 2.465e+02 -2.447e+00 -2.250e+00 1.03 +++\n", + "+++ 2.470e+02 2.465e+02 -2.447e+00 -2.252e+00 1 +++\n", + "\t### errors for param 5 ###\n", + "+++ 2.470e+02 2.468e+02 -2.787e+00 -2.703e+00 0.292 +++\n", + "+++ 2.470e+02 2.467e+02 -2.787e+00 -2.661e+00 0.614 +++\n", + "+++ 2.470e+02 2.466e+02 -2.787e+00 -2.640e+00 0.82 +++\n", + "+++ 2.470e+02 2.465e+02 -2.787e+00 -2.630e+00 0.934 +++\n", + "+++ 2.470e+02 2.465e+02 -2.787e+00 -2.625e+00 0.993 +++\n", + "\t### errors for param 6 ###\n", + "+++ 2.470e+02 2.470e+02 -8.000e+00 -6.000e+00 0.0115 +++\n", + "+++ 2.470e+02 2.469e+02 -8.000e+00 -5.000e+00 0.147 +++\n", + "+++ 2.470e+02 2.467e+02 -8.000e+00 -4.500e+00 0.484 +++\n", + "+++ 2.470e+02 2.465e+02 -8.000e+00 -4.250e+00 0.884 +++\n", + "+++ 2.470e+02 2.464e+02 -8.000e+00 -4.125e+00 1.2 +++\n", + "+++ 2.470e+02 2.465e+02 -8.000e+00 -4.188e+00 1.03 +++\n", + "+++ 2.470e+02 2.465e+02 -8.000e+00 -4.219e+00 0.954 +++\n", + "+++ 2.470e+02 2.465e+02 -8.000e+00 -4.203e+00 0.991 +++\n", + "\t### errors for param 7 ###\n", + "+++ 2.470e+02 2.470e+02 -8.000e+00 -6.000e+00 0.0294 +++\n", + "+++ 2.470e+02 2.468e+02 -8.000e+00 -5.000e+00 0.323 +++\n", + "+++ 2.470e+02 2.465e+02 -8.000e+00 -4.500e+00 1.03 +++\n", + "+++ 2.470e+02 2.467e+02 -8.000e+00 -4.750e+00 0.579 +++\n", + "+++ 2.470e+02 2.466e+02 -8.000e+00 -4.625e+00 0.774 +++\n", + "+++ 2.470e+02 2.465e+02 -8.000e+00 -4.562e+00 0.894 +++\n", + "+++ 2.470e+02 2.465e+02 -8.000e+00 -4.531e+00 0.962 +++\n", + "+++ 2.470e+02 2.465e+02 -8.000e+00 -4.516e+00 0.997 +++\n", + "********************\n", + "0.265804 -0.541852 -1.72407 -1.91743 -2.44719 -2.78718 -8 -8\n", + "0.256844 0.213426 0.240643 0.20144 0.19476 0.162461 2 3.48438\n", + "********************\n" + ] + } + ], + "source": [ + "p2, p2e = clag.errors(P2, p2, p2e)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X9w3PV95/GnwQouJiBM8a6JjTcW58oYQ05CxtjBETnT\nJr405ODq7g7pTez6nDYUxu2FxpeOVUbu9EJhGlraa8c17o8LWZmbhhzMmELcyoX6F4qWAi5WE2RJ\n4Nha1RiZgBGVf9wfXyn+ka8trbTf/aF9PmZ2JO9+Pt/Px+ET+aXvj88bJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSNE7/E2gD3gWywFPA3KLOSJIklYRngf8GzANuBJ4BuoFLizgnSZJU\ngn4WOAl8stgTkSRJI7uogGNVD309UsAxJUlSiZtEcLnhH4s9EUmSNDqTCzTOnwDzufClhhlDL0mS\nlJtDQ6+8KkRIeAz4HLAUOHieNjOuueaagwcPnu9jSZJ0AT8CGshzUIgyJEwiCAh3Ao1AzwXazjh4\n8CDf+ta3mDdvXoRTyr+1a9fy6KOPluV44zlWrn1zaT+atiO1udDnhf5vli+utfy3d62Fc63lv32U\na23fvn188Ytf/BjB2fiyCQl/CqQIQsL7QHzo/X5gIKzDvHnzqKuri3BK+VddXV3QOedzvPEcK9e+\nubQfTduR2lzo80L/N8sX11r+27vWwrnW8t8+6rUWlYsjPPYzwCXASuB/nPH6IfDKOW1nAF/+8pe/\nzIwZ5XdbwoIFC8p2vPEcK9e+ubQfTduR2pzv83Q6TSqVGvVcSolrLf/tXWvhXGv5bx/VWjt06BAb\nN24E2EiezyRMyufBxqEOaG9vby/L1K3y8vnPf56nn3662NNQBXCtqRAymQz19fUA9UAmn8cu5D4J\nkiSpjBgSVHHK9fSvyo9rTeXOkKCK4w9uFYprTeXOkCBJkkIZEiRJUihDgiRJCmVIkCRJoQwJkiQp\nlCFBkiSFMiRIkqRQhgRJkhTKkCBJkkIZEiRJUihDgiRJCmVIkCRJoQwJkiQplCFBkiSFMiRIkqRQ\nhgRJkhTKkCBJkkIZEiRJUihDgiRJCmVIkCRJoQwJkiQplCFBkiSFMiRIkqRQhgRJkhTKkCBJkkJF\nGRKWAs8APwJOAndGOJYkScqzKEPCpcDLwL1Dfz4V4ViSJCnPJkd47L8bekmSpDLkPQmSJCmUIUGS\nJIUyJEiSpFBR3pOQs7Vr11JdXX3We6lUilQqVaQZSZJUOtLpNOl0+qz3+vv7IxtvUmRHPttJ4AvA\n0+f5vA5ob29vp66urkBTkiSp/GUyGerr6wHqgUw+jx3lmYSpwH84489zgE8AbwNvRTiuJEnKgyhD\nQgPwD0PfnwL+cOj7vwJWRTiuJEnKgyhDwna8MVKSpLLlP+KSJCmUIUGSJIUyJEiSpFCGBEmSFMqQ\nIEmSQhkSJElSKEOCJEkKZUiQJEmhDAmSJCmUIUGSJIUyJEiSpFCGBEmSFCrKAk9S0aRfS5PemwZg\n4PgAPUd7mH3FbKZMngJA6oYUqQWpYk5RkkqeIUET014gyAi8e/RdfvAvP+DK+Vcy5YogJJACFhRr\ncpJUHgwJmpBSqRSpVHCm4InnnmDPZ/Zw39fv455fuKfIM5Ok8uE9CZqwuru7WXXvKtZ9bR1Mg3Vf\nW8eqe1fR3d1d7KlJUlnwTIImnGw2S3J1kr0H93L4x4fhKDAJDhw6wF9+7y95Zvcz3HDNDbRsaiEW\nixV7upJUsgwJmlCy2SwL71jIm2+/Ce8C753ToA8OX3aY7b3bueWOW9jzvT0GBUk6Dy83aEK561fu\n4s2eN+EgPx0Qhr0HHISenh7u+pW7Cjg7SSovhgRNGF1dXbTtaQvOIIzGu9C2p817FCTpPAwJmjB+\nu+m3GRwczKnP4OAgDzQ9ENGMJKm8GRI0YWx7fht8kGOnD2Dbc9simY8klTtDgiaMYz8+VtB+kjTR\nGRIkSVIoQ4ImjEt/5tIx9Zv6M1PzPBNJmhgMCZowln162Zj63bHsjjzPRJImBkOCJoyHH36Yqkuq\ncurzkUs+wkMPPRTRjCSpvEUdEr4CdBHcc/594JMRj6cKlkgkaKhvyKnPzfU3k0gkopmQJJW5KEPC\nLwPfBDYAnwBeBJ4FZkU4pircd77zHWbPnj2qtolEgqeeeiriGUlS+YoyJPwWsAnYDPwr8JvAW8Cv\nRzimKlwsFmPPnj00NjZy9dVXh7a5+uqraWxsZM+ePUyfPr3AM5Sk8hFVSPgIUAc8f877zwOLIxpT\nAoKg0NrayksvvcTKlSuZmZgJwMzETFauXMlLL71Ea2urAUGSRhBVSPhZ4GIge877fUA8ojGlsyQS\nCTZv3sw3/vwbAHzjz7/B5s2bvQdBkkbJUtGakNKvpUnvTQPQd6QPUvDYG4+x5cgWAFI3pEgtSBVz\niiXhzP+dBo4P0HO0h9lXzGbK5CmA/ztJlS6qkHAYOAHEznk/Bhw6X6e1a9dSXV191nupVIpUyh9S\nytFeIPi3j8sHLmduz1wuP3w5TBn6PAUsKNLcSkhqQYpbP3orzQ8380LmBTqPdHJi2gmW1i2l6YEm\nz7pIJSadTpNOp896r7+/P7LxJkV2ZNgNtAP3nvHe68BTwO+c07YOaG9vb6euri7CKUkals1mSa5O\n0nGkg97re2HmGR8egPjrcWqn1dKyqYVY7Ny8L6lUZDIZ6uvrAeqBTD6PHeXlhj8E/g/B/gi7gTUE\nP4b+PMIxJY1CNptl8fLF7F+0H24OaTATemf20tvXy5LlS9ixdYdBQapAUT4C+SSwFmgCXibYSGk5\nwWOQkooouToZBISRHvCYDp2LOkmuThZkXpJKS9Q7Lv4Z8HGCK8ENwD9FPJ6kEXR1ddFxpGPkgDBs\nOnQc6aC7uzvKaUkqQdZukCrMhkc2BPcg5KB3Xi/NjzRHNCNJpcqQIFWYtlfbzr5JcTRmQtsrbZHM\nR1LpMiRIFWbwxGDunSbB4Mkx9JNU1gwJUoWpuji3ctoAnIKqi8bQT1JZMyRIFabhxgY4kGOnA7Dw\npoWRzEdS6TIkSBWm6YEm4q/nVkIlvi/O+q+uj2hGkkqVIUGqMIlEgtpptUG5tdHog9pptW7RLFUg\nQ4JUgVo2tVCzu2bkoNAHNbtr2PL4loLMS1JpsQqkVIFisRg7tu7g9s/ezv7u/Xz40Q9PF78CGIBL\nfnwJcxJz2P5325k+fbQ7L0maSDyTIFWoWCzG65nX2fb0Nq679DomvzkZ3oDJb07mukuvY9vT23g9\n87oBQapghgSpQmWzWa5vuJ5ln1vGGx1vcHzgOJyE4wPHeaPjDZZ9bhnXN1xPNpst9lQlFYkhQapA\n2WyWxYsXs+/7+/jw6IehbT48+iH7vr+PJUuWGBSkCmVIkCpQMplk//79o2rb2dlJMmkVSKkSGRKk\nCtPV1UVHR0dOfTo6rAIpVSJDglRhNmzYQG9vjlUge3tpbrYKpFRpDAlShWlrG1s1x7H2k1S+DAlS\nhRkcHFs1x7H2k1S+DAlShamqGls1x7H2k1S+DAlShWloaBhTv4ULrQIpVRpDglRhmpqaiMdzrAIZ\nj7N+vVUgpUpjSJAqTCKRoLa2Nqc+tbVWgZQqkSFBqkAtLS3U1NSMqm1NTQ1btlgFUqpEhgSpAsVi\nMXbs2EFjY+N5Lz3E43EaGxvZuXOnRZ6kCmVIkCpULBajtbWVXbt2sXLlyp+cWaipqWHlypXs2rWL\n1tZWA4JUwSYXewKSiiuRSLB582YymQz19fU8+eST1NXVFXtakkqAIUGqYOl0mnQ6DcDAwABz585l\n3bp1TJkyBYBUKkUqlSrmFCUVkSFBqmCGAEkX4j0JkiQpVFQh4XeAncAx4J2IxpAkSRGKKiRUAVuA\n/x3R8SVJUsSiuifhwaGvX4ro+JIkKWLekyBJkkIZEiRJUqhcLjc8CDSN0OZmIDPm2UjSBaRfS5Pe\nO7Svw/EBeo72MPuK2UyZPLSvww0pUgt8pFPKl1xCwmPAt0do0zOOubB27Vqqq6vPes/nuCUNSy1I\ncetHb6X54WZeyLxA55FOTkw7wdK6pTQ90GSlSk14Z26ANqy/vz+y8SZFduTAl4BvAleO0K4OaG9v\nb3c7WEmhstksydVJOo500Ht9L8w848MDEH89Tu20Wlo2tRCLxYo2T6nQhrdUB+rJ89n8qJ5uuBaY\nNvT1YuAmgkDyQ+D9iMaUNEFls1kWL1/M/kX7g4ua55oJvTN76e3rZcnyJezYusOgIOVBVDcuNhOk\nmQeBqcDLQDtBypGknCRXJ4OAMFJByunQuaiT5OpkQeYlTXRRhYQvDR37IoIzCcNfX4hoPEkTVFdX\nFx1HOkYOCMOmQ8eRDrq7u6OcllQRfARSUknb8MiG4B6EHPTO66X5keaIZiRVDkOCpJLW9mrb2Tcp\njsZMaHulLZL5SJXEkCCppA2eGMy90yQYPDmGfpLOYkiQVNKqLq7KvdMpqLpoDP0kncWQIKmkNdzY\nAAdy7HQAFt60MJL5SJXEkCCppDU90ET89XhOfeL74qz/6vqIZiRVDkOCpJKWSCSonVYLfaPs0Ae1\n02rdolnKA0OCpJLXsqmFmt01IweFPqjZXcOWx7cUZF7SRGdIkFTyYrEYO7buoPHNRuLPx+Et4NTQ\nh6eAtyD+fJzGNxvZ+exOpk8f7c5Lo5N+Lc2yP17GtZ+9lssWXMZHrv8Ily24jGs/ey3L/ngZ6dfS\nIx9EKkNR1W6QpLyKxWK0PtNKd3c3zY8088JzQRXImmk1LK1fStMT0VSBzGazbPz6xtOFpRYF7w8y\nyPsH3mdwyyAbv7eRT2/6tPUiNOEYEiSVlUQiweY/2UzmUIb6jfU8ueZJ6mZEUz3WwlKqdIYESWUj\n/Vqa9N7g1P7A8QHmXjWXddvWMWXyFABSN6RILUjlbbyxFJZqfaY1b+NLxWZIkFQ2UgvyGwIu5CeF\npcLOIISZDh3/HBSW8skKTRTeuChJISwsJXkmQVIZSafTpNNDlxsGBujp6WH27NlMmTJ0uSGVIpXK\nz5mGtlfbYFmOnWZC299bWEoThyFBUtk4MwRkMhnq6+tJp9PU1eX/xkULS0lebpBUZrq7u1m1ahUr\nVqwAYMWKFaxatYru7u68jmNhKckzCZLKRDabJZlM0tHRQW/v6XsFOjs76ezs5Nlnn6W2tpaWlpa8\nPIbYcGMDew/shZk5dLKwlCYYzyRIKnnZbJbFixezffv2swLCmXp7e9m+fTtLliwhm82Oe0wLS0mG\nBEllIJlMsn///lG17ezsJJlMjntMC0tJhgRJJa6rq4uOjo6c+nR0dOTlHgULS6nSGRIklbQNGzac\n9xLD+fT29tLcPP79CopdWEoqNm9clFTS2trGtu/AWPudq1iFpaRS4JkESSVtcHBs+w6MtV+Y+x66\nj0V3L2Lrrq2888E7VJ2o4p0P3mHrrq0sunsR9z10X97GkkqJIUFSSauqGtu+A2PtF+axrz3G7r/d\nzfKblnPle1cy2DnIle9dyfKblrP7b3fz2Ncey9tYUinxcoOkktbQ0MDevXtz7rdwYX72Kyj0/gxS\nKfFMgqSS1tTURDye434F8Tjr149/v4Ji7M8glRJDgqSSlkgkqK2tzalPbW1+9isoxv4MUimJKiQk\ngMeB/cAx4A3gQcBNzSXlrKWlhZqamlG1rampYcuW8e9XUMz9GaRSEVVI+DlgErAGuB74TeDXgN+P\naDxJE1gsFmPHjh00Njae99JDPB6nsbGRnTvzs19BMfdnkEpFVCHhOWAVsA3oBp4BHgHuimg8SRNc\nLBajtbWVXbt2sXLlyp+cWaipqWHlypXs2rWL1tbWvG1oVOz9GaRSUMinG6qBtws4nqQJKJFIsHnz\nZjKZDPX19Tz55JPU1dXlfZxS2J9BKrZChYQa4DeA3yrQeJImoHQ6TTqdBmBgYIC5c+eybt06pkyZ\nAkAqlSKVSuVlrFLYn6G7u5vmh5tpe7WNwRODVF1cRcONDTQ94C6PKoxcQ8KDQNMIbW4GMmf8+Rrg\n74Angc05jidJP5HPEDCSYu7PkM1muT15O/vf3c+HdR/CstOf7T2wl2/f/W3mXD6H1pZW92ZQpCbl\n2P6qodeF9AAfDn1/DdAK7AK+dIE+dUD7bbfdRnV19VkfFPKHgiQN6+7u5tZbb83p5sV4PM6uXbvG\n9Vt+Nptl8fLF7F+0Hy50e8VQ5ckdW3cYFCrImWfThvX39/Piiy8C1HP2L+njlmtIyMXHCAJCG/BF\nTtdOC1MHtLe3t0dybVGSxuL2229n+/bto27f2NhIa2vr+Mb8xdvZfu32CweEYX3Q+GYjrc+Mb0yV\nt+H7c4ggJET1dMPHgO0EZxUeAGJAfOglSWWh0PszdHV10XGkY3QBAWA6dBxxbwZFJ6qQcAfBzYqf\nBg4AB4deP4poPEnKu0Lvz7DhkQ30Xp/j3gzzeml+xL0ZFI2oQsJfDR374qGvF53xZ0kqG7FYjDVr\n1jB//nxmzZrF1KlTqaqqYurUqcyaNYv58+ezZs2avOzP0PZqG8zMsdNMaHvFvRkUDatAStIICnUD\n9eCJMeyxMAkGT7o3g6JhgSdJKhFVF49hj4VTUHWRZXEUDUOCJJWIhhsbgru4cnEAFt40/r0ZpDCG\nBEkqEU0PNBF/PbeHwOL74qz/6vqIZqRKZ0iQpBKRSCSonVYLfaPs0Ae102rdolmR8cZFSSohLZta\nWLJ8CZ1XdcIbBGXxBgi2o5sETCHY9/Y6qHm7hi3Pjm9vBulCDAmSVEJisRjf/evvcssnb+HY+8fg\n+DkN/h04BpceuZTv/tN381YaWwrj5QZJKiHZbJY777yTY0dDAsKw43Ds6DG+8IUvkM1m8z6H7u5u\nVt27igW3LaB2cS0LblvAqntXubNjBfJMgiSVkGQyyf79+0fVtrOzk2QyOe56EcOy2SzJ1Uk6jnQE\nOz+eU33y2XuepXZaLS2bWiwqVSE8kyBJJaKrq4uOjo6c+nR05Kd2w3D1ye3Xbqf353t/eufHmdD7\n871sv3Y7S5YvieQMhkqPIUGSSsSGDRtyKk0N0NvbS3Pz+Gs3JFcnRy5PDTAdOhd1klydHPeYKn2G\nBEkqEW1tY6vBMNZ+w6w+qfMxJEhSiRgcHFsNhrH2G2b1SZ2PIUGSSkRV1dhqMIy13zCrT+p8DAmS\nVCIaGhrG1G/hwvHVbrD6pM7HkCBJJaKpqYl4PMfaDfE469ePr3aD1Sd1PoYESSoRiUSC2tranPrU\n1o6/doPVJ3U+hgRJKiEtLS3U1NSMqm1NTQ1btoy/doPVJ3U+7rgoSSUkFouxY8cOkskkHR0dofsm\nxONxamtr2bJlS15qNwxXn+zt6w0eg3wH+EfgIHACuBi4BvgUcCVWn6wghgRJKjGxWIzW1la6u7tp\nbm7mhRdeoLOzk5qaGpYuXUpTU1Pe/4Fu2dTCLXfcQs+BHniXIBycqQ94DbgcZs+czZZtVp+sBF5u\nkKQSlE6nuf/++zl8+DBz5sxh7ty5zJkzh8OHD3P//feTTqfzP+i7BGcRzg0Iw04En0/68SROnTqV\n//FVcjyTIEklKJVKkUqlCjZeMpmkp6dnVG27u7vzWlhKpcszCZJU4YpZWEqlzZAgSRWumIWlVNoM\nCZJU4YpVWEqlz5AgSRWuWIWlVPoMCZJU4YpVWEqlz5AgSRWuWIWlVPqiCglPAz3ABwR7dv0NMCOi\nsSRJ41CswlIqfVGFhH8AfgmYC9wN1ADfiWgsSdI4FKuwlEpfVCHhUeAl4C1gF/AQsJBgB3BJUokp\nRmEplb5C3JMwDbgHaOX8m31KkopouLBUY2PjeS89xONxGhsb2blzZ14KS6n0RRkSHgLeAw4DHwd+\nOcKxJEnjFIvFWLNmDfPnz2fWrFlMnTqVqqoqpk6dyqxZs5g/fz5r1qwxIFSQXGo3PAg0jdDmZiAz\n9P0fAH8BJIDfBb4LLAWsCiJJJarQNSNU2ibl0PaqodeF9AAfhrz/MYL7Ez4J7Az5vA5ov+2226iu\nrj7rAxesJEmBdDr9UxVA+/v7efHFFwHqOf2Lel7kEhLGYxZBgPgU8GLI53VAe3t7O3V1dQWakiRJ\n5S+TyVBfXw8RhIQoSkUvHHr9E0Fl8jlAM/BDgicdJElSGYjixsVjwH8BtgEdwOPAqwRnEY5HMJ4k\nSYpAFGcS9gL/KYLjSpKkArJ2gyRJCmVIkCRJoQwJkiQplCFBkiSFMiRIkqRQhgRJkhTKkCBJkkJF\nsU+CJEmjln4tTXpvUI9g4PgAPUd7mH3FbKZMngJA6oYUqQXW8CkGQ4IkqahSC06HgMyhDPUb60nf\nnaZuhrV8is3LDZKkouvu7mbVvatYcdcK+DasuGsFq+5dRXd3d7GnVtE8kyBJKppsNktydZKOIx30\nXt8Lnwne76STzgOdPHvPs9ROq6VlUwuxWKy4k61AhgRJUlFks1kWL1/M/kX74eaQBjOhd2YvvX29\nLFm+hB1bdxgUCszLDZKkokiuTgYBYfoIDadD56JOkquTBZmXTjMkSJIKrquri44jHSMHhGHToeNI\nh/coFJghQZJUcBse2RDcg5CD3nm9ND/SHNGMFMaQIEkquLZX22Bmjp1mQtsrbZHMR+EMCZKkghs8\nMZh7p0kweHIM/TRmhgRJUsFVXVyVe6dTUHXRGPppzAwJkqSCa7ixAQ7k2OkALLxpYSTzUThDgiSp\n4JoeaCL+ejynPvF9cdZ/dX1EM1IYQ4IkqeASiQS102qhb5Qd+qB2Wi2JRCLKaekchgRJUlG0bGqh\nZnfNyEGhD2p217Dl8S0FmZdOMyRIkooiFouxY+sOGt9sJP58HN4CTg19eAp4C+LPx2l8s5Gdz+5k\n+vTR7rykfLF2gySpaGKxGK3PtNLd3U3zI8288NwLdB7ppGZaDUvrl9L0RJOXGIrIkCBJKrpEIsHm\nP9lM5lCG+o31PLnmSepm1BV7WhXPyw2SJCmUZxIkSUWVfi1Nem8agIHjA8y9ai7rtq1jyuQpAKRu\nSJFakCrmFCuWIUGSVFSpBYaAUhX15YZLgH8GTgI3RjyWJEnKo6hDwh8AP4p4DEmSFIEoQ8JngWXA\nVyMcQ5IkRSSqexJiwEbgTuCDiMaQJEkRiuJMwiTgr4A/AzIRHF+SJBVALmcSHgSaRmjTACwBLgO+\ncc5nk0YaYO3atVRXV5/1XiqVIpXyrldJktLpNOl0+qz3+vv7IxtvxH+4z3DV0OtCeoAW4Bc5vQM3\nwMXACeBbwMqQfnVAe3t7O3V17rAlSdJoZTIZ6uvrAerJ8xn8XM4kvD30Gsn9wO+c8eePAc8BK4A9\nOYwnSZKKKIobF98658/Hhr52AgcjGE+SJEWgULUbTo3cRJIklZJCbMvcTXBPgiRJKiNWgZQkSaEM\nCZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCFeIRSEmSSk76tTTpvUEdhIHjA/Qc7WH2FbOZMnkK\nAKkbUqQWVHbtIEOCJKkipRacDgGZQxnqN9aTvjtN3QxrCA3zcoMkSQplSJAkSaEMCZIkKZQhQZIk\nhTIkSJKkUIYESZIUykcgJUkVKZ1Ok04H+yT0He2Df4Gv/MNXmH7FdABSqRSplPskSJJUcc4MAU88\n9wR7PrOH+75+H/f8wj1Fnlnp8HKDJEkKZUiQJEmhDAmSJCmUIUGSJIUyJEiSpFCGBEmSFMqQIEmS\nQhkSJElSKEOCJEkKZUiQJEmhDAmSJClUVCGhGzh5zuv3IxpLkiRFIKoCT6eA9cBfnPHe+xGNJUmS\nIhBlFcj3gL4Ijy9JkiIU5T0JXwMOAy8DXweqIhxLkiTlWVRnEv4IaAfeAW4B/hfwceC/RzSeJEnK\ns1zOJDzIT9+MeO6rbqjto8CLwF7gceDXgF8FrszHpCVJUvRyOZPwGPDtEdr0nOf9PUNfrwPaztd5\n7dq1VFdXn/VeKpUilUqNdo6SJE1Y6XSadDp91nv9/f2RjZdLSHh76DUW/3Ho66ELNXr00Uepq6u7\nUBNJkipW2C/OmUyG+vr6SMaL4p6ERcCtQCtwFGgA/hD4f8CBCMaTJEkRiCIkfAisAJqASwguQWwE\n/iCCsSRJUkSiCAkvE5xJkCRJZczaDZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCGRIkSVIoQ4Ik\nSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCGRIkSVIoQ4IkSQplSJAkSaEMCZIk\nKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCGRIkSVIoQ4IkSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKk\nUIYESZIUKsqQ8J+BPcAx4N+Av41wLGnU0ul0saegCuFaU7mLKiTcDfwN8DhwI7AYeCKisaSc+INb\nheJaU7mbHNEx/wj4KvCXZ7z/wwjGkiRJEYniTEIdcA1wCngZOAhsBeZHMFbRFfo3hXyON55j5do3\nl/ajaTtSm4n4G5xrLf/tXWvhKnWtRTlWua61KELCnKGvDwLNwOeAd4DtwJURjFdUlfp/Jn9wF55r\nLf/tXWvhKnWtRTlWua61XC43PAg0jdCmgdPB4/eAp4a+XwkcAH4J2Hi+zvv27cthOqWhv7+fTCZT\nluON51i59s2l/WjajtTmQp8X+r9ZvrjW8t/etRauEtda1w+7fvI1c3X+1k8ubce61qL8t3NSDm2v\nGnpdSA/BTYp/D3wS2HnGZ7uB7wHrQ/rNANqAj+UwH0mSFPgRwS/qh/J50FzOJLw99BpJO/AhUMvp\nkFAFJAhCRJhDBH+5GTnMR5IkBQ6R54AQpW8CbwF3AD8HbCKY/BXFnJQkSSq+ycDDQC9wFHgOmFfU\nGUmSJEmSJEmSJEmSJP20jwIvEezguBf4jeJORxPYLIKNv/4FeAX4r0WdjSa6p4AjwP8t9kQ0YX0O\n6AB+APxqkecSmYuAKUPf/wywH7i6eNPRBBYnKEoGwRp7i2DNSVH4FMEPcUOCojAZ+FeC7QUuIwgK\n03I5QJSlovPpJDAw9P2lwOAZf5byqRd4dej7fyP4LS+n/1NJOfhH4L1iT0IT1kKCs6KHCNbZVuDn\nczlAuYTMMxcpAAACPUlEQVQECPZYeAV4k6DK5I+LOx1VgJsJdiX9UbEnIkljcA1n//w6QI47G5dT\nSDgK3AR8HLgXuK6409EEdxXw18CaYk9Eksbo1HgPEFVIWAo8Q5BgTgJ3hrT5CtAFfAB8n6DWw7D7\nCG5SzBBs6XymPoIbyz6R1xmrXEWx1i4BvgP8PkHNEQmi+7k27h/kmrDGu+YOcvaZg1mUyJnRzxCU\nif4CwV/s8+d8/ssE9R1WEWzb/E2CywezznO86cDlQ99fTnDN+OfyO2WVqXyvtUlAGvjdKCarspbv\ntTasEW9cVLjxrrnJBDcrXkPwlOAPgCsjn3WOwv5ie4A/Pee91wl+cwtTR5DA/3notTKfE9SEkY+1\n9kngBMFvey8PvebncY6aGPKx1iDYsr4PeJ/gSZr6fE1QE85Y19wvEjzh8ENgdWSzG4dz/2IfIXg6\n4dzTJo8SXEaQxsq1pkJxranQirLminHj4s8CFwPZc97vI3hGXcoX15oKxbWmQivImiunpxskSVIB\nFSMkHCa45hs75/0YwYYPUr641lQorjUVWkHWXDFCwr8D7fz0rk93ADsLPx1NYK41FYprTYVW1mtu\nKsE+Bp8guNli7dD3w49lrCB4bGMlMI/gsY13GflRIelcrjUVimtNhTZh11wjwV/oJMHpkOHvN5/R\n5tcJNoAYANo4ewMIabQaca2pMBpxramwGnHNSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIklYH/DxLfa082qjO6AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-6,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"green\")\n", + "errorbar(fqd, p2, yerr=p2e, fmt='o', ms=10, color=\"black\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 2.077e+05 1.197e+01 inf -- 3.072e+02 -- -0.0167957 -0.659991 -1.75733 -2.01992 -2.58869 -2.93933 -6.08072 -8.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1\n", + " 3 3.271e+03 1.431e+01 2.187e+00 -- 3.094e+02 -- 0.0139188 -0.616992 -1.71242 -1.98591 -2.55782 -2.91741 -5.78072 -8 0.0404571 0.0959238 0.114705 0.117637 0.0759046 0.11315 2.83682 -2.97794\n", + " 5 3.402e+03 1.686e+01 2.074e+00 -- 3.115e+02 -- 0.0411101 -0.582169 -1.67612 -1.95765 -2.53188 -2.89876 -6.08072 -8 -0.00584518 0.0932078 0.124735 0.131247 0.0572905 0.124022 1.45283 -3.03469\n", + " 7 3.420e+03 1.966e+01 1.889e+00 -- 3.134e+02 -- 0.0650135 -0.553404 -1.64618 -1.93385 -2.50984 -2.88274 -5.78072 -8 -0.0424699 0.0913679 0.131869 0.14207 0.0426621 0.133189 -0.940465 1.19045\n", + " 9 2.868e+03 2.272e+01 1.819e+00 -- 3.152e+02 -- 0.0859844 -0.529292 -1.62113 -1.91359 -2.49094 -2.8689 -6.08072 -7.7 -0.0718915 0.0901134 0.137101 0.15086 0.0309294 0.141054 0.754261 2.5184\n", + " 11 5.181e+03 2.608e+01 1.679e+00 -- 3.169e+02 -- 0.104393 -0.508851 -1.59992 -1.8962 -2.4746 -2.85689 -5.78072 -8 -0.0958425 0.0892713 0.140997 0.158143 0.021406 0.147907 -0.44842 2.70944\n", + " 13 4.148e+04 2.974e+01 1.637e+00 -- 3.185e+02 -- 0.120579 -0.491366 -1.5818 -1.88115 -2.46039 -2.84641 -5.48072 -8 -0.115571 0.088729 0.14396 0.164245 0.0136007 0.153954 1.68591 0.219106\n", + " 15 1.364e+03 3.373e+01 1.423e+00 -- 3.199e+02 -- 0.134842 -0.476304 -1.56621 -1.86807 -2.44792 -2.83724 -5.18072 -7.7 -0.131975 0.0884089 0.146209 0.169436 0.00715737 0.159354 2.77837 -1.88001\n", + " 17 3.384e+03 3.807e+01 1.457e+00 -- 3.214e+02 -- 0.147438 -0.463252 -1.55271 -1.85663 -2.43694 -2.82923 -5.48072 -8 -0.145729 0.088245 0.147942 0.173866 0.00170694 0.164237 -0.858069 -3.03191\n", + " 19 5.448e+03 4.279e+01 1.401e+00 -- 3.228e+02 -- 0.15859 -0.451883 -1.54097 -1.84658 -2.42726 -2.82213 -5.78072 -8 -0.157362 0.0882266 0.149341 0.177654 -0.00272343 0.168668 0.243127 1.49491\n", + " 21 5.570e+02 4.789e+01 1.208e+00 -- 3.240e+02 -- 0.168487 -0.441941 -1.53072 -1.83772 -2.41866 -2.81587 -5.48072 -7.7 -0.167244 0.0883118 0.150432 0.180941 -0.00638645 0.172731 -2.75775 -2.43488\n", + " 23 5.770e+04 5.341e+01 1.297e+00 -- 3.253e+02 -- 0.177287 -0.433218 -1.52174 -1.82988 -2.411 -2.81036 -5.78072 -8 -0.175683 0.0884674 0.151298 0.18378 -0.00950607 0.176491 -0.399562 0.166824\n", + " 25 2.578e+03 5.934e+01 1.208e+00 -- 3.265e+02 -- 0.185129 -0.42554 -1.51385 -1.82293 -2.40415 -2.80545 -5.48072 -7.7 -0.182926 0.0886974 0.152004 0.18625 -0.0120039 0.179977 1.74647 1.42211\n", + " 27 4.862e+03 6.571e+01 1.069e+00 -- 3.276e+02 -- 0.192131 -0.418765 -1.5069 -1.81673 -2.39801 -2.8011 -5.18072 -7.4 -0.189156 0.0889782 0.152558 0.188415 -0.0140412 0.18323 2.48031 -0.745704\n", + " 29 9.405e+02 7.253e+01 9.711e-01 -- 3.285e+02 -- 0.198393 -0.412774 -1.50077 -1.81121 -2.39247 -2.79726 -5.17938 -7.7 -0.19453 0.0892935 0.153002 0.190299 -0.0157421 0.186287 -1.33712 -2.59349\n", + " 31 6.968e+03 7.979e+01 1.152e+00 -- 3.297e+02 -- 0.204002 -0.407466 -1.49534 -1.80628 -2.38752 -2.79383 -5.47938 -8 -0.199199 0.0896459 0.15344 0.191883 -0.0170844 0.18917 1.57648 -1.46962\n", + " 33 5.064e+03 8.750e+01 8.071e-01 -- 3.305e+02 -- 0.209036 -0.402755 -1.49055 -1.80185 -2.38303 -2.79076 -5.17938 -8 -0.203237 0.0900308 0.153771 0.193301 -0.0180605 0.19188 -2.99641 -1.64369\n", + " 35 4.661e+03 9.564e+01 1.077e+00 -- 3.316e+02 -- 0.213558 -0.398567 -1.48629 -1.79787 -2.37897 -2.78807 -5.47938 -8 -0.206743 0.0904245 0.154068 0.194501 -0.0188992 0.194463 0.599717 1.32447\n", + " 37 2.185e+04 1.042e+02 7.254e-01 -- 3.323e+02 -- 0.217628 -0.394841 -1.48253 -1.7943 -2.3753 -2.7856 -5.17938 -7.7 -0.209797 0.0908529 0.154345 0.195543 -0.0193431 0.196896 3.07347 -0.309744\n", + " 39 5.370e+02 1.132e+02 9.309e-01 -- 3.332e+02 -- 0.221294 -0.391521 -1.47918 -1.79107 -2.37197 -2.78346 -5.47938 -7.4 -0.212449 0.0912809 0.154587 0.196421 -0.0197202 0.199223 -0.122741 -2.19799\n", + " 41 4.124e+02 1.225e+02 8.464e-01 -- 3.341e+02 -- 0.224602 -0.38856 -1.47621 -1.78815 -2.36895 -2.78149 -5.17938 -7.7 -0.214768 0.0917346 0.154842 0.197156 -0.0197791 0.201426 0.185379 0.875823\n", + " 43 1.140e+04 1.321e+02 5.576e-01 -- 3.346e+02 -- 0.227588 -0.385917 -1.47357 -1.78551 -2.36621 -2.7797 -4.87938 -7.4 -0.216789 0.0922022 0.155086 0.197771 -0.0196213 0.203517 2.76502 -0.295434\n", + " 44 1.202e+03 9.319e+03 6.921e+00 -- 3.415e+02 -- 0.25457 -0.362307 -1.45009 -1.76155 -2.34098 -2.76463 -7.3588 -4.4 -0.234221 0.0967125 0.156919 0.202935 -0.0187407 0.223585 -3.03547 0.658572\n", + " 46 3.348e+03 2.383e+03 2.056e+00 -- 3.436e+02 -- 0.2541 -0.362138 -1.45037 -1.76118 -2.3417 -2.76372 -7.6588 -4.27727 -0.236662 0.0951999 0.162918 0.195741 -0.00804371 0.221694 2.83744 0.887952\n", + " 48 8.279e+03 1.188e+03 7.339e-01 -- 3.443e+02 -- 0.253984 -0.362098 -1.45055 -1.76083 -2.34195 -2.763 -7.9588 -4.18142 -0.238339 0.0952591 0.166595 0.190819 -0.00170333 0.220894 1.62132 0.948638\n", + " 50 5.831e+02 7.367e+02 4.678e-01 -- 3.448e+02 -- 0.25397 -0.362096 -1.45068 -1.76047 -2.34209 -2.76245 -7.6588 -4.11058 -0.239676 0.0957548 0.169216 0.186723 0.00306954 0.220363 -2.34059 0.972914\n", + " 52 1.225e+04 5.114e+02 3.593e-01 -- 3.452e+02 -- 0.254002 -0.36211 -1.45078 -1.76013 -2.34219 -2.76201 -7.9588 -4.05557 -0.240772 0.0964213 0.171173 0.183133 0.00691799 0.219951 -1.3379 0.984989\n", + " 54 2.908e+03 3.804e+02 2.971e-01 -- 3.455e+02 -- 0.254058 -0.362133 -1.45087 -1.75979 -2.34228 -2.76167 -8 -4.01135 -0.241679 0.0971513 0.172659 0.179917 0.0101243 0.219607 -2.58716 0.991938\n", + " 56 2.520e+04 2.966e+02 2.554e-01 -- 3.457e+02 -- 0.254126 -0.362159 -1.45094 -1.75946 -2.34236 -2.76142 -8 -3.975 -0.242428 0.0978921 0.17379 0.177 0.012847 0.219308 -0.893281 0.996473\n", + " 58 1.393e+04 2.392e+02 2.239e-01 -- 3.459e+02 -- 0.2542 -0.362187 -1.451 -1.75914 -2.34244 -2.76123 -8 -3.94463 -0.243046 0.098616 0.174644 0.174336 0.0151899 0.219038 0.548158 0.999814\n", + " 60 8.788e+02 1.978e+02 1.977e-01 -- 3.461e+02 -- 0.254275 -0.362215 -1.45106 -1.75884 -2.34252 -2.7611 -7.7 -3.919 -0.243552 0.0993077 0.175277 0.171891 0.0172264 0.218788 -2.44331 1.00258\n", + " 62 8.149e+03 1.668e+02 1.772e-01 -- 3.463e+02 -- 0.25435 -0.362242 -1.45111 -1.75855 -2.34259 -2.76101 -8 -3.89719 -0.243965 0.0999593 0.175731 0.169641 0.019011 0.218552 2.73951 1.0051\n", + " 64 3.097e+03 1.429e+02 1.584e-01 -- 3.465e+02 -- 0.254423 -0.362268 -1.45115 -1.75828 -2.34266 -2.76097 -8 -3.87855 -0.244298 0.100567 0.176038 0.167566 0.0205874 0.218325 0.780197 1.00758\n", + " 66 1.637e+03 1.238e+02 1.410e-01 -- 3.466e+02 -- 0.254493 -0.362292 -1.45119 -1.75803 -2.34273 -2.76096 -7.7 -3.86256 -0.244565 0.10113 0.176223 0.165649 0.02199 0.218102 -2.63332 1.01014\n", + " 68 1.780e+05 1.083e+02 1.272e-01 -- 3.467e+02 -- 0.254559 -0.362315 -1.45123 -1.75779 -2.34279 -2.76097 -8 -3.84883 -0.244776 0.101648 0.176309 0.163876 0.0232461 0.217881 -0.110744 1.01285\n", + " 70 2.894e+03 9.543e+01 1.126e-01 -- 3.469e+02 -- 0.254622 -0.362337 -1.45126 -1.75757 -2.34285 -2.761 -7.7 -3.83704 -0.244941 0.102124 0.176311 0.162237 0.0243797 0.217658 -1.79891 1.01576\n", + " 72 3.221e+03 8.461e+01 1.009e-01 -- 3.470e+02 -- 0.254681 -0.362357 -1.45129 -1.75736 -2.3429 -2.76105 -8 -3.8269 -0.245067 0.102559 0.176245 0.16072 0.025409 0.217434 -2.61948 1.01891\n", + " 73 3.986e+04 8.840e+04 3.099e+01 -- 3.160e+02 -- 0.255228 -0.362541 -1.45157 -1.75543 -2.3433 -2.76164 -8 -3.73993 -0.246022 0.106522 0.175014 0.146688 0.0348206 0.215163 -1.11659 1.05295\n", + " 75 8.896e+03 2.717e+02 3.098e+01 -- 3.469e+02 -- 0.254563 -0.362134 -1.45184 -1.757 -2.34298 -2.7592 -8 -3.74513 -0.25066 0.107475 0.155394 0.124168 0.0867597 0.167292 1.40399 1.0852\n", + " 76 1.040e+01 7.468e+01 5.524e-01 -- 3.475e+02 -- 0.254408 -0.362427 -1.45159 -1.7568 -2.33986 -2.76088 -5 -3.7742 -0.252304 0.108109 0.154003 0.131005 0.0778512 0.176436 2.13841 1.28287\n", + " 78 1.148e+02 6.144e+01 2.449e-01 -- 3.477e+02 -- 0.254428 -0.362448 -1.45159 -1.75668 -2.33984 -2.7612 -4.7 -3.77154 -0.252011 0.107845 0.155672 0.132885 0.0741505 0.180529 -0.0860208 1.27425\n", + " 80 5.736e-01 5.603e+01 5.946e-01 -- 3.483e+02 -- 0.254453 -0.362466 -1.4516 -1.75658 -2.33986 -2.76138 -4.45762 -3.76935 -0.251748 0.107647 0.157187 0.134499 0.0710198 0.184185 0.901147 1.267\n", + " 82 3.050e-01 5.070e+01 6.261e-01 -- 3.490e+02 -- 0.25448 -0.362483 -1.4516 -1.75645 -2.33989 -2.76144 -4.20194 -3.76751 -0.251481 0.107471 0.158475 0.136032 0.0683814 0.187492 0.910107 1.26066\n", + " 84 2.525e-01 4.649e+01 4.542e-01 -- 3.494e+02 -- 0.254511 -0.362499 -1.45161 -1.75631 -2.33995 -2.76134 -4.07732 -3.76602 -0.251239 0.107333 0.159592 0.137475 0.0662961 0.190508 0.913997 1.25501\n", + " 86 2.077e-01 4.317e+01 3.787e-01 -- 3.498e+02 -- 0.254544 -0.362513 -1.45163 -1.75617 -2.34003 -2.76113 -3.99339 -3.7648 -0.251017 0.107226 0.160556 0.138816 0.0646219 0.193263 0.917195 1.25003\n", + " 88 1.690e-01 4.054e+01 3.278e-01 -- 3.501e+02 -- 0.254579 -0.362526 -1.45164 -1.75602 -2.34015 -2.76083 -3.93087 -3.76381 -0.250811 0.107146 0.161384 0.140062 0.0632798 0.195783 0.92011 1.24565\n", + " 90 1.357e-01 3.844e+01 2.899e-01 -- 3.504e+02 -- 0.254615 -0.362538 -1.45165 -1.75588 -2.34028 -2.76046 -3.88172 -3.76302 -0.25062 0.107088 0.162091 0.141219 0.0622103 0.198094 0.922868 1.24181\n", + " 92 1.073e-01 3.979e+01 2.602e-01 -- 3.507e+02 -- 0.254653 -0.36255 -1.45167 -1.75573 -2.34044 -2.76004 -3.84172 -3.76239 -0.250443 0.107051 0.16269 0.142294 0.0613659 0.200217 0.925524 1.23844\n", + " 94 8.910e-02 4.379e+01 2.364e-01 -- 3.509e+02 -- 0.25469 -0.362561 -1.45169 -1.75559 -2.34061 -2.75957 -3.80836 -3.7619 -0.250278 0.10703 0.163195 0.143295 0.0607075 0.202171 0.928104 1.23549\n", + " 96 8.159e-02 4.824e+01 2.169e-01 -- 3.511e+02 -- 0.254729 -0.362572 -1.4517 -1.75545 -2.34079 -2.75908 -3.78005 -3.76152 -0.250125 0.107023 0.163616 0.144231 0.0602022 0.203972 0.930626 1.23291\n", + " 98 7.491e-02 5.321e+01 2.009e-01 -- 3.513e+02 -- 0.254767 -0.362582 -1.45172 -1.75531 -2.34099 -2.75856 -3.75567 -3.76124 -0.249983 0.107028 0.163963 0.145106 0.0598227 0.205636 0.933099 1.23064\n", + " 100 6.896e-02 5.877e+01 1.874e-01 -- 3.515e+02 -- 0.254805 -0.362593 -1.45174 -1.75518 -2.34119 -2.75803 -3.73444 -3.76104 -0.249849 0.107042 0.164245 0.145927 0.0595455 0.207177 0.935528 1.22866\n", + " 102 6.363e-02 6.501e+01 1.761e-01 -- 3.517e+02 -- 0.254843 -0.362603 -1.45176 -1.75505 -2.3414 -2.75749 -3.71578 -3.76092 -0.249724 0.107065 0.16447 0.1467 0.0593509 0.208605 0.937919 1.22691\n", + " 104 5.885e-02 7.201e+01 1.664e-01 -- 3.519e+02 -- 0.25488 -0.362613 -1.45178 -1.75493 -2.34162 -2.75695 -3.69927 -3.76085 -0.249607 0.107094 0.164646 0.14743 0.0592217 0.209933 0.940273 1.22537\n", + " 106 5.455e-02 7.989e+01 1.581e-01 -- 3.520e+02 -- 0.254916 -0.362622 -1.4518 -1.75482 -2.34183 -2.7564 -3.68456 -3.76083 -0.249496 0.107129 0.164779 0.148121 0.0591435 0.211168 0.942591 1.22401\n", + " 108 5.065e-02 8.875e+01 1.509e-01 -- 3.522e+02 -- 0.254952 -0.362632 -1.45182 -1.75471 -2.34205 -2.75586 -3.67139 -3.76085 -0.24939 0.107168 0.164876 0.148776 0.0591036 0.21232 0.944874 1.22279\n", + " 110 4.711e-02 9.874e+01 1.446e-01 -- 3.523e+02 -- 0.254988 -0.362641 -1.45184 -1.7546 -2.34226 -2.75533 -3.65956 -3.76091 -0.24929 0.10721 0.16494 0.149401 0.0590914 0.213396 0.947122 1.22169\n", + " 112 4.386e-02 1.100e+02 1.390e-01 -- 3.524e+02 -- 0.255022 -0.362651 -1.45186 -1.7545 -2.34248 -2.7548 -3.64889 -3.761 -0.249193 0.107255 0.164978 0.149997 0.0590972 0.214401 0.949333 1.22069\n", + " 114 4.086e-02 1.226e+02 1.340e-01 -- 3.526e+02 -- 0.255056 -0.36266 -1.45188 -1.75441 -2.34269 -2.75428 -3.63925 -3.76111 -0.249101 0.107302 0.164994 0.150567 0.0591131 0.215341 0.951506 1.21977\n", + " 116 3.807e-02 1.369e+02 1.295e-01 -- 3.527e+02 -- 0.255089 -0.362669 -1.4519 -1.75432 -2.3429 -2.75377 -3.63051 -3.76124 -0.24901 0.10735 0.164992 0.151115 0.0591318 0.216221 0.953639 1.21891\n", + " 118 3.543e-02 1.529e+02 1.253e-01 -- 3.528e+02 -- 0.255121 -0.362678 -1.45192 -1.75423 -2.3431 -2.75328 -3.62259 -3.76138 -0.248923 0.107399 0.164974 0.151642 0.0591471 0.217044 0.95573 1.21809\n", + " 120 3.292e-02 1.710e+02 1.213e-01 -- 3.530e+02 -- 0.255152 -0.362687 -1.45193 -1.75415 -2.3433 -2.7528 -3.61541 -3.76153 -0.248837 0.107449 0.164945 0.152149 0.0591535 0.217814 0.957773 1.2173\n", + " 122 3.110e-02 1.912e+02 1.176e-01 -- 3.531e+02 -- 0.255182 -0.362696 -1.45195 -1.75407 -2.34349 -2.75234 -3.60889 -3.76169 -0.248752 0.1075 0.164908 0.15264 0.0591462 0.218531 0.959768 1.21653\n", + " 124 3.007e-02 2.139e+02 1.139e-01 -- 3.532e+02 -- 0.255212 -0.362704 -1.45197 -1.754 -2.34368 -2.7519 -3.60297 -3.76186 -0.248668 0.107551 0.164864 0.153114 0.0591207 0.219197 0.961708 1.21577\n", + " 126 2.912e-02 2.393e+02 1.104e-01 -- 3.533e+02 -- 0.255241 -0.362713 -1.45199 -1.75393 -2.34386 -2.75147 -3.5976 -3.76202 -0.248584 0.107603 0.164817 0.153575 0.0590734 0.219814 0.963589 1.215\n", + " 128 2.825e-02 2.677e+02 1.069e-01 -- 3.534e+02 -- 0.255269 -0.362721 -1.45201 -1.75387 -2.34404 -2.75106 -3.59275 -3.76219 -0.2485 0.107655 0.164769 0.154022 0.0590009 0.220381 0.965407 1.21423\n", + " 130 2.746e-02 2.993e+02 1.034e-01 -- 3.535e+02 -- 0.255297 -0.362729 -1.45203 -1.75381 -2.34421 -2.75067 -3.58835 -3.76235 -0.248416 0.107708 0.164721 0.154457 0.0589 0.220898 0.967157 1.21345\n", + " 132 2.805e-02 3.345e+02 9.997e-02 -- 3.536e+02 -- 0.255324 -0.362737 -1.45205 -1.75375 -2.34437 -2.7503 -3.58439 -3.76251 -0.248331 0.107761 0.164676 0.154881 0.0587683 0.221364 0.968833 1.21265\n", + " 134 3.410e-02 3.735e+02 9.652e-02 -- 3.537e+02 -- 0.25535 -0.362745 -1.45207 -1.7537 -2.34453 -2.74995 -3.58082 -3.76266 -0.248245 0.107815 0.164635 0.155295 0.0586035 0.221779 0.970432 1.21184\n", + " 136 4.046e-02 4.168e+02 9.310e-02 -- 3.538e+02 -- 0.255376 -0.362753 -1.45208 -1.75365 -2.34469 -2.74962 -3.57761 -3.7628 -0.248158 0.10787 0.164599 0.1557 0.0584036 0.222141 0.97195 1.211\n", + " 138 4.708e-02 4.645e+02 8.971e-02 -- 3.539e+02 -- 0.255401 -0.36276 -1.4521 -1.7536 -2.34484 -2.74931 -3.57474 -3.76293 -0.248069 0.107925 0.164571 0.156096 0.0581673 0.222449 0.973382 1.21015\n", + " 140 5.391e-02 5.172e+02 8.638e-02 -- 3.540e+02 -- 0.255426 -0.362767 -1.45212 -1.75356 -2.34499 -2.74902 -3.57218 -3.76306 -0.247979 0.107983 0.16455 0.156484 0.0578935 0.222701 0.974726 1.20929\n", + " 142 6.088e-02 5.752e+02 8.313e-02 -- 3.541e+02 -- 0.25545 -0.362775 -1.45214 -1.75352 -2.34513 -2.74875 -3.56989 -3.76317 -0.247887 0.108041 0.164537 0.156864 0.0575814 0.222897 0.97598 1.2084\n", + " 144 6.792e-02 6.389e+02 7.999e-02 -- 3.541e+02 -- 0.255474 -0.362781 -1.45215 -1.75348 -2.34526 -2.74851 -3.56787 -3.76327 -0.247793 0.108101 0.164534 0.157238 0.0572308 0.223035 0.977144 1.20751\n", + " 146 7.496e-02 7.089e+02 7.699e-02 -- 3.542e+02 -- 0.255498 -0.362788 -1.45217 -1.75345 -2.3454 -2.74829 -3.56608 -3.76337 -0.247697 0.108163 0.164541 0.157606 0.0568421 0.223116 0.978218 1.20662\n", + " 148 8.194e-02 7.858e+02 7.415e-02 -- 3.543e+02 -- 0.255521 -0.362795 -1.45218 -1.75341 -2.34553 -2.74809 -3.56451 -3.76345 -0.247599 0.108227 0.164558 0.157967 0.0564161 0.22314 0.979203 1.20571\n", + " 150 8.877e-02 8.701e+02 7.150e-02 -- 3.544e+02 -- 0.255544 -0.362801 -1.4522 -1.75338 -2.34566 -2.74791 -3.56313 -3.76352 -0.247499 0.108292 0.164584 0.158323 0.0559538 0.223106 0.980101 1.20482\n", + " 152 9.539e-02 9.628e+02 6.905e-02 -- 3.544e+02 -- 0.255566 -0.362807 -1.45222 -1.75336 -2.34579 -2.74775 -3.56192 -3.76359 -0.247398 0.108359 0.16462 0.158673 0.0554571 0.223018 0.980916 1.20392\n", + " 154 1.017e-01 1.065e+03 6.682e-02 -- 3.545e+02 -- 0.255589 -0.362813 -1.45223 -1.75333 -2.34591 -2.74761 -3.56087 -3.76365 -0.247295 0.108428 0.164666 0.159017 0.0549281 0.222877 0.981651 1.20304\n", + " 156 1.077e-01 1.177e+03 6.480e-02 -- 3.546e+02 -- 0.255611 -0.362819 -1.45225 -1.75331 -2.34603 -2.74749 -3.55996 -3.76369 -0.247191 0.108499 0.164721 0.159357 0.0543694 0.222685 0.982311 1.20217\n", + " 158 1.132e-01 1.300e+03 6.299e-02 -- 3.546e+02 -- 0.255633 -0.362825 -1.45226 -1.75329 -2.34615 -2.74739 -3.55918 -3.76373 -0.247085 0.108571 0.164785 0.159691 0.0537841 0.222446 0.982901 1.20132\n", + " 160 1.182e-01 1.436e+03 6.139e-02 -- 3.547e+02 -- 0.255654 -0.36283 -1.45227 -1.75327 -2.34627 -2.74731 -3.55851 -3.76377 -0.246978 0.108645 0.164856 0.160019 0.0531753 0.222164 0.983425 1.20049\n", + " 162 1.227e-01 1.586e+03 6.000e-02 -- 3.547e+02 -- 0.255676 -0.362835 -1.45229 -1.75326 -2.34638 -2.74724 -3.55794 -3.76379 -0.246871 0.108719 0.164934 0.160342 0.0525467 0.221843 0.98389 1.19969\n", + " 164 1.266e-01 1.752e+03 5.878e-02 -- 3.548e+02 -- 0.255697 -0.36284 -1.4523 -1.75324 -2.34649 -2.74719 -3.55745 -3.76382 -0.246763 0.108795 0.165018 0.160659 0.0519018 0.221488 0.9843 1.19892\n", + " 166 1.299e-01 1.936e+03 5.774e-02 -- 3.549e+02 -- 0.255717 -0.362845 -1.45231 -1.75323 -2.3466 -2.74715 -3.55703 -3.76383 -0.246655 0.10887 0.165107 0.16097 0.0512446 0.221103 0.98466 1.19817\n", + " 167 8.335e-01 5.253e+05 1.229e+00 -- 3.561e+02 -- 0.255921 -0.362892 -1.45244 -1.75313 -2.34767 -2.74689 -3.55355 -3.76396 -0.245575 0.109632 0.166041 0.164016 0.0445881 0.217007 0.987818 1.19106\n", + " 169 4.967e-01 6.931e+04 9.078e-01 -- 3.570e+02 -- 0.256778 -0.363023 -1.45248 -1.75314 -2.34788 -2.74729 -3.55391 -3.76392 -0.240168 0.115356 0.168594 0.167645 0.0408715 0.213369 0.987598 1.19065\n", + " 171 3.048e-01 2.023e+05 2.339e-01 -- 3.572e+02 -- 0.257135 -0.363073 -1.4525 -1.75314 -2.348 -2.7475 -3.5541 -3.76389 -0.237882 0.117852 0.16997 0.169576 0.0388412 0.2114 0.98748 1.19042\n", + " 173 1.911e-01 2.661e+05 1.067e-01 -- 3.573e+02 -- 0.257299 -0.363094 -1.45251 -1.75314 -2.34807 -2.74763 -3.55422 -3.76388 -0.236811 0.118996 0.170757 0.170684 0.0376575 0.210262 0.987412 1.19029\n", + " 175 1.242e-01 3.120e+05 7.122e-02 -- 3.574e+02 -- 0.257367 -0.363102 -1.45252 -1.75313 -2.34811 -2.7477 -3.55428 -3.76387 -0.236362 0.119438 0.171223 0.171343 0.036938 0.209578 0.987372 1.19021\n", + " 177 8.518e-02 3.537e+05 6.017e-02 -- 3.575e+02 -- 0.257377 -0.363102 -1.45252 -1.75313 -2.34814 -2.74775 -3.55433 -3.76386 -0.236301 0.119504 0.171509 0.171751 0.0364794 0.209147 0.987347 1.19015\n", + " 178 8.968e+00 4.801e+09 1.203e+01 -- 3.454e+02 -- 0.25718 -0.363074 -1.45256 -1.7531 -2.34833 -2.74807 -3.55461 -3.76383 -0.236925 0.118229 0.173367 0.174411 0.0333719 0.206265 0.987183 1.18976\n", + " 181 2.164e+01 5.609e+09 1.234e+00 -- 3.467e+02 -- 0.254646 -0.363062 -1.45256 -1.7531 -2.34833 -2.74806 -3.55461 -3.76383 -0.215677 0.117722 0.173339 0.174333 0.0334359 0.206333 0.987186 1.18977\n", + " 184 5.483e+01 2.331e+10 1.652e+01 -- 3.302e+02 -- 0.252058 -0.363045 -1.45256 -1.7531 -2.34833 -2.74806 -3.5546 -3.76383 -0.169015 0.117128 0.173323 0.174259 0.0334941 0.206388 0.987189 1.18977\n", + " 188 6.183e+01 1.828e+10 5.801e+00 -- 3.360e+02 -- 0.252061 -0.363046 -1.45256 -1.7531 -2.34833 -2.74806 -3.5546 -3.76383 -0.178282 0.117142 0.173318 0.174255 0.0334983 0.206394 0.987189 1.18977\n", + " 192 5.885e+01 2.436e+10 3.844e+00 -- 3.321e+02 -- 0.253244 -0.363049 -1.45256 -1.7531 -2.34833 -2.74806 -3.5546 -3.76383 -0.189305 0.117135 0.173312 0.174248 0.0335015 0.206395 0.987189 1.18977\n", + " 196 2.129e+01 1.929e+10 7.309e+00 -- 3.394e+02 -- 0.252685 -0.363051 -1.45256 -1.7531 -2.34833 -2.74806 -3.5546 -3.76383 -0.200446 0.117182 0.173307 0.174242 0.0335052 0.206401 0.987189 1.18978\n", + " 200 2.206e+01 2.181e+10 2.023e+00 -- 3.374e+02 -- 0.253371 -0.363052 -1.45256 -1.7531 -2.34833 -2.74806 -3.5546 -3.76383 -0.204712 0.117211 0.173302 0.174232 0.0335083 0.206402 0.987189 1.18978\n", + " 204 8.299e+01 5.939e+10 2.238e+01 -- 3.150e+02 -- 0.254665 -0.363051 -1.45256 -1.7531 -2.34833 -2.74806 -3.5546 -3.76383 -0.200196 0.117131 0.173299 0.174226 0.0335125 0.206401 0.98719 1.18978\n", + " 208 9.303e+01 8.504e+10 5.484e+00 -- 3.095e+02 -- 0.255535 -0.363057 -1.45256 -1.7531 -2.34833 -2.74806 -3.5546 -3.76383 -0.216811 0.117221 0.173291 0.174227 0.0335159 0.206403 0.98719 1.18978\n", + " 212 6.491e+01 2.077e+11 3.885e+01 -- 2.707e+02 -- 0.254951 -0.36305 -1.45256 -1.7531 -2.34833 -2.74806 -3.5546 -3.76383 -0.196641 0.117099 0.173292 0.174214 0.0335247 0.206409 0.987191 1.18978\n", + " 217 1.111e+02 2.167e+11 3.081e+00 -- 2.676e+02 -- 0.25519 -0.363051 -1.45256 -1.7531 -2.34832 -2.74806 -3.5546 -3.76383 -0.197918 0.117105 0.173291 0.174215 0.0335252 0.206409 0.987191 1.18978\n", + " 221 2.876e+02 9.255e+11 1.181e+02 -- 1.495e+02 -- 0.254392 -0.363043 -1.45256 -1.7531 -2.34832 -2.74805 -3.5546 -3.76383 -0.175939 0.116879 0.173293 0.174201 0.0335327 0.206419 0.987192 1.18978\n", + " 225 1.234e+00 2.500e+08 2.070e+02 -- 3.565e+02 -- 0.257392 -0.363058 -1.45256 -1.7531 -2.34832 -2.74805 -3.5546 -3.76383 -0.226547 0.117399 0.173269 0.174192 0.0335295 0.206406 0.987194 1.18978\n", + " 226 5.528e+01 1.532e+11 3.627e+02 -- -6.266e+00 -- 0.253834 -0.36252 -1.45253 -1.75307 -2.34805 -2.74748 -3.5541 -3.76389 0.0531025 0.0821288 0.169868 0.16878 0.0388404 0.211605 0.987527 1.19032\n", + " 229 7.686e+00 1.730e+09 3.323e+02 -- 3.261e+02 -- 0.255597 -0.362547 -1.45253 -1.75307 -2.34807 -2.7475 -3.55413 -3.76389 0.08246 0.0832204 0.170036 0.169033 0.0385988 0.211368 0.987512 1.19029\n", + " 232 3.732e+00 4.680e+08 1.751e+01 -- 3.436e+02 -- 0.257357 -0.362572 -1.45254 -1.75307 -2.34808 -2.74752 -3.55415 -3.76389 0.0887979 0.0841294 0.170166 0.169243 0.0384008 0.211174 0.987501 1.19027\n", + " 235 3.446e+00 2.036e+08 5.719e+00 -- 3.493e+02 -- 0.258519 -0.362592 -1.45254 -1.75307 -2.34808 -2.74754 -3.55416 -3.76388 0.0921117 0.0848699 0.17027 0.169411 0.03824 0.211016 0.987491 1.19026\n", + " 237 2.034e+00 1.556e+08 4.483e-02 -- 3.492e+02 -- 0.26605 -0.36276 -1.45254 -1.75309 -2.34815 -2.74769 -3.55429 -3.76387 0.123855 0.0911334 0.171129 0.170821 0.0369156 0.209732 0.987409 1.19012\n", + " 239 1.466e+00 1.245e+08 2.780e+00 -- 3.520e+02 -- 0.259943 -0.362627 -1.45254 -1.75308 -2.34809 -2.74756 -3.55417 -3.76388 0.0986618 0.085177 0.170356 0.169568 0.0381123 0.210889 0.987481 1.19024\n", + " 241 1.862e+00 2.649e+08 3.442e+00 -- 3.486e+02 -- 0.266437 -0.362754 -1.45254 -1.75309 -2.34814 -2.74767 -3.55427 -3.76387 0.113128 0.0899647 0.170998 0.17062 0.0371147 0.209918 0.987421 1.19014\n", + " 243 1.266e+01 1.952e+09 9.726e+00 -- 3.388e+02 -- 0.259641 -0.362639 -1.45253 -1.75308 -2.34809 -2.74755 -3.55417 -3.76388 0.0920617 0.0850623 0.170303 0.169498 0.038182 0.210959 0.987481 1.19025\n", + " 246 3.739e+00 6.376e+08 9.943e+00 -- 3.488e+02 -- 0.260555 -0.362649 -1.45254 -1.75308 -2.3481 -2.74756 -3.55418 -3.76388 0.103714 0.0855166 0.170377 0.169607 0.0380736 0.210855 0.987475 1.19024\n", + " 249 7.179e+00 2.798e+08 3.620e+00 -- 3.524e+02 -- 0.261275 -0.362658 -1.45254 -1.75308 -2.3481 -2.74757 -3.55419 -3.76388 0.107592 0.0858678 0.170432 0.169696 0.0379917 0.210774 0.987471 1.19023\n", + " 251 6.516e-01 1.445e+07 2.805e+00 -- 3.552e+02 -- 0.260815 -0.362722 -1.45254 -1.75308 -2.34813 -2.74765 -3.55425 -3.76387 0.184829 0.0886738 0.170854 0.170348 0.0373649 0.210209 0.987427 1.19017\n", + " 253 3.810e+00 2.052e+08 1.727e+00 -- 3.535e+02 -- 0.257283 -0.362714 -1.45254 -1.75308 -2.34812 -2.74764 -3.55423 -3.76387 0.172785 0.088281 0.17073 0.170156 0.0375437 0.210382 0.987434 1.19018\n", + " 255 3.064e+00 8.311e+06 1.177e+00 -- 3.547e+02 -- 0.258177 -0.36276 -1.45254 -1.75308 -2.34815 -2.74769 -3.55428 -3.76387 0.238623 0.0899565 0.171066 0.170674 0.0370633 0.209939 0.987402 1.19013\n", + " 257 7.394e+00 3.133e+09 1.172e+01 -- 3.429e+02 -- 0.254324 -0.362757 -1.45254 -1.75308 -2.34814 -2.74767 -3.55426 -3.76387 0.165501 0.0891934 0.170888 0.170414 0.0372912 0.210148 0.987412 1.19016\n", + " 259 4.577e+00 8.174e+09 2.129e+01 -- 3.217e+02 -- 0.25069 -0.36289 -1.45254 -1.7531 -2.34818 -2.74774 -3.55433 -3.76386 0.0431235 0.0911987 0.171302 0.171131 0.0366077 0.209486 0.987358 1.19009\n", + " 261 2.816e+00 1.095e+09 2.508e+01 -- 3.467e+02 -- 0.259954 -0.363017 -1.45255 -1.75311 -2.34824 -2.74786 -3.55443 -3.76385 0.0628627 0.0987668 0.171982 0.172358 0.0355272 0.20841 0.987296 1.18998\n", + " 263 8.570e+00 1.645e+09 2.114e+00 -- 3.489e+02 -- 0.252615 -0.362928 -1.45254 -1.7531 -2.3482 -2.74777 -3.55435 -3.76386 0.0451626 0.0945636 0.171419 0.171452 0.0363838 0.209263 0.987344 1.19006\n", + " 266 6.015e+00 7.015e+08 4.892e+00 -- 3.537e+02 -- 0.254279 -0.362935 -1.45254 -1.7531 -2.3482 -2.74777 -3.55435 -3.76386 0.041292 0.0948982 0.171457 0.171509 0.0363216 0.209197 0.987341 1.19006\n", + " 269 2.525e+01 1.168e+08 3.655e+00 -- 3.574e+02 -- 0.256735 -0.362939 -1.45254 -1.7531 -2.3482 -2.74777 -3.55436 -3.76386 0.0388082 0.0951206 0.171485 0.171557 0.0362756 0.209144 0.98734 1.19005\n", + " 271 1.208e+01 6.119e+09 1.521e+01 -- 3.422e+02 -- 0.257086 -0.362929 -1.45255 -1.7531 -2.34821 -2.7478 -3.55437 -3.76386 0.136783 0.0964349 0.171623 0.17166 0.0360846 0.209008 0.987331 1.19003\n", + " 273 6.524e+01 2.429e+09 1.264e+01 -- 3.548e+02 -- 0.249456 -0.36281 -1.45255 -1.75308 -2.34818 -2.74774 -3.55432 -3.76386 0.302002 0.0935984 0.171321 0.171267 0.0365623 0.209564 0.98736 1.19009\n", + " 277 8.104e+01 1.297e+10 5.058e+00 -- 3.498e+02 -- 0.248213 -0.362807 -1.45255 -1.75308 -2.34818 -2.74775 -3.55432 -3.76386 0.321703 0.0935769 0.171325 0.171264 0.0365626 0.209571 0.987359 1.19009\n", + " 282 2.328e+01 1.055e+10 1.358e+00 -- 3.511e+02 -- 0.248486 -0.362807 -1.45255 -1.75308 -2.34818 -2.74775 -3.55432 -3.76386 0.319096 0.0935799 0.171325 0.171264 0.0365624 0.20957 0.987359 1.19009\n", + " 286 6.803e+00 3.491e+09 3.884e+00 -- 3.550e+02 -- 0.249067 -0.362804 -1.45255 -1.75308 -2.34818 -2.74775 -3.55432 -3.76386 0.326525 0.0936242 0.171326 0.171261 0.0365618 0.209572 0.98736 1.19009\n", + " 291 6.563e+01 1.909e+09 6.548e-01 -- 3.557e+02 -- 0.249237 -0.362804 -1.45255 -1.75308 -2.34818 -2.74775 -3.55432 -3.76386 0.326513 0.0936243 0.171326 0.171261 0.0365619 0.209571 0.98736 1.19009\n", + " 295 2.097e+01 5.540e+08 7.801e-01 -- 3.565e+02 -- 0.249081 -0.362799 -1.45255 -1.75307 -2.34818 -2.74775 -3.55432 -3.76386 0.347942 0.093616 0.171332 0.171258 0.0365647 0.209579 0.98736 1.19009\n", + " 299 5.078e+01 2.673e+09 1.016e+00 -- 3.554e+02 -- 0.248981 -0.362802 -1.45255 -1.75307 -2.34818 -2.74775 -3.55432 -3.76386 0.340645 0.0934478 0.171333 0.171274 0.0365637 0.209578 0.98736 1.19009\n", + " 304 1.217e+02 6.839e+08 7.133e-01 -- 3.562e+02 -- 0.249232 -0.362802 -1.45255 -1.75307 -2.34818 -2.74775 -3.55432 -3.76386 0.338915 0.0934395 0.171333 0.171274 0.0365637 0.209577 0.98736 1.19009\n", + " 308 8.032e-01 2.458e+07 1.069e+00 -- 3.551e+02 -- 0.252232 -0.362801 -1.45255 -1.75308 -2.34818 -2.74774 -3.55432 -3.76386 0.297682 0.0932028 0.17133 0.171276 0.0365613 0.209559 0.987364 1.19009\n", + " 310 2.176e+00 1.190e+08 1.235e+00 -- 3.539e+02 -- 0.24778 -0.362787 -1.45255 -1.75307 -2.34817 -2.74773 -3.55431 -3.76386 0.321591 0.0922355 0.17126 0.171144 0.0366787 0.209695 0.987368 1.1901\n", + " 313 7.459e+00 1.929e+07 9.609e-01 -- 3.548e+02 -- 0.249155 -0.36279 -1.45255 -1.75307 -2.34817 -2.74774 -3.55432 -3.76386 0.314594 0.0923622 0.171282 0.171188 0.0366438 0.209658 0.987366 1.1901\n", + " 315 5.281e+00 2.205e+08 1.301e+00 -- 3.561e+02 -- 0.255257 -0.362875 -1.45254 -1.75309 -2.34819 -2.74775 -3.55434 -3.76386 0.0799459 0.0941447 0.171371 0.171431 0.0364087 0.209347 0.987352 1.19007\n", + " 318 4.407e+00 4.106e+07 1.134e+00 -- 3.572e+02 -- 0.256315 -0.362879 -1.45254 -1.75309 -2.3482 -2.74775 -3.55434 -3.76386 0.0757242 0.0943132 0.171389 0.17146 0.0363794 0.209314 0.987352 1.19007\n", + " 321 7.132e+00 7.906e+07 6.987e-01 -- 3.579e+02 -- 0.25764 -0.362879 -1.45254 -1.75309 -2.3482 -2.74775 -3.55434 -3.76386 0.0723873 0.0944535 0.171398 0.171474 0.0363617 0.209289 0.987352 1.19007\n", + " 324 7.614e+00 3.913e+07 3.547e-01 -- 3.576e+02 -- 0.258611 -0.362877 -1.45254 -1.75309 -2.3482 -2.74775 -3.55434 -3.76386 0.0775498 0.0944425 0.171402 0.17148 0.0363586 0.209281 0.987353 1.19007\n", + " 327 1.263e+00 4.729e+07 5.561e-01 -- 3.570e+02 -- 0.258918 -0.362873 -1.45254 -1.75309 -2.3482 -2.74775 -3.55434 -3.76386 0.0834542 0.0943921 0.171395 0.171469 0.0363714 0.20929 0.987354 1.19007\n", + " 330 1.910e+01 8.393e+07 7.689e-01 -- 3.578e+02 -- 0.258007 -0.362872 -1.45254 -1.75309 -2.34819 -2.74775 -3.55434 -3.76386 0.0845079 0.0943617 0.171384 0.171449 0.036389 0.20931 0.987354 1.19007\n", + " 333 2.525e+01 1.008e+08 2.575e-01 -- 3.581e+02 -- 0.258286 -0.362878 -1.45254 -1.75309 -2.3482 -2.74774 -3.55434 -3.76386 0.0683659 0.0944189 0.171376 0.171441 0.0363934 0.209307 0.987354 1.19007\n", + " 336 5.562e+00 5.143e+07 4.538e-01 -- 3.576e+02 -- 0.25833 -0.362872 -1.45254 -1.75309 -2.34819 -2.74775 -3.55434 -3.76386 0.0856295 0.0943039 0.171382 0.171444 0.036396 0.209312 0.987355 1.19007\n", + " 339 1.157e+01 9.557e+07 2.073e-01 -- 3.578e+02 -- 0.257744 -0.36287 -1.45254 -1.75309 -2.34819 -2.74775 -3.55434 -3.76386 0.0903926 0.0942372 0.171377 0.171435 0.0364077 0.209327 0.987355 1.19007\n", + " 342 1.068e+01 9.556e+08 3.223e+00 -- 3.546e+02 -- 0.260013 -0.36287 -1.45254 -1.75309 -2.34819 -2.74774 -3.55434 -3.76386 0.0799386 0.0943017 0.171369 0.171427 0.0364092 0.20932 0.987357 1.19007\n", + " 345 4.170e+01 1.886e+08 2.403e+00 -- 3.570e+02 -- 0.258928 -0.362866 -1.45254 -1.75309 -2.34819 -2.74774 -3.55433 -3.76386 0.0884755 0.0939485 0.171358 0.171408 0.0364383 0.209351 0.987358 1.19008\n", + " 348 2.879e+01 9.511e+07 1.296e+00 -- 3.583e+02 -- 0.258843 -0.362878 -1.45254 -1.75309 -2.34819 -2.74774 -3.55433 -3.76386 0.0515822 0.0941797 0.171336 0.171408 0.0364491 0.209351 0.987357 1.19008\n", + " 351 4.880e+01 1.238e+08 3.808e-01 -- 3.579e+02 -- 0.259089 -0.362884 -1.45254 -1.75309 -2.34819 -2.74774 -3.55434 -3.76386 0.0367321 0.0942631 0.171336 0.171434 0.0364398 0.209343 0.987356 1.19008\n", + " 354 1.177e+02 4.510e+08 6.040e-01 -- 3.573e+02 -- 0.259363 -0.362893 -1.45254 -1.7531 -2.34819 -2.74774 -3.55434 -3.76386 0.0188061 0.094653 0.171334 0.171438 0.0364246 0.209325 0.987355 1.19007\n", + " 357 1.797e+01 2.155e+08 1.342e+00 -- 3.586e+02 -- 0.259777 -0.362885 -1.45254 -1.7531 -2.34819 -2.74774 -3.55434 -3.76386 0.0409415 0.0945432 0.171355 0.171458 0.0364111 0.209306 0.987355 1.19007\n", + " 359 2.641e+04 1.751e+14 2.177e+03 -- -1.818e+03 -- 0.258935 -0.362902 -1.45254 -1.7531 -2.3482 -2.74773 -3.55433 -3.76386 -0.0326452 0.0965976 0.171306 0.171256 0.0364091 0.20932 0.987355 1.19007\n", + " 368 1.789e+04 2.368e+14 3.546e+02 -- -2.173e+03 -- 0.258935 -0.362902 -1.45254 -1.7531 -2.3482 -2.74773 -3.55433 -3.76386 -0.0326366 0.0965975 0.171306 0.171256 0.0364091 0.20932 0.987355 1.19007\n", + " 372 6.690e-01 1.850e+06 2.525e+03 -- 3.517e+02 -- 0.261935 -0.363089 -1.45251 -1.75324 -2.3482 -2.74767 -3.55432 -3.76386 -0.616453 0.0981103 0.170229 0.17144 0.0374651 0.209113 0.987434 1.19006\n", + " 374 6.163e-01 2.129e+05 2.479e+00 -- 3.542e+02 -- 0.258997 -0.363262 -1.45252 -1.75326 -2.34833 -2.7479 -3.55454 -3.76384 -0.578257 0.104674 0.17185 0.173716 0.0352143 0.206809 0.987308 1.18982\n", + " 376 5.913e-01 6.432e+05 1.228e+00 -- 3.554e+02 -- 0.256225 -0.363323 -1.45253 -1.75326 -2.3484 -2.74802 -3.55465 -3.76382 -0.542617 0.108165 0.172695 0.174865 0.0340199 0.205587 0.987244 1.18969\n", + " 378 5.514e-01 8.533e+05 7.479e-01 -- 3.561e+02 -- 0.254051 -0.363342 -1.45253 -1.75326 -2.34844 -2.74809 -3.55472 -3.76382 -0.510533 0.110241 0.173163 0.175487 0.0333382 0.204888 0.987208 1.18961\n", + " 380 5.180e-01 1.004e+06 4.971e-01 -- 3.566e+02 -- 0.25242 -0.363341 -1.45254 -1.75326 -2.34846 -2.74813 -3.55476 -3.76381 -0.482381 0.111475 0.17342 0.175814 0.0329481 0.204485 0.987189 1.18957\n", + " 382 4.902e-01 1.139e+06 3.585e-01 -- 3.570e+02 -- 0.25124 -0.36333 -1.45254 -1.75326 -2.34847 -2.74815 -3.55478 -3.76381 -0.457393 0.112191 0.173555 0.175975 0.0327287 0.204255 0.987179 1.18954\n", + " 384 4.537e-01 1.276e+06 2.752e-01 -- 3.573e+02 -- 0.250444 -0.363315 -1.45254 -1.75326 -2.34848 -2.74816 -3.55479 -3.76381 -0.434971 0.112595 0.173618 0.176038 0.0326106 0.204128 0.987175 1.18953\n", + " 386 4.177e-01 1.422e+06 2.177e-01 -- 3.575e+02 -- 0.249927 -0.363298 -1.45254 -1.75326 -2.34849 -2.74816 -3.55479 -3.76381 -0.415237 0.112771 0.173639 0.176044 0.0325551 0.204065 0.987174 1.18952\n", + " 388 3.997e-01 1.582e+06 1.784e-01 -- 3.577e+02 -- 0.249603 -0.36328 -1.45254 -1.75325 -2.34849 -2.74816 -3.55479 -3.76381 -0.397894 0.112831 0.173635 0.176017 0.0325368 0.20404 0.987175 1.18952\n", + " 390 3.521e-01 1.759e+06 1.541e-01 -- 3.578e+02 -- 0.24945 -0.363264 -1.45254 -1.75325 -2.34849 -2.74816 -3.55479 -3.76381 -0.381991 0.11281 0.173617 0.175973 0.0325408 0.204038 0.987177 1.18952\n", + " 392 2.781e-01 1.955e+06 1.294e-01 -- 3.580e+02 -- 0.249369 -0.363247 -1.45254 -1.75325 -2.34849 -2.74815 -3.55479 -3.76381 -0.368541 0.112703 0.17359 0.175916 0.0325603 0.204053 0.98718 1.18952\n", + " 394 3.503e-01 2.172e+06 1.069e-01 -- 3.581e+02 -- 0.249517 -0.363233 -1.45254 -1.75325 -2.34849 -2.74815 -3.55479 -3.76381 -0.35829 0.112607 0.173559 0.17586 0.0325849 0.204074 0.987183 1.18952\n", + " 396 2.380e-01 2.413e+06 1.111e-01 -- 3.582e+02 -- 0.249439 -0.363219 -1.45254 -1.75325 -2.34849 -2.74814 -3.55478 -3.76381 -0.345741 0.112463 0.173528 0.175799 0.0326152 0.204099 0.987186 1.18952\n", + " 398 2.527e-01 2.681e+06 9.063e-02 -- 3.583e+02 -- 0.249818 -0.363207 -1.45254 -1.75325 -2.34849 -2.74814 -3.55478 -3.76381 -0.337514 0.112322 0.173495 0.175737 0.0326474 0.204127 0.987189 1.18952\n", + " 400 1.574e-01 2.980e+06 8.735e-02 -- 3.583e+02 -- 0.24992 -0.363195 -1.45254 -1.75324 -2.34849 -2.74813 -3.55478 -3.76381 -0.328983 0.112124 0.17346 0.175677 0.0326852 0.204162 0.987193 1.18953\n", + " 402 4.787e-02 3.312e+06 7.415e-02 -- 3.584e+02 -- 0.250149 -0.363185 -1.45254 -1.75324 -2.34848 -2.74813 -3.55477 -3.76381 -0.323806 0.111956 0.173429 0.175624 0.0327188 0.204194 0.987196 1.18953\n", + " 404 1.565e-01 3.682e+06 6.319e-02 -- 3.585e+02 -- 0.250644 -0.363177 -1.45254 -1.75324 -2.34848 -2.74812 -3.55477 -3.76381 -0.322256 0.111821 0.173403 0.175576 0.0327469 0.204218 0.987198 1.18953\n", + " 406 1.014e-01 4.089e+06 7.156e-02 -- 3.586e+02 -- 0.250855 -0.363169 -1.45254 -1.75324 -2.34848 -2.74812 -3.55477 -3.76381 -0.317211 0.111743 0.17338 0.175533 0.0327711 0.20424 0.9872 1.18953\n", + " 408 6.026e-02 4.546e+06 6.444e-02 -- 3.586e+02 -- 0.250942 -0.363162 -1.45254 -1.75324 -2.34848 -2.74812 -3.55476 -3.76381 -0.313996 0.111664 0.173354 0.175484 0.032799 0.204265 0.987203 1.18954\n", + " 410 5.353e-02 5.051e+06 6.122e-02 -- 3.587e+02 -- 0.251214 -0.363156 -1.45254 -1.75324 -2.34848 -2.74811 -3.55476 -3.76381 -0.312103 0.111601 0.173334 0.175452 0.0328209 0.204283 0.987205 1.18954\n", + " 412 3.313e-01 5.616e+06 5.936e-02 -- 3.587e+02 -- 0.25132 -0.36315 -1.45254 -1.75324 -2.34848 -2.74811 -3.55476 -3.76381 -0.310433 0.111483 0.173315 0.175418 0.0328405 0.204302 0.987206 1.18954\n", + " 414 2.458e-01 6.221e+06 8.104e-02 -- 3.588e+02 -- 0.25152 -0.363144 -1.45254 -1.75324 -2.34848 -2.74811 -3.55476 -3.76381 -0.300149 0.111342 0.173305 0.175396 0.0328536 0.204313 0.987208 1.18954\n", + " 416 3.303e-01 6.940e+06 4.243e-02 -- 3.589e+02 -- 0.252529 -0.363141 -1.45254 -1.75324 -2.34848 -2.7481 -3.55475 -3.76381 -0.307525 0.111245 0.173274 0.175347 0.0328886 0.204345 0.987211 1.18954\n", + " 418 2.732e-01 7.749e+06 7.538e-02 -- 3.589e+02 -- 0.251523 -0.363133 -1.45254 -1.75324 -2.34848 -2.7481 -3.55475 -3.76381 -0.297369 0.111097 0.173256 0.175306 0.0329145 0.204372 0.987212 1.18955\n", + " 420 2.171e-01 8.619e+06 6.585e-02 -- 3.590e+02 -- 0.250986 -0.363128 -1.45254 -1.75324 -2.34848 -2.7481 -3.55475 -3.76381 -0.289245 0.110957 0.173254 0.175304 0.0329193 0.204375 0.987213 1.18955\n", + " 422 1.367e-01 9.558e+06 6.498e-02 -- 3.591e+02 -- 0.25117 -0.363126 -1.45254 -1.75324 -2.34848 -2.7481 -3.55475 -3.76381 -0.282965 0.110892 0.173251 0.175291 0.0329228 0.204377 0.987213 1.18955\n", + " 424 1.078e-01 1.065e+07 5.047e-02 -- 3.591e+02 -- 0.250283 -0.363121 -1.45254 -1.75324 -2.34848 -2.7481 -3.55475 -3.76381 -0.279096 0.110663 0.173235 0.175263 0.0329452 0.204402 0.987215 1.18955\n", + " 426 6.572e-01 1.172e+07 3.144e-02 -- 3.592e+02 -- 0.249336 -0.363121 -1.45254 -1.75324 -2.34848 -2.7481 -3.55475 -3.76381 -0.282104 0.11081 0.173244 0.175268 0.03293 0.204387 0.987213 1.18955\n", + " 428 5.054e-01 1.316e+07 7.386e-02 -- 3.592e+02 -- 0.249036 -0.36312 -1.45254 -1.75324 -2.34848 -2.74811 -3.55475 -3.76381 -0.263564 0.110889 0.173276 0.175312 0.0328876 0.204345 0.987211 1.18954\n", + " 430 1.710e+00 1.428e+07 5.282e-02 -- 3.593e+02 -- 0.249406 -0.363114 -1.45254 -1.75324 -2.34848 -2.7481 -3.55475 -3.76381 -0.250243 0.110635 0.173257 0.175261 0.0329177 0.204379 0.987214 1.18955\n", + " 432 7.772e-01 1.655e+07 5.093e-02 -- 3.593e+02 -- 0.251439 -0.363115 -1.45254 -1.75324 -2.34847 -2.74809 -3.55474 -3.76381 -0.293033 0.1105 0.173206 0.175194 0.0329741 0.20443 0.987218 1.18955\n", + " 434 1.590e+00 1.724e+07 4.105e-02 -- 3.593e+02 -- 0.251114 -0.363123 -1.45254 -1.75324 -2.34848 -2.7481 -3.55475 -3.76381 -0.315808 0.11098 0.173234 0.175245 0.0329205 0.20438 0.987214 1.18955\n", + " 436 2.078e+00 1.442e+07 6.228e-02 -- 3.594e+02 -- 0.252467 -0.36312 -1.45254 -1.75324 -2.34848 -2.74811 -3.55476 -3.76381 -0.265603 0.111067 0.173304 0.17534 0.0328373 0.204281 0.987211 1.18954\n", + " 438 2.622e+00 2.092e+07 1.046e-01 -- 3.595e+02 -- 0.249064 -0.363089 -1.45254 -1.75323 -2.34847 -2.74809 -3.55474 -3.76381 -0.210422 0.109904 0.173201 0.175158 0.0330073 0.204453 0.987222 1.18955\n", + " 440 2.370e-01 2.398e+07 1.058e-01 -- 3.596e+02 -- 0.250133 -0.363091 -1.45254 -1.75324 -2.34847 -2.74808 -3.55473 -3.76381 -0.265588 0.109484 0.173108 0.175038 0.033125 0.204566 0.987227 1.18957\n", + " 442 6.561e-01 2.389e+07 2.821e-02 -- 3.595e+02 -- 0.247097 -0.363105 -1.45254 -1.75324 -2.34847 -2.74809 -3.55474 -3.76381 -0.271884 0.110528 0.173184 0.175113 0.033014 0.204456 0.987219 1.18955\n", + " 444 5.072e+00 5.109e+08 1.835e+00 -- 3.577e+02 -- 0.236997 -0.363105 -1.45255 -1.75323 -2.34848 -2.74811 -3.55476 -3.76381 -0.254045 0.11072 0.173288 0.175291 0.0328836 0.204367 0.987207 1.18954\n", + " 447 1.057e+01 4.593e+08 1.662e-01 -- 3.579e+02 -- 0.237886 -0.363111 -1.45255 -1.75323 -2.34848 -2.74812 -3.55476 -3.76381 -0.266931 0.110974 0.173303 0.175328 0.0328554 0.204341 0.987206 1.18954\n", + " 450 7.338e+01 1.668e+10 1.284e+01 -- 3.450e+02 -- 0.229947 -0.363104 -1.45255 -1.75323 -2.34848 -2.74812 -3.55476 -3.76381 -0.238724 0.11079 0.17333 0.175359 0.032836 0.204334 0.987203 1.18954\n", + " 454 1.669e+01 4.660e+07 1.379e+01 -- 3.588e+02 -- 0.232947 -0.363102 -1.45255 -1.75323 -2.34848 -2.74812 -3.55476 -3.76381 -0.221206 0.110782 0.173331 0.175354 0.0328338 0.204323 0.987204 1.18953\n", + " 457 6.736e+00 7.637e+07 8.954e-03 -- 3.588e+02 -- 0.236984 -0.363112 -1.45255 -1.75323 -2.34848 -2.74812 -3.55476 -3.76381 -0.258136 0.110966 0.173339 0.17538 0.0328089 0.204294 0.987203 1.18953\n", + " 460 6.471e+00 9.704e+06 4.604e-01 -- 3.593e+02 -- 0.236655 -0.363111 -1.45255 -1.75323 -2.34849 -2.74813 -3.55477 -3.76381 -0.240747 0.111111 0.173355 0.1754 0.0327882 0.204273 0.987202 1.18953\n", + " 463 8.613e+00 4.704e+07 4.115e-01 -- 3.597e+02 -- 0.237547 -0.36311 -1.45255 -1.75323 -2.34849 -2.74813 -3.55477 -3.76381 -0.225168 0.111183 0.173367 0.17542 0.032773 0.204255 0.987202 1.18953\n", + " 466 3.362e+00 7.507e+07 1.913e-01 -- 3.599e+02 -- 0.238404 -0.363107 -1.45255 -1.75323 -2.34849 -2.74813 -3.55477 -3.76381 -0.205775 0.111127 0.173375 0.175432 0.0327636 0.204245 0.987202 1.18953\n", + " 468 3.391e+01 6.069e+07 2.465e-01 -- 3.596e+02 -- 0.233164 -0.363093 -1.45255 -1.75323 -2.34849 -2.74813 -3.55477 -3.76381 -0.136596 0.111009 0.173402 0.175399 0.0327685 0.204241 0.987201 1.18953\n", + " 471 1.410e+02 2.370e+07 3.883e-01 -- 3.592e+02 -- 0.228233 -0.363082 -1.45255 -1.75323 -2.34849 -2.74813 -3.55477 -3.76381 -0.0902722 0.110874 0.173404 0.175393 0.0327806 0.204258 0.987201 1.18953\n", + " 472 4.001e+00 6.877e+07 5.523e+01 -- 3.040e+02 -- 0.144854 -0.360368 -1.4527 -1.75287 -2.34832 -2.74795 -3.55454 -3.76384 0.073615 0.0439555 0.174963 0.172283 0.0343795 0.20623 0.987592 1.18965\n", + " 474 4.449e+00 9.477e+04 4.908e+01 -- 3.531e+02 -- 0.178975 -0.361472 -1.45258 -1.7526 -2.34944 -2.74907 -3.55594 -3.76368 0.0676088 0.0602605 0.184173 0.186509 0.0206225 0.191289 0.986849 1.18821\n", + " 476 7.496e+00 1.443e+05 8.590e-01 -- 3.539e+02 -- 0.184083 -0.361709 -1.45256 -1.75266 -2.34954 -2.74923 -3.5561 -3.76366 0.0375291 0.0666604 0.184752 0.186797 0.01903 0.189498 0.986749 1.188\n", + " 478 2.779e+01 1.616e+05 4.958e-01 -- 3.544e+02 -- 0.188654 -0.361864 -1.45255 -1.75273 -2.34955 -2.74927 -3.55613 -3.76365 0.00939594 0.0715689 0.184457 0.186024 0.018875 0.189182 0.986725 1.18796\n", + " 480 1.441e+01 1.748e+05 3.655e-01 -- 3.548e+02 -- 0.192925 -0.361971 -1.45254 -1.7528 -2.34952 -2.74926 -3.55609 -3.76366 -0.0167118 0.075451 0.183801 0.184833 0.0193558 0.189523 0.986735 1.18799\n", + " 482 5.419e+00 1.903e+05 3.047e-01 -- 3.551e+02 -- 0.196991 -0.36205 -1.45252 -1.75286 -2.34949 -2.74921 -3.55603 -3.76366 -0.0407928 0.0786126 0.183025 0.183518 0.020092 0.190136 0.986762 1.18805\n", + " 484 3.210e+00 2.094e+05 2.684e-01 -- 3.554e+02 -- 0.20088 -0.36211 -1.45251 -1.75292 -2.34944 -2.74916 -3.55596 -3.76367 -0.0629001 0.081257 0.18224 0.182224 0.0208981 0.190834 0.986794 1.18811\n", + " 486 2.214e+00 2.319e+05 2.427e-01 -- 3.556e+02 -- 0.204623 -0.362158 -1.4525 -1.75296 -2.3494 -2.74911 -3.55589 -3.76368 -0.0830936 0.0835154 0.181498 0.181014 0.0216866 0.191527 0.986828 1.18818\n", + " 488 1.641e+00 2.576e+05 2.220e-01 -- 3.558e+02 -- 0.2082 -0.362199 -1.45249 -1.753 -2.34936 -2.74906 -3.55583 -3.76369 -0.101492 0.0854718 0.18082 0.179912 0.0224199 0.192178 0.986859 1.18824\n", + " 490 1.279e+00 2.867e+05 2.041e-01 -- 3.560e+02 -- 0.21159 -0.362234 -1.45249 -1.75303 -2.34933 -2.74901 -3.55577 -3.76369 -0.118149 0.0871837 0.18021 0.178923 0.0230854 0.192771 0.986888 1.1883\n", + " 492 1.019e+00 3.190e+05 1.889e-01 -- 3.562e+02 -- 0.214798 -0.362264 -1.45248 -1.75306 -2.3493 -2.74897 -3.55572 -3.7637 -0.133264 0.0886906 0.179665 0.178041 0.0236819 0.193305 0.986915 1.18835\n", + " 494 8.350e-01 3.550e+05 1.755e-01 -- 3.564e+02 -- 0.217839 -0.362291 -1.45247 -1.75309 -2.34927 -2.74893 -3.55567 -3.76371 -0.146847 0.0900198 0.179181 0.177257 0.024214 0.193782 0.986939 1.1884\n", + " 496 6.864e-01 3.949e+05 1.631e-01 -- 3.566e+02 -- 0.220677 -0.362314 -1.45247 -1.75311 -2.34924 -2.74889 -3.55563 -3.76371 -0.159109 0.0911918 0.178751 0.17656 0.0246885 0.19421 0.98696 1.18844\n", + " 498 5.835e-01 4.392e+05 1.520e-01 -- 3.567e+02 -- 0.223333 -0.362335 -1.45246 -1.75313 -2.34922 -2.74886 -3.55559 -3.76371 -0.17003 0.0922269 0.178367 0.175939 0.0251115 0.194591 0.986979 1.18847\n", + " 500 4.877e-01 4.884e+05 1.422e-01 -- 3.569e+02 -- 0.225803 -0.362354 -1.45246 -1.75314 -2.3492 -2.74883 -3.55556 -3.76372 -0.179951 0.0931396 0.178026 0.175387 0.0254897 0.194933 0.986996 1.18851\n", + "********************\n", + "0.248545 -0.362521 -1.45242 -1.75328 -2.34903 -2.74857 -3.55526 -3.76375 -0.267712 0.101175 0.174975 0.17046 0.0288768 0.198006 0.987152 1.18879\n", + "0.0326854 0.00121998 0.000396181 0.00485342 0.00441057 0.00846026 0.00173706 0.000198443 0.208668 0.0333017 0.0139548 0.0472137 0.0310511 0.0388547 0.00686236 0.00229119\n", + "21.6768 960.747 11500.2 1088.5 2531.9 1489.42 54226.9 488371 -1.74721 7.48018 -88.3148 -31.5201 -35.9069 149.822 -1498.85 -399.194\n", + "********************\n" + ] + } + ], + "source": [ + "Cx = clag.clag('cxd10r', [[t1,t2]], [[l1,l2]], [[l1e,l2e]], dt, fqL, p1, p2)\n", + "p = np.concatenate( ((p1+p2)*0.5-0.3,p1*0+0.1) ) # a good starting point generally\n", + "p, pe = clag.optimize(Cx, p)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "phi, phie = p[nfq:], pe[nfq:]\n", + "lag, lage = phi/(2*np.pi*fqd), phie/(2*np.pi*fqd) \n", + "cx, cxe = p[:nfq], pe[:nfq]" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAFrCAYAAACE+GArAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAFRpJREFUeJzt3XFsXdd9H/CvE8txm6xVmtSkHKRhwjamV6nzyMitrCSl\nsTYohs0ZsEIlgQwr1TVe223QNmwNMlj15LUDhm1x/mg3GIPdYsGelBUbkmLzlv5BB4GkbCrpdVZr\nup0keq6lRydZlDZJnQix9sclG4oSJb7D997hIz8f4IGP951774+6R3xfnnvufQkAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAbBvvT/JbSV5O8lqSD96gzaPLr389yWySP9+v4gCAzXtdD7f9nUmeTfILy99f\nXfP6LyY5svz6/iTtJL+d5E09rAkAGECvJXlo1fe3JbmU5B+tWnZHki8n+XAf6wIANqGXIxI3884k\nQ0k+s2rZN5N8NskDVSoCADpWK0gML39dWrP8lVWvAQBb3O21C7iBtXMpVuxZfgAAnbm0/Oi6WkGi\nvfx1aNXzG32/Ys/dd9998eLFiz0vDAC2oZfTXNjQ9TBRK0hcSBMYPpDkd5eX3ZHkR3PtBMwVey5e\nvJhPfOITuffee/tUYvccOXIkjz/++EDuazPb63TdjbbfSLtbtbnZ6/08Xt2mr3W3vb62Pn2tu+17\n2deef/75fOhDH3pbmlH9gQoSb0zyA6u+f1eS+5J8KclLSR5P8tEkf5jk/yw//2qS/7DeBu+9996M\nj4/3qt6e2b17d9/q7va+NrO9TtfdaPuNtLtVm5u93s/j1W36Wnfb62vr09e6277Xfa2XXt/DbR9M\ncirJw2nmPfzE8vM3J/lUkpNJ7kzyS0n+XpKvJJlOcqPzF3uSPPzwww9nz57BnCaxb9++gd3XZrbX\n6bobbb+Rdrdqs97rrVYr09PTG6pjK9LXutteX1ufvtbd9r3qa5cuXcoTTzyRJE+kByMSt3V7gz0y\nnmRubm5uYNM7g+Ohhx7Kpz/96dplsAPoa/TD/Px8JiYmkmQiyXy3t1/r8k8AYBsQJGCNQR5qZrDo\na2wHggSs4Zc7/aKvsR0IEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFB\nAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQA\ngGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAo\nJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKC\nBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgA\nAMUECQCgmCABABQTJACAYoIEAFCsZpB4NMlrax4XK9YDAHTo9sr7P5vkx1Z9/61ahQAAnasdJL6V\n5JXKNQAAhWrPkfiBJC8nOZ+kleSddcsBADpRM0h8PsnfSPKBJD+bZDjJqSTfU7EmAKADNU9t/LdV\nz38vyekk55L8zSQfq1IRANCR2nMkVvt6kueSfP96DY4cOZLdu3dfs2x6ejrT09M9Lg0Atr5Wq5VW\nq3XNssuXL/d0n7f1dOudeUOaEYl/m+SfrXltPMnc3NxcxsfH+14YAAyq+fn5TExMJMlEkvlub7/m\nHIl/meT9aSZY/nCS30zypiS/UbEmAKADNU9tvC3NlRpvTfKFNHMkfiTJSxVrAgA6UDNImNgAAAOu\n9n0kAIABJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAU\nEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFB\nAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQA\ngGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAo\nJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIALe0uLiYw4cPZ9++fRkbG8u+\nffty+PDhLC4u1i4NqOz22gUAW9fS0lKmpqaysLCQdrt9zWtnz57N008/nbGxsRw/fjxDQ0OVqrze\n4uJijh07ljNnzuTKlSvZtWtX9u/fn6NHj2ZkZKR2eRRyXLcmQQK4oaWlpTzwwAM5f/78um3a7Xba\n7XYOHjyYkydPVg8Tgxp8uDnHdWtzagO4oampqZuGiNXOnTuXqampHld0cyvB55lnnrnuzWZFu93O\nM888k4MHD2ZpaanPFVJiKxxXp/ZuTpAArnPhwoUsLCx0tM7CwkLVX6xbIfh4w+m+msd1aWkpDz74\nYA4cOJCnnnoqZ8+ezQsvvJCzZ8/mqaeeyoEDB/Lggw8KpQNiPMnVubm5q0DvzczMXE3S8WNmZqZK\nvefPn786PDzcUa3Dw8NXL1y40JX9t9vtq5OTk+vWMDw8fHVycvJqu93uyv52iprHtd1uX33Xu961\noX2Ojo5u6WM7Nze3Uut4d9+aG0YkgOucOXOmr+tt1mOPPbbusPd62u12jh07tul9b4Wh9xr6MfpS\n87huhRGuQWGyJXCdK1eu9HW9zaoZfErecGZnZze931r6OfGx1nHdzKm9nXj1iBEJ4Dq7du3q63qb\nVSv4bIW5JP2cl9Hv0Zdax7XmSMggEiSA6+zfv79ovfvvv7/LlWxMreBT+5RKvycC9nu4v9ZxHbRT\ne7VthSDx80kuJPnTJL+T5L11ywGOHj2a4eHhjtYZHh7OI4880qOKbq5W8Kn1hlNjXkaN0Zdax3XQ\nTu3VVjtI/FSSjyV5LMl9ST6X5Okkb69ZFOx0IyMjGRsb62idsbGxaueHawWfWm84NSYC1hh9qXVc\nB+3UXm21g8Q/SPLvkjyZ5IUkfz/JS0l+rmZRQHL8+PGMjo5uqO3o6GhOnDjR44rWVyv41HjDqTUv\no8boS63jOmin9mqrGSTuSHNN62fWLP9Mkgf6Xw6w2tDQUE6ePJnJycl1/yocHh7O5ORkTp06lbvu\nuqvPFV6rRvCp8YZTa15GrdGXGsd10E7t1VYzSLw1yeuTrD1590qSzo4g0BNDQ0OZnZ3N6dOnMzMz\nk7179+aee+7J3r17MzMzk9OnT2d2drZ6iFiptd/Bp8YbTq15GbWG+2sc10E7tVeb+0gAtzQyMpIn\nn3yydhm3tBJ8+vUpkStvOJ2MEGz2DafWyMD+/ftz9uzZjtfrxnB/v49r0oyEHDx4MOfOnbtl29qn\n9mq7reK+70jytSQ/meRTq5Z/PMkPJXlw1bLxJHPve9/7snv37ms2Mj09nenp6R6XCnBjS0tLHb3h\nbPav5n379hW9oe/duzfPPfdc8X4XFxdz4MCBjkLT8PBwTp8+PbB/qd/s5ltJ8/ONjY3lxIkTW2JU\nLklarVZardY1yy5fvpzPfe5zSTKRZL5GXb30+SS/umbZ7yf55TXLfNYGsGVt9LM2lpaWNr2v0s9B\nOXz48Kb3PTk52dE+JycnN73PreDChQtXZ2Zmru7du/fqPffcc3Xv3r1XZ2ZmuvZZLb3W68/aqDki\nkSSHkvz7JH87Taj4cJKfSfKDaa7eWDGeZG5ubi7j4z35dwDYtH4MvdccGej36AvdMT8/n4mJiaRH\nIxK150h8MslbkhxNsifJc0n+cq4NEQADoR9zSWrMy1ixMvFx0Ib76a3aQSJJ/s3yA4ANqDkRsMbE\nR7a2rRAkAOjAVhgZGJQreeg9QQJgABkZYKsQJAAGmJEBaqv9WRsAwAATJACAYoIEAFBMkAAAigkS\nAEAxQQIAKCZIAADF3EeCHWv1x+2++uqrefHFF/OOd7wjd955ZxIfUQ+wEYIEO9bqoLDy6XitVssn\nzAJ0wKkNAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIE\nAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAA\nxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBM\nkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJBgR1tcXMzhw4dz6NChJMmhQ4dy\n+PDhLC4u1i0MYEDcXrsAqGFpaSlTU1NZWFhIu93+s+Xnzp3LuXPn8vTTT2dsbCzHjx/P0NBQxUoB\ntjZBgh1naWkpDzzwQM6fP79um3a7nXa7nYMHD+bkyZPCBMA6nNpgx5mamrppiFjt3LlzmZqa6nFF\nAINLkGBHuXDhQhYWFjpaZ2FhwZwJgHUIEuwojz322DVzIjai3W7n2LFjPaoIYLAJEuwoZ86c6et6\nANudIMGOcuXKlb6uB7DdCRLsKLt27erregDbnSDBjrJ///6i9e6///4uVwKwPQgS7ChHjx7N8PBw\nR+sMDw/nkUce6VFFAIOtZpBYTPLamsevVKyHHWBkZCRjY2MdrTM2NpaRkZHeFAQw4GoGiatJHkky\nvOrxyxXrYYc4fvx4RkdHN9R2dHQ0J06c6HFFAIOr9qmNryZ5ZdXja3XLYScYGhrKyZMnMzk5ue5p\njuHh4UxOTubUqVO56667+lwhwOCoHSR+MckXkzyb5KNJTI2nL4aGhjI7O5vTp09nZmbmz0YoRkdH\nMzMzk9OnT2d2dlaIALiFmh/a9fEkc0m+nOSHk/zzJO9M8rMVa2KHGRkZyZNPPpn5+flMTEzkk5/8\nZMbHx2uXBTAwuh0kHk1y9BZt3pNkPsnjq5adTRMofjPJP15+fp0jR45k9+7d1yybnp7O9PR0YbkA\nsH20Wq20Wq1rll2+fLmn+7yty9t7y/LjZl5M8o0bLH9bkpfSjE6svR/xeJK5ubk5fy3SEysjEvoY\nsN2s/H5LMpHmD/mu6vaIxJeWHyX+4vLXS12qBQDosVpzJH4kyYEks0m+kmR/kn+d5FNJ/qhSTQBA\nh2oFiW8kOZRmPsUb0pzueCLJv6hUDwBQoFaQeDbNiAQAMMBq30cCABhgggQAUEyQAACKCRIAQDFB\nAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQA\ngGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAo\nJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoNjttQuAWlqtVlqt\nVpLk1Vdfzbvf/e585CMfyZ133pkkmZ6ezvT0dM0SAbY8QYIdS1AA2DynNgCAYoIEAFBMkAAAigkS\nAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEA\nFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYr0KEv8kyakkX0/y5XXa\nfF+S30ry1SRfSPLxJLt6VA9sWKvVql0CO4S+xnbQqyCxK8mJJL+2zuuvT/JfknxHkoNJppL89ST/\nqkf1wIb55U6/6GtsB7f3aLuPLn/96XVe/0CSe5P8eJL28rJ/mOTXk3w0zSgFALDF1ZojcSDJc/l2\niEiSzyR5Q5KJKhX1UD//6uj2vjazvU7X3Wj7jbS7VZvt+pegvtbd9vra+vS17rYf5L5WK0gMJ1la\ns+zLSb65/Nq24j9cd9sP8n+4XtPXutteX1ufvtbd9oPc1zo5tfFokqO3aPOeJPMb3N5tHew7SfL8\n8893usqWcPny5czPb/SfZWvtazPb63TdjbbfSLtbtbnZ6/08Xt2mr3W3vb62Pn2tu+172dd6/d7Z\nyZv5W5YfN/Nikm+s+v6nk3wsyZvXtPunST6Y5L5Vy96c5EtJHkzy2TXt9yQ5k+RtHdQLADReTrI/\nyaVub7iTEYkvLT+64XSaS0SH8u1THB9IE0LmbtD+Upp/gD1d2j8A7CSX0oMQ0Uvfl2a04WiSP07y\nF5a/f+Py669L8r+T/Pby8r+U5P+muZcEALDD/XqS15Yf31r19f2r2rw9zQ2pvpbki0kejxtSAQAA\nAAAAAADcyp9L8j+TPJvkbJK/U7cctrG3J3kmye8l+d0kP1m1Gra7/5zk/yX5j7ULYdv6K0kWkvxB\nkp+pXEtVr0ty5/Lz70hyPsn31iuHbWw4yQ8tP//eJC+l6XPQCz+a5he9IEEv3J7khTS3V3hTmjDx\nPZ1soNYtsnvhtSSvLj//ziRXVn0P3dROc/lyknwhzV+LHf3Hgw58Nj7IkN65P83o6qU0/ey/prmv\n04ZtpyCRJN+dZqh55Z4Uf1K3HHaA96S5Q+zLtQsBKHB3rv399Ufp8C7S2y1IfCXNza/emeQXknx/\n3XLY5t6S5DeSfLh2IQCFrm52AzWDxPvT3JDq5TSnJT54gzY/n+RCkj9N8jtJ3rvqtb+bZmLlfK6/\nkdUraSbD3RfoTV97Q5L/lORXkny+J1UziHr1e23Tv+zZtjbb5y7m2hGIt2eARlh/IsmxJH8tzQ//\n0JrXfyrNZ28cTnJPmg//+pM0P+SN3JXku5aff1eac9j3dLdkBlS3+9ptSVpJfqkXxTLQut3XVkzG\nZEtubLN97vY0EyzvTnP14x/k+g/aHAg3+uH/R5JfXbPs99P8BXgj42mS/P9afsx0s0C2jW70tfem\nueX7fJo+92ySH+xijWwP3ehrSfLf04yyfi3NFUIT3SqQbae0z/3VNFdu/GGSv9Wz6nps7Q9/R5qr\nLtYO0Tye5pQFlNLX6Bd9jX6r0ue26mTLtyZ5fb79EeMrXklzDT90i75Gv+hr9Ftf+txWDRIAwADY\nqkHii2nOQQ+tWT6U5qYZ0C36Gv2ir9FvfelzWzVIfDPJXK6/u9aPJznV/3LYxvQ1+kVfo9+2fZ97\nY5r7PNyXZoLIkeXnK5ekHEpzycpMknvTXLLyx7n1ZVKwlr5Gv+hr9NuO7nOTaX7o19IMvaw8f3JV\nm59LcxONV5OcybU30YCNmoy+Rn9MRl+jvyajzwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA\nFvX/AViFdcVPEXmdAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "\n", + "xscale('log'); ylim(-10,10)\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=10, color=\"black\")\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAFrCAYAAAC0dHEKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X98lWX9x/HXBAR/o6gM/IXMH6Bf/NomFCK4TNEyppUp\nM/vmyB8ZWVhpVoqolZZZWlpKWmrQQbOvaaZm34JEMKHNX4CYjaEEDFNcqIEiO98/riGwe2MbO/e5\nz4/X8/E4jx3O7nNfn8HF9t51X9d1gyRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJklqZ\nAjS3eqxIsiBJktR5PWM89wLg+M3+vCHGtiRJUgbFGRA2AK/EeH5JkhST7WI898HAcmAJkAIOjLEt\nSZKUQSUxnfckYAfg70ApcBkwBDgcWB1Tm5IkKUPiCgit7QjUA98DftjG5we0PCRJUtesbHlkVJxz\nEDb3H+A54KA2Pjdg4MCBK1ascJGDJEnbYDkwnAyHhGwFhN7AYcBjbXxuwIoVK5g2bRpDhw7NUjmZ\nM2nSJG644Ya8bKs75+vqezt7fGeO6+iYrX0+m/9emWZfy+zx9rX22dcye3ycfe3555/nrLPO2ocw\nCp8XAeH7wAPAMmBvwhyEnYE723vD0KFDKS8vj6mc+PTt2zdrdWe6re6cr6vv7ezxnTmuo2O29vls\n/ntlmn0ts8fb19pnX8vs8XH3tbj0iOm8NcBXgEuAjwJLgU8RVjS0NgA4//zzz2fAgPychjBs2LC8\nbas75+vqezt7fGeO6+iY9j6fSqWorq7uVB25yL6W2ePta+2zr2X2+Lj62sqVK5k6dSrAVDI8gpCt\nSYpbUw7U1tbW5m3aVv6oqqrigQceSLoMFQH7mrKhrq6OiooKgAqgLpPnjnMfBEmSlKcMCCoq+Tzk\nq/xiX1O+MyCoqPhNW9liX1O+MyBIkqQIA4IkSYowIEiSpAgDgiRJijAgSJKkCAOCJEmKMCBIkqQI\nA4IkSYowIEiSpAgDgiRJijAgSJKkCAOCJEmKMCBIkqQIA4IkSYowIEiSpAgDgiRJijAgSJKkCAOC\nJEmKMCBIkqQIA4IkSYowIEiSpAgDgiRJijAgSJKkCAOCJEmKMCBIkqQIA4IkSYowIEiSpAgDgiRJ\nijAgSJKkCAOCJEmKMCBIkqQIA4IkSYowIEiSpAgDgiRJijAgSJKkCAOCJEmKMCBIkqQIA4IkSYrI\nRkC4FGgGfpiFtiRJUgbEHRCGA+cBzwLpmNuSJEkZEmdA2BmYBpwDvB5jO5IkKcPiDAg3Aw8CfwZK\nYmxHkiRlWM+YzjseOJJwiQG8vCBJUl6JIyDsB9wIHA+80/JaCY4iSJKUN+IICBXAXkDdZq/1AEYD\nE4HetDGiMGnSJPr27bvFa9XV1VRXV8dQoiRJ+SWVSpFKpbZ4rampKbb24vitfmdg/1Zt/AJ4Hvgu\nsKjV8eVAbW1tLeXl5TGUI0lSYaqrq6OiogLCL+d1HRzeJXGMILxJNAT8B1jdxuuSJCkHZWsnxTRO\nVJQkKW/EtYqhtQ9mqR1JkpQB3otBkiRFGBAkSVKEAUGSJEUYECRJUoQBQZIkRRgQJElShAFBkiRF\nGBAkSVKEAUGSJEUYECRJUoQBQZIkRRgQJElShAFBkiRFGBAkSVKEAUGSJEUYECRJUoQBQZIkRRgQ\nJElShAFBkiRFGBAkSVKEAUGSJEUYECRJUoQBQZIkRRgQJElShAFBkiRFGBAkSVKEAUGSJEUYECRJ\nUoQBQZIkRRgQJElShAFBkiRFGBAkSVKEAUGSJEUYECRJUoQBQZIkRRgQJElShAFBkiRFGBAkSVKE\nAUGSJEUYECRJUkRcAeEC4Bng3y2PucBJMbUlSZIyLK6AsAz4GlAOVAB/Bh4ADo+pPUmSlEE9Yzrv\ng63+fBlhVGEEsDCmNiVJUobEFRA21wP4JNAbmJ2F9iRJUjfFGRCGAU8QgsFa4HTgHzG2J0mSMiTO\nVQyLgSMIlxVuAmYQ5iRIkqQcF+cIwnpgScvzp4DhhHkI57Z18KRJk+jbt+8Wr1VXV1NdXR1jiZIk\n5YdUKkUqldritaamptjaK4ntzFF/ApYCn231ejlQW1tbS3m5AwySJHVWXV0dFRUVEFYM1mXy3HGN\nIFwDPERY7rgLMB44Fvh2TO1JkqQMiisg7AXcBQwgbJT0DHAiYT8ESZKU4+IKCOfEdF5JkpQF3otB\nkiRFGBAkSVKEAUGSJEUYECRJUoQBQZIkRRgQJElShAFBkiRFGBAkSVKEAUGSJEUYECRJUoQBQZIk\nRRgQJElShAFBkiRFGBAkSVKEAUGSJEUYECRJUoQBQZIkRRgQJElShAFBkiRFGBAkSVKEAUGSJEUY\nECRJUoQBQZIkRRgQJElShAFBkiRFGBAkSVKEAUGSJEUYECRJUoQBQZIkRRgQJElShAFBkiRFGBAk\nSVKEAUGSJEUYECRJUoQBQZIkRRgQJElShAFBkiRFGBAkSVKEAUGSFPHggzB+PNx1F6xdm3Q1SoIB\nQZL0nn/9C848E8aNg7o6+MxnYJ994KKLYPHipKtTNhkQJEmk05BKwWGHwaOPwi9/CS+8AC++COec\nA9OmwdChUFkZjnv77aQrVtziCghfB+YDa4BVwH3AITG1JUnqhn/+E6qqwsjBhz4EixbBWWdBSQkc\ndBB873vhmFQqHH/mmbDvvnDxxSFAqDDFFRDGAD8G3g+cAPQEHgV2jKk9SVIXNTfDLbeEUYO6Ovjt\nb2HGDNh77+ixvXuHOQmzZsHzz8OnPw233w6HHALHHw/33gvr12f9S1CM4goIHwbuAp4HngVqgP2B\n8pjakyR1wYsvwnHHwQUXhB/8CxfCKad07r1DhsAPfgDLl4dJjOvWwSc/CfvtB9/4BjQ0xFu7siNb\ncxD6tnxcnaX2JEltePdduO46OOIIWLYM/vQnmDoV+vbt+L2t7bBDGEl4/HF47rkQEn7yEygrgw9/\nOIxIvPtu5r8GZUc2AkIJ8ENgNrAoC+1JktrwzDPwgQ/ApZfCxInhh/pxx2Xm3P/1X/DjH4dRhdtu\ng9Wr4WMfgwMOgCuuCGFE+SUbAeEm4HCgOgttSZJaefttuPxyOOqo8PyJJ+D734cdY5gVttNOMGEC\nPPlkmNcwbly4HDFoUJgI+fvfw4YNmW9XmVcS8/l/DFQRJi2+1M4x5UDt6NGj6dtqjKu6uprqanOF\nJG2ruXPDMsV//AMuuyyMHmy/fXZreOONsALillvgqadg//1DTZ/9LAwcmN1a8lkqlSK1cSlJi6am\nJmbPng1QAdRlsr24AkIJIRycAlQC9Vs5thyora2tpbzcOYySlAlvvgnf/GYY9h8xIqw4OPzwZGtK\np+Fvf4Nbb920l0JVFZx/PpxwAmznzjxdVldXR0VFBcQQEOL657gZ+FTL4y2gtOXRJ6b2JEktHn00\nzAn42c/g+uthzpzkwwGEfRWGDw9zFFasgBtvDKspTjoJDj4Yrr0WVq1KukptFFdA+BywKzALWLHZ\n4/SY2pOkord6NdTUwIknhpUECxaELZJ79Ei6sqjddgsTJZ99NgSYY46BKVPCUskbbki6OkF8AWE7\noEfLx80fd8XUniQVtd/8Jmx4dN994Tf0//s/GDw46ao6VlICRx8Nd94ZRhVqauCSS8JujkqWV3wk\nKY+tXAmf+AScdlpYwrhoUZj8VxL3FPQY7LFHuOxw4IFhXkJzc9IVFTcDgiTloXQa7rgjjBo8/jjc\nc08YPcj3VQF9+oTVDo8/HiZWKjkGBEnKMw0NYZ5BTU1YBbBoUdjFMB9HDdrywQ/C2WeHSw2NjUlX\nU7wMCJKUJzZsgB/9KKxQeOEFePjhcO2+X7+kK8u8738fevYMkyyVDAOCJOWBRYtg9Gj40pfCToUL\nFoTlgYWqX7+wA+OMGfDII0lXU5wMCJKUw9Jp+N734H3vC8sYZ88Omx/tskvSlcXvrLPCraQvuADe\neivpaoqPAUGSctS6deGH5Ne+BpMmwdNPh/0CikVJSZiw2NgIV16ZdDXFx4AgSTmosREqK8PKhHvu\nge9+N8zwLzZlZTB5crjc8PTTSVdTXAwIkpRjnnkm3D/h5ZfhscfCCoVi9tWvwtChcO653gkymwwI\nkpRDHngARo2CPfeEefPCLZqLXa9eMHUq1NbCzTcnXU3xMCBIUg5Ip+G66+DUU8MeB7Nnw777Jl1V\n7hg5Ej73uXCHymXLkq6mOBgQJClh77wTtke+5BL4+tfh17+GnXZKuqrcc801YfXGhRcmXUlxMCBI\nUoJefTUs5Zs+HX75S/j2t2E7vzO3abfdwkZR998fJm8qXnZDSUrIokXw/vfD4sUwc2ZY0qit+8Qn\nYNy4MIqwZk3S1RQ2A4IkJeCRR8J19R13DJMRjz466YryQ0kJ3HQTNDWF+QiKjwFBkrIonQ47IZ58\nctg6ee5cGDQo6aryy/77w7e+FVY0/PWvSVdTuAwIkpQl69fDxInwxS+GnRHvv784tkyOw4UXQnk5\nnHde+HtV5hkQJCkLXn8dPvIR+NnPwuP666FHj6Sryl89eoS9ERYuDLssKvMMCJIUsxdfhA98AOrq\n4I9/hHPOSbqiwlBeHkZirrwSlixJuprCY0CQpBjNnBlWKpSUwJNPhvsrKHOuvBL22ivc8TGdTrqa\nwmJAkKSYTJ0KY8dCRQU88QQcdFDSFRWenXeGn/wEHn0UUqmkqyksBgRJyrANG+Cii+D888Mkuoce\ngt13T7qqwnXyyXD66eFyw+rVSVdTOAwIkpRBa9ZAVVVYynjTTWEpXq9eSVdV+G68MWxZfcklSVdS\nOAwIkpQhDQ1hw6PHHw+jBhMnJl1R8Sgthe9+F26/Hf7yl6SrKQwGBEnKgDlzYMQIWLs2bN4zdmzS\nFRWfc88Nt8o+/3x4++2kq8l/BgRJ6qa77oLjjoPDDgsrFYYOTbqi4rTddnDrrWHJ4zXXJF1N/jMg\nSNI2am4Ot2f+zGfCjZb++EfYc8+kqypuhx8e5iFcc024CZa2nQFBkrbBW2/BaaeF697XXQe33Qbb\nb590VYJwE6f99w+XGpqbk64mfxkQJKmLli2DY44JIwb33w9f/WrYCEm5YYcd4JZb4LHH4Be/SLqa\n/GVAkKQumDcvTEZcvTpMTBw3LumK1JYPfQj+53/g4ovhlVeSriY/GRAkqRM2bIAbboBjjw23Z543\nD444IumqtDXXXx8mLl50UdKV5CcDgiR1oK4u3E/hy18ON1qaORP690+6KnVkzz3DnR5/9Sv4wx+S\nrib/GBAkqR1vvglf+QoMHx526Zs7N+yQ2KdP0pWpsz796XC54YIL4D//Sbqa/GJAkKQ2/P73Ycnc\nT38K3/kO1NaGWzYrv5SUhH/DFSvCnR/VeQYESdrMypXhxj8f/SgMGQILFsDXvub9FPLZwQfD5ZeH\nOQnPPJN0NfnDgCBJhPXyt9wSdkGcNQumT4dHHoHBg5OuTJlw8cUh8J13Xphwqo4ZECQVvYULYfTo\ncJ36tNPCDnxnnuneBoVk++3DNszz5oVLDuqYAUFS0Vq7Fi67DN73PnjttXAXwNtugz32SLoyxWHj\njZy+8Q1YvjzpanKfAUFSUfrTn8I+BtddF7bmfeYZGDMm6aoUt2uvhZ12ggsvTLqS3GdAkFRUXn01\n3Fzp+ONhn31CMLjiCujdO+nKlA19+8KPfgT33Qe//W3S1eQ2A4KkopBOw513holqv/sd3H572PBo\nyJCkK1O2nXYanHwyfOELsGZN0tXkrjgDwhjgd8ByoBk4Jca2JKldL74YRgzOPhtOPDFMQpwwwUmI\nxaqkBG6+GV5/PcxBUdviDAg7Ak8BE1v+nI6xLUmKeOcd+Na3YNgwaGgIyxanT4e99066MiXtgAPg\n6qvhppvCygZFxRkQHgEmA17lkZR1jz8eVidMmQKTJoUNj048MemqlEu++MXQR847D9avT7qa3OMc\nBEkF5fXXw1K20aNhl13CjZauvRZ23DHpypRrevaEqVPhuefCnTq1JQOCpIKQTsPdd4edEFOpMHQ8\nZ463ZNbWVVSEkYQrroClS5OuJrf0TLoASequpUvh85+Hhx+Gj388LGPbZ5+kq1K+uPpq2HdfGDAg\n6UpyS84EhEmTJtG3b98tXquurqa6ujqhiiTlunffhRtvhMmTw+6H998PVVVJV6V8s/PO4bbeuS6V\nSpFKpbZ4rampKbb2srXIpxk4FXigjc+VA7W1tbWUl5dnqRxJ+SydDpMQv/SlsNHRhReG3wJ32SXp\nyqTsqquro6KiAqACqMvkueMcQdgJOHizPw8GjgReA5bF2K6kAvXCC2GZ4q9+BfX1cOSR8OSTcNRR\nSVcmFZ44A8Jw4M8tz9PAD1qe3wFMiLFdSQWksRFmzIBp06C2FnbdNeyEN3UqHHss9OiRdIVSYYoz\nIMzCVRKStsGaNWGv/OnTw02VevYMW+N+/evhY58+SVcoFb6cmaQoqbi98w784Q9hpOCBB2DdujBC\ncMstYcRg992TrlAqLgYESYlpboa5c8NIwT33wOrVYd+CK6+E6mrYb7+kK5SKlwFBUtYtXLhpsuFL\nL4UgcO658KlPhfsmSEqeAUFSVixfHnY4nD4dnn46XDL45CdDKDjmGNjOGUtSTjEgSIpNUxP85jch\nFMyaBdtvHzYymjIFTjoJevdOukJJ7TEgSMqot9+Ghx4KoeDBB8Pkw+OOg9tvD9sg77Zb0hVK6gwD\ngqRua26Gxx4LoeDee8PIQXk5fOc7MH48DByYdIWSusqAIGmbPftsCAWpFCxbBoMGwcSJYV7B0KFJ\nVyepOwwIUhHb/OYv69at46WXXuKAAw6gT8tORG3dMO3ll8Pqg+nTYcEC6NcPzjgjhIKRI6EkW3d4\nkRQrA4JUxDYPABtv+pJKpSI3Tlu9Olw6mDYNZs+GHXaAU06Ba66BE0+EXr2SqF5SnAwIUpFbunQp\nV111FY899hgAp59+OmPGjOGSS67guecOYPr0MOlwwwY44QS46y449VTvnCgVOgOCVKRWrVrF+PHj\nWbx4MY2NjS2vbkd9/SDq60dzxx27k07DkUeu57rrenHGGVBammjJkrLIgCAVoVWrVjFy5LE0NLwL\nHAF8DDgM+DgwEHiRdPoHwK94441mxo+fQ//+/ROsWFK2GRCkAvbvf0N9fXgsWbLp+dy5zaxbtxDY\neK/k9cBS4F5gGjD/vXPU18P48eOZOXNmtstv08ZLIvPnz2f9+vX06tWL4cOHM3nyZAYNGpR0eVLB\nMCBIeay5OWxh3DoAbHy+evWmY3fdFcrKoLT0LXr0uBd4DqgHlgDLgA3ttrN48WKWLl2a6A/gti+J\nBAsWLODhhx9myJAhzJgxw9GOPGTwyz0GBCnHrV0bfuC3FQAaGsJOhRCWF+6zTwgBw4aFVQZlZTB4\ncPi4xx7hmAkTLuStt37RpRoaGxu56qqr+PnPfx7DV9ixVatWcfTRR7NkyZJ2j2lsbKSxsZFRo0Yx\nZ46XRPKFwS93GRCkhKXT8K9/tR0AliyBFSs2HdunT/iBP3hwuJfB5gFg0KDw+Y7Mnz+/44My+L5M\nGD9+/FbDwebq6+tz6pKI2mfwy20GBCkL1q8PGwy1FQDq6+HNNzcdu9dem37of/CDm56HywPdv+vh\n+vXrs/q+7mpoaGDx4sVdek8uXBJRxwx+uc2AIGXImjXtB4CXXw77CAD06AEHHBB+4I8cGXYg3BgA\nDjwwzBWIU69t3NVoW9/XXVdffXVk6LkjSV8SUccMfrnPgCB1UnNzGO5vKwDU18Nrr206dpddNv3Q\nP+20LS8F7L8/9Ezwf97w4cNZsGBBl983YsSIGKrpWD5eElHHDH65z4AgbWbt2jDxr70JgW+/venY\njRMCDzsMxo3b8lJAv365e0+CyZMn8/DDD3fpm3NpaSmXX355jFW1L98uiahzciH4uXJi6wwIKirp\nNLz6avsTApcv33Rs795hyL+sDMaO3TIADBoU7keQjwYNGsSQIUO6FBCGDBmS2DfMfLskos5JMvi5\ncqJzDAgqeNdeC/PnbwoCb7yx6XP9+m36oT9mzKbngwfDwIHdnxCYq2bMmMGoUaOor6/v8NiysjLu\nvvvuLFTVtny7JKLOSSr4uXKi8wwIKnjPPRcmEI4YAdXVmwLA4MGw225JV5eM/v37M2fOnHZ/i4Jw\nWWHIkCHcfffd7L333glUGeTCJRGHojMvqeDnyon8Ug6ka2tr05Kyr6GhIV1TU5MuKytLA+mysrJ0\nTU1NuqGhIenS3lNZWZkGOv2orKzMSLuNjY3pysrKdGlpaZvtlJaWpisrK9ONjY0Zaa+YNDQ0tPv3\n2t6jtLS0W/1yyZIlWW8zbrW1tRtr3fIe7QXCgCDlgI3faHLx/2JjY+N7AaajR1lZWXrVqlUZaXPw\n4MGdbtOQ0HXZDn41NTVdam/jo6amJkNfcebFGRAK9AqrpEKy8ZJIZWUlpe3cc7q0tJTKykrmzp2b\nkUsi2zIUra6ZMWMGZWVlnTo2E3NhcmHlRD5xDoJUxFKpFKlUCoB169ZxyCGHcOmll9KnZc/m6upq\nqqurkyzxPf3792fmzJlZmQ/gJj7Zke25MC6Z7RoDglTEcikAdNagQYNi3yjHTXyyJ5vBzyWzXWNA\nkKRWHIrOvmwEP5fMdo1zECSpFYeiC9PkyZPbncPSniR3EU2aAUGSWinmoeilS5cyYcIEhg0bxpAh\nQxg2bBgTJkxg6dKlSZfWbRt3Ee2KJHcRTZqXGCSplWIcii6W7YfzaRfRpDmCIEmtFNtQ9Mbth2fN\nmtXu5MzGxkZmzZrFqFGjWLVqVZYrzJwklszmK0cQJKmVfLuhVXcV2/bD2Vw5kc8MCJLUhmIZii7m\nPR+ysXIin3mJQZLaUCxD0d3Z80GFzREESWpH0kPR2WjXPR/UHgOCJHUg20PR2VxR4J4Pao8BQZJy\nyMYVBVubNNjY2EhjYyOjRo1izpw53QoJxbzng7Yu7jkInwcagLXA34BjYm5PkvJatu8iOXz48G16\nXz7v+aDOiTMgnAH8ELgaOBKYDTwM7Bdjm5KUt7qzomBbFdueD+q8OAPCl4HbgJ8DLwAXAcuAC2Js\nU5LyVhIrCtx+WO2JKyBsD5QDj7Z6/VHg6JjalKS8ltSKghkzZlBWVtapY/N5zwd1TVwBYU+gB9B6\nP85XgK6NZUlSkUhqRUGx7PmgrnEVgyTliCRXFCS954NyT1wB4VVgA9B67U1/YGVbb5g0aRJ9+/bd\n4rXq6mqqq6tjKVCSck0u3EXS7YdzVyqVIpVKbfFaU1NTbO2VxHZm+CtQC0zc7LVFwH3ANzd7rRyo\nra2tpby8PMZyJCm3LV26lJEjR3ZpomJpaSlPPPGEv90Xqbq6OioqKgAqgLpMnjvOVQw/AM4BaoCh\nhCWP+wK3xNimJOUtVxQol8QZEO4BJgGTgacImyR9hLDUUZLUBlcUKFfEvZPiT4EDgT7AcODxmNuT\npLzmigLlClcxSFKOcUWBcoEBQZJylCsKlKS4LzFIkqQ8ZECQJEkRBgRJkhRhQJAkSREGBEmSFGFA\nkCRJEQYESZIUYUCQJEkRBgRJkhRhQJAkSREGBEmSFGFAkCRJEQYESZIUYUCQJEkRBgRJkhRhQJAk\nSREGBEmSFGFAkCRJEQYESZIUYUCQJEkRBgRJkhRhQJAkSREGBEmSFGFAkCRJEQYESZIUYUCQJEkR\nBgRJkhRhQJAkSREGBEmSFGFAkCRJEQYESZIUYUCQJEkRBgRJkhRhQJAkSREGBEmSFGFAkCRJEQYE\nSZIUYUCQJEkRBgRJkhQRV0D4JjAX+A/wekxtSF2WSqWSLkFFwr6mfBdXQOgF3A38JKbzS9vEb9rK\nFvua8l3PmM47peXj2TGdX5Ikxcg5CN2Uzd8SMt1Wd87X1fd29vjOHNfRMYX6m5t9LbPH29faZ1/L\n7PH52tcMCN3kf6TMHp+p/0ipVIqqqiqqqqoYO3Yshx56KGPHjmXevHlUVVXl5Td2+1pmj8/Xb9rZ\nYF/L7PH52te6colhCjC5g2OOAuq2pZDnn39+W96WuKamJurqtulLTryt7pyvq+/t7PGdOa6jY5qa\nmjj00EOZMmUKEPrWWWedxeTJk7n11lvfez1b/26ZYl/L7PGZ6mvtfT6b/16ZZl/L7PFx9rU4f3aW\ndOHYfi2PrXkJeHuzP58N/BDYfSvvGQDMB/bpQi2SJClYDgwHVmbypF0ZQXit5ZFpKwlf2IAYzi1J\nUqFbSYbDAcS3imF/YI+Wjz2A/yaMVrwIvNXG8bF8cZIkKbfcATS3PDZs9nFMgjVJkiRJkiRJkiRJ\nkiTtAswDngIWAF9IthwVsP2AWcBC4BngtESrUaG7D1gN/DrpQlSwPgosBv4OfDbhWmKxHdCn5fkO\nwBJgr+TKUQErBY5oeb4XsIzQ56Q4HEv4Bm5AUBx6Ai8QthHYmRAS9ujsm/Nlq+VmYF3L8x2B9Zv9\nWcqkRuDZluf/Ivx21+n/UFIX/QV4M+kiVLBGEEZDVxL62UPA2M6+OV8CAsBuhCHfl4EbgTeSLUdF\n4CjC/h3Lky5EkrbBQLb8/vVPurBrcT4FhH8TNlw6EJgIHJRsOSpw/YA7gfOSLkSStlG6O2+OKyCM\nAX5HSC7NwCltHPN5oAFYC/wNOGazz11ImJBYB/Rq9b5XCJPIjsxoxcpXcfS13sD/At8B/hpL1cpH\ncX1f69Y3cRW07va5FWw5YrAfOTAiehJwFXAq4YuqavX5Mwg3dZoAHEq4odMbhOLbsjewa8vzXQnX\niA/NbMnKU5nuayVACrgijmKV1zLd1zaqxEmKalt3+1xPwsTEgYTVgH9n6zdPzLq2vqgngZtbvbaI\n8BtbW8oJyfvplkdNJgtUwchEXzuGsC14HaHPPQUcnsEaVRgy0dcA/kAYFX2LsGKmIlMFquBsa58b\nR1jJ8CJwTmzVbaPWX9T2hFUIrYdKbiBcOpC2lX1N2WJfU7Zlvc8lMUlxT8IdHle1ev0Vwhp0KVPs\na8oW+5qyLfY+l0+rGCRJUpYkERBeJVzj7d/q9f6EzRykTLGvKVvsa8q22PtcEgHhHaCW6G5OJwBz\ns1+OCpiOpmIPAAAAj0lEQVR9TdliX1O25W2f24mwT8GRhIkVk1qeb1x6cTphaUYNMJSwNGMNHS8H\nklqzrylb7GvKtoLsc5WEL6aZMASy8fnPNzvmAsLmDuuA+Wy5uYPUWZXY15QdldjXlF2V2OckSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKy5P8BomIQNxy53W4AAAAASUVO\nRK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "s, loc, scale = lognorm.fit(lag,loc=.01)\n", + "\n", + "xscale('log'); ylim(-1,5)\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=10,color=\"black\")\n", + "plot(fqd,lognorm.pdf(fqd,s,loc,scale))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lag/data/clag_analysis-origbins-noLFerrors-4368A.ipynb b/lag/data/clag_analysis-origbins-noLFerrors-4368A.ipynb new file mode 100644 index 0000000..a5bf876 --- /dev/null +++ b/lag/data/clag_analysis-origbins-noLFerrors-4368A.ipynb @@ -0,0 +1,868 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X18VPWd9/9XSAKSRBRwbFEoxFBYg1pNKhD6s+qCqFBy\n1UI35PGzbbjorle73V2vSzK22u7P31W07aRre117tbXXlpL21zWmWnYXoevderNU7mro9sb4kxID\nyO2MiDcQhNyc64/vHOcmM8lM5szMOTPv5+ORR2BmMufkmzPnfM73+/l+viAiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjJm+4GhBF//K4/7JCIiIi42Fbg46msxJnj4\neD53SkRERLzju8DefO+EiIiIeMN44A3gy/neEREREXFOWRbf+5PABUD7CK+ZFv4SERGR9BwNf+Vc\nSRbf+0ngPeA/JXl+2iWXXHLkyJEjWdwFERGRgnUYuJY8BBDZ6nmYiUmWvG2E10w7cuQIP/vZz7j8\n8suztBsS78477+S73/1uvnejqKjNc09tnntq89x65ZVXuP322y/F9N4XTPCwBjgObB3thZdffjl1\ndXVZ2g2Jd+GFF6q9c0xtnntq89xTmxeXcVl6zzXATzDTNEVERKSAZCN4WAJMB36chfcWERGRPMvG\nsMVTQGkW3ldERERcIBs9D+Jizc3N+d6FoqM2zz21ee6pzYtLNqdqjqYO6Orq6lKSjYiISBr27NlD\nfX09QD2wJ9fbV8+DiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiI\npEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIik\nRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpKUs3zsgIlJIOjrMF8B778GBAzBzJpx3nnmsudl8\niXiZeh5ERBzU3AybN5vvZ8/C3r3wzjvw6qsmmOjogMbGSIAh4kXqeRARcVgoFOKppwK8/no3UMqh\nQ4McPlzL97/vZ/FiX753TyRj6nkQEXFQMBikoaGJ9vaV9PZuBOZy+LAF/Ae33HIDzc1/RSgUyvdu\nimREwYOIiIPuvruNnp4HgMuA1cBKYCvwNAMDv+eRR5ppaGhSACGepuBBRMRBu3d3AwuANuABYCFQ\nEn52HLCInp778fsDedpDkcwpeBARcdDAQCkmWLCDiEQWhIMMEW9S8CAi4qCyskHAAuwgIpFx4SBD\nxJsUPIiIOGj+/FpgF2AHEYkMhYMMEW9S8CAi4qBAwE9NzT3ARcDOJK/aFQ4yRLxJwYOIiIN8Ph87\ndnSyenUVZWX/GXgRGAo/OwTsoKbmXgIBf/52UiRDCh5ERBzm8/no6PgeTzzx78A/c+mlK4BGqqtX\n0NKyiR07OvH5VCxKvEsVJkVEHBS7toWPOXPamDwZDh+GGTNg6VJQ3CBep54HEREHRa9tcd55MHcu\nTJoEc+bAhAla20IKg3oeRESyQKtnSiFTz4OIiIikRcGDiIiIpEXDFiIiWRSbQAkHDsDMmSYfAjS8\nId6k4EFExCGjBQo33AD33mteU1eXt90UyZiCBxERh0T3IuzZA/X1JlCYMSOE3x/gRz/qBkpZtWqQ\n66+vJRDwq96DeJKCBxERB4VCJlB44QUTKNx2Wx8nT4Z4990fAgGghN7eIXp7d7NtW5MKRoknKWFS\nRMQhwWCQhoYm2ttX0tu7BdjMwYNX8+67DwELiayyOQ5YSE/P/fj9gbztr8hYKXgQEXHI3Xe30dPz\nALGBwivh/yeygN27u3OybyJOUvAgIuIQEwgsiHu0lEggEW8cAwOl2d0pkSxQ8CAi4hATCMQHCoOA\nleQnhigrG8zuTolkgYIHERGHmEAgPlCoBXYl+YldzJ9fm92dEskCBQ8iIg4xgUB8oOAH7gG2A0Ph\nx4aAHdTU3Esg4M/hHoo4Q8GDiIhDAgE/NTX3ADuIBApTgXVUVd3BzJm3Ao1UV6+gpWWTpmmKZ6nO\ng4iIQ3w+Hzt2dIbrPKynt7eU6mq7INSzvP66j/p6eOwxVZgUb1PwICLiIJ/Px8aNbe9XmPz852Hn\nTli71pSsnjMHvvxlrW0h3paN4OFS4FvALcBEYC+wFtiThW2JiLhG/NoWc+bA889HAoU1axQoSGFw\nOniYDLwI/BsmeAgCNcBbDm9HRMR11IsgxcLp4OFu4ACmp8F20OFtiIiISB45PduiEegCHgWOY4Yq\nPu/wNkRERCSPnA4eLgO+ALwKLAV+APxP4LMOb0dERETyxOlhi3HAbuCr4f//FrgC+C/ATxP9wJ13\n3smFF14Y81hzczPNGjgUERGho6ODDjsTN+ytt/KbSphstZax2g88BfxF1GNfAO4Fpse9tg7o6urq\nok4TnkVERFK2Z88e6uvrAerJw2xGp3seXgT+JO6xOZigQkSkaMVP4zxwAGbOVL0H8Sang4fvYAq4\nfwWTNDkf+PPwl4hI0WpuhiVLQuHqk9309pbS329Xn/SrTLV4itPBw0vAbcA3gL8FXgP+BugY6YdE\nRApdMBhk0aLV9PQ8AASAEnp7h+jt3c22bU1a50I8JRsLY20FrsJUl5wHbMjCNkREPOXuu9vCgcNC\nIulm44CF9PTcj98fyN/OiaRJq2qKiOTA7t3dwIIkzy4IPy/iDQoeRERyYGCglOQT3MaFnxfxBgUP\nIiI5UFY2CFhJnh0KPy/iDQoeRERyYP78WmBXkmd3hZ8X8QYFDyIiORAI+KmpuQfYAQyFHx0CdlBT\ncy+BgD9/OyeSJgUPIiI54PP52LGjk49/fBMVFSuARiZOXMGkSZuYPr2TtWt9NDZGCkmJuJnTdR5E\nRCQJn8/HCy+0sWcP1NfDP/wD3H47PPggqEq/eImCBxGRHIguT/3OOyEmTQrw53/eDZRy3XWDfPSj\ntTz2mCpNijdo2EJEJAeam2HzZvjRj4IcOtTEO++s5MyZLcBm+voe59//fSUNDU2EQqF876rIqBQ8\niIjkkCpNSiHQsIVIBrRSoqTLVJJMFiAsYPfu9bncHZExUfAgkoHo4MBOguvoUPKbJKdKk1IINGwh\nkqFQKMSaNa2sWrUcaGTVquWsWdOqsWtJSJUmpRCo50EkA1pmWdI1f34t3d27MDkP8VRpUrxBPQ8i\nGVDym6RLlSalEKjnQSQDSn4TSC9x1q406fcHeOGF9fT2llJdPcj119cSCKinSrxBwYNIBpT8JpBe\n4qwJNHxAG7NnQ3m5CTROnIC1azVDR7xBwxYiGVDym9hSTZy1i0U1N5ueiblzzeOvvmp6LTo60BoX\n4nrqeRDJgJLfBMaWONvcDEuWhMLDF9309pbS328PX6hMtbibeh5EMqDkN4GxJc4Gg0EaGppob19J\nb68pU93b+zjt7SpTLe6n4EEkA1pmWcBOnF2Q5NkF4edjaaaOeJmGLUTSEJ9V//vfw8CAj9LSNioq\nYNIkk/y2axdYlpLfCp19PBw4kH7irGbqiJcpeBBJQ6Ks+q4uk1UfCkXGr6GU118f5KmnalmyROPX\nhcrOW/jwh49gEmcTBRCJE2c1U0e8TMGDSJrig4RVqwaZP38mu3a9zP7930KVJouHnSj59tvzgJ1A\nQ4JXJU6cjczUST3gEHEL5TyIpKijA26+OcisWcOT3Do7T7N//zfQ+HVxieQtfBu4l+GJsy8mTZw1\nAcWuJO+smTribgoeRFLU3AxTpnydvr71DA8S3iDxXSckS5gT74skSvqATmATYBJn4RNccMFfJu11\nCgT8XHxx4pk6FRX3cuSIX4m24loKHkRSFAwG+cUvniVxkKDx62IUm7dgqkbCVmAz8EsGBj7E2rW+\nhEGAz+fjD3/oZPXqn1FVVQdcCXyUqqq/orFxHj/7mZJtxb2U8yCSorvvbqO//xISBwkavy5Go+Ut\nzJw5yObNyX/esix+/etXOHXqIUwPRgmnTg3xyCO7+fWvlSsj7qWeB5EUmS7q8SQuR12LSZhLROPX\nhSqTvIWODqivV60H8SYFDyIpMl3UyS4WfuAu4EVUaTLCXqehsRGWLjXrOCxdGnnM62P6mVQYbW6G\nSZPSLy4l4gYKHkRSZLqoW4FEF4s/UlYWYvXqR6iuNglz1dUraGnZVNRdz83NsGFDiKlTW9m3bzl7\n9zayb99ypk5tZcOGkOfH9O0Koy0tm8b0d1etB/Eq5TyIpMgsgvUaJqs+AKzHJEoOAhfh8y3l9Om/\n1zLLUcayYJQXxFYa9XHgQBsXXwy9vTBjhuldSeXXUq0H8SoFDyIpCgT8/PKXTQSD9wPfwnTcDQG7\nqKi4lyuv7CzaICGZ2PUbbLFj+hs3tuVp78bOriy5alWAl17qpq+vlIkTB5k0qZaSEj8dHWaGxWjH\ng1ZlFa9S8CCSIntqnakuuZ7e3lKqq+0llL15B51thbp+Q6IelTNnhjhzZjeHDqXeoxII+Nm2rYme\nnvsxuQ+RgNTkTHRm9fcQGSsFDyJp8Pl8bNzY9v66Fo89Zta1sMUvnHXggBm+OO8881ix9UwU6pi+\nUz0qds6EAlLxGgUPIimKDgx6e6GyEm6+2fz/zBm47DKYNQvOng3x3nsBXn+9m97eUvr77YtB8S2Q\nVahj+k71qJhjyhSXUq6MeImCB5EUJTuR270Q7e0wfXphJgiOVaGO6TvVo6LgQLxKUzVFxigUCrFm\nTSurVi0HGlm1ajkf+9ifhcevVfQHMquD4GaRHpVEvNujIpIqBQ8iYxAMBmloGL665r59JlBIrPiK\n/mRaB8GttCKmFDsNW4iMQfKEuSoKMUEwE6MlmXqRZklIsVPwIDIGyRPmCjNBcKziZ5/MmQNf/rL3\nZ59oloQUOwUPImOQPGHO7s4urATBsfJqcJCKQuxREUmVggeRMUg+BdEPNAFfBxqI7s6eOPFejhzp\npLGxsC+qxaBQe1REUqXgQWQMkk9B9AHrmD37Xs6dK+PgwROUlQ0wMFDFxRdP4pJLAkVZ76HQOB0c\nqLiYeI2CB5ExGClhrqLi21x66ffZvftLwA8YGFgAlHDgwBDt7cVR70EXw/TYa2WYHAoVFxP3S5YW\nngt1QFdXVxd1GigUDwqFYk/2kYQ5P35/gPb2lSTOfdhBS8smVy0IlY2L/Ujto4thrNi1MkywaYLR\n3dTU3FPwwaakb8+ePdTX1wPUA3tyvX0FDyJjMNrFds+e5Rw+vIVksy5qa1fw8stbc7W7KXHyYq+L\nYXrWrGn1VLAp+Zfv4EHDFiJjMNqd+Ny53loQKtEqkZmU1S7UpbizpVBXH5XCpQqTIlnglfLFHR3Q\n2Aj19dEX+8zLapuL4YIkzxZfpc3RFOrqo1K4FDyIZIFXyhc3N8OGDSHeffc5RrrYP/poN42NJtCw\nh2tGMtrFcP/+0rTer9B5JdgUsSl4EMkCrywIZa/R8fbbk4m92IeAVmA58EnOnj3I1KmtbNgQSilx\ncvjFMPr9Gunv703r/QqdV4JNEZvTwcN9mDNk9NcRh7ch4npeWRAqkpswnsjFPogpdLUSMIt+DQz8\nlvb2lTQ0NBEKhUZ939iL4fD36+9P7/3cwh7maWyEpUth7lzzPdNeFK8EmyI2p2db3Ad8ClgS9dgg\ncCLBazXbQgqWV+oczJu3nO7uLZjKmCuBGuDTwAPAogQ/kVrmfygUoqHBroPxC2AVhTKTIFtTUDW1\nVdJRiLMtBjG3GiJFyy3BQbz4oOaPf7RzE/zAbZi73fMwpbUTSS3zP3rhqH/8xyfp708WHHhrJoHT\ns1Js5u/iA9qYPRvKy02weeIErF3r3uNJilc2gocPA4eBs5h+y3uA3ixsR0TSZFcyXLUqwEsvddPf\nfxAzXOEDrgGagW+SaeZ/9MWwvPxV+vsLYyZBtqagKjgQr3E6eNgJfAbYC3wQ+CqwHZgHvOnwtkRc\nzY1DF7F3zq3An2HG2RcBr2F6HDJfVjz6d5s3b5Du7uTvd+TIYFqLhdntevgwHDwIZ87AhAlw9ixM\nnAgf+hBceml22lf1GEQMp4OHJ6L+/TLmrNQDfA74TqIfuPPOO7nwwgtjHmtubqZZYbh4nBvXK4jc\nOV8GrAbuxsT49wP2EIazy4rHLiIWwlx8u8Pbe5cPftBiw4ZQyu0R3a5vvPEb3njjBGfPmsXHLrpo\nEldddVXW2lf1GCQfOjo66IjLxn3rrbfytDe58xTwvQSP1wFWV1eXJVKIjh8/btXU3GjBDguGLLAs\nGLRgh1VTc6MVDAZzvk+1tcvC+7IuvF+WBcHw/68IPxe04EYLtof3197vX41pv4PBYLgdtoTfN749\ntqf1vpF23erI+6Uj0n5Wgq9Bq7Z2mePbFEmkq6vLwnQR5mXGQbbrPEzA3MYczfJ2RFwndnw886qN\nTojcOUdXgDS5CXALpsfBB3QCmwAzzRQWM3v2vWNKCLSTJ2fPbgPWM7w9GtJqj0i7PoeZFZLZ+6VD\n9RhEDKeDh28DHweqMWemx4Aq4CcOb0fE9dxYojlSvClR97sfk9+8A5iKCSgeB77CxIklXHbZo6xd\n60u7lkFHB6xd6+PYsUpGmsXx2GPdKb13pF1z376qxyBiOJ3zcCnQAVyEGdzcgbkteN3h7Yi4nhvH\nxyP5B4mSIu0eh29RXv4X9PdXR9UaGHthKztxce7cUvbuLWF43sMgUMvFFw+klOAYadfct2/0FNQX\nXlgfV4/BPcW/RLLN6eBBWY4iYZG7/LHPWnBSRwccOeKnoqKJvr4ZmMlR8T0BPmAlF11Uwvnntzla\na8D8vscxp4lInQRz576L11/fQig0euJkpF1z376qxyBiaEnuAuTGKYLFKHaWQbzcj4+bWQrw1399\nOY8//gKnT38GM6LYgBnBNBfxmho7t8HZ7Zv28BPJU7CZPIX+/h+lVCch0q7OzgpJhT47IobT5anT\nofLUWaRSt/kXW6J5AYkv0Ln7WwSDQa68cjXB4APh/XkD+Bamsu1JJk68mGuvvYrHHsvOMRIKhbj0\n0hvo7/8DyXoLamtX8PLLW0d9H9Ou6zBpVvHtu5OKiq9y7bWdHD3qcyRwVkAubpPv8tQKHgpQbCGg\nBUS6hndTU3OPqxZmKnRuCuLWrGmlvX0lydaYmDZtEx/9qLnrz9bFcPbs5fT0JA8O5sxp5NVXN4/6\nPna7Pvvsbzh48ARlZabOw8yZk2homA2MY9eu1+jtLaWiYpApU2qpqfFnFEy46W8pku/gQcMWBShb\nJXQlPW4bHx+tOuLkyevZPPp1e8w6OuD4ccg0T8Fu18OH2+jrg8rKSIXJd98NsmnTas6diwTOfX3H\n6evzc+zYDQwMzKK/n7Qv+tla00JE0qciUVkyWiGbysrF1vTp66zKymVWefkKq7JymTV9+jpr6dKg\n9fDD+d57yZY5c1YkOSbM15w5K7K+Dy0t0cWp4r+2Wy0t6xx+/+NJCkmlV6gr2/udiYcftqwVK8zX\nTTdZ1pw55rv9mD7ThanQi0RJHow8RfAN+voOc+jQSk6f3kJ//2ZOn36cQ4dW8vzzTbS3h2hsJO25\n/OJ+kVkKieRm9ke26yQMr63RRuJCUukV6nJjzQ5bczNs2BBi6tRW9u1bzt69jezbt5ypU1vZsCGk\nXAzJCg1bFKCRpwj+dyxrA4nWGTh3zuK11z7N9u2Pqgu2ALlh9keqdRLGmqA4PHB2ZiErN9bssI00\npNLZ2cR113UyYYJPSZ3iKAUPBSj5RSIIPAv8ffjfq4mfb79v304aGjSGW4gCAT/btiWf/REIdGZ9\nH1LNAxnromLDA+fML/qmPoa7anZEi81xir0hOHNGNwSSHQoeClDyi0QrpghoCbHdubZxwCIlVRYo\nN1RHTPXud6wJisMD59Qv+iP1dpx//mWcOmUvXR4vv2taRBJhi+OGQNNm3UE5DwXIvki0tGyiutos\nbFRdvYILLngZGI85mbp3DFeyw15j4sSJNmbP3sqcOZuZPXsrJ060jWnNimxKZ1Gxjg5obDRfvb1+\nysujcypqMZU0E4m96CfLHaio+CJlZS8B64DtxOZqvMisWV/O65oWkSGVZPkdi/K2EFs2KMfDHdTz\nUICSdQ1v394IzMVU5Ru5O/fNN0tpbDT/U3SfGbfcKXnpbzbatNLoXIXoIY4//KGb/v5yqqq+AJRx\n6tSFlJVtYWDgRySqpBk9VJO8t2MN8HfAh8OP309kTY6LWLjwirze0UeGapzJ73A7TZsVTdXMMTOF\n0566dsOI0zlra5dZwWDQamlZZ1VXL7NghVVdvcxqaVmX8vQ2iVBbpiedaaXHjx+3amoST8csL7/R\namjotqZPX2dVVIzc9smnY4489bmqallep0NG9jv/U3Fzwc3TZnMp31M180nBQ45FPnRBC6634MWk\nH8Cmpi8kPSGnMz9eRr64ub0t81VDYLRaJdEX7NEuJhMmrLMqKy1ryhTLqqy0rIsusqy6uuH7n3yb\n7r4oB4PB8PE1+g1BIRjt2CiU33M0+Q4elPNQRAIBPxdffA+wD7P08lcZPoZr5tuXlJSmPOYsI0tn\n/N5t8jW+bHIRdmFmD7QCy4HG8Pc1fOITs97fdvIaDCHgF5w79wSnTzdywQXL+fSnW+nuDtHVBZs3\nxw7jJJ+Omf/6GCOxc5xmz7YwuR6J5Dep00lunjZbTJTzUER8Ph9/+IPJtt+6tZtQqJzS0i9SUlIG\nfIAJE2Dy5FpqajrZtq2FkRMqC2P8NBfSGb93m2yNL4+WB7J8uZ/nnruNAweGgAeJXb57Jzt3fuX9\n5bsjF5PoaYoDwEFgI5bVltJ+J6+PYiddxi9fDm64KNs5Tpdd9iiHDzdx5kz+puLmgtuWupfc07BF\njjz8sGUtXRq0pkxZZ5WWLrNKSlZY48Yts8rK1llTpgQTduG6oZRxofBqWz78sGVNm/alEYe3Mhlf\nHikPJJ1tm27sY1ZsGep1FmxPa7+TD38ELWiw4Ffh4SZ72Gm748NOmQ4TFUNujXIejHwPW+STgocs\ns4OGadO+YJWU/MmIY+7xJ63x4zWu6BSvjtEeP37cKi+vzcq+p5IHkmq7mYvJZ+MuKOm3eSR3YPuw\nIOG88z5mTZv2pVGTLp0w1gCgWNa4GOnv5PYcIiflO3jQsEUBW7w4yNe+tpqjR2cAP2a0VTajK/qd\nO3cEM37qvqI4XuOGstBjcffdbfT3X8JI48sHDpSydGn6009HW/m1ri7Am2+mNrYdCPj5x3+8gf7+\n6GG29MfFn3nGR01NJ2fPBnjzza9x5swJYADLquLcuUmcPXse117b/v6y3tlYHTWTYSIvTcXNRPTf\n6eTJ9Zw7V8r48YPvD7k+84yvKNqhmKnnIcsi3Xuj34UNvxMMhruBXyya6D5bd25evVMyd/4jHTvH\nrLKyj4zpbnzkXoVj1gUXfMQqL78ipd6Dhx+2wvsQ/fzYe3vyOTtGXfKSKvU8iGPik9BeeMFO1Bv9\nLmz4naAPMyMjANwLvEd19ZScljLONbvY0KpVAV56qZu+vlJef32Q8vJarrnGT0eHqcKY7h1evstC\nZ7bIlF1ULH7dhAFgPwMDP2FgYAHRd8g//3kT117b+f4deqLtJM+YDwLNvP32Q8BjUduOF+mxaW6G\n9euhu9uKes/alH42kdF6RbJZuj0XybVuKVomMlbqeciC2PHSupTvwkYbXx4/fllBjp9Gi73jPG6Z\npLtbLVhilZXVWqtXf2lMd51uGIseyzh6bFGxLVZqCYlBCz5rVVXVj7id5Mdb9PvavV+j99gMv2NP\n/WcT/975yVHJVXJtvhMr3fCZ8Lp89zzkk4IHhw3vbrVPgqN3hXp1RoCTIhcg+4IZ3239oquHGZIZ\nazf8yEXFEl1gk7Xb8O2kXs0xGD5+zUWupOQKa/r0ddbSpcGYC0zioaFjFnzWKiurtWBZyhfIfH4W\nchG4uKVoWb4DGK9T8KDgwTHDT8jRJ/9Ed2G/SjuzvZBF2qCwxp3HOo4eDAatiy+2j5tb446PRBfY\n1LeTPA9kyZgv3PEXo4qKZdb06eus668PWnPmWNYVV1jWBz5gvq68MnK3W1dnHqury/9Mo1zkPLgh\nr8ItAYyX5Tt4UIXJAjK80p4fsCtKdgCbgE8AN1FWdiWrVz/yfvZ2pKIfDK/qt5j9+09z880hV628\n6LTIOHxhrTiavAIjjPT72EXFWlo2UVZ2jNgchURVF1Pfjp0xP336JiorV1Be3khl5QrKyk4meF9b\n8gJAiVYM/djHtnLNNW1MmuTjvvvg97+H3/8+xK23tnLqVKRa5lVXtfLcc69w1VWmimZkplEiu3jn\nndqsfQ4CAT81NdGrgkJ05VcnVu9MfDzYn/mv097+b1RVLWfGjNasfea9XHVV8k89Dw5L3N0a3e1b\nZ02cuMyaNMncjUWPL0buBOPHtlMfK/a6SM9DYQ3hjLUbPnpcurIy/m480d1r5u2Wzbvi5He7W62y\nsrlRj9s9dVssuMuyh0zgBquq6gqru7t7zPuQiky78+36LtOnr7MqK5dZpaUrrNLSZVZ5+TqrvDyY\n4O+U+nCTU9TTmbl89zzkk4IHh9gn+aqqsSc92iecior4sW1vd9mnI52prV7ixIk6tYTE+KGN9LeT\nzWmtyQOTRMmfL1twVYILanaDaCcSCY8fPx4ebored5P/AXMsmBv1+OiL5GXjM68cq8wpeFDw4Ihg\nMGjNnp35SaCY7wgiF67PJriYeDeAcuJuPvaifix8wf1TC64MX5DmW5WVVzlyEUp25/3QQ8GYO+ry\n8hVWZeWyhAmUiSQ/thM9nv+8gLGKTXRdZ8F1Fsy2YKtlAj77+LZ7HG7M+We+mM8zTlHwoOAhY5Hu\n2F9aiRMjU58lUMx3BJFy3l8Ml/PO/loGueDE3Xwqpc7PO+9j1sSJH894O8nuvJcuTXRHnXr3evJj\nO9Hj+b+4jbUXInatj60WXBH+m8QnUNtBRO4/825I2vQ6BQ8KHjIW+0GMndoGN1gVFdendGdmWboj\nsBXSNLL4MfB079ijjXbSnzbti45sZyzbHu2Ck17PgzuC6JF6YZIFFpWVK6IChXVWpGch+vcMWlCf\n4PHcfOar2oiKAAAgAElEQVQT92SZmiolJbXWtGlfcuSYKWT5Dh5UYbIAxFal8wHR1e+GmDVrBU8+\nmVoVQ6+uw+Ake4ljaGP2bCgvJ2trGeSC2d/442JsRquAOHnyel5+eWvG24lmV0R87rnMqi8mP7YT\nLbmd32WfOzrghz/s5le/amZw8IfErnOxi1/+sonnn/8egcCPeeGFbnp7S+nvN1VLL730LHv32m31\ndaAq/HtEV/X0Afa6JWOvxjlW9mybvr7/h2PHnsOyNr7/O1rWEEeP7qaiooklSzrD+yoSoZ4Hhzg5\n1ODVdRgkN0Y71ioqVmSlSmAwGLQmTVqY0XGe/Njeapkkwuh1XO6y8pn3cvz4cauq6ooR9mGLdf75\niRI6d4R/zq6XsSKqZyG+h8H+/+h1YLJFwxdjp54HyZi5C3LmLinf6zCIuw0/1qLXuyilv7+XqVNb\nCQT8KR0rqayzsHixWWnynXcmkslxHn1sP/vs1zh48ASlpe8xOGi/3+cpKRkHnM95553HuXNPMzj4\nA8wd+ThMvYVd4XoLnaP+bpm4++42Tp3ykbg3AOA53n33ByRaf+PUqW8xbtx/Y2jIwvSgXI7pWYjv\nYYj+v72OzXpMD8W7zJ5tsX37o45+5pOvv5NIbG+S1uRwFxWJKgCxBZ7ipdftGF9s54Mf3Mzbb7fz\nyCMwbVoLZWWNWS8gI+4Ve6wFgSZgJbAF2Ex//29pb19JQ0MToVBo1PdrboYNG0JMnWoKNNmFm6ZO\nbWXDhhDNzdEFherJ5Di3j+0jR1oJhYaA+xkcnIZZrv4VoBvL+h2W9SDnn1/Cddc9wvTp/xRTxGr6\n9E3vL/ucTWZ4yB5uSOQVYodZot1CVdV4TKGpWmAxpljcjeHvdgEqu4jcdmAqZljrceArTJxYwmWX\nPcratT5HP+Pxf+9z5+KLj0WLXTo9lWNFioOGLRySzaEGlZGVaLHH2l0ZdzmncnxFEh2d6V6PdJW7\nt8vcDA+NlMg42vDRUquiwp5tYX+/y4LFFlxtQa0FV1olJddZ48dfb02cuNTKRWJw8vV3Rk/W1Lko\nVr6HLfJJwYODsjU7QGOSEi165kZJyRUpn/iTGe34MjM3oi+U8bOJllmTJl2d1nEeCUbcO7PI7ONI\nwdkNI+77pZcus5YuDVpTpqyzxo2zA4YrLFhojRu31JoyZZ115ZVBq64utytbJl9/Z/Tzi85FsfId\nPCjnoQBkc3bAaNn1o2W4S2GJnrkxd+6r7N2bWpdzMrHHV2z+BAzw7rtHuPTSD7B3r4Xp3h4+m2ho\naAVr1/pSPs4ja5hEzz4Y2/5ni5kZ8qeYYYX7MWtR2HkXOykrO8zAQPwMEdsubrqplo0bnZlh46Th\n5xM/Zugr/nccnluic5G7KHgoANlMFIqcaBPJ7wlW8suJRN3I8RUEVgMPYE/ZgyHefnsng4N3MHwq\npW0Xq1bVsnHjWPY7v9MxRxII+Nm2rYmennXAL4hOZKyqeoMnntjI5z53Lz09o1903WT4+cRHbLLm\nMaqrP5gwQVvnIndRwqSMKHKiTSS/J1gndXTAzTeHmDGjlaqq5Ywfr8TQ0TiRqBs5vtowgUP8KouL\nOHXqW5x//n/BqZUmI/vtXKKx03w+H62tnUyf/hwVFa8ApZSVDTJt2kdZtOhZ/vqvP0ZFxfBVSXOV\n0DlWic8ndg/J44wf/0Fmz97KiRNtw5I1i+VcJKNTzoMHFMs4o5Kx0udEom6qi5FVVi52rHJlZL/t\nZMKxl3PPFicWyEp3e05VIR1JJueTYjkXpSrfOQ/5pODBA4qlaJROTOlz4oITOb6WJGl78+V0OWg7\nwfhDHzLJhGVlJplw5sylritDnotAIlfBcybnk2I5F6VKwYOCB9crpHUektGaHvlhByBlZfU5a3/7\nYlxXZ1kXXWRZlZWWNWWK+X7RRdb7MxDctK5Ctj+DuQyeM/ldiuFclKp8Bw/Jsk9yoQ7o6urqoq6u\n6AInzyiWqm5z5zayd+/mpM/PmdPIq68mf14ys2ZNK+3tK0lcUXEHLS2b2LjRXTMHciUYNBU2TaGs\nBdjJpLCbiRPvYdq0TmpqfBl9JufNW0539xaSJY/W1q5wZM2STM4nxXIuStWePXuor68HUz1tT663\nr9kWMqJi+UA6WeJb0heZXeCt2QO5EKmwGR1YnQB+wZkzFq+91ohlTQnPUEitLHi8XM1kyOR8Uizn\nIq9Q8CCjKoaIvxBXE/XS381eZfHs2QAnT67n3LlSxo8fZPLk2vdnD7hlX3NteH2D4dNazWqbu9m2\nrYkdO9Jfg0bBs3iJch48pNDHGgs1GSsXf7dcZeoXq+ErmTqfn6CEYe/Jd85DPil48IhimcZYaAFS\nrv5uxXJ85MvwZF7nk3sLNXguZPkOHlQkysM6OqCx0XwtXQpz55rv9mNOFTaKHXONLuCzkJ6e+/H7\nk5WM9Y741UTnzNmctFiNV+Tq71YMx0c+xRbjCgFv4nR+gr1ceUvLJqqrVwCNTJy4lIqKr3D0aDmX\nXro2b0XTVMBN4qnnwQG5uFvWNEZn5Kp7P9fTH3V8ZFekV2CLZYpa3eh4e0dPX50yJWiVln7Bgj/J\nWW/SSLUsli49bl18sXq24qnnQcYsGAzS0NBEe/tKenu3AJvp7X2c9vaVNDQ0EQqFHNmOaso7Y/Hi\nID09TRw6tJLTp7fQ37+Z06cf59ChlfT0NLFkiTN/L3s7AwOTycXfTcdHdtnJpBUVbZj1H+pxuqx2\nczNs3gz/+q9BJk9uYnDwNPBjctWb1NwMGzaEmDq1lX37lrN3byP79i1n6tRWpkz5OsGgerYkQj0P\nGcpVkpPuLJ2Rjb9Xoju2adNSK/msngdvibRz0EpcVvtXGd+Jp1ou3Om/6Uh5MyUltTq+ElDPg4yZ\nmcK1IMmzC8LPZ86JBZAkO3+vRHdsb7zxRHg7ufm76fjIjUgPj70S5SbA5CfACsrKvpTxoliRYzS6\nNykEtALL39/W3r1HHM03iM2beSO8vRXAA1jWeNSzVVy+jKny8p0kz6vnIUPDp3BlZz0AZWI7Ixt/\nr8R3bPZ2sneHGk3HR27koocncoza2zoePobiewScXTws8rsl2t6t6nlIoFB7Hq4F/gL4HSRdQ1Uy\nlKslau0xV68t/+s22fh7JZ7pYG8n0R3qJygr+0tH/26JMvWrq1fQ0rJpTAWLJLFc9PBEjlF7W8mX\nSncy3yDSq5Joe/NQz5b7ZKPCZBXwM+DzwNey8P4SlquqiKYSoQ/zwS4sHR3Q3h6iuzvAyZPdMZUN\na2v9tLQ4V9kwG3+v4dUHIXLiX4gJIKL/bju4/fZNbNzo3AXdVLI025k9G8rLTSXLEydg7Vp3VbL0\nslyU8I4co36gCRNIJAsQFrB79/qMtwnRQYt9PIfC37uBAWAL8COgAZUuL1w/Af4u/O/ngQeTvE7D\nFhlSd3HmclngKBt/r8RDIcmGK3RceFkupvrGHqPHLFiYk6HRSKLmiiRDF8cs+KwFc6yysmWqYGrl\nf9jC6Z6H1cDVmGEL0JBFVmk9gMwlXnQodhqYU6s5ZuPvlXhNAnu44luUlPwFllVNRcUgH/1oLY89\npmEEr8pFD6A9BOX3B3jhhW56e08x/PiyOTc0GulVsXs64j+TH8Dcl77I7bf/c9GusOomTgYPM4D/\nASwBzoUfK2GUZb/vvPNOLrzwwpjHmpubadZVb1SFPJyQK4m7/W3OdcuCc3+v6AWvTp6MHqKA2O7e\nc4wbN4HKyrlcc42fSZN8GkaQEcUPQZ040co772R/aNQOrI8e/TR9fV0k/4w0sHv3A45s00s6Ojro\niJva8tZbb+Vpb5z3ScxAVH/U1xAme+scw4MIDVtI3uVqxorT7MqiH/rQYstUAvyVBUeTZMYXdyU+\nGbtcD40Gg0GrvPxqT34mcy3fwxZOzrZ4BrgC+Ej462rgJUzy5NVoCENcKFczVpzS0QE33NDNtGlL\naG9fycGDTwP/DvwTptNvParEJ07J9UyaZ57xMX78xXjpM1msnAweTmH6Su2vl4E+zCouzlQrEnGY\nVwoc2YsD3XXXF3nhhUYGBx8iEiT4gG8DMzHZ6Ik4VzRMioe9YNzvftfG22+3U1Y2lwMH4Cc/eZVp\n01qYOtXZxamam+HTn74KL3wmi122K0za3SoirhQI+KmpuQfYgRllI/x9R3gamD9/OxfFXq/i6NHT\nmPSiRGPQWmNCnBW/5sXAwEqGhrZgWZsZHHycN990dl0W8M5nsthlO3i4EfhvWd6GyJh5pQBWZFbI\nG8D5JA4SvDUEI96Ry2XXVXTMG7JRJErEM7wyYyUyK6SUSJAQH0DUAjtJPHSh7l4Zu1zOSlLRMW9Q\n8CDiAZHyvYPA5cROzwQzRbMPaMEspaxKfOKcXC67ruDAG7SqpsfYiXMzZrRSVbWc8eMbqapazowZ\nziYuibvErjmwGIgeEw5iSgl/BtgG/DPwCeAmSkquZNq0h101BCPe47VZSZJ96nnwmMWLg3zta6s5\ndOgBTDdiCf39Q5w+vZsJE5pYsqQTk30vI4kutPTee3DggOkaPe8885jb7n6GrzmwDvgFZmrmEeB7\nRHoiIkMwlrWDm292di0LKT6R46+GSBEyewjtIk6enEVHx8ifmVyuIyOFTUWi0vDww5a1YoVlTZ9u\n14BPVEBlu9XSsi7fu+oZdqGl6uplFqywqquXWS0t61xZTGn4mgPrwksVL7FgjpYslqwKBoPWzJkf\ns6AhQRGyF61Zsz4+6ucml+vIFINCKhIlWdTcDBs2hHj33ecwK+olkt25/IU0ZBIMBmloaKK9fSW9\nvVuAzfT2Pk57+0oaGpoIhZybeuaE2Az0/wy8SnV1CS0tV1NTMxtN0ZRs8vl8NDRcg6knMnx57v37\nvznqjItcztiQ7NOwhUcEg0EWLVrN229PJl8XikIaMsnlglhOGCkD/fjx5eRi8SIpXh0dsGXLa4xc\nhGzkGRfpztjw2tBisVHPg0dELnbjyVfiUiHdOZgTWX56cBIZrVcHTLGezZvhqafg1VfN982bYdUq\nb1TJFO9qboZLLslsxkW6Mzbs3tapU1vZt285e/c2sm/fcqZObWXDhpAChzxT8OARkYtd/i4Ubrvg\nZiKXU89SYVeQPHRoJadPb6G/fzOnTz/OoUOjV/BTRT7JhdgZFyGgFVgONALLeO21gyMOX6Y7Y8Nr\nQ4vFRsGDR0Qudn5ip+kR/v5i1i8UbrvgZsJtU88y6dXxSpVM8bbIOjD21OCVgLmowxYGBr4/YqCb\n7joyhdTTKc7SbIs01NYui8pQDoaz7c0sAbjVKiv7iLV0adB6+OFc7YO3s/pbWtw1a6WQ2lYKU2TG\nz2fDs37S++yku7y3PhMj02wLSUls1G6XU96Kifq/xu2338STT2Z3nrRXVqBMhdu6+gupV0cKk93D\nVVb2MokXZoORhi/T7SHTZ8LdNNvCIwIBP9u2NdHTcz8m7yD3pYfdsA9OsU9kZ88GOHlyfUzBGvtE\nlsuErMgwimZMiDvZ68DMnXsJe/emf1FPdx0ZfSbcTcGDR7jhYueGfXCK2xbEilTwS3RH561eHSls\nubqo6zPhbgoePMINFzs37EMhSFSmt7y8j9LSpxgc/AHmZOndXh0pbLm6qBdST2chUs6DSI4lmpbZ\n1/cUg4PfpKrqDmbOvBVopLp6BS0tm9ixoxOfTzMmxB1ylS+kWUTulmzgKhfqgK6uri7q6vKSLCqS\nF2vWtNLevpLEd247mDZtE5bVxrlzIfr6AvT3m0WIzjtPiwiJO4RCIfz+AC+80E1vbynV1YNcf30t\ngYBfgW6O7Nmzh/r6eoB6YE+ut6+eBykqblifY7RiW5Mnd/Pb3waZPLmJ995byeDgRgYH53L6tMWh\nQ//B00/fwF13/ZXn1hORwtDRAWvX+jhxoo3Zs7cyZ85mZs/eyokTbaxd69MxWSSU8yBFxQ3rc6Qy\nBS1SIOcyYDUQ2V/LGuLo0Z1UVHhrPREpDPaaEnbuTl9fgO3bI0ts/+Y3tbS3q3es0KnnweXccKdc\nSNxQtS5xdUu73O8y9u49xE9+8gSmd6INEzgMX8lQVfYknzIpqS7ep+DB5dz4AY0PaMrKGiktXUJp\n6Q2Ult5MWZl7Axw3rM8xvNhWdLnfrcAeLKsaEyzkf39FEnFDIC75o+DB5dz4AY0PaAYHf8TQ0BBD\nQ99kaOgJBgfzH+Ak44aqdcOz1duA+4n9G9u9E/nfX5FE3BCIS/4oeHA5N35Ahwc0ybrW3XcH4oYF\nseKnoMETDJ95YfdO5H9/RRJxQyAu+aPgweXc+AGNDWhCwHO4LcBJxg3rczQ3w5NP+nj99TZOndrK\nnDn2EEU0e/XUi4CdSd5JVfYkf9wQiEv+KHhwOTd+QCMBjT1WPxm3BTjJuG1BLEj2N/YBnUAl8Bng\nRdyyvyKQeiCupO/CpODB5dxwpxwvcrGzhyvGE7n42bMGlgONwDJee+2ga04SbqpaZ59U9+8/jQlm\n4vmAzzBt2s1Mn/7Ped9fkWipBuJuTPoWb6sDrK6urnwvi+5qwWDQqqm50YLtFgy+v5Y9bLdqam60\ngsFgzveppWWdBTssWGbBkAX2/49bcGP430NR+/pi3vbVzY4fPx7+2/4y3G7xf2O1m7jXww9b1tKl\nQWvKlHXWuHGLLbjagissWGjBDVZJyfXWuHFLw4+/GD6u47+2Wy0t6/L9q3hSV1eXhblry0uJZvU8\nuJyb7pRtkTuOc5jhCnt8vpXhswZUkyCZSOLprZghik3ACkyPzWIqKu5R74K4lp2788orrVRXDwE/\nAH4H/AummJmZfQWXAA1J3sVdOVGSOlWYdDk3rmRpBzQHDtzKwIBFZHz+VhKv1wDmJLE+Z/voBeak\naQdU8X/jIWbNWsGTTypwEHeLnX0FsbOvQNONC5N6HiRt9h3H7bffSCQfw4e5w9BJIlVunEkjkq7R\nZ1+5L+lbMqfgQcZseMKUThLpcONMGpF0jT77yn1J35I5BQ8yZvH5GCUlR0g8awB0khjOjTNpRNI1\n8uwriOREuWd6tGROwYOMWXyxo+PHn6Km5qvoJJEaN9acEElXJAi2hy+ig+IQJq9nHPBF4ErgGsaN\nu5UpUzTd2MuUMCmOsXsizp4NcPLk+veX6J08ufb9k4SW6I1Qe0khCAT8bNvWRE+PPXzhxwxf3AX8\nHdHLyZvgeBfV1feyY4cfn0+Bg1cly9bKhTqgq6uri7q6vExTFRGRDHV0QHt7iGefvZWBgV9jLish\n4NOYwGFRgp/aQUvLJjZudM8sMq/Zs2cP9fX1APXAnlxvX8MWIiIyZslnX1Wi+g6FS8GDiIhkbHgO\nj6YiFzIFD1JUQqEQa9a0Mm/ecubObWTevOWsWdNKKKT6+iKZGL7UfC+aily4FDxI0XjooSCzZjXR\n3r6S7u4t7N27me7ux2lvX8msWU388IcKIETGKn72VUvLLWgqcuFS8CBFY9euNvr67LK50WtvLKSv\n73527tTaGyJO0VTkwqbgQYpGbBndeErgEnGSGxf1E+eozoMUDa0lIZI7blzUT5yjngcpGlpLQkTE\nGQoexHFundGgtSRERJyh4EEc5eYZDUrgEhFxhoIHcZSbZzQogUtExBlKmBRHmRkLyQKEBezevT6X\nuxNDCVwiIs5Qz4M4SjMaREQKn4IHcZRmNIiIFD4FD+Ko2BkNIaAVWA40AovZv/80N98coqMjX3so\nIiKZUvAgjorMaNgKNAErgS3AZuDf6Ov7Bj09TSxZonUkRES8yung4QvAb4G3w1/bgVsc3oa4mD2j\noaKiDVjP8FkXDfT03I/fr3UkRES8yung4XXgbqAOqAeexdxyznN4O+JS9sp6s2ZVAg1JXqV1JERE\nvMzpqZpb4v7/VUxvxHzgZYe3JS6mWRciIoUrm3UeSoFPAxOAbVncjrhQZNZFogBCsy5ERLwsG8HD\nlZj6vxOAM8CfAfuysB1xsfnza+nu3gXUYIpGdWPiyUHgIk6enEVHhxnmEBERb0nWr5yJcmAGcAGm\n5+FLwA3AnrjX1QFd1113HRdeeGHME83NzTTrquJpoVCIa6+9jQMHhoAHgQWYw20I2MmsWV9h9+7H\n8PlUElpEZCQdHR10xM1vf+utt9i2bRuY/ML462vWZSN4iPc0sB/487jH64Curq4u6urqcrAbkksd\nHXDXXX/F0aPNwKIEr9hBS8smNm5UqWgRkXTt2bOH+vp6yFPwkIs6D+NytB1xkeZmmDz5NTTjQkSk\n8Did8/AN4JeYKZvnA6uB64H7Hd6OeIBmXIiIFCangwcf8FNgGqZI1G+BmzH1HqTIaMaFiEhhcjp4\n+LzD7yceFplxsTDBs7vC62CIiIjXKBdBsmbhQj8VFfdgZu4OhR8dAnZQUXEvCxf687dzIiIyZtks\nEiVF7o47fHzqU534/QF2717PwEApZWWDzJ9fSyDQqWmaIiIepeBBssrn82k6pohIgdGwhYiIiKRF\nwYOIiIikRcMWUhRCoVA496I7LvfCr9wLEZE0KXiQgvfQQ0Huums1fX0PYBbpMmtsdHfv5uc/b+LB\nBzu54w4FECIiqdKwhRS8XbvawoHDQiIFq8YBC+nru5+dOwP52zkREQ9S8CAFz6yhsSDJs1pjQ0Qk\nXQoepOBpjQ0REWcpeJCCF1ljIxGtsSEiki4FD5IzHR1w880hZsxopapqOePHN1JVtZwZM1q5+eYQ\nHR3Z2a5ZQ2NXkme1xoaISLoUPEjOLF4cpKeniUOHVnL69Bb6+zdz+vTjHDq0kp6eJpYsCWVlu4GA\nn5qaxGts1NTcSyCgNTZERNKh4EFy5u672+jpSTzroafnfvz+7Mx6eOYZHzU1nUyfvonKyhWUlzdS\nWbmC6dM3UVPTyTPPaJqmiEg6VOdBcsbMakgWICxg9+71WdluczM0N/sArbEhIuIE9TxIzgyf9RAC\nWoHlwCfZt+8ga9a0EgplZ/hCREScoeBBciZ21kMQaAJWAluAzZw791va21cya1YTP/yhAggREbdS\n8CA5EzvroQ1Q1UcRES9S8CA5s3Chn4oKe9bDy6jqo4iINyl4kJy54w4f+/d30tKyifHjj6GqjyIi\n3qTgQXLK5/OxcWMbs2dPQ1UfRUS8ScGD5IWqPoqIeJeCB8mLXFR9zFc5bBGRQqciUZIXdtXHs2cD\nnDy5nnPnShk/fpDJk2vfr/rY3Dy29w6FQvj9AbZv/w29vYfp79+IKU5VQn//EKdP72bChCaWLOkE\nVF1SRCRdCh4kL5ys+mgHC7t3dxMKDfDGGwexrI2YnIr1mOmgtthy2Bs3quqkiEi6NGwhnvbQQ0Fm\nzWqivX0l3d1bCIWuwrJ+DNQAz6PpoCIizlPwIJ62a1cbfX12sak3gOeAyzDVKyej6aAiIs5T8CCe\nZnoPFhApdz0Z+DameuV4NB1URMR5Ch7Es0KhEIcOvYnpXbDLXY8H7IBC00FFRLJBwYPkVSgUYs2a\nVubNW87cuY3Mm7c8pZU17VyHd96ZiOldiA4YzmECCj+QaDroi1RU3MvChZlPBxURKUaabSF589BD\nQe66a3U4Z8FMpYQhurt38/OfN/Hgg53ccUfiqZSRXIdfYHoX7OW+/cANmIDCB3SG33t9+DUDXHDB\nEf74x6fx+TRNU0RkLNTzIHkTm+yY3sqakVwHu3fhXSIBw59iehsI/78N2ApsBr7GbbfdpMBBRCQD\nCh4kbyIBQCIjT6U0MyVKiPQuWEQChr8Fvko2q1eKiBQzBQ+SN5EAIJHkUylDoRDHjx8hMpPCBzxK\nJGCYigkofgEsBq6houJWpk/f9H71ShERGTvlPEjemKmSFokDiNiplHYVySee+A3Hjx/GsuYDO4GG\n8Cui8xvuoaTkPSoqpjB58keprfXT0jL2ctciIhJLwYPkzfz5tXR37yK2fLQtMpUyNrHSLjldg6nr\ncD9m6GMcpsfhk1RUdPHgg5uTJluKiEhmFDxI3ixc6OfnP2+iry86ABgCdoWnUnYC0YmVdsnpNkxv\nhWZSiIjkg4IHyZs77vDxqU91hhe1Ws/AQCllZYPMn19LIND5fgBgEifXMbzk9PCFtT7wgUYFDiIi\nWaaESckrn8/Hxo1tPP98O4sWzQVg+/ZXueGGlveLRZnESZWcFhFxC/U8SN6NVizqggvKMRUkA0RK\nTo+cJyEiItmjngfJu9GKRVVWniWVktOq4SAikhvqeZC8MzkNdjXJUPjf3dhJkIcPv0FJiYVlJS85\nXVZ2hJqap3nmGU3JFBHJNgUPkneRYlFBYDUmtyEyfHHmzE5KSz/P4OAOYBHDEyV3cPvtm9i4UYmS\nIiK5oGELybtIsSh7We344YtFDA5+m9LSL5Co5LRWyBQRyS31PEjeRYpFRQ9fxLuFmpoHWbRo04jT\nOkVEJPsUPEjeBQJ+tm1roqdn5LUuoIKNG9uSPC8iIrmiYQvJu2ee8VFT00lZ2UlUw0FExP0UPEje\nNTfDk0/6uP32GzE1HBJRDQcREbdQ8CCusXChn4qKRDUclBQpIuImynkQ10h1rQsREckv9TwUmY6O\njnzvwojstS5efnkrr766mZdf3srGjW2eDhzc3uaFSG2ee2rz4uJ08PAV4NfAO8Bx4J+AOQ5vQzKg\nD3juqc1zT22ee2rz4uJ08PBx4O+BBcBNmGGRp4AKh7cjIiIieeJ0zsOtcf9fg6k5XAf8yuFtiYiI\nSB5kO+fhwvD3N7O8HREREcmRbM62KAG+A2zD1B1O6JVXXsniLki8t956iz179uR7N4qK2jz31Oa5\npzbPrXxfO5PVAnbC9zDDGP8XcCTB89MwyZWXZnEfRERECtVh4FrgaK43nK3g4e+BRkwC5YERXjct\n/CUiIiLpOUoeAodsKAH+F/A6UJPnfREREREP+D5wEtPj8MGor/PyuVMiIiLiXkPAYPh79Ndn87lT\nIiIiIiIiIiIiIiIiIiIiUtTuY3guQ3z9hsuBzcBbmMWxdgAz4l7TADwLnMIkVz5HbELl/gTbeSDu\nPaAc+f8AAAV6SURBVD4EPB5+jxDwP4DyMf5ebnYfmbX5rAQ/b3+tjHqPycD/F36Pt4CfAhfEbUdt\nHuFEm+9P8LyO87GfWy4BHgaOYdprD7HtDTrOo91Hbtp8f4Lt6Dgfe5vXYBacDAJvA53AxXHv4brj\n/D7gd+Edtb+mRj1fA5wAvgl8BHMSvRWIXku5AfPL+DGNVAN8Chgf9Zpe4N647VRGPV8K/B54Jryd\nxcAh4H9m+gu60H1k1ubj4n72YuBrmIMuerGyfwV+i1nQbGF4m5ujnlebRzjV5jrOI+4j83PLc8BO\n4KPh5+8FBoCro16j4zziPnLT5jrOI+4jszavBHqAx4B5wBWYQGIXsTWbXHec3wf8ZoTnHwF+Msp7\n7AT+31Fe0wv8zQjP34o5QD8Y9VgTcAaoGuW9veY+Mm/zeL8B/iHq/5djIuBrox5bEH7sw+H/q80j\nnGhz0HEe7T4yb/N3gf877rE3MIvzgY7zePeR/TYHHefR7iOzNl+KaavodrkQcwwvDv8/Z8d5ugtj\nfRhTDvM1oAOojnqfZcAfgSeB45hA4T9F/ezFwHxMF8l2TFfX88DHEmznbsxB+BvgHmK7UxowUdOx\nqMeeAiYA9Wn+Pl6QSZvHq8dEmhuiHmvA3BX/OuqxXeHHFkW9Rm3uXJvbdJxHZNrmW4DVmC7bceF/\nj8ecY0DHeSLZbnObjvOITNp8AmAB56IeO4sJDOzrqCuP81uA2zDdJYsxXVZHgSmYCGYIM37yN8BV\nmANmEFMwCkz3yRDmIPoc5oT6IPAeMDtqO3cC12G6ZNZixnai79r+N/BEgv17DxM9FZJM2zze94E/\nxD12D/Bqgte+Gn4/UJs73eag4zyaE20+EdMNO4Q5ub5F5G4MdJzHy0Wbg47zaJm2+UWYNv4Opu0r\nMRWdh4AfhF/jieO8AvOL/1fM+hRDwM/iXvMvmIQaMFHPELA+7jW/ZXgCTbRPhX9ucvj//xsTmcUr\nxIMtXrptHm0i5sD7r3GPp3qwqc2da/NEdJxHjKXNN2GSy24ErgT+FpOQfUX4eR3nI8tGmyei4zxi\nLG1+E7APE1T0Y4Y5XsIsRAk5PM7THbaI1ofp+piN6U0YYPjS2/8/JqsTIot3xL/mlajXJLIr/N3u\nnTgGfCDuNZMx3WXHKGzptnm0VZiL2U/jHj/G8Gxdwo8di3qN2ty5Nk9Ex3lEum1+OfBJzJ3tc+Gf\n/e+Yk+pfhl+j43xk2WjzRHScR4zl3PJ0+PU+TLLl54DpmGEQyOFxnknwMAGoxQQF/Zgxlj+Je80c\nzFQdwt+PJHjN3KjXJHJN+LsdfGzHRLbRv/xSzNhPV4r77lXptnm0tZgo9kTc4zsw03jiE2wuwLQ1\nqM2dbvNEdJxHpNvm9nlsMO41Q0Sy0HWcjywbbZ6IjvOITM4tb2Kmci7GBBL2bApXHuffxoy9VId3\n5nFMl6w9B/WT4Y1/HhMZfQnTIIui3uNvwj+zMvyarwOniSSNLMR04VwdfuzPMFNI/inqPcZhpp48\nHX7dYuAgZp5qoXGizQk/N4g5QBL5JfAfxE7t+Zeo59Xmzra5jvNYmbZ5KeaO7QXMSbMGuAvT/rdE\nbUfHeUQu2rwBHefRnDi3rMEcuzXA7Zgei7a47bjuOO/AZImexRwAjzI8SloD7MV0x+wBViR4n7vD\nO3oK+BWxDXMNJnI6GX6PVzDjaPGrcs7ANPxpTON9l8IsKuJUmz/AyL07F2KKirwd/vopMCnuNWrz\niEzbXMd5LCfa/LLwzx3FnFt+w/BphDrOI3LR5jrOYznR5t/AtPdZzJDGnQm2o+NcRERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERE8ur/ANBpVY9jW9RvAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import sys\n", + "import getopt\n", + "sys.path.insert(1,\"/usr/local/science/clag/\")\n", + "import clag\n", + "%pylab inline\n", + "\n", + "from scipy.stats import norm\n", + "from scipy.stats import lognorm\n", + "from scipy.optimize import curve_fit\n", + "import numpy.fft\n", + "\n", + "ref_file=\"lc/1367A.lc\"\n", + "echo_file=\"lc/4368A.lc\"\n", + "\n", + "\n", + "dt = 0.01\n", + "t1, l1, l1e = np.loadtxt(ref_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.005 , 0.01861938, 0.04473305, 0.06933623, 0.10747115,\n", + " 0.16658029, 0.25819945, 0.40020915, 0.62032418])" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "\n", + "fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029, \n", + " 0.25819945, 0.40020915, 0.62032418])\n", + "# fqL = np.logspace(np.log10(0.0006),np.log10(1.2),11)\n", + "nfq = len(fqL) - 1\n", + "fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.)\n", + "\n", + "\n", + "fqL\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.342e-01 5.077e+01 inf -- -5.530e+02 -- 1 1 1 1 1 1 1 1\n", + " 2 7.674e-01 5.065e+01 8.300e+01 -- -4.700e+02 -- 0.653018 0.587019 0.568277 0.567457 0.566281 0.566085 0.565773 0.566163\n", + " 3 3.298e+00 5.043e+01 8.075e+01 -- -3.893e+02 -- 0.414806 0.209135 0.141159 0.13784 0.133393 0.132728 0.131612 0.132761\n", + " 4 1.572e+00 5.010e+01 7.754e+01 -- -3.117e+02 -- 0.322539 -0.0834456 -0.273066 -0.284295 -0.297612 -0.299435 -0.302479 -0.300412\n", + " 5 5.908e-01 4.964e+01 7.386e+01 -- -2.379e+02 -- 0.302357 -0.214604 -0.654658 -0.688754 -0.723838 -0.729279 -0.736418 -0.733888\n", + " 6 3.713e-01 4.877e+01 6.953e+01 -- -1.683e+02 -- 0.284419 -0.200357 -0.96379 -1.05472 -1.13798 -1.15477 -1.17031 -1.16748\n", + " 7 2.709e-01 4.671e+01 6.269e+01 -- -1.056e+02 -- 0.277768 -0.185001 -1.13047 -1.34026 -1.52128 -1.56845 -1.6043 -1.60101\n", + " 8 2.135e-01 4.361e+01 5.281e+01 -- -5.282e+01 -- 0.277012 -0.185189 -1.16375 -1.49463 -1.83211 -1.9477 -2.03737 -2.03476\n", + " 9 1.764e-01 3.767e+01 4.019e+01 -- -1.264e+01 -- 0.282161 -0.184207 -1.17891 -1.53049 -2.01851 -2.24569 -2.46562 -2.46922\n", + " 10 1.508e-01 2.738e+01 2.645e+01 -- 1.382e+01 -- 0.289545 -0.182463 -1.18795 -1.52893 -2.08812 -2.41103 -2.87498 -2.90486\n", + " 11 1.349e-01 1.468e+01 1.390e+01 -- 2.772e+01 -- 0.293547 -0.180898 -1.1897 -1.52803 -2.10944 -2.46526 -3.22702 -3.34288\n", + " 12 1.358e-01 5.365e+00 5.378e+00 -- 3.309e+01 -- 0.295456 -0.179941 -1.19052 -1.52801 -2.11928 -2.48294 -3.46233 -3.79368\n", + " 13 1.868e-01 1.338e+00 1.633e+00 -- 3.473e+01 -- 0.297315 -0.17923 -1.19104 -1.52666 -2.12491 -2.48975 -3.55567 -4.30889\n", + " 14 6.248e-01 2.604e-01 4.517e-01 -- 3.518e+01 -- 0.299091 -0.178645 -1.191 -1.52463 -2.12805 -2.4915 -3.5672 -5.11363\n", + " 15 2.744e+02 2.611e-01 7.022e-02 -- 3.525e+01 -- 0.300248 -0.178286 -1.19075 -1.52307 -2.12961 -2.49161 -3.56337 -8\n", + " 16 2.745e+02 2.782e-01 4.368e-04 -- 3.525e+01 -- 0.300566 -0.178158 -1.19062 -1.52252 -2.13009 -2.49151 -3.5617 -8\n", + " 17 2.745e+02 2.805e-01 6.410e-05 -- 3.525e+01 -- 0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n", + "********************\n", + "0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n", + "0.238931 0.202434 0.232634 0.177249 0.153039 0.132988 0.297259 3285.23\n", + "-0.000915535 -0.00131061 -0.00195128 -0.00497899 -0.0226059 -0.0776175 -0.280541 -0.000206646\n", + "********************\n" + ] + } + ], + "source": [ + "P1 = clag.clag('psd10r', [t1], [l1], [l1e], dt, fqL)\n", + "p1 = np.ones(nfq)\n", + "p1, p1e = clag.optimize(P1, p1)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 3.525e+01 3.480e+01 3.006e-01 5.395e-01 0.891 +++\n", + "+++ 3.525e+01 3.431e+01 3.006e-01 6.590e-01 1.87 +++\n", + "+++ 3.525e+01 3.458e+01 3.006e-01 5.993e-01 1.34 +++\n", + "+++ 3.525e+01 3.469e+01 3.006e-01 5.694e-01 1.11 +++\n", + "+++ 3.525e+01 3.475e+01 3.006e-01 5.545e-01 0.997 +++\n", + "\t### errors for param 1 ###\n", + "+++ 3.525e+01 3.476e+01 -1.781e-01 2.430e-02 0.973 +++\n", + "+++ 3.525e+01 3.421e+01 -1.781e-01 1.255e-01 2.07 +++\n", + "+++ 3.525e+01 3.451e+01 -1.781e-01 7.491e-02 1.48 +++\n", + "+++ 3.525e+01 3.464e+01 -1.781e-01 4.961e-02 1.21 +++\n", + "+++ 3.525e+01 3.470e+01 -1.781e-01 3.696e-02 1.09 +++\n", + "+++ 3.525e+01 3.473e+01 -1.781e-01 3.063e-02 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.781e-01 2.747e-02 1 +++\n", + "\t### errors for param 2 ###\n", + "+++ 3.525e+01 3.511e+01 -1.191e+00 -1.074e+00 0.276 +++\n", + "+++ 3.525e+01 3.495e+01 -1.191e+00 -1.016e+00 0.598 +++\n", + "+++ 3.525e+01 3.485e+01 -1.191e+00 -9.870e-01 0.8 +++\n", + "+++ 3.525e+01 3.479e+01 -1.191e+00 -9.725e-01 0.91 +++\n", + "+++ 3.525e+01 3.476e+01 -1.191e+00 -9.652e-01 0.968 +++\n", + "+++ 3.525e+01 3.475e+01 -1.191e+00 -9.616e-01 0.997 +++\n", + "\t### errors for param 3 ###\n", + "+++ 3.525e+01 3.482e+01 -1.522e+00 -1.345e+00 0.865 +++\n", + "+++ 3.525e+01 3.432e+01 -1.522e+00 -1.257e+00 1.86 +++\n", + "+++ 3.525e+01 3.459e+01 -1.522e+00 -1.301e+00 1.32 +++\n", + "+++ 3.525e+01 3.471e+01 -1.522e+00 -1.323e+00 1.08 +++\n", + "+++ 3.525e+01 3.476e+01 -1.522e+00 -1.334e+00 0.97 +++\n", + "+++ 3.525e+01 3.473e+01 -1.522e+00 -1.329e+00 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.522e+00 -1.331e+00 0.998 +++\n", + "\t### errors for param 4 ###\n", + "+++ 3.525e+01 3.481e+01 -2.130e+00 -1.977e+00 0.874 +++\n", + "+++ 3.525e+01 3.429e+01 -2.130e+00 -1.901e+00 1.91 +++\n", + "+++ 3.525e+01 3.457e+01 -2.130e+00 -1.939e+00 1.35 +++\n", + "+++ 3.525e+01 3.470e+01 -2.130e+00 -1.958e+00 1.1 +++\n", + "+++ 3.525e+01 3.476e+01 -2.130e+00 -1.968e+00 0.983 +++\n", + "+++ 3.525e+01 3.473e+01 -2.130e+00 -1.963e+00 1.04 +++\n", + "+++ 3.525e+01 3.474e+01 -2.130e+00 -1.965e+00 1.01 +++\n", + "+++ 3.525e+01 3.475e+01 -2.130e+00 -1.966e+00 0.997 +++\n", + "\t### errors for param 5 ###\n", + "+++ 3.525e+01 3.474e+01 -2.491e+00 -2.358e+00 1.01 +++\n", + "+++ 3.525e+01 3.512e+01 -2.491e+00 -2.425e+00 0.263 +++\n", + "+++ 3.525e+01 3.496e+01 -2.491e+00 -2.392e+00 0.579 +++\n", + "+++ 3.525e+01 3.486e+01 -2.491e+00 -2.375e+00 0.781 +++\n", + "+++ 3.525e+01 3.480e+01 -2.491e+00 -2.367e+00 0.893 +++\n", + "+++ 3.525e+01 3.477e+01 -2.491e+00 -2.363e+00 0.952 +++\n", + "+++ 3.525e+01 3.476e+01 -2.491e+00 -2.361e+00 0.982 +++\n", + "+++ 3.525e+01 3.475e+01 -2.491e+00 -2.360e+00 0.997 +++\n", + "\t### errors for param 6 ###\n", + "+++ 3.525e+01 3.507e+01 -3.561e+00 -3.413e+00 0.363 +++\n", + "+++ 3.525e+01 3.484e+01 -3.561e+00 -3.339e+00 0.814 +++\n", + "+++ 3.525e+01 3.468e+01 -3.561e+00 -3.301e+00 1.13 +++\n", + "+++ 3.525e+01 3.477e+01 -3.561e+00 -3.320e+00 0.962 +++\n", + "+++ 3.525e+01 3.473e+01 -3.561e+00 -3.311e+00 1.04 +++\n", + "+++ 3.525e+01 3.475e+01 -3.561e+00 -3.315e+00 1 +++\n", + "\t### errors for param 7 ###\n", + "+++ 3.525e+01 3.524e+01 -8.000e+00 -6.000e+00 0.0178 +++\n", + "+++ 3.525e+01 3.515e+01 -8.000e+00 -5.000e+00 0.187 +++\n", + "+++ 3.525e+01 3.494e+01 -8.000e+00 -4.500e+00 0.618 +++\n", + "+++ 3.525e+01 3.466e+01 -8.000e+00 -4.250e+00 1.18 +++\n", + "+++ 3.525e+01 3.482e+01 -8.000e+00 -4.375e+00 0.851 +++\n", + "+++ 3.525e+01 3.475e+01 -8.000e+00 -4.312e+00 1 +++\n", + "********************\n", + "0.300605 -0.178131 -1.19059 -1.52241 -2.13019 -2.49148 -3.56144 -8\n", + "0.253864 0.205597 0.228999 0.191096 0.1638 0.131949 0.246154 3.6875\n", + "********************\n" + ] + } + ], + "source": [ + "p1, p1e = clag.errors(P1, p1, p1e)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAGp1JREFUeJzt3X9s4/d93/HnxZaj5dxOi12RZ+98bLhdaBhJDbLSHzrb\n5TIn2IY26dBOIbFsiLTCQdoOuHUrcMMgzZCAYS2G9uqua3FbD9kQjNQNaDYH2LXFUKW5UVqnimm7\nbmadUT+W5kxmTXvr6kSpVnt/UHeR1I9+8I7fL389HwAhivx8vp+3cJ+TXvx+P9/vFyRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvSA/iGwBvwh0AQ+A1zsakWSJKkn3AT+NvA08H7gs8AW\n8K4u1iRJknrQ48BbwHPdLkSSJJ3sHTGONbb39fdjHFOSJPW4M7QON/xqtwuRJEmn83BM4/xz4BmO\nP9Rwbu8hSZLa88beo6PiCAk/DXw38AJw+4g255544onbt28f9bYkSTrGl4EJOhwUogwJZ2gFhI8A\neWD7mLbnbt++zac//WmefvrpCEvqvMuXL3P16tW+HO9BttVu33ban6btSW2Oez/uf7NOca51vr1z\nLcy51vn2Uc611157jY997GNP0tob3zch4WeAIq2Q8CaQ3Hv9DrAT6vD000+TzWYjLKnzxsbGYq25\nk+M9yLba7dtO+9O0PanNce/H/W/WKc61zrd3roU51zrfPuq5FpWHItz2Z4F3AjPA39/3+CLwm4fa\nngM+8YlPfIJz5/pvWcL73ve+vh3vQbbVbt922p+m7Ultjnq/VCpRLBZPXUsvca51vr1zLcy51vn2\nUc21N954g2vXrgFco8N7Es50cmMPIAusr6+v92XqVn/58Ic/zKuvvtrtMjQEnGuKQ7VaJZfLAeSA\naie3Hed1EiRJUh8xJGjo9OvuX/Uf55r6nSFBQ8df3IqLc039zpAgSZKCDAmSJCnIkCBJkoIMCZIk\nKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnI\nkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAg\nSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmS\nggwJkiQpyJAgSZKCDAmSJCkoypDwAvBZ4MvAW8BHIhxLkiR1WJQh4V3AF4Af2vv+7QjHkiRJHfZw\nhNv+xb2HJEnqQ65JkCRJQYYESZIUZEiQJElBUa5JaNvly5cZGxs78FqxWKRYLHapIkmSekepVKJU\nKh147c6dO5GNdyayLR/0FvC9wKtHvJ8F1tfX18lmszGVJElS/6tWq+RyOYAcUO3ktqPck3AW+Iv7\nvn8P8CzwVeBLEY4rSZI6IMqQMAH8yt7zt4Gf2Hv+KWA2wnElSVIHRBkSPocLIyVJ6lv+EZckSUGG\nBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJ\nkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhT0cLcLkKJQKpUolUoA7OzssL29zYUL\nFxgdHQWgWCxSLBa7WaIk9TxDggbS/hBQrVbJ5XKUSiWy2WyXK5Ok/uHhBkmSFGRIkCRJQYYESZIU\nZEiQJElBhgQNrK2tLWZnZ5mengZgenqa2dlZtra2uluYJPUJz27QwGk2mxQKBWq1Go1G497r9Xqd\ner3OzZs3yWQylMtlEolEFyuVpN5mSNBAaTabTE1NsbGxcWSbRqNBo9Hg0qVLVCoVg4IkHcHDDRoo\nhULh2ICwX71ep1AoRFyRJPUvQ4IGxubmJrVara0+tVrNNQqSdARDggbG4uLigTUIp9FoNFhYWIio\nIknqb4YEDYy1tbVY+0nSoDMkaGDs7u7G2k+SBp0hQQNjZGQk1n6SNOgMCRoYExMT99VvcnKyw5VI\n0mAwJGhgzM/Pk0wm2+qTTCaZm5uLqCJJ6m+GBA2MVCpFJpNpq08mkyGVSkVTkCT1OUOCBkq5XCad\nTp+qbTqdZmlpKeKKJKl/GRI0UBKJBJVKhXw+f+Shh2QyST6fZ2VlhfHx8ZgrlKT+YUjQwEkkEiwv\nL7O6usrMzMy9PQvpdJqZmRlWV1dZXl42IEjSCbzBkwZWKpXi+vXrVKtVcrkcN27cIJvNdrssSeob\nUe9J+EFgE/g68OvAcxGPJ0mSOiTKkPBR4CeBReBZ4BZwEzgf4ZiSJKlDogwJPwL8K+A68DvA3wO+\nBHwywjElSVKHRBUSHgGywC8fev2XgamIxpQkSR0U1cLFx4GHgOah178CtHdJPOk+lEolSqUSADs7\nO1y8eJErV64wOjoKQLFYpFgsdrNESep5nt2ggWQIOJ3DYWp7e5sLFy4YpiQBcCai7T4CvAl8P/Af\n9r3+U8D7gb90qH0WWH/++ecZGxs78Ia/pKR43D1VdH193VNFpR61P9jfdefOHW7dugWQA6qdHC+q\nPQl/DKwDH+JgSPgg8JmjOl29etVfTpIkHSH0wfluwI9ClGc3/ATwA8AM8DSt0yH/PPBzEY4pqU1b\nW1vMzs4yPT0NwPT0NLOzs2xtbXW3MEldF+WahBvAY8A8cA74b8Bfo3UapKQuazabFAoFarUajUbj\n3uv1ep16vc7NmzfJZDKUy2USiUQXK5XULVEvXPzZvYekHtJsNpmammJjY+PINo1Gg0ajwaVLl6hU\nKgYFaQh5gydpCBUKhWMDwn71ep1CoRBxRZJ6kSFBGjKbm5vUarW2+tRqNdcoSEPIkCANmcXFxQNr\nEE6j0WiwsLAQUUWSepUhQRoya2trsfaT1L8MCdKQ2d3djbWfpP5lSJCGzMjISKz9JPUvQ4I0ZCYm\nJu6r3+TkZIcrkdTrDAnSkJmfnyeZbO9mrMlkkrm5uYgqktSrDAnSkEmlUmQymbb6ZDIZUqlUNAVJ\n6lmGBGkIlctl0un0qdqm02mWlpYirkhSLzIkSEMokUhQqVTI5/NHHnpIJpPk83lWVlYYHx+PuUJJ\nvcCQIA2pRCLB8vIyq6urzMzM3NuzkE6nmZmZYXV1leXlZQOCNMSivsGTpB6XSqW4fv36vXvS37hx\ng2w22+2yJPUA9yRIkqQgQ4IkSQrycIM0xEqlEqVSCYCdnR0uXrzIlStXGB0dBaBYLFIsFrtZoqQu\nMiRIQ8wQIOk4Hm6QJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAk\nSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElB\nhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUFFVI+EfACvA14A8iGkOSJEUoqpAwAiwB/yKi7UuS\npIg9HNF2X977+vGIti9JkiLmmgRJkhQU1Z4ESeq4UqlEqVQCYGdnh+3tbS5cuMDo6CgAxWKRYrHY\nzRKlgdJOSHgZmD+hzXcC1fuuRpKOsT8EVKtVcrkcpVKJbDbb5cqkwdROSPhp4N+e0Gb7AWrh8uXL\njI2NHXjNTwaSJLXs35t21507dyIbr52Q8NW9R2SuXr3qJwJJko4Q+uB8d69aFKJak/AU8O69rw8B\n3wGcAb4IvBnRmJIkqYOiOrthgdbahJeBs8AXgHUgmqgjaWhsbW0xOzvL9PQ0ANPT08zOzrK1tdXd\nwqQBFNWehI/jNRIkdVCz2aRQKFCr1Wg0Gvder9fr1Ot1bt68SSaToVwuk0gkulipNDg8BVJSz2s2\nm0xNTbGxsXFkm0ajQaPR4NKlS1QqFYOC1AFeTElSzysUCscGhP3q9TqFQiHiiqThYEiQ1NM2Nzep\n1Wpt9anVaq5RkDrAkCCppy0uLh5Yg3AajUaDhYWFiCqShochQVJPW1tbi7WfpG8yJEjqabu7u7H2\nk/RNhgRJPW1kZCTWfpK+yZAgqadNTEzcV7/JyckOVyINH0OCpJ42Pz9PMplsq08ymWRubi6iiqTh\nYUiQ1NNSqRSZTKatPplMhlQqFU1B0hAxJEjqeeVymXQ6faq26XSapaWliCuShoMhQVLPSyQSVCoV\n8vn8kYcekskk+XyelZUVxsfHY65QGkzeu0FSX0gkEiwvL7O1tcXCwgKf//znqdfrpNNpXnjhBebn\n5yM7xFAqlSiVSgDs7Oywvb3NhQsXGB0dBaBYLFIsFiMZW+qmM90uYE8WWF9fXyebzXa7Fkl9oFqt\nksvliPv3RrfGlY5yd04COaDayW17uEGSJAUZEiTpFLa2tpidnWV6ehqA6elpZmdnvZGUBpprEiTp\nGM1mk0KhQK1WO3CjqXq9Tr1e5+bNm2QyGcrlMolEoouVSp1nSJDUNw4vILx48SJXrlyJbAFhs9lk\namqKjY2NI9s0Gg0ajQaXLl2iUqkYFDRQDAmS+kbcZxEUCoVjA8J+9XqdQqHA8vJyxFVJ8XFNgiQF\nbG5uUqvV2upTq9Vco6CBYkiQpIDFxcUDaxBOo9FosLCwEFFFUvwMCZIUsLa2Fms/qRcZEiQpYHd3\nN9Z+Ui8yJEhSwMjISKz9pF5kSJCkgImJifvqNzk52eFKpO4xJEhSwPz8/JF3nDxKMplkbm4uooqk\n+BkSJCkglUqRyWTa6pPJZCK7E6XUDYYESTpCuVwmnU6fqm06nWZpaSniiqR4GRIk6QiJRIJKpUI+\nnz/y0EMymSSfz7OyssL4+HjMFUrRMiRI0jESiQTLy8usrq4yMzNzb89COp1mZmaG1dVVlpeXDQga\nSN67QZJOIZVKcf36darVKrlcjhs3bpDNZrtdlhQp9yRIkqQg9yRI0gnivkW11CsMCZJ0AkOAhpWH\nGyRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUlBUISEF/DywAXwN+J/Ay8BIRONJ\nkqQOi+piSu8FzgAv0QoI7wP+JXAW+NGIxpQkSR0UVUj4pb3HXVvAPwM+iSFBkqS+EOeahDHgqzGO\nJ0mSHkBc925IAz8M/EhM40lSXzt8U6nt7W0uXLjgTaUUq3b3JLwMvHXC4/AN1p8AfhG4AVx/gFol\naWgUi0VeeeUVHn/8cTY2Nnj99dfZ2Njg8ccf55VXXjEgKBZn2mz/2N7jONvAN/aePwEsA6vAx4/p\nkwXWn3/+ecbGxg68YVqWNGyazSaFQoFarUaj0fhT7yeTSTKZDOVymUQi0YUK1S379zDddefOHW7d\nugWQA6qdHK/dkNCOJ2kFhDXgY8Dbx7TNAuvr6+tks4d3REjS8Gg2m0xNTbGxsXFi23Q6TaVSMSgM\nuWq1Si6XgwhCQlQLF58EPkdrr8KPAgkgufeQJB2hUCicKiAA1Ot1CoVCxBVpmEW1cPGDtBYrvgf4\n3X2vvw08FNGYktTXNjc3qdVqbfWp1WpsbW2RSqWiKUpDLao9CZ/a2/ZDe1/fse97SVLA4uJicA3C\ncRqNBgsLCxFVpGHnvRskqUesra3F2k86iSFBknrE7u5urP2kkxgSJKlHjIzc3z3w7refdBJDgiT1\niImJifvqNzk52eFKpBZDgiT1iPn5eZLJ9s4UTyaTzM3NRVSRhp0hQZJ6RCqVIpPJtNUnk8l4+qMi\nY0iQpB5SLpdJp9OnaptOp1laWoq4Ig0zQ4Ik9ZBEIkGlUiGfzx956CGZTJLP51lZWWF8fDzmCjVM\nDAmS1GMSiQTLy8usrq4yMzNzb89COp1mZmaG1dVVlpeXDQiKXFSXZZYkPaBUKsX169fv3cDnxo0b\n3gRPsTIkSFIP2n9L4J2dHS5evMiVK1cYHR0FoFgsUiwWu1mihoAhQZJ6kCFAvcA1CZIkKciQIEm6\np1Qq8eKLL/LUU0/x6KOP8sgjj/Doo4/y1FNP8eKLL947BKLh4OEGSRIAzWaTa9euUavVDtyyend3\nlzfffJPd3V2uXbvGBz7wARKJRBcrVVwMCZIkms0mU1NTbGxsHNmm0WjQaDS4dOkSlUrFoDAEPNwg\nSaJQKBwbEPar1+sUCoWIK1IvMCRI0pDb3NykVqu11adWq7G1tRVNQeoZhgRJGnKLi4sH1iCcRqPR\nYGFhIaKK1CsMCZI05NbW1mLtp/5hSJCkIbe7uxtrP/UPQ4IkDbmRkZFY+6l/GBIkachNTEzcV7/J\nyckOV6JeY0iQpCE3Pz9PMplsq08ymWRubi6iitQrDAmSNORSqRSZTKatPplMhlQqFU1B6hmGBEkS\n5XKZdDp9qrbpdJqlpaWIK1IvMCRIkkgkElQqFfL5/JGHHpLJJPl8npWVFcbHx2OuUN1gSJAkAa2g\n8NJLL/HMM89w/vx5zp49y8jICGfPnuX8+fM888wzvPTSSwaEIeINniRJ9xSLRYrFYrfLUI9wT4Ik\nSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkK\niiokvApsA18HbgP/BjgX0ViSJCkCUYWEXwH+BnAR+D4gDfxCRGNJkqQIRHUXyKv7nn8J+DHgM8BD\nwJ9ENKYkSeqgONYkvBv4m8AyBgRJkvpGlCHhx4A/An4P+HbgoxGOJUmSOqydkPAy8NYJj+y+9j8O\nPAt8CPgG8O+BMw9csSRJikU7f7Qf23scZ5tWIDjsSVprE54DVgLvZ4H1559/nrGxsQNvFItFisVi\nG2VKkjSYSqUSpVLpwGt37tzh1q1bADmg2snx4vpkf55WgPgu4Fbg/Sywvr6+TjabDbwtSZJCqtUq\nuVwOIggJUZzdMLn3+M/AHwDvARaALwKrEYwnSZIiEMXCxa8Bfx34T0AN+Hngt2jtRfh/EYwnSZIi\nEMWehN8G/nIE25UkSTHy3g2SJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ\nkoIMCZIkKciQIEmSggwJkiQpKIp7N0iSdGqlUolSqQTAzs4O29vbXLhwgdHRUQCKxSLFYrGbJQ4t\nQ4Ikqav2h4BqtUoul6NUKpHNZrtcmTzcIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ6rqtrS1mZ2eZ\nnp4GYHp6mtnZWba2trpb2JDz7AZJUtc0m00KhQK1Wo1Go3Hv9Xq9Tr1e5+bNm2QyGcrlMolEoouV\nDidDgiSpK5rNJlNTU2xsbBzZptFo0Gg0uHTpEpVKxaAQMw83SJK6olAoHBsQ9qvX6xQKhYgr0mGG\nBElS7DY3N6nVam31qdVqrlGImSFBkhS7xcXFA2sQTqPRaLCwsBBRRQoxJEiSYre2thZrP90fQ4Ik\nKXa7u7ux9tP9MSRIkmI3MjISaz/dH0OCJCl2ExMT99VvcnKyw5XoOIYESVLs5ufnSSaTbfVJJpPM\nzc1FVJFCDAmSpNilUikymUxbfTKZDKlUKpqCFGRIkCR1RblcJp1On6ptOp1maWkp4op0mCFBktQV\niUSCSqVCPp8/8tBDMpkkn8+zsrLC+Ph4zBXKkCBJ6ppEIsHy8jKrq6vMzMzc27OQTqeZmZlhdXWV\n5eVlA0KXeIMnSVLXpVIprl+/TrVaJZfLcePGDbLZbLfLGnruSZAkSUGGBEmSFGRIkCRJQYYESZIU\n5MJFSVJXlUolSqUSADs7O1y8eJErV64wOjoKQLFYpFgsdrPEoWVIkCR1lSGgd3m4QZIkBRkSJElS\nUNQh4Z3AbwBvAe+PeCzpVO4e+5Si5lxTv4s6JPw48OWIx5Da4i9uxcW5pn4XZUj4q8CLwD+IcAxJ\nkhSRqEJCArgG/C3g6xGN0RPi/qTQyfEeZFvt9m2n/WnantRmED/BOdc63965FuZc63z7fp1rUYSE\nM8CngJ8FqhFsv6f4n6nz7fv1P1PUnGudb+9cC3Oudb59v861dq6T8DIwf0KbCeAS8CjwTw+9d+ak\nAV577bU2yukNd+7coVqNLwt1crwH2Va7fdtpf5q2J7U57v24/806xbnW+fbOtTDnWufbRznXovzb\neeIf7n0e23scZxsoA98DvL3v9YeAPwE+DcwE+p0D1oAn26hHkiS1fJnWB/U3OrnRdkLCaZ0HvmXf\n908CvwR8H/BrwO0j+p3be0iSpPa8QYcDQlxSeJ0ESZL6TlxXXHz75CaSJEmSJEmSJEmSJEmx+xbg\nvwJfAH4b+OHulqMBdh74HPDfgd8Evr+r1WjQfQb4feDfdbsQDazvBmrA68Df6XItkXkHMLr3/M8A\nG8C3da8cDbAk3zwT59uAL9Gac1IUvovWL3FDgqLwMPA7tC4v8CitoPDudjYQ19kND+otYGfv+buA\n3X3fS53UAH5r7/n/pvUpr63/VFIbfhX4o24XoYE1SWuv6Bu05tl/BD7Uzgb6JSQA/Flau3//F/BT\nwP/tbjkaAt9J64Jj3u5cUj96goO/v36XNq9s3E8h4f8A3wF8O/BDwF/objkacI8B/xp4qduFSNJ9\neuBrFEUVEl4APksrwbwFfCTQ5geBTVq3kv514Ll97/1dWosUq8DIoX5fobWw7NmOVqx+FcVceyfw\nC8A/Af5LJFWrH0X1e82LzekoDzrnbnNwz8F5emTP6F8BFoDvpfWDffjQ+x8FvgHMAu8FfpLW4YPz\nR2xvHPjWveffSuuY8Xs7W7L6VKfn2hmgBPzjKIpVX+v0XLsrjwsXFfagc+5hWosVn6B1luDrwJ+L\nvOo2hX6wXwN+5tBr/4PWJ7eQLK0E/ht7j9CdJKVOzLXnaN2xtEprzn0BeKaDNWowdGKuQevmd18B\n3qR1Jk2uUwVq4NzvnPseWmc4fBH4gciqewCHf7BHaJ2dcHi3yVVahxGk++VcU1yca4pbV+ZcNxYu\nPg48BDQPvf4VWueoS53iXFNcnGuKWyxzrp/ObpAkSTHqRkj4PVrHfBOHXk/QuuCD1CnONcXFuaa4\nxTLnuhES/hhY509f9emDwEr85WiAOdcUF+ea4tbXc+4sresYPEtrscXlved3T8uYpnXaxgzwNK3T\nNv6Qk08Vkg5zrikuzjXFbWDnXJ7WD/QWrd0hd59f39fmk7QuALEDrHHwAhDSaeVxrikeeZxrilce\n55wkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVIf+P9cYZ1EAfTlhQAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-4,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"black\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xt8XNV97/3P6GpLsiwThE0sg42MHEsxNTYxvnBJa4Nx\naQnQGCzCSeSHFqcv0pQ2rX3anPY45+m5VE9zKU2egFuKITSTAG2TNATbURLAxgYFGYrjcRAWNljC\noLHxTZJtSdacP9bs0cxoZjSXvWf2jL7v12te4NFo9p6lPXv/9lq/9VsgIiIiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKStsPASIzHN3O4TyIiIuJiHwEuCXusxAQPN+Ry\np0RERCR/fAPozPVOiIiISH4oA44B/zXXOyIiIiL2KXHwvW8HpgJbE7zm0uBDREREUnM0+Mg6j4Pv\nvR04B3wqzs8v/ehHP/ree++95+AuiIiIFKwe4BPkIIBwqufhckyy5B0JXnPpe++9x5NPPsn8+fMd\n2g2J9uCDD/KNb3wj17sxoajNs09tnn1q8+w6cOAA995770xM733BBA/rgQ+AZ8d74fz581m0aJFD\nuyHRampq1N5ZpjbPPrV59qnNJ5Yih95zPfA4ZpqmiIiIFBAngodVQB3wzw68t4iIiOSYE8MWO4Bi\nB95XREREXMCJngdxsebm5lzvwoSjNs8+tXn2qc0nFienao5nEdDR0dGhJBsREZEU7N27l8WLFwMs\nBvZme/vqeRAREZGUKHgQERGRlCh4EBERkZQoeBAREZGUKHgQERGRlCh4EBERkZQoeBAREZGUKHgQ\nERGRlCh4EBERkZQoeBAREZGUKHgQERGRlCh4EBERkZQoeBAREZGUKHgQERGRlCh4EBERkZSU5HoH\nREQKiXefF++vvPSc7uHd0+9ydugs5SXlnB8+z+TSyVxWfRkzq2fS/PFmmhc053p3RdKi4EFExEbN\nC5pZNWMVGzdv5NieYxw7eozznGe4ZJiLp1/MVddeRevmVmpra3O9qyJpU/AgImKj3t5elq9ZTtfH\nuuAEcCsM1w2DB94ZeYetPVvZectO9mzbowBC8pZyHkREbLTpK5vouroLDgMrgVmAJ/jDIvPvrqu7\n2Lh5Y652USRjCh5ERGzU/no71AF+zH9jmRl8nUieUvAgImKjYcwQRegRS1HwdSJ5SsGDiIiNSiiB\nAKOPWEaCrxPJUwoeRERstGThEugGajH/jaUn+DqRPKXgQUTERq2bW6l/rR5mAz8DjgAjwR+OmH/X\nv1ZP6+bWXO2iSMYUPIiI2Ki2tpY92/bQUtPCZdMug2ehZEsJ/BNc/uzltJS3aJqm5D0NuomI2ChU\nYfKqHgZmD1A5VBmqMNlf2s8b1W9wX9t9qjApeU3Bg4iIjZoXKCiQwqdhCxEREUmJggcRERFJiYIH\nEREHefd5Wf3IamatmUVVUxVljWVUNVUxa80sVj+yGu8+b653USRlynkQEbGJlSwJcG74HO+ceodL\nPZfyy4d+ycD1A3At4IGhkSH6e/op31LOqjtX5XanRdKgngcREZs0L2jm0VWP8pFdH+HgNw/S+Q+d\ndLR2mMBBC2RJAVHPg4iITULLcV/dBWsAD/Q92Zd4gaw2LZAl+UfBg4iITULLcc8Ke7IILZAlBUfD\nFiIiNgktxx1OC2RJAVLwICJik9By3OG0QJYUIAUPIiI2CS3HHW4FZoGsd9ECWVIwFDyIiNgktBx3\nuEpgLdABVY9XwXdhzrY5WiBL8pqCBxERm4SW445ehvtDqDhbweI/X0zDHzUw9wtzOX7dce5ru09F\noiQvOZGpMxP4W+AWYDLQCdwH7HVgWyIirtH2fhv199dz/gfnObHnBIOBQco8ZUy7bBqNf9pIy/IW\nLZolBcHu4GEa8BJmhO8WoBeoB07avB0REdcJrai5Idd7IuIsu4OHTcA7mJ4Gy7s2b0NERERyyO6c\nh9uADuBp4APMUMXv27wNERERySG7g4crgD8E3gRuBr4NPAR81ubtiIiISI7YPWxRBLQD/y347/8E\nPg58Hngi1i88+OCD1NTURDzX3NxMc7OSikRERLxeL15v5Kyckydzm0oYr+J6ug4DO4D7w577Q+DL\njC3augjo6OjoYNGiRTbvhoiIu8RarvvyqZczqWQSAM0fb9ZMDEna3r17Wbx4McBicjCb0e6eh5eA\nj0U914AJKkREJqzmBc2smrGKjZs38sKrL3Do5CGGaoa48Zobad3cqmJRklfsDh6+DuwG/gKTNLkE\n+IPgQ0Rkwoq1XPehkUMc6jnEzlt2qtqk5BW7EyZfBe4AmoF9mOGKPwZUQk1EJrSI5bqtAeMiYBZ0\nXd3Fxs0bc7h3IqlxosLks8GHiIgEtb/eDjfF+eFMaG9rz+r+iGRCa1uIiGRBzOW6LUXBn4vkCQUP\nIiJZEHO5bstI8OcieULBg4hIFsRcrtvSE/y5SJ5Q8CAikgVxl+s+ApNfnMx7V73Hbd7btES35AUF\nDyIiWVBbW8uebXtoKW/hsv+4DB6Gki0lsB0uqb6Ej77xUR5d9agKRUle0CCbiEgWWBUmzy84j/+n\nfrgVhutMEuU7I++wtWer6j1I3lDPg4hIFjQvaOZHzT/io/s+ytkbzqreg+Q19TyIZEDrFUiqVO9B\nCoGCB5EMaL0CSZXqPUghUPAgkgGtVyCpCtV7iBVAqN6D5AnlPIhkQOsVSKpU70EKgYIHkQy0v94O\ndXF+ODP4c5Ewieo91L9WT+vm1hzunUhyFDyIZEDj1wImcXb1I6uZtWYWVU1VlDWWUdVUxaw1s1j9\nyOqIwk9t77dRf389dT11VD5TSen3S6l8ppK6njrq76+n7f22HH4SkeRocE0kAxq/FoCV01fyV1v+\niu6ru+FawANDI0P09/RTvqWcVXeuCr22eYGZgeNd7mXr7q34fuDjxLsn+OCdDzjx0Al8P/Cx9fat\ntCxv0UwdcS31PIhkQOPXAunlvqycvpKuLV10z+ymf20/Q3cP0f/pfrpndtO1pYtVM1aN+R0Rt1Dw\nIJIBjV8LpJf7omRbyWcKHkQyYI1fX3T4IoqeLIKHMY/tcOj0IT7W/LExY95SOLz7vNzmvY13Tr+T\ncu6Lkm0ln2lAViQF3n2R49SDgUHKPGVUT6+mvKics7eeNRcED4yMjPBhz4emC/pOdUEXIqtI2JVf\nvjLl3Bcl20o+U8+DSArijVMf/fAoZ2/UegUTTW9vL8tuWcap6lMp576Ekm1jUbKtuJyCB5Ekefd5\nWXjPwtjj1AOoC3oCCuUt3Az8jLG5L+/Gz30ZL9n2dPVpDXeJaym0FUnSyukrObb/GFwX44ce1AU9\nAYUWufIAa4GXgBeD/x6BqUNT2fPL2CXKWze3svOWnXSd7YJDwLHg7w1C1XAVO3bsYP78+dn7MCIp\nUM+DSJI2fWUTQxVDsYOEAOqCnoAi8hYqMT0QnwHuAe6F4SnD3Nd2X8wehNraWn70nR8xZecUaAz+\nzj3AZ6FvdR+/e+/v4vf7s/RJRFKj4EEkSe2vt0MxsYOEWlTvYQIaL2/h8urL+VHzj2IWe/Lu87L6\nS6s5c/MZ5cpI3lHwIJKkYYbjBwkrgO3Au6jeQ5hUyjbno0yKhDUvaKb6dLVyZSQvKXgQSVIJJbCc\n2Ilxx6HkfAnrWMecbXPguzBn2xxaylsm9LLchV5FMdMiYZquKflKA7EiSVqycAm+E76xiXEBoAKK\n64vpXNLJ3E/OpfRUKZdPvZzjJce5r+0+mj/ePCHXKYioomixuuUx3fKPfeuxXO1e2qx6H68+/Son\nT56EZzFBQxkUTSqi5vKa0CJXzbXx/+5aG0XylY5MkSSFsuOv7oJVmIvgCNBj7jL3/Gji9jDEE5qN\nEMtMaG/Lz255ayGsD6/+0My+Cc6uoAfmvDaHPd7kjoUlC5fg6/ZFBlcW5cqIi2nYQiRJtbW17Nm2\nh5bylrhDE4U+xp+qQu2Wt2tdCq2NIvlKPQ8iSfLu8+L9lReug8qPV1J5opIzpWf4MT/m6X98mium\nXcGlnkvZ9fVdDFw/MO7SzBNBoXbL29WjYq2Ncv4H5zmxZ7Tc+bTLpiU17CGSK/n5zRXJgeYFkXkL\nfr+fjZs38sKrL3Ds5DH6avp4e+htEzgU2Bh/ugq1W96uHpXQMbXBvn0TyQYFDyJp6O3tZfma5abr\neg3ggUMjh+AJEk+9y9Mx/nSF8kTogpmMyRNp3Zaf3fKF2qMikizlPIikIe6YdxkFOcafrmTyRPJR\nJvUdRAqBwmORNMQd87bKVOuOFIjME5m7tHCmsBZqj4pIsibWmUzEJnHHvK0KlAU2xp+u6DyRQqFE\nR5noFDyIpCHumPcK4Gngt4BpwB6gFxgBT5+H7Qu2s/qR1bQsbynIi+pEoURHmegUPIikIe4sgkpg\nOUz++WTO9Z0j8KlAaMnmwEiAoz1HqdhSUfBTNkPDFcC54XO8c+odLp96OZNKJgHk7XCFU6yKlb4f\n+DjxbmRPRuPtjQo2xXXipXZlwyKgo6Ojg0WLFuVwN0RS5/f7WXbLMpM0GWPM+xMLP8H3PN+LPXxx\nBFrKW1w1ZdOJi334VNZDJw8xp2YON15zI62bW/M2UdIpEbN36oioWFn/Wn1eJ5eKM/bu3cvixYsB\nFgN7s7199TyIpGG8Me+dW3bC78b5ZRdO2Wxe0MyqGasiLvZDNUNpX+zjTWU91HOInbfs1MUwSqGu\nASKFS8GDSBrGG/Oe98S8vJqyaffFXhfD1BTqGiBSuFTnQcQBoYTKWFw0ZdNai2POijm2rNVgaX+9\nPXGxrNd1MQxXqGuASOGyO3jYjBmpC3+8Z/M2RFwvX4oIrZy+kq4tXQwMD0Re7PuBHcC/ADvh8X99\nPKXFvcZcDMPf73twoOvAhF0sLJZ8CTZFLE4ckb/CLFhsueDANkRcLV+KCIWGF3YyerHvA54BVhIx\nU6S7pzvpxb0iprLa8H5u4dQskkJdA0QKlxPDFhcwM9utx3EHtiHialZCZV1PHZXPVFL6/VIqn6mk\nrqcuVETIDULDC1ZlzH5MnYqVZDSEEdHzsjvz93OL5gXNPLrqUT6y6yMc/OZBOv+hk4PfPMhHdn2E\nR1c9mvZ0Si3NLfnGiZ6HK4Ee4DzwCvCXwCEHtiPiWm4tImTVE3j16Vc5deQUF85cMBf0WuAtzIXe\nQ8aLe0X0vPRSMMmATs0iUcVKyTd2Bw8vA/8F6ARmAP8NczpqAj60eVsikqKV01fyV1v+ig+v/hCu\nxuQgBDCVMbcCtxE5hBEtyeS98IthT38PAU+cAf0MkgFzUVjJqVkkbg02ReKxO3jYFvb/+zHFebuA\nzwFft3lbIq7mxqqBoYvfNEwewiWMrsVRTeQQRgaLe4VfDJtWNOEL+Mz79QMvAX5ChZDe7n87pZLd\nVrvu+/4+3t/3vqniea15v6GRIfp7+h3LpdCUShHD6RTeAWAfMDfeCx588EFqamoinmtubqa5WV10\nkt+su/zuq7uzdnEbT+ji91NMHsJFjOY4FDM6hGHj4l6hZEArYAlLnGQEhnuG6drSlXR7WO169MJR\n+BRZrSWhKZWSC16vF683clbSyZMnc7Q3htPlqcsxPQ8PA38T9TOVp5aCtv6B9Ww9v9VVJarnrZhH\n582dZrjiHiJ7Aw4Cf4gJ+a2AInymSDfUv556qeRQKe8LXXANGbdHqF1fDPsM0Uagsa2R/S/tT3o/\nk9G0ognfTb6sblMkllyXp7Z7tsXfATcAczD3Ws8AVcDjNm9HxPXcWCgpYgqldQGsBG7G9A92B/+9\nFjgAeIHvAk9AxYsVac0UsfIfSo6XmPYIr/nw3eB/ffD0z55OquZDqF3DP0M0h3oB8qV+h4jT7B62\nmIk53VyMGdXcAyzFTEASmVDc1sXt3eflxOQT5uIXK68hfDnxOkxAYcPiTFb+w7wn5tHZ3xlz6IIe\nGPzxIKtmjD90EWpXG3IzUpUv9TtEnGZ3z0Mz5itVjjn9rAV+bfM2RPKC26oGrpy+kvLectgOTGbs\nHbTV49ABJY+W2F6booQSMzwSp+bD0K1DSdV8CLWrlZsRi0O9APlSv0PEaap5WoDcmOU/EbmtauCm\nr2zi8JLDJknyeeCHmKmZdYzeQX8I9cX17HnN/lUvlyxcgu8nPtOjEUtdcrMVQu1q9ZTEyc1wohdA\nUypFDKcTJhNRwqRDIgrZWGPDNnQ/S2pCiYJXx+7izvbfYUyyX9S0Sc8pDzOvnulYgOn3+5l59UyG\n/mAo7msadjTw5ktvjvs+oXatwQyO9gIjUNRXxMXzLqa4rJjTR09zbuQcgcGA6akoBk+Jh0lFk1IO\npBWQi9vkOmFSPQ8FaLxCNr+x7jcoLivWSdBhbqsaOCYHw0qUDLpyx5W8+VziC3cm2t5vo6y6jKHA\nUEZ5Cla7nnj6BKeOnGLEM4KnyEPRjCKqrq3i5A9PMnjjIFyHCZCsHItgIN0/0p/ydFk3TrsVySX1\nPBSghNPJzkDpk6UM/c6QmXe/m9Bdm6fPw4wFM1iwdoGCiALkhmmGTk9fHfP+O4D52Dc91EXTbi3q\nFZmYct3z4MTCWJJjCbP8X2Q0cHgGc2L9DPBZCHw+wNHZR03BniSy3iW/uGGaYbILQHn3eVn9yGpm\nrZlFVVMVZY1lVDVVjbuM95jpsX5smS7rxmm3FmtZ9e6Z3fT/dj9D04boH+ynu7Obn/71T/nSn3xJ\nS5+L7RQ8FKC4Wf59wGHMSbCAVjqU5Lhh5cZkZytEXBDX9jN09xD9n+6ne2Z3wuB2TOBsQy0I7z4v\nh08edtW023BjSo7rhkCyQDkPBShulv9uYArmJOhHNfonmNraWvZs28PGzRt5YdsLHDp5iDk1c7jx\nmhtp3daaleTNZGcrpLsAVUQRLEipFkS87v/q6dWc9Z/Nek2JZI0pOZ7Fct25oGEad1DPQwGKe4f5\nHmb9gugKg9FUo78gefd5ua/tPo5fd5y5X5hLwx81MPcLczl+3XHua7vPVd3aqQwThA9xdB7qjBya\nSaEWRLzejqMfHiXw0UD89+nObWXJUG+LTUM0bpdur5TYSz0PBShelv+5kXNcqL0Qv8KgZQT6z/Wz\n+pHViu5t4JY7pdBdfx5IpTpnxEyIj2O67q0qmdFVMxNUhIzb2zGAWYDLmrURVVOi9NlSWvflrrJk\nzJLj0QrohsCpZdElNQoeClC8ruGmFU34lvvMSXAqCVdOvO6q63h1y6uammYDTfNLXeiCOEDkEt4B\n4GLo+bAH7z4vzQuax15M1gZ/ZydwAYrPFVP+YjmBkgBnR87GHaqJu9y2B7NCj/W+L4btSy2UTivN\n+rTbcKFhyhyU684FLYvuDhq2mECWLFwCJzAnwTJMhcF3iZk85ynyjJ6QlVCZkYiLW561ZbqzHjK1\nZOESeAvTazAfs3rmPZgC+I1QNFAU6p4ODXFYC279ADgGDAMX4MKFCwwUD3B+5Dwll5Rw6pZTvHHV\nG2OGauL2dlgXZasuxmeC+/IZYBXMvmh2Tnt0QsOUFeR8Nk02uG3NmImqMEJRGZff7+fc2XOU/qSU\noVuHYA1wFtgF/Bw4BxU1FVw0+yLq769n55ad8Ltx3kzRfUry+U7JqV6T8YZy7rzrTp659xn6VvfF\n7J4+c/OZUPf0MMORxaBuYvTfqwgVhxoZGWGkZ4RpP57Gtm3bxiSIjkm2tFh5Ey4pMx7NGqYceGqA\n93/4PoHbAuMO0eSzuH8nKKgeFrdTz0OB8/v9LLtjGdMbp/O9ou8x9F+GzFJl3wX+FTgINZfVcPPm\nm/mnp/6JI88dYfuG7VROqlR0b5N8vVPy7vOy8J6FjvSajJf0BhCYEkgqATDmgltpTEWOWwdjBWYx\nsTi9dHZOcU2np6d5QTPbN2znq9/4Kjf9zU3UvVfYi3a5oV6JqOehoD38/MN8acOXGJg8YBK+rDun\n8IWJjsDt5bdz8/Kb2bp7Kxs3buTEuyfoP9Y/umRyNEX3KcnXO6WV01dybP8xU+Y5lgx6TcZLenv5\nqZeZOW0mnZ7O2G8QFnTFXHArjanIEcttR62ZwVko+lkRlEauj2F3mfFMenomyqJdWhbdHdTzUMBe\nefoVBq4fMEln49zBRd8JMpcJF907Nb6fr3dKm76yiaGKsHUorJyCf8H0XH0HfG/6KL6ymJL5JSm1\nVcKpmDXw5L8/yVtdbyW1pHnr5lZKh0ozLg5ldf9f+valeB73RBRb4gEYWTXCnOo5HH3xKH37+0K9\ndHbmO+Rzfky2aFl0d3DnLY+kJXocuf9YP/whSZ1Ix9wJxlvuuICj+zFT/nbDUO8Q/Z399Px1D/sW\n7GPr2q0pT63M9Z1SulNF219vH60LEi+n4HYYqRsZXXDqYD9HNx9lV80uPuf5XNztxB3K6QP+FYZ/\nexh8JJVrEHPBrTRmHlh37uvfWM/WK7bmZCpgPufHZMtE6WFxO/U8FJAxvQc1jE4pG+cObsydYCVm\nVsYBzF3mIxR8dO9Umd9c3yllVOrZShaMziGIlVMwYJ6/cOsFBu4eSLiduCXUw9/3OuBnjFtOu3lB\nM2t/c23axaGi5XIdi2zkx+RqBo3b9kEyo56HAjKm98AKGpLIFt/9+u6xJ62wJZsbdjTw5kvOLdfs\nBk6V+c31nVJGpZ6XYwIpiLwjjpVTEH7hH2c7cUuoh7+vFcCG1VbwnPIw8+qZY3INxvTupFAcKlou\nE1yzkR/jhrojbtgHyYyChwIypsvTChriDUF0Q/3r5kT6yds/OXrS6ieyMM8IvN3/NqsfWV3QlSUj\nyvwWUNdxul3hSxYuwXfCZy7gXsbPKUih3eIO5VyIet+wABbgyh1X8uZzY4PY6Kqq50bOESgKwC+A\nYpPkWEIJ1EB3eTezbpjFiGeEMk8Z5ZeW47naQ+C1AOePnh9NFo5ToMrJyTFxgyqwLT8mZjB5FjgA\nXR92MX3xdCqmVDhaAVVVIvOfgocCMuaOKTxo+D1M9vgLwAh4+jzMWDAjdAcXOmlZXfbW2HYweBju\nGTZdzwV8R1CoZX7TvZMOXeCv7oJJjL/gVArtFq+E+vnB8wwH4uxvgjvvZHp3ent7Wb5mufk8wdoP\nQyND9B/sp+TxEoZvGzZDJT/FFKiyelLCvgf0QNezXTzywiNsuNH+riQ78mOic1zOjZwjMBggMBIg\nQADOAF8I+4U+Ir7zAU/A5K842Aug3I78p5yHAuH3+/ng6AeR48jheQs/BA5BZVkldQ113PQ/buKr\nX/9qKFs8VKUuvMt+gmV7h2ZFJJEjkk/i5hdAws8TnqtR0l8ymkPQDwwyNqcghXazahMcee4Iffv7\nGPQN0re/j3tvu9exmSlxZzIcxgQO1vMrSPg9uHDrBV5+6uW09yMRO/JjVk5fyevffJ3ui7rpn9rP\nhYELjJwcIbA8+MeZGvaZ+hm9wcjidz5fa5/IqPw6C0pMoXoO1QNjcxusbt8j0FLeErcr0DppvfM3\n7zBcF+eLW+B3BKG7voouV1cUTFW6XeHhd/N+v59ltyyj62yXuSNfgUlmDB8Ku5iM2y3Rnfclr1zC\n4c8dZtaaWWktMBb3bjd6uKUSqCZx0qRD3wM78mM2fWUTvVf1mr/TcuAgcAfmJmIlJn8kfAaNh6x/\n1nytfSKj9BcqAKF6Dhcxbm5DPNZJa94T85IqzFOICrXMrx1d4VbbHP27owysHDABwkwiF4o6C563\nPAQ+Fch4O9HDGdMum0b9Z+vxPe6j99retJLs4t7txhpuKY7xnCVL34OMptgGMOeBA5hgqA7zd7qJ\n0VwoK5jYSdY/a0RAG51jNQiHSw4XfI5VvlPwUABCd1Qexq78NwIl/SXU//fkKuFN5DsCK4DyLg87\nab8cdQGzuaJgNiS8ICf5eay2aXqiCV+dzzwZlczICFR8v4JpPdMy3k6sO+/1D6znhWtfSDvJLu6x\nHSt/I8crVHr3eXlk2yPs+touLtx6YUywdPobpxk8MxiqCBve1h+e/BCGGA0YyhgNkKxhmaeDG7op\nN581FNBaPVlRuSUDPQMFn2OV7wr3SjCBRNxRRZ/QgSt2XMH2DduTeq9sZHu7Xa6nVtrNzs8z5u49\n6q5x4NQA05jGii+usO2u0boD//mPfg73xXlREt3rcY/tWFOZc7wY1srpK7n/oftN4BAjWDq96DQd\nD3Vw5uYzYwKL0tdLzbCLFSwEoh5WLpQ1gyYHnzVmT1bUZ9SsC3dTwmQBSDchLpZQ4uQ4hXlkYoo4\n1voYs2R2YENg3OJT4ZIpFmQVuRouyyzJLuLYPoMptf040An8G5ELXy0ja4thxbLpK5voK+mLn4tw\nyKwsGivJcWj6kElotYIFKxclvHBWJTA5+HMrfyX6O/+uM5/V7/ez4+EddD/RzXD/cEoFufx+P+sf\nWE/TiibmrZhH04om1j+wHr/fb+s+yvgUPBQAO9dOiM72Lv5eMUVPFlH08yIOnT7EpTdcqkpwE1jE\nsZbGypXRkql+GZolYZXKjiWJIHnM2hWzg+/3KUyPhrXa7BPmUTajjPID5ZQ/VZ71qqDtr7ePDjfE\ncoz4F91V4DntGQ0Y5mCCg9lEBglWMBE+K8tLqA0qXqyw/bM+/PzDzL5uNlvPb8V3k4/BKYNJB4TR\nv9t5cye+VT62nt/K7Otm88gLj9i2nzI+DVsUADvXToju4o41N97pOeDiXhHHWi8Zz9VPplhQKKcn\nw+71MWtXWAmDcVabvaf8npx1mQ8znDgXIVFNjSkw6aJJDD47yIXfvDA66+JQ8HeexRTjCgBvYoKn\nOsznD543KnZW8LUtX7O9lkUouTu6Cm4S+RZjfhdCx8rA9QO8/NTLjtTekNgUPBQAOxLi4lElOAkX\nfqz19PcQ8MTpCkgySz9i+mSMyqZP9j9J2bSyyES/GLOJKnZVsHTL0qQ+Q2ib1uyDWHI8LbmEksRT\nX61hiTgX3YuqL6Lpz5p49elXOVl0kpGfj5i2KoOiqiJqLq/hmrXXcOfH7uTlp16mva2dYYYpoYQl\nC5fQuquV2tpa2z9X3Cq4SQSEKizlLgoeCoCTCX76wkq48GOtaUUTvoAvoyz9UAJmVJXD8Mqmnmc9\nkYl+UbOblmvPAAAgAElEQVSJpg5N5a1fvpX0xS60TRdXEl2ycAm+k76xtTSCwVJJXwnD3cNxL7o3\nLb2JxzY8ltQ5IZt36wmr4I7Ta6rCUu6i4EESmihf2HTn1E9kdszMCSVgJlhUa2j60OjdafRsoiNw\nR/kdKd0lh7aZ4+mYibRubuUnv/UTepf3mqXJrWBpEIrPFbPkgSUc/NeD9NKbk2Xe0zVmumx4QPgC\n0A+V0ypj9ppO5GnkbqTWloQmyhdWq/ylzo5cm1AAkmhRrVXgeTx28amKnckPV4zZZo6nYybS9n4b\nC7+w0ASzp04wWBIMZq8wwWzDrAaqLq0yP7dhqDJbwXPMgDPJKriaRu4uhXHmF8dMlC+scjtSZ0eu\nTSgAudCVMAFwzpw53FB+gy1j80vvWspT9z/FwDUDsYcF0gxK7BQ+PBR9Yf/F3/+Clzwv2Xphz1bw\nnEnAaWdiuGROwYMkNFG+sMrtSJ0duTYRa6okWE1zUukk24K3DTdu4M5dd7Jx80Z21+7m/bb3OTd4\njkkVk5jxkRksv2a5YwmD6cjGhT1bwXMmAaeTieGSOgUPktBE+cJOlNwOt4mYPtm9NWs9XLW1tXnT\nkxTzwn4WOABdH3YxffF0KqZUZNQTka3gOZOAs9Aqv+Y7FYmShJoXNNOyvIXG2xuZdtk0yjxlDAYG\nOfHuCXw/8LF199aCKBRlZ5VOt0imeqNdMq38t/SupVTsrIhZ2bRiZwVL78rdEEKutb/eHlkQKryy\n5+cgcF9gTGGtVCl4llQpeJBxJVMFMN/ZWaXTLbL1d7Oj8t+GGzdweNdhWspbaGxrpGFHA41tjbSU\nt3B41+EJXfxnzIXdhsqe0QoxeBZnKXiQcUV0m9p0snKbQlzTI1t/t4jKf1HbsSr/JcMaStj/0n7e\nfOlN9r+0n8e+9Zhrcg9yJeLC3o+pFJnCehDJiBk892PW/3gCDhw5kLOy9NnsQZPkKZzMY9maXjUR\nkgmzkduRrb+XXatQJmsiHB+5FJrxNA1TSGsytg8xhGagXD8ANZiaC4cxpatvgoAn4HhZer/fHypH\nHj6j5s8f+HPTg6Zp1K4S7xDMhkVAR0dHB4sWLcrhbuSvWOtOhM+E2LNtjy13bfNWzKPz5s64P2/Y\n0cCbL72Z8XYKXbb+XqHtnOyCz8Z/nV1/Nx0fzvL7/Sy7ZZmZznoNpmDUPcSdmdLY1sj+l/antZ3b\n7r+NV3a9QmBmwGwrVgLrOPUY0vHw8w/zpQ1fMsFL1Hej+NnisUuTO7gv+WLv3r0sXrwYYDGwN9vb\n17BFHstWt7TGQ+3h1N8rOlmxYUmDLatQJkvHh7OsXrGS4yXmwhq+tHa0DPJzamtr+dhHP2aKcQ1g\n+9BIIhFDXwOY4RIvsBMuXLiQ1X2R5DgZPPxXTOz4dQe3MaGNycIOZ+OXqhCTCXPBib9XrGTFU6Wn\nHL3IRNPx4azmBc1s37CdKy67YnSBsPCltQn+993MZ6aEjtHwdT+s3Id/wSzX7YXOw5225huEths+\nk+Se4GMamgniQk7dEnwCuB94g/j3JJKhbE2vmiiFopzmxN8r7jLF46xCWf+6fX83HR/ZEerhsWmB\nsFhCx6i17kc/cRcs69rSZVu+QWi7sdY4cfEaJBOZEz0PVcCTwO8DJxx4fwnKVnex1W1a11NH5TOV\nlH6/lMpnKqnrqQslE+arbGZyO/H3itmbYZ1srYvMAUwX8HfNo+S5Elv/boV8fLhJRA+PtR7EZzB3\n5zfCHbemtkBYLKFj1Oq1cmBaaMLt+jHHc3hvxxnUs+VCToRs3wJ+DPwc+GsH3l+CsrXuRCFXdsvm\nglhO/L1i9maEL/gUYxXKe8vvNcs126SQjw83iZgR4dBaHKFj1Oq1gqzMpAlt18PY3o6B4L78Fiaw\nUM+WK9jd87AOWAj8RfDfGrJwkKryZS6bNSycqCUxpjejHxgCfgi8a992JPeyUUgrdIx+CPweMEzW\nhkbrX6uHQcxwTHhvh9WD9mvgCfA86lHPlgvY2fMwC/h7YBXmEIDItJuYHnzwQWpqaiKea25uprk5\n/9dLcFr4Aj92rDY4EWWzRoFdtSTC60W8f+j90V6GPkbv2G7EdDm/iAkczkDN/JqCWo9kInJ6TY7o\nY7R/sD8r+QbWdo/+3VEGjg5E9pbBaA/aCMxvm5/WVNR85vV68Xojh1BPnjyZo70x7KzzcDvwb8CF\nsOesyWIXgHIi75FU50FyLt9qFHj3eXlk2yPs+touM/fdKhz0W5jchkY0H15ss/6B9Ww9vzVrx5Tf\n72fm1TMZ+oOhuK9x23cyVwqpzkMb8HHgN4KPhcCrmOTJhWgIQ1won2oU+P1+fvi1H/Li/3lxtGhO\nFaNdul1oPrzYKmJo9AwmifFJzPDBf3h48/03k178LBlt77dRVl2WN9/JiczO4KEP8IU99mNSXT4M\n/lvEdfKlRoFVz+H7r32fQHUgMkiwunRr0Hx4sZWVZ7H0+FI8j3tM/YXPAJ+FwOcD7Jm2J+nFz5LR\nvKCZtb+5Ni++kxOd0xUmrUljIq6ULwtiheo5DABlxA4SEn3bdMcmaYqoPJnh4mfJyJfv5ETndPDw\nm8CfOrwNkbTlS42CiMp/sYKEfkyasu7YxAHZqmYL+fOdnOh0K5KH4q0+17pZMyxSlS81CiIq/13M\n6AwLGJ1lYZUtjq4oqfnwkqFsVbOF/PlOTnRaGCvPxFrLwLfKx9bzW20de5wIoheUalrRxPoH1tua\nAGaXiMp/c4hc28CqAtjA2IqST0DFCxW6Y5OMhI6/6HUu/gXYDj3He8atxprNaq7iPPU85BG/389X\n//SrsdcyCBt7tKNYTKJ9KIRej4glgMNq9vt6fDx13VN8bcvXHG3HVI2p/Lcck4b8InCK0VoV0RUl\nR2B222y2b9ie1f2VwrJk4RJ8b/lGA9Ww7ww9ULSjiFUzEldjzWY1V3Geeh7yhNXjcPDEwZxNxyuk\nXo+IBaUcTgCzw5jKf4cx6wBYVVU0y0Ic1Lq5laoXq+Kuc3Hm5jPjVmPNZjVXcZ6ChzwRutjFy7QH\nxy8U+XbBTSSbCWB2iEgie66S0hOlVJZVUtdQR+VHKjXLQhzV9n4bgSmBjL4zqX7nNMzhbgoe8kTo\ni5fD6Xj5dsFNJJsJYMkY70QJsH3Ddo48d4S+/X0M+gbp29/HkeeOaF68OK55QTMzp80c/c5E5z54\nobunO2G+UKrfuZXTV9K1pYvumd30r+1n6O4h+j/dT/fMbrMc+DjDJOIsBQ95IvTFs1ZMjMXhC4Xb\nLriZcFtlyUxOlJoXL9kQ+s70YfJu5mOWA78HaIbTq04nHL5M9TunYQ53U/CQJ0JfPGs6XvSF4l3n\nLxRuu+Bmwm2VJTM5UWpevGRD6DtjJU2mOHyZ6neukHo6C5GChzwR+uJZy9NGT8d70fnpeG674GbC\nbXfrmZwomxc0xx3S2L5hu5kzL5Kh0DoX75HWsRqxTkbUd65iZwVL71oa8fpC6uksRPlzqzjBtW5u\nZectO+miyxQACi5PaxUA2rNtj+NTJcfsQx4XIbJreWy76EQpbrfhxg3cuetO5i6by2nP6dgvSnCs\nWr+/cfNG2tuipnrvGjvVO9TT6fBy4JIetX6ecMPFzg37YJdcV7GLrpdx+NBhnSjF9Wpra6mbXocv\n4EvrWK2trU16Ce9QbZNYy4HnWU9nIdIZKU/k+mLnln0oBDELVG0nsuR0OJ0oxUWydVFfetdSnrr/\nKfM9ierprNhZwdItS8d5B3GSch5kwsl1WeqY9TKuwyTCvsvoePAZ4N+BH8F32r6jOe7iCtnKF7KW\nA28pb6GxrZGGHQ00tjXSUt7C4V2HXVUBdiKKN8qaDYuAjo6ODhYtWpTD3ZCJJOKu31qlMuxuJhtl\nqZtWNOG7KUa3bz+wC8oOl1E3s44jR44w9DtDMA2T4d5r9tXT52HGghksWLuAluUtSoiUrPLu87J1\n91Z8P/Dx4dsfcvbMWRiBovIiJlVOYvFvLOaZh57Jq3L1+Wjv3r0sXrwYYDGwN9vbV89DHsj1nXIh\ncUOVzJjJkf3AS8AxCBQHOO4/Pho4PIOZU/8Z4LMQ+HyAo7OPqlCO5IQ1u+fLm74MQOC3AwQ+H+DC\n/3OB/rX9vFj5Yt6Vq5fUKXhwObeuJxEd0MxbMo8rF13JvGvnuTrAccPc8TH1MqKK7gz9/hCnSk+Z\n/Uwwp16FciSX3BCIS+4oeHA5N35BxwQ0yzvp9HdycNFBOtd0uibAicUNUyLH1MuIFyB4MItfqVCO\nuJAbAnHJHQUPLufGL+iYgCbNinO54IYqmWMSzmIFCNYaJh5yHuyIxOKGQFxyR8GDy7nxCxoR0PQD\nh3BdgBOPG6pkRpeTpo+xf2NrDZMcLoQmkkgqgbjytgqPggeXc8OdcrRQQGON1U8mo9X2sskNZanD\ny0kfev4QUydNHfs3ttYwmUzOgx2RWJINxN2atyWZUfDgcm64U44WCmis4YpiMlptL5vctIiUdVI9\nVX1q7N/YWsPkAqbWQ3j9hwTrAYhkS0QgfgZz0/Ak8ASU/EcJz+96nnnXzmNTyybX5W1J5tTn6XJu\nrLIWqjDnx1RItLrYDzCa+2CJOknkurCLm6pkhnJHLsIEXSuJ/Bsfh4qhCr7yz19h/479Sa0HIJIt\nViB+/F+Oc/LASfgU5nzQD8PPDHP4E4fNcOZ3STys2eaeYU1JnoIHl0t1MZlsCAU0FwbMncQKzMUP\nzMkjFp0kxmh/vX20PPVaTJ2HFwkVrpo6NJW3fvmW+Rt/Kpd7KjKWFYivf2M9Wxu2jt40hCdQg5J+\nC5SChzyQymIy2WAFNFdeeyWnAqdGu9i96CSRgohk2ErMSqlhpu+Yrp4Fcb1QEAyjCdThNxHhM4ei\nKek3bynnQdJSW1vLHWvuGB2rr8Qk97ksudPN3JgMK5KqhAnUMDqsGYuSfvOWggdJ29K7llKxs2J0\n5oJOEilxYzKsSKriJlCD6YkYAn5IzKTfbM1wEvspeJC0Ra96d0nfJXh+6NHMgCSNCb5A7SV5JxQE\nW8XOrJsIqyfiKqAF+DUmefIJ4NtQ81ZN1mc4iX3ULyoZic7H8Pv9rkrudDM3JsOKpCpuAvVUIhMn\nw3N6jsDt5bfz2Ab35HJJarQkt4iIZMTv95sE6s+eMleVfkzNh/uJmyjZ2NbI/pf2Z3U/C4mW5BYR\nkbwWM4F6Cpp9VcAUPMiE4d3nZfUjq5m1ZhZVTVWUNZZR1VTFrDWzWP3Iarz7vLneRZG8NSaHR+uy\nFDQFDzJhrJy+kq4tXXTP7KZ/bT9Ddw/R/+l+umd207Wli1UzVuV6F0XyVnQCdfVgtWYTFTAFDzJh\nbPrKJrqu7opZY7/r6i42bt6Yw70TyX9WAvX+l/Zz8JcHc74InThHwYNMGBFLiUdz2dLhIvnOTYvQ\nif006CQTRkQ56GhK4BKxlZsWoRP7qedBbOXmpESVgxYRsYeCB7GVm5MSVQ5aRMQeCh7EVm5OSlQ5\naBERe6ifVmwVsTxvtJnQ3pa7pESVgxYRsYeCB7FVRFJiP/ASZsEcDxCA7sFu/H5/zi7U0WtxiIhI\n6jRsIbYKJSVaK+rNB+4JPprh9KrTzL5uNo+88Egud1NERDJgd/Dwh8B/AqeCj93ALTZvQ1wslJS4\nm9EV9aJyHwauH+Dlp17O1S6KiEiG7A4ejgCbMCtmLgZ+DvwIaLJ5O+JSoaTE91BBJhGRAmV38PBj\nYBvQBRwE/htwBtAcuAnCqm9fXVytgkwiIgXKyYTJYmAtUA7sdHA74jK1tbXUTa/DF/DBAGOSJrkY\nFDuIiOQvJxImF2DS5c4BW4C7ML0QMoEsWbgE3iJm0iSN0HWkS0mTIiJ5yomeh18DVwFTMT0P3wM+\nCeyN9eIHH3yQmpqaiOeam5tpbm52YNckW5betZTvrPsOF269YJImLcGkyQu3XuDlp15mw40qfC8i\nkojX68XrjSztf/LkyRztjRFvVNpOPwUOA38Q9fwioKOjo4NFixZlYTck2+ZdO4/ONZ2xj7IRaGxr\nZP9L+7O+XyIi+W7v3r0sXrwYzOSEmDfnTspGnYeiLG1H3KYEJU2KiBQgu4ct/jfwE8yUzSnAOuBG\n4H/avB3JA6GCUXF6HrSKpYhIfrK7R6AWeAKT99AGfAJYjan3IBOMVrEUESlMdgcPvw/MASYB04Gb\ngZ/ZvA3JE1rFUkSkMKnfWByjVSxFRAqTggdxlFaxFBEpPJoFIROC3+9n/QPraVrRxLwV82ha0cT6\nB9bj9/tzvWsiInlHwYMUvIeff5jZ181m6/mt+G7y0XlzJ75VPrae36rlwUVE0qDgQQreK0+/wsD1\nA1oeXETEJgoepOC1v96u5cFFRGyk4EEK3jDDqnQpImIjBQ+SVblIXAxVuoxFlS5FRFKm4EGyJleJ\ni6p0KSJiLwUPkjW5SlxUpUsREXupv1aypv31drgpzg9nQnubM4mLqnQpImIvBQ+SNWMSF/uBlwA/\n4IGDZw6y/oH1tG62/4KuSpciIvbRsIVkTUTiYh/wNDAfuMc8Bv9gUIWbRETygIIHyZqIxMXdwEpU\nuElEJA8peJCsiUhc7EWFm0RE8pSCB8maDTdu4PCuw7SUt1B2rkyFm0RE8pSCB8kqK3Fx7mVzs1K4\nSatpiojYT8GD5EQ2CjdpNU0REWdoqqbkxNK7lvLU/U+ZolEzMWHsCNATLNy0JfnCTX6/39RweN3U\ncGAIRoZH6D3ey8BNwaJUlqikzA03brD3g4mITAAKHiQn7Crc1Nvby/I1y+m6ussUoOoHngGWA78g\ncVKmQ0WpREQKnYIHyRk7Cjet/eO1JnCYhQkcngZWYKaCTkZJmSIiDlDOg+S1Y+8eM70LVtEpD3AI\nU0OiGK2mKSLiAAUPklOZzIbw+/10f9BtAgar6FQZcAwTUNSi1TRFRBygWy/JmTH5Ch5gBHw9Pnbe\nspM92/bEzX14+PmH+dKGLzFwYcD0Lvgx7xEIvo8HM3zxNCaoCE/K7IaKXaklZYqIyCgFD5IzEfkK\nluBsiC66+PQXP80L3hdi/m5oee8DmN4FK2CoBd7DBBGVwFrM4lsvEgpOpg5N5a1fvqXVNEVE0qTg\nQXLm2LvHEi7RfaztWNzfDS3vfRGmdwFMwLAC2IoJKGZhAoibw37xCNxRfocCBxGRDCjnQXJmzBLd\n4aJmQ4TnRtQvqefXb//a/K7VuxDABAyVwF3Aj4F3McMUBP97JFhD4i4NV4iIZEI9D5IzoSW6YwUQ\nYbMhInIjlmPqOExi9HetgCE8v+GzwC7g5+A572HGJTNYvWJ1SjUkREQkNgUPkjNLFi7B1+2LzHmw\nhM2GCOVGXAQ8BaxiNNfB+t3w/IafwWQmM+ejc1jy20to3ayAQUTETgoeJGeSLVF97N1jpsfBquNQ\nx2iuQ/hMisnAx6D+XH3CmRoiIpIZ5TxIzoQv0d3wXAPVj1VT9o9lVD9fTV1NHS8/9TJ+v9/kPoTX\ncQjPdTgAeIHvmv9W/6xagYOIiMPU8yA5VVtby9/+979l+ZrlnF51Gupg0DPI6ZHTdPZ0svOWnRSX\nFMMJRus4hOc6hM+kGIG6tjoFDiIiDlPwIDk3Zn2KlzBFnzzQNdjFpPOTRtepsKpGjpMnISIizlHw\nIDkXqvfQh5lJsZKIipPnDp6DbYzWcVDVSBGRnFLwIDkXqvdg5TVEV5xsAP6T0R6H6KqRgzC9Yjr7\ndu3TkIWISBYoYVJyLlTvwY+ZSRHLLVD641I4ghnCuBloBq6H+ovq2fe8AgcRkWxRz4PkXKjeg7U+\nRSxTYNZls7ih/Aba29oZZpgSSliycAmt21THQUQkmxQ8SM6F6j0MDiSsODmpdBKPfeuxbO+eiIhE\n0bCF5JxV72HutLkmryEWzaQQEXENBQ/iCrW1tfzZ1/+Mip0VJq9BC1qJiLiW3cHDXwC/BE4DHwD/\njsmVFxlXeMXJxrZGGnY00NjWSEt5C4d3HWbDjRtyvYsiIoL9OQ83AP+ACSBKgf8J7AAagQGbtyUF\nqLa2VnkNIiIuZ3fwsCbq3+uBXmARZoFkERERyXNO5zzUBP/7ocPbERERkSxxMnjwAF8HdgI+B7cj\nIiIiWeRknYdvAk3AdQ5uQ0RERLLMqeDhH4DfwSRQvpfohQ8++CA1NTURzzU3N9Pc3OzQromIiOQP\nr9eL1+uNeO7kyZM52hsjXjHgTN7vH4BPAZ8EuhK8dhHQ0dHRwaJFi2zeDRERkcK1d+9eFi9eDLAY\n2Jvt7dvd8/AtzHJFnwL6gRnB508C52zeloiIiOSA3QmTnweqgecxwxXW4y6btyMiIiI5YnfPg8pd\ni4iIFDhd7EVERCQlCh5EREQkJQoeREREJCUKHkRERCQlCh5EREQkJQoeREREJCUKHkRERCQlCh5E\nREQkJQoeREREJCUKHkREHOT3+1m/fj1NTU3MmzePpqYm1q9fj9/vz/WuiaTNqSW5RUQmvN7eXpYv\nX05XV+QCwz6fjyeffJLy8nIGBgbweDwUFxdTUVHBmjVreOihh6itrc3RXouMTz0PIiIO2bRp05jA\nwTI8PEx/fz+BQICRkRGGhoY4deoU3/ve97jkkkuYM2cOBw4cyPIeiyRHPQ8iGfD7/WzcuJH29nbO\nnTvH8ePHAbj44ospLi5mZGSEkZERjh07xrlz55g0aRIzZsxg+fLltLa26u6ywPj9fr74xS/y3HPP\nMTAwwNDQUNrvdfjwYa666ireeOMN5s+fb+NeimROwYNImuJ1SQOcOnUq5u8MDg5y+vRpOjs72blz\nJ3v27FEAUSB6e3u55pprOHLkiG3vOTw8zG233cZbb71l23uK2EHDFiJpStQlnYyuri4WLFigxLk8\nFp4MWV9fb2vgYDl48KCSLMV11PMgkgJrmGL37t223A1+8MEHLFu2LC96IMKHaIaHhykpKWHJkiUx\nh19SeW2+StTzZDefz4fP51NvlQiwCAh0dHQERPLBBx98EKivrw8Atj9aWlpy/fES+va3vx2oqKiI\nue8VFRWBhx9+OPTaRO1UX18f6O3tDfT29gZaWloCjY2NgYaGhkBjY2OgpaUl0Nvbm/Q+hb/HFVdc\nEZg6dWpg6tSpgfr6+rTeb7xtRO9nS0uLI8fCeI/q6uqYn8/n8wXmzp0bKCsrC5SWlgbKysoCc+fO\nDezatSvjthb36ejosI6JRTZcj/OKggfJK05eLCoqKrJ+MrcugA0NDYHq6upAWVlZoLq6OtDQ0DDm\n4jLeZw+/oK1bty7haysrK+P+bPbs2aHtJrpw79+/PzBlypSM2tzj8QSKiooCU6ZMifmZxwuCGhoa\nchI8RH+GsrKyuIFdokdJSUnMzy35QcGDggdXsuPOMJ/19vYG1q1bl/EFKpXH7NmzA+vWrXOszaPv\n1EtLSxPuj9VLEAgEAo2NjUl/juLi4ozaYd26deP28ng8Hkf+BuGfebyAabz2S/SYO3duoKGhIVBV\nVZW14yvZzx19rEzE738+UPCg4CGrxjsp9Pb2Bu6+++6EJ8ZEd2uF4IMPPghcfvnlOT+hW4/S0tKM\n2zrdIRdrOCWbd9mTJ08OTJ8+PWftbX3m8QKmsrKytN4/+kIdCEQOOeT6cyc6VqqqqgI+ny+Db5fY\nRcGDggdHRHdJl5aWBkpKShKe0Pbv35/WBaa0tDSwbt26ggkili1bltFJ2OPxBGbPnp2wvdN9xLrw\nJCPdIZeZM2cGAoHUeh7y/dHY2BgIBAKBmpqacY/7VI6J+vr6pALAXOVSWJ97vO0XFRXZ9n1XD0f6\nFDwoeEhbvC9eukHA3LlzMzr5pHthy6XwNrz88sttueBbd3CpDhMk+5g8eXLob+3z+UJBYnQXeFFR\nUaC6ujqwbt26tHsOZsyYEQgEAoEbbrghJxe0XDyszzxewNTQ0BD3e1ZaWpp24mZvb69jibmJHjU1\nNUl9bjs+YyCQXGKtxKfgQcFD0sJ7ExKNlaY7HmzHhXPu3Ll586V3YvZEopNeb29vWoltdjzSzUOw\n7kZTvaBlmveQy4fV2zLeHXj4rAu775zD37e6ujornzvZHpd4j1SCid7e3nFvVtw+AynXFDwoeEiK\nk9MErYddSWj5ctdg1910vBkKseSqSzrdR/gJPJUL2rp16yIuqlOnTs35Z0n1MycKmLJ5jGerJyLZ\nXI9UHlbPV7KzWMIfVjAjsSl4UPCQlGx0G9uZrJUPdw12nCRT/Zy9vb22DV84/RivFyWVC2uyF0An\n8kQy+cxuGZMP73V04vhJZZZJOo/wvKhk398aRpHYFDwoeEhKNhLWMs15CH9YXb9ulundXHhNglSM\nVwfBqUdRUVHM50tKSgJVVVUJ6zzEkuqFNXrYzaqzUFpaGpg6dWpg3bp1abdNaWlpYMqUKSkNC41X\n58GtxqvPsWvXrsDcuXMDpaWlod5Ej8cTKC0tDVRVVQWqq6sTFtPq7e11bAppaWlpYPLkyUm9Vj0P\niSl4UPCQFKenytXX1wd8Pp9t3aMNDQ2BQMA9d27Rdu7cmfZni9UVm4pcJcRZFxe3/S3CPfzwwynn\nhcQL4tx67OUDn8+X1RonsR750HuZSwoeFDwkxameh+hpltEn3IaGhsCcOXNC0z2Tfd+ZM2e6Npv6\nV7/6VVptZec+W0WosjmEkS8n43gXfWtmiYKB7MjFMeqG80O+UPCg4CEp6eY8TJkyJXTht+rdp9I1\nHS3Z8cqWlpakstVzIZ3hmdtvv92Rk1msYM2qPmhdINetWxeYPXt2RifjqqoqnYwlLU5NOY73yKcZ\nW7mk4EHBQ1LS6eqOXrAoW/th3TWM11uSqzHNVBNDb7/99pzsZ7hMEuYqKytVFVBs42QwoR6H5Cl4\nUPCQtHiJUldcccWYu1Unu3OTXVBpxowZCU8UM2bMyOq4dDorIc6aNct1JzN164ubWMMbqc6UmTp1\nqo7VDOQ6ePDkYqNBi4COjo4OFi2acIHThFBXV0dPT0/cn8+YMYPKykq6urrG/Kyqqor29nbmz5+f\n9gDki+4AAAkPSURBVPb9fj8bN25k9+7dvPfee/T19aX0+5dddhmvvvoqtbW1ae+DyETh9/v54he/\nyLPPPsuZM2fGfX1LSwuPPfZYFvasMO3du5fFixcDLAb2Znv7RdneoEwcN910U8KfV1VVxQwcAPr6\n+rj22mvx+/0J38Pv97N+/XqampqYN28eTU1NrF+/nl27dlFfX8/WrVvp7OxMOXAoKSlR4CCSgtra\nWrxeL6dPn6a3t5d169ZRWloa87X19fW0trZmeQ/FTup5EMf4/X6WLVsWM0Cor69nYGCAo0ePJnyP\ndevW4fV6I95z48aNtLe3c+7cOY4cOcLQ0JDt+75r1y5WrFhh+/uKTCTh39fh4WFKSkpYsmQJra2t\nCswzlOueBwUP4qhEJ4/rrruOzs7Ocd+jtLSUyy+/nMcee4x77rmHI0eOOLa/l112Gdu2bctouERE\nxGm5Dh5Ksr1BmVhqa2vjjmv29/cn9R5DQ0McPHiQ66+/3s5di1BWVsb58+cde38RkUKinAfJmfFy\nIrKppERxtIhIshQ8SM60trZSVVWV690A4Lbbbsv1LoiI5A0FD5IztbW1tLe34/HkMvUGZs+ezUMP\nPZTTfRARyScKHiSn5s+fz913352Tbc+ePZuWlhba29uV+S0ikgIFDxNM+LRHt3jooYeyNnxRVlbG\n3Llz8fl8HDp0iMcee8zxwMGNbV7o1ObZpzafWJwIHm4A/gPoAUaATzmwDUmTG7/g1vDFlClTHNtG\nSUkJPp+P8+fP89Zbb2V1KqYb27zQqc2zT20+sTgRPFQArwEPBP8dcGAbUmDmz59PV1cXLS0tXHHF\nFRQXF9v23rNnz+aNN95Q7QYREZs4MT9tW/AhkpLomhAHDhzg1ltv5dChQzFf7/F4mDJlCrW1tRQX\nFzMyMkJRkYmHVclORMQ5mtwurjV//nzefvttlbgVEXGZnAcPBw4cyPUuTCgnT55k796sVzLN2B/9\n0R+Nee7IkSOOlqq2S762eT5Tm2ef2jy7cn3tdHqC/QhwO/CjGD+7FPglMNPhfRARESlEPcAngMQr\nDDoglz0PRzEf+tIc7oOIiEi+OkoOAgfI/bBFzj64iIiIpMeJ4KESuDLs31cAC4HjgPsHqEVERCTr\nPonJdRgBLoT9/z/ncJ9ERERERERERERERERERERk4trMaP6C9Xgv6jXzMTUdTgKngT3ArKjXLAN+\nDvQBJ4BfAJPCfn44xnb+V9R7XIZZfKsP8AN/D5Sm+bncbDOZtfnsGL9vPX4v7D2mAd8JvsdJ4Alg\natR21Oaj7GjzwzF+ruM8/XPLR4HvAu9j2msvke0NOs7DbSY7bX44xnZ0nKff5vXAvwO9wCng+8Al\nUe/huuN8M/BGcEetx0fCfl6PmVHxf4DfwJxE1wDh9YOXYT7MRkwj1QN3AmVhrzkEfDlqO5VhPy8G\n9gFtwe2sBLqBhzL9gC60mczavCjqdy8B/gpz0FWEvc9zwH8C1wJLg9sML+ylNh9lV5vrOB+1mczP\nLb8AXgauCf78y8AwZqaXRcf5qM1kp811nI/aTGZtXgl0Ac8ATcDHMYHEK0QWfHTdcb4Zs1pmPN8D\nHh/nPV4GvjLOaw4Bf5zg52swB+iMsOfuBs4CVeO8d77ZTOZtHu014B/D/j0fEwF/Iuy5a4PPWVNu\n1eaj7Ghz0HEebjOZt/kZ4DNRzx0D1gf/X8d5pM043+ag4zzcZjJr85sxbRXeLjWYY3hl8N9ZO85T\nXZL7Skw5zLcBLzAn7H1+G3gL2A58gAkUPhX2u5cASzBdJLsxXV3PAytibGcT5iB8DfhLIrtTlmGi\npvfDntsBlAOLU/w8+SCTNo+2GBNpPhr23DLMXfEvw557Jfjc8rDXqM3ta3OLjvNRmbb5j4F1mC7b\nouD/l2HOMaDjPBan29yi43xUJm1eDgSAwbDnzmMCA+s66srj/BbgDkx3yUpMl9VR4CJMBDOCGT/5\nY+AqzAFzAbgh+PtLg685BnwOc0L9GnAOmBu2nQeB6zFdMvdhxnbC79q2EHvJ73OY6KmQZNrm0f5/\n4FdRz/0l8GaM174ZfD9Qm9vd5qDjPJwdbT4Z0w07gjm5nmT0bgx0nEfLRpuDjvNwmbb5xZg2/jqm\n7SuBbwZ/79vB1+TFcV6B+eB/glmfYgR4Muo1P8Qk1ICJekaAv4l6zX8yNoEm3J3B35sW/PcWTGQW\nrRAPtmiptnm4yZgD70+ink/2YFOb29fmseg4H5VOm/8bJrnsN4EFwF9jErI/Hvy5jvPEnGjzWHSc\nj0qnzW8CDmKCiiHMMMerwLeCP8/acZ7qsEW4AUzXx1xMb8Iw4It6za8xWZ0wuoZF9GsOhL0mlleC\n/7V6J94Hpke9Zhqmu+x9CluqbR7u05iL2RNRz7/P2Gxdgs+9H/Yatbl9bR6LjvNRqbb5fMzqvfdh\n7ub2Af8Dc1J9IPgaHeeJOdHmseg4H5XOueWnwdfXYpItPwfUYYZBIIvHeSbBQznQiAkKhjBjLB+L\nek0DZqoOwf++F+M188JeE8vVwf9awcduTGQb/uFvxoz9dCS57/kq1TYPdx8mij0e9fwezDSe6ASb\nqZi2BrW53W0ei47zUam2uXUeuxD1mhFGs9B1nCfmRJvHouN8VCbnlg8xUzlXYgIJazaFK4/zv8OM\nvcwJ7sx/YLpkrTmotwc3/vuYyOgLmAZZHvYefxz8nd8Lvub/BfoZTRpZiunCWRh87i7MFJJ/D3uP\nIszUk58GX7cSeBczT7XQ2NHmBH92AXOAxPIT4HUip/b8MOznanN721zHeaRM27wYc8f2AuakWQ98\nCdP+t4RtR8f5qGy0+TJ0nIez49yyHnPs1gP3Ynos/r+o7bjuOPdiskTPYw6ApxkbJa0HOjHdMXuB\n343xPpuCO9oH7CKyYa7GRE4ngu9xADOONinqPWZhGr4f03jfoDCLitjV5v+LxL07NZiiIqeCjyeA\n6qjXqM1HZdrmOs4j2dHmVwR/7yjm3PIaY6cR6jgflY0213EeyY42/9+Y9j6PGdJ4MMZ2dJyLiIiI\niIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhITv1ftMg50epsRgsA\nAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t2, l2, l2e = np.loadtxt(echo_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o', color=\"green\")\n", + "errorbar(t2, l2, yerr=l2e, fmt='o', color=\"black\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.361e-01 5.503e+01 inf -- -2.230e+02 -- 1 1 1 1 1 1 1 1\n", + " 2 7.719e-01 5.459e+01 6.638e+01 -- -1.566e+02 -- 0.578708 0.567444 0.565767 0.565645 0.565269 0.564635 0.565645 0.563945\n", + " 3 3.383e+00 5.393e+01 6.562e+01 -- -9.097e+01 -- 0.185507 0.1439 0.132758 0.130601 0.130916 0.129667 0.131085 0.12865\n", + " 4 1.445e+00 5.277e+01 6.426e+01 -- -2.671e+01 -- -0.142659 -0.257806 -0.298121 -0.305924 -0.303305 -0.305147 -0.304059 -0.306574\n", + " 5 5.917e-01 5.083e+01 6.196e+01 -- 3.525e+01 -- -0.348804 -0.608981 -0.725147 -0.744945 -0.737788 -0.740133 -0.740511 -0.742464\n", + " 6 3.723e-01 4.792e+01 5.867e+01 -- 9.392e+01 -- -0.417419 -0.869413 -1.14636 -1.18533 -1.17119 -1.17501 -1.17867 -1.1784\n", + " 7 2.715e-01 4.436e+01 5.444e+01 -- 1.484e+02 -- -0.421165 -1.0235 -1.55636 -1.61922 -1.59707 -1.60795 -1.61745 -1.61028\n", + " 8 3.575e-01 4.073e+01 4.955e+01 -- 1.979e+02 -- -0.374308 -1.10343 -1.93497 -2.03239 -2.00811 -2.03747 -2.05653 -2.03339\n", + " 9 5.926e-01 3.677e+01 4.460e+01 -- 2.425e+02 -- -0.240503 -1.1527 -2.25517 -2.39911 -2.40429 -2.4649 -2.49991 -2.44956\n", + " 10 7.482e-01 3.119e+01 3.817e+01 -- 2.807e+02 -- -0.0979917 -1.17663 -2.4937 -2.68072 -2.78672 -2.88942 -2.95412 -2.86404\n", + " 11 1.685e+00 2.383e+01 2.855e+01 -- 3.092e+02 -- -0.0246695 -1.17354 -2.62135 -2.85109 -3.13126 -3.28381 -3.42245 -3.27294\n", + " 12 1.725e+00 1.552e+01 1.678e+01 -- 3.260e+02 -- 0.0169008 -1.15973 -2.6659 -2.93332 -3.39842 -3.56844 -3.89212 -3.66754\n", + " 13 4.932e-01 7.866e+00 6.878e+00 -- 3.329e+02 -- 0.0460619 -1.14068 -2.67864 -2.97196 -3.56721 -3.67273 -4.2811 -4.0398\n", + " 14 1.822e-01 2.994e+00 2.075e+00 -- 3.350e+02 -- 0.0687779 -1.12228 -2.6668 -2.98023 -3.66584 -3.7084 -4.35974 -4.38147\n", + " 15 4.696e-02 1.029e+00 5.962e-01 -- 3.356e+02 -- 0.0813069 -1.11484 -2.65366 -2.96318 -3.74202 -3.72746 -4.24095 -4.67811\n", + " 16 2.197e-02 3.378e-01 1.595e-01 -- 3.357e+02 -- 0.0842152 -1.11741 -2.64665 -2.94344 -3.80682 -3.72328 -4.23445 -4.89778\n", + " 17 1.076e-02 1.040e-01 2.591e-02 -- 3.357e+02 -- 0.0848765 -1.11851 -2.639 -2.93736 -3.84761 -3.73244 -4.19543 -5.00538\n", + " 18 2.514e-03 8.065e-02 3.505e-03 -- 3.357e+02 -- 0.0846132 -1.1201 -2.63699 -2.93391 -3.86186 -3.72437 -4.196 -5.05922\n", + " 19 3.048e-03 6.689e-02 4.875e-04 -- 3.357e+02 -- 0.0844096 -1.12043 -2.63505 -2.93301 -3.87157 -3.72842 -4.18689 -5.06117\n", + " 20 1.543e-03 4.977e-02 1.110e-04 -- 3.357e+02 -- 0.0843879 -1.12064 -2.63495 -2.93266 -3.87045 -3.72409 -4.18999 -5.0766\n", + " 21 1.622e-03 4.180e-02 4.688e-05 -- 3.357e+02 -- 0.084282 -1.1207 -2.63451 -2.93251 -3.87392 -3.72714 -4.1865 -5.06876\n", + "********************\n", + "0.084282 -1.1207 -2.63451 -2.93251 -3.87392 -3.72714 -4.1865 -5.06876\n", + "0.228004 0.210453 0.282191 0.221429 0.392762 0.234543 0.3158 0.979911\n", + "0.000969367 -0.000244794 -0.00155556 0.00155923 0.0136076 0.0418006 -0.0299347 -0.0115783\n", + "********************\n" + ] + } + ], + "source": [ + "P2 = clag.clag('psd10r', [t2], [l2], [l2e], dt, fqL)\n", + "p2 = np.ones(nfq)\n", + "p2, p2e = clag.optimize(P2, p2)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 3.357e+02 3.353e+02 8.433e-02 3.123e-01 0.809 +++\n", + "+++ 3.357e+02 3.349e+02 8.433e-02 4.263e-01 1.68 +++\n", + "+++ 3.357e+02 3.351e+02 8.433e-02 3.693e-01 1.21 +++\n", + "+++ 3.357e+02 3.352e+02 8.433e-02 3.408e-01 1.01 +++\n", + "\t### errors for param 1 ###\n", + "+++ 3.357e+02 3.353e+02 -1.121e+00 -9.103e-01 0.833 +++\n", + "+++ 3.357e+02 3.349e+02 -1.121e+00 -8.050e-01 1.76 +++\n", + "+++ 3.357e+02 3.351e+02 -1.121e+00 -8.576e-01 1.26 +++\n", + "+++ 3.357e+02 3.352e+02 -1.121e+00 -8.839e-01 1.04 +++\n", + "+++ 3.357e+02 3.353e+02 -1.121e+00 -8.971e-01 0.933 +++\n", + "+++ 3.357e+02 3.353e+02 -1.121e+00 -8.905e-01 0.985 +++\n", + "+++ 3.357e+02 3.352e+02 -1.121e+00 -8.872e-01 1.01 +++\n", + "+++ 3.357e+02 3.352e+02 -1.121e+00 -8.889e-01 0.998 +++\n", + "\t### errors for param 2 ###\n", + "+++ 3.357e+02 3.353e+02 -2.635e+00 -2.352e+00 0.888 +++\n", + "+++ 3.357e+02 3.348e+02 -2.635e+00 -2.211e+00 1.91 +++\n", + "+++ 3.357e+02 3.351e+02 -2.635e+00 -2.282e+00 1.36 +++\n", + "+++ 3.357e+02 3.352e+02 -2.635e+00 -2.317e+00 1.11 +++\n", + "+++ 3.357e+02 3.352e+02 -2.635e+00 -2.335e+00 0.997 +++\n", + "\t### errors for param 3 ###\n", + "+++ 3.357e+02 3.353e+02 -2.933e+00 -2.711e+00 0.893 +++\n", + "+++ 3.357e+02 3.348e+02 -2.933e+00 -2.600e+00 1.98 +++\n", + "+++ 3.357e+02 3.351e+02 -2.933e+00 -2.656e+00 1.38 +++\n", + "+++ 3.357e+02 3.352e+02 -2.933e+00 -2.683e+00 1.13 +++\n", + "+++ 3.357e+02 3.352e+02 -2.933e+00 -2.697e+00 1.01 +++\n", + "\t### errors for param 4 ###\n", + "+++ 3.357e+02 3.356e+02 -3.872e+00 -3.676e+00 0.27 +++\n", + "+++ 3.357e+02 3.354e+02 -3.872e+00 -3.578e+00 0.656 +++\n", + "+++ 3.357e+02 3.353e+02 -3.872e+00 -3.529e+00 0.919 +++\n", + "+++ 3.357e+02 3.352e+02 -3.872e+00 -3.505e+00 1.07 +++\n", + "+++ 3.357e+02 3.352e+02 -3.872e+00 -3.517e+00 0.994 +++\n", + "\t### errors for param 5 ###\n", + "+++ 3.357e+02 3.356e+02 -3.725e+00 -3.608e+00 0.326 +++\n", + "+++ 3.357e+02 3.354e+02 -3.725e+00 -3.549e+00 0.747 +++\n", + "+++ 3.357e+02 3.352e+02 -3.725e+00 -3.520e+00 1.03 +++\n", + "+++ 3.357e+02 3.353e+02 -3.725e+00 -3.535e+00 0.881 +++\n", + "+++ 3.357e+02 3.353e+02 -3.725e+00 -3.527e+00 0.952 +++\n", + "+++ 3.357e+02 3.353e+02 -3.725e+00 -3.524e+00 0.989 +++\n", + "+++ 3.357e+02 3.352e+02 -3.725e+00 -3.522e+00 1.01 +++\n", + "\t### errors for param 6 ###\n", + "+++ 3.357e+02 3.356e+02 -4.189e+00 -4.030e+00 0.334 +++\n", + "+++ 3.357e+02 3.353e+02 -4.189e+00 -3.951e+00 0.82 +++\n", + "+++ 3.357e+02 3.352e+02 -4.189e+00 -3.912e+00 1.18 +++\n", + "+++ 3.357e+02 3.353e+02 -4.189e+00 -3.931e+00 0.987 +++\n", + "+++ 3.357e+02 3.352e+02 -4.189e+00 -3.922e+00 1.08 +++\n", + "+++ 3.357e+02 3.352e+02 -4.189e+00 -3.927e+00 1.03 +++\n", + "+++ 3.357e+02 3.352e+02 -4.189e+00 -3.929e+00 1.01 +++\n", + "\t### errors for param 7 ###\n", + "+++ 3.357e+02 3.355e+02 -5.077e+00 -4.580e+00 0.558 +++\n", + "+++ 3.357e+02 3.348e+02 -5.077e+00 -4.331e+00 1.79 +++\n", + "+++ 3.357e+02 3.352e+02 -5.077e+00 -4.456e+00 1.04 +++\n", + "+++ 3.357e+02 3.354e+02 -5.077e+00 -4.518e+00 0.777 +++\n", + "+++ 3.357e+02 3.353e+02 -5.077e+00 -4.487e+00 0.901 +++\n", + "+++ 3.357e+02 3.353e+02 -5.077e+00 -4.471e+00 0.971 +++\n", + "+++ 3.357e+02 3.352e+02 -5.077e+00 -4.463e+00 1.01 +++\n", + "********************\n", + "0.0843333 -1.12071 -2.63465 -2.93252 -3.87183 -3.72454 -4.18887 -5.07698\n", + "0.256503 0.231827 0.299857 0.235295 0.354897 0.202775 0.259869 0.613662\n", + "********************\n" + ] + } + ], + "source": [ + "p2, p2e = clag.errors(P2, p2, p2e)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X9w3Hd95/GnY4v4gGuMU7zrYKJttueuKU4YCbmxRdx1\nj3KQo9CD1tUOzA1SfXAlPSZ3R+Z87ViXkW96tHgKLbRl3ETpdYCV3Gm5JjNxSUtXtU9WOFUCEjfZ\nlq61SkyyqwbjtEANSuz7Y1eJLL6ytNJ+9+fzMbMjaffz2c/H5Iv02u/38/28QZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSev034FJ4B+BIvAFYGddZyRJkhrCSeDfA7uAW4GHgDzwyjrO\nSZIkNaAfBi4Db6n3RCRJ0squq+FYW8pfL9RwTEmS1OA2ULrc8Ff1nogkSVqdTTUa59PAj3PtSw3b\nyw9JklSZZ8uPqqpFSPgU8E5gP/DMMm2233TTTc8888xyL0uSpGv4BtBDlYNCmCFhA6WA8G4gCcxe\no+32Z555hs9+9rPs2rUrxClV3913380nP/nJphxvPe9Vad9K2q+m7UptrvV6rf+bVYvHWvXbe6wF\n81irfvswj7Unn3yS97///a+jdDa+aULC7wApSiHhO0C0/PxF4FJQh127dtHV1RXilKpvy5YtNZ1z\nNcdbz3tV2reS9qtpu1Kba71e6/9m1eKxVv32HmvBPNaq3z7sYy0sG0N874eA64F+4L8uenwd+NqS\nttuBD33oQx9i+/bmW5awe/fuph1vPe9Vad9K2q+m7Uptlns9nU6TSqVWPZdG4rFW/fYea8E81qrf\nPqxj7dlnn+X48eMAx6nymYQN1XyzdegCpqamppoydau5vOtd7+LBBx+s9zTUBjzWVAvT09N0d3cD\ndAPT1XzvWu6TIEmSmoghQW2nWU//qvl4rKnZGRLUdvzFrVrxWFOzMyRIkqRAhgRJkhTIkCBJkgIZ\nEiRJUiBDgiRJCmRIkCRJgQwJkiQpkCFBkiQFMiRIkqRAhgRJkhTIkCBJkgIZEiRJUiBDgiRJCmRI\nkCRJgQwJkiQpkCFBkiQFMiRIkqRAhgRJkhTIkCBJkgIZEiRJUiBDgiRJCmRIkCRJgQwJkiQpkCFB\nkiQFMiRIkqRAYYaE/cBDwDeAy8C7QxxLkiRVWZgh4ZXAV4C7yj9fCXEsSZJUZZtCfO8/Kz8kSVIT\nck2CJEkKZEiQJEmBDAmSJClQmGsSKnb33XezZcuWq55LpVKkUqk6zUiSpMaRTqdJp9NXPXfx4sXQ\nxtsQ2jtf7TLws8CDy7zeBUxNTU3R1dVVoylJktT8pqen6e7uBugGpqv53mGeSXgV8K8W/XwL8Cbg\nm8DTIY4rSZKqIMyQ0AP8Zfn7K8Bvlr//A2AgxHElSVIVhBkSxnBhpCRJTcs/4pIkKZAhQZIkBTIk\nSJKkQIYESZIUyJAgSZICGRIkSVIgQ4IkSQpkSJAkSYEMCZIkKZAhQZIkBTIkSJKkQIYESZIUKMwC\nT1LdpB9Pkz6bBuDSC5eYfX6Wzhs62bxpMwCpN6ZI7U7Vc4qS1PAMCWpJqd0vh4DpZ6fpPt5N+r1p\nurZ31XlmktQ8vNwgSZICGRLUsvL5PAN3DXDwPQfh83DwPQcZuGuAfD5f76lJUlPwcoNaTrFYpO9Q\nH9kLWQpvKMDbS8/nyJE7n+Pk+06S2Jpg5L4RIpFIfScrSQ3MkKCWUiwW2XfnPs7dfg7eHNBgBxR2\nFCjMFei9s5fxh8cNCpK0DC83qKX0HeorBYRtKzTcBrnbc/Qd6qvJvCSpGRkS1DJmZmbIXsiuHBAW\nbIPshaxrFCRpGV5uUMs4euxoaQ0CwOPlx3J2lx6FXQWGjg0x/OnhGsxQkpqLIUEtY/KxSXhr+Ydy\nCFjRDpj80mSIs5Kk5uXlBrWM+RfnK++0AeYvr6GfJLUBzySoZXRs7Lj6iW8BfwU8A7wIbARuAn4S\neE25zRXouG5JP0kSYEhQC+m5tYez58/CFuCPgG8C317SaA74e+BG4OeBb8Ge2/bUdqKS1CS83KCW\nMXjPIK/96mvhfmCWHwwIC75dfv1+eO3XXsuRjx6p2RwlqZkYEtQyYrEY35/5fukyw2p8C74/831i\nsViY05KkphV2SPgwMAP8M/DXwFtCHk9tbGZmhus3Xl9Rn+s3Xu8+CZK0jDBDwi8AnwCOAm8CTgMn\ngdeHOKba2NGjR5mbm6uoz9zcHENDQyHNSJKaW5gh4b8A9wHDwN8C/xl4GvilEMdUG5ucXNt+B2vt\nJ0mtLqyQ8AqgC3hkyfOPAPtCGlNtbn5+bfsdrLWfJLW6sELCD1O6K7245Pk5IBrSmGpzHR1r2+9g\nrf0kqdW5T4JaRk9PD2fPnq2435497btPQvrxNOmzaQAuvXCJ2edn6byhk82bNgOQemOK1O5UPaco\nqY42hPS+rwC+A/wc8KeLnv8t4FbgwJL2XcDUHXfcwZYtW656IZVKkUr5S0ory+fz7N27l0KhsOo+\n0WiUiYmJtr4NMp/PM/TxIU5NnyJ3IUd8a5z9XfsZvGewrf93kRpROp0mnU5f9dzFixc5ffo0QDcw\nXc3xwgoJAI8CU8Bdi557AvgC8KtL2nYBU1NTU3R1dYU4JbW6AwcOMDY2tur2yWSSTCYT3oQaWLFY\npO9QH9kL2VL1zB2LXjwP0SeiJLYmGLlvhEgkUrd5Srq26elpuru7IYSQEObdDb8JHAL6gV2Ubofc\nAXwmxDHV5kZGRojH46tqG4/HGR0dDXlGjalYLLLvzn2M3TxG4W1LAgLADii8rcDYzWP03tlLsbh0\neZGkdhBmSDgB3A0MAl+htJHSnZRug5RCEYlEGB8fJ5lMEo0Gr5GNRqMkk0nOnDnDtm3bajzDxtB3\nqI9zt5+Dlf752yB3e46+Q301mZekxhL2jou/B/wIsBnoAf5vyONJRCIRMpkMExMT9Pf3v3RmIR6P\n09/fz8TEBJlMpm0DwszMDNkL2ZUDwoJtkL2QdWdKqQ1Zu0EtKxaLMTw8zIkTJwA4ceIEw8PDbb8Y\n7+ixo6U1CBUo7CowdMydKaV2Y0iQ2szkY5M/uAZhJTtg8mvuTCm1G/dJUEtafJvQpUuX2LlzJ4cP\nH2bz5vL9/218a+38i2vYYXIDzF92Z0qp3RgS1JLaOQSspGPjGnaYvAId17kzpdRuvNwgtZmeW3vg\nfIWdzsOe29p3Z0qpXRkSpDYzeM8g0ScqK6ESfTLKkY8eCWlGkhqVIUFqM7FYjMTWRKnc2mrMQWJr\nou3vCpHakSFBakMj940QfzS+clCYg/ijcUbvb8+dKaV2Z0iQ2lAkEmH84XGSTyWJPhIt7YN6pfzi\nFeBpiD4SJflUkjMn23dnSqndeXeD1KYikQiZhzKlKpDHhjj1xUVVILv3M/g5q0BK7c6QILWx9ONp\n0mfT0Au3/MQtbHx+I503dPLcpuf4yMRHSP1TitRubyWV2pUhQWpjqd2GAEnLc02CJEkKZEiQJEmB\nDAmSJCmQIUGSJAUyJEiSpECGBEmSFMiQIEmSAhkSJElSIEOCJEkKZEiQJEmBDAmSJCmQIUGSJAUy\nJEiSpECGBEmSFMiQIEmSAhkSJElSoLBCwq8CZ4DvAt8KaQxJkhSisEJCBzAK/G5I7y9JkkK2KaT3\nvbf89QMhvb+kKkin06TTaQAuXbrE7OwsnZ2dbN68GYBUKkUqlarnFCXVUVghQVITWBwCpqen6e7u\nJp1O09XVVeeZSWoELlyU2lw+n2dgYICDBw8CcPDgQQYGBsjn8/WdmKS6q+RMwr3A4Apt3gxMr3k2\nkmqmWCzS19dHNpulUCi89HwulyOXy3Hy5EkSiQQjIyNEIpE6zvRl6cfTpM+WL4+8cInZ52fpvKGT\nzZvKl0femCK128sjUrVsqKDtjeXHtcwC31v08weATwCvWaFfFzB1xx13sGXLlqte8JqoVH3FYpF9\n+/Zx7ty5FdvG43HGx8cbJijk83mGPj7EqelT5C7kiG+Ns79rP4P3DBKLxeo9PSlUi9cRLbh48SKn\nT58G6KbKH9QrCQlr8QEqCAlTU1NeC5Vq4MCBA4yNja26fTKZJJPJhDehVSgWi/Qd6iN7IUvhDQXY\nsejF8xB9Ikpia4KR+xrnzIdUCwvriQghJIS1cPFmYGv560bgNkqB5OvAd0IaU9IqzMzMkM1mK+qT\nzWbJ5/N1+6ReLBbZd+c+zt1+rnRRc6kdUNhRoDBXoPfOXsYfbpwzH1IzC2vh4hClNHMv8CrgK8AU\npZQjqY6OHj161RqE1SgUCgwNDYU0o5X1HeorBYRtKzTcBrnbc/Qd6qvJvKRWF1ZI+ED5va+jdCZh\n4eupkMaTtEqTk5M17bdeMzMzZC9kVw4IC7ZB9kLWuzOkKvAWSKnNzM/P17Tfeh09drS0BqEChV0F\nho7V78yH1CoMCVKb6ejoqGm/9Zp8bPLqRYqrsQMmv1afMx9SKzEkSG2mp6dnTf327NlT5ZmszvyL\naziDsQHmL9fnzIfUSgwJUpsZHBwkGo1W1CcajXLkyJGQZnRtHRvXcAbjCnRcV58zH1IrMSRIbSYW\ni5FIJCrqk0gk6nb7Y8+tPXC+wk7nYc9t9TnzIbUSQ4LUhkZGRojH46tqG4/HGR0dDXlGyxu8Z5Do\nExWe+XgyypGP1ufMh9RKDAlSG4pEIoyPj5NMJpe99BCNRkkmk5w5c4Zt21Z7/2H1xWIxElsTMLfK\nDnOQ2Fq/Mx9SKzEkSG0qEomQyWSYmJigv7//pTML8Xic/v5+JiYmyGQydQ0IC0buGyH+aHzloDAH\n8UfjjN5fvzMfUisxJEhtLhaLMTw8zIkTJwA4ceIEw8PDDfVJPBKJMP7wOMmnkkQficLTwJXyi1eA\npyH6SJTkU0nOnKz+mY/042ne+ttv5eZ33Myrd7+aV7zhFbx696u5+R0389bffivpx9Mrv4nUhMKq\n3SCpCSyuKHfp0iV27tzJ4cOH2by5XHq5gaqwRiIRMg9lSlUgjw1x6ouLqkB272fwc+FUgSwWixz/\nleMvF5a6vfT8PPN85/x3mB+d5/ifH+en7vsp60Wo5YRdBXK1rAIpqSLTz07TfbybqQ9O0bU9nN8b\nVxWWutbJifJlDgtLqR6asQqkJFVd+vE06bPlMx8vXGLnjTs5/BeH2bypfObjjSlSu6t35mMthaUy\nD9W3pLZUTYYESU0jtbu6IeBaXiosFVSaOsg2yH61viW1pWpz4aIkBbCwlGRIkKRAFpaSDAmSFMjC\nUpIhQZICWVhKMiRIUiALS0mGBEkKZGEpyZAgSYEsLCUZEiRpWRaWUrszJEjSMupdWEqqN3dclKRr\nqFdhKakRGBIkaQUv1YzohVt+4hY2Pr+Rzhs6eW7Tc3xk4iOk/ql220VLtWRIkKQV1LJmhNRIXJMg\nSZICGRIkSVIgQ4IkSQoUVkiIAfcD54DvAn8P3Au4qbkkSU0irIWLPwZsAD5IKSDsBn4feBVwT0hj\nSpKkKgorJHyx/FiQB44Bv4QhQZKkplDLNQlbgG/WcDxJkrQOtQoJceCXgc/UaDxJanr5fJ6BuwbY\nfcduEvsS7L5jNwN3DZDP5+s9NbWJSi833AsMrtDmzcD0op9vAv4MOAEMVzieJLWdYrHIgb4DnPvH\nc3yv63vw1pdfO3v+LJ9/7+e55YduITOSIRKJ1G+iankbKmx/Y/lxLbPA98rf3wRkgAngA9fo0wVM\n3XHHHWzZsuWqF1KpFKmUO51Jag/FYpF9d+7j3O3n4Fr1osqVJ8cfHjcotJF0Ok06nb7quYsXL3L6\n9GmAbq7+kL5ulYaESryOUkCYBN7Py7XTgnQBU1NTU3R1dYU4JUlqbAd+5gBjN49dOyAsmIPkU0ky\nD2VCnpUa2fT0NN3d3RBCSAhrTcLrgDFKZxXuASJAtPyQJAWYmZkheyG7uoAAsA2yF7KuUVBowgoJ\nP01pseJPAeeBZ8qPb4Q0niQ1vaPHjlJ4Q6GiPoVdBYaODYU0I7W7sELCH5Tfe2P563WLfpYkBZh8\nbBJ2VNhpB0x+bTKU+UjWbpCkBjH/4nzlnTbA/OU19JNWwZAgSQ2iY+MayttcgY7rLIujcBgSJKlB\n9NzaU1rFVYnzsOe2PaHMRzIkSFKDGLxnkOgTld0EFn0yypGPHglpRmp3hgRJahCxWIzE1gTMrbLD\nHCS2JojFYmFOS23MkCBJDWTkvhHij8ZXDgrlHRdH7x+tybzUngwJktRAIpEI4w+Ps+uJXVz/4PXw\nNC/vV3sFeBquf/B6dj2xizMnz7Bt22p3XpIqV2mBJ0lSyCKRCE9kniCfzzN0bIjJL00yf3mejus6\n6Lmth8E/Hgz1EkM+n2fo40NMPjbJ/IvzdGzsoOfWHgbvCXdcNR5DgqSmsbi4zaVLl5idnaWzs5PN\nmzcDrVcQLhaLMfzp2hXPLRaL9B3qI3shW9r5cUn1yZPvO0lia4KR+0YsKtUmwizwVAkLPEmqyEJR\nG39vVIfVJ5tXMxZ4kiQ1kb5DfSsHBIBtkLs9R9+hvprMS/VlSJCkNmf1SS3HkCCpqeTzeQYGBjh4\n8CAABw8eZGBgwD9Y62D1SS3HhYuSmkKxWKSvr49sNkuh8PIftFwuRy6X4+TJkyQSCUZGXFRXqcnH\nJq9apLgqO2DyS1afbHWGBEkNr1gssm/fPs6dO7dsm0KhQKFQoLe3l/FxF9VVwuqTWo6XGyQ1vL6+\nvmsGhMVyuRx9fS6qq4TVJ7UcQ4KkhjYzM0M2m62oTzbrorpKWH1SyzEkSGpoR48evWoNwmoUCgWG\nhlxUt1pWn9RyDAmSGtrk5NoWx621Xzuy+qSWY0iQ1NDm59e2OG6t/dqV1ScVxJAgqaF1dKxtcdxa\n+7WrheqTyaeSRB+JBlafjD4SJflU0uqTbcRbICU1tJ6eHs6ePVtxvz17XFRXqUgkQuahzPLVJz9n\nFch2Y4EnSQ0tn8+zd+/eihYvRqNRJiYmqvYHrd2qT6q5hFngyTMJkhpaLBYjkUhUFBISieouqlsc\nAhZ+IafTaT/UqOW5JkFSwxsZGSEej6+qbTweZ3S0+ovqrBmhduSZBEkNLxKJMD4+Hli7YUE0GiWR\nSDA6OlrVRXXWjFA780yCpKYQiUTIZDJMTEzQ39//0pmFeDxOf38/ExMTZDKZqgeEffv2MTY2tuzl\njkKhwNjYGL29vRSLxaqNLTUCQ4KkphKLxRgeHubEiRMAnDhxguHh4VBW3VszQu0urJDwIDAL/DPw\nDPCHwPaQxpKkqrNmhBReSPhL4OeBncB7gTjwJyGNJUlVZ80IKbyFi59c9P3TwK8DXwA2Ai+GNKYk\nVY01I6Ta3N2wFXgfkMGAIGkdlm5qtHPnTg4fPhzKpkbWjJDCDQm/DtwFvBL4a+AdIY4lqQ3UcmdD\na0ZIla1JuBe4vMJj8fZjvwG8CXgb8D3g/9A420BL0jX19PSsqZ81I9RKKvmjfWP5cS2zlALBUq+j\ntDbhLcCZgNe7gKk77riDLVu2XPWCe6JLqodGqBkhLbX4ktuCixcvcvr0aQihdkOtPtm/nlKA+Eng\ndMDrFniS1HAOHDjA2NjYqtsnk0kymUx4E5IChFngKYxbIPcAv0zpUkMncAD4PPB1YCKE8SQpFI1Q\nM0KqpzBCwneBfwf8BZAF7gceo3QW4YUQxpOkUCzUjEgmk0Sj0cA20WiUZDLJmTNnqroltNQIwri7\n4Szwr0N4X0mquYWaEfl8nqGhIU6dOkUulyMej7N//34GBwddg6CWZRVISVqFhZoRC9d/T5w44Roq\ntTxDgiStoJabOEmNxJAgSSswBKhdWSpakiQFMiRIkqRAhgRJkhTIkCBJkgK5cFGSVFfpx9Okz5bv\nHnnhErPPz9J5QyebN5XvHnljitRuF47WgyFBklRXqd0vh4DpZ6fpPt5N+r1pura7D0W9eblBklR3\n+XyegbsGOPieg/B5OPiegwzcNUA+n6/31NqaZxIkSXVTLBbpO9RH9kKWwhsK8PbS8zly5M7nOPm+\nkyS2Jhi5b4RIJFLfybYhQ4IkqS6KxSL77tzHudvPwZsDGuyAwo4ChbkCvXf2Mv7wuEGhxrzcIEmq\ni75DfaWAsFLxzG2Quz1H36G+msxLLzMkSJJqbmZmhuyF7MoBYcE2yF7IukahxgwJkqSaO3rsaGkN\nQgUKuwoMHRsKaUYK4poESWpASytPzs7O0tnZGXrlyVqNO/nYJLy1wk47YPJLk+seW6tnSJCkBrT4\nj/H09DTd3d2k02m6usLdOyCVSrF3716GhoY4deoUuVyOF198kf379zM4OEgsFqvKOPMvzlfeaQPM\nX15DP62ZIUGSBJRvR+zrI5vNUii8fCkgl8uRy+U4efIkiUSCkZH1347YsbGj8k5XoOO6NfTTmrkm\nQZJUuh1x3z7GxsauCgiLFQoFxsbG6O3tpVgsrmu8nlt74HyFnc7Dntv2rGtcVcaQIEmir6+Pc+fO\nraptLpejr299tyMO3jNI9IloRX2iT0Y58tEj6xpXlTEkSFKbm5mZIZvNVtQnm13f7YixWIzE1gTM\nrbLDHCS2Jqq2JkKrY0iQpAaVz+cZGBjg4MGDABw8eJCBgerXMzh69OiylxiWUygUGBpa3+2II/eN\nEH80vnJQmIP4o3FG7x9d13iqnAsXJanB1HIBIcDk5NpuK1xrvwWRSITxh8dLtRu+mqWwqwA7gA3A\nFeB86RJDYmuC0ZOjbNu22p2XVC2GBElqIAsLCK+1PqBQKFAoFOjt7WV8fP31DObn13Zb4Vr7LRaJ\nRMg8lCGfzzN0bIhTXzxF7kKO+NY4+7v3M/i56t12qcoZEiSpgaxlAWEmk1nXmB0da7utcK39gsRi\nMYY/Pcz0s9N0H+/mxAdP0LU93D0htDLXJEhSg6jHAkKAnp6eNfXbs8fbEVudZxIkqUGsZwHh8PDw\nmscdHBzk5MmTFY0djUY5cqQ6tyOmH0+TPlveCvqFS+y8cSeH/+IwmzeVt4J+Y4rU7upvQa2VGRIk\nqUHUawFhLBYjkUhUFBISierdjpjabQhoVGFfbrge+CpwGbg15LEkqanVcwHhyMgI8Xh8VW3j8Tij\no96O2A7CDgm/AXwj5DEkqSXUcwFhJBJhfHycZDJJNBq8E2I0GiWZTHLmzBlvR2wTYYaEd1AqBPrR\nEMeQpJZR7wWEkUiETCbDxMQE/f39L51ZiMfj9Pf3MzExQSaTMSC0kbDWJESA48C7gX8OaQxJain1\nXkAIkE6nSadLiwhvueUWNm7cSGdnJ8899xwf+chHriphHcaYly5dYnZ2ls7OTjZvLi9cDGFMrU4Y\nIWED8AfA7wHTQCyEMSSp5dR7ASHU5w/y4jGnp6fp7u4mnU7T1eU+CfVWSUi4FxhcoU0P0Au8GvjY\nktc2rDTA3XffzZYtW656zgQpqZ2MjIzQ29tLLpdbsa0LCNvP4rMuCy5evBjaeCv+4V7kxvLjWmaB\nEeBnKO28vWAj8CLwWaA/oF8XMDU1NWVylNT2lqvdsCAajZJIJBgdbZ16Bvl8nqGhIU6dOkUulyMe\nj7N//34GB92WeSULZ1+Abkpn8KumkpCwWq8H/uWin18HfBF4L/Bl4JmAPoYESVqiHf5wrjYQVauY\nVSsKMySEsSbh6SU/f7f8NUdwQJAkBYjFYgwPD7/0R+DEiRMt9UGqHsWsVJla1W64snITSVI7WUsx\nK9VWLUJCntKahMdqMJYkqQnUq5iVKmMVSElSza2nmJVqx5AgSaq5ehWzUmUMCZKkmqtnMSutnqWi\nJakBLd2qeOfOnRw+fLhltiquZzErrZ4hQZIaULOHgJX09PRw9uzZivtVq5iVVsfLDZKkmhscHFy2\nJPVyql3MSivzTIIkqeYaoZhV+vE06bPlSzovXGL2+Vk6b+hk86byJZ03pkjtbt2zOathSJAk1UW9\ni1mldr8cAqafnab7eDfp96bp2t46u1qul5cbJEl1EYlEGB8fJ5lMLnvpIRqNkkwmOXPmTMsUs2om\nhgRJUt1EIhEymQwTExP09/cTj8eB0pmD/v5+JiYmyGQyBoQ68XKDJKnuWr2YVbPyTIIkSQrkmQRJ\nUl3Va+OoxePOPT8HfwMf/ssPs+2GbaGO20w21HsCZV3A1NTUlKeXJEk197kvfo73v/39fPbPPsv7\n/s376j2diixcogG6gelqvreXGyRJUiBDgiRJCmRIkCRJgQwJkiQpkCFBkiQFMiRIkqRAhgRJkhTI\nkCBJkgIZEiRJUiBDgiRJCmRIkCRJgQwJkiQpkCFBkiQFCisk5IHLSx6/FtJYkiQpBJtCet8rwBHg\n9xc9952QxpIkSSEI83LDt4G5RQ9DgiSpoeTzeQYGBjj8ocMAHP7QYQYGBsjn8/WdWIMIMyT8N+A5\n4CvArwAdIY4lSdKqFYtFDhw4wN69e3nggQc4P3segPOz53nggQfYu3cvBw4coFgs1nmm9RXW5Ybf\nAqaAbwE/Afwv4EeA/xDSeJIkrUqxWGTfvn2cO3du2TaFQoFCoUBvby/j4+NEIpEazrBxVHIm4V5+\ncDHi0kdXue0ngdPAWeB+4D8Cvwi8phqTliRprfr6+q4ZEBbL5XL09fWFPKPGVcmZhE8Bn1+hzewy\nz3+5/PVHgcnlOt99991s2bLlqudSqRSpVGq1c5QkaVkzMzNks9mK+mSzWfL5PLFYLJxJVSCdTpNO\np6967uLFi6GNtyG0d77aO4EHgZuB8wGvdwFTU1NTdHV1BbwsSdL6DQwM8MADD1Tcr7+/n+Hh4RBm\ntH7T09N0d3cDdAPT1XzvMNYk3A7sBTLA80AP8JvAnxIcECRJqonJyWVPZofSr9mFERK+BxwEBoHr\nKV2COA78RghjSZK0avPz8zXt1+zCCAlfoXQmQZKkhtLRsba78dfar9lZu0GS1DZ6enrW1G/Pnj1V\nnklzMCRIktrG4OAg0Wi0oj7RaJQjR46ENKPGZkiQJLWNWCxGIpGoqE8ikWiI2x/rwZAgSWorIyMj\nxOPxVbWNx+OMjo6GPKPGZUiQJLWVSCTC+Pg4yWRy2UsP0WiUZDLJmTNn2LZtW41n2DgMCZKkthOJ\nRMhkMkzQ5VlNAAAFa0lEQVRMTNDf38+O2A4AdsR20N/fz8TEBJlMpq0DAhgSJEltLBaLMTw8zMc+\n8zEAPvaZjzE8PNy2axCWMiRIkqRAhgRJkhTIkCBJkgIZEiRJUiBDgiRJCmRIkCRJgQwJkiQpkCFB\nkiQFMiRIkqRAhgRJkhTIkCBJkgIZEiRJUiBDgiRJCmRIkCRJgQwJkiQp0KZ6T0CSpHpIp9Ok02kA\n5p6fgxvhU7/2KUZ/ZxSAVCpFKpWq5xTrzpAgSWpLi0PA9LPTdB/v5nc/+Lt0be+q88wah5cbJElS\nIEOCJEkKZEiQJEmBDAmSJClQmCHh3wJfBr4L/APwxyGOJa3awmpmKWwea2p2YYWE9wJ/CNwP3Ars\nAz4X0lhSRfzFrVrxWFOzC+MWyE3AbwEfBR5Y9PzXQxhLkiSFJIwzCV3ATcAV4CvAM8DDwI+HMFbd\n1fqTQjXHW897Vdq3kvarabtSm1b8BOexVv32HmvB2vVY4/HwxmrWYy2MkHBL+eu9wBDwTuBbwBjw\nmhDGq6t2/T+Tv7hrz2Ot+u091oK167FmSPhBlVxuuBcYXKFNDy8Hj/8JfKH8fT9wHvh54PhynZ98\n8skKptMYLl68yPT0dFOOt573qrRvJe1X03alNtd6vdb/zarFY6367T3WgrXjsfbkPzwJl+DJx56E\nZ6s/VpjHWph/OzdU0PbG8uNaZiktUvwS8BbgzKLXHgX+HDgS0G87MAm8roL5SJKkkm9Q+qC+yoiz\nOpWcSfhm+bGSKeB7QIKXQ0IHEKMUIoI8S+kft72C+UiSpJJnqXJACNMngKeBnwZ+DLiP0uRvqOek\nJElS/W0CPg4UgOeBLwK76jojSZIkSZIkSZIkSZKkH/Qvgf9HaQfHs8Av13c6amGvp7Tx198AXwN+\nrq6zUav7AnAB+KN6T0Qt651AFvg74BfrPJfQXAdsLn//L4BzwGvrNx21sCilomRQOsaepnTMSWH4\nSUq/xA0JCsMm4G8pbS/wakpBYWslbxBmqehqugxcKn//SmB+0c9SNRWAx8rf/wOlT3kV/Z9KqsBf\nAd+u9yTUsvZQOiv6LKXj7GHgbZW8QbOEBCjtsfA14ClKVSb/qb7TURt4M6VdSb9R74lI0hrcxNW/\nv85T4c7GzRQSngduA34EuAv40fpORy3uRuB/Ax+s90QkaY2urPcNwgoJ+4GHKCWYy8C7A9p8GJgB\n/hn4a0q1Hhb8J0qLFKcpbem82BylhWVvquqM1azCONauB/4E+DVKNUckCO/32rp/katlrfeYe4ar\nzxy8ngY5M/p2SmWif5bSP+xdS17/BUr1HQYobdv8CUqXD16/zPttA36o/P0PUbpm/GPVnbKaVLWP\ntQ1AGvgfYUxWTa3ax9qCJC5cVLD1HnObKC1WvInSXYJ/B7wm9FlXKOgf9mXgd5Y89wSlT25Buigl\n8K+WH/3VnKBaRjWOtbcAL1L6tPeV8uPHqzhHtYZqHGtQ2rJ+DvgOpTtpuqs1QbWctR5zP0PpDoev\nA4dCm906LP2HvYLS3QlLT5t8ktJlBGmtPNZUKx5rqrW6HHP1WLj4w8BGoLjk+TlK96hL1eKxplrx\nWFOt1eSYa6a7GyRJUg3VIyQ8R+mab2TJ8xFKGz5I1eKxplrxWFOt1eSYq0dI+D4wxQ/u+vTTwJna\nT0ctzGNNteKxplpr6mPuVZT2MXgTpcUWd5e/X7gt4yCl2zb6gV2Ubtv4R1a+VUhaymNNteKxplpr\n2WMuSekfdJnS6ZCF74cXtfklShtAXAImuXoDCGm1knisqTaSeKyptpJ4zEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJDWB/w9VH+BkOUCMEwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-6,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"green\")\n", + "errorbar(fqd, p2, yerr=p2e, fmt='o', ms=10, color=\"black\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.674e+03 1.067e+01 inf -- 3.891e+02 -- -0.107531 -0.949418 -2.21262 -2.52746 -3.30101 -3.40801 -4.17516 -6.83849 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1\n", + " 3 1.101e+02 1.211e+01 2.423e+00 -- 3.915e+02 -- -0.0911837 -0.911368 -2.19473 -2.50464 -3.26635 -3.36119 -4.17858 -6.53849 0.0224314 0.13674 0.236622 0.214641 0.153941 0.141456 0.0860925 -2.65496\n", + " 5 3.499e+02 1.345e+01 2.206e+00 -- 3.937e+02 -- -0.0745994 -0.879737 -2.17195 -2.48014 -3.23698 -3.32257 -4.18252 -6.83849 -0.0437031 0.16436 0.347414 0.307699 0.194659 0.170845 0.0713363 1.432\n", + " 7 5.441e+02 1.532e+01 2.037e+00 -- 3.958e+02 -- -0.0584518 -0.853102 -2.14774 -2.456 -3.21197 -3.29032 -4.1871 -7.13849 -0.100019 0.185908 0.435633 0.382521 0.226208 0.192552 0.0562607 1.59836\n", + " 9 1.849e+02 1.731e+01 1.886e+00 -- 3.977e+02 -- -0.0431336 -0.830436 -2.1241 -2.43328 -3.1906 -3.26311 -4.19225 -7.43849 -0.148048 0.203221 0.505675 0.442641 0.251144 0.209088 0.0403995 2.5906\n", + " 11 1.731e+04 1.942e+01 1.753e+00 -- 3.994e+02 -- -0.0288471 -0.810973 -2.10201 -2.41247 -3.17227 -3.23993 -4.19795 -7.73849 -0.189141 0.217465 0.561595 0.491159 0.271137 0.221974 0.0236847 0.232263\n", + " 13 6.528e+03 2.165e+01 1.632e+00 -- 4.011e+02 -- -0.0156722 -0.794137 -2.08185 -2.39369 -3.15646 -3.22006 -4.20417 -7.43849 -0.224437 0.229415 0.606654 0.53056 0.287329 0.232192 0.00612053 0.325107\n", + " 15 4.527e+02 2.400e+01 1.520e+00 -- 4.026e+02 -- -0.003614 -0.779481 -2.06369 -2.37687 -3.14277 -3.20293 -4.21087 -7.13849 -0.25488 0.239608 0.643331 0.562767 0.300521 0.240394 -0.0123632 1.71181\n", + " 17 2.052e+03 2.647e+01 1.426e+00 -- 4.040e+02 -- 0.00736587 -0.766656 -2.04744 -2.36188 -3.13087 -3.1881 -4.21799 -7.43849 -0.281243 0.248428 0.673473 0.58925 0.311289 0.247033 -0.0318346 -0.392158\n", + " 18 3.773e+00 5.593e+03 1.514e+00 -- 4.055e+02 -- 0.106995 -0.653906 -1.90262 -2.22854 -3.02717 -3.05917 -4.29289 -4.43849 -0.510384 0.325715 0.923411 0.807986 0.399154 0.301171 -0.237126 -1.01765\n", + " 20 2.849e+00 3.659e+03 5.484e+00 -- 4.110e+02 -- 0.107323 -0.654528 -1.90254 -2.23194 -3.02323 -3.064 -4.28509 -4.32949 -0.509195 0.328192 0.912135 0.803339 0.389116 0.289516 -0.32659 -0.962776\n", + " 22 1.486e+00 2.444e+03 3.340e+00 -- 4.143e+02 -- 0.108022 -0.654908 -1.90278 -2.23432 -3.01757 -3.06737 -4.25844 -4.25945 -0.507022 0.331633 0.909715 0.784568 0.370291 0.289219 -0.419626 -0.914908\n", + " 24 9.532e-01 1.559e+03 2.394e+00 -- 4.167e+02 -- 0.108513 -0.655239 -1.90317 -2.23664 -3.01314 -3.07039 -4.24064 -4.21341 -0.504547 0.334668 0.90699 0.766684 0.356598 0.288412 -0.48198 -0.887983\n", + " 25 1.060e+00 2.012e+02 1.863e+00 -- 4.149e+02 -- 0.112015 -0.658052 -1.90797 -2.25721 -2.98205 -3.09702 -4.14368 -3.91937 -0.477027 0.36146 0.872856 0.608912 0.263183 0.274467 -0.941403 -0.711503\n", + " 26 6.891e-01 5.834e+02 5.512e+00 -- 4.204e+02 -- 0.112132 -0.654668 -1.90638 -2.25379 -3.06056 -3.07914 -4.76266 -3.9152 -0.42166 0.404325 0.803237 0.671367 0.321541 0.247382 -1.93887 -0.377098\n", + " 28 4.161e-01 2.170e+02 1.164e+00 -- 4.215e+02 -- 0.111002 -0.655061 -1.90694 -2.25331 -3.04803 -3.07818 -4.87251 -3.9149 -0.433955 0.397673 0.809209 0.653739 0.311798 0.264429 -1.87993 -0.373049\n", + " 30 4.034e-01 1.252e+02 5.089e-01 -- 4.221e+02 -- 0.110361 -0.655324 -1.90727 -2.253 -3.04023 -3.0776 -4.95911 -3.91453 -0.440907 0.393109 0.812583 0.641828 0.30727 0.275431 -1.81241 -0.369329\n", + " 32 4.173e-01 1.421e+02 2.508e-01 -- 4.223e+02 -- 0.109998 -0.655506 -1.90746 -2.25281 -3.03521 -3.07721 -5.02214 -3.91419 -0.44479 0.38991 0.814296 0.633472 0.305273 0.282683 -1.7393 -0.365774\n", + " 33 2.844e+01 4.813e+05 3.489e+01 -- 3.874e+02 -- 0.108249 -0.656743 -1.90855 -2.25163 -3.003 -3.0745 -5.3963 -3.91113 -0.462731 0.368115 0.820327 0.574151 0.299794 0.329367 -1.01341 -0.331703\n", + " 36 1.265e+01 2.320e+05 1.439e+01 -- 4.018e+02 -- 0.109865 -0.656548 -1.90848 -2.25209 -3.0047 -3.07472 -5.3663 -3.91105 -0.437958 0.375118 0.819209 0.579752 0.302019 0.324713 -1.30159 -0.331943\n", + " 39 6.733e+00 1.667e+05 5.585e+00 -- 4.074e+02 -- 0.111231 -0.65638 -1.90842 -2.25246 -3.00615 -3.0749 -5.3363 -3.91099 -0.420135 0.380536 0.818248 0.584365 0.30392 0.320786 -1.46618 -0.33213\n", + " 42 3.976e+00 1.333e+05 3.474e+00 -- 4.109e+02 -- 0.112481 -0.65623 -1.90836 -2.25279 -3.00744 -3.07507 -5.3063 -3.91093 -0.405052 0.385134 0.817406 0.588389 0.305606 0.31735 -1.56491 -0.332295\n", + " 45 3.037e+00 1.091e+05 2.625e+00 -- 4.135e+02 -- 0.113648 -0.656095 -1.90831 -2.25307 -3.00859 -3.07521 -5.2763 -3.91087 -0.391718 0.389141 0.816665 0.591957 0.307115 0.314316 -1.62712 -0.332443\n", + " 47 5.206e+00 2.332e+06 1.467e+00 -- 4.120e+02 -- 0.124504 -0.654874 -1.90786 -2.25555 -3.0188 -3.07651 -4.9763 -3.91038 -0.272749 0.424266 0.810137 0.623655 0.320604 0.287511 -2.03571 -0.33378\n", + " 49 3.404e+00 4.336e+05 5.127e+00 -- 4.171e+02 -- 0.114992 -0.655304 -1.90798 -2.25475 -3.01557 -3.07613 -5.08623 -3.9105 -0.414737 0.410238 0.811866 0.611592 0.316059 0.295817 -2.07572 -0.333075\n", + " 51 2.831e+00 3.964e+04 3.716e+00 -- 4.209e+02 -- 0.120998 -0.654743 -1.90782 -2.25581 -3.01975 -3.07664 -4.90259 -3.91033 -0.273559 0.428183 0.809505 0.62668 0.3219 0.284945 -1.99017 -0.333892\n", + " 53 9.648e-01 6.528e+03 2.044e+00 -- 4.229e+02 -- 0.111438 -0.655357 -1.90801 -2.25473 -3.01525 -3.07606 -5.0328 -3.91052 -0.350991 0.411981 0.811898 0.611992 0.315981 0.296109 -2.02358 -0.332869\n", + " 55 6.664e-01 4.533e+03 5.395e-01 -- 4.234e+02 -- 0.115342 -0.655005 -1.90788 -2.25535 -3.01813 -3.07641 -4.91958 -3.91037 -0.317126 0.420377 0.810122 0.620816 0.319972 0.288893 -1.97289 -0.333205\n", + " 57 1.352e-01 5.078e+03 2.047e-01 -- 4.236e+02 -- 0.113136 -0.655183 -1.90793 -2.25501 -3.01693 -3.07625 -4.95555 -3.91041 -0.338259 0.415156 0.810681 0.616936 0.318597 0.291917 -1.97334 -0.332782\n", + " 58 4.391e+00 1.231e+05 9.307e+00 -- 4.143e+02 -- 0.121374 -0.654363 -1.90751 -2.25625 -3.02524 -3.0772 -4.67748 -3.90983 -0.292538 0.427891 0.804793 0.639809 0.331433 0.271874 -1.8091 -0.332351\n", + " 60 7.456e-01 3.599e+03 8.350e+00 -- 4.227e+02 -- 0.106032 -0.655512 -1.90793 -2.25425 -3.01553 -3.07594 -4.84676 -3.91027 -0.421005 0.399168 0.809729 0.61079 0.31849 0.294571 -1.79863 -0.330294\n", + " 62 1.392e-01 2.951e+03 7.707e-01 -- 4.235e+02 -- 0.109207 -0.655134 -1.90775 -2.25492 -3.01931 -3.07641 -4.74803 -3.91008 -0.389616 0.408214 0.807266 0.62061 0.323572 0.285397 -1.79761 -0.330504\n", + " 64 4.741e-02 3.163e+03 7.625e-02 -- 4.235e+02 -- 0.109031 -0.655208 -1.90776 -2.25473 -3.01888 -3.07633 -4.75697 -3.91007 -0.39504 0.405859 0.807295 0.619007 0.323289 0.286476 -1.78732 -0.330095\n", + " 65 7.877e-01 1.498e+04 9.182e-01 -- 4.245e+02 -- 0.112757 -0.655181 -1.90757 -2.25427 -3.02158 -3.07653 -4.69927 -3.9097 -0.391127 0.400991 0.803725 0.621415 0.329113 0.280586 -1.7026 -0.327321\n", + " 67 7.769e-01 7.591e+03 8.463e-03 -- 4.245e+02 -- 0.111405 -0.655282 -1.9076 -2.25407 -3.02073 -3.07642 -4.71485 -3.90973 -0.421937 0.397325 0.804142 0.618422 0.327917 0.282676 -1.69714 -0.327119\n", + " 69 8.439e-01 1.220e+04 6.394e-03 -- 4.245e+02 -- 0.112447 -0.655184 -1.90757 -2.25426 -3.02159 -3.07653 -4.69823 -3.9097 -0.389155 0.400927 0.803682 0.621315 0.329157 0.280545 -1.70166 -0.327268\n", + " 71 8.438e-01 1.705e+03 1.926e-02 -- 4.244e+02 -- 0.111092 -0.655286 -1.9076 -2.25405 -3.02073 -3.07642 -4.71408 -3.90973 -0.421995 0.397181 0.804108 0.618265 0.327936 0.282675 -1.69617 -0.327066\n", + " 73 9.456e-01 3.856e+03 3.704e-02 -- 4.244e+02 -- 0.112145 -0.655184 -1.90756 -2.25425 -3.02163 -3.07653 -4.69678 -3.90969 -0.386386 0.40098 0.80363 0.621306 0.329229 0.280449 -1.70102 -0.327224\n", + " 75 9.484e-01 1.219e+04 5.405e-02 -- 4.243e+02 -- 0.110702 -0.655293 -1.9076 -2.25403 -3.0207 -3.07642 -4.71375 -3.90972 -0.422922 0.396955 0.804089 0.618033 0.327915 0.282736 -1.69523 -0.327011\n", + " 77 1.088e+00 1.133e+04 7.281e-02 -- 4.243e+02 -- 0.111809 -0.655182 -1.90756 -2.25425 -3.02168 -3.07654 -4.69489 -3.90969 -0.382814 0.401142 0.803569 0.621375 0.329327 0.280303 -1.70068 -0.327188\n", + " 79 1.081e+00 3.236e+04 9.055e-02 -- 4.242e+02 -- 0.110185 -0.655303 -1.9076 -2.25401 -3.02065 -3.07641 -4.71376 -3.90972 -0.424473 0.396658 0.804084 0.61773 0.327857 0.282854 -1.69434 -0.326954\n", + " 81 1.256e+00 3.127e+04 1.020e-01 -- 4.241e+02 -- 0.1114 -0.655177 -1.90756 -2.25426 -3.02175 -3.07655 -4.69255 -3.90968 -0.378605 0.401398 0.803501 0.621505 0.329444 0.280115 -1.70061 -0.327157\n", + " 83 1.218e+00 5.401e+04 1.109e-01 -- 4.240e+02 -- 0.1095 -0.655315 -1.9076 -2.25398 -3.02057 -3.0764 -4.71391 -3.90972 -0.426174 0.396317 0.804088 0.61737 0.32777 0.283014 -1.69355 -0.326894\n", + " 85 1.416e+00 4.823e+04 1.019e-01 -- 4.239e+02 -- 0.11089 -0.655173 -1.90755 -2.25427 -3.02182 -3.07655 -4.68987 -3.90967 -0.374267 0.401708 0.803429 0.621658 0.329569 0.279907 -1.70078 -0.327127\n", + " 87 1.324e+00 6.691e+04 9.205e-02 -- 4.238e+02 -- 0.108647 -0.655329 -1.9076 -2.25396 -3.02049 -3.07639 -4.71389 -3.90972 -0.427257 0.39599 0.804093 0.616994 0.327674 0.283184 -1.69292 -0.326831\n", + " 89 1.518e+00 5.336e+04 5.901e-02 -- 4.237e+02 -- 0.110282 -0.655169 -1.90755 -2.25427 -3.02188 -3.07656 -4.68711 -3.90967 -0.370691 0.401992 0.803358 0.621766 0.329676 0.279722 -1.70104 -0.32709\n", + " 91 1.363e+00 6.464e+04 3.320e-02 -- 4.237e+02 -- 0.107719 -0.655341 -1.9076 -2.25393 -3.02043 -3.07638 -4.71329 -3.90972 -0.426953 0.395764 0.804086 0.616671 0.327601 0.283309 -1.69252 -0.326767\n", + " 93 1.526e+00 4.562e+04 6.692e-03 -- 4.237e+02 -- 0.109628 -0.65517 -1.90755 -2.25427 -3.02191 -3.07656 -4.6847 -3.90966 -0.368773 0.402148 0.8033 0.621751 0.329738 0.279613 -1.70118 -0.327043\n", + " 95 1.323e+00 5.120e+04 3.216e-02 -- 4.237e+02 -- 0.106898 -0.655349 -1.9076 -2.25392 -3.0204 -3.07637 -4.71179 -3.90972 -0.425043 0.395712 0.804056 0.616471 0.327583 0.283338 -1.69238 -0.326705\n", + " 97 1.445e+00 3.175e+04 5.704e-02 -- 4.238e+02 -- 0.109016 -0.655177 -1.90754 -2.25426 -3.0219 -3.07656 -4.68302 -3.90966 -0.368792 0.402111 0.80326 0.621574 0.329739 0.27961 -1.70101 -0.326981\n", + " 99 1.229e+00 3.515e+04 6.982e-02 -- 4.239e+02 -- 0.106338 -0.655353 -1.9076 -2.25391 -3.02041 -3.07637 -4.70944 -3.90972 -0.4221 0.395834 0.804 0.616416 0.327632 0.283254 -1.69235 -0.326647\n", + " 101 1.319e+00 1.840e+04 7.455e-02 -- 4.239e+02 -- 0.108527 -0.655187 -1.90754 -2.25424 -3.02185 -3.07655 -4.68208 -3.90966 -0.370206 0.401903 0.803237 0.621265 0.329691 0.279697 -1.70044 -0.326907\n", + " 103 1.120e+00 2.184e+04 7.530e-02 -- 4.240e+02 -- 0.106072 -0.655352 -1.9076 -2.25391 -3.02046 -3.07638 -4.70665 -3.90971 -0.41905 0.396056 0.803924 0.616461 0.327731 0.283092 -1.69227 -0.326593\n", + " 105 1.194e+00 8.302e+03 6.817e-02 -- 4.241e+02 -- 0.108199 -0.655199 -1.90755 -2.25421 -3.02179 -3.07654 -4.68162 -3.90966 -0.372137 0.401611 0.80322 0.620907 0.329627 0.279821 -1.69955 -0.326829\n", + " 107 1.025e+00 1.258e+04 6.301e-02 -- 4.241e+02 -- 0.106023 -0.655349 -1.90759 -2.25392 -3.02053 -3.07638 -4.70391 -3.9097 -0.41658 0.396283 0.803843 0.616536 0.327848 0.282906 -1.69203 -0.326541\n", + " 109 1.099e+00 1.871e+03 5.223e-02 -- 4.242e+02 -- 0.108019 -0.655211 -1.90755 -2.25419 -3.02173 -3.07653 -4.6813 -3.90966 -0.37389 0.401324 0.803202 0.620571 0.329573 0.279934 -1.69853 -0.326753\n", + " 111 9.609e-01 7.026e+03 4.523e-02 -- 4.242e+02 -- 0.106089 -0.655347 -1.90759 -2.25392 -3.02058 -3.07639 -4.70155 -3.9097 -0.414971 0.396455 0.803767 0.616587 0.327956 0.28274 -1.69159 -0.326489\n", + " 113 1.043e+00 2.556e+03 3.426e-02 -- 4.243e+02 -- 0.107944 -0.655219 -1.90755 -2.25416 -3.02169 -3.07653 -4.68086 -3.90965 -0.375095 0.401096 0.803178 0.6203 0.329543 0.280008 -1.69752 -0.326683\n", + " 115 9.324e-01 4.787e+03 2.670e-02 -- 4.243e+02 -- 0.106189 -0.655346 -1.90759 -2.25391 -3.02063 -3.07639 -4.69965 -3.90969 -0.414229 0.396547 0.803702 0.616588 0.32804 0.282617 -1.69102 -0.326437\n", + " 117 1.029e+00 3.041e+03 1.600e-02 -- 4.243e+02 -- 0.107925 -0.655226 -1.90755 -2.25415 -3.02167 -3.07652 -4.6802 -3.90965 -0.375607 0.400949 0.803146 0.620104 0.32954 0.280036 -1.69661 -0.326621\n", + " 119 9.381e-01 5.862e+03 7.637e-03 -- 4.243e+02 -- 0.106265 -0.655346 -1.90758 -2.2539 -3.02065 -3.07639 -4.69822 -3.90969 -0.414257 0.396559 0.803649 0.616532 0.328095 0.282542 -1.69035 -0.326385\n", + " 121 1.053e+00 1.792e+03 3.136e-03 -- 4.243e+02 -- 0.107922 -0.655229 -1.90754 -2.25413 -3.02167 -3.07652 -4.67926 -3.90965 -0.375397 0.400887 0.803107 0.619981 0.329563 0.280018 -1.69585 -0.326566\n", + " 123 9.747e-01 1.055e+04 1.263e-02 -- 4.243e+02 -- 0.106279 -0.655349 -1.90758 -2.25389 -3.02065 -3.07639 -4.69719 -3.90968 -0.414927 0.396498 0.803609 0.616418 0.328121 0.282516 -1.68965 -0.326333\n", + " 125 1.111e+00 5.278e+03 2.340e-02 -- 4.243e+02 -- 0.107901 -0.655231 -1.90754 -2.25413 -3.02169 -3.07652 -4.67804 -3.90964 -0.374485 0.400906 0.803062 0.619925 0.329608 0.279959 -1.69529 -0.326518\n", + " 127 1.036e+00 1.896e+04 3.343e-02 -- 4.242e+02 -- 0.106203 -0.655354 -1.90758 -2.25388 -3.02064 -3.07639 -4.69648 -3.90968 -0.416081 0.396375 0.80358 0.616251 0.328119 0.282535 -1.68894 -0.32628\n", + " 129 1.195e+00 1.424e+04 4.252e-02 -- 4.242e+02 -- 0.107834 -0.655231 -1.90754 -2.25412 -3.02172 -3.07652 -4.67654 -3.90964 -0.372961 0.400999 0.803011 0.619921 0.32967 0.279866 -1.6949 -0.326475\n", + " 131 1.114e+00 3.012e+04 5.112e-02 -- 4.241e+02 -- 0.106017 -0.655361 -1.90758 -2.25386 -3.02061 -3.07638 -4.69598 -3.90968 -0.417517 0.396205 0.80356 0.616037 0.328093 0.28259 -1.68827 -0.326225\n", + " 133 1.291e+00 2.480e+04 5.501e-02 -- 4.241e+02 -- 0.107702 -0.655229 -1.90754 -2.25412 -3.02175 -3.07653 -4.67479 -3.90964 -0.371025 0.401147 0.802956 0.619954 0.329744 0.279748 -1.69469 -0.326435\n", + " 135 1.192e+00 4.132e+04 5.866e-02 -- 4.240e+02 -- 0.105716 -0.655369 -1.90758 -2.25384 -3.02057 -3.07637 -4.69557 -3.90968 -0.418932 0.396012 0.803546 0.615793 0.328051 0.282668 -1.68765 -0.326169\n", + " 137 1.381e+00 3.378e+04 5.372e-02 -- 4.240e+02 -- 0.107499 -0.655228 -1.90753 -2.25412 -3.0218 -3.07653 -4.67287 -3.90963 -0.369006 0.401322 0.802898 0.619996 0.32982 0.279621 -1.6946 -0.326396\n", + " 139 1.253e+00 4.876e+04 4.978e-02 -- 4.239e+02 -- 0.105319 -0.655378 -1.90758 -2.25383 -3.02052 -3.07637 -4.69506 -3.90968 -0.419968 0.395831 0.803531 0.615542 0.328005 0.282751 -1.68713 -0.326112\n", + " 141 1.442e+00 3.792e+04 3.551e-02 -- 4.239e+02 -- 0.107235 -0.655227 -1.90753 -2.25412 -3.02183 -3.07653 -4.67093 -3.90963 -0.367349 0.401482 0.802843 0.620014 0.329885 0.279508 -1.69456 -0.326353\n", + " 143 1.281e+00 4.985e+04 2.509e-02 -- 4.239e+02 -- 0.104881 -0.655386 -1.90758 -2.25381 -3.02048 -3.07636 -4.69427 -3.90968 -0.420306 0.3957 0.803511 0.615319 0.327969 0.282811 -1.68673 -0.326054\n", + " 145 1.457e+00 3.617e+04 6.649e-03 -- 4.239e+02 -- 0.106937 -0.655229 -1.90753 -2.25412 -3.02185 -3.07653 -4.66916 -3.90962 -0.366454 0.401581 0.802793 0.619973 0.329929 0.279431 -1.69448 -0.326305\n", + " 147 1.271e+00 4.504e+04 5.304e-03 -- 4.239e+02 -- 0.104484 -0.655393 -1.90758 -2.2538 -3.02046 -3.07635 -4.69308 -3.90967 -0.419842 0.395651 0.803481 0.615152 0.327958 0.282828 -1.68645 -0.325997\n", + " 149 1.426e+00 3.019e+04 2.056e-02 -- 4.239e+02 -- 0.106651 -0.655233 -1.90753 -2.25411 -3.02185 -3.07653 -4.6677 -3.90962 -0.366499 0.401591 0.802752 0.619855 0.329943 0.279405 -1.69426 -0.32625\n", + " 151 1.228e+00 3.710e+04 2.895e-02 -- 4.239e+02 -- 0.1042 -0.655397 -1.90758 -2.25379 -3.02046 -3.07635 -4.69149 -3.90967 -0.418762 0.395689 0.803437 0.615054 0.327979 0.28279 -1.68624 -0.325941\n", + " 153 1.364e+00 2.275e+04 3.671e-02 -- 4.240e+02 -- 0.106417 -0.655239 -1.90753 -2.2541 -3.02182 -3.07653 -4.66661 -3.90962 -0.367337 0.40151 0.802719 0.619668 0.329931 0.279426 -1.69385 -0.326189\n", + " 155 1.169e+00 2.891e+04 3.977e-02 -- 4.240e+02 -- 0.104061 -0.655399 -1.90758 -2.25378 -3.02048 -3.07635 -4.68964 -3.90967 -0.417432 0.395789 0.803383 0.615013 0.328027 0.282709 -1.68604 -0.325888\n", + " 157 1.292e+00 1.595e+04 4.051e-02 -- 4.240e+02 -- 0.10626 -0.655247 -1.90753 -2.25408 -3.02179 -3.07652 -4.66581 -3.90962 -0.368619 0.40137 0.802691 0.61944 0.329904 0.279475 -1.69327 -0.326124\n", + " 159 1.112e+00 2.222e+04 3.910e-02 -- 4.241e+02 -- 0.104051 -0.655399 -1.90758 -2.25378 -3.02051 -3.07635 -4.68771 -3.90966 -0.41623 0.395911 0.803323 0.615002 0.32809 0.282604 -1.68578 -0.325836\n", + " 161 1.228e+00 1.084e+04 3.547e-02 -- 4.241e+02 -- 0.106183 -0.655255 -1.90753 -2.25406 -3.02176 -3.07651 -4.66515 -3.90961 -0.369965 0.40121 0.802665 0.619207 0.329875 0.279531 -1.69259 -0.326059\n", + " 163 1.067e+00 1.774e+04 3.132e-02 -- 4.241e+02 -- 0.104126 -0.655399 -1.90757 -2.25377 -3.02054 -3.07636 -4.6859 -3.90966 -0.4154 0.396019 0.803264 0.614993 0.328155 0.2825 -1.68543 -0.325784\n", + " 165 1.185e+00 7.799e+03 2.564e-02 -- 4.242e+02 -- 0.106169 -0.655262 -1.90753 -2.25404 -3.02173 -3.07651 -4.6645 -3.90961 -0.37108 0.401067 0.802637 0.618998 0.329856 0.279574 -1.69187 -0.325996\n", + " 167 1.042e+00 1.568e+04 2.005e-02 -- 4.242e+02 -- 0.104234 -0.6554 -1.90757 -2.25377 -3.02057 -3.07636 -4.68431 -3.90965 -0.415037 0.39609 0.803209 0.614964 0.328211 0.282413 -1.685 -0.325733\n", + " 169 1.166e+00 6.928e+03 1.359e-02 -- 4.242e+02 -- 0.106193 -0.655267 -1.90753 -2.25403 -3.02171 -3.0765 -4.66377 -3.90961 -0.371795 0.400963 0.802606 0.618827 0.32985 0.279594 -1.69119 -0.325938\n", + " 171 1.038e+00 1.607e+04 7.134e-03 -- 4.242e+02 -- 0.104336 -0.655401 -1.90757 -2.25376 -3.02059 -3.07636 -4.68298 -3.90965 -0.415146 0.396113 0.803161 0.614903 0.328252 0.282352 -1.6845 -0.325682\n", + " 173 1.173e+00 8.268e+03 6.275e-04 -- 4.242e+02 -- 0.106228 -0.655271 -1.90753 -2.25401 -3.02171 -3.0765 -4.66288 -3.90961 -0.372036 0.400909 0.80257 0.6187 0.329861 0.279586 -1.69059 -0.325883\n", + " 175 1.055e+00 1.886e+04 6.252e-03 -- 4.242e+02 -- 0.104399 -0.655404 -1.90757 -2.25375 -3.02059 -3.07636 -4.6819 -3.90965 -0.415663 0.396089 0.80312 0.614807 0.328275 0.28232 -1.68397 -0.325631\n", + " 177 1.202e+00 1.171e+04 1.208e-02 -- 4.242e+02 -- 0.10625 -0.655274 -1.90752 -2.25401 -3.02171 -3.0765 -4.66183 -3.9096 -0.371805 0.400905 0.80253 0.618615 0.329886 0.279551 -1.69008 -0.325833\n", + " 179 1.088e+00 2.375e+04 1.876e-02 -- 4.242e+02 -- 0.1044 -0.655408 -1.90757 -2.25374 -3.02058 -3.07635 -4.68102 -3.90964 -0.416481 0.396024 0.803087 0.614677 0.328281 0.282317 -1.68342 -0.325578\n", + " 181 1.247e+00 1.681e+04 2.282e-02 -- 4.242e+02 -- 0.106242 -0.655275 -1.90752 -2.254 -3.02172 -3.0765 -4.66061 -3.9096 -0.371173 0.400948 0.802486 0.618565 0.329922 0.279494 -1.68969 -0.325786\n", + " 183 1.130e+00 2.993e+04 2.820e-02 -- 4.241e+02 -- 0.104331 -0.655413 -1.90757 -2.25373 -3.02057 -3.07635 -4.68028 -3.90964 -0.417458 0.395928 0.803059 0.614518 0.328272 0.282337 -1.68288 -0.325526\n", + " 185 1.300e+00 2.258e+04 2.907e-02 -- 4.241e+02 -- 0.106194 -0.655276 -1.90752 -2.25399 -3.02174 -3.0765 -4.65925 -3.9096 -0.370276 0.401025 0.802439 0.618537 0.329966 0.279422 -1.6894 -0.325741\n", + " 187 1.174e+00 3.603e+04 3.195e-02 -- 4.241e+02 -- 0.104189 -0.655419 -1.90757 -2.25371 -3.02054 -3.07634 -4.6796 -3.90964 -0.418419 0.395818 0.803034 0.614341 0.328254 0.282371 -1.68237 -0.325472\n", + " 189 1.350e+00 2.756e+04 2.844e-02 -- 4.240e+02 -- 0.106101 -0.655277 -1.90752 -2.25399 -3.02177 -3.0765 -4.6578 -3.90959 -0.36931 0.401118 0.802391 0.618516 0.330012 0.279345 -1.68917 -0.325696\n", + " 191 1.209e+00 4.041e+04 2.805e-02 -- 4.240e+02 -- 0.103991 -0.655425 -1.90757 -2.2537 -3.02052 -3.07634 -4.67888 -3.90964 -0.419178 0.395713 0.80301 0.614159 0.328232 0.282407 -1.68192 -0.325418\n", + " 193 1.386e+00 3.040e+04 2.035e-02 -- 4.240e+02 -- 0.10597 -0.655278 -1.90752 -2.25399 -3.02178 -3.0765 -4.65634 -3.90959 -0.368498 0.401205 0.802344 0.618484 0.330052 0.279274 -1.68898 -0.32565\n", + " 195 1.228e+00 4.191e+04 1.710e-02 -- 4.240e+02 -- 0.103766 -0.655431 -1.90757 -2.25369 -3.02049 -3.07633 -4.67804 -3.90964 -0.419581 0.395634 0.802983 0.613991 0.328214 0.282435 -1.68153 -0.325363\n", + " 197 1.400e+00 3.045e+04 7.090e-03 -- 4.240e+02 -- 0.105817 -0.65528 -1.90751 -2.25398 -3.02179 -3.0765 -4.65495 -3.90959 -0.368037 0.401264 0.8023 0.618424 0.330081 0.27922 -1.68878 -0.325601\n", + " 199 1.228e+00 4.042e+04 2.670e-03 -- 4.240e+02 -- 0.103554 -0.655436 -1.90757 -2.25367 -3.02048 -3.07633 -4.67701 -3.90964 -0.419574 0.395594 0.802951 0.613849 0.328208 0.282441 -1.6812 -0.325309\n", + " 201 1.391e+00 2.809e+04 6.909e-03 -- 4.240e+02 -- 0.105665 -0.655283 -1.90751 -2.25397 -3.02179 -3.0765 -4.65372 -3.90958 -0.368037 0.40128 0.802261 0.618327 0.330095 0.279192 -1.68851 -0.325549\n", + " 203 1.211e+00 3.681e+04 1.046e-02 -- 4.240e+02 -- 0.10339 -0.65544 -1.90756 -2.25367 -3.02047 -3.07633 -4.67579 -3.90963 -0.419218 0.395598 0.802913 0.613741 0.328217 0.282421 -1.68092 -0.325255\n", + " 205 1.362e+00 2.436e+04 1.738e-02 -- 4.240e+02 -- 0.105534 -0.655288 -1.90751 -2.25396 -3.02178 -3.07649 -4.65266 -3.90958 -0.368467 0.401249 0.802225 0.618193 0.330096 0.279187 -1.68816 -0.325494\n", + " 207 1.182e+00 3.237e+04 1.877e-02 -- 4.240e+02 -- 0.103297 -0.655443 -1.90756 -2.25366 -3.02048 -3.07633 -4.67442 -3.90963 -0.418664 0.395637 0.802869 0.613665 0.328241 0.282377 -1.68064 -0.325203\n", + " 209 1.325e+00 2.040e+04 2.221e-02 -- 4.240e+02 -- 0.105441 -0.655293 -1.90751 -2.25395 -3.02177 -3.07649 -4.65177 -3.90958 -0.369187 0.401182 0.802193 0.618034 0.330086 0.279201 -1.68772 -0.325436\n", + " 211 1.150e+00 2.823e+04 2.124e-02 -- 4.241e+02 -- 0.103274 -0.655445 -1.90756 -2.25365 -3.02049 -3.07632 -4.67299 -3.90963 -0.418095 0.395695 0.802822 0.613609 0.328274 0.282318 -1.68036 -0.325151\n", + " 213 1.288e+00 1.706e+04 2.176e-02 -- 4.241e+02 -- 0.105391 -0.655299 -1.90751 -2.25394 -3.02175 -3.07649 -4.65098 -3.90958 -0.370016 0.401097 0.802163 0.617865 0.330073 0.279223 -1.68722 -0.325378\n", + " 215 1.123e+00 2.514e+04 1.884e-02 -- 4.241e+02 -- 0.103305 -0.655447 -1.90756 -2.25365 -3.02051 -3.07632 -4.67159 -3.90962 -0.417666 0.395753 0.802774 0.61356 0.328311 0.282255 -1.68003 -0.3251\n", + " 217 1.259e+00 1.485e+04 1.739e-02 -- 4.241e+02 -- 0.105376 -0.655304 -1.90751 -2.25392 -3.02173 -3.07648 -4.65022 -3.90958 -0.370776 0.401013 0.802132 0.617703 0.330062 0.279242 -1.68669 -0.32532\n", + " 219 1.105e+00 2.348e+04 1.310e-02 -- 4.241e+02 -- 0.103366 -0.655448 -1.90756 -2.25364 -3.02052 -3.07632 -4.67027 -3.90962 -0.41747 0.395796 0.802727 0.613505 0.328345 0.282197 -1.67967 -0.325049\n", + " 221 1.244e+00 1.401e+04 1.065e-02 -- 4.241e+02 -- 0.105386 -0.655309 -1.90751 -2.25391 -3.02171 -3.07648 -4.64944 -3.90957 -0.371342 0.400944 0.8021 0.617559 0.330058 0.279251 -1.68616 -0.325265\n", + " 223 1.099e+00 2.340e+04 5.564e-03 -- 4.241e+02 -- 0.10343 -0.65545 -1.90756 -2.25363 -3.02053 -3.07632 -4.66909 -3.90962 -0.417537 0.395814 0.802684 0.613436 0.328372 0.282152 -1.67926 -0.324998\n", + " 225 1.243e+00 1.459e+04 2.885e-03 -- 4.241e+02 -- 0.105406 -0.655313 -1.90751 -2.2539 -3.02171 -3.07647 -4.64859 -3.90957 -0.371646 0.400902 0.802065 0.617438 0.330062 0.279246 -1.68566 -0.325211\n", + " 227 1.105e+00 2.483e+04 2.557e-03 -- 4.241e+02 -- 0.103477 -0.655453 -1.90755 -2.25362 -3.02053 -3.07632 -4.66805 -3.90961 -0.417854 0.395806 0.802645 0.613347 0.328389 0.282123 -1.67882 -0.324947\n", + " 229 1.256e+00 1.645e+04 4.768e-03 -- 4.241e+02 -- 0.105422 -0.655316 -1.90751 -2.25389 -3.0217 -3.07647 -4.64766 -3.90957 -0.371669 0.400889 0.802028 0.617342 0.330075 0.279225 -1.68522 -0.32516\n", + " 231 1.121e+00 2.751e+04 9.997e-03 -- 4.241e+02 -- 0.10349 -0.655456 -1.90755 -2.25361 -3.02053 -3.07632 -4.66714 -3.90961 -0.418357 0.395771 0.802609 0.613237 0.328396 0.28211 -1.67838 -0.324896\n", + " 233 1.279e+00 1.926e+04 1.104e-02 -- 4.241e+02 -- 0.105421 -0.655318 -1.90751 -2.25388 -3.02171 -3.07647 -4.64663 -3.90957 -0.371441 0.400903 0.801989 0.617267 0.330095 0.27919 -1.68484 -0.325111\n", + " 235 1.144e+00 3.091e+04 1.553e-02 -- 4.241e+02 -- 0.10346 -0.65546 -1.90755 -2.2536 -3.02051 -3.07631 -4.66631 -3.90961 -0.418965 0.395718 0.802578 0.613111 0.328395 0.282112 -1.67793 -0.324844\n", + " 237 1.308e+00 2.246e+04 1.471e-02 -- 4.241e+02 -- 0.105396 -0.65532 -1.9075 -2.25387 -3.02172 -3.07647 -4.64552 -3.90956 -0.371043 0.400939 0.801948 0.617207 0.33012 0.279146 -1.68451 -0.325063\n", + " 239 1.168e+00 3.433e+04 1.790e-02 -- 4.241e+02 -- 0.103389 -0.655465 -1.90755 -2.25359 -3.0205 -3.07631 -4.66553 -3.90961 -0.419576 0.395655 0.802548 0.612973 0.328387 0.282122 -1.6775 -0.324792\n", + " 241 1.336e+00 2.532e+04 1.481e-02 -- 4.241e+02 -- 0.105346 -0.655322 -1.9075 -2.25387 -3.02173 -3.07647 -4.64436 -3.90956 -0.370581 0.400986 0.801906 0.617153 0.330146 0.279097 -1.68423 -0.325016\n", + " 243 1.188e+00 3.697e+04 1.653e-02 -- 4.240e+02 -- 0.103284 -0.65547 -1.90755 -2.25358 -3.02048 -3.07631 -4.66474 -3.90961 -0.420093 0.395593 0.802519 0.612832 0.328377 0.282136 -1.6771 -0.32474\n", + " 245 1.358e+00 2.720e+04 1.127e-02 -- 4.240e+02 -- 0.105274 -0.655324 -1.9075 -2.25386 -3.02173 -3.07647 -4.6432 -3.90956 -0.370176 0.401032 0.801865 0.617094 0.33017 0.279051 -1.68397 -0.324968\n", + " 247 1.201e+00 3.825e+04 1.163e-02 -- 4.240e+02 -- 0.10316 -0.655475 -1.90755 -2.25357 -3.02047 -3.0763 -4.6639 -3.9096 -0.420433 0.395542 0.802489 0.612697 0.328368 0.282145 -1.67673 -0.324687\n", + " 249 1.369e+00 2.772e+04 4.985e-03 -- 4.240e+02 -- 0.105187 -0.655326 -1.9075 -2.25385 -3.02174 -3.07647 -4.64206 -3.90955 -0.369933 0.401066 0.801825 0.617023 0.330189 0.279013 -1.68371 -0.324919\n", + " 251 1.204e+00 3.800e+04 4.642e-03 -- 4.240e+02 -- 0.103037 -0.655479 -1.90755 -2.25356 -3.02046 -3.0763 -4.66298 -3.9096 -0.42056 0.395511 0.802457 0.612574 0.328364 0.282145 -1.67639 -0.324635\n", + " 253 1.367e+00 2.692e+04 2.208e-03 -- 4.240e+02 -- 0.105097 -0.655329 -1.9075 -2.25385 -3.02174 -3.07646 -4.641 -3.90955 -0.369915 0.401078 0.801787 0.616934 0.330199 0.278988 -1.68342 -0.324869\n", + " 255 1.198e+00 3.649e+04 2.379e-03 -- 4.240e+02 -- 0.102935 -0.655483 -1.90755 -2.25355 -3.02045 -3.0763 -4.66196 -3.9096 -0.420493 0.395502 0.802421 0.612468 0.328367 0.282132 -1.67608 -0.324583\n", + " 257 1.355e+00 2.519e+04 8.313e-03 -- 4.240e+02 -- 0.105017 -0.655333 -1.9075 -2.25384 -3.02173 -3.07646 -4.64003 -3.90955 -0.370125 0.401067 0.801751 0.616826 0.330203 0.278975 -1.6831 -0.324816\n", + " 259 1.184e+00 3.425e+04 7.673e-03 -- 4.240e+02 -- 0.102867 -0.655486 -1.90755 -2.25354 -3.02045 -3.07629 -4.66087 -3.9096 -0.420294 0.395514 0.802383 0.612379 0.328378 0.282107 -1.67578 -0.324532\n", + " 261 1.337e+00 2.308e+04 1.201e-02 -- 4.240e+02 -- 0.104954 -0.655337 -1.9075 -2.25383 -3.02172 -3.07646 -4.63915 -3.90955 -0.370512 0.401035 0.801718 0.616703 0.3302 0.278973 -1.68273 -0.324763\n", + " 263 1.168e+00 3.192e+04 1.022e-02 -- 4.240e+02 -- 0.102836 -0.655489 -1.90755 -2.25353 -3.02045 -3.07629 -4.65973 -3.9096 -0.420052 0.395538 0.802343 0.612303 0.328395 0.282072 -1.67548 -0.324481\n", + " 265 1.317e+00 2.111e+04 1.292e-02 -- 4.241e+02 -- 0.104913 -0.655342 -1.9075 -2.25381 -3.02171 -3.07645 -4.63833 -3.90955 -0.370989 0.40099 0.801685 0.616573 0.330194 0.278977 -1.68232 -0.324708\n", + " 267 1.153e+00 3.000e+04 9.954e-03 -- 4.241e+02 -- 0.102837 -0.655491 -1.90754 -2.25352 -3.02046 -3.07629 -4.65859 -3.90959 -0.419854 0.395565 0.802301 0.612233 0.328414 0.282033 -1.67517 -0.32443\n", + " 269 1.300e+00 1.967e+04 1.134e-02 -- 4.241e+02 -- 0.104892 -0.655346 -1.9075 -2.2538 -3.0217 -3.07645 -4.63755 -3.90954 -0.371464 0.400942 0.801653 0.616443 0.330188 0.278982 -1.6819 -0.324654\n", + " 271 1.141e+00 2.883e+04 7.453e-03 -- 4.241e+02 -- 0.102859 -0.655493 -1.90754 -2.25352 -3.02046 -3.07629 -4.6575 -3.90959 -0.419761 0.395587 0.80226 0.612163 0.328433 0.281995 -1.67484 -0.32438\n", + " 273 1.290e+00 1.899e+04 7.993e-03 -- 4.241e+02 -- 0.104887 -0.65535 -1.90749 -2.25379 -3.02169 -3.07645 -4.63677 -3.90954 -0.371856 0.400899 0.801621 0.61632 0.330185 0.278983 -1.68147 -0.324601\n", + " 275 1.136e+00 2.857e+04 3.456e-03 -- 4.241e+02 -- 0.102888 -0.655496 -1.90754 -2.25351 -3.02047 -3.07629 -4.65646 -3.90959 -0.419808 0.395598 0.802221 0.612086 0.328449 0.281962 -1.67448 -0.324329\n", + " 277 1.287e+00 1.915e+04 3.678e-03 -- 4.241e+02 -- 0.10489 -0.655354 -1.90749 -2.25378 -3.02168 -3.07644 -4.63596 -3.90954 -0.372112 0.400869 0.801587 0.616209 0.330186 0.278977 -1.68105 -0.324549\n", + " 279 1.138e+00 2.921e+04 1.107e-03 -- 4.241e+02 -- 0.102911 -0.655499 -1.90754 -2.2535 -3.02047 -3.07628 -4.6555 -3.90959 -0.419993 0.395594 0.802183 0.612 0.32846 0.281938 -1.67411 -0.324279\n", + " 281 1.292e+00 2.009e+04 7.159e-04 -- 4.241e+02 -- 0.104892 -0.655357 -1.90749 -2.25377 -3.02167 -3.07644 -4.63511 -3.90954 -0.372211 0.400854 0.801552 0.616112 0.330192 0.278962 -1.68066 -0.324498\n", + " 283 1.145e+00 3.061e+04 5.484e-03 -- 4.241e+02 -- 0.102917 -0.655502 -1.90754 -2.25349 -3.02046 -3.07628 -4.65461 -3.90958 -0.420293 0.395575 0.802148 0.611903 0.328466 0.281923 -1.67373 -0.324229\n", + " 285 1.303e+00 2.160e+04 4.414e-03 -- 4.241e+02 -- 0.104887 -0.65536 -1.90749 -2.25376 -3.02167 -3.07644 -4.63421 -3.90954 -0.372166 0.400855 0.801516 0.616028 0.330201 0.27894 -1.6803 -0.324448\n", + " 287 1.157e+00 3.247e+04 8.809e-03 -- 4.241e+02 -- 0.102901 -0.655505 -1.90754 -2.25348 -3.02046 -3.07628 -4.65378 -3.90958 -0.420664 0.395545 0.802115 0.611796 0.328466 0.281916 -1.67334 -0.324178\n", + " 289 1.318e+00 2.338e+04 6.750e-03 -- 4.241e+02 -- 0.104869 -0.655362 -1.90749 -2.25376 -3.02167 -3.07644 -4.63327 -3.90953 -0.372009 0.400869 0.801478 0.615952 0.330214 0.278912 -1.67997 -0.3244\n", + " 291 1.170e+00 3.441e+04 1.052e-02 -- 4.241e+02 -- 0.102861 -0.655509 -1.90754 -2.25347 -3.02045 -3.07628 -4.65299 -3.90958 -0.421049 0.395508 0.802083 0.611682 0.328462 0.281915 -1.67297 -0.324127\n", + " 293 1.334e+00 2.506e+04 7.174e-03 -- 4.241e+02 -- 0.104837 -0.655364 -1.90749 -2.25375 -3.02168 -3.07643 -4.6323 -3.90953 -0.371803 0.40089 0.801441 0.615882 0.330228 0.278881 -1.67967 -0.324351\n", + " 295 1.181e+00 3.602e+04 1.026e-02 -- 4.240e+02 -- 0.102801 -0.655513 -1.90754 -2.25346 -3.02043 -3.07627 -4.65219 -3.90958 -0.421397 0.39547 0.802052 0.611566 0.328457 0.281916 -1.6726 -0.324076\n", + " 297 1.347e+00 2.628e+04 5.695e-03 -- 4.240e+02 -- 0.104792 -0.655367 -1.90749 -2.25374 -3.02168 -3.07643 -4.63133 -3.90953 -0.37161 0.400913 0.801403 0.615811 0.330241 0.27885 -1.67939 -0.324303\n", + " 299 1.190e+00 3.698e+04 8.084e-03 -- 4.240e+02 -- 0.102728 -0.655517 -1.90754 -2.25345 -3.02042 -3.07627 -4.65139 -3.90958 -0.421657 0.395437 0.802021 0.611451 0.328451 0.281917 -1.67226 -0.324025\n", + " 301 1.355e+00 2.683e+04 2.723e-03 -- 4.240e+02 -- 0.104738 -0.655369 -1.90749 -2.25373 -3.02168 -3.07643 -4.63037 -3.90953 -0.371488 0.400931 0.801366 0.615734 0.330251 0.278823 -1.6791 -0.324254\n", + " 303 1.193e+00 3.715e+04 4.763e-03 -- 4.240e+02 -- 0.102653 -0.655521 -1.90754 -2.25344 -3.02041 -3.07626 -4.65054 -3.90957 -0.421811 0.395414 0.801989 0.611342 0.328448 0.281913 -1.67193 -0.323974\n", + " 305 1.356e+00 2.668e+04 9.591e-04 -- 4.240e+02 -- 0.104681 -0.655372 -1.90749 -2.25373 -3.02168 -3.07643 -4.62944 -3.90952 -0.371477 0.40094 0.80133 0.615649 0.330258 0.278801 -1.67881 -0.324204\n", + " 307 1.192e+00 3.660e+04 1.062e-03 -- 4.240e+02 -- 0.102586 -0.655524 -1.90753 -2.25343 -3.02041 -3.07626 -4.64965 -3.90957 -0.421857 0.395402 0.801955 0.611242 0.328448 0.281903 -1.67162 -0.323923\n", + " 309 1.352e+00 2.595e+04 4.356e-03 -- 4.240e+02 -- 0.104627 -0.655375 -1.90748 -2.25372 -3.02167 -3.07643 -4.62856 -3.90952 -0.371584 0.400936 0.801295 0.615554 0.330261 0.278787 -1.67851 -0.324154\n", + " 311 1.186e+00 3.557e+04 2.052e-03 -- 4.240e+02 -- 0.102535 -0.655528 -1.90753 -2.25342 -3.0204 -3.07626 -4.64873 -3.90957 -0.42182 0.395401 0.80192 0.611151 0.328452 0.281886 -1.67132 -0.323873\n", + " 313 1.344e+00 2.491e+04 6.784e-03 -- 4.240e+02 -- 0.104581 -0.655379 -1.90748 -2.25371 -3.02167 -3.07642 -4.62773 -3.90952 -0.371792 0.40092 0.801262 0.615451 0.33026 0.278779 -1.67818 -0.324102\n", + " 315 1.178e+00 3.435e+04 3.937e-03 -- 4.240e+02 -- 0.102503 -0.655531 -1.90753 -2.25341 -3.0204 -3.07626 -4.64777 -3.90957 -0.421744 0.395407 0.801883 0.611068 0.328459 0.281864 -1.67102 -0.323822\n", + " 317 1.333e+00 2.384e+04 7.835e-03 -- 4.241e+02 -- 0.104546 -0.655382 -1.90748 -2.2537 -3.02166 -3.07642 -4.62694 -3.90952 -0.372063 0.400896 0.801229 0.615343 0.330256 0.278774 -1.67783 -0.32405\n", + " 319 1.170e+00 3.326e+04 4.332e-03 -- 4.241e+02 -- 0.102489 -0.655533 -1.90753 -2.25341 -3.0204 -3.07625 -4.64682 -3.90957 -0.421675 0.395418 0.801846 0.610989 0.328467 0.281839 -1.67072 -0.323772\n", + " 321 1.324e+00 2.298e+04 7.501e-03 -- 4.241e+02 -- 0.104523 -0.655386 -1.90748 -2.25369 -3.02165 -3.07642 -4.62618 -3.90952 -0.372353 0.400869 0.801196 0.615234 0.330252 0.278772 -1.67746 -0.323999\n", + " 323 1.163e+00 3.251e+04 3.402e-03 -- 4.241e+02 -- 0.102489 -0.655536 -1.90753 -2.2534 -3.0204 -3.07625 -4.64588 -3.90956 -0.421652 0.395427 0.801809 0.610912 0.328476 0.281813 -1.67041 -0.323723\n", + " 325 1.317e+00 2.251e+04 5.976e-03 -- 4.241e+02 -- 0.104509 -0.65539 -1.90748 -2.25368 -3.02164 -3.07641 -4.62542 -3.90951 -0.372611 0.400843 0.801164 0.615127 0.330249 0.278768 -1.6771 -0.323947\n", + " 327 1.159e+00 3.225e+04 1.455e-03 -- 4.241e+02 -- 0.102495 -0.655539 -1.90753 -2.25339 -3.0204 -3.07625 -4.64497 -3.90956 -0.421696 0.395431 0.801772 0.610833 0.328484 0.28179 -1.67009 -0.323673\n", + " 329 1.315e+00 2.251e+04 3.759e-03 -- 4.241e+02 -- 0.1045 -0.655393 -1.90748 -2.25367 -3.02163 -3.07641 -4.62466 -3.90951 -0.372805 0.400822 0.801131 0.615027 0.330248 0.278761 -1.67674 -0.323896\n", + " 331 1.159e+00 3.251e+04 1.007e-03 -- 4.241e+02 -- 0.102501 -0.655541 -1.90753 -2.25338 -3.0204 -3.07625 -4.6441 -3.90956 -0.421818 0.395428 0.801737 0.610749 0.32849 0.281771 -1.66976 -0.323623\n", + " 333 1.316e+00 2.296e+04 1.324e-03 -- 4.241e+02 -- 0.104493 -0.655396 -1.90748 -2.25366 -3.02163 -3.07641 -4.62388 -3.90951 -0.372917 0.400809 0.801097 0.614933 0.330248 0.278749 -1.67639 -0.323846\n", + " 335 1.163e+00 3.322e+04 3.487e-03 -- 4.241e+02 -- 0.102499 -0.655544 -1.90753 -2.25337 -3.02039 -3.07624 -4.64326 -3.90956 -0.422006 0.395417 0.801702 0.610659 0.328492 0.281756 -1.66942 -0.323574\n", + " 337 1.322e+00 2.376e+04 8.469e-04 -- 4.241e+02 -- 0.104483 -0.655399 -1.90748 -2.25365 -3.02162 -3.0764 -4.62308 -3.90951 -0.372946 0.400805 0.801063 0.614847 0.330252 0.278734 -1.67606 -0.323797\n", + " 339 1.168e+00 3.423e+04 5.485e-03 -- 4.241e+02 -- 0.102486 -0.655547 -1.90753 -2.25336 -3.02039 -3.07624 -4.64247 -3.90956 -0.422237 0.395399 0.801669 0.610564 0.328492 0.281747 -1.66908 -0.323524\n", + " 341 1.330e+00 2.475e+04 2.283e-03 -- 4.241e+02 -- 0.104467 -0.655402 -1.90748 -2.25364 -3.02162 -3.0764 -4.62225 -3.90951 -0.372907 0.400809 0.801028 0.614767 0.330257 0.278714 -1.67574 -0.323748\n", + " 343 1.175e+00 3.533e+04 6.691e-03 -- 4.241e+02 -- 0.10246 -0.655551 -1.90752 -2.25335 -3.02038 -3.07624 -4.6417 -3.90955 -0.422488 0.395377 0.801637 0.610465 0.328489 0.28174 -1.66875 -0.323474\n", + " 345 1.338e+00 2.574e+04 2.776e-03 -- 4.241e+02 -- 0.104443 -0.655404 -1.90748 -2.25364 -3.02162 -3.0764 -4.62141 -3.90951 -0.372833 0.400817 0.800993 0.61469 0.330263 0.278693 -1.67544 -0.323699\n", + " 347 1.182e+00 3.631e+04 6.809e-03 -- 4.241e+02 -- 0.102422 -0.655554 -1.90752 -2.25335 -3.02037 -3.07623 -4.64094 -3.90955 -0.422723 0.395353 0.801606 0.610364 0.328485 0.281736 -1.66842 -0.323424\n", + " 349 1.346e+00 2.653e+04 2.229e-03 -- 4.240e+02 -- 0.104411 -0.655407 -1.90747 -2.25363 -3.02162 -3.0764 -4.62057 -3.9095 -0.372755 0.400828 0.800958 0.614613 0.330268 0.278672 -1.67515 -0.323651\n", + " 351 1.187e+00 3.698e+04 5.968e-03 -- 4.240e+02 -- 0.102376 -0.655558 -1.90752 -2.25334 -3.02036 -3.07623 -4.64017 -3.90955 -0.422919 0.395331 0.801574 0.610264 0.32848 0.281732 -1.6681 -0.323374\n", + " 353 1.351e+00 2.699e+04 8.519e-04 -- 4.240e+02 -- 0.104374 -0.655409 -1.90747 -2.25362 -3.02161 -3.07639 -4.61973 -3.9095 -0.372705 0.400836 0.800923 0.614535 0.330273 0.278652 -1.67487 -0.323602\n", + " 355 1.190e+00 3.726e+04 4.385e-03 -- 4.240e+02 -- 0.102327 -0.655561 -1.90752 -2.25333 -3.02035 -3.07623 -4.63939 -3.90955 -0.423061 0.395314 0.801542 0.610166 0.328476 0.281726 -1.66779 -0.323324\n", + " 357 1.353e+00 2.708e+04 9.742e-04 -- 4.240e+02 -- 0.104335 -0.655412 -1.90747 -2.25361 -3.02161 -3.07639 -4.61891 -3.9095 -0.372705 0.400841 0.800888 0.614453 0.330275 0.278635 -1.67458 -0.323553\n", + " 359 1.191e+00 3.715e+04 2.518e-03 -- 4.240e+02 -- 0.102281 -0.655564 -1.90752 -2.25332 -3.02035 -3.07622 -4.6386 -3.90955 -0.423146 0.395302 0.801509 0.610073 0.328474 0.281717 -1.66749 -0.323274\n", + " 361 1.352e+00 2.684e+04 2.848e-03 -- 4.240e+02 -- 0.104296 -0.655415 -1.90747 -2.2536 -3.02161 -3.07639 -4.61812 -3.9095 -0.372767 0.400839 0.800855 0.614366 0.330276 0.278621 -1.67429 -0.323503\n", + " 363 1.189e+00 3.672e+04 7.728e-04 -- 4.240e+02 -- 0.102241 -0.655568 -1.90752 -2.25331 -3.02034 -3.07622 -4.63778 -3.90955 -0.423181 0.395296 0.801476 0.609984 0.328473 0.281705 -1.6672 -0.323225\n", + " 365 1.349e+00 2.638e+04 4.327e-03 -- 4.240e+02 -- 0.10426 -0.655418 -1.90747 -2.2536 -3.0216 -3.07639 -4.61735 -3.9095 -0.372885 0.400831 0.800822 0.614275 0.330274 0.278611 -1.67399 -0.323453\n", + " 367 1.185e+00 3.614e+04 4.647e-04 -- 4.240e+02 -- 0.102211 -0.65557 -1.90752 -2.2533 -3.02034 -3.07622 -4.63696 -3.90954 -0.423187 0.395295 0.801442 0.609901 0.328474 0.28169 -1.66691 -0.323175\n", + " 369 1.344e+00 2.584e+04 5.155e-03 -- 4.240e+02 -- 0.10423 -0.655421 -1.90747 -2.25359 -3.02159 -3.07638 -4.61661 -3.90949 -0.373044 0.400818 0.800789 0.614181 0.33027 0.278603 -1.67367 -0.323403\n", + " 371 1.181e+00 3.557e+04 9.155e-04 -- 4.240e+02 -- 0.102191 -0.655573 -1.90752 -2.25329 -3.02033 -3.07622 -4.63612 -3.90954 -0.42319 0.395297 0.801407 0.60982 0.328476 0.281673 -1.66662 -0.323126\n", + " 373 1.339e+00 2.538e+04 5.246e-03 -- 4.241e+02 -- 0.104207 -0.655425 -1.90747 -2.25358 -3.02158 -3.07638 -4.61588 -3.90949 -0.373222 0.400803 0.800757 0.614086 0.330266 0.278597 -1.67335 -0.323353\n", + " 375 1.177e+00 3.514e+04 6.996e-04 -- 4.241e+02 -- 0.10218 -0.655576 -1.90752 -2.25329 -3.02033 -3.07621 -4.6353 -3.90954 -0.423208 0.395299 0.801372 0.60974 0.328479 0.281655 -1.66632 -0.323077\n", + " 377 1.336e+00 2.510e+04 4.657e-03 -- 4.241e+02 -- 0.104188 -0.655428 -1.90747 -2.25357 -3.02158 -3.07638 -4.61517 -3.90949 -0.37339 0.400787 0.800725 0.613991 0.330262 0.278591 -1.67303 -0.323303\n", + " 379 1.175e+00 3.496e+04 1.708e-04 -- 4.241e+02 -- 0.102173 -0.655579 -1.90752 -2.25328 -3.02033 -3.07621 -4.63449 -3.90954 -0.423257 0.395299 0.801338 0.609661 0.328481 0.281638 -1.66603 -0.323028\n", + " 381 1.334e+00 2.506e+04 3.566e-03 -- 4.241e+02 -- 0.104174 -0.655431 -1.90747 -2.25356 -3.02157 -3.07637 -4.61446 -3.90949 -0.373529 0.400773 0.800693 0.6139 0.330259 0.278583 -1.67271 -0.323253\n", + " 383 1.174e+00 3.505e+04 1.439e-03 -- 4.241e+02 -- 0.102167 -0.655581 -1.90752 -2.25327 -3.02032 -3.07621 -4.6337 -3.90954 -0.423345 0.395295 0.801304 0.60958 0.328481 0.281623 -1.66572 -0.322979\n", + " 385 1.334e+00 2.528e+04 2.296e-03 -- 4.241e+02 -- 0.104161 -0.655434 -1.90747 -2.25355 -3.02156 -3.07637 -4.61374 -3.90949 -0.373628 0.400763 0.80066 0.613812 0.330257 0.278573 -1.6724 -0.323204\n", + " 387 1.176e+00 3.541e+04 2.759e-03 -- 4.241e+02 -- 0.102158 -0.655584 -1.90751 -2.25326 -3.02032 -3.0762 -4.63294 -3.90953 -0.423468 0.395287 0.801271 0.609496 0.328481 0.28161 -1.66542 -0.32293\n", + " 389 1.337e+00 2.570e+04 1.086e-03 -- 4.241e+02 -- 0.104146 -0.655437 -1.90747 -2.25354 -3.02156 -3.07637 -4.61301 -3.90949 -0.373679 0.400758 0.800627 0.613728 0.330255 0.278562 -1.67209 -0.323155\n", + " 391 1.179e+00 3.596e+04 3.999e-03 -- 4.241e+02 -- 0.102145 -0.655587 -1.90751 -2.25325 -3.02031 -3.0762 -4.63219 -3.90953 -0.423623 0.395276 0.801239 0.609409 0.328478 0.2816 -1.66511 -0.322881\n", + " 393 1.341e+00 2.626e+04 1.867e-04 -- 4.241e+02 -- 0.104129 -0.655439 -1.90746 -2.25353 -3.02155 -3.07636 -4.61227 -3.90948 -0.373694 0.400757 0.800594 0.613647 0.330255 0.278548 -1.67179 -0.323106\n", + " 395 1.182e+00 3.660e+04 4.819e-03 -- 4.241e+02 -- 0.102124 -0.65559 -1.90751 -2.25324 -3.0203 -3.0762 -4.63147 -3.90953 -0.423794 0.395262 0.801207 0.60932 0.328475 0.281592 -1.66481 -0.322832\n", + " 397 1.345e+00 2.685e+04 2.326e-04 -- 4.241e+02 -- 0.104109 -0.655442 -1.90746 -2.25353 -3.02155 -3.07636 -4.61153 -3.90948 -0.373684 0.400759 0.800561 0.613569 0.330256 0.278532 -1.6715 -0.323058\n", + " 399 1.186e+00 3.720e+04 5.033e-03 -- 4.240e+02 -- 0.102097 -0.655593 -1.90751 -2.25324 -3.0203 -3.07619 -4.63075 -3.90953 -0.423959 0.395246 0.801175 0.609229 0.32847 0.281586 -1.66451 -0.322783\n", + " 401 1.350e+00 2.736e+04 5.035e-05 -- 4.240e+02 -- 0.104084 -0.655444 -1.90746 -2.25352 -3.02155 -3.07636 -4.61078 -3.90948 -0.373668 0.400763 0.800528 0.613492 0.330256 0.278517 -1.67122 -0.323009\n", + "********************\n", + "0.104084 -0.655444 -1.90746 -2.25352 -3.02155 -3.07636 -4.61078 -3.90948 -0.373668 0.400763 0.800528 0.613492 0.330256 0.278517 -1.67122 -0.323009\n", + "0.0351976 0.000839204 0.000349775 0.00402504 0.00707581 0.00275589 0.124412 0.000905571 0.189505 0.0199362 0.00701796 0.0326727 0.0352226 0.0205451 0.268968 0.0111152\n", + "-77.2828 -5289.45 -27360.2 -1043.89 -821.646 -3179.45 28.7066 -13573.9 -24.1291 -159.085 170.979 -62.8103 -40.6872 59.9863 5.53304 592.733\n", + "********************\n" + ] + } + ], + "source": [ + "Cx = clag.clag('cxd10r', [[t1,t2]], [[l1,l2]], [[l1e,l2e]], dt, fqL, p1, p2)\n", + "p = np.concatenate( ((p1+p2)*0.5-0.3,p1*0+0.1) ) # a good starting point generally\n", + "p, pe = clag.optimize(Cx, p)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "phi, phie = p[nfq:], pe[nfq:]\n", + "lag, lage = phi/(2*np.pi*fqd), phie/(2*np.pi*fqd) \n", + "cx, cxe = p[:nfq], pe[:nfq]" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-6.16365918, 2.21009502, 2.28771584, 1.13110535, 0.3928378 ,\n", + " 0.21373824, -0.82743402, -0.10317688])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAFrCAYAAACE+GArAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAFfhJREFUeJzt3W9sXed9H/CvEytxm6xTmlSknaVhxja97qAtI0O1FoOU\nwxajGDZnQAuXBDKs5tZ4abdB27A1yCDWk4YOGLZGfbGh8AahxYJdKitWJMWmNn1B5QWlbCrpdVVn\nth0teq6tSydZlDZJnQhx9uKSNUWREu/De++5fz4f4IL3nvucc3+UHpLfc85zzpMAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAwMB4f5JfTfJikleTfHCPNk9tvf+1JEtJvr9bxQEAh/e6Dm7725M8k+Sntl5/\na9f7P53k1Nb7U0kaSX4jyZs7WBMA0IdeTfLYjtf3JbmR5J/sWPaGJF9K8uEu1gUAHEInj0jczbuS\njCT5zI5l30jy2SQnK6kIAGhZVUFidOvr5q7lL+94DwDocfdXXcAedo+l2Pbg1gMAaM2NrUfbVRUk\nGltfR3Y83+v1tgcfeuihl1566aWOFwYAA+jFNC9saHuYqCpIXE8zMDya5Le2lr0hyQ/l9gGY2x58\n6aWX8olPfCIPP/xwl0psn1OnTuXcuXN9+VmH2V6r6x60/UHa3avN3d7v5v9Xu+lr7W2vr+1PX2tv\n+072tWeffTYf+tCH3p7mUf2+ChJvSvK9O17/2STvSfLFJC8kOZfkY0l+P8n/2Xr+lST/ab8NPvzw\nw5mYmOhUvR1z9OjRrtXd7s86zPZaXfeg7Q/S7l5t7vZ+N/+/2k1fa297fW1/+lp723e6r3XS6zu4\n7ekkl5M8mea4hx/eev6WJJ9KspzkgSQ/k+QfJPlykrkke52/eDDJk08++WQefLA/h0kcP368bz/r\nMNtrdd2Dtj9Iu3u12e/9er2eubm5A9XRi/S19rbX1/anr7W3faf62o0bN/L0008nydPpwBGJ+9q9\nwQ6ZSLKysrLSt+md/vHYY4/l05/+dNVlMAT0NbphdXU1k5OTSTKZZLXd26/q8k8AYAAIErBLPx9q\npr/oawwCQQJ28cudbtHXGASCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQA\nUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADF\nBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQ\nAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkA\noJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACK\nCRIAQDFBAgAoJkgAAMUECQCgmCABABSrMkg8leTVXY+XKqwHAGjR/RV//rUkf2XH629WVQgA0Lqq\ng8Q3k7xccQ0AQKGqx0h8b5IXkzyXpJ7kXdWWAwC0osog8bkkfzPJo0l+IslokstJvrPCmgCAFlR5\nauPXdjz/nSRXkqwn+VtJPl5JRQBAS6oeI7HT15L8dpLv2a/BqVOncvTo0duWzc3NZW5ursOlAUDv\nq9frqdfrty27efNmRz/zvo5uvTVvTPOIxC8k+Re73ptIsrKyspKJiYmuFwYA/Wp1dTWTk5NJMplk\ntd3br3KMxL9O8v40B1j+QJJfTvLmJL9UYU0AQAuqPLXx9jSv1Hhbks+nOUbiB5O8UGFNAEALqgwS\nBjYAQJ+r+j4SAEAfEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQA\nUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADF\nBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAADZ2NjI/Pz8zl+/HhqtVqOHz+e+fn5\nbGxsVF0aDJz7qy4AoF02NzczOzubtbW1NBqN2967du1aLl68mFqtlsXFxYyMjFRUJQwWRySAe+qH\nPfzNzc2cPHkyly5duiNEbGs0Grl06VKmp6ezubnZ5QphMDkiAeyrn/bwZ2dn89xzzx2o7fr6emZn\nZ7O0tNThqmDwCRLAnrb38O/2x7nRaKTRaGR6ejrLy8uVhYnr169nbW2tpXXW1taysbGRsbGxzhQF\nQ8KpDWBPJXv4VTl79uy+pzP202g0cubMmQ5VBMNDkADucJg9/CpcvXq1q+sBrxEkgDv02x7+rVu3\nuroe8BpBArhDv+3hHzlypKvrAa8RJIA79Nse/tTUVNF6J06caHMlMHwECeAO/baHv7CwkNHR0ZbW\nGR0dzenTpztUEQwPQQK4Q7/t4Y+NjaVWq7W0Tq1Wc+kntIEgAdyhH/fwFxcXMz4+fqC24+PjuXDh\nQocrguEgSAB36Mc9/JGRkSwvL2dmZmbfEDQ6OpqZmZlcvnw5x44d63KFMJjc2RLY0+LiYqanp7O+\nvn7Ptr2yhz8yMpKlpaVsbGzkzJkzuXr1am7dupUjR45kamoqCwsLTmdAmwkSwJ629/D3m2sjae7h\n12q1XLhwoaf28MfGxnL+/Pmqy4ChIEgA+7KHD9yLIAHckz18YD8GWwK0ycbGRubn53P8+PHUarUc\nP3488/Pzlc1BAt3giATAIW1ubu47luTatWu5ePFiarVaFhcXK5tqHTpFkAA4hM3NzZw8efKuU643\nGo00Go1MT09neXlZmGCgOLUBcAizs7N3DRE7ra+vZ3Z2tsMVQXcJEgCFrl+/nrW1tZbWWVtbM2aC\ngSJIABQ6e/bsnvfXuJtGo5EzZ850qCLoPkECoNDVq1e7uh70IkECoNCtW7e6uh70IkECoNCRI0e6\nuh70IkECoNDU1FTReidOnGhzJVAdQQKg0MLCwr5Tlu9ndHQ0p0+f7lBF0H2CBEChsbGx1Gq1ltap\n1WomOmOgCBIAh7C4uJjx8fEDtR0fH8+FCxfa+vnm96BqbpENcAgjIyNZXl7ed66NpHk6o1ar5cKF\nCzl27FhbPtf8HvQKQQLgkEZGRrK0tJSNjY2cOXMmV69eza1bt3LkyJFMTU1lYWGhraczzO9BLxEk\nANpkbGws58+f7/jnlMzvsbS01NYauhWa6H2CBEAfOcz8Hu34A++UCrsZbAnQR6qc32P7lMqlS5f2\nraHRaOTSpUuZnp7O5ubmoT+T3idIAPSRKuf3MGU6e+mFIPGTSa4n+eMkv5nkfdWWA9C7qprfY5in\nTHeJ7d1VPUbix5J8PMlHkiwn+btJLib5/iQvVFgXQE+qan6Pw5xS6cYA1E4wHuRgqj4i8Y+S/Ick\n55P8bpJ/mGaA+EiVRQH0qqrm9xi2KdONBzm4KoPEG5JMJPnMruWfSXKy++UA9L6q5vcYtinTjQc5\nuCqDxNuSvD7J7hj3cpLWfkoAhkRV83sM05TpwzwepETVpzYAaFEV83sM05TpVV5i24+qHGz5hSTf\nTLJ7hMpIkht7rXDq1KkcPXr0tmVzc3OZm5vrSIEAvaiK+T0WFhZy8eLFlv7A9uuU6f08HqRer6de\nr9+27ObNmx39zCqDxDeSrCR5NMmndiz/QJJf2WuFc+fOZWJiogulAfS2bs/vsX1KpZUg0a9Tpvfz\neJC9dq5XV1czOTnZsc+s+vLPn0vyH9O8f8Tnknw4yZ9J8gtVFgXQL7o1v0fSPKUyPT2d9fX1e7bt\nxJTp3TJM40HaoeoxEp9McirJQpJn0rwZ1V+Ne0gA9JztUyozMzP7XjkyOjqamZmZXL58uW1Tpnfb\nMI0HaYf7qi7ggCaSrKysrDi1AdADBnn2z42NjTzyyCMtjwe5cuVKT37vO05tTCZZbff2qz61AUAf\n6uYplW4bpvEg7VD1qQ0AOJBuznlRxSW2/coRCQB6WhVzXlRxiW2/EiQA6Fnbc17c7XbVjUYjjUYj\n09PTWV5ebmuY6OYltv1KkACgZ5XMebG0tNTWGgZ5PEg7GCMBQE8y50V/ECQA6EnmvOgPggQAPamf\n57wYJoIEAD2pn+e8GCaCBAA9yZwX/UGQAKAnmfOiPwgSAPSkhYWFfScH28/o6GhOnz7doYrYiyAB\nQE/anvOiFcM850VVBAkAepY5L3qfIAFAz9qe82JmZmbf0xyjo6OZmZnJ5cuXh3rOi6q4RTYAPc2c\nF71NkACgL5jzojc5tQEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACA\nYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgm\nSAAAxQQJAKCYIAEAFLu/6gKgKvV6PfV6PUnyyiuv5Pnnn8873/nOPPDAA0mSubm5zM3NVVkiQM8T\nJBhaO4PC6upqJicnU6/XMzExUXFlAP3DqQ0AoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgm\nSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIE\nAFBMkAAAigkSAEAxQQIAKFZlkNhI8uqux89WWA8A0KL7K/zsbyU5neTf71j21YpqAQAKVBkkkuQr\nSV6uuAYAoFDVYyR+OskXkjyT5GNJjlRbDgDQiiqPSPx8kpUkX0ryA0n+ZZJ3JfmJCmsCAFrQ7iDx\nVJKFe7R5b5LVJOd2LLuWZqD45ST/dOv5HU6dOpWjR4/etmxubi5zc3OF5QLA4KjX66nX67ctu3nz\nZkc/8742b++tW4+7eT7J1/dY/vYkL6R5dOLqrvcmkqysrKxkYmLi0EXCbqurq5mcnIw+Bgya7d9v\nSSbT3JFvq3Yfkfji1qPEX9z6eqNNtQAAHVbVGIkfTPJIkqUkX04yleTnknwqyR9UVBMA0KKqgsTX\nkzye5niKN6Z5uuPpJP+qonoAgAJVBYln0jwiAQD0sarvIwEA9DFBAgAoJkgAAMUECQCgmCABABQT\nJBhqGxsbmZ+fz+OPP54kefzxxzM/P5+NjY1qCwPoE1VPIw6V2NzczOzsbNbW1tJoNP5k+fr6etbX\n13Px4sXUarUsLi5mZGSkwkoBepsgwdDZ3NzMyZMn89xzz+3bptFopNFoZHp6OsvLy8IEwD6c2mDo\nzM7O3jVE7LS+vp7Z2dkOVwTQvwQJhsr169eztrbW0jpra2vGTADsQ5BgqJw9e/a2MREH0Wg0cubM\nmQ5VBNDfBAmGytWrV7u6HsCgEyQYKrdu3erqegCDTpBgqBw5cqSr6wEMOkGCoTI1NVW03okTJ9pc\nCcBgECQYKgsLCxkdHW1pndHR0Zw+fbpDFQH0N0GCoTI2NpZardbSOrVaLWNjY50pCKDPCRIMncXF\nxYyPjx+o7fj4eC5cuNDhigD6lyDB0BkZGcny8nJmZmb2Pc0xOjqamZmZXL58OceOHetyhQD9Q5Bg\nKI2MjGRpaSlXrlzJE0888SdHKMbHx/PEE0/kypUrWVpaEiIA7sGkXQy1sbGxnD9/Pqurq5mcnMwn\nP/nJTExMVF0WQN9wRAIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAA\nxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBM\nkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJ\nAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQLH7qy4AqlKv11Ov15Mkr7zySt797nfnox/9aB544IEk\nydzcXObm5qosEaDnCRIMLUEB4PCc2gAAigkSAEAxQQIAKNapIPHPklxO8rUkX9qnzXcn+dUkX0ny\n+SQ/n+RIh+qBA9segAmdpq8xCDoVJI4kuZDk3+3z/uuT/Nck35ZkOslskh9J8m86VA8cmF/udIu+\nxiDo1FUbT219/fF93n80ycNJPpCksbXsHyf5xSQfS/MoBQDQ46oaI/FIkt/OayEiST6T5I1JJiup\nqIO6udfR7s86zPZaXfeg7Q/S7l5tBnVPUF9rb3t9bX/6Wnvb93NfqypIjCbZ3LXsS0m+sfXeQPED\n1972/fwD12n6Wnvb62v709fa276f+1orpzaeSrJwjzbvTbJ6wO3d18JnJ0meffbZVlfpCTdv3szq\n6kH/WXrrsw6zvVbXPWj7g7S7V5u7vd/N/69209fa215f25++1t72nexrnf7b2cof87duPe7m+SRf\n3/H6x5N8PMlbdrX750k+mOQ9O5a9JckXk/ylJJ/d1f7BJFeTvL2FegGApheTTCW50e4Nt3JE4otb\nj3a4kuYloiN57RTHo2mGkJU92t9I8x/gwTZ9PgAMkxvpQIjopO9O82jDQpI/TPIXtl6/aev91yX5\nX0l+Y2v5X07yf9O8lwQAMOR+McmrW49v7vj6/h1t3pHmDam+muQLSc7FDakAAAAAAAAAAO7lTyX5\nH0meSXItyd+rthwG2DuSXEryO0l+K8mPVloNg+5Xkvy/JP+56kIYWH8tyVqS30vytyuupVKvS/LA\n1vNvS/Jcku+qrhwG2GiSP7/1/LuSvJBmn4NO+KE0f9ELEnTC/Ul+N83bK7w5zTDxna1soKpbZHfC\nq0le2Xr+7Ulu7XgN7dRI8/LlJPl8mnuLLf3gQQs+GxMZ0jkn0jy6eiPNfvbf0ryv04ENUpBIkj+d\n5qHm7XtS/FG15TAE3pvmHWJfrLoQgAIP5fbfX3+QFu8iPWhB4stp3vzqXUl+Ksn3VFsOA+6tSX4p\nyYerLgSg0LcOu4Eqg8T707wh1Ytpnpb44B5tfjLJ9SR/nOQ3k7xvx3t/P82Blau580ZWL6c5GO49\ngc70tTcm+S9JfjbJ5zpSNf2oU7/XDv3LnoF12D73Um4/AvGO9NER1h9OcibJ30jzm39s1/s/lubc\nG/NJvi/Nyb/+KM1vci/HknzH1vPvSPMc9ve1t2T6VLv72n1J6kl+phPF0tfa3de2zcRgS/Z22D53\nf5oDLB9K8+rH38udE232hb2++f+e5N/uWva/09wD3MtEmkn+f249nmhngQyMdvS196V5y/fVNPvc\nM0n+XBtrZDC0o68lya+neZT1q2leITTZrgIZOKV97q+neeXG7yf5Ox2rrsN2f/NvSPOqi92HaM6l\necoCSulrdIu+RrdV0ud6dbDl25K8Pq9NMb7t5TSv4Yd20dfoFn2NbutKn+vVIAEA9IFeDRJfSPMc\n9Miu5SNp3jQD2kVfo1v0NbqtK32uV4PEN5Ks5M67a30gyeXul8MA09foFn2Nbhv4PvemNO/z8J40\nB4ic2nq+fUnK42lesvJEkofTvGTlD3Pvy6RgN32NbtHX6Lah7nMzaX7Tr6Z56GX7+fkdbT6S5k00\nXklyNbffRAMOaib6Gt0xE32N7pqJPgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPer/A8uW\ndHk1eJYWAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "\n", + "xscale('log'); ylim(-10,10)\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=10,color=\"black\")\n", + "\n", + "lag" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAFrCAYAAACE+GArAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAF6BJREFUeJzt3X+QnHd9H/C3wQJjaCr/wHe243COAJ+p1bp3yMRWhqrT\n2JOmiZ2ZdJy7lg7RpdgQ2o7SDhOgtWrkhjKQYmU6zWSc1kOmTFZyM6WBUlEyU4lJJZGKO6dF4COJ\n7HOIrT1jGyUFx7GK3T92FZ3Od9bt9/bZZ2/39ZrZub3nefZ5PveZ0+1b3+fZ75MAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAwMB4Z5LPJXkiyYtJ7li2/lPt5UsfR3pYHwCwTq+qcN8XJ3k4yfvb37+0bP1L\nSQ4kGV3y+LEK6wEAuuzCCvf9hfZjNRckeSHJUxXWAABUqMoRifN5KcmOJItJvpHkgSRvrLEeAKBP\nvZjk9mXL7kzyt5O8LcmPp3Ua5KtJXtPb0gCAUlWe2jifh5Y8/3qSryRZSPJ3knxmhe2vbD8AgM6c\nbD+6rs4gsVwzyR8lefMK66686qqrnnzyySd7XBIADIQnkmxLBWGin4LE5Umuyco/5JVPPvlkPv3p\nT+f666/vSTG7du3K3r17e7aPtWx7vm1WW7/S8rUs60YPOqHner6WbfRczzs17D1/5JFH8q53vevq\ntEb1N1SQeH2Styz5/geT3JjkmSTPJvlIkt9MayRiLMlHk3wrK5/WSJJcf/31mZiYqKjcc23evHnd\nx+pkH2vZ9nzbrLZ+peVrWdaNHnRCz/V8LdvouZ53Ss+r9eoK9709rQmm7k7rExo/2n5+SZL/muSf\nJPn5JB9I8iNJjiX5+2kFjeWuTHL33XffnSuv7N1lElu3bu3pPtay7fm2WW39SsvPt6zRaGR6evq8\nNXWTnuv5WrbRcz3v1DD3/OTJk3nggQeS1qcjuz4icUG3d1iRiSSzs7OzPU2xw+7222/PZz/72brL\nGCp63nt63nt63ltzc3OZnJxMkskkc93ef53zSAAAG5wgwap6PfSIntdBz3tPzweLUxsAMMCc2gAA\n+pYgAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACK\nCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJgg\nAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIA\nQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFqgwS70zyuSRP\nJHkxyR0rbHNve/1zSQ4meVuF9QAAXVZlkLg4ycNJ3t/+/qVl638hya72+m1Jmkl+O8kbKqwJAOii\nCyvc9xfaj5VckFaI+MUk/6W97N1JFpP8vSQPVFgXANAldV0jcW2SkSRfXLLshSRfSnJLLRUBAB2r\nK0iMtr8uLlv+1JJ1AECf68dPbSy/lgIA6FNVXiPxSprtryNLnq/0/Tl27dqVzZs3n7Nseno609PT\nXS8QADaaRqORRqNxzrJTp05VeswLKt37WS8m+ckkn11y3CeS3J/kE+1lr0nr1MYHkvzastdPJJmd\nnZ3NxMRE9dUCwICYm5vL5ORkkkwmmev2/qsckXh9krcs+f4Hk9yY5Jkk30yyN8mHk/xBkj9sP/9O\nkt+osCYAoIuqDBLbkvyP9vOXknyy/fxTSWaSfDzJ65L8SpJLknw5yW1JvlthTQBAF1UZJA7l/Bdz\nfqT9AAA2oH781AYAsEEIEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFB\nAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQA\ngGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAo\nJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKC\nBABQTJAAAIoJEgBAMUECAChWZ5C4N8mLyx5P1lgPANChC2s+/vEkP7Lk++/VVQgA0Lm6g8T3kjxV\ncw0AQKG6r5F4S5InkjyapJHk2nrLAQA6UWeQ+HKSf5DktiTvSTKa5EiSS2usCQDoQJ2nNr6w5PnX\nkhxNciLJu5PcX0tFAEBH6r5GYqnnknw1yZtX22DXrl3ZvHnzOcump6czPT1dcWkA0P8ajUYajcY5\ny06dOlXpMS+odO+deW1aIxK/muRfLVs3kWR2dnY2ExMTPS8MADaqubm5TE5OJslkkrlu77/OayR+\nKck707rA8h1JfjPJG5L8eo01AQAdqPPUxtVpfVLj8iTfSusaiR9K8s0aawIAOlBnkHBhAwBscHXP\nIwEAbGCCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFB\nAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAJAkWVhYyMzMTLZu3Zrx\n8fFs3bo1MzMzWVhYqLs0+tiFdRcAwOoWFhayZ8+eHDt2LKdPn86mTZuybdu27N69O2NjY105xuLi\nYqampjI/P59ms3nOuuPHj+fAgQMZHx/Pvn37MjIy0pVjMjgECYA+1Ks398XFxdxyyy159NFHV92m\n2Wym2Wxm+/btOXz4sDDBOZzaAOgzZ97cDx069LIQcUaz2cyhQ4eyffv2LC4uFh9ramrqFUPEUidO\nnMjU1FTxsRhMggRAn+nVm/tjjz2W+fn5jl4zPz/vmgnOIUgA9JFevrnfd999q454rKbZbGbPnj0d\nH4vBJUgA9JFevrkfO3as49es53UMJkECoI/08s399OnTRccqfR2DSZAA6CO9fHPftGlT0bFKX8dg\nEiQA+kgv39y3bdtWdKybbrqp6HUMJkECoI/08s199+7dGR0d7eg1o6Ojueeeezo+FoNLkADoI718\ncx8bG8v4+HhHrxkfH+/ajJoMBkECoI/0+s1937592bJly5q23bJlS/bv3190HAaXIAHQZ3r55j4y\nMpLDhw9nx44dq46EjI6OZseOHTly5EiuuOKK4mMxmNxrA6DPnHlzX+1eG0nrzX18fDz79+9f95v7\nyMhIDh482JMbhDF4BAmAPlTHm/vY2FgefPDBde1DGBk+ggRAH+vGm3svuBX58BIkAFgXtyIfbi62\nBGBd3Ip8uAkSABRzK3IECQCKuRU5ggQAxdyKHEECgGJuRY4gAUAxtyJHkACgWFV3K11YWMjMzEy2\nbt2a8fHxbN26NTMzMy7S7EPmkQCg2O7du3PgwIGOLrh8pbuVmthq4zEiAUCxbt6t9MzEVocOHVo1\nmDSbzRw6dCjbt2/P4uLieY9lZKN6RiQAWJd9+/Zl+/btOXHixHm3faW7lZZMbHXw4MEV1xvZ6B0j\nEgCsSzduRd7Nia2qGNlgdYIEAOt25m6lR48ezc6dO3PDDTfkuuuuyw033JCdO3fm6NGjOXjw4Kq3\nPO/mxFam7O6tfji18XNJPpBkNMnXkuxK8j9rrQiAIqV3K+3WxFbrGdmo+jbng3qL9bqDxE8nuT/J\n+5IcTvLeJAeSvC3JN2usC4Ae6tbEVusZ2ajqdu2Dfr1G3ac2/mmSf5/kwSTfSPLzaQWI99VZFAC9\n1a2Jrfptyu5huF6jziDxmiQTSb64bPkXk9zS+3IAqEu3Jrbqtym7h+F6jTqDxOVJXp1kefx6Kq3r\nJQAYErt37171Ex+rWWliq36asntYbrFe9zUSG8pzzyUd/k4AsCZjufrqn0iz+ZU1v+Lqq9+eZ58d\ny7PPnl127bU/lePHVwsF80n+bMU155uyu0Q/Xq9RhTqDxNNJvpdk+ZUlI0lOrvSCXbt2ZfPmzecs\nm56ezvT0dCUFLjc/n0xO9uRQAEPogY62np1d6W/yve3HSiaSPPyypa80Zfd61HG9RqPRSKPROGfZ\nqVOnive3FnUGiReSzCa5LclvLVl+a5LPrPSCvXv3ZmJiogelrWx8vPWLC0A1nnnmmXzoQx/KwsJC\nnnnm6Zetv+yyyzM2NpaPfexjufTSS1fcx1133ZXZ2ZVGNlYeUl5tyu71quN6jZX+cz03N5fJCv8X\nXPepjU8m+Y9JvpLky0nuSvL9SX61zqJWc/HFSY05BmAIXJZbb31gXXMufP7z93Vlyu716qfrNapU\nd5B4KMllSXYnuTLJV5P8WMwhATDUSie2Ss5O2b3a3A1J63TG+Ph49u/fv+psm0uVBJtt27bl+PHj\nHddfxfUaVbqg7gLWaCLJ7OzsbK2nNgDYWNY7m+QrTSaVnA0kK00mtbCwkJtvvrnjW6wfPXq0q6da\nlpzamEwy17Udt9U9IgEAlVnPyMaZyaReaR6IZrOZZrOZ7du35/Dhw+eEiTO3WO8kSFR1vUaV6p7Z\nEgD6Ujcmk9q3b1+2bNmypn1Ueb1GlQQJAFimW5NJdeMW6/1OkACAZbp5W/P13mK937lGAgCWqWIy\nqfVcr9HPjEgAwDL9dvOvfiZIAMAywzKZVDcIEgCwTLduaz4MBAkAWKZbtzUfBoIEACxzZjKpTmzE\nyaS6QZAAgBUMw2RS3SBIAMAKhmEyqW4wjwQArOLMZFLrvfnXIBMkAOA8BnUyqW5wagMAKCZIAADF\nBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQ\nAACKCRIAQDFBAgAoJkgAAMUECQCg2IV1FwDQK41GI41GI0ny/PPP5/HHH8+b3vSmXHTRRUmS6enp\nTE9P11kibDiCBDA0lgaFubm5TE5OptFoZGJioubKYONyagMAKCZIAADFBAkAoJggAQAUEyQAgGKC\nBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQLE6g8RCkheX\nPT5aYz0AQIcurPHYLyW5J8mvLVn23ZpqAQAK1BkkkuQ7SZ6quQYAoFDd10j8QpKnkzyc5MNJNtVb\nDgDQiTpHJH45yWySbyd5R5J/neTaJO+psSYAoAPdHpG4Ny+/gHL5Y6K97d4kv5PkeJL/kOS9SX42\nySVdrgkAqEi3RyT+bZLfOM82j6+y/HfbX9+c5NhKG+zatSubN28+Z9n09HSmp6c7qREABlKj0Uij\n0Thn2alTpyo9ZreDxDPtR4m/3v56crUN9u7dm4mJidVWA8BQW+k/13Nzc5mcnKzsmHVdI/FDSW5O\ncjDJnyTZluSTSX4ryR/XVBMA0KG6gsSfJ7kzye4kr03rdMcDST5eUz0AQIG6gsTDaY1IAAAbWN3z\nSAAAG5ggAQAUEySAobKwsJCZmZnceeedSZI777wzMzMzWVhYqLcw2KDqvtcGQE8sLi5mamoq8/Pz\naTabf7H8xIkTOXHiRA4cOJDx8fHs27cvIyMjNVYKG4sgAQy8xcXF3HLLLXn00UdX3abZbKbZbGb7\n9u05fPiwMAFr5NQGMPCmpqZeMUQsdeLEiUxNTVVcEQwOQQIYaI899ljm5+c7es38/LxrJmCNBAlg\noN13333nXBOxFs1mM3v27KmoIhgsggQw0I4dW/EegJW9DoaNIAEMtNOnT/f0dTBsBAlgoG3atKmn\nr4NhI0gAA23btm1Fr7vpppu6XAkMJkECGGi7d+/O6OhoR68ZHR3NPffcU1FFMFgECWCgjY2NZXx8\nvKPXjI+PZ2xsrJqCYMAIEsDA27dvX7Zs2bKmbbds2ZL9+/dXXBEMDkECGHgjIyM5fPhwduzYsepp\njtHR0ezYsSNHjhzJFVdc0eMKYeMSJIChMDIykoMHD+bo0aPZuXPnX4xQbNmyJTt37szRo0dz8OBB\nIQI65KZdwFAZGxvLgw8+mLm5uUxOTuahhx7KxMRE3WXBhmVEAgAoJkgAAMUECQCgmCABABQTJACA\nYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgm\nSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIE\nAFDswroLAOiVRqORRqORJHn++efz1re+NR/84Adz0UUXJUmmp6czPT1dZ4mw4QgSwNAQFKD7nNoA\nAIpVFST+eZIjSZ5L8u1VtvmBJJ9L8p0k30ryy0k2VVQPBc4MAdM7et57et57ej5YqgoSm5LsT/Ir\nq6x/dZLPJ3ldku1JppL8VJJ/U1E9FPCPvff0vPf0vPf0fLBUdY3Eve2vP7PK+tuSXJ/k1iTN9rJ/\nluRTST6c1igFANDn6rpG4uYkX83ZEJEkX0zy2iSTtVS0TDcScyf7WMu259tmtfUrLV/rsl7S897T\n897T897T82rVFSRGkywuW/btJC+019XOL17v6Xnv6Xnv6Xnv6Xm1Ojm1cW+S3efZ5u1J5ta4vws6\nOHaS5JFHHun0JcVOnTqVubm1/ijr38datj3fNqutX2n5WpZ1owed0HM9X8s2eq7nnRr2nlf93tnJ\nm/ll7ccreTzJny/5/meS3J/kkmXbfSTJHUluXLLskiTPJPmbSb60bPsrkxxLcnUH9QIALU8k2Zbk\nZLd33MmIxDPtRzccTesjoiM5e4rjtrRCyOwK259MqwFXdun4ADBMTqaCEFGlH0hrtGF3kj9N8tfa\n37++vf5VSf5Pkt9uL/9bSf4orbkkAIAh96kkL7Yf31vy9Z1LtrkmrQmpvpvk6SR7Y0IqAAAAAAAA\nAIC1+H9JHm4/Hqi5lmFycVof/f1E3YUMgb+U5H+l9Tt+PMk/qrecoXBNkkNJvpbkfyf5u7VWMzw+\nk+TZJP+p7kKGwI8nmU/y+0l+tuZaavetugsYUr+YZF+Sj9ddyBB4VZKL2s9fl+TRJG+sr5yhMJrk\nr7afvzHJN9PqPdX6G2m9wQkS1bowyTfSml7hDWmFiUs72UFdU2QzON6S5LokB1IwWykdezHJ8+3n\nFyc5veR7qtFM6+PqSes/K8+mwz+0FPlS3MCxF25Ka7TtZFr9/m9pzeu0ZoMWJL4vrSm6fyetNEv1\nPpHkg3UXMWT+clpD7GfmXvm/9ZYzVN6eVmB+ou5CoEuuyrm/z3+cDmeRHrQg8aYkE0nem+TX0woW\nVOeOtIbB/jBGI3rpT9Ka5O3aJO9P8uZ6yxkal6X1d+WuuguBLnppvTuoM0i8M60JqZ5Ia7j2jhW2\n+bkkjyX5syRfSfLDS9b947QuOJvL2YmsztyW/GtJvh5/YJfrds/fkWSqvf0nkrwnyb+oqPaNqorf\n8zOeSusiwBvDUlX0/LVJ/nOSjyb5ciVVb2xV/Z6v+01uCKy390/m3BGIa7KBRtx+NMmeJD+Z1g9/\n+7L1P53WvTdm0joHf39aQ7jXrLK/zWn9Y0+S70+y0F7GWd3u+VLvjk9trKTbPb8iZ0favi+tc/fX\ndbfkDa/bPb8gSSPJv6yi2AFR1d+WHXGx5fmst/cXpjWyfFVanwr7/bz8Rpsbwko//O8m+XfLln09\nrf8RrOTmtP6o/l5ayXb5/jhXN3q+1LvjUxvn042eT6T1+/177cfObhY4gLrR8x9Oa4r/uZz9ePlf\n6WKNg6Zbf1v+e1qjbt9N65Myk90qcICV9v4n0vrkxh8k+YeVVVex5T/8a9K6Gn35EM3etIZyWT89\n7z097z097z09r08tve/Xiy0vT/LqnL3F+BlPpfWZbrpPz3tPz3tPz3tPz+vTk973a5AAADaAfg0S\nT6d1TnJk2fKRtCbNoPv0vPf0vPf0vPf0vD496X2/BokXkszm5bNr3ZrkSO/LGQp63nt63nt63nt6\nXp+B7/3r0/r8+41pXSCyq/38zEdS7kzrIys7k1yf1kdW/jRr+ygiK9Pz3tPz3tPz3tPz+gx173ek\n9UO/mNbQy5nnDy7Z5n1pTaLxfJJjOXcSDTq3I3reazui5722I3reazui53XZEb0HAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAgD71/wF8BT6rbVvdQwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "s, loc, scale = lognorm.fit(lag,loc=.008)\n", + "\n", + "xscale('log'); ylim(-10,15)\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=10,color=\"black\")\n", + "plot(np.logspace(np.log(fqd[0]),np.log(fqd[-1])),lognorm.pdf(np.logspace(np.log(fqd[0]),np.log(fqd[-1])),s,loc,scale))\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(-0.10734722921479302, 2.5047796344038056)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAFrCAYAAACE+GArAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAFpJJREFUeJzt3X9snPd9H/C3Eytxm6xTaleknaVhxiY9d9CWkaFai0HM\nYY1bDKs9oINLAhlWa2u8tuugbdgaZBDryUMGDFujYthQuIPQYkGPytqldtGqS+FRGUYpm0p6Xd2Z\na0uLnmvr6CSN0uaHE8H2/jiypihS4n15d8/d8fUCDjo+932e50PpK/L9PM/3eb4JAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAyMDyT51SQvJHk1yQPbtHlk/fOvJplP8l3dKg4A2Ls3dHDb35zkqSQ/vv71\na1s+/8kkx9c/n0jSSPKbSd7awZoAgD70apL7N319S5LLSf7JpmVvSvLFJB/uYl0AwB508ozEjbwr\nyVCST29a9o0kn0lytJKKAICWVRUkhtf/XNuy/KVNnwEAPe7WqgvYxtaxFBvuXH8BAK25vP5qu6qC\nRGP9z6FN77f7esOdd91114svvvhixwsDgAH0Qpo3NrQ9TFQVJC6lGRjuS/Lb68velOTeXDsAc8Od\nL774Yj7xiU/k7rvv7lKJ7XP8+PGcOnWqL/e1l+21uu5u2++m3c3a3Ojzbv57tZu+1t72+trO9LX2\ntu9kX3vmmWfyoQ996O1pntXvqyDxliTv3vT1n0/y3iRfSPJ8klNJPprk95P8wfr7Lyf5xZ02ePfd\nd2dsbKxT9XbMwYMHu1Z3u/e1l+21uu5u2++m3c3a3Ojzbv57tZu+1t72+trO9LX2tu90X+ukN3Zw\n25NJzid5OM1xD9+//v5tSR5PspDktiQ/leQfJPlSkpkk212/uDPJww8//HDuvLM/h0kcPny4b/e1\nl+21uu5u2++m3c3a7PR5vV7PzMzMruroRfpae9vrazvT19rbvlN97fLly3nssceS5LF04IzELe3e\nYIeMJVlcXFzs2/RO/7j//vvzxBNPVF0G+4C+RjcsLS1lfHw8ScaTLLV7+1Xd/gkADABBArbo51PN\n9Bd9jUEgSMAWfrjTLfoag0CQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAA\nigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCY\nIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkS\nAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEA\nFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAx\nQQIAKCZIAADFBAkAoJggAQAUEyQAgGJVBolHkry65fVihfUAAC26teL9P53kezd9/UpVhQAAras6\nSLyS5KWKawAAClU9RuLdSV5I8mySepJ3VVsOANCKKoPEZ5P8rST3JfmRJMNJzif51gprAgBaUOWl\njd/Y9P53k1xIspLkbyf5eCUVAQAtqXqMxGZfTfI7Sb5jpwbHjx/PwYMHr1k2MzOTmZmZDpcGAL2v\nXq+nXq9fs+zKlSsd3ectHd16a96c5hmJn03yL7Z8NpZkcXFxMWNjY10vDAD61dLSUsbHx5NkPMlS\nu7df5RiJf53kA2kOsPzuJL+U5K1JfqHCmgCAFlR5aePtad6pcUeSz6U5RuJ7kjxfYU0AQAuqDBIG\nNgBAn6v6ORIAQB8TJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQ\nTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUE\nCQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAANndXU1x44dy+HDh1Or1XL48OEcO3Ys\nq6urVZcGA+fWqgsAaJe1tbVMT09neXk5jUbjms+efvrpnD17NrVaLXNzcxkaGqqoShgszkgAN9UP\nR/hra2s5evRozp07d12I2NBoNHLu3LlMTk5mbW2tyxXCYHJGAthRPx3hT09P59lnn91V25WVlUxP\nT2d+fr7DVcHgEySAbW0c4d/ol3Oj0Uij0cjk5GQWFhYqCxOXLl3K8vJyS+ssLy9ndXU1IyMjnSkK\n9gmXNoBtlRzhV+XRRx/d8XLGThqNRk6ePNmhimD/ECSA6+zlCL8KFy9e7Op6wOsECeA6/XaEf/Xq\n1a6uB7xOkACu029H+AcOHOjqesDrBAngOv12hD8xMVG03pEjR9pcCew/ggRwnX47wp+dnc3w8HBL\n6wwPD+fEiRMdqgj2D0ECuE6/HeGPjIykVqu1tE6tVnPrJ7SBIAFcpx+P8Ofm5jI6OrqrtqOjozlz\n5kyHK4L9QZAArtOPR/hDQ0NZWFjI1NTUjiFoeHg4U1NTOX/+fA4dOtTlCmEwebIlsK25ublMTk5m\nZWXlpm175Qh/aGgo8/PzWV1dzcmTJ3Px4sVcvXo1Bw4cyMTERGZnZ13OgDYTJIBtbRzh7zTXRtI8\nwq/Vajlz5kxPHeGPjIzk9OnTVZcB+4IgAezIET5wM4IEcFOO8IGdGGwJ0Carq6s5duxYDh8+nFqt\nlsOHD+fYsWOVzUEC3eCMBMAera2t7TiW5Omnn87Zs2dTq9UyNzdX2VTr0CmCBMAerK2t5ejRozec\ncr3RaKTRaGRycjILCwvCBAPFpQ2APZienr5hiNhsZWUl09PTHa4IukuQACh06dKlLC8vt7TO8vKy\nMRMMFEECoNCjjz667fM1bqTRaOTkyZMdqgi6T5AAKHTx4sWurge9SJAAKHT16tWurge9SJAAKHTg\nwIGurge9SJAAKDQxMVG03pEjR9pcCVRHkAAoNDs7u+OU5TsZHh7OiRMnOlQRdJ8gAVBoZGQktVqt\npXVqtZqJzhgoggTAHszNzWV0dHRXbUdHR3PmzJm27t/8HlTNI7IB9mBoaCgLCws7zrWRNC9n1Gq1\nnDlzJocOHWrLfs3vQa8QJAD2aGhoKPPz81ldXc3Jkydz8eLFXL16NQcOHMjExERmZ2fbejnD/B70\nEkECoE1GRkZy+vTpju+nZH6P+fn5ttbQrdBE7xMkAPrIXub3aMcveJdU2MpgS4A+UuX8HhuXVM6d\nO7djDY1GI+fOncvk5GTW1tb2vE96nyAB0EeqnN/DlOlspxeCxI8luZTka0l+K8n7qy0HoHdVNb/H\nfp4y3S22N1b1GIkfSvLxJD+aZCHJ30tyNsl3JXm+wroAelJV83vs5ZJKNwagdoLxILtTdZD4R0n+\nQ5KNXvYPk3xfmsHio1UVtV888UTyyitVVwFsuOWWm7c5dOjDSZ5sedtDQ9+bX/mV1va1ue2TT74l\nyQ9s+eS/JvnKDdft1ynT3WK7e1UGiTclGUvysS3LP53kaPfL2X+mp5Ovfa3qKoDW/MT6qzVPPtl8\nlfu32yx7d5I/uOFa/Tplei/cYtsvqgwSdyR5Y5Ktw3pfStLaLDgUed7FI+hLDzzwQBYW/vuWpTuf\nYjh6dDKPP/74Tbf72ms7L7v33nuzvPzMlk//6Kbb7Mcp06u+xbbfVH1pgwrdfnvVFQAlfvmXH8vk\n5GRWVlZu2nZ0dDSf+tTP5Y479rbPe+4ZzfLyf2t5vX6cMn0/jgfZiyqDxOeTvJJk60WloSSXt1vh\n+PHjOXjw4DXLZmZmMjMz05ECAXpRFfN7zM7O5uzZsy39gu3XKdOrvMV2r+r1eur1+jXLrly50tF9\nVhkkvpFkMcl9STafc/tgkk9tt8KpU6cyNjbWhdIAelu35/fYmDK9lSDRr1OmV3WLbTtsd3C9tLSU\n8fHxju2z6ksbP53kP6b5/IjPJvlwkj+X5GerLAqgX3Rrfo+kOWV6K5dU2j1lerdUdYttv6r6gVSf\nTHI8yWySp9J8GNVfi2dIAPScjUsqU1NTGR7efkz88PBwpqamcv78+bZNmd5tExMTRev143iQdmjh\nTuJKjSVZXFxcdGkDoAcM8uyfq6urueeee1oeD3LhwoWe/N43XdoYT7LU7u1XfWkDgD7UzUsq3baf\nxoO0Q9WXNgBgV7o558Xc3FxGR0d31bafx4O0gzMSAPS0Kua8qOIW234lSADQs6qc86Lbt9j2K0EC\ngJ7VC3NeDPJ4kHYwRgKAnrSXOS/oHkECgJ60lzkv6B5BAoCe1M9zXuwnggQAPamf57zYTwQJAHqS\nOS/6gyABQE8y50V/ECQA6Emzs7M7Tg62k+Hh4Zw4caJDFbEdQQKAnrQx50Ur9vOcF1URJADoWea8\n6H2CBAA9a2POi6mpqR0vcwwPD2dqairnz5/f13NeVMUjsgHoaea86G2CBAB9wZwXvcmlDQCgmCAB\nABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBA\nMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCg2K1VFwBV\nqdfrqdfrSZKXX345zz33XN75znfmtttuS5LMzMxkZmamyhIBep4gwb61OSgsLS1lfHw89Xo9Y2Nj\nFVcG0D9c2gAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgm\nSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYlUG\nidUkr255fazCegCAFt1a4b5fS3Iiyc9tWvaVimoBAApUGSSS5MtJXqq4BgCgUNVjJH4yyeeTPJXk\no0kOVFsOANCKKs9I/EySxSRfTPLdSf5lkncl+ZEKawIAWtDuIPFIktmbtHlfkqUkpzYtezrNQPFL\nSf7p+vvrHD9+PAcPHrxm2czMTGZmZgrLBYDBUa/XU6/Xr1l25cqVju7zljZv7/b11408l+Tr2yx/\ne5Ln0zw7cXHLZ2NJFhcXFzM2NrbnImGrpaWljI+PRx8DBs3Gz7ck42keyLdVu89IfGH9VeIvr/95\nuU21AAAdVtUYie9Jck+S+SRfSjKR5KeTPJ7kDyuqCQBoUVVB4utJHkxzPMWb07zc8ViSf1VRPQBA\ngaqCxFNpnpEAAPpY1c+RAAD6mCABABQTJACAYoIEAFBMkAAAigkS7Gurq6s5duxYHnzwwSTJgw8+\nmGPHjmV1dbXawgD6RNXTiEMl1tbWMj09neXl5TQajT9dvrKykpWVlZw9eza1Wi1zc3MZGhqqsFKA\n3iZIsO+sra3l6NGjefbZZ3ds02g00mg0Mjk5mYWFBWECYAcubbDvTE9P3zBEbLayspLp6ekOVwTQ\nvwQJ9pVLly5leXm5pXWWl5eNmQDYgSDBvvLoo49eMyZiNxqNRk6ePNmhigD6myDBvnLx4sWurgcw\n6AQJ9pWrV692dT2AQSdIsK8cOHCgq+sBDDpBgn1lYmKiaL0jR460uRKAwSBIsK/Mzs5meHi4pXWG\nh4dz4sSJDlUE0N8ECfaVkZGR1Gq1ltap1WoZGRnpTEEAfU6QYN+Zm5vL6OjortqOjo7mzJkzHa4I\noH8JEuw7Q0NDWVhYyNTU1I6XOYaHhzM1NZXz58/n0KFDXa4QoH8IEuxLQ0NDmZ+fz4ULF/LQQw/9\n6RmK0dHRPPTQQ7lw4ULm5+eFCICbMGkX+9rIyEhOnz6dpaWljI+P55Of/GTGxsaqLgugbzgjAQAU\nEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFB\nAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQA\ngGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAo\nJkgAAMUECQCg2K1VFwBVqdfrqdfrSZKXX34573nPe/KRj3wkt912W5JkZmYmMzMzVZYI0PMECfYt\nQQFg71zaAACKCRIAQDFBAgAo1qkg8c+SnE/y1SRf3KHNtyf51SRfTvK5JD+T5ECH6oFd2xiACZ2m\nrzEIOhUkDiQ5k+Tf7/D5G5P8WpJvSjKZZDrJDyb5Nx2qB3bND3e6RV9jEHTqro1H1v/84R0+vy/J\n3Uk+mKSxvuwfJ/n5JB9N8ywFANDjqhojcU+S38nrISJJPp3kzUnGK6mog7p51NHufe1le62uu9v2\nu2l3szaDeiSor7W3vb62M32tve37ua9VFSSGk6xtWfbFJN9Y/2yg+A/X3vb9/B+u0/S19rbX13am\nr7W3fT/3tVYubTySZPYmbd6XZGmX27ulhX0nSZ555plWV+kJV65cydLSbv9aemtfe9leq+vutv1u\n2t2szY0+7+a/V7vpa+1tr6/tTF9rb/tO9rVO/+5s5Zf57euvG3kuydc3ff3DST6e5G1b2v3zJA8k\nee+mZW9L8oUkfyXJZ7a0vzPJxSRvb6FeAKDphSQTSS63e8OtnJH4wvqrHS6keYvoUF6/xHFfmiFk\ncZv2l9P8C7izTfsHgP3kcjoQIjrp29M82zCb5I+T/KX1r9+y/vkbkvzvJL+5vvyvJvl/aT5LAgDY\n534+yavrr1c2/fmBTW3ekeYDqb6S5PNJTsUDqQAAAAAAAAAAbubPJPmfSZ5K8nSSv19tOQywdyQ5\nl+R3k/x2kr9ZaTUMuk8l+aMk/6nqQhhYfz3JcpLfS/J3Kq6lUm9Ictv6+29K8mySb6uuHAbYcJK/\nuP7+25I8n2afg064N80f9IIEnXBrkv+b5uMV3ppmmPjWVjZQ1SOyO+HVJC+vv//mJFc3fQ3t1Ejz\n9uUk+VyaR4st/ceDFnwmJjKkc46keXb1cpr97NfTfK7Trg1SkEiSP5vmqeaNZ1L8SbXlsA+8L80n\nxL5QdSEABe7KtT+//jAtPkV60ILEl9J8+NW7kvx4ku+othwG3O1JfiHJh6suBKDQa3vdQJVB4gNp\nPpDqhTQvSzywTZsfS3IpydeS/FaS92/67CfSHFi5lOsfZPVSmoPh3hvoTF97c5L/nORjST7bkarp\nR536ubbnH/YMrL32uRdz7RmId6SPzrB+f5KTSf5Gmt/8/Vs+/6E05944luQ705z860/S/Ca3cyjJ\nt6y//5Y0r2F/Z3tLpk+1u6/dkqSe5Kc6USx9rd19bcNUDLZke3vtc7emOcDyrjTvfvy9XD/RZl/Y\n7pv/H0n+3ZZl/yfNI8DtjKWZ5P/X+uuhdhbIwGhHX3t/mo98X0qzzz2V5C+0sUYGQzv6WpL8lzTP\nsn4lzTuExttVIAOntM/9QJp3bvx+kr/bseo6bOs3/6Y077rYeormVJqXLKCUvka36Gt0WyV9rlcH\nW96R5I15fYrxDS+leQ8/tIu+Rrfoa3RbV/pcrwYJAKAP9GqQ+Hya16CHtiwfSvOhGdAu+hrdoq/R\nbV3pc70aJL6RZDHXP13rg0nOd78cBpi+Rrfoa3TbwPe5t6T5nIf3pjlA5Pj6+41bUh5M85aVh5Lc\nneYtK3+cm98mBVvpa3SLvka37es+N5XmN/1qmqdeNt6f3tTmR9N8iMbLSS7m2odowG5NRV+jO6ai\nr9FdU9HnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBH/X//XpF0eK1cpgAAAABJRU5ErkJg\ngg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "loc, scale = norm.fit(lag,loc=.01)\n", + "\n", + "xscale('log'); ylim(-10,10)\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=10,color=\"black\")\n", + "plot(np.logspace(np.log(fqd[3]),np.log(fqd[-1])),norm.pdf(np.logspace(np.log(fqd[0]),np.log(fqd[-1])),loc,scale))\n", + "\n", + "norm.fit(lag,loc=.01,scale=.1)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhEAAAFkCAYAAACemWn9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XecXHW9//HXptJJIISEHkJLhh9lA9IUBC5gQwLqxaWo\n1J+ASEBCU3oTpETKBUWkyirqRQQR8F68KlKuJoI4SSCFEogQKQk1CUnm98dn5pfNsnV2zpwzM6/n\n43Eemz17ZubDsDvznnO+n+8XJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSpMw7Hnge\n+AD4K/DxHt5uN2AJ8LeE6pIkSRl2MLAIOBLYErgaeAfYsJvbDQFmAQ8CU5IsUJIkla8pwft+kjj7\ncEKbfVOBXwFndXG7nwLPAsuA8cD2SRUoSZLK1y+h+x0ENAMPt9v/MLBrF7c7AtgEOJ9kA44kSeqj\nAQnd7zCgP/Bau/3zgBGd3GZz4FJi3MSyHj7OyOImSZJ655/FrWxJhYje6g/cBZwLzOzhbUaut956\nc+fOnZtcVZIk1a9XgB3pQ5BIKkS8DiwF1m23f106LnZ1YBywHXBdcV8/4pLGh8A+wP+0u83IuXPn\ncueddzJmzJgKlV2bJkyYwKRJk9IuIxN8LoLPw3I+F8HnYTmfC5g2bRqHHXbY+sTZ/MyFiMXAZGBf\n4N42+/cB7ung+AXA1u32nQDsBXwBeKGzBxozZgzNzc19qbXmDRkypOGfgxKfi+DzsJzPRfB5WM7n\nonKSvJxxFXAH0aHxBHAssAFwY/HnlwLrAV8FCkTnRlv/AhZ2sF+SJGVAkiHibmBt4BzidMkzwGeA\nOcWfj6DrOSMKxU2SJGVQ0gMrbyhuHTmim9ueX9wkSVIGJTVPhKqopaUl7RIyw+ci+Dws53MRfB6W\n87monFqe0KkZmDx58mQHyEiS1AtTpkxh3LhxEJ2RZS8x4ZkISZJUFkOEJEkqiyFCkiSVxRAhSZLK\nYoiQJEllMURIkqSyGCIkSVJZDBGSJKkshghJklQWQ4QkSSqLIUKSJJXFECFJkspS8yHi179OuwJJ\nkhpTzYeIiy+GJ55IuwpJkhpPzYeIXA4OOgjmzk27EkmSGkvNh4jLL4d+/SJILFyYdjWSJDWOmg8R\nw4bBr34FTz0Fxx0HhULaFUmS1BhqPkQA7LAD3HQT3HorXHtt2tVIktQYBqRdQKUcfnicjTjllBgn\nsffeaVckSVJ9q4szESWXXQZ77QX//u/w/PNpVyNJUn2rqxAxYAD89KcwZAiMHw/vvpt2RZIk1a+6\nChEAa60F994Ls2bBEUc40FKSpKTUXYgA2HpruOMO+MUv4JJL0q5GkqT6VJchAuDAA+Hcc+E734H7\n7ku7GkmS6k/dhgiAc86JsRGHHgrTpqVdjSRJ9aWuQ0S/fnD77bDRRnDAATB/ftoVSZJUP+o6RACs\nvnoMtHz9dWhpgaVL065IkqT6UPchAmD0aPjZz+Dhh+Hb3067GkmS6kNDhAiAffaJxbouuwxaW9Ou\nRpKk2lc30173xCmnxNTYRx0FW24Jzc1pVyRJUu1qmDMRAE1N8MMfxtoa48fDvHlpVyRJUu1qqBAB\nsPLKcM89sHgxfPGL8VWSJPVew4UIgA02gF/+Ep54AiZMSLsaSZJqU0OGCIDddoPrroMbboCbbkq7\nGkmSak9DDaxs79hjY6DlCSfA2LERLCRJUs807JmIkkmTYOed4QtfgJdfTrsaSZJqR8OHiEGDYrXP\nQYNi0a4PPki7IkmSakPDhwiA4cPhV7+CfD4ucRQKaVckSVL2GSKKmpvh5pvhzjvh6qvTrkaSpOyr\nRog4Hnge+AD4K/DxLo49CPgdMA9YADwG7Jt0gSUtLXDaaTBxYqyzIUmSOpd0iDgYuBq4ENgO+BPw\nW2DDTo7/BPAQ8GmgGXgEuK9426q45BLYd1/48pdh5sxqPaokSbUn6RBxCvAj4MfAs8DJwBzguE6O\nPxm4ApgMzAK+A8wA9k+4zv+vf3+46y4YNgwOOADeeadajyxJUm1JMkQMIs4mtL8w8DCwaw/vox+w\nOvBGBevq1tChcO+9MGcOfOUrsGxZNR9dkqTakGSIGAb0B15rt38eMKKH9/EtYBXg7grW1SNjxsBP\nfhJh4sILq/3okiRlX5ZnrGwBzgU+D7ze2UETJkxgyJAhK96wpYWWlpY+F7D//nDBBXD22bDNNjGP\nhCRJtaS1tZXW1tYV9s2fP78i991UkXvp2CDgPeCLwL1t9n8f2AbYs4vbHkyMo/giMRCzI83A5MmT\nJ9Pc3Nz3ajtRKMCXvgQPPQSPPw5bb53YQ0mSVBVTpkxh3LhxAOOAKeXeT5KXMxYTAyTbt2juQ7Ru\ndqYFuAX4Mp0HiKppaoJbb4VRo2Kg5Ztvpl2RJEnZkHR3xlXA0cARwBii3XMD4Mbizy8Fbmtz/CHA\n7cRYiL8QYydGAGskXGeXVlstxkbMnx+tn0uWpFmNJEnZkHSIuBuYAJwD/I2YaOozRJsnREBoO2fE\nMcWargfmttkmJVxnt0aNgrvvhkcegdNPT7saSZLSV42BlTcUt44c0e77rsZJpG7vveHKK2HCBNhu\nOzj88LQrkiQpPVnuzsikb34TnnoKjjkm2kB32CHtiiRJSocLcPVSUxPccANsuy2MHw+vvpp2RZIk\npcMQUYaVVoJ77oGlS+HII9OuRpJUKwqFOIt9661pV1IZhogyrbderPj5+99HmJAkqTvz5sH06bBG\nqj2HlWOI6IOtt4aFC2H27LQrkSTVgnw+vo4dm24dlWKI6INcLr6WfikkSepKPg+DBsFmm6VdSWUY\nIvpg5EgYMsQQIUnqmXwettwSBtRJb6Qhog+amuJshCFCktQT+fzys9j1wBDRR4YISVJPFAqGCLWT\ny8VIW9fTkCR15dVX4a23DBFqI5eDxYth1qy0K5EkZVnprLUhQv9f6Zdh6tR065AkZVs+D4MHw+jR\naVdSOYaIPlp3XVhrLcdFSJK6ls/DVltB//5pV1I5hog+skNDktQT9TaoEgwRFWGIkCR1pR47M8AQ\nURG5HDz7rB0akqSOzZ0LCxYYItSBUofGzJlpVyJJyqLS4HtDhD7CNTQkSV3J52GllWDUqLQrqSxD\nRAUMHw7DhhkiJEkdy+dhzJj66swAQ0TFOLhSktSZehxUCYaIihk71hAhSfqoeu3MAENExeRy8Nxz\n8OGHaVciScqSV16Bt982RKgLuVwEiBkz0q5EkpQlpbPUY8emW0cSDBEVYoeGJKkj+TysvHL9dWaA\nIaJi1lknNkOEJKmtUmdGvzp8x63D/6T02KEhSWqvXgdVgiGiogwRkqS2CoWYrdIQoW7lcjGwcvHi\ntCuRJGXBnDnwzjuGCPVALheLcD33XNqVSJKyoHR22hChbtmhIUlqK5+HVVaBjTdOu5JkGCIqaO21\nYd11l6/WJklqbPl8zA9Rj50ZYIioOAdXSpJK6rkzAwwRFWeIkCQBLFtW350ZYIiouFKHxqJFaVci\nSUrTnDnw3nuGCPVCLgdLl9qhIUmNrt47M8AQUXF2aEiSIN4HVlsNNtoo7UqSY4iosKFDYeRIQ4Qk\nNbpSZ0ZTU9qVJMcQkQAHV0qS6r0zAwwRiTBESFJja4TODDBEJCKXg5kzYeHCtCuRJKXhxRfh/fcN\nEX11PPA88AHwV+Dj3Ry/BzC5ePws4P8mWl1Cxo6NFPrss2lXIklKQ+ls9Nix6daRtCRDxMHA1cCF\nwHbAn4DfAht2cvwo4AHgD8XjLwGuAQ5KsMZE2KEhSY0tn4fVV4cNO3vHqxNJhohTgB8BPwaeBU4G\n5gDHdXL814EXird7Fri5eNtTE6wxEUOGwHrrGSIkqVE1QmcGJBciBgHNwMPt9j8M7NrJbXbp5Pgd\ngP4Vra4KHFwpSY2rETozILkQMYx443+t3f55wIhObrNuB8e/Bgwo3l9NMURIUmNatgymTTNEqA9y\nOZg1Cz74IO1KJEnV9Pzz8drfCCFiQEL3+zqwlDi70Na6wD87uc2rfPQsxbrAkuL9dWjChAkMGTJk\nhX0tLS20tLT0pt6Ky+WgUIDp02H77VMtRZJURVlbM6O1tZXW1tYV9s2fP78i951UiFhMtGruC9zb\nZv8+wD2d3OZxYP92+/YF/kIEkg5NmjSJ5ubm8itNSKmtJ583REhSI8nnYY01YP31064kdPTBesqU\nKYwbN67P953k5YyrgKOBI4AxRLvnBsCNxZ9fCtzW5vgbgY2BK4vHH1ncrkiwxsSsuSZssIHjIiSp\n0ZQGVdZ7ZwYkdyYC4G5gbeAcYCTwDPAZos0T4tJF2w7aF4o/vxo4AXgFOJHOz1xknoMrJanx5POw\nww5pV1EdSYYIgBuKW0eO6GDfH4G+n1/JiFwO7r23++MkSfVh6dIYC/fVr6ZdSXXYnZGgXA5mz475\n0yVJ9e/552PdpKwMqkyaISJBbTs0JEn1L2udGUkzRCSobYeGJKn+5fOx9MHIkWlXUh2GiAStvjps\ntJEhQpIaRSN1ZoAhInF2aEhS42iUNTNKDBEJM0RIUmModWYYIlQxuVyM1n3vvbQrkSQladYsWLTI\nEKEKKv0yTZuWbh2SpGSVzjqXBtU3AkNEwsaMia9e0pCk+pbPw9ChMKL9UpJ1zBCRsNVWg403NkRI\nUr1rtM4MMERUhYMrJan+NVpnBhgiqsIQIUn1bckSePZZQ4QSkMvBiy/Cu++mXYkkKQkzZ8LixYYI\nJaD0SzV1arp1SJKS0WhrZpQYIqrADg1Jqm/5PKy9NgwfnnYl1WWIqIJVV4VRowwRklSvGrEzAwwR\nVePgSkmqX43YmQGGiKoxREhSffrwQ3juOUOEEpTLwZw58PbbaVciSaqkmTMjSBgilBjX0JCk+tSo\nnRlgiKiarbaKATde0pCk+pLPwzrrxNZoDBFVssoqsOmmhghJqjeNOqgSDBFV5eBKSao/hghVhSFC\nkurL4sWN25kBhoiqyuXg5ZdhwYK0K5EkVcKMGbH4liFCiXMNDUmqL6Wzy2PHpltHWgwRVbTVVtCv\nn5c0JKle5POxXsawYWlXkg5DRBWttBKMHm2IkKR60ciDKsEQUXUOrpSk+mGIUFWNHWuIkKR6sGhR\nDKw0RKhqcjmYOxfmz0+7EklSXzz3HCxdaohQFZV+2TwbIUm1rZHXzCgxRFTZllvaoSFJ9SCfhxEj\nYK210q4kPYaIKltpJdhsM0OEJNW6Rh9UCYaIVNihIUm1b+pUQ4QhIgWGCEmqbYsWwcyZhghDRApy\nOXj1VXjzzbQrkSSV49ln7cwAQ0Qq7NCQpNpmZ0YwRKRgiy2gf38X4pKkWpXPw3rrwZAhaVeSLkNE\nCgYPhs0390yEJNUqOzOCISIlDq6UpNpliAhJhoihwB3A/OJ2O7BmF8cPAC4D/g68C7wC3AaMTLDG\n1BgiJKk2LVwIs2YZIiDZEHEXsA2wH/ApYDsiVHRmVWB74ILi14OALYBfJ1hjanI5eO01eOONtCuR\nJPXG9OmwbJkhAuLTfxLGEOFhJ+AvxX3HAI8TweC5Dm6zANi33b4Tgf8FNgBeTqTSlLTt0Nh993Rr\nkST1XOks8pgx6daRBUmdidiFCAV/abPvyeK+XXpxP0OAAnE5pK5svjkMGOAlDUmqNfk8rL++nRmQ\nXIgYAczrYP+84s96YiXgu8BPiDESdWXQoGj1NERIUm1xUOVyvb2ccR5wTjfH7FheKSsYCPy0+O/j\nuzpwwoQJDGkXB1taWmhpaalAGclycKUk1Z58Hj7/+bSr6LnW1lZaW1tX2Dd/fmVO8Pc2RFxLDJjs\nyovAtsDwDn42HHi1m9sPBO4GNgb2opuzEJMmTaK5ubmbu8ymXA6uvz7tKiRJPfX++zB7dm2diejo\ng/WUKVMYN25cn++7tyHijeLWnceJds4dWT4uYqfivse6uF0pQIwG9gTe6mV9NSWXg3/9K7Z11km7\nGklSd6ZPh0KhtkJEkpIaEzENeBC4iQgPOxf/fR8wo81x04HxxX8PBH4BjAMOK34/orgNTKjOVLmG\nhiTVltLr9dix6daRFUnOE3EI8AzwMPAQ8BRweLtjtgDWKP57fWD/4tengLnF7RV619FRMzbbDAYO\nNERIUq3I52HDDWGNNbo/thEkNU8ERFtm+9DQXtsQ8wINNg33wIF2aEhSLZk61UsZbTXUm3YW2aEh\nSbXD9s4VGSJSVgoRhULalUiSuvL++/D884aItgwRKcvlYv2MeR1NzSVJyoxp0+zMaM8QkTI7NCSp\nNtiZ8VGGiJRttllMgW2IkKRsy+dh441htdXSriQ7DBEpGzAAttzSECFJWeegyo8yRGRALhdtQ5Kk\n7DJEfJQhIgPs0JCkbHv3XXjhBUNEe4aIDMjl4M034bXX0q5EktSRadPiqyFiRYaIDLBDQ5KyrfT6\nvNVW6daRNYaIDBg9GgYPNkRIUlbl87DJJnZmtGeIyID+/SPdGiIkKZscVNkxQ0RGuIaGJGWXIaJj\nhoiMsENDkrLpnXfgpZcMER0xRGRELgfz58M//5l2JZKktkrz+BgiPsoQkRF2aEhSNuXz0NQEY8ak\nXUn2GCIyYtQoWGklQ4QkZU0+H6/Rq6ySdiXZY4jIiP79I+UaIiQpW6ZO9VJGZwwRGTJ2rCFCkrLG\nzozOGSIyxA4NScqWt9+GOXMMEZ0xRGRILhe/sK+8knYlkiSwM6M7hogMsUNDkrIln4d+/VwzozOG\niAwZNQpWXtkQIUlZkc/DppvGa7M+yhCRIf362aEhSVnioMquGSIyxjU0JCk7DBFdM0RkTC4XA3ns\n0JCkdM2fHwPdDRGdM0RkTC4Xi728/HLalUhSY7Mzo3uGiIyxQ0OSsqHUmbHllmlXkl2GiIzZeOOY\nn90QIUnpyudh9OhY10gdM0RkTL9+Tn8tSVngoMruGSIyyA4NSUqfIaJ7hogMskNDktL11lvwz38a\nIrpjiMigXA7efRdeeintSiSpMZXOBhsiumaIyCA7NCQpXfk89O9vZ0Z3DBEZtNFGsNpqhghJSsvU\nqbDZZjB4cNqVZJshIoOamuzQkKQ0OaiyZwwRGWWHhiSlxxDRM4aIjCp1aCxblnYlktRY3nwTXn3V\nENEThoiMGjsW3n8fXnwx7UokqbHYmdFzhoiMskNDktKRz8OAAbDFFmlXkn2GiIzacENYfXVDhCRV\nWz4Pm28OgwalXUn2JRUihgJ3APOL2+3Amr24/Y3AMuCkypdWG+zQkKR0OKiy55IKEXcB2wD7AZ8C\ntiNCRU8cCOwEzAUaeuJnOzQkqfoMET2XRIgYQ4SHo4EngSeAY4DPAd1dYVofuAY4BPgwgdpqSi4H\n06bZoSFJ1fL66zBvniGip5IIEbsAC4C/tNn3ZHHfLt3UcgdwOTAtgbpqTi4HH3wAzz+fdiWS1Bjs\nzOidJELECGBeB/vnFX/WmdOBxcC1CdRUk0q/xFOnpluHJDWKUmfGZpulXUltGNCLY88DzunmmB3L\nrGMc8E2gud3+pu5uOGHCBIYMGbLCvpaWFlpaWsosJTvWXx/WWCN+qfffP+1qJKn+5fPR2llPnRmt\nra20trausG/+/PkVue9u36TbWLu4deVF4FDgSqJDo623gAnAbR3cbkLxNm2v/vcvfv8SsGkHt2kG\nJk+ePJnm5vbZo37suiuMHg139HRYqiSpbJ/8JAwfDnffnXYlyZoyZQrjxo2D+BA/pdz76c2ZiDeK\nW3ceJ9o5d2T5uIidivse6+Q2twMPt/m+CXiouP+WXtRYd3I5mDw57SokqTHk87DnnmlXUTuSGBMx\nDXgQuIkIDzsX/30fMKPNcdOB8cV/vwlMbbPlie6MV9vdpuGUOjSWLk27Ekmqb/PmRXeGgyp7Lql5\nIg4BniHOLjwEPAUc3u6YLYA1Enr8upHLwcKFdmhIUtLszOi93lzO6I35fDQ0tNddgBlVoVpqWts1\nNBwtLEnJmToVBg70tbY3XDsj40aOhCFDnLlSkpKWz8OWW0aQUM8YIjKuqcnpryWpGpzuuvcMETXA\nECFJySoUDBHlMETUgFwOpk+3Q0OSkjJvHrzxhiGitwwRNSCXg0WLYNastCuRpPpkZ0Z5DBE1oG2H\nhiSp8vL5mOp69Oi0K6kthogasO66MHSoIUI989578I9/pF1FNvztb7B4cdpVqBbk87DVVrH4lnrO\nEFED7NBQbxx5JGy/PTz3XNqVpOvRR6G5Gc48M+1KVAscVFkeQ0SNMESoJ/74x1g4aMAAmDgx7WrS\ns2wZTJgAK60E11wDzz6bdkXKMjszymeIqBG5XLwQLlmSdiXKqqVL4aST4GMfg1tugV//Gv7rv9Ku\nKh233x4L191/P2ywAXzrW2lXpCx79VV46y1DRDkMETUil4truzNnpl2JsuqWW+Cpp2DSJDj4YNht\nNzj55MYLnu++G5cwDj4Y9t4brrgCfvMbePDBtCtTVtmZUT5DRI2wQ0NdWbAAzjoLDj0UdtklxtFM\nmhQDLG+6Ke3qquvSS2H+fLjssvj+oINgjz0iUH34Ybq1KZvyeRg8GDbdNO1Kao8hokYMHw5rr22I\nUMcuuii6Mr773eX7dtgBvvY1OPvseFNtBC+8AFdeCaeeChtvHPtKgeq55+CGG1ItTxlV6szo3z/t\nSmqPIaJGlDo0pk5NuxJlzYwZ8P3vwxlnxPX/ti6+OJaSv/DCdGqrttNOg7XWgtNPX3H/dtvB0UfD\nuefC66+nU5uyy0GV5TNE1BA7NNSRb30rVns99dSP/my99WJ8wDXX1H/L55/+BD//eVzOWG21j/78\nootiFP6551a/NmWXnRl9Y4ioIaUODa/rquThh+G+++B734OVV+74mFNOgfXX7zhk1ItSS+cOO8Dh\nh3d8zDrrwDnnwI03wjPPVLc+ZdfcuTGmyBBRHkNEDcnlIkDYoSGI34WTT4ZPfAK+9KXOj1t5Zbj8\n8ggbv/td9eqrpttugylTYuxDvy5e1b7xDdhsswgchUL16lN22ZnRN4aIGmKHhtq68UaYNi3GQzQ1\ndX3sl74EH/94fbZ8vvNOdKZ8+cvR1tqVQYPgqqvgkUfg3nurU5+yberUmJRs1Ki0K6lNhogass46\nsRki9MYbcW3/qKNiiuvulDoUpk6tv5bP9i2d3fnMZ+BTn4qxJIsWJVubsi+fhzFj7MwolyGixji4\nUhABYsmSGCzYU+PGLW/5fOutxEqrquefjzMLEyfCRhv17DZNTXGbF1+MYKXG5qDKvjFE1BhDhP7x\nj7iUcc45scJrb9Rby+dpp8X8Kaed1rvbjRkT4yMuuiimPFZjsjOj7wwRNSaXi1Y9lzduTIVCjGsY\nNQq++c3e337kyBg/cO21tb8o1R//CL/4Rectnd0599yYpfCssypfm2rDK6/A228bIvrCEFFjcrk4\njT1jRtqVKA333ReLal11VQwSLEc9tHwuXRodFjvuCIcdVt59DB0aZ2RuvRX++teKlqcaYWdG3xki\naowdGo1r0aIIAPvsA5/7XPn3s9JKMa/E/ffHPBO16Lbb4G9/676lszvHHBN/U7Z8NqZ8HlZZBTbZ\nJO1KapchosasvXZcBzdENJ5rrom1Ia6+uvuWzu588Ysxv0QttnyWWjpbWmDXXft2XwMGRBD585/h\nZz+rTH2qHaXOjL4E0UbnU1eDHFzZeF57LU69H3dcZU69llo+p02DH/6w7/dXTZdcEtex2y421hd7\n7w3jx0eHx/vvV+Y+VRscVNl3hogaZIhoPN/+NgwcCOefX7n7bG6GI46ILo9aafksp6WzJ664AubN\ni8s8agyFQsybYojoG0NEDRo7NgZWOlFOY5gyBX784wgQa61V2fu+6KL4Pbrggsreb1ImToRhw3rf\n0tmd0aPj0s5ll8GcOZW9b2XTnDlxacwQ0TeGiBqUy8Xo9HpflVHxaemkkyI4fv3rlb//UsvnddfB\n9OmVv/9K+sMf4Je/jMsYq65a+fv/9rdhzTU/uoy46pOdGZVhiKhBdmg0jrvvhkcfjcGUAwYk8xgn\nnwwbbJDtls+lS6POj30MDj00mcdYffUYb9HaGgMtVd9KnRmVvCzWiAwRNWittWDECENEvXv//Tht\n//nPR1tnUkotn7/5DTz0UHKP0xe33lqZls7ufPWrMT34SSfF8uKqX/l8nOGzM6NvfPpqlIMr698V\nV8A//xlfk/aFL8Duu8c8FFlr+Xz77bjUcMghsMsuyT5Wv36xKurkyTEXheqXnRmVYYioUYaI+jZn\nTlz7nzABNt88+cdr2/L5gx8k/3i9UemWzu7stlvMQXHmmfG4qj/LltmZUSmGiBqVy8HMmXZo1Ksz\nzohr9N/5TvUec/vt4cgjo+XzzTer97hdmT07xoOcdhpsuGH1HveyyyJAXHJJ9R5T1fPSS/Dee4aI\nSjBE1KhcLtJ0rS+ipI967DG46654A1tjjeo+9kUXwYcfZqflc+JEWGed+FpNG24YXRpXXw2zZlX3\nsZW8qVPjqyGi7wwRNcoOjfq0bFkM6mtuhq99rfqPP2JEjD+4/vr0Wz7/53/gP/8zzgok0dLZnYkT\nY4r5LHetqDz5fKz8amdG3xkiatSQIbDeeoaIenP77bGi5KRJ0L9/OjWcdFJ8Ev/Wt9J5fFi+SudO\nO8X4hDSssgpcfjn86lfw3/+dTg1KRqkzo69r0MgQUdMcXFlf3nknBvMdfHAsjpWWUsvnAw/Agw+m\nU8Mtt8DTTyff0tmdgw+OgZYTJmSva0XlszOjcgwRNcwQUV8uuQTmz49Pv2k76CDYY49o+fzww+o+\ndqml89BDYeedq/vY7TU1RctnPl97C5WpY3ZmVJYhooblcjHoa+HCtCtRX82eHQtLnXZaNq7TNjXF\noMLp06vf8nnxxXFW5tJLq/u4nRk3bvlCZVnpWlH5XnwxJnIzRFRGUiFiKHAHML+43Q6s2YPbjQF+\nXbzN28DjQBUbu2pLqUMj7QFw6rtTT40uhEovLNUX228PRx0F555bvTfPWbPiEsbpp1e3pbM7F18M\nixdXdhVVpcM1MyorqRBxF7ANsB/wKWA7IlR0ZTTwKDAV2KN4+wsAP2d3YuzY+Ooljdr2yCNwzz1x\nGSONLoTCFs+xAAARf0lEQVSulFo+q/XmOXEiDB9e/ZbO7owYEXN2XH/98vZA1aZ8PlqnN9gg7Urq\nQxIhYgwRHo4GngSeAI4BPgds0cXtLgbuB84AngZeAH4L/CuBGuvCmmvGH4IhonYtWRKD9nbZJb0u\nhK6su+7yN89p05J9rN//PsLUZZdFZ0TWnHQSbLJJjBMpFNKuRuWyM6OykggRuwALgL+02fdkcV9n\nM9/3Az4DzAAeAl4jwscBCdRXVxxcWdt+9CN45pkYvJfVF7WTToKNN0625bO0SufOO2czTAEMHgxX\nXhmLlD3wQNrVqFx2ZlRWEiFiBDCvg/3zij/ryHBgNeIsxAPAPsA9wH8CuydQY90wRNSut96KT/lf\n/SrsuGPa1XRu8OBo+fztb2NLwo9/vLylM6thCmJF1b33jsCzeHHa1ai3li2LM2qGiMrpTYg4D1jW\nzTauj3X8Cvg+8HfgMuLyxtfLvM+GkMvFyP5bb41Pc6odF1wQa59kpQuhKwceCJ/8ZDItnwsWREvn\nYYfF5FJZVlqobNYsuO66tKtRbyxaFGeSPvjAEFFJA3px7LXEgMmuvAhsS5xZaG848Gont3sdWEIM\nqmxrOrBbVw84YcIEhgwZssK+lpYWWrJ6TrTCvvSl+HR4xBGxZPSll8LnPpftT3OKjprrrosgMXJk\n2tV0r9Ty2dwMN94IJ55Yufu++OJYDKkWwhTA1lvD178eg00POywGgiq7li6NtWjOOScW3jrmGNhr\nr7Srqq7W1lZaW1tX2Dd//vyUquneGOKsRNsTtDsV93W1qPGfiVbQtu4B7uzk+GagMHny5IIKhSef\nLBT23LNQgEJht90KhUcfTbsideXTny4URo0qFD74IO1KeueYYwqFoUMLhddfr8z9zZhRKAwcWCic\nf35l7q9aXn89nodjj027EnVm2bJC4Te/KRS22SZeFw88sFCYOjXtqrJj8uTJBaBQfC8tWxJjIqYB\nDwI3EeFh5+K/7yMGTpZMB8a3+f57wMFEV8dmwDeIjo7/SKDGuvOxj8X8/g8+GJ/qPv7xuH77j3+k\nXZnae+CBOHt0xRUxxXQtufDC6CipVMvnxInRPllri1ytvTacdx7cdBM89VTa1ai9J56Iy2+f/Wys\nM/T447GY25gxaVdWf5KaJ+IQ4BngYaLb4ing8HbHbAG0Xej4V8T4h9OIMRFHAgcBjyVUY91paoL9\n9oPJk+P0XT4P22wTlzpeeint6gQxGO+UU2DPPWOcQa1Zd104+2z4j//oe8vnI4/E4lZZbensznHH\nwVZbRYuuLZ/ZMG1aTNm+yy4xhfxvfhOrwaY9fbqyycsZ3Vi0qFC49tpCYfjwQmHw4ELhlFMqdxpa\n5bnqqkKhX79C4emn066kfAsXFgqbbloofOpT5d/HkiVxmnnnneO0c6168ME4Vf7zn6ddSWObM6dQ\nOOqo+NvaZJNC4Y47CoWlS9OuKtuyfDlDGTFoEHzjGzGS/KyzYgGhTTddPpBN1fWvf8VlgGOPjTNE\ntWrw4LgU8+CD5bd83nwz/P3v2Z4foyf22y8GMk+cGKP+VV1vvhlTxW++Odx77/L1Xg47LN3VXxuJ\nT3MDWG21GJk8e3Zc2jj/fNhssxhlX+0VGhvZ2WfH1wsuSLeOShg/Pi7JlNPyuWBBzI9x+OExlqfW\nXXklvPJKLKCm6nj//bgMNnp0XFo77bT4sPTNb0bIVfUYIhrIOutEj/tzz8E++8Dxx0e/9N13xyQs\nSs7TT8cgvPPOi/8Pta7U8vncc3DDDb277UUX1VZLZ3e22CLevC69NMKEkrNkSfwdbb55hPLDDovw\ncP75sR6Gqs8Q0YA22QRuvz1GlW++ORx88PLuDlVeoRCD7zbfHE44Ie1qKmfbbeHooyMYvfFGz24z\nc2ZcwjjjDFh//UTLq6qzz47BoWeemXYl9alQgF/+MuboOPbY6LyYPh2uvTYG+yo9hogGts02MXr5\nD3+AgQPh3/4N9t0XpkxJu7L6cs89MUL86qvjea4nF14Yk/mcd17Pjj/11GjpTHIdjjSsuWaMNbrj\nDnjyybSrqS+//310V3zxi/EBaMoU+MlPYnyX0meIELvvDo89Fm92L78M48bBl78cnxrVNwsXxhvm\npz8dW70ZPjw+hd9wQ/dLZP/3f8fgt8svr82Wzu4ceWScnTnpJC8PVsJTT8XfzF57xZmIRx6Jwbzb\nb592ZWrLECEgrnGPHx8j5n/0I3j00ZiY5YQT4NXOJitXt66+OoJZPQ+6O/HE7pfIXrIkFq3aZZe4\nfFaP+vePSzVPPhnztKg8s2fDoYdGWJg9G37xi3hO99wz7crUEUOEVjBgABx1FMyYAZdcAq2tMQL6\n7LPh7bfTrq62zJ0bp7i/8Y2YlKhelVo+H3qo85bPm2/O/pLnlbDHHnHa/fTT4d13066mtsybF4F0\nq63iEsYPfhAT5n3hC/X9O1PrDBHq0MorR+97qW3qiiviGuTVV8dqeOremWfG83jOOWlXkrwDDojT\nzh21fJZaOr/ylWwveV4p3/teDDT97nfTrqQ2vPNOjKnZdNMYU3LBBXEp9dhj40ONss0QoS4NHRqt\nazNnxnSyEydGS9ttt7n0eFf+93+jA+bCC+M5rHells8ZM6Jvv60LL4y+/ksuSae2attkkxhAesUV\n8MILaVeTXYsWwTXXxJnO7343phGfPTs6d+pxzEy9MkSoR9ZfP2a8zOfj0+TXvgbbbQf33++6Ae0V\nCjG4bpttYtnhRlH6723b8jljRrxRnHlmfbV0dueMM2KRrokT064ke5YtgzvvjMsWJ58M++8fvyff\n+x6stVba1am3DBHqlS23XD7QadiweAHYfXf405+8zFFy112xiuCkSTHYrpFccEG8SZx7bnx/6qkw\ncmT9tXR2Z7XV4tP1L34RLdSKTqXf/haam2O20u22i3EyN98MG26YdnUql1ecVJaPfSxarh56KD51\n7b577F9llfg0MXRo51872rfmmvXxhvveezGo7qCDGnM0+fDhMQbk9NPjstevfw0//WmMDWk0hx4K\n118fZ6UmT66P3+8lS2J1zLfeinUr2n7taF/brwsXxn184hPw5z/Drrum+9+iyqjlMa/NwOTJkyfT\n3NynRcjUR8uWxWjqV17p+kWk9LWjsRRNTREkygkgq67a/ejtQiGW4V60aPnW/vvOtp4cVzrmpZei\nTXbq1MadDGfx4phOfeZM2G23OEvVqKPrn3wyJkraffeY7nzw4K63QYO6P6ar4wYO7NnfwjvvlBcE\nOuvQGjiwZ3+zo0bF70Sj/j5kyZQpUxg3bhzAOKDsKQY9E6E+69cP9t67Z8cWCtH61pMXrzfeiDei\n0vcLFnR8nwMHLn+xamrq+I1/8eLy//uamnr+wj5iRExx3agBAuJ5mDQJDjkkvjbyG8ZOO8WYkN/9\nLt64X3+9Z2G1L+OMOgsaS5cu/1vqLMgPGbLim/6wYTFde1chfq214gxkI/9/bmSGCFVVUxOsvnps\nG2/cu9suWRJBoqvgUSj07lNdT46xzaz3PvvZWPp80KC0K0nfiSfG1lOFQvyuV+LMWNutf/94w+8s\nEKy5pstnq/d8eVTNGDAgRryvvXbalagnDBDlaWqKs2sDB8YATSnLzJ2SJKkshghJklQWQ4QkSSqL\nIUKSJJXFECFJkspiiJAkSWUxREiSpLIYIiRJUlkMEZIkqSyGCEmSVBZDhCRJKoshQpIklcUQIUmS\nymKIkCRJZTFESJKkshgiJElSWQwRkiSpLIYISZJUFkOEJEkqiyFCkiSVxRAhSZLKYoiQJEllMURI\nkqSyGCLqQGtra9olZIbPRfB5WM7nIvg8LOdzUTlJhYihwB3A/OJ2O7BmN7dZA7gBeBl4H5gKfD2h\n+uqKfxDL+VwEn4flfC6Cz8NyPheVk1SIuAvYBtgP+BSwHREquvJ94N+AQ4CtgKuAa4H9E6pRkiT1\nQRIhYgwRHo4GngSeAI4BPgds0cXtdgBuBf4IvAT8CHi6uF+SJGVMEiFiF2AB8Jc2+54s7tuli9vd\nDxwArAc0AXsSoeOhBGqUJEl9NCCB+xwBzOtg/7zizzpzFnAnMSZiCbAMOAp4rKsHmzZtWnlV1pH5\n8+czZcqUtMvIBJ+L4POwnM9F8HlYzucinffO84g39q62cUQYeLaD2z8LnN7F/V9VPOazwNbACcDb\nwN6dHD+SCBwFNzc3Nzc3t15vLxPvpWVr6sWxaxe3rrwIHApcSXRotPUWMAG4rYPbrUpc7vg88ECb\n/TcBGwCf7uTxRtLHJ0CSpAb1z+JWtt5cznijuHXncaKdc0eWj4vYqbivs0sTTcVtabv9y+g66PT5\nCZAkSdnyAPAUER52Bv4O3NvumOnA+DbfPww8A+wBjAK+RswX8X8TrlWSJGXIEGJeiAXF7XZiMqm2\nlgFfafP9OkRb5xyWTzY1IfFKJUmSJEmSJEmSJEmSsuN44HngA+CvwMfTLScVZxLdL28DrwH30PW0\n4o3iDGK8zdVpF5KS9YlJ214H3gP+BjSnWlH1DQQuJV4j3gdmAWfTu5b2WrQ7cB/wCvE3cEAHx5xX\n/Pn7wO+BsdUqrsq6ei4GAJcRA/7fLR5zG/U5XUBPfidKbiwec1JvHqAWlwI/mHiDuJBY2OtPwG+B\nDdMsKgW7EwuU7QTsQ/xhPAyskmZRKdsROJZ4cSikXEsahgJ/BhYRC9+NAU4hVtJtJGcRa/ccTyzm\ndxowETgxzaKqYBUiNJ5Q/L7938DpxGD1E4i/lVeB3wGrVavAKurquVgV2B64oPj1IOID2K+rWWCV\ndPc7UXIg8V4yt4tj6saTwPXt9k0FLkmhliwZRqTIRjwrA/FC+CywF/EJ66p0y0nFd4E/pF1EBtxH\nTFTX1i/peKK7erWMmLyvpImYU2dim32DiEkAj61iXWlo/1x0ZIficRskX05qOnse1ie6IscQZ+++\n2Zs7rbUzEYOIU7MPt9v/MLBr9cvJlCHFr2+mWkV6ricWcXuE+j9t3ZnPA5OBnxOXuKYQn8gbzf3A\nvwGbF7/fFtiNFWfDbTSjgHVZ8bVzMRE6G/21E+L1s0DjnbXrR0zHcDlQ1mIaSSzAlaRhQH/iBbKt\n7hb3qndNxCWePxFnZRrNl4lLWzsWv6/703Gd2BQ4jph2/iLgY8A1xJvF7SnWVW0/ADYhzkwtIV4z\nzgJ+lmJNaSu9Pnb02rlRlWvJmpWIs3g/IcZINJLTideHa8u9g1oLEerYdUCOxryUsSHwfeKT5+Li\nvtI06o2mH/C/wHeK3z9NLGb3dRorRHyTmPH2y0CeuO49iTid30jPQ081auiGGIT70+K/j0+zkBSM\nI/5W2g+8ruvXzkHAh3x0hOn3ievgjehaYuGzjdMuJCXjiWt9H7bZlhHrsCymzv8g2nkB+GG7fccR\nK/U1ktf46BvCtynzdG2Nan/9e9Pivm3bHXcvcEu1ikpJZ2MBBhJdbX/jowtG1qP2z8ME4nWy/Wvn\nEmB2T++01sZELCau+e7bbv8+dL64V71qIs5AjCcGE76Ybjmp+S/i0/a2xW07ou33zuK/G+lT1p+J\nboS2tiDCRSMpZzG/evc80Y3R9rVzELFWUaO9dkIEiLuB0cRZzLfSLScVtwP/hxVfO+cS4yP2S7Gu\nxP070cJ2BDGa9GpiroRGa/H8D+IXf3fiemdpWynNojLif2jMeSJ2IIL2mcBmwCHENd6WNItKwQ+J\n0eafIcZGHEhc+780xZqqYVXijWA7IjRNKP679Np4GvGaMZ4I3ncRZ6lWrXqlyevquRhAnIF5CdiG\nFV8/B6ZRbIK6+51or9fdGbXqOOI/diEx4VIjjgUonbJf1m77Slc3ahCN2uIJ8FlinowPiPEAR6Vb\nTipWBa5g+WRTM4k5Aep9DNgnWf460Pa14cdtjjmX+LT5AfU92dQn6fy52LiD/aXvd0+h1iR9ku5/\nJ9pqmBAhSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKk2vf/AGZiu5/ShKnHAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot(irfft(lag))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lag/data/clag_analysis-origbins-noLFerrors-4775A.ipynb b/lag/data/clag_analysis-origbins-noLFerrors-4775A.ipynb new file mode 100644 index 0000000..621efeb --- /dev/null +++ b/lag/data/clag_analysis-origbins-noLFerrors-4775A.ipynb @@ -0,0 +1,701 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X18VPWd9/9XSAKSRBRwbFEoxFBYg1pNKhD6s+qCqFBy\n1UI35PGzbbjorle73V2vSzK22u7P31W07aRre117tbXXlpL21zWmWnYXoevderNU7mro9sb4kxID\nyO2MiDcQhNyc64/vHOcmM8lM5szMOTPv5+ORR2BmMufkmzPnfM73+/l+viAiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjJm+4GhBF//K4/7JCIiIi42Fbg46msxJnj4\neD53SkRERLzju8DefO+EiIiIeMN44A3gy/neEREREXFOWRbf+5PABUD7CK+ZFv4SERGR9BwNf+Vc\nSRbf+0ngPeA/JXl+2iWXXHLkyJEjWdwFERGRgnUYuJY8BBDZ6nmYiUmWvG2E10w7cuQIP/vZz7j8\n8suztBsS78477+S73/1uvnejqKjNc09tnntq89x65ZVXuP322y/F9N4XTPCwBjgObB3thZdffjl1\ndXVZ2g2Jd+GFF6q9c0xtnntq89xTmxeXcVl6zzXATzDTNEVERKSAZCN4WAJMB36chfcWERGRPMvG\nsMVTQGkW3ldERERcIBs9D+Jizc3N+d6FoqM2zz21ee6pzYtLNqdqjqYO6Orq6lKSjYiISBr27NlD\nfX09QD2wJ9fbV8+DiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiI\npEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIik\nRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpKUs3zsgIlJIOjrMF8B778GBAzBzJpx3nnmsudl8\niXiZeh5ERBzU3AybN5vvZ8/C3r3wzjvw6qsmmOjogMbGSIAh4kXqeRARcVgoFOKppwK8/no3UMqh\nQ4McPlzL97/vZ/FiX753TyRj6nkQEXFQMBikoaGJ9vaV9PZuBOZy+LAF/Ae33HIDzc1/RSgUyvdu\nimREwYOIiIPuvruNnp4HgMuA1cBKYCvwNAMDv+eRR5ppaGhSACGepuBBRMRBu3d3AwuANuABYCFQ\nEn52HLCInp778fsDedpDkcwpeBARcdDAQCkmWLCDiEQWhIMMEW9S8CAi4qCyskHAAuwgIpFx4SBD\nxJsUPIiIOGj+/FpgF2AHEYkMhYMMEW9S8CAi4qBAwE9NzT3ARcDOJK/aFQ4yRLxJwYOIiIN8Ph87\ndnSyenUVZWX/GXgRGAo/OwTsoKbmXgIBf/52UiRDCh5ERBzm8/no6PgeTzzx78A/c+mlK4BGqqtX\n0NKyiR07OvH5VCxKvEsVJkVEHBS7toWPOXPamDwZDh+GGTNg6VJQ3CBep54HEREHRa9tcd55MHcu\nTJoEc+bAhAla20IKg3oeRESyQKtnSiFTz4OIiIikRcGDiIiIpEXDFiIiWRSbQAkHDsDMmSYfAjS8\nId6k4EFExCGjBQo33AD33mteU1eXt90UyZiCBxERh0T3IuzZA/X1JlCYMSOE3x/gRz/qBkpZtWqQ\n66+vJRDwq96DeJKCBxERB4VCJlB44QUTKNx2Wx8nT4Z4990fAgGghN7eIXp7d7NtW5MKRoknKWFS\nRMQhwWCQhoYm2ttX0tu7BdjMwYNX8+67DwELiayyOQ5YSE/P/fj9gbztr8hYKXgQEXHI3Xe30dPz\nALGBwivh/yeygN27u3OybyJOUvAgIuIQEwgsiHu0lEggEW8cAwOl2d0pkSxQ8CAi4hATCMQHCoOA\nleQnhigrG8zuTolkgYIHERGHmEAgPlCoBXYl+YldzJ9fm92dEskCBQ8iIg4xgUB8oOAH7gG2A0Ph\nx4aAHdTU3Esg4M/hHoo4Q8GDiIhDAgE/NTX3ADuIBApTgXVUVd3BzJm3Ao1UV6+gpWWTpmmKZ6nO\ng4iIQ3w+Hzt2dIbrPKynt7eU6mq7INSzvP66j/p6eOwxVZgUb1PwICLiIJ/Px8aNbe9XmPz852Hn\nTli71pSsnjMHvvxlrW0h3paN4OFS4FvALcBEYC+wFtiThW2JiLhG/NoWc+bA889HAoU1axQoSGFw\nOniYDLwI/BsmeAgCNcBbDm9HRMR11IsgxcLp4OFu4ACmp8F20OFtiIiISB45PduiEegCHgWOY4Yq\nPu/wNkRERCSPnA4eLgO+ALwKLAV+APxP4LMOb0dERETyxOlhi3HAbuCr4f//FrgC+C/ATxP9wJ13\n3smFF14Y81hzczPNGjgUERGho6ODDjsTN+ytt/KbSphstZax2g88BfxF1GNfAO4Fpse9tg7o6urq\nok4TnkVERFK2Z88e6uvrAerJw2xGp3seXgT+JO6xOZigQkSkaMVP4zxwAGbOVL0H8Sang4fvYAq4\nfwWTNDkf+PPwl4hI0WpuhiVLQuHqk9309pbS329Xn/SrTLV4itPBw0vAbcA3gL8FXgP+BugY6YdE\nRApdMBhk0aLV9PQ8AASAEnp7h+jt3c22bU1a50I8JRsLY20FrsJUl5wHbMjCNkREPOXuu9vCgcNC\nIulm44CF9PTcj98fyN/OiaRJq2qKiOTA7t3dwIIkzy4IPy/iDQoeRERyYGCglOQT3MaFnxfxBgUP\nIiI5UFY2CFhJnh0KPy/iDQoeRERyYP78WmBXkmd3hZ8X8QYFDyIiORAI+KmpuQfYAQyFHx0CdlBT\ncy+BgD9/OyeSJgUPIiI54PP52LGjk49/fBMVFSuARiZOXMGkSZuYPr2TtWt9NDZGCkmJuJnTdR5E\nRCQJn8/HCy+0sWcP1NfDP/wD3H47PPggqEq/eImCBxGRHIguT/3OOyEmTQrw53/eDZRy3XWDfPSj\ntTz2mCpNijdo2EJEJAeam2HzZvjRj4IcOtTEO++s5MyZLcBm+voe59//fSUNDU2EQqF876rIqBQ8\niIjkkCpNSiHQsIVIBrRSoqTLVJJMFiAsYPfu9bncHZExUfAgkoHo4MBOguvoUPKbJKdKk1IINGwh\nkqFQKMSaNa2sWrUcaGTVquWsWdOqsWtJSJUmpRCo50EkA1pmWdI1f34t3d27MDkP8VRpUrxBPQ8i\nGVDym6RLlSalEKjnQSQDSn4TSC9x1q406fcHeOGF9fT2llJdPcj119cSCKinSrxBwYNIBpT8JpBe\n4qwJNHxAG7NnQ3m5CTROnIC1azVDR7xBwxYiGVDym9hSTZy1i0U1N5ueiblzzeOvvmp6LTo60BoX\n4nrqeRDJgJLfBMaWONvcDEuWhMLDF9309pbS328PX6hMtbibeh5EMqDkN4GxJc4Gg0EaGppob19J\nb68pU93b+zjt7SpTLe6n4EEkA1pmWcBOnF2Q5NkF4edjaaaOeJmGLUTSEJ9V//vfw8CAj9LSNioq\nYNIkk/y2axdYlpLfCp19PBw4kH7irGbqiJcpeBBJQ6Ks+q4uk1UfCkXGr6GU118f5KmnalmyROPX\nhcrOW/jwh49gEmcTBRCJE2c1U0e8TMGDSJrig4RVqwaZP38mu3a9zP7930KVJouHnSj59tvzgJ1A\nQ4JXJU6cjczUST3gEHEL5TyIpKijA26+OcisWcOT3Do7T7N//zfQ+HVxieQtfBu4l+GJsy8mTZw1\nAcWuJO+smTribgoeRFLU3AxTpnydvr71DA8S3iDxXSckS5gT74skSvqATmATYBJn4RNccMFfJu11\nCgT8XHxx4pk6FRX3cuSIX4m24loKHkRSFAwG+cUvniVxkKDx62IUm7dgqkbCVmAz8EsGBj7E2rW+\nhEGAz+fjD3/oZPXqn1FVVQdcCXyUqqq/orFxHj/7mZJtxb2U8yCSorvvbqO//xISBwkavy5Go+Ut\nzJw5yObNyX/esix+/etXOHXqIUwPRgmnTg3xyCO7+fWvlSsj7qWeB5EUmS7q8SQuR12LSZhLROPX\nhSqTvIWODqivV60H8SYFDyIpMl3UyS4WfuAu4EVUaTLCXqehsRGWLjXrOCxdGnnM62P6mVQYbW6G\nSZPSLy4l4gYKHkRSZLqoW4FEF4s/UlYWYvXqR6iuNglz1dUraGnZVNRdz83NsGFDiKlTW9m3bzl7\n9zayb99ypk5tZcOGkOfH9O0Koy0tm8b0d1etB/Eq5TyIpMgsgvUaJqs+AKzHJEoOAhfh8y3l9Om/\n1zLLUcayYJQXxFYa9XHgQBsXXwy9vTBjhuldSeXXUq0H8SoFDyIpCgT8/PKXTQSD9wPfwnTcDQG7\nqKi4lyuv7CzaICGZ2PUbbLFj+hs3tuVp78bOriy5alWAl17qpq+vlIkTB5k0qZaSEj8dHWaGxWjH\ng1ZlFa9S8CCSIntqnakuuZ7e3lKqq+0llL15B51thbp+Q6IelTNnhjhzZjeHDqXeoxII+Nm2rYme\nnvsxuQ+RgNTkTHRm9fcQGSsFDyJp8Pl8bNzY9v66Fo89Zta1sMUvnHXggBm+OO8881ix9UwU6pi+\nUz0qds6EAlLxGgUPIimKDgx6e6GyEm6+2fz/zBm47DKYNQvOng3x3nsBXn+9m97eUvr77YtB8S2Q\nVahj+k71qJhjyhSXUq6MeImCB5EUJTuR270Q7e0wfXphJgiOVaGO6TvVo6LgQLxKUzVFxigUCrFm\nTSurVi0HGlm1ajkf+9ifhcevVfQHMquD4GaRHpVEvNujIpIqBQ8iYxAMBmloGL665r59JlBIrPiK\n/mRaB8GttCKmFDsNW4iMQfKEuSoKMUEwE6MlmXqRZklIsVPwIDIGyRPmCjNBcKziZ5/MmQNf/rL3\nZ59oloQUOwUPImOQPGHO7s4urATBsfJqcJCKQuxREUmVggeRMUg+BdEPNAFfBxqI7s6eOPFejhzp\npLGxsC+qxaBQe1REUqXgQWQMkk9B9AHrmD37Xs6dK+PgwROUlQ0wMFDFxRdP4pJLAkVZ76HQOB0c\nqLiYeI2CB5ExGClhrqLi21x66ffZvftLwA8YGFgAlHDgwBDt7cVR70EXw/TYa2WYHAoVFxP3S5YW\nngt1QFdXVxd1GigUDwqFYk/2kYQ5P35/gPb2lSTOfdhBS8smVy0IlY2L/Ujto4thrNi1MkywaYLR\n3dTU3FPwwaakb8+ePdTX1wPUA3tyvX0FDyJjMNrFds+e5Rw+vIVksy5qa1fw8stbc7W7KXHyYq+L\nYXrWrGn1VLAp+Zfv4EHDFiJjMNqd+Ny53loQKtEqkZmU1S7UpbizpVBXH5XCpQqTIlnglfLFHR3Q\n2Aj19dEX+8zLapuL4YIkzxZfpc3RFOrqo1K4FDyIZIFXyhc3N8OGDSHeffc5RrrYP/poN42NJtCw\nh2tGMtrFcP/+0rTer9B5JdgUsSl4EMkCrywIZa/R8fbbk4m92IeAVmA58EnOnj3I1KmtbNgQSilx\ncvjFMPr9Gunv703r/QqdV4JNEZvTwcN9mDNk9NcRh7ch4npeWRAqkpswnsjFPogpdLUSMIt+DQz8\nlvb2lTQ0NBEKhUZ939iL4fD36+9P7/3cwh7maWyEpUth7lzzPdNeFK8EmyI2p2db3Ad8ClgS9dgg\ncCLBazXbQgqWV+oczJu3nO7uLZjKmCuBGuDTwAPAogQ/kVrmfygUoqHBroPxC2AVhTKTIFtTUDW1\nVdJRiLMtBjG3GiJFyy3BQbz4oOaPf7RzE/zAbZi73fMwpbUTSS3zP3rhqH/8xyfp708WHHhrJoHT\ns1Js5u/iA9qYPRvKy02weeIErF3r3uNJilc2gocPA4eBs5h+y3uA3ixsR0TSZFcyXLUqwEsvddPf\nfxAzXOEDrgGagW+SaeZ/9MWwvPxV+vsLYyZBtqagKjgQr3E6eNgJfAbYC3wQ+CqwHZgHvOnwtkRc\nzY1DF7F3zq3An2HG2RcBr2F6HDJfVjz6d5s3b5Du7uTvd+TIYFqLhdntevgwHDwIZ87AhAlw9ixM\nnAgf+hBceml22lf1GEQMp4OHJ6L+/TLmrNQDfA74TqIfuPPOO7nwwgtjHmtubqZZYbh4nBvXK4jc\nOV8GrAbuxsT49wP2EIazy4rHLiIWwlx8u8Pbe5cPftBiw4ZQyu0R3a5vvPEb3njjBGfPmsXHLrpo\nEldddVXW2lf1GCQfOjo66IjLxn3rrbfytDe58xTwvQSP1wFWV1eXJVKIjh8/btXU3GjBDguGLLAs\nGLRgh1VTc6MVDAZzvk+1tcvC+7IuvF+WBcHw/68IPxe04EYLtof3197vX41pv4PBYLgdtoTfN749\ntqf1vpF23erI+6Uj0n5Wgq9Bq7Z2mePbFEmkq6vLwnQR5mXGQbbrPEzA3MYczfJ2RFwndnw886qN\nTojcOUdXgDS5CXALpsfBB3QCmwAzzRQWM3v2vWNKCLSTJ2fPbgPWM7w9GtJqj0i7PoeZFZLZ+6VD\n9RhEDKeDh28DHweqMWemx4Aq4CcOb0fE9dxYojlSvClR97sfk9+8A5iKCSgeB77CxIklXHbZo6xd\n60u7lkFHB6xd6+PYsUpGmsXx2GPdKb13pF1z376qxyBiOJ3zcCnQAVyEGdzcgbkteN3h7Yi4nhvH\nxyP5B4mSIu0eh29RXv4X9PdXR9UaGHthKztxce7cUvbuLWF43sMgUMvFFw+klOAYadfct2/0FNQX\nXlgfV4/BPcW/RLLN6eBBWY4iYZG7/LHPWnBSRwccOeKnoqKJvr4ZmMlR8T0BPmAlF11Uwvnntzla\na8D8vscxp4lInQRz576L11/fQig0euJkpF1z376qxyBiaEnuAuTGKYLFKHaWQbzcj4+bWQrw1399\nOY8//gKnT38GM6LYgBnBNBfxmho7t8HZ7Zv28BPJU7CZPIX+/h+lVCch0q7OzgpJhT47IobT5anT\nofLUWaRSt/kXW6J5AYkv0Ln7WwSDQa68cjXB4APh/XkD+Bamsu1JJk68mGuvvYrHHsvOMRIKhbj0\n0hvo7/8DyXoLamtX8PLLW0d9H9Ou6zBpVvHtu5OKiq9y7bWdHD3qcyRwVkAubpPv8tQKHgpQbCGg\nBUS6hndTU3OPqxZmKnRuCuLWrGmlvX0lydaYmDZtEx/9qLnrz9bFcPbs5fT0JA8O5sxp5NVXN4/6\nPna7Pvvsbzh48ARlZabOw8yZk2homA2MY9eu1+jtLaWiYpApU2qpqfFnFEy46W8pku/gQcMWBShb\nJXQlPW4bHx+tOuLkyevZPPp1e8w6OuD4ccg0T8Fu18OH2+jrg8rKSIXJd98NsmnTas6diwTOfX3H\n6evzc+zYDQwMzKK/n7Qv+tla00JE0qciUVkyWiGbysrF1vTp66zKymVWefkKq7JymTV9+jpr6dKg\n9fDD+d57yZY5c1YkOSbM15w5K7K+Dy0t0cWp4r+2Wy0t6xx+/+NJCkmlV6gr2/udiYcftqwVK8zX\nTTdZ1pw55rv9mD7ThanQi0RJHow8RfAN+voOc+jQSk6f3kJ//2ZOn36cQ4dW8vzzTbS3h2hsJO25\n/OJ+kVkKieRm9ke26yQMr63RRuJCUukV6nJjzQ5bczNs2BBi6tRW9u1bzt69jezbt5ypU1vZsCGk\nXAzJCg1bFKCRpwj+dyxrA4nWGTh3zuK11z7N9u2Pqgu2ALlh9keqdRLGmqA4PHB2ZiErN9bssI00\npNLZ2cR113UyYYJPSZ3iKAUPBSj5RSIIPAv8ffjfq4mfb79v304aGjSGW4gCAT/btiWf/REIdGZ9\nH1LNAxnromLDA+fML/qmPoa7anZEi81xir0hOHNGNwSSHQoeClDyi0QrpghoCbHdubZxwCIlVRYo\nN1RHTPXud6wJisMD59Qv+iP1dpx//mWcOmUvXR4vv2taRBJhi+OGQNNm3UE5DwXIvki0tGyiutos\nbFRdvYILLngZGI85mbp3DFeyw15j4sSJNmbP3sqcOZuZPXsrJ060jWnNimxKZ1Gxjg5obDRfvb1+\nysujcypqMZU0E4m96CfLHaio+CJlZS8B64DtxOZqvMisWV/O65oWkSGVZPkdi/K2EFs2KMfDHdTz\nUICSdQ1v394IzMVU5Ru5O/fNN0tpbDT/U3SfGbfcKXnpbzbatNLoXIXoIY4//KGb/v5yqqq+AJRx\n6tSFlJVtYWDgRySqpBk9VJO8t2MN8HfAh8OP309kTY6LWLjwirze0UeGapzJ73A7TZsVTdXMMTOF\n0566dsOI0zlra5dZwWDQamlZZ1VXL7NghVVdvcxqaVmX8vQ2iVBbpiedaaXHjx+3amoST8csL7/R\namjotqZPX2dVVIzc9smnY4489bmqallep0NG9jv/U3Fzwc3TZnMp31M180nBQ45FPnRBC6634MWk\nH8Cmpi8kPSGnMz9eRr64ub0t81VDYLRaJdEX7NEuJhMmrLMqKy1ryhTLqqy0rIsusqy6uuH7n3yb\n7r4oB4PB8PE1+g1BIRjt2CiU33M0+Q4elPNQRAIBPxdffA+wD7P08lcZPoZr5tuXlJSmPOYsI0tn\n/N5t8jW+bHIRdmFmD7QCy4HG8Pc1fOITs97fdvIaDCHgF5w79wSnTzdywQXL+fSnW+nuDtHVBZs3\nxw7jJJ+Omf/6GCOxc5xmz7YwuR6J5Dep00lunjZbTJTzUER8Ph9/+IPJtt+6tZtQqJzS0i9SUlIG\nfIAJE2Dy5FpqajrZtq2FkRMqC2P8NBfSGb93m2yNL4+WB7J8uZ/nnruNAweGgAeJXb57Jzt3fuX9\n5bsjF5PoaYoDwEFgI5bVltJ+J6+PYiddxi9fDm64KNs5Tpdd9iiHDzdx5kz+puLmgtuWupfc07BF\njjz8sGUtXRq0pkxZZ5WWLrNKSlZY48Yts8rK1llTpgQTduG6oZRxofBqWz78sGVNm/alEYe3Mhlf\nHikPJJ1tm27sY1ZsGep1FmxPa7+TD38ELWiw4Ffh4SZ72Gm748NOmQ4TFUNujXIejHwPW+STgocs\ns4OGadO+YJWU/MmIY+7xJ63x4zWu6BSvjtEeP37cKi+vzcq+p5IHkmq7mYvJZ+MuKOm3eSR3YPuw\nIOG88z5mTZv2pVGTLp0w1gCgWNa4GOnv5PYcIiflO3jQsEUBW7w4yNe+tpqjR2cAP2a0VTajK/qd\nO3cEM37qvqI4XuOGstBjcffdbfT3X8JI48sHDpSydGn6009HW/m1ri7Am2+mNrYdCPj5x3+8gf7+\n6GG29MfFn3nGR01NJ2fPBnjzza9x5swJYADLquLcuUmcPXse117b/v6y3tlYHTWTYSIvTcXNRPTf\n6eTJ9Zw7V8r48YPvD7k+84yvKNqhmKnnIcsi3Xuj34UNvxMMhruBXyya6D5bd25evVMyd/4jHTvH\nrLKyj4zpbnzkXoVj1gUXfMQqL78ipd6Dhx+2wvsQ/fzYe3vyOTtGXfKSKvU8iGPik9BeeMFO1Bv9\nLmz4naAPMyMjANwLvEd19ZScljLONbvY0KpVAV56qZu+vlJef32Q8vJarrnGT0eHqcKY7h1evstC\nZ7bIlF1ULH7dhAFgPwMDP2FgYAHRd8g//3kT117b+f4deqLtJM+YDwLNvP32Q8BjUduOF+mxaW6G\n9euhu9uKes/alH42kdF6RbJZuj0XybVuKVomMlbqeciC2PHSupTvwkYbXx4/fllBjp9Gi73jPG6Z\npLtbLVhilZXVWqtXf2lMd51uGIseyzh6bFGxLVZqCYlBCz5rVVXVj7id5Mdb9PvavV+j99gMv2NP\n/WcT/975yVHJVXJtvhMr3fCZ8Lp89zzkk4IHhw3vbrVPgqN3hXp1RoCTIhcg+4IZ3239oquHGZIZ\nazf8yEXFEl1gk7Xb8O2kXs0xGD5+zUWupOQKa/r0ddbSpcGYC0zioaFjFnzWKiurtWBZyhfIfH4W\nchG4uKVoWb4DGK9T8KDgwTHDT8jRJ/9Ed2G/SjuzvZBF2qCwxp3HOo4eDAatiy+2j5tb446PRBfY\n1LeTPA9kyZgv3PEXo4qKZdb06eus668PWnPmWNYVV1jWBz5gvq68MnK3W1dnHqury/9Mo1zkPLgh\nr8ItAYyX5Tt4UIXJAjK80p4fsCtKdgCbgE8AN1FWdiWrVz/yfvZ2pKIfDK/qt5j9+09z880hV628\n6LTIOHxhrTiavAIjjPT72EXFWlo2UVZ2jNgchURVF1Pfjp0xP336JiorV1Be3khl5QrKyk4meF9b\n8gJAiVYM/djHtnLNNW1MmuTjvvvg97+H3/8+xK23tnLqVKRa5lVXtfLcc69w1VWmimZkplEiu3jn\nndqsfQ4CAT81NdGrgkJ05VcnVu9MfDzYn/mv097+b1RVLWfGjNasfea9XHVV8k89Dw5L3N0a3e1b\nZ02cuMyaNMncjUWPL0buBOPHtlMfK/a6SM9DYQ3hjLUbPnpcurIy/m480d1r5u2Wzbvi5He7W62y\nsrlRj9s9dVssuMuyh0zgBquq6gqru7t7zPuQiky78+36LtOnr7MqK5dZpaUrrNLSZVZ5+TqrvDyY\n4O+U+nCTU9TTmbl89zzkk4IHh9gn+aqqsSc92iecior4sW1vd9mnI52prV7ixIk6tYTE+KGN9LeT\nzWmtyQOTRMmfL1twVYILanaDaCcSCY8fPx4ebored5P/AXMsmBv1+OiL5GXjM68cq8wpeFDw4Ihg\nMGjNnp35SaCY7wgiF67PJriYeDeAcuJuPvaifix8wf1TC64MX5DmW5WVVzlyEUp25/3QQ8GYO+ry\n8hVWZeWyhAmUiSQ/thM9nv+8gLGKTXRdZ8F1Fsy2YKtlAj77+LZ7HG7M+We+mM8zTlHwoOAhY5Hu\n2F9aiRMjU58lUMx3BJFy3l8Ml/PO/loGueDE3Xwqpc7PO+9j1sSJH894O8nuvJcuTXRHnXr3evJj\nO9Hj+b+4jbUXInatj60WXBH+m8QnUNtBRO4/825I2vQ6BQ8KHjIW+0GMndoGN1gVFdendGdmWboj\nsBXSNLL4MfB079ijjXbSnzbti45sZyzbHu2Ck17PgzuC6JF6YZIFFpWVK6IChXVWpGch+vcMWlCf\n4PHcfOar2oiKAAAgAElEQVQT92SZmiolJbXWtGlfcuSYKWT5Dh5UYbIAxFal8wHR1e+GmDVrBU8+\nmVoVQ6+uw+Ake4ljaGP2bCgvJ2trGeSC2d/442JsRquAOHnyel5+eWvG24lmV0R87rnMqi8mP7YT\nLbmd32WfOzrghz/s5le/amZw8IfErnOxi1/+sonnn/8egcCPeeGFbnp7S+nvN1VLL730LHv32m31\ndaAq/HtEV/X0Afa6JWOvxjlW9mybvr7/h2PHnsOyNr7/O1rWEEeP7qaiooklSzrD+yoSoZ4Hhzg5\n1ODVdRgkN0Y71ioqVmSlSmAwGLQmTVqY0XGe/Njeapkkwuh1XO6y8pn3cvz4cauq6ooR9mGLdf75\niRI6d4R/zq6XsSKqZyG+h8H+/+h1YLJFwxdjp54HyZi5C3LmLinf6zCIuw0/1qLXuyilv7+XqVNb\nCQT8KR0rqayzsHixWWnynXcmkslxHn1sP/vs1zh48ASlpe8xOGi/3+cpKRkHnM95553HuXNPMzj4\nA8wd+ThMvYVd4XoLnaP+bpm4++42Tp3ykbg3AOA53n33ByRaf+PUqW8xbtx/Y2jIwvSgXI7pWYjv\nYYj+v72OzXpMD8W7zJ5tsX37o45+5pOvv5NIbG+S1uRwFxWJKgCxBZ7ipdftGF9s54Mf3Mzbb7fz\nyCMwbVoLZWWNWS8gI+4Ve6wFgSZgJbAF2Ex//29pb19JQ0MToVBo1PdrboYNG0JMnWoKNNmFm6ZO\nbWXDhhDNzdEFherJ5Di3j+0jR1oJhYaA+xkcnIZZrv4VoBvL+h2W9SDnn1/Cddc9wvTp/xRTxGr6\n9E3vL/ucTWZ4yB5uSOQVYodZot1CVdV4TKGpWmAxpljcjeHvdgEqu4jcdmAqZljrceArTJxYwmWX\nPcratT5HP+Pxf+9z5+KLj0WLXTo9lWNFioOGLRySzaEGlZGVaLHH2l0ZdzmncnxFEh2d6V6PdJW7\nt8vcDA+NlMg42vDRUquiwp5tYX+/y4LFFlxtQa0FV1olJddZ48dfb02cuNTKRWJw8vV3Rk/W1Lko\nVr6HLfJJwYODsjU7QGOSEi165kZJyRUpn/iTGe34MjM3oi+U8bOJllmTJl2d1nEeCUbcO7PI7ONI\nwdkNI+77pZcus5YuDVpTpqyzxo2zA4YrLFhojRu31JoyZZ115ZVBq64utytbJl9/Z/Tzi85FsfId\nPCjnoQBkc3bAaNn1o2W4S2GJnrkxd+6r7N2bWpdzMrHHV2z+BAzw7rtHuPTSD7B3r4Xp3h4+m2ho\naAVr1/pSPs4ja5hEzz4Y2/5ni5kZ8qeYYYX7MWtR2HkXOykrO8zAQPwMEdsubrqplo0bnZlh46Th\n5xM/Zugr/nccnluic5G7KHgoANlMFIqcaBPJ7wlW8suJRN3I8RUEVgMPYE/ZgyHefnsng4N3MHwq\npW0Xq1bVsnHjWPY7v9MxRxII+Nm2rYmennXAL4hOZKyqeoMnntjI5z53Lz09o1903WT4+cRHbLLm\nMaqrP5gwQVvnIndRwqSMKHKiTSS/J1gndXTAzTeHmDGjlaqq5Ywfr8TQ0TiRqBs5vtowgUP8KouL\nOHXqW5x//n/BqZUmI/vtXKKx03w+H62tnUyf/hwVFa8ApZSVDTJt2kdZtOhZ/vqvP0ZFxfBVSXOV\n0DlWic8ndg/J44wf/0Fmz97KiRNtw5I1i+VcJKNTzoMHFMs4o5Kx0udEom6qi5FVVi52rHJlZL/t\nZMKxl3PPFicWyEp3e05VIR1JJueTYjkXpSrfOQ/5pODBA4qlaJROTOlz4oITOb6WJGl78+V0OWg7\nwfhDHzLJhGVlJplw5sylritDnotAIlfBcybnk2I5F6VKwYOCB9crpHUektGaHvlhByBlZfU5a3/7\nYlxXZ1kXXWRZlZWWNWWK+X7RRdb7MxDctK5Ctj+DuQyeM/ldiuFclKp8Bw/Jsk9yoQ7o6urqoq6u\n6AInzyiWqm5z5zayd+/mpM/PmdPIq68mf14ys2ZNK+3tK0lcUXEHLS2b2LjRXTMHciUYNBU2TaGs\nBdjJpLCbiRPvYdq0TmpqfBl9JufNW0539xaSJY/W1q5wZM2STM4nxXIuStWePXuor68HUz1tT663\nr9kWMqJi+UA6WeJb0heZXeCt2QO5EKmwGR1YnQB+wZkzFq+91ohlTQnPUEitLHi8XM1kyOR8Uizn\nIq9Q8CCjKoaIvxBXE/XS381eZfHs2QAnT67n3LlSxo8fZPLk2vdnD7hlX3NteH2D4dNazWqbu9m2\nrYkdO9Jfg0bBs3iJch48pNDHGgs1GSsXf7dcZeoXq+ErmTqfn6CEYe/Jd85DPil48IhimcZYaAFS\nrv5uxXJ85MvwZF7nk3sLNXguZPkOHlQkysM6OqCx0XwtXQpz55rv9mNOFTaKHXONLuCzkJ6e+/H7\nk5WM9Y741UTnzNmctFiNV+Tq71YMx0c+xRbjCgFv4nR+gr1ceUvLJqqrVwCNTJy4lIqKr3D0aDmX\nXro2b0XTVMBN4qnnwQG5uFvWNEZn5Kp7P9fTH3V8ZFekV2CLZYpa3eh4e0dPX50yJWiVln7Bgj/J\nWW/SSLUsli49bl18sXq24qnnQcYsGAzS0NBEe/tKenu3AJvp7X2c9vaVNDQ0EQqFHNmOaso7Y/Hi\nID09TRw6tJLTp7fQ37+Z06cf59ChlfT0NLFkiTN/L3s7AwOTycXfTcdHdtnJpBUVbZj1H+pxuqx2\nczNs3gz/+q9BJk9uYnDwNPBjctWb1NwMGzaEmDq1lX37lrN3byP79i1n6tRWpkz5OsGgerYkQj0P\nGcpVkpPuLJ2Rjb9Xoju2adNSK/msngdvibRz0EpcVvtXGd+Jp1ou3Om/6Uh5MyUltTq+ElDPg4yZ\nmcK1IMmzC8LPZ86JBZAkO3+vRHdsb7zxRHg7ufm76fjIjUgPj70S5SbA5CfACsrKvpTxoliRYzS6\nNykEtALL39/W3r1HHM03iM2beSO8vRXAA1jWeNSzVVy+jKny8p0kz6vnIUPDp3BlZz0AZWI7Ixt/\nr8R3bPZ2sneHGk3HR27koocncoza2zoePobiewScXTws8rsl2t6t6nlIoFB7Hq4F/gL4HSRdQ1Uy\nlKslau0xV68t/+s22fh7JZ7pYG8n0R3qJygr+0tH/26JMvWrq1fQ0rJpTAWLJLFc9PBEjlF7W8mX\nSncy3yDSq5Joe/NQz5b7ZKPCZBXwM+DzwNey8P4SlquqiKYSoQ/zwS4sHR3Q3h6iuzvAyZPdMZUN\na2v9tLQ4V9kwG3+v4dUHIXLiX4gJIKL/bju4/fZNbNzo3AXdVLI025k9G8rLTSXLEydg7Vp3VbL0\nslyU8I4co36gCRNIJAsQFrB79/qMtwnRQYt9PIfC37uBAWAL8COgAZUuL1w/Af4u/O/ngQeTvE7D\nFhlSd3HmclngKBt/r8RDIcmGK3RceFkupvrGHqPHLFiYk6HRSKLmiiRDF8cs+KwFc6yysmWqYGrl\nf9jC6Z6H1cDVmGEL0JBFVmk9gMwlXnQodhqYU6s5ZuPvlXhNAnu44luUlPwFllVNRcUgH/1oLY89\npmEEr8pFD6A9BOX3B3jhhW56e08x/PiyOTc0GulVsXs64j+TH8Dcl77I7bf/c9GusOomTgYPM4D/\nASwBzoUfK2GUZb/vvPNOLrzwwpjHmpubadZVb1SFPJyQK4m7/W3OdcuCc3+v6AWvTp6MHqKA2O7e\nc4wbN4HKyrlcc42fSZN8GkaQEcUPQZ040co772R/aNQOrI8e/TR9fV0k/4w0sHv3A45s00s6Ojro\niJva8tZbb+Vpb5z3ScxAVH/U1xAme+scw4MIDVtI3uVqxorT7MqiH/rQYstUAvyVBUeTZMYXdyU+\nGbtcD40Gg0GrvPxqT34mcy3fwxZOzrZ4BrgC+Ej462rgJUzy5NVoCENcKFczVpzS0QE33NDNtGlL\naG9fycGDTwP/DvwTptNvParEJ07J9UyaZ57xMX78xXjpM1msnAweTmH6Su2vl4E+zCouzlQrEnGY\nVwoc2YsD3XXXF3nhhUYGBx8iEiT4gG8DMzHZ6Ik4VzRMioe9YNzvftfG22+3U1Y2lwMH4Cc/eZVp\n01qYOtXZxamam+HTn74KL3wmi122K0za3SoirhQI+KmpuQfYgRllI/x9R3gamD9/OxfFXq/i6NHT\nmPSiRGPQWmNCnBW/5sXAwEqGhrZgWZsZHHycN990dl0W8M5nsthlO3i4EfhvWd6GyJh5pQBWZFbI\nG8D5JA4SvDUEI96Ry2XXVXTMG7JRJErEM7wyYyUyK6SUSJAQH0DUAjtJPHSh7l4Zu1zOSlLRMW9Q\n8CDiAZHyvYPA5cROzwQzRbMPaMEspaxKfOKcXC67ruDAG7SqpsfYiXMzZrRSVbWc8eMbqapazowZ\nziYuibvErjmwGIgeEw5iSgl/BtgG/DPwCeAmSkquZNq0h101BCPe47VZSZJ96nnwmMWLg3zta6s5\ndOgBTDdiCf39Q5w+vZsJE5pYsqQTk30vI4kutPTee3DggOkaPe8885jb7n6GrzmwDvgFZmrmEeB7\nRHoiIkMwlrWDm292di0LKT6R46+GSBEyewjtIk6enEVHx8ifmVyuIyOFTUWi0vDww5a1YoVlTZ9u\n14BPVEBlu9XSsi7fu+oZdqGl6uplFqywqquXWS0t61xZTGn4mgPrwksVL7FgjpYslqwKBoPWzJkf\ns6AhQRGyF61Zsz4+6ucml+vIFINCKhIlWdTcDBs2hHj33ecwK+olkt25/IU0ZBIMBmloaKK9fSW9\nvVuAzfT2Pk57+0oaGpoIhZybeuaE2Az0/wy8SnV1CS0tV1NTMxtN0ZRs8vl8NDRcg6knMnx57v37\nvznqjItcztiQ7NOwhUcEg0EWLVrN229PJl8XikIaMsnlglhOGCkD/fjx5eRi8SIpXh0dsGXLa4xc\nhGzkGRfpztjw2tBisVHPg0dELnbjyVfiUiHdOZgTWX56cBIZrVcHTLGezZvhqafg1VfN982bYdUq\nb1TJFO9qboZLLslsxkW6Mzbs3tapU1vZt285e/c2sm/fcqZObWXDhpAChzxT8OARkYtd/i4Ubrvg\nZiKXU89SYVeQPHRoJadPb6G/fzOnTz/OoUOjV/BTRT7JhdgZFyGgFVgONALLeO21gyMOX6Y7Y8Nr\nQ4vFRsGDR0Qudn5ip+kR/v5i1i8UbrvgZsJtU88y6dXxSpVM8bbIOjD21OCVgLmowxYGBr4/YqCb\n7joyhdTTKc7SbIs01NYui8pQDoaz7c0sAbjVKiv7iLV0adB6+OFc7YO3s/pbWtw1a6WQ2lYKU2TG\nz2fDs37S++yku7y3PhMj02wLSUls1G6XU96Kifq/xu2338STT2Z3nrRXVqBMhdu6+gupV0cKk93D\nVVb2MokXZoORhi/T7SHTZ8LdNNvCIwIBP9u2NdHTcz8m7yD3pYfdsA9OsU9kZ88GOHlyfUzBGvtE\nlsuErMgwimZMiDvZ68DMnXsJe/emf1FPdx0ZfSbcTcGDR7jhYueGfXCK2xbEilTwS3RH561eHSls\nubqo6zPhbgoePMINFzs37EMhSFSmt7y8j9LSpxgc/AHmZOndXh0pbLm6qBdST2chUs6DSI4lmpbZ\n1/cUg4PfpKrqDmbOvBVopLp6BS0tm9ixoxOfTzMmxB1ylS+kWUTulmzgKhfqgK6uri7q6vKSLCqS\nF2vWtNLevpLEd247mDZtE5bVxrlzIfr6AvT3m0WIzjtPiwiJO4RCIfz+AC+80E1vbynV1YNcf30t\ngYBfgW6O7Nmzh/r6eoB6YE+ut6+eBykqblifY7RiW5Mnd/Pb3waZPLmJ995byeDgRgYH53L6tMWh\nQ//B00/fwF13/ZXn1hORwtDRAWvX+jhxoo3Zs7cyZ85mZs/eyokTbaxd69MxWSSU8yBFxQ3rc6Qy\nBS1SIOcyYDUQ2V/LGuLo0Z1UVHhrPREpDPaaEnbuTl9fgO3bI0ts/+Y3tbS3q3es0KnnweXccKdc\nSNxQtS5xdUu73O8y9u49xE9+8gSmd6INEzgMX8lQVfYknzIpqS7ep+DB5dz4AY0PaMrKGiktXUJp\n6Q2Ult5MWZl7Axw3rM8xvNhWdLnfrcAeLKsaEyzkf39FEnFDIC75o+DB5dz4AY0PaAYHf8TQ0BBD\nQ99kaOgJBgfzH+Ak44aqdcOz1duA+4n9G9u9E/nfX5FE3BCIS/4oeHA5N35Ahwc0ybrW3XcH4oYF\nseKnoMETDJ95YfdO5H9/RRJxQyAu+aPgweXc+AGNDWhCwHO4LcBJxg3rczQ3w5NP+nj99TZOndrK\nnDn2EEU0e/XUi4CdSd5JVfYkf9wQiEv+KHhwOTd+QCMBjT1WPxm3BTjJuG1BLEj2N/YBnUAl8Bng\nRdyyvyKQeiCupO/CpODB5dxwpxwvcrGzhyvGE7n42bMGlgONwDJee+2ga04SbqpaZ59U9+8/jQlm\n4vmAzzBt2s1Mn/7Ped9fkWipBuJuTPoWb6sDrK6urnwvi+5qwWDQqqm50YLtFgy+v5Y9bLdqam60\ngsFgzveppWWdBTssWGbBkAX2/49bcGP430NR+/pi3vbVzY4fPx7+2/4y3G7xf2O1m7jXww9b1tKl\nQWvKlHXWuHGLLbjagissWGjBDVZJyfXWuHFLw4+/GD6u47+2Wy0t6/L9q3hSV1eXhblry0uJZvU8\nuJyb7pRtkTuOc5jhCnt8vpXhswZUkyCZSOLprZghik3ACkyPzWIqKu5R74K4lp2788orrVRXDwE/\nAH4H/AummJmZfQWXAA1J3sVdOVGSOlWYdDk3rmRpBzQHDtzKwIBFZHz+VhKv1wDmJLE+Z/voBeak\naQdU8X/jIWbNWsGTTypwEHeLnX0FsbOvQNONC5N6HiRt9h3H7bffSCQfw4e5w9BJIlVunEkjkq7R\nZ1+5L+lbMqfgQcZseMKUThLpcONMGpF0jT77yn1J35I5BQ8yZvH5GCUlR0g8awB0khjOjTNpRNI1\n8uwriOREuWd6tGROwYOMWXyxo+PHn6Km5qvoJJEaN9acEElXJAi2hy+ig+IQJq9nHPBF4ErgGsaN\nu5UpUzTd2MuUMCmOsXsizp4NcPLk+veX6J08ufb9k4SW6I1Qe0khCAT8bNvWRE+PPXzhxwxf3AX8\nHdHLyZvgeBfV1feyY4cfn0+Bg1cly9bKhTqgq6uri7q6vExTFRGRDHV0QHt7iGefvZWBgV9jLish\n4NOYwGFRgp/aQUvLJjZudM8sMq/Zs2cP9fX1APXAnlxvX8MWIiIyZslnX1Wi+g6FS8GDiIhkbHgO\nj6YiFzIFD1JUQqEQa9a0Mm/ecubObWTevOWsWdNKKKT6+iKZGL7UfC+aily4FDxI0XjooSCzZjXR\n3r6S7u4t7N27me7ux2lvX8msWU388IcKIETGKn72VUvLLWgqcuFS8CBFY9euNvr67LK50WtvLKSv\n73527tTaGyJO0VTkwqbgQYpGbBndeErgEnGSGxf1E+eozoMUDa0lIZI7blzUT5yjngcpGlpLQkTE\nGQoexHFundGgtSRERJyh4EEc5eYZDUrgEhFxhoIHcZSbZzQogUtExBlKmBRHmRkLyQKEBezevT6X\nuxNDCVwiIs5Qz4M4SjMaREQKn4IHcZRmNIiIFD4FD+Ko2BkNIaAVWA40AovZv/80N98coqMjX3so\nIiKZUvAgjorMaNgKNAErgS3AZuDf6Ov7Bj09TSxZonUkRES8yung4QvAb4G3w1/bgVsc3oa4mD2j\noaKiDVjP8FkXDfT03I/fr3UkRES8yung4XXgbqAOqAeexdxyznN4O+JS9sp6s2ZVAg1JXqV1JERE\nvMzpqZpb4v7/VUxvxHzgZYe3JS6mWRciIoUrm3UeSoFPAxOAbVncjrhQZNZFogBCsy5ERLwsG8HD\nlZj6vxOAM8CfAfuysB1xsfnza+nu3gXUYIpGdWPiyUHgIk6enEVHhxnmEBERb0nWr5yJcmAGcAGm\n5+FLwA3AnrjX1QFd1113HRdeeGHME83NzTTrquJpoVCIa6+9jQMHhoAHgQWYw20I2MmsWV9h9+7H\n8PlUElpEZCQdHR10xM1vf+utt9i2bRuY/ML462vWZSN4iPc0sB/487jH64Curq4u6urqcrAbkksd\nHXDXXX/F0aPNwKIEr9hBS8smNm5UqWgRkXTt2bOH+vp6yFPwkIs6D+NytB1xkeZmmDz5NTTjQkSk\n8Did8/AN4JeYKZvnA6uB64H7Hd6OeIBmXIiIFCangwcf8FNgGqZI1G+BmzH1HqTIaMaFiEhhcjp4\n+LzD7yceFplxsTDBs7vC62CIiIjXKBdBsmbhQj8VFfdgZu4OhR8dAnZQUXEvCxf687dzIiIyZtks\nEiVF7o47fHzqU534/QF2717PwEApZWWDzJ9fSyDQqWmaIiIepeBBssrn82k6pohIgdGwhYiIiKRF\nwYOIiIikRcMWUhRCoVA496I7LvfCr9wLEZE0KXiQgvfQQ0Huums1fX0PYBbpMmtsdHfv5uc/b+LB\nBzu54w4FECIiqdKwhRS8XbvawoHDQiIFq8YBC+nru5+dOwP52zkREQ9S8CAFz6yhsSDJs1pjQ0Qk\nXQoepOBpjQ0REWcpeJCCF1ljIxGtsSEiki4FD5IzHR1w880hZsxopapqOePHN1JVtZwZM1q5+eYQ\nHR3Z2a5ZQ2NXkme1xoaISLoUPEjOLF4cpKeniUOHVnL69Bb6+zdz+vTjHDq0kp6eJpYsCWVlu4GA\nn5qaxGts1NTcSyCgNTZERNKh4EFy5u672+jpSTzroafnfvz+7Mx6eOYZHzU1nUyfvonKyhWUlzdS\nWbmC6dM3UVPTyTPPaJqmiEg6VOdBcsbMakgWICxg9+71WdluczM0N/sArbEhIuIE9TxIzgyf9RAC\nWoHlwCfZt+8ga9a0EgplZ/hCREScoeBBciZ21kMQaAJWAluAzZw791va21cya1YTP/yhAggREbdS\n8CA5EzvroQ1Q1UcRES9S8CA5s3Chn4oKe9bDy6jqo4iINyl4kJy54w4f+/d30tKyifHjj6GqjyIi\n3qTgQXLK5/OxcWMbs2dPQ1UfRUS8ScGD5IWqPoqIeJeCB8mLXFR9zFc5bBGRQqciUZIXdtXHs2cD\nnDy5nnPnShk/fpDJk2vfr/rY3Dy29w6FQvj9AbZv/w29vYfp79+IKU5VQn//EKdP72bChCaWLOkE\nVF1SRCRdCh4kL5ys+mgHC7t3dxMKDfDGGwexrI2YnIr1mOmgtthy2Bs3quqkiEi6NGwhnvbQQ0Fm\nzWqivX0l3d1bCIWuwrJ+DNQAz6PpoCIizlPwIJ62a1cbfX12sak3gOeAyzDVKyej6aAiIs5T8CCe\nZnoPFhApdz0Z+DameuV4NB1URMR5Ch7Es0KhEIcOvYnpXbDLXY8H7IBC00FFRLJBwYPkVSgUYs2a\nVubNW87cuY3Mm7c8pZU17VyHd96ZiOldiA4YzmECCj+QaDroi1RU3MvChZlPBxURKUaabSF589BD\nQe66a3U4Z8FMpYQhurt38/OfN/Hgg53ccUfiqZSRXIdfYHoX7OW+/cANmIDCB3SG33t9+DUDXHDB\nEf74x6fx+TRNU0RkLNTzIHkTm+yY3sqakVwHu3fhXSIBw59iehsI/78N2ApsBr7GbbfdpMBBRCQD\nCh4kbyIBQCIjT6U0MyVKiPQuWEQChr8Fvko2q1eKiBQzBQ+SN5EAIJHkUylDoRDHjx8hMpPCBzxK\nJGCYigkofgEsBq6houJWpk/f9H71ShERGTvlPEjemKmSFokDiNiplHYVySee+A3Hjx/GsuYDO4GG\n8Cui8xvuoaTkPSoqpjB58keprfXT0jL2ctciIhJLwYPkzfz5tXR37yK2fLQtMpUyNrHSLjldg6nr\ncD9m6GMcpsfhk1RUdPHgg5uTJluKiEhmFDxI3ixc6OfnP2+iry86ABgCdoWnUnYC0YmVdsnpNkxv\nhWZSiIjkg4IHyZs77vDxqU91hhe1Ws/AQCllZYPMn19LIND5fgBgEifXMbzk9PCFtT7wgUYFDiIi\nWaaESckrn8/Hxo1tPP98O4sWzQVg+/ZXueGGlveLRZnESZWcFhFxC/U8SN6NVizqggvKMRUkA0RK\nTo+cJyEiItmjngfJu9GKRVVWniWVktOq4SAikhvqeZC8MzkNdjXJUPjf3dhJkIcPv0FJiYVlJS85\nXVZ2hJqap3nmGU3JFBHJNgUPkneRYlFBYDUmtyEyfHHmzE5KSz/P4OAOYBHDEyV3cPvtm9i4UYmS\nIiK5oGELybtIsSh7We344YtFDA5+m9LSL5Co5LRWyBQRyS31PEjeRYpFRQ9fxLuFmpoHWbRo04jT\nOkVEJPsUPEjeBQJ+tm1roqdn5LUuoIKNG9uSPC8iIrmiYQvJu2ee8VFT00lZ2UlUw0FExP0UPEje\nNTfDk0/6uP32GzE1HBJRDQcREbdQ8CCusXChn4qKRDUclBQpIuImynkQ10h1rQsREckv9TwUmY6O\njnzvwojstS5efnkrr766mZdf3srGjW2eDhzc3uaFSG2ee2rz4uJ08PAV4NfAO8Bx4J+AOQ5vQzKg\nD3juqc1zT22ee2rz4uJ08PBx4O+BBcBNmGGRp4AKh7cjIiIieeJ0zsOtcf9fg6k5XAf8yuFtiYiI\nSB5kO+fhwvD3N7O8HREREcmRbM62KAG+A2zD1B1O6JVXXsniLki8t956iz179uR7N4qK2jz31Oa5\npzbPrXxfO5PVAnbC9zDDGP8XcCTB89MwyZWXZnEfRERECtVh4FrgaK43nK3g4e+BRkwC5YERXjct\n/CUiIiLpOUoeAodsKAH+F/A6UJPnfREREREP+D5wEtPj8MGor/PyuVMiIiLiXkPAYPh79Ndn87lT\nIiIiIiIiIiIiIiIiIiIiUtTuY3guQ3z9hsuBzcBbmMWxdgAz4l7TADwLnMIkVz5HbELl/gTbeSDu\nPaAc+f8AAAV6SURBVD4EPB5+jxDwP4DyMf5ebnYfmbX5rAQ/b3+tjHqPycD/F36Pt4CfAhfEbUdt\nHuFEm+9P8LyO87GfWy4BHgaOYdprD7HtDTrOo91Hbtp8f4Lt6Dgfe5vXYBacDAJvA53AxXHv4brj\n/D7gd+Edtb+mRj1fA5wAvgl8BHMSvRWIXku5AfPL+DGNVAN8Chgf9Zpe4N647VRGPV8K/B54Jryd\nxcAh4H9m+gu60H1k1ubj4n72YuBrmIMuerGyfwV+i1nQbGF4m5ujnlebRzjV5jrOI+4j83PLc8BO\n4KPh5+8FBoCro16j4zziPnLT5jrOI+4jszavBHqAx4B5wBWYQGIXsTWbXHec3wf8ZoTnHwF+Msp7\n7AT+31Fe0wv8zQjP34o5QD8Y9VgTcAaoGuW9veY+Mm/zeL8B/iHq/5djIuBrox5bEH7sw+H/q80j\nnGhz0HEe7T4yb/N3gf877rE3MIvzgY7zePeR/TYHHefR7iOzNl+KaavodrkQcwwvDv8/Z8d5ugtj\nfRhTDvM1oAOojnqfZcAfgSeB45hA4T9F/ezFwHxMF8l2TFfX88DHEmznbsxB+BvgHmK7UxowUdOx\nqMeeAiYA9Wn+Pl6QSZvHq8dEmhuiHmvA3BX/OuqxXeHHFkW9Rm3uXJvbdJxHZNrmW4DVmC7bceF/\nj8ecY0DHeSLZbnObjvOITNp8AmAB56IeO4sJDOzrqCuP81uA2zDdJYsxXVZHgSmYCGYIM37yN8BV\nmANmEFMwCkz3yRDmIPoc5oT6IPAeMDtqO3cC12G6ZNZixnai79r+N/BEgv17DxM9FZJM2zze94E/\nxD12D/Bqgte+Gn4/UJs73eag4zyaE20+EdMNO4Q5ub5F5G4MdJzHy0Wbg47zaJm2+UWYNv4Opu0r\nMRWdh4AfhF/jieO8AvOL/1fM+hRDwM/iXvMvmIQaMFHPELA+7jW/ZXgCTbRPhX9ucvj//xsTmcUr\nxIMtXrptHm0i5sD7r3GPp3qwqc2da/NEdJxHjKXNN2GSy24ErgT+FpOQfUX4eR3nI8tGmyei4zxi\nLG1+E7APE1T0Y4Y5XsIsRAk5PM7THbaI1ofp+piN6U0YYPjS2/8/JqsTIot3xL/mlajXJLIr/N3u\nnTgGfCDuNZMx3WXHKGzptnm0VZiL2U/jHj/G8Gxdwo8di3qN2ty5Nk9Ex3lEum1+OfBJzJ3tc+Gf\n/e+Yk+pfhl+j43xk2WjzRHScR4zl3PJ0+PU+TLLl54DpmGEQyOFxnknwMAGoxQQF/Zgxlj+Je80c\nzFQdwt+PJHjN3KjXJHJN+LsdfGzHRLbRv/xSzNhPV4r77lXptnm0tZgo9kTc4zsw03jiE2wuwLQ1\nqM2dbvNEdJxHpNvm9nlsMO41Q0Sy0HWcjywbbZ6IjvOITM4tb2Kmci7GBBL2bApXHuffxoy9VId3\n5nFMl6w9B/WT4Y1/HhMZfQnTIIui3uNvwj+zMvyarwOniSSNLMR04VwdfuzPMFNI/inqPcZhpp48\nHX7dYuAgZp5qoXGizQk/N4g5QBL5JfAfxE7t+Zeo59Xmzra5jvNYmbZ5KeaO7QXMSbMGuAvT/rdE\nbUfHeUQu2rwBHefRnDi3rMEcuzXA7Zgei7a47bjuOO/AZImexRwAjzI8SloD7MV0x+wBViR4n7vD\nO3oK+BWxDXMNJnI6GX6PVzDjaPGrcs7ANPxpTON9l8IsKuJUmz/AyL07F2KKirwd/vopMCnuNWrz\niEzbXMd5LCfa/LLwzx3FnFt+w/BphDrOI3LR5jrOYznR5t/AtPdZzJDGnQm2o+NcRERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERE8ur/ANBpVY9jW9RvAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import sys\n", + "import getopt\n", + "sys.path.insert(1,\"/usr/local/science/clag/\")\n", + "import clag\n", + "%pylab inline\n", + "\n", + "from scipy.stats import norm\n", + "from scipy.stats import lognorm\n", + "from scipy.optimize import curve_fit\n", + "import numpy.fft\n", + "\n", + "ref_file=\"lc/1367A.lc\"\n", + "echo_file=\"lc/4775A.lc\"\n", + "\n", + "dt = 0.01\n", + "t1, l1, l1e = np.loadtxt(ref_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.005 , 0.01861938, 0.04473305, 0.06933623, 0.10747115,\n", + " 0.16658029, 0.25819945, 0.40020915, 0.62032418])" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "\n", + "fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029, \n", + " 0.25819945, 0.40020915, 0.62032418])\n", + "# fqL = np.logspace(np.log10(0.0006),np.log10(1.2),11)\n", + "nfq = len(fqL) - 1\n", + "fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.)\n", + "\n", + "\n", + "fqL\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.342e-01 5.077e+01 inf -- -5.530e+02 -- 1 1 1 1 1 1 1 1\n", + " 2 7.674e-01 5.065e+01 8.300e+01 -- -4.700e+02 -- 0.653018 0.587019 0.568277 0.567457 0.566281 0.566085 0.565773 0.566163\n", + " 3 3.298e+00 5.043e+01 8.075e+01 -- -3.893e+02 -- 0.414806 0.209135 0.141159 0.13784 0.133393 0.132728 0.131612 0.132761\n", + " 4 1.572e+00 5.010e+01 7.754e+01 -- -3.117e+02 -- 0.322539 -0.0834456 -0.273066 -0.284295 -0.297612 -0.299435 -0.302479 -0.300412\n", + " 5 5.908e-01 4.964e+01 7.386e+01 -- -2.379e+02 -- 0.302357 -0.214604 -0.654658 -0.688754 -0.723838 -0.729279 -0.736418 -0.733888\n", + " 6 3.713e-01 4.877e+01 6.953e+01 -- -1.683e+02 -- 0.284419 -0.200357 -0.96379 -1.05472 -1.13798 -1.15477 -1.17031 -1.16748\n", + " 7 2.709e-01 4.671e+01 6.269e+01 -- -1.056e+02 -- 0.277768 -0.185001 -1.13047 -1.34026 -1.52128 -1.56845 -1.6043 -1.60101\n", + " 8 2.135e-01 4.361e+01 5.281e+01 -- -5.282e+01 -- 0.277012 -0.185189 -1.16375 -1.49463 -1.83211 -1.9477 -2.03737 -2.03476\n", + " 9 1.764e-01 3.767e+01 4.019e+01 -- -1.264e+01 -- 0.282161 -0.184207 -1.17891 -1.53049 -2.01851 -2.24569 -2.46562 -2.46922\n", + " 10 1.508e-01 2.738e+01 2.645e+01 -- 1.382e+01 -- 0.289545 -0.182463 -1.18795 -1.52893 -2.08812 -2.41103 -2.87498 -2.90486\n", + " 11 1.349e-01 1.468e+01 1.390e+01 -- 2.772e+01 -- 0.293547 -0.180898 -1.1897 -1.52803 -2.10944 -2.46526 -3.22702 -3.34288\n", + " 12 1.358e-01 5.365e+00 5.378e+00 -- 3.309e+01 -- 0.295456 -0.179941 -1.19052 -1.52801 -2.11928 -2.48294 -3.46233 -3.79368\n", + " 13 1.868e-01 1.338e+00 1.633e+00 -- 3.473e+01 -- 0.297315 -0.17923 -1.19104 -1.52666 -2.12491 -2.48975 -3.55567 -4.30889\n", + " 14 6.248e-01 2.604e-01 4.517e-01 -- 3.518e+01 -- 0.299091 -0.178645 -1.191 -1.52463 -2.12805 -2.4915 -3.5672 -5.11363\n", + " 15 2.744e+02 2.611e-01 7.022e-02 -- 3.525e+01 -- 0.300248 -0.178286 -1.19075 -1.52307 -2.12961 -2.49161 -3.56337 -8\n", + " 16 2.745e+02 2.782e-01 4.368e-04 -- 3.525e+01 -- 0.300566 -0.178158 -1.19062 -1.52252 -2.13009 -2.49151 -3.5617 -8\n", + " 17 2.745e+02 2.805e-01 6.410e-05 -- 3.525e+01 -- 0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n", + "********************\n", + "0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n", + "0.238931 0.202434 0.232634 0.177249 0.153039 0.132988 0.297259 3285.23\n", + "-0.000915535 -0.00131061 -0.00195128 -0.00497899 -0.0226059 -0.0776175 -0.280541 -0.000206646\n", + "********************\n" + ] + } + ], + "source": [ + "P1 = clag.clag('psd10r', [t1], [l1], [l1e], dt, fqL)\n", + "p1 = np.ones(nfq)\n", + "p1, p1e = clag.optimize(P1, p1)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 3.525e+01 3.480e+01 3.006e-01 5.395e-01 0.891 +++\n", + "+++ 3.525e+01 3.431e+01 3.006e-01 6.590e-01 1.87 +++\n", + "+++ 3.525e+01 3.458e+01 3.006e-01 5.993e-01 1.34 +++\n", + "+++ 3.525e+01 3.469e+01 3.006e-01 5.694e-01 1.11 +++\n", + "+++ 3.525e+01 3.475e+01 3.006e-01 5.545e-01 0.997 +++\n", + "\t### errors for param 1 ###\n", + "+++ 3.525e+01 3.476e+01 -1.781e-01 2.430e-02 0.973 +++\n", + "+++ 3.525e+01 3.421e+01 -1.781e-01 1.255e-01 2.07 +++\n", + "+++ 3.525e+01 3.451e+01 -1.781e-01 7.491e-02 1.48 +++\n", + "+++ 3.525e+01 3.464e+01 -1.781e-01 4.961e-02 1.21 +++\n", + "+++ 3.525e+01 3.470e+01 -1.781e-01 3.696e-02 1.09 +++\n", + "+++ 3.525e+01 3.473e+01 -1.781e-01 3.063e-02 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.781e-01 2.747e-02 1 +++\n", + "\t### errors for param 2 ###\n", + "+++ 3.525e+01 3.511e+01 -1.191e+00 -1.074e+00 0.276 +++\n", + "+++ 3.525e+01 3.495e+01 -1.191e+00 -1.016e+00 0.598 +++\n", + "+++ 3.525e+01 3.485e+01 -1.191e+00 -9.870e-01 0.8 +++\n", + "+++ 3.525e+01 3.479e+01 -1.191e+00 -9.725e-01 0.91 +++\n", + "+++ 3.525e+01 3.476e+01 -1.191e+00 -9.652e-01 0.968 +++\n", + "+++ 3.525e+01 3.475e+01 -1.191e+00 -9.616e-01 0.997 +++\n", + "\t### errors for param 3 ###\n", + "+++ 3.525e+01 3.482e+01 -1.522e+00 -1.345e+00 0.865 +++\n", + "+++ 3.525e+01 3.432e+01 -1.522e+00 -1.257e+00 1.86 +++\n", + "+++ 3.525e+01 3.459e+01 -1.522e+00 -1.301e+00 1.32 +++\n", + "+++ 3.525e+01 3.471e+01 -1.522e+00 -1.323e+00 1.08 +++\n", + "+++ 3.525e+01 3.476e+01 -1.522e+00 -1.334e+00 0.97 +++\n", + "+++ 3.525e+01 3.473e+01 -1.522e+00 -1.329e+00 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.522e+00 -1.331e+00 0.998 +++\n", + "\t### errors for param 4 ###\n", + "+++ 3.525e+01 3.481e+01 -2.130e+00 -1.977e+00 0.874 +++\n", + "+++ 3.525e+01 3.429e+01 -2.130e+00 -1.901e+00 1.91 +++\n", + "+++ 3.525e+01 3.457e+01 -2.130e+00 -1.939e+00 1.35 +++\n", + "+++ 3.525e+01 3.470e+01 -2.130e+00 -1.958e+00 1.1 +++\n", + "+++ 3.525e+01 3.476e+01 -2.130e+00 -1.968e+00 0.983 +++\n", + "+++ 3.525e+01 3.473e+01 -2.130e+00 -1.963e+00 1.04 +++\n", + "+++ 3.525e+01 3.474e+01 -2.130e+00 -1.965e+00 1.01 +++\n", + "+++ 3.525e+01 3.475e+01 -2.130e+00 -1.966e+00 0.997 +++\n", + "\t### errors for param 5 ###\n", + "+++ 3.525e+01 3.474e+01 -2.491e+00 -2.358e+00 1.01 +++\n", + "+++ 3.525e+01 3.512e+01 -2.491e+00 -2.425e+00 0.263 +++\n", + "+++ 3.525e+01 3.496e+01 -2.491e+00 -2.392e+00 0.579 +++\n", + "+++ 3.525e+01 3.486e+01 -2.491e+00 -2.375e+00 0.781 +++\n", + "+++ 3.525e+01 3.480e+01 -2.491e+00 -2.367e+00 0.893 +++\n", + "+++ 3.525e+01 3.477e+01 -2.491e+00 -2.363e+00 0.952 +++\n", + "+++ 3.525e+01 3.476e+01 -2.491e+00 -2.361e+00 0.982 +++\n", + "+++ 3.525e+01 3.475e+01 -2.491e+00 -2.360e+00 0.997 +++\n", + "\t### errors for param 6 ###\n", + "+++ 3.525e+01 3.507e+01 -3.561e+00 -3.413e+00 0.363 +++\n", + "+++ 3.525e+01 3.484e+01 -3.561e+00 -3.339e+00 0.814 +++\n", + "+++ 3.525e+01 3.468e+01 -3.561e+00 -3.301e+00 1.13 +++\n", + "+++ 3.525e+01 3.477e+01 -3.561e+00 -3.320e+00 0.962 +++\n", + "+++ 3.525e+01 3.473e+01 -3.561e+00 -3.311e+00 1.04 +++\n", + "+++ 3.525e+01 3.475e+01 -3.561e+00 -3.315e+00 1 +++\n", + "\t### errors for param 7 ###\n", + "+++ 3.525e+01 3.524e+01 -8.000e+00 -6.000e+00 0.0178 +++\n", + "+++ 3.525e+01 3.515e+01 -8.000e+00 -5.000e+00 0.187 +++\n", + "+++ 3.525e+01 3.494e+01 -8.000e+00 -4.500e+00 0.618 +++\n", + "+++ 3.525e+01 3.466e+01 -8.000e+00 -4.250e+00 1.18 +++\n", + "+++ 3.525e+01 3.482e+01 -8.000e+00 -4.375e+00 0.851 +++\n", + "+++ 3.525e+01 3.475e+01 -8.000e+00 -4.312e+00 1 +++\n", + "********************\n", + "0.300605 -0.178131 -1.19059 -1.52241 -2.13019 -2.49148 -3.56144 -8\n", + "0.253864 0.205597 0.228999 0.191096 0.1638 0.131949 0.246154 3.6875\n", + "********************\n" + ] + } + ], + "source": [ + "p1, p1e = clag.errors(P1, p1, p1e)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAGp1JREFUeJzt3X9s4/d93/HnxZaj5dxOi12RZ+98bLhdaBhJDbLSHzrb\n5TIn2IY26dBOIbFsiLTCQdoOuHUrcMMgzZCAYS2G9uqua3FbD9kQjNQNaDYH2LXFUKW5UVqnimm7\nbmadUT+W5kxmTXvr6kSpVnt/UHeR1I9+8I7fL389HwAhivx8vp+3cJ+TXvx+P9/vFyRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvSA/iGwBvwh0AQ+A1zsakWSJKkn3AT+NvA08H7gs8AW\n8K4u1iRJknrQ48BbwHPdLkSSJJ3sHTGONbb39fdjHFOSJPW4M7QON/xqtwuRJEmn83BM4/xz4BmO\nP9Rwbu8hSZLa88beo6PiCAk/DXw38AJw+4g255544onbt28f9bYkSTrGl4EJOhwUogwJZ2gFhI8A\neWD7mLbnbt++zac//WmefvrpCEvqvMuXL3P16tW+HO9BttVu33ban6btSW2Oez/uf7NOca51vr1z\nLcy51vn2Uc611157jY997GNP0tob3zch4WeAIq2Q8CaQ3Hv9DrAT6vD000+TzWYjLKnzxsbGYq25\nk+M9yLba7dtO+9O0PanNce/H/W/WKc61zrd3roU51zrfPuq5FpWHItz2Z4F3AjPA39/3+CLwm4fa\nngM+8YlPfIJz5/pvWcL73ve+vh3vQbbVbt922p+m7Ultjnq/VCpRLBZPXUsvca51vr1zLcy51vn2\nUc21N954g2vXrgFco8N7Es50cmMPIAusr6+v92XqVn/58Ic/zKuvvtrtMjQEnGuKQ7VaJZfLAeSA\naie3Hed1EiRJUh8xJGjo9OvuX/Uf55r6nSFBQ8df3IqLc039zpAgSZKCDAmSJCnIkCBJkoIMCZIk\nKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnI\nkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAg\nSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmS\nggwJkiQpyJAgSZKCDAmSJCkoypDwAvBZ4MvAW8BHIhxLkiR1WJQh4V3AF4Af2vv+7QjHkiRJHfZw\nhNv+xb2HJEnqQ65JkCRJQYYESZIUZEiQJElBUa5JaNvly5cZGxs78FqxWKRYLHapIkmSekepVKJU\nKh147c6dO5GNdyayLR/0FvC9wKtHvJ8F1tfX18lmszGVJElS/6tWq+RyOYAcUO3ktqPck3AW+Iv7\nvn8P8CzwVeBLEY4rSZI6IMqQMAH8yt7zt4Gf2Hv+KWA2wnElSVIHRBkSPocLIyVJ6lv+EZckSUGG\nBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJ\nkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhT0cLcLkKJQKpUolUoA7OzssL29zYUL\nFxgdHQWgWCxSLBa7WaIk9TxDggbS/hBQrVbJ5XKUSiWy2WyXK5Ok/uHhBkmSFGRIkCRJQYYESZIU\nZEiQJElBhgQNrK2tLWZnZ5mengZgenqa2dlZtra2uluYJPUJz27QwGk2mxQKBWq1Go1G497r9Xqd\ner3OzZs3yWQylMtlEolEFyuVpN5mSNBAaTabTE1NsbGxcWSbRqNBo9Hg0qVLVCoVg4IkHcHDDRoo\nhULh2ICwX71ep1AoRFyRJPUvQ4IGxubmJrVara0+tVrNNQqSdARDggbG4uLigTUIp9FoNFhYWIio\nIknqb4YEDYy1tbVY+0nSoDMkaGDs7u7G2k+SBp0hQQNjZGQk1n6SNOgMCRoYExMT99VvcnKyw5VI\n0mAwJGhgzM/Pk0wm2+qTTCaZm5uLqCJJ6m+GBA2MVCpFJpNpq08mkyGVSkVTkCT1OUOCBkq5XCad\nTp+qbTqdZmlpKeKKJKl/GRI0UBKJBJVKhXw+f+Shh2QyST6fZ2VlhfHx8ZgrlKT+YUjQwEkkEiwv\nL7O6usrMzMy9PQvpdJqZmRlWV1dZXl42IEjSCbzBkwZWKpXi+vXrVKtVcrkcN27cIJvNdrssSeob\nUe9J+EFgE/g68OvAcxGPJ0mSOiTKkPBR4CeBReBZ4BZwEzgf4ZiSJKlDogwJPwL8K+A68DvA3wO+\nBHwywjElSVKHRBUSHgGywC8fev2XgamIxpQkSR0U1cLFx4GHgOah178CtHdJPOk+lEolSqUSADs7\nO1y8eJErV64wOjoKQLFYpFgsdrNESep5nt2ggWQIOJ3DYWp7e5sLFy4YpiQBcCai7T4CvAl8P/Af\n9r3+U8D7gb90qH0WWH/++ecZGxs78Ia/pKR43D1VdH193VNFpR61P9jfdefOHW7dugWQA6qdHC+q\nPQl/DKwDH+JgSPgg8JmjOl29etVfTpIkHSH0wfluwI9ClGc3/ATwA8AM8DSt0yH/PPBzEY4pqU1b\nW1vMzs4yPT0NwPT0NLOzs2xtbXW3MEldF+WahBvAY8A8cA74b8Bfo3UapKQuazabFAoFarUajUbj\n3uv1ep16vc7NmzfJZDKUy2USiUQXK5XULVEvXPzZvYekHtJsNpmammJjY+PINo1Gg0ajwaVLl6hU\nKgYFaQh5gydpCBUKhWMDwn71ep1CoRBxRZJ6kSFBGjKbm5vUarW2+tRqNdcoSEPIkCANmcXFxQNr\nEE6j0WiwsLAQUUWSepUhQRoya2trsfaT1L8MCdKQ2d3djbWfpP5lSJCGzMjISKz9JPUvQ4I0ZCYm\nJu6r3+TkZIcrkdTrDAnSkJmfnyeZbO9mrMlkkrm5uYgqktSrDAnSkEmlUmQymbb6ZDIZUqlUNAVJ\n6lmGBGkIlctl0un0qdqm02mWlpYirkhSLzIkSEMokUhQqVTI5/NHHnpIJpPk83lWVlYYHx+PuUJJ\nvcCQIA2pRCLB8vIyq6urzMzM3NuzkE6nmZmZYXV1leXlZQOCNMSivsGTpB6XSqW4fv36vXvS37hx\ng2w22+2yJPUA9yRIkqQgQ4IkSQrycIM0xEqlEqVSCYCdnR0uXrzIlStXGB0dBaBYLFIsFrtZoqQu\nMiRIQ8wQIOk4Hm6QJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAk\nSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElB\nhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUFFVI+EfACvA14A8iGkOSJEUoqpAwAiwB/yKi7UuS\npIg9HNF2X977+vGIti9JkiLmmgRJkhQU1Z4ESeq4UqlEqVQCYGdnh+3tbS5cuMDo6CgAxWKRYrHY\nzRKlgdJOSHgZmD+hzXcC1fuuRpKOsT8EVKtVcrkcpVKJbDbb5cqkwdROSPhp4N+e0Gb7AWrh8uXL\njI2NHXjNTwaSJLXs35t21507dyIbr52Q8NW9R2SuXr3qJwJJko4Q+uB8d69aFKJak/AU8O69rw8B\n3wGcAb4IvBnRmJIkqYOiOrthgdbahJeBs8AXgHUgmqgjaWhsbW0xOzvL9PQ0ANPT08zOzrK1tdXd\nwqQBFNWehI/jNRIkdVCz2aRQKFCr1Wg0Gvder9fr1Ot1bt68SSaToVwuk0gkulipNDg8BVJSz2s2\nm0xNTbGxsXFkm0ajQaPR4NKlS1QqFYOC1AFeTElSzysUCscGhP3q9TqFQiHiiqThYEiQ1NM2Nzep\n1Wpt9anVaq5RkDrAkCCppy0uLh5Yg3AajUaDhYWFiCqShochQVJPW1tbi7WfpG8yJEjqabu7u7H2\nk/RNhgRJPW1kZCTWfpK+yZAgqadNTEzcV7/JyckOVyINH0OCpJ42Pz9PMplsq08ymWRubi6iiqTh\nYUiQ1NNSqRSZTKatPplMhlQqFU1B0hAxJEjqeeVymXQ6faq26XSapaWliCuShoMhQVLPSyQSVCoV\n8vn8kYcekskk+XyelZUVxsfHY65QGkzeu0FSX0gkEiwvL7O1tcXCwgKf//znqdfrpNNpXnjhBebn\n5yM7xFAqlSiVSgDs7Oywvb3NhQsXGB0dBaBYLFIsFiMZW+qmM90uYE8WWF9fXyebzXa7Fkl9oFqt\nksvliPv3RrfGlY5yd04COaDayW17uEGSJAUZEiTpFLa2tpidnWV6ehqA6elpZmdnvZGUBpprEiTp\nGM1mk0KhQK1WO3CjqXq9Tr1e5+bNm2QyGcrlMolEoouVSp1nSJDUNw4vILx48SJXrlyJbAFhs9lk\namqKjY2NI9s0Gg0ajQaXLl2iUqkYFDRQDAmS+kbcZxEUCoVjA8J+9XqdQqHA8vJyxFVJ8XFNgiQF\nbG5uUqvV2upTq9Vco6CBYkiQpIDFxcUDaxBOo9FosLCwEFFFUvwMCZIUsLa2Fms/qRcZEiQpYHd3\nN9Z+Ui8yJEhSwMjISKz9pF5kSJCkgImJifvqNzk52eFKpO4xJEhSwPz8/JF3nDxKMplkbm4uooqk\n+BkSJCkglUqRyWTa6pPJZCK7E6XUDYYESTpCuVwmnU6fqm06nWZpaSniiqR4GRIk6QiJRIJKpUI+\nnz/y0EMymSSfz7OyssL4+HjMFUrRMiRI0jESiQTLy8usrq4yMzNzb89COp1mZmaG1dVVlpeXDQga\nSN67QZJOIZVKcf36darVKrlcjhs3bpDNZrtdlhQp9yRIkqQg9yRI0gnivkW11CsMCZJ0AkOAhpWH\nGyRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUlBUISEF/DywAXwN+J/Ay8BIRONJ\nkqQOi+piSu8FzgAv0QoI7wP+JXAW+NGIxpQkSR0UVUj4pb3HXVvAPwM+iSFBkqS+EOeahDHgqzGO\nJ0mSHkBc925IAz8M/EhM40lSXzt8U6nt7W0uXLjgTaUUq3b3JLwMvHXC4/AN1p8AfhG4AVx/gFol\naWgUi0VeeeUVHn/8cTY2Nnj99dfZ2Njg8ccf55VXXjEgKBZn2mz/2N7jONvAN/aePwEsA6vAx4/p\nkwXWn3/+ecbGxg68YVqWNGyazSaFQoFarUaj0fhT7yeTSTKZDOVymUQi0YUK1S379zDddefOHW7d\nugWQA6qdHK/dkNCOJ2kFhDXgY8Dbx7TNAuvr6+tks4d3REjS8Gg2m0xNTbGxsXFi23Q6TaVSMSgM\nuWq1Si6XgwhCQlQLF58EPkdrr8KPAgkgufeQJB2hUCicKiAA1Ot1CoVCxBVpmEW1cPGDtBYrvgf4\n3X2vvw08FNGYktTXNjc3qdVqbfWp1WpsbW2RSqWiKUpDLao9CZ/a2/ZDe1/fse97SVLA4uJicA3C\ncRqNBgsLCxFVpGHnvRskqUesra3F2k86iSFBknrE7u5urP2kkxgSJKlHjIzc3z3w7refdBJDgiT1\niImJifvqNzk52eFKpBZDgiT1iPn5eZLJ9s4UTyaTzM3NRVSRhp0hQZJ6RCqVIpPJtNUnk8l4+qMi\nY0iQpB5SLpdJp9OnaptOp1laWoq4Ig0zQ4Ik9ZBEIkGlUiGfzx956CGZTJLP51lZWWF8fDzmCjVM\nDAmS1GMSiQTLy8usrq4yMzNzb89COp1mZmaG1dVVlpeXDQiKXFSXZZYkPaBUKsX169fv3cDnxo0b\n3gRPsTIkSFIP2n9L4J2dHS5evMiVK1cYHR0FoFgsUiwWu1mihoAhQZJ6kCFAvcA1CZIkKciQIEm6\np1Qq8eKLL/LUU0/x6KOP8sgjj/Doo4/y1FNP8eKLL947BKLh4OEGSRIAzWaTa9euUavVDtyyend3\nlzfffJPd3V2uXbvGBz7wARKJRBcrVVwMCZIkms0mU1NTbGxsHNmm0WjQaDS4dOkSlUrFoDAEPNwg\nSaJQKBwbEPar1+sUCoWIK1IvMCRI0pDb3NykVqu11adWq7G1tRVNQeoZhgRJGnKLi4sH1iCcRqPR\nYGFhIaKK1CsMCZI05NbW1mLtp/5hSJCkIbe7uxtrP/UPQ4IkDbmRkZFY+6l/GBIkachNTEzcV7/J\nyckOV6JeY0iQpCE3Pz9PMplsq08ymWRubi6iitQrDAmSNORSqRSZTKatPplMhlQqFU1B6hmGBEkS\n5XKZdDp9qrbpdJqlpaWIK1IvMCRIkkgkElQqFfL5/JGHHpLJJPl8npWVFcbHx2OuUN1gSJAkAa2g\n8NJLL/HMM89w/vx5zp49y8jICGfPnuX8+fM888wzvPTSSwaEIeINniRJ9xSLRYrFYrfLUI9wT4Ik\nSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkK\niiokvApsA18HbgP/BjgX0ViSJCkCUYWEXwH+BnAR+D4gDfxCRGNJkqQIRHUXyKv7nn8J+DHgM8BD\nwJ9ENKYkSeqgONYkvBv4m8AyBgRJkvpGlCHhx4A/An4P+HbgoxGOJUmSOqydkPAy8NYJj+y+9j8O\nPAt8CPgG8O+BMw9csSRJikU7f7Qf23scZ5tWIDjsSVprE54DVgLvZ4H1559/nrGxsQNvFItFisVi\nG2VKkjSYSqUSpVLpwGt37tzh1q1bADmg2snx4vpkf55WgPgu4Fbg/Sywvr6+TjabDbwtSZJCqtUq\nuVwOIggJUZzdMLn3+M/AHwDvARaALwKrEYwnSZIiEMXCxa8Bfx34T0AN+Hngt2jtRfh/EYwnSZIi\nEMWehN8G/nIE25UkSTHy3g2SJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ\nkoIMCZIkKciQIEmSggwJkiQpKIp7N0iSdGqlUolSqQTAzs4O29vbXLhwgdHRUQCKxSLFYrGbJQ4t\nQ4Ikqav2h4BqtUoul6NUKpHNZrtcmTzcIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ6rqtrS1mZ2eZ\nnp4GYHp6mtnZWba2trpb2JDz7AZJUtc0m00KhQK1Wo1Go3Hv9Xq9Tr1e5+bNm2QyGcrlMolEoouV\nDidDgiSpK5rNJlNTU2xsbBzZptFo0Gg0uHTpEpVKxaAQMw83SJK6olAoHBsQ9qvX6xQKhYgr0mGG\nBElS7DY3N6nVam31qdVqrlGImSFBkhS7xcXFA2sQTqPRaLCwsBBRRQoxJEiSYre2thZrP90fQ4Ik\nKXa7u7ux9tP9MSRIkmI3MjISaz/dH0OCJCl2ExMT99VvcnKyw5XoOIYESVLs5ufnSSaTbfVJJpPM\nzc1FVJFCDAmSpNilUikymUxbfTKZDKlUKpqCFGRIkCR1RblcJp1On6ptOp1maWkp4op0mCFBktQV\niUSCSqVCPp8/8tBDMpkkn8+zsrLC+Ph4zBXKkCBJ6ppEIsHy8jKrq6vMzMzc27OQTqeZmZlhdXWV\n5eVlA0KXeIMnSVLXpVIprl+/TrVaJZfLcePGDbLZbLfLGnruSZAkSUGGBEmSFGRIkCRJQYYESZIU\n5MJFSVJXlUolSqUSADs7O1y8eJErV64wOjoKQLFYpFgsdrPEoWVIkCR1lSGgd3m4QZIkBRkSJElS\nUNQh4Z3AbwBvAe+PeCzpVO4e+5Si5lxTv4s6JPw48OWIx5Da4i9uxcW5pn4XZUj4q8CLwD+IcAxJ\nkhSRqEJCArgG/C3g6xGN0RPi/qTQyfEeZFvt9m2n/WnantRmED/BOdc63965FuZc63z7fp1rUYSE\nM8CngJ8FqhFsv6f4n6nz7fv1P1PUnGudb+9cC3Oudb59v861dq6T8DIwf0KbCeAS8CjwTw+9d+ak\nAV577bU2yukNd+7coVqNLwt1crwH2Va7fdtpf5q2J7U57v24/806xbnW+fbOtTDnWufbRznXovzb\neeIf7n0e23scZxsoA98DvL3v9YeAPwE+DcwE+p0D1oAn26hHkiS1fJnWB/U3OrnRdkLCaZ0HvmXf\n908CvwR8H/BrwO0j+p3be0iSpPa8QYcDQlxSeJ0ESZL6TlxXXHz75CaSJEmSJEmSJEmSJEmx+xbg\nvwJfAH4b+OHulqMBdh74HPDfgd8Evr+r1WjQfQb4feDfdbsQDazvBmrA68Df6XItkXkHMLr3/M8A\nG8C3da8cDbAk3zwT59uAL9Gac1IUvovWL3FDgqLwMPA7tC4v8CitoPDudjYQ19kND+otYGfv+buA\n3X3fS53UAH5r7/n/pvUpr63/VFIbfhX4o24XoYE1SWuv6Bu05tl/BD7Uzgb6JSQA/Flau3//F/BT\nwP/tbjkaAt9J64Jj3u5cUj96goO/v36XNq9s3E8h4f8A3wF8O/BDwF/objkacI8B/xp4qduFSNJ9\neuBrFEUVEl4APksrwbwFfCTQ5geBTVq3kv514Ll97/1dWosUq8DIoX5fobWw7NmOVqx+FcVceyfw\nC8A/Af5LJFWrH0X1e82LzekoDzrnbnNwz8F5emTP6F8BFoDvpfWDffjQ+x8FvgHMAu8FfpLW4YPz\nR2xvHPjWveffSuuY8Xs7W7L6VKfn2hmgBPzjKIpVX+v0XLsrjwsXFfagc+5hWosVn6B1luDrwJ+L\nvOo2hX6wXwN+5tBr/4PWJ7eQLK0E/ht7j9CdJKVOzLXnaN2xtEprzn0BeKaDNWowdGKuQevmd18B\n3qR1Jk2uUwVq4NzvnPseWmc4fBH4gciqewCHf7BHaJ2dcHi3yVVahxGk++VcU1yca4pbV+ZcNxYu\nPg48BDQPvf4VWueoS53iXFNcnGuKWyxzrp/ObpAkSTHqRkj4PVrHfBOHXk/QuuCD1CnONcXFuaa4\nxTLnuhES/hhY509f9emDwEr85WiAOdcUF+ea4tbXc+4sresYPEtrscXlved3T8uYpnXaxgzwNK3T\nNv6Qk08Vkg5zrikuzjXFbWDnXJ7WD/QWrd0hd59f39fmk7QuALEDrHHwAhDSaeVxrikeeZxrilce\n55wkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVIf+P9cYZ1EAfTlhQAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-4,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"black\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X2cVPV99//X7C3sLstiXAF3UWBxCUuw3MQVwWhaUKS2\nBk0wjPEyy89W0oe5Wtu0cLW52otcv143pc1NbfIr0lrR2IxR20YbEyCbRAUBiYtWyhKRDSi7gjsg\nd7sL7N38/vjOmZ2Zndmd2Tkz58zM+/l4zEOZnZ1z5rtnzvmc7/fz/XxBRERERERERERERERERERE\nRERERERERERERERERERERERERERERERERERERERkzI4BgzEe33Zwn0RERMTFPgZcFfZYhgkebnFy\np0RERCR7fAs47PROiIiISHYoAU4B/83pHRERERH7FKXxvVcBE4GtI7xmavAhIiIiyTkRfGScJ43v\nvR24BHwmzs+nXn311R988MEHadwFERGRnNUB3IADAUS6eh6uxSRL3j3Ca6Z+8MEHPP3008yZMydN\nuyHRHnnkEb71rW85vRt5RW2eeWrzzFObZ9ahQ4e4//77azC99zkTPKwFPgReGu2Fc+bMYeHChWna\nDYlWVVWl9s4wtXnmqc0zT22eXwrS9J5rgScx0zRFREQkh6QjeFgO1AL/lIb3FhEREYelY9hiB1CY\nhvcVERERF0hHz4O4mNfrdXoX8o7aPPPU5pmnNs8v6ZyqOZqFQEtLS4uSbERERJKwf/9+Fi1aBLAI\n2J/p7avnQURERJKi4EFERESSouBBREREkqLgQURERJKi4EFERESSouBBREREkqLgQURERJKi4EFE\nRESSouBBREREkqLgQURERJKi4EFERESSouBBREREkqLgQURERJKi4EFERESSouBBREREklLk9A6I\niOQS3wEfvv/00XG+g/fPv8/FvouUFpVyuf8y44vHc03lNdRU1uD9hBfvPK/TuysyJgoeRERs5J3n\nZfmU5azfuJ5Te05x6sQpLnOZ/qJ+rpx8JdffeD2bNm6iurra6V0VGTMFDyIiNurs7GTJyiW0fbwN\nzgB3Qn9tP3jgvcH32NqxlZ137GTPtj0KICRrKedBRMRGG762gbYFbXAMWAZMAzzBHxaYf7ctaGP9\nxvVO7aJIyhQ8iIjYaN9b+6AW8GP+G0tN8HUiWUrBg4iIjfoxQxShRywFwdeJZCkFDyIiNiqiCAIM\nPWIZDL5OJEspeBARsVHj/EZoB6ox/42lI/g6kSyl4EFExEabNm6i7s06mA78FDgODAZ/OGj+Xfdm\nHZs2bnJqF0VSpuBBRMRG1dXV7Nm2h6aqJq6ZdA28BEVbiuAf4dqXrqWptEnTNCXradBNRMRGoQqT\n13fQM72H8r7yUIXJ7uJu3q58mwebH1SFSclqCh5ERGzknaegQHKfhi1EREQkKQoeREREJCkKHkRE\n0sh3wMeKx1YwbeU0KuZWUNJQQsXcCqatnMaKx1bgO+BzehdFkqacBxERm1jJkgCX+i/x3rn3mOqZ\nyi8e/QU9n+qBGwEP9A320d3RTemWUpbfs9zZnRYZA/U8iIjYxDvPy+PLH+djuz7GkW8f4fDfHaZl\nU4sJHLRAluQQ9TyIiNgktBz3gjZYCXig6+mukRfIatYCWZJ9FDyIiNgktBz3tLAnC9ACWZJzNGwh\nImKT0HLc4bRAluQgBQ8iIjYJLccdTgtkSQ5S8CAiYpPQctzhlmIWyHofLZAlOUPBg4iITULLcYcr\nB1YDLVDxZAV8D2Zsm6EFsiSrKXgQEbFJaDnu6GW4P4Kyi2Us+pNF1P/XemZ9eRanbz7Ng80PqkiU\nZKV0ZOrUAH8F3AGMBw4DDwL707AtERHXaD7ZTN1DdVz+wWXO7DlDb6CXEk8Jk66ZRMMfNdC0pEmL\nZklOsDt4mAS8hhnhuwPoBOqAszZvR0TEdUIraq5zek9E0svu4GED8B6mp8Hyvs3bEBEREQfZnfNw\nF9ACPAd8iBmq+B2btyEiIiIOsjt4mAn8HvAOcDvw98CjwAM2b0dEREQcYvewRQGwD/jvwX//B/AJ\n4EvAU7F+4ZFHHqGqqiriOa/Xi9erpCIRERGfz4fPFzkr5+xZZ1MJ41VcH6tjwA7gobDnfg/4KsOL\nti4EWlpaWli4cKHNuyEi4i6xluu+duK1jCsaB4D3E17NxJCE7d+/n0WLFgEswoHZjHb3PLwGfDzq\nuXpMUCEikre887wsn7Kc9RvX88obr3D07FH6qvq49ZO3smnjJhWLkqxid/DwTWA38KeYpMlG4HeD\nDxGRvBVrue6jg0c52nGUnXfsVLVJySp2J0y+AdwNeIEDmOGKPwBUQk1E8lrEct3WgHEBMA3aFrSx\nfuN6B/dOJDnpqDD5UvAhIiJB+97aB7fF+WEN7Gvel9H9EUmF1rYQEcmAmMt1WwqCPxfJEgoeREQy\nIOZy3ZbB4M9FsoSCBxGRDIi5XLelI/hzkSyh4EFEJAPiLtd9HMa/Op4Prv+Au3x3aYluyQoKHkRE\nMqC6upo92/bQVNrENf9+DWyGoi1FsB2uqryKq9++mseXP65CUZIVNMgmIpIBVoXJy/Mu4/+JH+6E\n/lqTRPne4Hts7diqeg+SNdTzICKSAd55Xl70vsjVB67m4i0XVe9Bspp6HkRSoPUKJFmq9yC5QMGD\nSAq0XoEkS/UeJBcoeBBJgdYrkGSF6j3ECiBU70GyhHIeRFKg9QokWar3ILlAwYNICva9tQ9q4/yw\nJvhzkTAj1Xuoe7OOTRs3Obh3IolR8CCSAo1fC5jE2RWPrWDaymlUzK2gpKGEirkVTFs5jRWPrYgo\n/NR8spm6h+qo7ail/Plyir9fTPnz5dR21FL3UB3NJ5sd/CQiidHgmkgKNH4tAMsmL+PPt/w57Qva\n4UbAA32DfXR3dFO6pZTl9ywPvdY7z8zA8S3xsXX3Vlp/0MqZ98/w4XsfcubRM7T+oJWtq7bStKRJ\nM3XEtdTzIJICjV8LjC33ZdnkZbRtaaO9pp3u1d30fb6P7s91017TTtuWNpZPWT7sd0TcQsGDSAo0\nfi0wttwXJdtKNlPwIJICa/z6imNXUPB0AWzGPLbD0fNH+bj348PGvCV3+A74uMt3F++dfy/p3Bcl\n20o204CsSBJ8ByLHqXsDvZR4SqicXElpQSkX77xoLggeGBwc5KOOj0wX9D3qgs5FVpGw6756XdK5\nL0q2lWymngeRJMQbpz7x0Qku3qr1CvJNZ2cnN91xE+cqzyWd+xJKto1FybbicgoeRBLkO+Bj/n3z\nY49T96Au6DwUylu4Hfgpw3Nf3o+f+zJasu35yvMa7hLXUmgrkqBlk5dx6uApuDnGDz2oCzoPhRa5\n8gCrgdeAV4P/HoSJfRPZ84vYJco3bdzEzjt20naxDY4Cp4K/1wsV/RXs2LGDOXPmZO7DiCRBPQ8i\nCdrwtQ30lfXFDhICqAs6D0XkLZRjeiC+ANwH3A/9E/p5sPnBmD0I1dXVvPjdF5mwcwI0BH/nPuAB\n6FrRxW/f/9v4/f4MfRKR5Ch4EEnQvrf2QSGxg4RqVO8hD42Wt3Bt5bW86H0xZrEn3wEfK76yggu3\nX1CujGQdBQ8iCeqnP36QsBTYDryP6j2ESaZsczZKpUiYd56XyvOVypWRrKTgQSRBRRTBEmInxp2G\nostFrGENM7bNgO/BjG0zaCptyutluXO9imKqRcI0XVOylQZiRRLUOL+R1jOtwxPjAkAZFNYVcrjx\nMLM+PYvic8VcO/FaThed5sHmB/F+wpuX6xREVFG0WN3ymG75J77zhFO7N2ZWvY83nnuDs2fPwkuY\noKEECsYVUHVtVWiRK291/L+71kaRbKUjUyRBoez4BW2wHHMRHAQ6zF3mnhfzt4chntBshFhqYF9z\ndnbLWwthfbTgIzP7Jji7gg6Y8eYM9vgSOxYa5zfS2t4aGVxZlCsjLqZhC5EEVVdXs2fbHppKm+IO\nTeT6GH+ycrVb3q51KbQ2imQr9TyIJMh3wIfvP31wM5R/opzyM+VcKL7AD/khz/3Dc8ycNJOpnqns\n+uYuej7VM+rSzPkgV7vl7epRsdZGufyDy5zZM1TufNI1kxIa9hBxSnZ+c0Uc4J0Xmbfg9/tZv3E9\nr7zxCqfOnqKrqotf9f3KBA45NsY/VrnaLW9Xj0romFpn376JZIKCB5Ex6OzsZMnKJabreiXggaOD\nR+EpRp56l6Vj/GMVyhOhDWoYlieyaVt2dsvnao+KSKKU8yAyBnHHvEvIyTH+sUokTyQbpVLfQSQX\nKDwWGYO4Y95WmWrdkQKReSKzFufOFNZc7VERSVR+nclEbBJ3zNuqQJljY/xjFZ0nkiuU6Cj5TsGD\nyBjEHfNeCjwH/AYwCdgDdAKD4OnysH3edlY8toKmJU05eVHNF0p0lHyn4EFkDOLOIigHlsD4n43n\nUtclAp8JhJZsDgwGONFxgrItZTk/ZTM0XAFc6r/Ee+fe49qJ1zKuaBxA1g5XpItVsbL1B62ceT+y\nJ6NhVYOCTXGdeKldmbAQaGlpaWHhwoUO7oZI8vx+PzfdcZNJmowx5n3D/Bt4xvNM7OGL49BU2uSq\nKZvpuNiHT2U9evYoM6pmcOsnb2XTxk1ZmyiZLhGzd2qJqFhZ92ZdVieXSnrs37+fRYsWASwC9md6\n++p5EBmD0ca8d27ZCb8d55ddOGXTO8/L8inLIy72fVV9Y77Yx5vKerTjKDvv2KmLYZRcXQNEcpeC\nB5ExGG3Me/ZTs7NqyqbdF3tdDJOTq2uASO5SnQeRNAglVMbioimb1locM5bOsGWtBsu+t/aNXCzr\nLV0Mw+XqGiCSu+wOHjZiRurCHx/YvA0R18uWIkLLJi+jbUsbPf09kRf7bmAH8M/ATnjyX55ManGv\nYRfD8Pd7Bg61HcrbxcJiyZZgU8SSjiPyPzELFlsG0rANEVfLliJCoeGFnQxd7LuA54FlRMwUae9o\nT3hxr4iprDa8n1ukaxZJrq4BIrkrHcMWA5iZ7dbjdBq2IeJqVkJlbUct5c+XU/z9YsqfL6e2ozZU\nRMgNQsMLVmXMbkydimWkNIQR0fOyO/X3cwvvPC+PL3+cj+36GEe+fYTDf3eYI98+wsd2fYzHlz8+\n5umUWppbsk06eh6uAzqAy8DrwJ8BR9OwHRHXcmsRIauewBvPvcG54+cYuDBgLujVwLuYC72HlBf3\niuh56SRnkgHTNYtEFSsl29gdPOwF/gtwGJgC/HfM6Wgu8JHN2xKRJC2bvIw/3/LnfLTgI1iAyUEI\nYCpjbgXuInIII1qCyXvhF8OO7g4CnjgD+ikkAzpRWClds0jcGmyKxGN38LAt7P8PYorztgFfBL5p\n87ZEXM2NVQNDF79JmDyEqxhai6OSyCGMFBb3Cr8Yzl06l9ZAq3m/buA1wE+oENKvun+VVMluq10P\nfP8AJw+cNFU8bzTv1zfYR3dHd9pyKTSlUsRIdwpvD3AAmBXvBY888ghVVVURz3m9XrxeddFJdrPu\n8tsXtGfs4jaa0MXvJ5g8hCsYynEoZGgIw8bFvULJgFbAEpY4ySD0d/TTtqUt4faw2vXEwAn4DBmt\nJaEpleIEn8+Hzxc5K+ns2bMO7Y2R7vLUpZieh83AX0b9TOWpJaetfXgtWy9vdVWJ6tlLZ3P49sNm\nuOI+InsDjgC/hwn5rYAifKZIO9S9lXyp5FAp74E2+CQpt0eoXV8N+wzRBqGhuYGDrx1MeD8TMXfp\nXFpva83oNkVicbo8td2zLf4GuAWYgbnXeh6oAJ60eTsirufGQkkRUyitC2A5cDumf7A9+O/VwCHA\nB3wPeArKXi0b00wRK/+h6HSRaY/wmg/fC/63FZ776XMJ1XwItWv4Z4iWpl6AbKnfIZJudg9b1GBO\nN1diRjX3AIsxE5BE8orburh9B3ycGX/GXPxi5TWELydeiwkobFicycp/mP3UbA53H445dEEH9P6w\nl+VTRh+6CLWrDbkZycqW+h0i6WZ3z4MX85UqxZx+VgO/tHkbIlnBbVUDl01eRmlnKWwHxjP8Dtrq\ncWiBoseLbK9NUUSRGR6JU/Oh786+hGo+hNrVys2IJU29ANlSv0Mk3VTzNAe5Mcs/H7mtauCGr23g\nWOMxkyT5MvACZmpmLUN30B9BXWEde960f9XLxvmNtP6o1fRoxFKb2GyFULtaPSVxcjPS0QugKZUi\nRroTJkeihMk0iShkY40N29D9LMkJJQouiN3Fnem/w7Bkv6hpk55zHmoW1KQtwPT7/dQsqKHvd/vi\nvqZ+Rz3vvPbOqO8TatcqzOBoJzAIBV0FXDn7SgpLCjl/4jyXBi8R6A2YnopC8BR5GFcwLulAWgG5\nuI3TCZPqechBoxWy+bU1v0ZhSaFOgmnmtqqBw3IwrETJoOt2XMc7Px75wp2K5pPNlFSW0BfoSylP\nwWrXM8+d4dzxcwx6BvEUeCiYUkDFjRWcfeEsvbf2ws2YAMnKsQgG0t2D3UlPl3XjtFsRJ6nnIQeN\nOJ3sAhQ/XUzfb/WZefe7Cd21ebo8TJk3hXmr5ymIyEFumGaY7umrw95/BzAH+6aHumjarUW9IvnJ\n6Z6HdCyMJQ4bMcv/VYYCh+cxJ9YvAA9A4EsBTkw/YQr2JJD1LtnFDdMME10AynfAx4rHVjBt5TQq\n5lZQ0lBCxdyKUZfxHjY91o8t02XdOO3WYi2r3l7TTvdvdtM3qY/u3m7aD7fzk7/4CV/5w69o6XOx\nnYKHHBQ3y78LOIY5CebQSoeSGDes3JjobIWIC+Lqbvo+30f357ppr2kfMbgdFjjbUAvCd8DHsbPH\nXDXtNtywkuO6IZAMUM5DDoqb5b8bmIA5CfpRjf48U11dzZ5te1i/cT2vbHuFo2ePMqNqBrd+8lY2\nbduUkeTNRGcrjHUBqogiWJBULYh43f+Vkyu56L+Y8ZoSiRpWcjyD5bqdoGEad1DPQw6Ke4f5AWb9\ngugKg9FUoz8n+Q74eLD5QU7ffJpZX55F/X+tZ9aXZ3H65tM82Pygq7q1kxkmCB/iOHz0cOTQTBK1\nIOL1dpz46ASBqwPx36fd2cqSod4Wm4Zo3G6svVJiL/U85KB4Wf6XBi8xUD0Qv8KgZRC6L3Wz4rEV\niu5t4JY7pdBdfxZIpjpnxEyIT2C67q0qmdFVM0eoCBm3t6MHswCXNWsjqqZE8UvFbDrgXGXJmCXH\no+XQDUG6lkWX5Ch4yEHxuobnLp1L65JWcxKcyIgrJ958/c28seUNTU2zgab5JS90QewhcgnvAHAl\ndHzUge+AD+887/CLyerg7+wEBqDwUiGlr5YSKApwcfBi3KGauMttezAr9Fjv+2rYvlRD8aTijE+7\nDRcapnSgXLcTtCy6O2jYIo80zm+EM5iTYAmmwuD7xEye8xR4hk7ISqhMScTFLcvacqyzHlLVOL8R\n3sX0GszBrJ55H6YAfgMU9BSEuqdDQxzWgls/AE4B/cAADAwM0FPYw+XByxRdVcS5O87x9vVvDxuq\nidvbYV2UrboYXwjuyxeA5TD9iumO9uiEhinLcHw2TSa4bc2YfJUboaiMyu/3c+niJYp/VEzfnX2w\nErgI7AJ+BlyCsqoyrph+BXUP1bFzy0747Thvpug+Kdl8p5SuXpPRhnLuufcenr//ebpWdMXsnr5w\n+4VQ93Q//ZHFoG5j6N/LCRWHGhwcZLBjkEk/nMS2bduGJYgOS7a0WHkTLikzHs0apux5toeTL5wk\ncFdg1CGabBb37wQ51cPidup5yHF+v5+b7r6JyQ2TeabgGfr+S59Zqux7wL8AR6Dqmipu33g7//js\nP3L8x8fZvm475ePKFd3bJFvvlHwHfMy/b35aek1GS3oDCEwIJJQAGHPBrTFMRY5bB2MpZjGxOL10\ndk5xHUtPj3eel+3rtvP1b32d2/7yNmo/yO1Fu9xQr0TU85DTNr+8ma+s+wo943tMwpd15xS+MNFx\nWFW6ituX3M7W3VtZv349Z94/Q/ep7qElk6Mpuk9Ktt4pLZu8jFMHT5kyz7Gk0GsyWtLb3mf3UjOp\nhsOew7HfICzoirng1himIkcstx21ZgYXoeCnBVAcuT6G3WXGU+npyZdFu7Qsujuo5yGHvf7c6/R8\nqscknY1yBxd9J8gs8i66T9f4frbeKW342gb6ysLWobByCv4Z03P1XWh9p5XC6wopmlOUVFuNOBWz\nCp7+t6d5t+3dhJY037RxE8V9xSkXh7K6/6f+aiqeJz0RxZZ4GAaXDzKjcgYnXj1B18GuUC+dnfkO\n2ZwfkylaFt0d3HnLI2MSPY7cfaobfo+ETqTD7gTjLXecw9H9sCl/u6Gvs4/uw910/EUHB+YdYOvq\nrUlPrXT6TmmsU0X3vbVvqC5IvJyCVTBYOzi04NSRbk5sPMGuql180fPFuNuJO5TTBfwL9P9mP7SS\nUK5BzAW3xjDzwLpzX/v2WrbO3OrIVMBszo/JlHzpYXE79TzkkGG9B1UMTSkb5Q5u2J1gOWZWxiHM\nXeZj5Hx0n64yv07fKaVU6tlKFozOIYiVU9Bjnh+4c4Cez/eMuJ24JdTD3/dm4KeMWk7bO8/L6l9f\nPebiUNGcXMciE/kxTs2gcds+SGrU85BDhvUeWEFDAtniu9/aPfykFbZkc/2Oet55LX3LNbtBusr8\nOn2nlFKp5yWYQAoi74hj5RSEX/hH2U7cEurh72sFsGG1FTznPNQsqBmWazCsdyeJ4lDRnExwzUR+\njBvqjrhhHyQ1Ch5yyLAuTytoiDcE0Q51b5kT6adXfXropNVNZGGeQfhV969Y8diKnK4sGVHmN4e6\njsfaFd44v5HWM63mAu5j9JyCJNot7lDOQNT7hgWwANftuI53fjw8iI2uqnpp8BKBggD8HCg0SY5F\nFEEVtJe2M+2WaQx6BinxlFA6tRTPAg+BNwNcPnF5KFk4ToGqdE6OiRtUgW35MTGDyYvAIWj7qI3J\niyZTNqEsrRVQVSUy+yl4yCHD7pjCg4bPYrLHXwEGwdPlYcq8KaE7uNBJy+qyt8a2g8FDf0e/6XrO\n4TuCXC3zO9Y76dAFfkEbjGP0BaeSaLd4JdQv916mPxBnf0e4806kd6ezs5MlK5eYzxOs/dA32Ef3\nkW6Kniyi/65+M1TyE0yBKqsnJex7QAe0vdTGY688xrpb7e9KsiM/JjrH5dLgJQK9AQKDAQIE4ALw\n5bBf6CLiOx/wBEz+Shp7AZTbkf2U85Aj/H4/H574MHIcOTxv4QXgKJSXlFNbX8tt//M2vv7Nr4ey\nxUNV6sK77PMs2zs0KyKBHJFsEje/AEb8POG5GkXdRUM5BN1AL8NzCpJoN6s2wfEfH6frYBe9rb10\nHezi/rvuT9vMlLgzGY5hAgfr+aWM+D0YuHOAvc/uHfN+jMSO/Jhlk5fx1rffov2KdrondjPQM8Dg\n2UECS4J/nIlhn6mboRuMDH7ns7X2iQzJrrOgxBSq51DZMzy3wer2PQ5NpU1xuwKtk9Z7f/ke/bVx\nvrg5fkcQuusra3N1RcFkjbUrPPxu3u/3c9MdN9F2sc3ckS/FJDOGD4VdScrtNtKd91WvX8WxLx5j\n2sppY1pgLO7dbvRwSzlQychJk2n6HtiRH7PhaxvovL7T/J2WAEeAuzE3Ecsw+SPhM2g8ZPyzZmvt\nExmiv1AOCNVzuIJRcxvisU5as5+anVBhnlyUq2V+7egKt9rmxN+coGdZjwkQaohcKOoieN71EPhM\nIOXtRA9nTLpmEnUP1NH6ZCudN3aOKcku7t1urOGWwhjPWTL0PUhpim0Acx44hAmGajF/p9sYyoWy\ngomdZPyzRgS00TlWvXCs6FjO51hlOwUPOSB0R+Vh+Mp/g1DUXUTd/0isEl4+3xFYAZRvSdhJe2/U\nBczmioKZMOIFOcHPY7XN3Kfm0lrbap6MSmZkEMq+X8akjkkpbyfWnffah9fyyo2vjDnJLu6xHSt/\nw+EVKn0HfDy27TF2fWMXA3cODAuWzn/rPL0XekMVYcPb+qOzH0EfQwFDCUMBkjUs81xwQ7c581lD\nAa3VkxWVW9LT0ZPzOVbZLnevBHkk4o4q+oQOzNwxk+3rtif0XpnI9nY7p6dW2s3OzzPs7j3qrrHn\nXA+TmMTS319q212jdQf+sxd/Bg/GeVEC3etxj+1YU5kdXgxr2eRlPPToQyZwiBEsnV94npZHW7hw\n+4VhgUXxW8Vm2MUKFgJRDysXyppB48BnjdmTFfUZNevC3ZQwmQPGmhAXSyhxcpTCPJKfIo61LoYt\nmR1YFxi1+FS4RIoFWUWu+ktSS7KLOLYvYEptPwkcBv6VyIWvbiJji2HFsuFrG+gq6oqfi3DUrCwa\nK8mxb3KfSWi1ggUrFyW8cFY5MD74cyt/Jfo7/356Pqvf72fH5h20P9VOf3d/UgW5/H4/ax9ey9yl\nc5m9dDZzl85l7cNr8fv9tu6jjE7BQw6wc+2E6GzvwmcKKXi6gIKfFXD0/FGm3jJVleDyWMSxNoaV\nK6MlUv0yNEvCKpUdSwJB8rC1K6YH3+8zmB4Na7XZp8yjZEoJpYdKKX22NONVQfe9tW9ouCGWU8S/\n6C4Hz3nPUMAwAxMcTCcySLCCifBZWT5CbVD2apntn3Xzy5uZfvN0tl7eSuttrfRO6E04IIz+3cO3\nH6Z1eStbL29l+s3TeeyVx2zbTxmdhi1ygJ1rJ0R3cceaG5/uOeDiXhHHWicpz9VPpFhQKKcnxe71\nYWtXWAmDcVabva/0Pse6zPvpHzkXYaSaGhNg3BXj6H2pl4FfHxiadXE0+DsvYYpxBYB3MMFTLebz\nB88bZTvL+MaWb9heyyKU3B1dBTeBfIthvwuhY6XnUz3sfXZvWmpvSGwKHnKAHQlx8agSnIQLP9Y6\nujsIeOJ0BSSYpR8xfTJGZdOnu5+mZFJJZKJfjNlEZbvKWLxlcUKfIbRNa/ZBLA5PSy6iaOSpr9aw\nRJyL7hWVVzD3j+fyxnNvcLbgLIM/GzRtVQIFFQVUXVvFJ1d/kns+fg97n93LvuZ99NNPEUU0zm9k\n065NVFdX2/654lbBTSAgVGEpd1HwkAPSmeCnL6yECz/W5i6dS2ugNaUs/VACZlSVw/DKpp6XPJGJ\nflGziSaxK6RVAAAgAElEQVT2TeTdX7yb8MUutE0XVxJtnN9I69nW4bU0gsFSUVcR/e39cS+6ty2+\njSfWPZHQOSGTd+sjVsEdpddUhaXcRcGDjChfvrBjnVOfz+yYmRNKwBxhUa2+yX1Dd6fRs4mOw92l\ndyd1lxzapsPTMUeyaeMmfvQbP6JzSadZmtwKlnqh8FIhjQ83cuRfjtBJpyPLvI/VsOmy4QHhK0A3\nlE8qj9lrms/TyN1IrS0jypcvrFb5S54duTahAGSkRbWWg+fJ2MWnynYmPlwxbJsOT8ccSfPJZuZ/\neb4JZs+dobcoGMzONMFs/bR6KqZWmJ/bMFSZqeA5ZsCZYBVcTSN3l9w480va5MsXVrkdybMj1yYU\ngAy0jZgAOGPGDG4pvcWWsfnF9y7m2YeepeeTPbGHBcYYlNgpfHgo+sL+87/9Oa95XrP1wp6p4DmV\ngNPOxHBJnYIHGVG+fGGV25E8O3JtItZUGWE1zXHF42wL3tbduo57dt3D+o3r2V29m5PNJ7nUe4lx\nZeOY8rEpLPnkkrQlDI5FJi7smQqeUwk405kYLslT8CAjypcvbL7kdrhNxPTJ9q0Z6+Gqrq7Omp6k\nmBf2i8AhaPuojcmLJlM2oSylnohMBc+pBJy5Vvk126lIlIzIO89L05ImGlY1MOmaSZR4SugN9HLm\n/TO0/qCVrbu35kShKDurdLpFItUb7ZJq5b/F9y6mbGdZzMqmZTvLWHyvc0MITtv31r7IglDhlT2/\nCIEHA8MKayVLwbMkS8GDjCqRKoDZzs4qnW6Rqb+bHZX/1t26jmO7jtFU2kRDcwP1O+ppaG6gqbSJ\nY7uO5XXxn2EXdhsqe0bLxeBZ0kvBg4wqotvUppOV2+Timh6Z+rtFVP6L2o5V+S8R1lDCwdcO8s5r\n73DwtYM88Z0nXJN74JSIC3s3plJkEutBJCJm8NyNWf/jKTh0/JBjZekz2YMmiVM4mcUyNb0qH5IJ\nM5Hbkam/l12rUCYqH44PJ4VmPE3CFNIaj+1DDKEZKJ/qgSpMzYVjmNLVt0HAE0h7WXq/3x8qRx4+\no+ZPHv4T04OmadSuEu8QzISFQEtLSwsLFy50cDeyV6x1J8JnQuzZtseWu7bZS2dz+PbDcX9ev6Oe\nd157J+Xt5LpM/b1C2znbBg/Ef51dfzcdH+nl9/u56Y6bzHTWT2IKRt1H3JkpDc0NHHzt4Ji2c9dD\nd/H6rtcJ1ATMtmIlsI5Sj2EsNr+8ma+s+4oJXqK+G4UvFQ5fmjyN+5It9u/fz6JFiwAWAfszvX0N\nW2SxTHVLazzUHun6e0UnK9Y31tuyCmWidHykl9UrVnS6yFxYw5fWjpZCfk51dTUfv/rjphhXD7YP\njYwkYuirBzNc4gN2wsDAQEb3RRKTzuDhv2Fix2+mcRt5bVgWdjgbv1S5mEzohHT8vWIlK54rPpfW\ni0w0HR/p5Z3nZfu67cy8ZubQAmHhS2sT/O/7qc9MCR2j4et+WLkP/4xZrtsHh48dtjXfILTd8Jkk\n9wUfk9BMEBdK1y3BDcBDwNvEvyeRFGVqelW+FIpKt3T8veIuUzzKKpR1b9n3d9PxkRmhHh6bFgiL\nJXSMWut+dBN3wbK2LW225RuEthtrjRMXr0GSz9LR81ABPA38DnAmDe8vQZnqLra6TWs7ail/vpzi\n7xdT/nw5tR21oWTCbJXJTO50/L1i9mZYJ1vrInMI0wX8PfMo+nGRrX+3XD4+3CSih8daD+ILmLvz\nW+HuO5NbICyW0DFq9VqlYVroiNv1Y47n8N6OC6hny4XSEbJ9B/gh8DPgL9Lw/hKUqXUncrmyWyYX\nxErH3ytmb0b4gk8xVqG8v/R+s1yzTXL5+HCTiBkRaVqLI3SMWr1WkJGZNKHtehje29ET3JffwAQW\n6tlyBbt7HtYA84E/Df5bQxZppKp8qctkDYt01JIY1pvRDfQBLwDv27cdcV4mCmmFjtGPgM8C/WRs\naLTuzTroxQzHhPd2WD1ovwSeAs/jHvVsuYCdPQ/TgL8FlmMOAYhMu4npkUceoaqqKuI5r9eL15v9\n6yWkW/gCP3asNpiPMlmjwK5aEuH1Ik4ePTnUy9DF0B3brZgu51cxgcMFqJpTlVPrkeSjdK/JEX2M\ndvd2ZyTfwNruib85Qc+JnsjeMhjqQRuEOc1zxjQVNZv5fD58vsgh1LNnzzq0N4addR5WAf8KDIQ9\nZ00WGwBKibxHUp0HcVy21SjwHfDx2LbH2PWNXWbuu1U46DcwuQ0NaD682Gbtw2vZenlrxo4pv99P\nzYIa+n63L+5r3PaddEou1XloBj4B/FrwMR94A5M8OR8NYYgLZVONAr/fzwvfeIFX/++rQ0VzKhjq\n0m1D8+HFVhFDoxcwSYxPY4YP/t3DOyffSXjxs0Q0n2ympLIka76T+czO4KELaA17HMSkunwU/LeI\n62RLjQKrnsP33/w+gcpAZJBgdelWofnwYisrz2Lx6cV4nvSY+gtfAB6AwJcC7Jm0J+HFzxLhnedl\n9a+vzorvZL5Ld4VJa9KYiCtly4JYoXoOPUAJsYOEkb5tumOTMYqoPJni4meJyJbvZL5Ld/Dw68Af\npXkbImOWLTUKIir/xQoSujFpyrpjkzTIVDVbyJ7vZL7TrUgWirf63KaNmmGRrGypURBR+e9KhmZY\nwNAsC6tscXRFSc2HlxRlqpotZM93Mt9pYawsE2stg9blrWy9vNXWscd8EL2g1Nylc1n78FpbE8Ds\nElH5bwaRaxtYVQDrGV5R8ikoe6VMd2ySktDxF73OxT8D26HjdMeo1VgzWc1V0k89D1nE7/fz9T/6\neuy1DMLGHu0oFjPSPuRCr0fEEsBhNftbO1p59uZn+caWb6S1HZM1rPLfEkwa8qvAOYZqVURXlByE\n6c3T2b5ue0b3V3JL4/xGWt9tHQpUw74zdEDBjgKWTxm5Gmsmq7lK+qnnIUtYPQ5HzhxxbDpeLvV6\nRCwoleYEMDsMq/x3DLMOgFVVRbMsJI02bdxExasVcde5uHD7hVGrsWaymqukn4KHLBG62MXLtIe0\nXyiy7YI7kkwmgNkhIonsx+UUnymmvKSc2vpayj9WrlkWklbNJ5sJTAik9J1J9junYQ53U/CQJUJf\nPAen42XbBXckmUwAS8RoJ0qA7eu2c/zHx+k62EVvay9dB7s4/uPjmhcvaeed56VmUs3QdyY698EH\n7R3tI+YLJfudWzZ5GW1b2mivaad7dTd9n++j+3PdtNe0m+XARxkmkfRS8JAlQl88a8XEWNJ8oXDb\nBTcVbqssmcqJUvPiJRNC35kuTN7NHMxy4PcBXji//PyIw5fJfuc0zOFuCh6yROiLZ03Hi75QvJ/+\nC4XbLripcFtlyVROlJoXL5kQ+s5YSZNJDl8m+53LpZ7OXKTgIUuEvnjW8rTR0/FeTf90PLddcFPh\ntrv1VE6U3nneuEMa29dtN3PmRVIUWufiA8Z0rEaskxH1nSvbWcbiexdHvD6XejpzUfbcKua5TRs3\nsfOOnbTRZgoABZentQoA7dm2J+1TJYftQxYXIbJreWy76EQpbrfu1nXcs+seZt00i/Oe87FfNMKx\nav3++o3r2dccNdV71/Cp3qGezjQvBy5jo9bPEm642LlhH+zidBW76HoZx44e04lSXK+6upraybW0\nBlrHdKxWV1cnvIR3qLZJrOXAs6ynMxfpjJQlnL7YuWUfckHMAlXbiSw5HU4nSnGRTF3UF9+7mGcf\netZ8T6J6Ost2lrF4y+JR3kHSSTkPknecLksds17GzZhE2PcZGg++APwb8CJ8t/m7muMurpCpfCFr\nOfCm0iYamhuo31FPQ3MDTaVNHNt1zFUVYPNRvFHWTFgItLS0tLBw4UIHd0PyScRdv7VKZdjdTCbK\nUs9dOpfW22J0+3YDu6DkWAm1NbUcP36cvt/qg0mYDPdOs6+eLg9T5k1h3up5NC1pUkKkZJTvgI+t\nu7fS+oNWPvrVR1y8cBEGoaC0gHHl41j0a4t4/tHns6pcfTbav38/ixYtAlgE7M/09tXzkAWcvlPO\nJW6okhkzObIbeA04BYHCAKf9p4cCh+cxc+q/ADwAgS8FODH9hArliCOs2T1f3fBVAAK/GSDwpQAD\n/88A3au7ebX81awrVy/JU/Dgcm5dTyI6oJndOJvrFl7H7BtnuzrAccPc8WH1MqKK7vT9Th/nis+Z\n/RxhTr0K5YiT3BCIi3MUPLicG7+gwwKaJYc57D/MkYVHOLzysGsCnFjcMCVyWL2MeAGCB7P4lQrl\niAu5IRAX5yh4cDk3fkGHBTRjrDjnBDdUyRyWcBYrQLDWMPHgeLAjEosbAnFxjoIHl3PjFzQioOkG\njuK6ACceN1TJjC4nTRfD/8bWGiYOLoQmMpJkAnHlbeUeBQ8u54Y75WihgMYaqx9PSqvtZZIbylKH\nl5M++vJRJo6bOPxvbK1hMh7Hgx2RWBINxN2atyWpUfDgcm64U44WCmis4YpCUlptL5PctIiUdVI9\nV3lu+N/YWsNkAFPrIbz+wwjrAYhkSkQgfgFz0/A08BQU/XsRL+96mdk3zmZD0wbX5W1J6tTn6XJu\nrLIWqjDnx1RItLrYDzGU+2CJOkk4XdjFTVUyQ7kjV2CCrmVE/o1PQ1lfGV/7p69xcMfBhNYDEMkU\nKxA//c+nOXvoLHwGcz7ohv7n+zl2wzEznPk9Rh7WbHbPsKYkTsGDyyW7mEwmhAKagR5zJ7EUc/ED\nc/KIRSeJYfa9tW+oPPVqTJ2HVwkVrprYN5F3f/Gu+Rt/xsk9FRnOCsTXvr2WrfVbh24awhOoQUm/\nOUrBQxZIZjGZTLACmutuvI5zgXNDXew+dJJIQkQybDlmpdQwk3dMVs+CuF4oCIahBOrwm4jwmUPR\nlPSbtZTzIGNSXV3N3SvvHhqrL8ck97ksudPN3JgMK5KsEROoYWhYMxYl/WYtBQ8yZovvXUzZzrKh\nmQs6SSTFjcmwIsmKm0ANpieiD3iBmEm/mZrhJPZT8CBjFr3q3VVdV+F5waOZAQkaFnyB2kuyTigI\ntoqdWTcRVk/E9UAT8EtM8uRTwN9D1btVGZ/hJPZRv6ikJDofw+/3uyq5083cmAwrkqy4CdQTiUyc\nDM/pOQ6rSlfxxDr35HJJcrQkt4iIpMTv95sE6gfOmatKN6bmw0PETZRsaG7g4GsHM7qfuURLcouI\nSFaLmUA9Ac2+ymEKHiRv+A74WPHYCqatnEbF3ApKGkqomFvBtJXTWPHYCnwHfE7vokjWGpbDo3VZ\ncpqCB8kbyyYvo21LG+017XSv7qbv8310f66b9pp22ra0sXzKcqd3USRrRSdQV/ZWajZRDlPwIHlj\nw9c20LagLWaN/bYFbazfuN7BvRPJflYC9cHXDnLkF0ccX4RO0kfBg+SNiKXEo7ls6XCRbOemRejE\nfhp0krwRUQ46mhK4RGzlpkXoxH7qeRBbuTkpUeWgRUTsoeBBbOXmpESVgxYRsYeCB7GVm5MSVQ5a\nRMQe6qcVW0UszxutBvY1O5eUqHLQIiL2UPAgtopISuwGXsMsmOMBAtDe247f73fsQh29FoeIiCRP\nwxZiq1BSorWi3hzgvuDDC+eXn2f6zdN57JXHnNxNERFJgd3Bw+8B/wGcCz52A3fYvA1xsVBS4m6G\nVtSLyn3o+VQPe5/d69QuiohIiuwOHo4DGzArZi4Cfga8CMy1eTviUqGkxA9QQSYRkRxld/DwQ2Ab\n0AYcAf47cAHQHLg8YdW3ryysVEEmEZEclc6EyUJgNVAK7EzjdsRlqqurqZ1cS2ugFXoYljTJlaDY\nQUQke6UjYXIeJl3uErAFuBfTCyF5pHF+I7xLzKRJGqDteJuSJkVEslQ6eh5+CVwPTMT0PDwDfBrY\nH+vFjzzyCFVVVRHPeb1evF5vGnZNMmXxvYv57prvMnDngEmatASTJgfuHGDvs3tZd6sK34uIjMTn\n8+HzRZb2P3v2rEN7Y8QblbbTT4BjwO9GPb8QaGlpaWHhwoUZ2A3JtNk3zubwysOxj7JBaGhu4OBr\nBzO+XyIi2W7//v0sWrQIzOSEmDfn6ZSJOg8FGdqOuE0RSpoUEclBdg9b/B/gR5gpmxOANcCtwP+y\neTuSBUIFo+L0PGgVSxGR7GR3j0A18BQm76EZuAFYgan3IHlGq1iKiOQmu4OH3wFmAOOAycDtwE9t\n3oZkCa1iKSKSm9RvLGmjVSxFRHKTggdJK61iKSKSezQLQvKC3+9n7cNrmbt0LrOXzmbu0rmsfXgt\nfr/f6V0TEck6Ch4k521+eTPTb57O1stbab2tlcO3H6Z1eStbL2/V8uAiImOg4EFy3uvPvU7Pp3q0\nPLiIiE0UPEjO2/fWPi0PLiJiIwUPkvP66VelSxERGyl4kIxyInExVOkyFlW6FBFJmoIHyRinEhdV\n6VJExF4KHiRjnEpcVKVLERF7qb9WMmbfW/vgtjg/rIF9zelJXFSlSxEReyl4kIwZlrjYDbwG+AEP\nHLlwhLUPr2XTRvsv6Kp0KSJiHw1bSMZEJC52Ac8Bc4D7zKP3d3tVuElEJAsoeJCMiUhc3A0sQ4Wb\nRESykIIHyZiIxMVOVLhJRCRLKXiQjFl36zqO7TpGU2kTJZdKVLhJRCRLKXiQjLISF2ddMysjhZu0\nmqaIiP0UPIgjMlG4Satpioikh6ZqiiMW37uYZx961hSNqsGEsYNAR7Bw05bECzf5/X5Tw+EtU8OB\nPhjsH6TzdCc9twWLUlmikjLX3brO3g8mIpIHFDyII+wq3NTZ2cmSlUtoW9BmClB1A88DS4CfM3JS\nZpqKUomI5DoFD+IYOwo3rf6D1SZwmIYJHJ4DlmKmgo5HSZkiImmgnAfJaqfeP2V6F6yiUx7gKKaG\nRCFaTVNEJA0UPIijUpkN4ff7af+w3QQMVtGpEuAUJqCoRqtpioikgW69xDHD8hU8wCC0drSy846d\n7Nm2J27uw+aXN/OVdV+hZ6DH9C74Me8RCL6PBzN88RwmqAhPymyHsl3JJWWKiMgQBQ/imIh8BUtw\nNkQbbXzu9z/HK75XYv5uaHnvQ5jeBStgqAY+wAQR5cBqzOJbrxIKTib2TeTdX7yr1TRFRMZIwYM4\n5tT7p0ZcovtU86m4vxta3vsKTO8CmIBhKbAVE1BMwwQQt4f94nG4u/RuBQ4iIilQzoM4ZtgS3eGi\nZkOE50bUNdbxy1/90vyu1bsQwAQM5cC9wA+B9zHDFAT/ezxYQ+JeDVeIiKRCPQ/imNAS3bECiLDZ\nEBG5EUswdRzGMfS7VsAQnt/wALAL+Bl4LnuYctUUVixdkVQNCRERiU3BgzimcX4jre2tkTkPlrDZ\nEKHciCuAZ4HlDOU6WL8bnt/wUxjPeGZcPYPG32xk00YFDCIidlLwII5JtET1qfdPmR4Hq45DLUO5\nDuEzKcYDH4e6S3UjztQQEZHUKOdBHBO+RHf9j+upfKKSkn8oofLlSmqratn77F78fr/JfQiv4xCe\n63AI8AHfM/+t/GmlAgcRkTRTz4M4qrq6mr/6H3/FkpVLOL/8PNRCr6eX84PnOdxxmJ137KSwqBDO\nMFTHITzXIXwmxSDUNtcqcBARSTMFD+K4YetTvIYp+uSBtt42xl0eN7ROhVU1cpQ8CRERSR8FD+K4\nUL2HLsxMimVEVJy8dOQSbGOojoOqRoqIOErBgzguVO/BymuIrjhZD/wHQz0O0VUje2Fy2WQO7Dqg\nIQsRkQxQwqQ4LlTvwY+ZSRHLHVD8w2I4jhnCuB3wAp+CuivqOPCyAgcRkUxRz4M4LlTvwVqfIpYJ\nMO2aadxSegv7mvfRTz9FFNE4v5FN21THQUQkkxQ8iONC9R56e0asODmueBxPfOeJTO+eiIhE0bCF\nOM6q9zBr0iyT1xCLZlKIiLiGggdxherqav74m39M2c4yk9egBa1ERFzL7uDhT4FfAOeBD4F/w+TK\ni4wqvOJkQ3MD9TvqaWhuoKm0iWO7jrHu1nVO76KIiGB/zsMtwN9hAohi4H8BO4AGoMfmbUkOqq6u\nVl6DiIjL2R08rIz691qgE1iIWSBZREREsly6cx6qgv/9KM3bERERkQxJZ/DgAb4J7ARa07gdERER\nyaB01nn4NjAXuDmN2xAREZEMS1fw8HfAb2ESKD8Y6YWPPPIIVVVVEc95vV68Xm+adk1ERCR7+Hw+\nfD5fxHNnz551aG+MeMWAU3m/vwM+A3waaBvhtQuBlpaWFhYuXGjzboiIiOSu/fv3s2jRIoBFwP5M\nb9/unofvYJYr+gzQDUwJPn8WuGTztkRERMQBdidMfgmoBF7GDFdYj3tt3o6IiIg4xO6eB5W7FhER\nyXG62IuIiEhSFDyIiIhIUhQ8iIiISFIUPIiIiEhSFDyIiIhIUhQ8iIiISFIUPIiIiEhSFDyIiIhI\nUhQ8iIiISFIUPIiIiEhSFDyIiIhIUhQ8iIiISFIUPIiIiEhSFDyIiKSB3+9n7dq1zJ07l9mzZzN3\n7lzWrl3LoUOHWLt2LbNnz2bixImUlJRQXFxMQUEBhYWFlJSUUFVVhdfrxe/3O/0xRGKye0lukbzk\n9/tZv349+/bto7+/n6KiIhobG9m0aRPV1dVO755kWGdnJ0uWLKGtrS3i+dbWVp5++mn6+/tj/l4g\nEGBwcJBz587xzDPPsHfvXvbt26djSFxHwYNIika6UOzcuZM9e/bo5J8nDh06xJ133snRo0fjviZe\n4BDLsWPHqKur4/XXX2fOnDl27KKILRQ8iKTA7/ezdOnSYYGDpa2tjVmzZlFbW8v1118PwNtvv50V\nvRPqTRmd1Ua7d++mvb2dnp4e27dx4cIFGhoaKC8vp6amhiVLluhvIHltIRBoaWkJiGSLzs7OQFNT\nU6ChoSEwc+bMQHFxcQBI6VFXVxfo7Ox09LPU19cHGhoaAk1NTYHOzs7AwYMHAxMmTIi5vxUVFYHW\n1taUt5HNOjs7A5///Odt+fvbdczkaltLbC0tLdbxsNDWK3MWUPAgWSPdF4tZs2Zl9CT/4YcfBurq\n6lLeb4/HEygpKQnMmjUrIqAYrb2Ki4sDa9asSfkz23nBtN6rvr4+UFlZGSguLg4UFxcHSkpKApWV\nlYH6+vpAU1NT4ODBg7a0nR0Pj8cT8Hg8I76moqIiUF9fH3rMmjUr7r8VcGQPp4MHjxMbDVoItLS0\ntLBwYd4FTq4T3UUNMDg4yODgIKdOneLSpUuMGzeOKVOm5F23abycBrsVFxfz2c9+lkcffTStbev3\n+2lsbOTYsWNp20aiiouLufPOOxk3btyw4Zz169ezadMmdu/ezcmTJ0PH4JVXXkkgEMDv99PV1RX3\nvYuKivB4Ik9xHo+HkpISCgoKCAQCBAIBLl++TCAQSDgXoaioKKm8hWxUXFzMNddcQ2FhIYODgxQU\nmIl5Grpyj/3797No0SKARcB+h3cno9TzkEGx7qqKiorGfMdTXFwcuhPLtbuU6LYa7c7O7ofH4wkU\nFRUFPB5PoKCgIDBhwoSItg7fv4qKitDriouLAxMnThzxjv7gwYOB8vJyx++YE3mkcny6+ZELn8up\nobZAQMMzFqd7Hpyk4CENWltbAzNmzMibE4nd7OrOT9fj2muvDUyfPj3hi1RdXV3oxPrhhx8GKioq\nHP8M+fywhnfsDOSdekycODHli3Z0DtHEiRMDEyZMCFRUVAwbLrKO4Xjfz1w6DyVCwYOCh5RZX8Br\nr73WsROJ9eXO9juCpqYmx0/K6XjU1dUF1qxZ4/h+5PNj2rRpI34XWltbszKIGOtFO9lAvaioaNRe\ns6amplS+/llFwYOChzFzOuM7mUciXepuUFNT43hbpesxceJEx/chXx+rVq1K6Lh3oufQjsdYLtrp\nCNQbGhrG8rXPSgoeFDyMyUhT6dz+mD59uqMBxEg9JPX19WP6TMXFxYHp06e7OpArKChwfB/y8TGW\nC2t4XoubjynrUVJSknQvY0NDg+37UVVVlXRbZysFDwoekpYLY9dOdS+ONmY6derUpD5H9JTDeIFJ\n+Di3UxeDwsJCx//u+fawYxy+s7PT1Xk44Y+ysrLA5s2bE/pcVVVVtm9fPQ+ZowqTWWjDhg0jTlHL\nBtu2bXNkuxs2bBi1GmQiCgoKeOCBB4ZNWauuruaJJ56I+TvW836/n9///d/nmWeeSXLvU1NaWppU\nBUSPx8PMmTO54YYbADM17OTJk3R3dzMwMJD09qdNm8bJkyfp6+tL6PVumBJZVFREQUFBaIqo3+/n\nwoULw143ffp0Fi9enJbqodXV1ezZsydUyfLkyZNcvHiRQCAQ8XfweDyMHz+e3t7emG1cXFzMtGnT\nKCgoCE29BEJTMfv7+zl+/HjCf59Yenp62Lt3L+vWrRv1tVdffTVnz54d87ZiaWxstPX9xJ3U8zBG\n6ejuc+IRPQUxE0Yblqivr0/oLm/NmjVp3xe7H2vWrBnxs3k8noRzUzo7OwOrVq1KqBelvLw8VEAq\nVs/MmjVrAmvWrBmxt2a0nraKiorA9OnTAzNnzowo8BT9KCkpCVRUVAQqKytDWf3xikHF+vzZkBSc\nyj5G/65VRKqystL2u3+7cx402yJ/KHgYo3R091mP8vLywPTp0yMqzs2aNSvtF7ZMfPE3bdo06n5U\nVlYGOjs7A2vWrImb+W5XzkYmZ3ZMmDAhokZEOi5+6b6wZsOFO1clM3RSX19v+3uO9igsLMy740DB\ng4KHpKWj52Gk9QoyNeaarsJT1qyURIo9FRcXj5q/YOfFMF67ejyewKpVqwKrVq1KqO0KCgrifr5k\n1qIQicf6PpSUlIx4LCaTdxCvzkOyhczs6AnMNgoeFDwkLZk71ugLx1gviJnO/rZr7YOxFH3KZDLn\naH+PzZs3B8aPHx83wJg6deqwypO6M5d0Gu38Y9f3x+oBHO184/TsLacoeFDwkLTR7linT5+e1gtH\nZ2dnRoYyIHJRn/DPlOgiRmMpjFRTU2N7m6VCQYG4yebNmwNlZWUxvzvJzLZIVPR3PZHclHzgdPCg\nhQjGSv4AAAgHSURBVLGyVPRCVplesMbv93PTTTfFnLlQVFTEuHHj6O7uJhAI2L5ta8GjRLLCPR5P\n0vtQX1/PO++8M9bdE8l5Tp9/xPmFsTRVM0uNNCUwU9u3po/FO4GMFGCkIpnpe2MJXoqK9LUQGYnT\n5x9xns6SMmajnUCsAMOJmgapuPLKK53eBRERVysY/SUiY1ddXY3P52PNmjVO70pC6urqeP75553e\nDRERV1PwIBnx6KOPUldX5/RuDFNZWUldXR0NDQ00NTWxZ88ejdmKiIxCwxaSEdE5EpcuXeL06dMM\nDg4yODhId3d3xvdp5syZtudjiIjkAwUPkjEj5Uh4vd6M50WMGzcuo9sTEckVGrYQV3BiWEOJkSIi\nY6PgIc/4fD6ndyEma1ijqamJ+vp6KisrKSkpoaKiguLi4lF/v6ysjL/+67+mqamJhoYG6uvrqa+v\nZ8KECTFfn8nESLe2eS5Tm2ee2jy/pGPY4hbgTzBFoKYCdwMvpGE7MgY+nw+v1+v0bsQUb1gjvCCN\nlSsBpuegtLR0xOI0bihm4+Y2z1Vq88xTm+eXdAQPZcCbwOPAv2LKZ4qMWSoFaVTMRkTEfukIHrYF\nHyIiIpKDlPMgIiIiSXF8quahQ4ec3oW8cvbsWfbvz/gaKnlNbZ55avPMU5tnltPXznSvqjkIrAJe\njPGzqcAvgJo074OIiEgu6gBuAE5kesNO9jycwHzoqQ7ug4iISLY6gQOBAzg/bOHYBxcREZGxSUfw\nUA5cF/bvmcB84DRwPA3bExERkSz3aUyuwyAwEPb//+TgPomIiIiIiIiIiIiIiIiIiEj+2shQ/oL1\n+CDqNXMwNR3OAueBPcC0qNfcBPwM6ALOAD8HxoX9/FiM7fzvqPe4Bvj34Hv4gb8FRl96MftsJLU2\nnx7j963HZ8PeYxLw3eB7nAWeAiZGbUdtPsSONj8W4+c6zsd+brka+B5wEtNe+4lsb9BxHm4jmWnz\nYzG2o+N87G1eB/wb0AmcA74PXBX1Hq47zjcCbwd31Hp8LOzndZgZFf8X+DXMSXQlEL504U2YD7Me\n00h1wD1ASdhrjgJfjdpOedjPC4EDQHNwO8uAduDRVD+gC20ktTYviPrdq4A/xxx0ZWHv82PgP4Ab\ngcXBbYYX9lKbD7GrzXWcD9lI6ueWnwN7gU8Gf/5VoB8z08ui43zIRjLT5jrOh2wktTYvB9qA54G5\nwCcwgcTrRBZ8dN1xvhGzWmY8zwBPjvIee4GvjfKao8AfjPDzlZgDdErYc58HLgIVo7x3ttlI6m0e\n7U3gH8L+PQcTAd8Q9tyNweesKbdq8yF2tDnoOA+3kdTb/ALwhajnTgFrg/+v4zzSRtLf5qDjPNxG\nUmvz2zFtFd4uVZhjeFnw3xk7zpNdGOs6TDnMXwE+YEbY+/wm8C6wHfgQEyh8Jux3rwIaMV0kuzFd\nXS8DS2NsZwPmIHwT+DMiu1NuwkRNJ8Oe2wGUAouS/DzZIJU2j7YIE2k+HvbcTZi74l+EPfd68Lkl\nYa9Rm9vX5hYd50NSbfMfAmswXbYFwf8vwZxjQMd5LOluc4uO8yGptHkpEAB6w567jAkMrOuoK4/z\nO4C7Md0lyzBdVieAKzARzCBm/OQPgOsxB8wAcEvw9xcHX3MK+CLmhPoN4BIwK2w7jwCfwnTJPIgZ\n2wm/a9tC7CW/L2Gip1ySaptH+/+A/4x67s+Ad2K89p3g+4Ha3O42Bx3n4exo8/GYbthBzMn1LEN3\nY6DjPFom2hx0nIdLtc2vxLTxNzFtXw58O/h7fx98TVYc52WYD/6HmPUpBoGno17zAiahBkzUMwj8\nZdRr/oPhCTTh7gn+3qTgv7dgIrNouXiwRUu2zcONxxx4fxj1fKIHm9rcvjaPRcf5kLG0+b9ikst+\nHZgH/AUmIfsTwZ/rOB9ZOto8Fh3nQ8bS5rcBRzBBRR9mmOMN4DvBn2fsOE922CJcD6brYxamN6Ef\naI16zS8xWZ0wtIZF9GsOhb0mlteD/7V6J04Ck6NeMwnTXXaS3JZsm4f7HOZi9lTU8ycZnq1L8LmT\nYa9Rm9vX5rHoOB+SbJvPwaze+yDmbu4A8D8xJ9WHg6/RcT6ydLR5LDrOh4zl3PKT4OurMcmWXwRq\nMcMgkMHjPJXgoRRowAQFfZgxlo9HvaYeM1WH4H8/iPGa2WGviWVB8L9W8LEbE9mGf/jbMWM/LQnu\ne7ZKts3DPYiJYk9HPb8HM40nOsFmIqatQW1ud5vHouN8SLJtbp3HBqJeM8hQFrqO85Glo81j0XE+\nJJVzy0eYqZzLMIGENZvClcf532DGXmYEd+bfMV2y1hzUVcGN/w4mMvoypkGWhL3HHwR/57PB1/y/\nQDdDSSOLMV0484PP3YuZQvJvYe9RgJl68pPg65YB72PmqeYaO9qc4M8GMAdILD8C3iJyas8LYT9X\nm9vb5jrOI6Xa5oWYO7ZXMCfNOuArmPa/I2w7Os6HZKLNb0LHeTg7zi1rMcduHXA/psfir6O247rj\n3IfJEr2MOQCeY3iUtBY4jOmO2Q/8doz32RDc0S5gF5ENswATOZ0JvschzDjauKj3mIZp+G5M432L\n3CwqYleb/29G7t2pwhQVORd8PAVURr1GbT4k1TbXcR7JjjafGfy9E5hzy5sMn0ao43xIJtpcx3kk\nO9r8/2Da+zJmSOORGNvRcS4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi\nIiIiIiIiIiKO+v8Bl+sGsAOf55gAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t2, l2, l2e = np.loadtxt(echo_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o', color=\"green\")\n", + "errorbar(t2, l2, yerr=l2e, fmt='o', color=\"black\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.348e-01 6.523e+01 inf -- -3.028e+02 -- 1 1 1 1 1 1 1 1\n", + " 2 7.699e-01 6.427e+01 8.100e+01 -- -2.218e+02 -- 0.580653 0.565804 0.565201 0.565214 0.565618 0.565947 0.565564 0.568603\n", + " 3 3.354e+00 6.351e+01 8.006e+01 -- -1.417e+02 -- 0.182695 0.132486 0.130058 0.130216 0.131744 0.132399 0.131339 0.138486\n", + " 4 1.556e+00 6.272e+01 7.903e+01 -- -6.268e+01 -- -0.16907 -0.296462 -0.306097 -0.304877 -0.301753 -0.300835 -0.302915 -0.292641\n", + " 5 5.969e-01 6.132e+01 7.726e+01 -- 1.458e+01 -- -0.432204 -0.709149 -0.744405 -0.7396 -0.734995 -0.733546 -0.736839 -0.725614\n", + " 6 3.744e-01 5.885e+01 7.418e+01 -- 8.877e+01 -- -0.574318 -1.06985 -1.18591 -1.17296 -1.16819 -1.16502 -1.16974 -1.15872\n", + " 7 2.704e-01 5.526e+01 6.977e+01 -- 1.585e+02 -- -0.632315 -1.30174 -1.62986 -1.60311 -1.60167 -1.59376 -1.60104 -1.58978\n", + " 8 2.118e-01 5.083e+01 6.476e+01 -- 2.233e+02 -- -0.652594 -1.36692 -2.06821 -2.02717 -2.03482 -2.01697 -2.03052 -2.01815\n", + " 9 1.754e-01 4.545e+01 5.869e+01 -- 2.820e+02 -- -0.636309 -1.38302 -2.45398 -2.43781 -2.46343 -2.42984 -2.45896 -2.44563\n", + " 10 1.490e-01 3.871e+01 4.984e+01 -- 3.318e+02 -- -0.605808 -1.40775 -2.67391 -2.81453 -2.87421 -2.81781 -2.88685 -2.87465\n", + " 11 1.236e-01 3.039e+01 3.772e+01 -- 3.696e+02 -- -0.57763 -1.42753 -2.69296 -3.11171 -3.23381 -3.14653 -3.31141 -3.30288\n", + " 12 9.229e-02 2.069e+01 2.286e+01 -- 3.924e+02 -- -0.556681 -1.44088 -2.69001 -3.27817 -3.48572 -3.34948 -3.71554 -3.7112\n", + " 13 5.640e-02 1.099e+01 9.621e+00 -- 4.020e+02 -- -0.542063 -1.44901 -2.6978 -3.33497 -3.57555 -3.3977 -4.04347 -4.0537\n", + " 14 2.620e-02 4.040e+00 2.310e+00 -- 4.043e+02 -- -0.533703 -1.45096 -2.69258 -3.36521 -3.54261 -3.39935 -4.19655 -4.28234\n", + " 15 9.422e-03 1.233e+00 3.575e-01 -- 4.047e+02 -- -0.531223 -1.44814 -2.69847 -3.37914 -3.48828 -3.41313 -4.19651 -4.39454\n", + " 16 5.169e-03 4.540e-01 5.788e-02 -- 4.048e+02 -- -0.532521 -1.44581 -2.70748 -3.37398 -3.45542 -3.42428 -4.19558 -4.43406\n", + " 17 2.718e-03 2.442e-01 1.172e-02 -- 4.048e+02 -- -0.533779 -1.44399 -2.71046 -3.36898 -3.43756 -3.43204 -4.19666 -4.4455\n", + " 18 1.439e-03 1.307e-01 3.039e-03 -- 4.048e+02 -- -0.534412 -1.44278 -2.71234 -3.36531 -3.42821 -3.43643 -4.19795 -4.44912\n", + " 19 7.592e-04 6.935e-02 8.433e-04 -- 4.048e+02 -- -0.534752 -1.44211 -2.71311 -3.36323 -3.42328 -3.43886 -4.19871 -4.45056\n", + " 20 4.030e-04 3.692e-02 2.371e-04 -- 4.048e+02 -- -0.534926 -1.44173 -2.71356 -3.36205 -3.42068 -3.44015 -4.19914 -4.45124\n", + " 21 2.137e-04 1.961e-02 6.686e-05 -- 4.048e+02 -- -0.53502 -1.44153 -2.71378 -3.36142 -3.4193 -3.44084 -4.19936 -4.45158\n", + "********************\n", + "-0.53502 -1.44153 -2.71378 -3.36142 -3.4193 -3.44084 -4.19936 -4.45158\n", + "0.23132 0.206392 0.257293 0.247733 0.190033 0.14318 0.192361 0.189515\n", + "-0.000780421 0.00249097 -0.00128998 0.00612834 0.0196141 -0.0166488 -0.00464909 -0.00601261\n", + "********************\n" + ] + } + ], + "source": [ + "P2 = clag.clag('psd10r', [t2], [l2], [l2e], dt, fqL)\n", + "p2 = np.ones(nfq)\n", + "p2, p2e = clag.optimize(P2, p2)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 4.048e+02 4.043e+02 -5.351e-01 -3.037e-01 0.864 +++\n", + "+++ 4.048e+02 4.039e+02 -5.351e-01 -1.881e-01 1.82 +++\n", + "+++ 4.048e+02 4.041e+02 -5.351e-01 -2.459e-01 1.3 +++\n", + "+++ 4.048e+02 4.042e+02 -5.351e-01 -2.748e-01 1.07 +++\n", + "+++ 4.048e+02 4.043e+02 -5.351e-01 -2.893e-01 0.967 +++\n", + "+++ 4.048e+02 4.043e+02 -5.351e-01 -2.821e-01 1.02 +++\n", + "+++ 4.048e+02 4.043e+02 -5.351e-01 -2.857e-01 0.993 +++\n", + "\t### errors for param 1 ###\n", + "+++ 4.048e+02 4.043e+02 -1.441e+00 -1.235e+00 0.928 +++\n", + "+++ 4.048e+02 4.038e+02 -1.441e+00 -1.132e+00 1.97 +++\n", + "+++ 4.048e+02 4.041e+02 -1.441e+00 -1.183e+00 1.41 +++\n", + "+++ 4.048e+02 4.042e+02 -1.441e+00 -1.209e+00 1.16 +++\n", + "+++ 4.048e+02 4.043e+02 -1.441e+00 -1.222e+00 1.04 +++\n", + "+++ 4.048e+02 4.043e+02 -1.441e+00 -1.229e+00 0.983 +++\n", + "+++ 4.048e+02 4.043e+02 -1.441e+00 -1.225e+00 1.01 +++\n", + "+++ 4.048e+02 4.043e+02 -1.441e+00 -1.227e+00 0.997 +++\n", + "\t### errors for param 2 ###\n", + "+++ 4.048e+02 4.046e+02 -2.714e+00 -2.585e+00 0.296 +++\n", + "+++ 4.048e+02 4.045e+02 -2.714e+00 -2.521e+00 0.647 +++\n", + "+++ 4.048e+02 4.043e+02 -2.714e+00 -2.489e+00 0.868 +++\n", + "+++ 4.048e+02 4.043e+02 -2.714e+00 -2.473e+00 0.989 +++\n", + "+++ 4.048e+02 4.042e+02 -2.714e+00 -2.465e+00 1.05 +++\n", + "+++ 4.048e+02 4.043e+02 -2.714e+00 -2.469e+00 1.02 +++\n", + "+++ 4.048e+02 4.043e+02 -2.714e+00 -2.471e+00 1.01 +++\n", + "\t### errors for param 3 ###\n", + "+++ 4.048e+02 4.043e+02 -3.361e+00 -3.113e+00 0.873 +++\n", + "+++ 4.048e+02 4.038e+02 -3.361e+00 -2.990e+00 1.95 +++\n", + "+++ 4.048e+02 4.041e+02 -3.361e+00 -3.051e+00 1.36 +++\n", + "+++ 4.048e+02 4.042e+02 -3.361e+00 -3.082e+00 1.1 +++\n", + "+++ 4.048e+02 4.043e+02 -3.361e+00 -3.098e+00 0.985 +++\n", + "+++ 4.048e+02 4.043e+02 -3.361e+00 -3.090e+00 1.04 +++\n", + "+++ 4.048e+02 4.043e+02 -3.361e+00 -3.094e+00 1.01 +++\n", + "+++ 4.048e+02 4.043e+02 -3.361e+00 -3.096e+00 1 +++\n", + "\t### errors for param 4 ###\n", + "+++ 4.048e+02 4.045e+02 -3.419e+00 -3.229e+00 0.635 +++\n", + "+++ 4.048e+02 4.040e+02 -3.419e+00 -3.134e+00 1.47 +++\n", + "+++ 4.048e+02 4.043e+02 -3.419e+00 -3.181e+00 1.01 +++\n", + "\t### errors for param 5 ###\n", + "+++ 4.048e+02 4.044e+02 -3.441e+00 -3.298e+00 0.824 +++\n", + "+++ 4.048e+02 4.039e+02 -3.441e+00 -3.226e+00 1.85 +++\n", + "+++ 4.048e+02 4.041e+02 -3.441e+00 -3.262e+00 1.29 +++\n", + "+++ 4.048e+02 4.043e+02 -3.441e+00 -3.280e+00 1.04 +++\n", + "+++ 4.048e+02 4.043e+02 -3.441e+00 -3.289e+00 0.93 +++\n", + "+++ 4.048e+02 4.043e+02 -3.441e+00 -3.285e+00 0.985 +++\n", + "+++ 4.048e+02 4.043e+02 -3.441e+00 -3.282e+00 1.01 +++\n", + "+++ 4.048e+02 4.043e+02 -3.441e+00 -3.283e+00 0.999 +++\n", + "\t### errors for param 6 ###\n", + "+++ 4.048e+02 4.046e+02 -4.199e+00 -4.103e+00 0.303 +++\n", + "+++ 4.048e+02 4.044e+02 -4.199e+00 -4.055e+00 0.684 +++\n", + "+++ 4.048e+02 4.043e+02 -4.199e+00 -4.031e+00 0.933 +++\n", + "+++ 4.048e+02 4.043e+02 -4.199e+00 -4.019e+00 0.966 +++\n", + "+++ 4.048e+02 4.043e+02 -4.199e+00 -4.013e+00 1.03 +++\n", + "+++ 4.048e+02 4.043e+02 -4.199e+00 -4.016e+00 0.999 +++\n", + "\t### errors for param 7 ###\n", + "+++ 4.048e+02 4.043e+02 -4.452e+00 -4.262e+00 0.879 +++\n", + "+++ 4.048e+02 4.038e+02 -4.452e+00 -4.167e+00 2.03 +++\n", + "+++ 4.048e+02 4.041e+02 -4.452e+00 -4.215e+00 1.39 +++\n", + "+++ 4.048e+02 4.042e+02 -4.452e+00 -4.239e+00 1.12 +++\n", + "+++ 4.048e+02 4.043e+02 -4.452e+00 -4.250e+00 0.996 +++\n", + "********************\n", + "-0.535069 -1.44142 -2.7139 -3.36108 -3.41857 -3.44121 -4.19949 -4.45176\n", + "0.249396 0.214451 0.243242 0.265109 0.23744 0.157753 0.183354 0.201379\n", + "********************\n" + ] + } + ], + "source": [ + "p2, p2e = clag.errors(P2, p2, p2e)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X9w2+dh3/G3LNPm4rRWZE2AbNlCjVaBYsvOyFCVxFil\nsrSXePnRJa0KLLldyGjOWnc+bYtvWnvifNSuWxtf47rpj1Ntuutig9KuzRrtrNptCtUuRacMmdjW\nLNQZSNBWLEB1FLmtEyqMrf0B0qKUL0WCxBcggPfrDkcSeB48j6zH0IfP9/k+D0iSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJGmJ/jMwDPw9UAS+BGysaY8kSdKycAT418Am4DbgMJAH3lbD\nPkmSpGVoDfAm8N5ad0SSJM3viiq2tWr665kqtilJkpa5FZQuN/xVrTsiSZIW5soqtfMF4BYuf6lh\n3fRDkiSV59T0o6KqERJ+G/gQsAN4ZY4y666//vpXXnllrpclSdJlfAvooMJBIcyQsIJSQPgo0AVM\nXKbsuldeeYUvfvGLbNq0KcQuVd6ePXt44IEH6rK9pbxXuXXLKb+QsvOVudzr1f47qxTHWuXLO9aC\nOdYqXz7MsXbixAk++clP3kBpNr5uQsLvAClKIeF1IDr9/FlgMqjCpk2baGtrC7FLlbdq1aqq9rmS\n7S3lvcqtW075hZSdr8zlXq/231mlONYqX96xFsyxVvnyYY+1sKwM8b0PA1cD3cB/nPX4JvDsJWXX\nAZ/5zGc+w7p19bcsYfPmzXXb3lLeq9y65ZRfSNn5ysz1ejqdJpVKLbgvy4ljrfLlHWvBHGuVLx/W\nWDt16hQHDhwAOECFZxJWVPLNlqANGBkZGanL1K368pGPfIQvf/nLte6GmoBjTdUwOjpKe3s7QDsw\nWsn3ruY+CZIkqY4YEtR06nX6V/XHsaZ6Z0hQ0/GDW9XiWFO9MyRIkqRAhgRJkhTIkCBJkgIZEiRJ\nUiBDgiRJCmRIkCRJgQwJkiQpkCFBkiQFMiRIkqRAhgRJkhTIkCBJkgIZEiRJUiBDgiRJCmRIkCRJ\ngQwJkiQpkCFBkiQFMiRIkqRAhgRJkhTIkCBJkgIZEiRJUiBDgiRJCmRIkCRJgQwJkiQpkCFBkiQF\nMiRIkqRAYYaEHcBh4FvAm8BHQ2xLkiRVWJgh4W3A14G7p38+H2JbkiSpwq4M8b3/bPohSZLqkGsS\nJElSIEOCJEkKZEiQJEmBwlyTULY9e/awatWqi55LpVKkUqka9UiSpOUjnU6TTqcveu7s2bOhtbci\ntHe+2JvAzwJfnuP1NmBkZGSEtra2KnVJkqT6Nzo6Snt7O0A7MFrJ9w5zJuEa4Cdm/Xwz8G7g28DL\nIbYrSZIqIMyQ0AH85fT354HfnP7+D4GeENuVJEkVEGZIOIoLIyVJqlv+Iy5JkgIZEiRJUiBDgiRJ\nCmRIkCRJgQwJkiQpkCFBkiQFMiRIkqRAhgRJkhTIkCBJkgIZEiRJUiBDgiRJCmRIkCRJgcI84Emq\nmfTzadLH0wBM/mCSidcm2HDtBlqvbAUgdWuK1OZULbsoScueIUENKbX5QggYPTVK+4F20h9P07au\nrcY9k6T64eUGSZIUyJCghpXP5+m5u4ddH9sFj8Guj+2i5+4e8vl8rbsmSXXByw1qOMVikeTuJNkz\nWQrvKsAHSs/nyJE7mePIJ46QWJ1g4KEBIpFIbTsrScuYIUENpVgssv3O7YxtHYP3BBRYD4X1BQqn\nC3Te2cng44MGBUmag5cb1FCSu5OlgLB2noJrIbc1R3J3sir9kqR6ZEhQwxgfHyd7Jjt/QJixFrJn\nsq5RkKQ5GBLUMPbfv7+0BqEMhU0F+u7vC6lHklTfDAlqGMPPDcP6Miuth+Fnh0PpjyTVO0OCGsbU\nG1PlV1oBU28uop4kNQFDghpGy8qW8iudh5YrFlFPkpqAIUENo+O2DjhZZqWTsOX2LaH0R5LqnSFB\nDaP33l6iL0TLqhM9EWXfZ/eF1CNJqm+GBDWMWCxGYnUCTi+wwmlIrE4Qi8XC7JYk1a2wQ8IvAePA\n94CvAe8NuT01uYGHBog/E58/KJyG+DNxDj58sCr9kqR6FGZI+AXg88B+4N3A08AR4MYQ21STi0Qi\nDD4+SNdLXUSfjMLLwPnpF88DL0P0yShdL3Vx7Mgx1q5d6M5LktR8wgwJ/wF4COgH/hb495Q+sn8x\nxDYlIpEImcMZhh4doru1m/gTcXgM4k/E6W7tZujRITKHMwYESZpHWAc8XQW0Ab92yfNPAttDalO6\nSCwWo/8L/YyeGqX9QDuH7jpE27q2WndLkupGWDMJa4CVQPGS508D5S0/lyRJNeFR0WpI6efTpI+n\nAZj8wSQbr9vI3r/YS+uVrQCkbk2R2pyqZReXhUv/O028NsGGazf430kSACtCet+rgNeBnwP+dNbz\nvwXcBuy8pHwbMHLHHXewatWqi15IpVKkUn5ISWHJ5/P0fa6Pp0afIncmR3x1nB1tO+i9t9fbQ6Vl\nJp1Ok06nL3ru7NmzPP300wDtwGgl2wsrJAA8A4wAd8967gXgS8CvXlK2DRgZGRmhrc1rxlI1FItF\nkruTZM9kS6dnzj4c6yREX4iSWJ1g4KEBIpFIzfop6fJGR0dpb2+HEEJCmJcbfhP4n5T2R3gGuIvS\nx9Dvh9impAUoFotsv3M7Y1vH4D0BBdZDYX2BwukCnXd2Mvj4oEFBakJh3gJ5CNgD9AJfp7SR0p2U\nboOUVEPJ3clSQJjvLtC1kNuaI7k7WZV+SVpewt5x8feAHwNagQ7gr0NuT9I8xsfHyZ7Jzh8QZqyF\n7Jks+Xw+zG5JWoY8u0FqMvvv319ag1CGwqYCfff3hdQjScuVIUFqMsPPDV+8SHEh1sPws8Oh9EfS\n8mVIkJrM1BtT5VdaAVNvLqKepLpmSJCaTMvKlvIrnYeWKxZRT1JdMyRITabjtg44WWalk7Dl9i2h\n9EfS8mVIkJpM7729RF8o7wiV6Iko+z67L6QeSVquPLtBDWn21qWTk5NMTEywYcMGWlunzyRo4u2+\nY7EYidUJCqcLC7sN8jQkVifcollqQmFuy1wOt2VWaGa2LHV8XVAsFum8s5Pc1tzlg8JpiD8T59iR\nY6xdu9CNFSRVU5jbMnu5QWpCkUiEwccH6Xqpi+iT0dI+qOenXzwPvAzRJ6N0vdRlQJCamCFBDSuf\nz9PT08OuXbsA2LVrFz09Pe4cOC0SiZA5nGHo0SG6W7uJPxGHxyD+RJzu1m6GHh0iczhjQJCamGsS\n1HCKxSLJZJJsNkuhcGFnwVwuRy6X48iRIyQSCQYGPN0w/Xya9PE0dMLNP3kzK19byYZrN/Dqla9y\nz9A9pP4hRWpzc67dkGRIUIMpFots376dsbGxOcsUCgUKhQKdnZ0MDjb36YapzYYASXPzcoMaSjKZ\nvGxAmC2Xy5FMerqhJM3FkKCGMT4+TjabLatONuvphpI0F0OCGsb+/fsvWoOwEIVCgb4+TzeUpCCG\nBDWM4eHFnVK42HqS1OgMCWoYU1OLO6VwsfUkqdEZEtQwWloWd0rhYutJUqMzJKhhdHR0LKreli2e\nbihJQQwJahi9vb1Eo2WebhiNsm+fpxtKUhBDghpGLBYjkUiUVSeR8HRDSZqLIUENZWBggHg8vqCy\n8XicgwcPhtwjSapfhgQ1lEgkwuDgIF1dXXNeeohGo3R1dXHsmKcbStLlGBLUcCKRCJlMhqGhIbq7\nu9+aWYjH43R3dzM0NEQm4+mGkjQfD3hSw4rFYvT39zM6Okp7ezuHDh2ira2t1t2SpLrhTIIkSQrk\nTIIaUjqdJp1OAzA5OcnGjRvZu3cvra2tAKRSKVIpj0iWpMsxJKghGQIkaenCutzwq8Ax4LvAd0Jq\nQ5IkhSiskNACHAR+N6T3lyRJIQvrcsN9018/FdL7S5KkkHl3gyRJCmRIkCRJgcq53HAf0DtPmfcA\no4vujSRdRvr5NOnj07e2/mCSidcm2HDtBlqvnL619dYUqc3e1SJVSjkh4beBx+YpM7GEvrBnzx5W\nrVp10XPeyiZpRmpzim0/so2+z/Xx1OhT5M7keGP1G+xo20Hvvb2e6KmGN3sPmBlnz54Nrb0Vob1z\nyaeAzwPvmKdcGzAyMjLitrmSAhWLRZK7k2TPZCm8qwDrZ714EqIvREmsTjDw0ACRSKRm/ZSqbWbr\neaCdCs/mh3V3w03A6umvK4HbKQWSbwKvh9SmpAZVLBbZfud2xraOlS5qXmo9FNYXKJwu0HlnJ4OP\nDxoUpAoIa+FiH6U0cx9wDfB1YIRSypGksiR3J0sBYb6DO9dCbmuO5O5kVfolNbqwQsKnpt/7Ckoz\nCTNfnwqpPUkNanx8nOyZ7PwBYcZayJ7Jks/nw+yW1BS8BVLSsrb//v2lNQhlKGwq0Hd/X0g9kpqH\nIUHSsjb83PDFixQXYj0MPzscSn+kZmJIkLSsTb0xVX6lFTD15iLqSbqIIUHSstaysqX8Sueh5YpF\n1JN0kbBugZRUB2ZvzDI5OcnExAQbNmygtXV6B8NlsJlZx20dHD95vLxLDidhy+1bQuuT1CycSZCa\nWCqV4sEHH2TNmjWMjY3x4osvMjY2xpo1a3jwwQdrHhAAeu/tJfpCtKw60RNR9n12X0g9kpqHMwlS\nkyoWiySTSbLZLIXChbsHcrkcuVyOI0eOkEgkGBio7Q6GsViMxOoEhdOFhd0GeRoSqxNu0SxVgDMJ\nUhMqFots376do0ePXhQQZisUChw9epTOzk6KxWKVe3ixgYcGiD8Th9PzFDwN8WfiHHz4YFX6JTU6\nQ4LUhJLJJGNjYwsqm8vlSCZru4NhJBJh8PFBul7qIvpkFF4Gzk+/eB54GaJPRul6qYtjR46xdu1C\nd15amPTzad7/4Pu56YM38fbNb+eqd13F2ze/nZs+eBPvf/D9pJ9Pz/8mUh3ycoPUZMbHx8lms2XV\nyWZLOxjWcgo/EomQOZwhn8/Td38fTz1ROgUyvjrOjvYd9D4azimQxWKRA79y4MLBUltLz08xxesn\nX2fq4BQH/vwA73vofZ4XoYZjSJCazP79++e8xDCXQqFAX18f/f39IfVq4WKxGP1f6Gf01CjtB9o5\ndNch2taFc3qsB0up2RkSpCYzPLy4nQgXW6+S0s+nSR+fvmXzB5NsvG4je/9iL61XTt+yeWuK1ObK\n3ZGxmIOlMoczFWtfqjVDgtRkpqYWtxPhYutVUmpzZUPA5bx1sFTQDEKQtZD9Ru0vy0iV5MJFqcm0\ntCxuJ8LF1qtXHiwlGRKkptPR0bGoelu2NNcOhh4sJRkSpKbT29tLNFrmDobRKPv2NdcOhh4sJRkS\npKYTi8VIJBJl1Ukkmm8HQw+WkgwJUlMaGBggHo8vqGw8HufgwebbwbDjtg44WWYlD5ZSgzEkSE0o\nEokwODhIV1fXnJceotEoXV1dHDtW+R0M64EHS0mGBKlpRSIRMpkMQ0NDdHd3vzWzEI/H6e7uZmho\niEwm05QBAS4cLDXveREzPFhKDch9EqQmF4vF6O/vZ3R0lPb2dg4dOkRbWzg7GNabgYcG6Lyzk9zW\n3OU3VJo5WOpI812WUWMzJEhNLJ1Ok05P72A4OcnGjRvZu3cvra3TOximUqRS1dm8aDmaOVgquTtJ\n9htZCpsKpdsiV1A6WOpk6RJDYnWCg0cONu2sixqXIUFqYs0eAhaiVgdLScuBIUGS5vHWmRGdcPNP\n3szK11ay4doNvHrlq9wzdA+pf6jedtFSNRkSJGke1TwzQlpOvLtBkiQFMiRIkqRAhgRJkhQorJAQ\nAx4GxoDvAv8PuA9wU3NJkupEWAsX30npTuK7KAWEzcAfANcA94bUpiRJqqCwQsIT048ZeeB+4Bcx\nJEiSVBequSZhFfDtKrYnSZKWoFohIQ78MvD7VWpPkupePp+n5+4eNt+xmcT2BJvv2EzP3T3k8/la\nd01NotzLDfcBvfOUeQ8wOuvn64E/Aw4B/WW2J0lNp1gssjO5k7G/H+Nc2zl4/4XXjp88zmMff4yb\nf/RmMgMZIpFI7TqqhreizPLXTT8uZwI4N/399UAGGAI+dZk6bcDIHXfcwapVqy56wb3lJTWTYrHI\n9ju3M7Z1bEEnTw4+PmhQaCKzD2WbcfbsWZ5++mmAdi7+JX3Jyg0J5biBUkAYBj5J6cy0ubQBIyMj\nIx5RK6mp7fzwTo7edPTyAWHGaeh6qYvM4UzIvdJyNnPMOyGEhLDWJNwAHKU0q3AvEAGi0w9JUoDx\n8XGyZ7ILCwgAayF7JusaBYUmrJDw05QWK74POAm8Mv34VkjtSVLd23//fgrvKpRVp7CpQN/9fSH1\nSM0urJDwh9PvvXL66xWzfpYkBRh+bhjWl1lpPQw/OxxKfyTPbpCkZWLqjanyK62AqTcXUU9aAEOC\nJC0TLSsXcbzNeWi5wmNxFA5DgiQtEx23dZRWcZXjJGy5fUso/ZEMCZK0TPTe20v0hfJuAoueiLLv\ns/tC6pGanSFBkpaJWCxGYnUCTi+wwmlIrE4Qi8XC7JaamCFBkpaRgYcGiD8Tnz8oTO+4ePDhg1Xp\nl5qTIUGSlpFIJMLg44NsemETV3/5aniZC/vVngdehqu/fDWbXtjEsSPHWLt2oTsvSeUr94AnSVLI\nIpEIL2ReIJ/P03d/H8NfGWbqzSlarmih4/YOev+4N9RLDPl8nr7P9TH83DBTb0zRsrKFjts66L03\n3Ha1/BgSJGmZisVi9H+heofnFotFkruTZM9kSzs/XnL65JFPHCGxOsHAQwMeKtUkDAmSpItPn3xP\nQIH1UFhfoHC6QOednZ4+2SRckyBJIrk7Of/x1ABrIbc1R3J3sir9Um0ZEiSpyXn6pOZiSJCkJufp\nk5qLaxIk1Y10Ok06nQZgcnKSiYkJNmzYQGtrKwCpVIpUKlXLLtal4eeGL1qkuCDrYfgrnj7Z6AwJ\nkurG7BAwOjpKe3s76XSatra2Gvesvnn6pObi5QZJanKePqm5GBIk1ZV8Pk9PTw+7du0CYNeuXfT0\n9LiIbgk8fVJz8XKDpLpQLBZJJpNks1kKhQuL7HK5HLlcjiNHjpBIJBgYcKOfcvXe28uRTxyhsH7h\nixejJ6Lse9TTJxudIUHSslcsFtm+fTtjY2NzlikUChQKBTo7OxkcdKOfcsycPlk4XVjYbZCePtk0\nvNwgadlLJpOXDQiz5XI5kkk3+imXp08qiCFB0rI2Pj5ONpstq04260Y/5Zo5fbLrpS6iT0YDT5+M\nPhml66UuT59sIoYEScva/v37L1qDsBCFQoG+Pjf6KVckEiFzOMPQo0N0t3Zz61du5Z1PvpNbv3Ir\n3a3dDD06ROZwxoDQRFyTIGlZGx5e3IY9i62n6p8+qeXLmQRJy9rU1OI27FlsPUkXGBIkLWstLYvb\nsGex9SRdYEiQtKx1dHQsqt6WLW70Iy2VIUHSstbb20s0Gi2rTjQaZd8+N/qRlsqQIGlZi8ViJBKJ\nsuokEm70I1VCWCHhy8AE8D3gFeCPgHUhtSWpwQ0MDBCPxxdUNh6Pc/CgG/1IlRBWSPhL4OeBjcDH\ngTjwJyG1JanBRSIRBgcH6erqmvPSQzQapauri2PH3OhHqpSwQsIDwN9Q2rNrCPh1YAuwMqT2JDW4\nSCRCJpNhaGiI7u7ut2YW4vE43d3dDA0Nkcm40Y9USdXYTGk18AkgA7xRhfYkNbBYLEZ/fz+jo6O0\nt7dz6NAh2traat0tqSGFGRJ+HbgbeBvwNeCDIbYlqQmk02nS6TQAk5OTbNy4kb1799La2gpAKpUi\nlUrVsotSQyknJNwH9M5T5j3A6PT3vwH8ARAD/gvwv4EdXDgyRJLKYgiQqmtFGWWvm35czgRwLuD5\nGyitT3gvcCzg9TZg5I477mDVqlUXveCHgiRJJbNn02acPXuWp59+GqCdC7+oV0Q5IWEpbqQUIH4K\neDrg9TZgZGRkxGuLkiSVYWZ9DiGEhDDWJGyZfvw18B3gZqAP+CalOx0kSVIdCCMkfBf4l5TWMFwD\nnAKOAPuBH4TQniSF6tIFkxMTE2zYsMEFk2p4YYSE48A/D+F9JakmZoeAmanddDrt5VE1PM9ukCRJ\ngQwJkiQpUDV2XJSkupfP5+nr6+Opp54CYNeuXezYsYPe3t5QTpx0HYSWg2rdAjkfb4GUtCwVi0WS\nySTZbJZCofBDr0ejURKJBAMDA0QikVD6MLMOws9IBQnzFkgvN0jSHIrFItu3b+fo0aOBAQGgUChw\n9OhROjs7KRaLFW0/n8/T09PDrl27gNLsRU9PD/l8vqLtSHMxJEjSHJLJJGNjYwsqm8vlSCaTFWm3\nWCyyc+dOtm3bxiOPPEIul3urjUceeYRt27axc+fOioeSGTPhZPPmzSQSCTZv3mw4aVKuSZCkAOPj\n42Sz2bLqZLNZ8vn8ktYozMxeXC6cFAoFCoUCnZ2dDA4OVuwyx0w4GRsb49y5i3fYP378OI899hg3\n33wzmUwmtEsrWl4MCZIUYP/+/XNeYphLoVCgr6+P/v7+Rbe7mNmLTCaz6PZmLCScnDt3jhMnTlQ8\nnKSfT5M+Pr1I8weTTLw2wYZrN9B65fQizVtTpDa7SLMWDAmSFGB4eLiq9aB2sxdQu3ACkNp8IQSM\nnhql/UA76Y+naVvnIs1ac02CJAWYmpqqaj1Y2uzFUiwlnFRKPp+n5+4edn1sFzwGuz62i567XQdR\na4YESQrQ0tJS1XpQm9kLqF04gel1EB/eybZPbOOR7z9C7gM5+FeQ+0COR77/CNs+sY2dHw5vkaYu\nz5AgSQE6OjoWVW/Lli2LbrMWsxdQu3BSLBbZfud2jt50lMLPFGD9JQXWQ+FnChy96Sidd1b+FlPN\nz5AgSQF6e3uJRqNl1YlGo+zbt2/RbdZi9gJqF06Su5OMbR2DtfMUXAu5rTmSuytzi6kWzpAgSQFi\nsRiJRKKsOolEYkkLCGsxewG1CSfj4+Nkz2TnDwgz1kL2TGXXQWh+hgRJmsPAwADxeHxBZePxOAcP\nHlxSe7WYvYDahJP99++n8K4y10FsKtB3/9LXQWjhDAmSNIdIJMLg4CBdXV1z/uMdjUbp6uri2LFj\nrF270F+Lg9Vi9gJqE06Gnxv+4TUI81kPw88ubR2EymNIkKTLiEQiZDIZhoaG6O7ufmtmIR6P093d\nzdDQEJlMZskBYUa1Zy+gNuFk6o1FrGdYAVNvLm0dhMpjSJCkBYjFYvT393Po0CEADh06RH9/f8WP\nia727MWMaoeTlpWLWM9wHlquWNoiTZXHkCBJy0y1Zy9m2hwcHGTTpk1cffXVgWWuvvpqNm3aVJFw\n0nFbB5wss9JJ2HL70hZpqjwrat2BaW3AiGelS1qO0uk06fT02QKTk0xMTLBhwwZaW6fPFkilSKXC\nO1tgdHSU9vZ2qvUZmc/n6evrY3h4mKmpKVpaWujo6KC3t7diMyf5fJ5tn9hW2h9hgaJPRhl6dKji\nszf1bmZ8AO3AaCXf25AgSctQrYNJNez88E6O3nR0YbdBnoaul7rIHK7MeRGNJMyQ4AFPkrQMNUII\nmM/AQwN03tlJbmvu8kHhNMSfiXPwyNIXaao8rkmQJNVEJBJh8PFBul7qIvpkFF4Gzk+/eB54uXSJ\noeulLo4dqdwiTS2cMwmSpJqJRCJkDmdK6yDu7+OpJ54idyZHfHWcHe076H20cusgVD5DgiSp5mKx\nGP1f6Gf01CjtB9o5dNch2ta5Rq3WvNwgSZICOZMgSaqp9PNp0sen7+T4wSQbr9vI3r/YS+uV03dy\n3JoitbmxF3EuV4YESVJNpTYbAparsC83XA18A3gTuC3ktiRJUgWFHRJ+A/hWyG1IkqQQhBkSPgi8\nH/hsiG1IkqSQhLUmIQIcAD4KfC+kNiRJUojCmElYAfwh8HtUeA9pSZJUPeXMJNwH9M5TpgPoBN4O\n/PdLXpv3MKk9e/awatWqi55rhv3LJUlaiNkHf804e/ZsaO2VcwrkddOPy5kABoAPc2EHboCVwBvA\nF4HugHqeAilJTSqdTvPwww/z4osvcubMGb7//e9z1VVXsXr1ajZu3MinP/1pf1m8jOVyCuS3px/z\nuQf41Vk/3wA8AewCvlpGe5KkBlcsFjlw4ADZbJZCofDW81NTU7z++utMTU1x4MAB3ve+9xGJRGrY\n0+YUxsLFly/5+bvTX3PAKyG0J0mqQ8Vike3btzM2NjZnmUKhQKFQoLOzk8HBQYNClVXr7Ibz8xeR\nJDWTZDJ52YAwWy6XI5lMhtwjXaoaISFPaU3Cc1VoS5JUB8bHx8lms2XVyWaz5PP5cDqkQJ4CKUmq\nuv3791+0BmEhCoUCfX19IfVIQQwJkqSqGx4ermo9LY4hQZJUdVNTU1Wtp8UxJEiSqq6lpaWq9bQ4\nYZ3dIEnSnDo6Ojh+/HjZ9bZs2VKxPszevXBycpKJiQk2bNhAa2sr4I6/4EyCJKkGent7iUajZdWJ\nRqPs27evYn1IpVI8+OCDrFmzhrGxMV588UXGxsZYs2YNDz74YNMHBHAmQZJUA7FYjEQiUdYdDolE\nglgsVpH2i8UiOz+0k7FvjnHutXNvPZ/L5cjlcjz2J49x80/cTOb/ZJp6AydnEiRJNTEwMEA8Hl9Q\n2Xg8zsGDByvS7sxOjye+duKigDDbudfOceJrJ+js7KRYLFak3XpkSJAk1UQkEmFwcJCurq45Lz1E\no1G6uro4duwYa9eurUi77vS4cIYESVLNRCIR7rrrLm655RZuvPFGrrnmGlpaWrjmmmu48cYbueWW\nW7jrrrsqFhDc6bE8rkmQJNVUNe8iWMpOj/39/SH1avlyJkGS1DTc6bE8hgRJUtNwp8fyGBIkSU3D\nnR7LY0iQJDWNjo6ORdWr5E6P9cSQIElqGsthp8d6YkiQJDWNmZ0ey1HJnR7rjSFBktRUarXTYz0y\nJEiSmkqtdnqsR4YESVLTiUQiZDIZhoaG6O7uZn1sPQDrY+vp7u5maGiITCbT1AEBDAmSpCaVTqe5\n5557ePXVV7nhphvgOrjhpht49dVXueeee0in07XuYs25LbMkqSnN3g569NQo7Qfa+d27fpe2dW01\n7tny4UweXDieAAAGTUlEQVSCJEkKZEiQJEmBDAmSJCmQIUGSJAUyJEiSpEBhhYQ88OYlj18LqS1J\nkhSCsG6BPA/sA/5g1nOvh9SWJEkKQZj7JPwjcDrE95ckSSEKc03CfwJeBb4O/ArQEmJbkiSpwsKa\nSfgtYAT4DvCTwH8Dfgz4NyG1J0mSKqycmYT7+OHFiJc+ZvayfAB4GjgOPAz8W+DTwDsq0WlJkhS+\ncmYSfht4bJ4yE3M8/9Xprz8ODM9Vec+ePaxateqi52bvrS1JUjNLp9M/dPDU2bNnQ2uvnJDw7enH\nYvyz6a+nLlfogQceoK3NgzUkSQoS9Ivz6Ogo7e3tobQXxpqErcA2IAO8BnQAvwn8KXAyhPYkSVII\nwggJ54BdQC9wNaVLEAeA3wihLUmSFJIwQsLXKc0kSJKkOubZDZIkKZAhQZIkBTIkSJKkQIYESZIU\nyJAgSZICGRIkSVIgQ4IkSQpkSJAkSYEMCZIkKZAhQZIkBTIkSJKkQIYESZIUyJAgSZICGRIkSVIg\nQ4IkSQpkSJAkSYEMCZIkKZAhQZIkBTIkSJKkQIYESZIUyJAgSZICGRIkSVIgQ4IkSQpkSJAkSYEM\nCZIkKZAhQZIkBTIkSJKkQIYESZIUKMyQ8C+ArwLfBf4O+OMQ25IWLJ1O17oLahKONdW7sELCx4E/\nAh4GbgO2A4+G1JZUFj+4VS2ONdW7K0N6z98CPgs8Muv5b4bQliRJCkkYMwltwPXAeeDrwCvA48At\nIbRVc9X+TaGS7S3lvcqtW075hZSdr0wj/gbnWKt8ecdasGYdazwfXlv1OtbCCAk3T3+9D+gDPgR8\nBzgKvCOE9mqqWf9n8oO7+hxrlS/vWAvWrGPNkPDDyrnccB/QO0+ZDi4Ej/8KfGn6+27gJPDzwIG5\nKp84caKM7iwPZ8+eZXR0tC7bW8p7lVu3nPILKTtfmcu9Xu2/s0pxrFW+vGMtWDOOtRN/dwIm4cRz\nJ+BU5dsKc6yF+W/nijLKXjf9uJwJSosUvwK8Fzg267VngD8H9gXUWwcMAzeU0R9JklTyLUq/qC8w\n4ixMOTMJ355+zGcEOAckuBASWoAYpRAR5BSlP9y6MvojSZJKTlHhgBCmzwMvAz8NvBN4iFLnr61l\npyRJUu1dCXwOKACvAU8Am2raI0mSJEmSJEmSJEmSpB/2I8DfUNrB8Tjwy7XtjhrYjZQ2/vq/wLPA\nz9W0N2p0XwLOAP+r1h1Rw/oQkAVeBD5d476E5gqgdfr7fwKMAf+0dt1RA4tSOpQMSmPsZUpjTgrD\nT1H6EDckKAxXAn9LaXuBt1MKCqvLeYMwj4qupDeByenv3wZMzfpZqqQC8Nz0939H6be8sv6nksrw\nV8A/1roTalhbKM2KnqI0zh4HfqacN6iXkAClPRaeBV6idMrkP9S2O2oC76G0K+m3at0RSVqE67n4\n8+skZe5sXE8h4TXgduDHgLuBH69td9TgrgP+B3BXrTsiSYt0fqlvEFZI2AEcppRg3gQ+GlDml4Bx\n4HvA1yid9TDj31FapDhKaUvn2U5TWlj27or2WPUqjLF2NfAnwK9ROnNEgvA+15b8Qa6GtdQx9woX\nzxzcyDKZGf0ApWOif5bSH+wjl7z+C5TOd+ihtG3z5yldPrhxjvdbC/zo9Pc/Suma8Tsr22XVqUqP\ntRVAGvgvYXRWda3SY21GFy5cVLCljrkrKS1WvJ7SXYIvAu8IvddlCvqDfRX4nUuee4HSb25B2igl\n8G9MP7or2UE1jEqMtfcCb1D6be/r049bKthHNYZKjDUobVl/Gnid0p007ZXqoBrOYsfchynd4fBN\nYHdovVuCS/9gV1G6O+HSaZMHKF1GkBbLsaZqcayp2moy5mqxcHENsBIoXvL8aUr3qEuV4lhTtTjW\nVG1VGXP1dHeDJEmqolqEhFcpXfONXPJ8hNKGD1KlONZULY41VVtVxlwtQsL3gRF+eNennwaOVb87\namCONVWLY03VVtdj7hpK+xi8m9Jiiz3T38/clrGL0m0b3cAmSrdt/D3z3yokXcqxpmpxrKnaGnbM\ndVH6A71JaTpk5vv+WWV+kdIGEJPAMBdvACEtVBeONVVHF441VVcXjjlJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqQ68P8Brti/qOiDgqsAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-6,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"green\")\n", + "errorbar(fqd, p2, yerr=p2e, fmt='o', ms=10, color=\"black\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 1.165e+02 1.119e+01 inf -- 4.615e+02 -- -0.417232 -1.10978 -2.25224 -2.74174 -3.07438 -3.26634 -4.18046 -6.52588 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1\n", + " 3 7.488e+01 1.326e+01 2.469e+00 -- 4.640e+02 -- -0.379546 -1.07024 -2.2349 -2.70308 -3.05386 -3.26052 -4.19422 -6.22588 0.0594438 0.143922 0.211494 0.183563 0.124903 0.187977 0.0382351 -1.06488\n", + " 5 3.958e+01 1.546e+01 2.253e+00 -- 4.663e+02 -- -0.347917 -1.03742 -2.21505 -2.66882 -3.03593 -3.25222 -4.20507 -5.92588 0.0292929 0.176748 0.302165 0.24639 0.145443 0.263839 -0.0201518 0.625425\n", + " 7 2.952e+01 1.780e+01 1.997e+00 -- 4.683e+02 -- -0.321166 -1.00987 -2.19485 -2.63901 -3.02019 -3.2426 -4.21334 -5.62588 0.00616037 0.202118 0.375333 0.294616 0.162597 0.328567 -0.0750795 -1.84997\n", + " 9 3.498e+01 2.030e+01 1.927e+00 -- 4.702e+02 -- -0.298358 -0.986546 -2.1755 -2.61326 -3.00636 -3.23255 -4.21943 -5.92588 -0.0120242 0.222305 0.43445 0.33256 0.177047 0.383459 -0.125124 0.240961\n", + " 11 2.323e+01 2.295e+01 1.750e+00 -- 4.719e+02 -- -0.278794 -0.966621 -2.15757 -2.59104 -2.99413 -3.22256 -4.22358 -5.62588 -0.0266225 0.238634 0.482619 0.362829 0.189318 0.429938 -0.171714 -0.602008\n", + " 13 9.908e+00 2.576e+01 1.642e+00 -- 4.736e+02 -- -0.261904 -0.949487 -2.14126 -2.57185 -2.98327 -3.21301 -4.22619 -5.32588 -0.0385241 0.252101 0.522228 0.387431 0.199792 0.469237 -0.213944 0.796178\n", + " 15 5.329e+01 2.871e+01 1.637e+00 -- 4.752e+02 -- -0.247262 -0.934659 -2.12658 -2.55525 -2.97361 -3.20401 -4.22742 -5.02588 -0.0483821 0.263296 0.555178 0.407636 0.208732 0.502656 -0.25301 0.00733246\n", + " 17 2.560e+00 3.181e+01 1.529e+00 -- 4.767e+02 -- -0.234505 -0.921766 -2.11346 -2.54086 -2.96485 -3.19577 -4.22761 -4.804 -0.056605 0.27274 0.582856 0.424353 0.216437 0.5308 -0.288552 0.0464091\n", + " 19 1.172e+00 3.504e+01 1.400e+00 -- 4.781e+02 -- -0.223355 -0.910503 -2.10178 -2.52834 -2.9569 -3.18826 -4.2269 -4.68017 -0.0635434 0.28074 0.606367 0.438267 0.223049 0.554643 -0.321322 0.0582901\n", + " 21 7.724e-01 3.838e+01 1.293e+00 -- 4.794e+02 -- -0.21358 -0.900628 -2.09139 -2.51744 -2.94968 -3.18148 -4.22551 -4.59311 -0.0694486 0.287569 0.626536 0.449937 0.228692 0.574921 -0.351228 0.0651221\n", + " 23 6.475e-01 4.182e+01 1.196e+00 -- 4.806e+02 -- -0.204987 -0.891941 -2.08217 -2.5079 -2.94312 -3.17538 -4.22361 -4.5264 -0.0745103 0.293433 0.644002 0.459774 0.233469 0.59222 -0.378357 0.0697841\n", + " 24 6.033e-01 4.904e+02 9.259e+00 -- 4.899e+02 -- -0.129265 -0.815314 -2.00033 -2.42441 -2.88331 -3.12077 -4.20108 -3.99042 -0.118156 0.344039 0.796617 0.542976 0.273449 0.74018 -0.62334 0.104006\n", + " 25 1.633e+00 2.416e+01 2.127e+00 -- 4.920e+02 -- -0.136332 -0.820492 -2.00326 -2.42953 -2.86836 -3.13063 -4.19803 -4.0221 -0.107855 0.34592 0.942222 0.436475 0.11856 0.656515 -0.24726 0.0760793\n", + " 26 2.297e-01 1.685e+01 3.223e-01 -- 4.923e+02 -- -0.136021 -0.81967 -2.01733 -2.4291 -2.86411 -3.12575 -4.28732 -4.0298 -0.106863 0.340823 0.802305 0.502205 0.115029 0.705918 -0.651119 0.0904933\n", + " 27 2.114e-01 1.002e+01 6.323e-02 -- 4.924e+02 -- -0.136189 -0.820198 -2.00806 -2.43011 -2.86374 -3.13176 -4.15965 -4.03428 -0.10583 0.344597 0.86383 0.461694 0.102618 0.695825 -0.501555 0.0943452\n", + " 28 7.282e-02 6.910e+00 4.695e-02 -- 4.925e+02 -- -0.136116 -0.819859 -2.01221 -2.42953 -2.86299 -3.12599 -4.24062 -4.03499 -0.106121 0.343076 0.828348 0.490418 0.10121 0.697346 -0.60756 0.0921811\n", + " 29 6.355e-02 4.447e+00 1.251e-02 -- 4.925e+02 -- -0.136164 -0.820085 -2.00914 -2.42964 -2.86356 -3.12997 -4.19174 -4.03653 -0.106059 0.34408 0.850084 0.472121 0.0987163 0.695127 -0.563315 0.0960744\n", + " 30 3.208e-02 2.630e+00 6.361e-03 -- 4.925e+02 -- -0.136149 -0.819937 -2.01076 -2.4294 -2.86326 -3.12717 -4.2269 -4.03604 -0.106248 0.343798 0.836239 0.482367 0.0971931 0.696096 -0.599112 0.0951975\n", + " 31 2.383e-02 1.888e+00 2.157e-03 -- 4.925e+02 -- -0.136169 -0.820025 -2.00964 -2.42939 -2.86343 -3.12896 -4.20665 -4.03645 -0.106249 0.344186 0.84463 0.475064 0.0961482 0.695566 -0.579893 0.0964022\n", + " 32 1.323e-02 1.058e+00 9.738e-04 -- 4.925e+02 -- -0.136163 -0.819962 -2.01029 -2.42931 -2.86326 -3.12779 -4.22134 -4.03608 -0.106327 0.344123 0.839179 0.479109 0.0951898 0.696016 -0.593714 0.0963018\n", + " 33 9.243e-03 7.911e-01 3.707e-04 -- 4.925e+02 -- -0.136171 -0.819998 -2.00986 -2.4293 -2.86331 -3.12857 -4.21272 -4.03621 -0.106324 0.344261 0.842547 0.476174 0.0946849 0.695851 -0.58586 0.0965931\n", + " 34 5.341e-03 4.358e-01 1.598e-04 -- 4.925e+02 -- -0.136168 -0.819972 -2.01013 -2.42927 -2.86323 -3.12808 -4.21887 -4.03601 -0.106356 0.344247 0.840355 0.477825 0.0941922 0.69603 -0.591275 0.0966528\n", + " 35 3.654e-03 3.303e-01 6.407e-05 -- 4.925e+02 -- -0.136172 -0.819986 -2.00996 -2.42926 -2.86324 -3.12842 -4.2152 -4.03606 -0.106352 0.344296 0.84173 0.476631 0.0939684 0.695975 -0.588117 0.0967043\n", + "********************\n", + "-0.136172 -0.819986 -2.00996 -2.42926 -2.86324 -3.12842 -4.2152 -4.03606 -0.106352 0.344296 0.84173 0.476631 0.0939684 0.695975 -0.588117 0.0967043\n", + "0.0115263 0.0058258 0.0387362 0.00846868 0.0539018 0.0780724 0.334539 0.108003 0.121876 0.0805411 0.223567 0.102776 0.222423 0.256036 0.800481 0.273811\n", + "0.0127444 0.33028 -0.0607609 0.127486 0.0143628 0.0331918 -0.0227012 0.00709893 -0.000657376 -0.00220005 -0.0168474 0.0629554 -0.0038883 0.00145515 -0.00332533 0.000655605\n", + "********************\n" + ] + } + ], + "source": [ + "Cx = clag.clag('cxd10r', [[t1,t2]], [[l1,l2]], [[l1e,l2e]], dt, fqL, p1, p2)\n", + "p = np.concatenate( ((p1+p2)*0.5-0.3,p1*0+0.1) ) # a good starting point generally\n", + "p, pe = clag.optimize(Cx, p)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "phi, phie = p[nfq:], pe[nfq:]\n", + "lag, lage = phi/(2*np.pi*fqd), phie/(2*np.pi*fqd) \n", + "cx, cxe = p[:nfq], pe[:nfq]" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-1.75428512, 1.89869772, 2.40546134, 0.87877231, 0.11177487,\n", + " 0.53410247, -0.29118093, 0.03088965])" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAFrCAYAAACE+GArAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAFshJREFUeJzt3XFsnOd9H/CvEzNRq6xVmtSknammzdamJ2nzyFBtpCCl\nscYrhs0ZsEElgQwrtVZG223QNnQ1Mkj1pKEDhq1R/9hWeIPQAoFP8ooVSbFpa/9gg01SN430uioT\n144SPdcW6SSL0iaZFCHW/jgqpihS4j28u5d39/kABx7fe967H8VH5Jfv+/zeSwAAAAAAAAAAAAAA\nAAAAAAAAAAAAAACga3wsyW8keSPJ20k+scaYF5cf/0aS6SR/ql3FAQCb964WPvd3Jnk1yc8sf35r\n1eM/l+Tw8uNjSRaT/FaS97WwJgCgA72d5LkVnz+Q5GqSn12x7T1JvpLkUBvrAgA2oZVHJO7lsST9\nSX5zxbZvJvl8kn2VVAQANKyqIDGw/HFp1fa3VjwGAGxxD1ZdwBpWr6W47eHlGwDQmKvLt6arKkgs\nLn/sX3F/rc9ve/iRRx55880332x5YQDQhd5IvbGh6WGiqiBxJfXA8GyS313e9p4kP5w7F2De9vCb\nb76Zz3zmM3nqqafaVGLzHD58OCdOnOjI19rM8zW670bHb2Tc/cbc6/F2fr+azVxr7nhzbX3mWnPH\nt3KuXbp0KZ/85Cc/lPpR/Y4KEtuT/MCKzx9P8nSSLyd5PcmJJJ9K8gdJ/vfy/a8leXm9J3zqqacy\nMjLSqnpbZseOHW2ru9mvtZnna3TfjY7fyLj7jbnX4+38fjWbudbc8eba+sy15o5v9VxrpXe38Ln3\nJzmX5PnU1z386PL99yf5bJKzSbYl+fkkfzvJV5NMJlnr/MXDSZ5//vnn8/DDnblMYs+ePR37Wpt5\nvkb33ej4jYy735j1Hq/VapmcnNxQHVuRudbc8eba+sy15o5v1Vy7evVqXnrppSR5KS04IvFAs5+w\nRUaSzMzMzHRseqdzPPfcc/nc5z5XdRn0AHONdpidnc3o6GiSjCaZbfbzV9X+CQB0AUECVunkQ810\nFnONbiBIwCp+uNMu5hrdQJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACK\nCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJgg\nAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIA\nQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAU\nEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFB\nAgAoJkgAAMUECQCgmCABABQTJACAYlUGiReTvL3q9maF9QAADXqw4te/mORHVnz+raoKAQAaV3WQ\n+FaStyquAQAoVPUaiR9I8kaSy0lqSR6rthwAoBFVBonfSfLXkjyb5CeTDCQ5l+R7KqwJAGhAlac2\n/sOK+19Icj7JfJK/nuTTlVQEADSk6jUSK30jye8l+f71Bhw+fDg7duy4Y9vk5GQmJydbXBoAbH21\nWi21Wu2ObdeuXWvpaz7Q0mdvzHtTPyLxy0n+0arHRpLMzMzMZGRkpO2FAUCnmp2dzejoaJKMJplt\n9vNXuUbinyb5WOoLLH8wya8leV+SX62wJgCgAVWe2vhQ6p0aH0zyxdTXSPxQktcrrAkAaECVQcLC\nBgDocFVfRwIA6GCCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACK\nCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJgg\nAQAUEyQAgGKCBABQ7MGqCwBoplqtllqtliS5fv16XnvttTz66KPZtm1bkmRycjKTk5NVlghdRZAA\nusrKoDA7O5vR0dHUarWMjIxUXBl0J6c2AIBiggTQdRYWFnLw4MEcOHAgSXLgwIEcPHgwCwsL1RYG\nXcipDaBrLC0tZWJiInNzc1lcXPz29vn5+czPz+fMmTMZHh7OqVOn0t/fX2Gl0D0ECaArLC0tZd++\nfbl8+fK6YxYXF7O4uJj9+/fn7NmzwgQ0gVMbQFeYmJi4Z4hYaX5+PhMTEy2uCHqDIAF0vCtXrmRu\nbq6hfebm5qyZgCYQJICOd/z48TvWRGzE4uJijh071qKKoHcIEkDHu3DhQlv3A94hSAD3dbudcs+e\nPRkeHs6ePXu2VDvlzZs327of8A5dG8C6lpaW8swzz+Ty5cu5cePGHY9dvHgxL7/8ch5//PFMT09X\n2gHR19fX1v2AdzgiAazpdjvlpUuX7goRt924cSOXLl3K/v37s7S01OYK3zE2Nla03969e5tcCfQe\nQQJYUye1Ux49ejQDAwMN7TMwMJAjR460qCLoHYIEcJdOa6ccHBzM8PBwQ/sMDw9ncHCwNQVBDxEk\ngLt0YjvlqVOnMjQ0tKGxQ0NDOX36dIsrgt4gSAB36cR2yv7+/pw9ezbj4+PrnuYYGBjI+Ph4zp07\nl4ceeqjNFUJ3EiSAu3RqO2V/f3+mp6dz/vz5TE1NffsIxdDQUKampnL+/PlMT08LEdBE2j+Bu3R6\nO+Xg4GBOnjyZ2dnZjI6O5pVXXsnIyEjVZUFXEiSAu4yNjeXixYsN77cV2ilrtVpqtVqS5Pr163ni\niSfywgsvZNu2bUmSycnJTE5OVlkidJUHqi5gg0aSzMzMzPirAtpgYWEhH/nIRxpacDkwMJDz58/r\nhIAt5vaRuSSjSWab/fzWSAB30U4JbJQgAaxJOyWwEYIEsCbtlMBGCBLAuvr7+3Po0KHs2rUrO3fu\nzPbt29PX15ft27dn586d2bVrVw4dOiREQA/TtQHcky4H4F4ckQBokoWFhRw8eDB79uzJ8PBw9uzZ\nk4MHD1b2HiTQDo5IAGzS0tJSJiYmMjc3d1fL7MWLF3PmzJkMDw/n1KlT6e/vr6hKaA1BAmATlpaW\nsm/fvnu+5fri4mIWFxezf//+nD17Vpigqzi1AbAJExMT9wwRK83Pz2diYqLFFUF7CRIAha5cuZK5\nubmG9pmbm7Nmgq4iSAAUOn78eEOXEU/qpzmOHTvWooqg/QQJgEIXLlxo635biQ4VbrPYEqDQzZs3\n27rfVqBDhdUECYBCfX19bd2vajpUWItTGwCFxsbGivbbu3dvkytpDx0qrEWQACh09OjRdd/QbD0D\nAwM5cuRIiypqHR0qrEeQACg0ODiY4eHhhvYZHh7O4OBgawpqIR0qrEeQANiEU6dOZWhoaENjh4aG\ncvr06aa+fru6J3q5Q4V7s9gSYBP6+/tz9uzZdTsZkvrpjOHh4Zw+fbppb7ne7u6JXuxQuW1hYSHH\njh3LhQsXcvPmzfT19WVsbCxHjx7tyKNLzSZIAGxSf39/pqen2/YLp4ruiV7rUEm0um7UVggSP53k\nZ5MMJPlCksNJ/nOlFQEUGBwczMmTJ1v+OiXdE9PT05t6zbGxsVy8eLHh/Tq1Q0Wr68ZVvUbix5J8\nOsnxJE8n+U9JziTZWWVRAFtVVd0TvdShkmh1bUTVRyT+bpJ/neR2hP87Sf58kp9K8qmqiqI31Gq1\n1Gq1JMn169fz2muv5dFHH822bduSJJOTk5mcnKyyRLjLZronNnO05HaHSiOv3akdKpsJa5349Xay\n9yS5meQTq7afSPLbq7aNJLk1MzNzC1phZmbmljlGJ9i9e/etJA3fdu/evenXXlxcvDU0NLSh1xsa\nGrq1tLTUhK/4HVeuXLk1NTV1a/fu3beefPLJW7t37741NTV168qVK019nampqaJ/46mpqabW0Sy3\nf74t/y5tuiqPSHwwybuTLK3a/lbq6yUAWKXK7okqO1SeeeaZXL58OTdu3LjjsYsXL+bll1/O448/\nnunp6aasU9Dq2piqT20A0ICquye2YofKjRs3cunSpaYteuzlVtcSVQaJLyX5VpLV3/H+JFfX2uHw\n4cPZsWPHHducxwZ6yVbpnujmDpWqw9pmrFz7ddu1a9da+ppVBolvJplJ8mySz67Y/vEkv77WDidO\nnMjISEtO8QB0hKNHj+bMmTMNLXrs1O6JqhY9bpWwVmKtP65nZ2czOjrastesuv3zF5P8RJKpJE+l\n3gr6J5P8cpVFAWxV3t/j3prx/h691uq6WVUHiVdSvwDV0SSvJvlokr+Q5PUqiwLYyqp+f492qWrR\nYy+FtWaoOkgkyb9M8liSbUnG4qqWAPd0u3tifHx83b+cBwYGMj4+nnPnzjWte6Ldqlz02CthrRl0\nbQB0oHZ3T1ShykWPVbW6diJBAqCDtat7ogpVL3rshbDWDIIEAFvSVulQ6eaw1gxbYY0EANzFosfO\nIEgAsGVZ9Lj1CRIAbFm90qHSyQQJALa0/v7+HDp0KLt27crOnTuzffv29PX1Zfv27dm5c2d27dqV\nQ4cOCREVsdgSgC3P+yptXY5IAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUGCnrawsJCD\nBw/mwIEDSZIDBw7k4MGDWVhYqLYwgA7hglT0pKWlpUxMTGRubu6Odxacn5/P/Px8zpw5k+Hh4Zw6\ndSr9/f0VVgqwtQkS9JylpaXs27cvly9fXnfM4uJiFhcXs3///pw9e1aYAFiHUxv0nImJiXuGiJXm\n5+czMTHR4ooAOpcgQU+5cuVK5ubmGtpnbm7OmgmAdQgS9JTjx4/fsSZiIxYXF3Ps2LEWVQTQ2QQJ\nesqFCxfauh9AtxMk6Ck3b95s634A3U6QoKf09fW1dT+AbidI0FPGxsaK9tu7d2+TKwHoDoIEPeXo\n0aMZGBhoaJ+BgYEcOXKkRRUBdDZBgp4yODiY4eHhhvYZHh7O4OBgawoC6HCCBD3n1KlTGRoa2tDY\noaGhnD59usUVAXQuQYKe09/fn7Nnz2Z8fHzd0xwDAwMZHx/PuXPn8tBDD7W5QoDOIUjQk/r7+zM9\nPZ3z589namrq20cohoaGMjU1lfPnz2d6elqIALgPb9pFTxscHMzJkyczOzub0dHRvPLKKxkZGam6\nLICO4YgEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUEC\nACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCg2INVFwBVqdVq\nqdVqSZLr16/niSeeyAsvvJBt27YlSSYnJzM5OVlliQBbniBBzxIUADbPqQ0AoJggAQAUEyQAgGKC\nBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUKzKILGQ5O1Vt1+osB4AoEFV\nvvvnrSRHkvyrFdu+XlEtAECBqt9G/GtJ3qq4BgCgUNVrJH4uyZeSvJrkU0n6qi0HAGhElUckfinJ\nTJKvJPnBJP84yWNJfrLCmgCABjQ7SLyY5Oh9xnw4yWySEyu2XUw9UPxakr+/fP8uhw8fzo4dO+7Y\nNjk5mcnJycJyAaB71Gq11Gq1O7Zdu3atpa/5QJOf7wPLt3t5LcmNNbZ/KMnrqR+duLDqsZEkMzMz\nMxkZGdl0kQDQK2ZnZzM6Opoko6n/Id9UzT4i8eXlW4k/u/zxapNqAQBarKo1Ej+U5CNJppN8NclY\nkl9M8tkkf1hRTQBAg6oKEjeSHEh9PcV7Uz/d8VKSf1JRPQBAgaqCxKupH5EAADpY1deRAAA6mCAB\nABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBA\nMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQT\nJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUEC\nACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACA\nYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgm\nSAAAxQQJAKCYIAEAFGtVkPgHSc4l+UaSr6wz5vuS/EaSryX5YpJfStLXonpgw2q1WtUl0CPMNbpB\nq4JEX5LTSf7FOo+/O8m/S/IdSfYnmUjyV5L8sxbVAxvmhzvtYq7RDR5s0fO+uPzxx9d5/NkkTyX5\neJLF5W1/L8mvJPlU6kcpAIAtrqo1Eh9J8nt5J0QkyW8meW+S0UoqaqF2/tXR7NfazPM1uu9Gx29k\n3P3GdOtfguZac8eba+sz15o7vpPnWlVBYiDJ0qptX0nyzeXHuor/cM0d38n/4VrNXGvueHNtfeZa\nc8d38lxr5NTGi0mO3mfMh5PMbvD5HmjgtZMkly5danSXLeHatWuZnd3oP8vWeq3NPF+j+250/EbG\n3W/MvR5v5/er2cy15o4319ZnrjV3fCvnWqt/dzbyy/wDy7d7eS3JjRWf/3iSTyd5/6px/zDJJ5I8\nvWLb+5N8OckzST6/avzDSS4k+VAD9QIAdW8kGUtytdlP3MgRiS8v35rhfOotov155xTHs6mHkJk1\nxl9N/R/g4Sa9PgD0kqtpQYhope9L/WjD0SR/lOTPLH++ffnxdyX5H0l+a3n7n0vyf1K/lgQA0ON+\nJcnby7dvrfj4sRVjdqZ+QaqvJ/lSkhNxQSoAAAAAAAAAgPv5E0n+a5JXk1xM8jerLYcutjPJbyf5\nQpLfTfJXK62GbvfrSf5vkn9TdSF0rb+YZC7J7yf5GxXXUql3Jdm2fP87klxO8r3VlUMXG0jyp5fv\nf2+S11Ofc9AKP5z6D3pBglZ4MMn/Sv3yCu9LPUx8TyNPUNUlslvh7STXl+9/Z5KbKz6HZlpMvX05\nSb6Y+l+LDf3HgwZ8Pt7IkNbZm/rR1aupz7N/n/p1nTasm4JEknx36oeab1+T4o+rLYce8OHUrxD7\nRtWFABR4JHf+/PrDNHgV6W4LEl9N/eJXjyX5mSTfX205dLkPJPnVJIeqLgSg0K3NPkGVQeJjqV+Q\n6o3UT0t8Yo0xP53kSpL/l+S/Jfnoisf+VuoLK2dz94Ws3kp9MdzTgdbMtfcm+bdJfiHJ77SkajpR\nq36ubfqHPV1rs3Puzdx5BGJnOugI648mOZbkL6f+xT+36vEfS/29Nw4meTL1N//649S/yLU8lOS7\nlu9/V+rnsJ9sbsl0qGbPtQeS1JL8fCuKpaM1e67dNh6LLVnbZufcg6kvsHwk9e7H38/db7TZEdb6\n4v9Lkn++atv/TP0vwLWMpJ7k//vybaqZBdI1mjHXPpr6Jd9nU59zrybZ1cQa6Q7NmGtJ8h9TP8r6\n9dQ7hEabVSBdp3TO/aXUOzf+IMlPtKy6Flv9xb8n9a6L1YdoTqR+ygJKmWu0i7lGu1Uy57bqYssP\nJnl33nmL8dveSr2HH5rFXKNdzDXarS1zbqsGCQCgA2zVIPGl1M9B96/a3p/6RTOgWcw12sVco93a\nMue2apD4ZpKZ3H11rY8nOdf+cuhi5hrtYq7Rbl0/57anfp2Hp1NfIHJ4+f7tlpQDqbesTCV5KvWW\nlT/K/dukYDVzjXYx12i3np5z46l/0W+nfujl9v2TK8b8VOoX0bie5ELuvIgGbNR4zDXaYzzmGu01\nHnMOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALao/w/frxEsobmc6QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "\n", + "xscale('log'); ylim(-10,10)\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=10,color=\"black\")\n", + "\n", + "lag" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAFrCAYAAACE+GArAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X98XXWd5/FXgdIKOrYVSLBA04YfqdKVSabFtgykrvhA\nxqXjrgOJOg9IHcUZZ5nqOqsPZ4hQxJ2Hrlp10LXjtOiDB7dl2dVRd+swqy26pUhtmBlrSdG0RWmb\nlBaKK9hSTfaPc2OTNElzT86P77n39Xw87iPJueec+833cXvz7vd8vt8DkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJUtW4GvgmsA/oB5aPeP7e8vahj0cybJ8kSZqk01I891nA48D7yj8P\njHh+ANgI1A95XJ9ieyRJUsLOSPHc3y4/xjIFeAk4mGIbJElSitIckTiVAaAV6AN2AWuAc3NsjyRJ\nClQ/cMOIbTcCbwZeA7yF6DLIj4Azs22aJEmKK81LG6fywJDvdwI/BPYCfwB8bZT9zy8/JElSZQ6U\nH4nLM0iM1Av8DLh4lOfOf/WrX71///79GTdJkqSqsA9YSAphIqQgcQ5wIaP/kufv37+f++67j/nz\n52fSmJUrV7J69erMzjGRfU+1z1jPj7Z9ItuS6INK2Of2+UT2qaU+37cPbrgBvvhFWLRoYuc4dgyW\nLIG77oLrr7fPk3q9Ir/Pn3jiCd75znfOJhrVL1SQOBu4ZMjP84ArgMPAs8CdwINEIxENwMeBZxj9\nsgYA8+fPp7m5OaXmDjdjxoxJv1Yl55jIvqfaZ6znR9s+kW1J9EEl7HP7fCL71FKfv/KV0dfLLoOh\nh4x3jpdeir7OmRMdY5/7Pk/b6SmeeynRAlO3Es3QuK78/UzgW8BtwPuBvwTeCGwD3kEUNEY6H7j1\n1ltv5fzzsyuTWLBgQabnmMi+p9pnrOdH236qbaVSifb29lO2KUn2uX0+kX1qpc8PH4bPfx46OqCh\nYWLnGBiIRiOWL4crrpj469nnyZ4jpD4/cOAAa9asgWh2ZOIjElOSPmFKmoHt27dvzzTF1robbriB\nb3zjG3k3o6bY59kLuc937YKmJnj4Ybj66okd098Pp58Oa9dGASREIfd5Nerq6qKlpQWgBehK+vx5\nriMhSRrHQHk94NMq+KSeUv7vYX9/8u2RRmOQ0JiyHnqUfZ6HkPt8MAxUGiSmTAk7SITc56qcQUJj\n8h979uzz7IXc53GCxOD+BgllxSAhSYEaDANTKqxmCz1IqLoYJCQpUHFqJAb3N0goKwYJSQpUtV7a\nUHUxSEhSoAwSKgKDhCQFyiChIjBISFKgBmskLLZUyAwSkhQoRyRUBAYJSQqUQUJFYJCQpEAZJFQE\nBglJCpQLUqkIDBKSFCgXpFIRGCQkKVBe2lARGCQkKVBxg0Tod/9UdTFISFKgrJFQERgkJClQk6mR\nGDxWSptBQpICZY2EisAgIUmBMkioCAwSkhQog4SKwCAhSYHypl0qAoOEJAXKEQkVgUFCkgJlkFAR\nGCQkKVAGCRWBQUKSAmWNhIrAICFJgXJEQkVgkJCkQBkkVAQGCUkKlEFCRWCQkKRAedMuFYFBQpIC\nNZmbdhkklBWDhCQFyksbKgKDhCQFyiChIjBISFKgDBIqAoOEJAXKBalUBAYJSQpUf3/lIQIMEsqW\nQUKSAtXfX/llDYjCh0FCWTFISFKg4gYJRySUJYOEJAVqYCD+pY3B+gopbQYJSQqUIxIqAoOEJAXK\nIKEiMEhIUqAMEioCg4QkBcrpnyoCg4QkBWpgwBEJhc8gIUmB8tKGisAgIUmBMkioCAwSkhQog4SK\nwCAhSYGazIJUBgllxSAhSYFyREJFYJCQpEAZJFQEBglJCpRBQkWQZpC4GvgmsA/oB5aPss8d5edf\nBDYBr0mxPZJUKNZIqAjSDBJnAY8D7yv/PPJedB8CVpafXwj0Av8EvDzFNklSYTgioSI4I8Vzf7v8\nGM0UohBxN/D18rabgT7g7cCaFNslSYVgkFAR5FUjMReoAx4asu0l4GFgSS4tkqTAGCRUBHkFifry\n174R2w8OeU6Sapo1EiqCEGdtjKylkKSa5IiEiiDNGonx9Ja/1g35frSfh1m5ciUzZswYtq29vZ32\n9vbEGyhJeYsbJKZMMUjUqlKpRKlUGrbtyJEjqb5mXkFiD1FgeBPwL+VtZwLXAH851kGrV6+mubk5\n/dZJUgAckVClRvvPdVdXFy0tLam9ZppB4mzgkiE/zwOuAA4DPwdWAx8BfgL8tPz9L4H7U2yTJBWG\nQUJFkGaQWAh8t/z9APDp8vf3AiuATwAvA74AzAQeJRqheCHFNklSYUym2HLAajNlJM0gsZlTF3Pe\nWX5IkkZwREJFEOKsDUkSBgkVg0FCkgJlkFARGCQkKVAuSKUiMEhIUqAckVARGCQkKVAGCRWBQUKS\nAmWQUBEYJCQpUNZIqAgMEpIUKEckVAQGCUkKlEFCRWCQkKRAGSRUBAYJSQrUwIBBQuEzSEhSoPr7\nLbZU+AwSkhQoL22oCAwSkhSouEHizDPh2DHDhLJhkJCkQMUNEhddBL/+Nezbl3ybpJEMEpIUqLgL\nUjU2Rl97epJtjzQag4QkBSruiMTcuVEAMUgoCwYJSQpU3CAxbRpccIFBQtkwSEhSoOIGCYgubxgk\nlAWDhCQFKu6CVBAFid27k22PNBqDhCQFKu6CVADz5jkioWwYJCQpUJO9tPHcc9FDSpNBQpICNdkg\nAY5KKH0GCUkK1GRrJMAgofQZJCQpUJOpkZg5M3oYJJQ2g4QkBWoylzbAKaDKhkFCkgJlkFARGCQk\nKVBJBAnXklDaDBKSFKi4N+0a1NgITz8d3VJcSotBQpICNdkRiXnzojCyZ09ybZJGMkhIUqCSuLQB\n1kkoXQYJSQrUZIPE7NnRnUANEkqTQUKSAjWZBakgOnbuXIOE0mWQkKRATWZBqkFOAVXaDBKSFKjJ\nXtoAp4AqfQYJSQpUkkGivz+ZNkkjGSQkKVCTrZGAKEgcOwb79yfTJmkkg4QkBSqpGgmwTkLpMUhI\nUqCSuLTR0BCFEYOE0mKQkKRAJREkpk+P1pMwSCgtBglJClQSNRLgFFClyyAhSYFKokYCDBJKl0FC\nkgKVxKUNcC0JpcsgIUmBSjJIPPssHDky+XNJIxkkJClQSQYJ8PKG0mGQkKRAJVlsCQYJpcMgIUmB\nSqrYcubM6GGQUBoMEpIUqKQubQDMm2eQUDoMEpIUqCSDhFNAlRaDhCQFKqkaCTBIKD0GCUkKVFI1\nEhAFiaefju4EKiUpzyBxB9A/4uGNbiWpLOlLGwMDsHdvMueTBuU9IrEDqB/yWJBvcyQpHEkHCfDy\nhpJ3Rs6v/xvgYM5tkKQgJVkjMXs2TJtmkFDy8h6RuATYB+wGSsDcfJsjSeFIskbitNNg7lyDhJKX\nZ5B4FPhj4E3Au4kubTwCzMqxTZIUjCQvbYBrSSgdeQaJbwNfA34MfAf4g/L2m3NrkSQFJOkg4RRQ\npSHvGomhXgR+BFw81g4rV65kxowZw7a1t7fT3t6ectMkKXtpBIk1a5I/r8JRKpUolUrDth1J+bav\nIQWJacBrgO+NtcPq1atpbm7OrkWSlKMkiy0hChLHjsGBA1HxparPaP+57urqoqWlJbXXzDOT/lfg\naqICyyuBB4GXA1/JsU2SFIwkiy3BKaBKR55BYjbRTI1u4H8AR4HXAz/PsU2SFISBgeRHJObOjYKJ\nQUJJyvPShoUNkjSGgYHoa5JBYvr06JKGQUJJstxGkgKURpAAZ24oeQYJSQpQf3/0NckaCTBIKHkG\nCUkK0GCQSHpEwkWplDSDhCQFKK0g0dgIzz4LKS8toBpikJCkAKVZIwGwe3ey51XtMkhIUoDSrJEA\nL28oOQYJSQpQWpc2Zs2Cujr4wQ+SPa9ql0FCkgKUVpAAuOkmuO8+OH48+XOr9hgkJClAadVIAKxY\nAX19sHFj8udW7TFISFKA0hyReN3roLkZ1q1L/tyqPQYJSQpQWsWWgzo64FvfikYmpMkwSEhSgNIc\nkQB4+9ujc993XzrnV+0wSEhSgNIOErNmwVvfCmvXnqjHkOIwSEhSgNIsthzU0QE7d8K2bem9hqqf\nQUKSApR2jQTAG98IF1wQjUpIcRkkJClAaV/aADj9dLj5ZiiV4MUX03sdVTeDhCQFKIsgAXDLLfCL\nX8DXvpbu66h6GSQkKUBZ1EgAXHwxXHONlzcUn0FCkgKURY3EoI4O+O53Yc+e9F9L1eeMvBsgSTpZ\nVpc2AN72Nnjve49z3XUPctllJY4ePcpTTz3FnDlzmD59OgDt7e20t7en3xgVjiMSkhSgLIPE2WfD\nO985lV/+8o941avOZffu3Tz55JPs3r2bc845h8997nOGCI3JICFJAcqqRgKgr6+P7dv/nP37z+De\ne5+ip6cHgJ6eHtatW8fixYtZtmwZfa6nrVEYJCQpQFmNSPT19bFkyRIef/weoBtYcdI+vb29bN68\nmaVLlxomdBKDhCQFKKtiy7a2Nnbv3l3+aR3w74EZo+7b09NDW1tbug1S4RgkJClAWYxI7Nmzh+7u\n7iFbvkpUgz92WOju7mbv3r3pNUqFY5CQpABlUSNx11130dvbO2RLL7AReA8w+lBIb28vq1atSq9R\nKhyDhCQFaHBEord3PytWrGDBggU0NTWxYMECVqxYkciowLZR79b1SeB1wEcqPE61ynUkJClAzzxz\nGHgVt9xyM4cP/59hz+3YsYONGzfS1NTE+vXrqauri/Uax48fH2Xr94G7gDuBLcDmCR6nWuWIhCQF\npq+vj46OdwFw+PDBUfdJYibF1KlTx3hmFVGAuB84r4LjVIsMEpIUmLa2NvbvP1D+qX/cfSczk2Lh\nwoVjPNMPvIOoTuJ+Rv6pWLRoUazXU3UySEhSQE7MpBgsdhw/SED8mRSdnZ3U19eP8Wwf8HagFfjr\n326tr6/n9ttvr/i1VL0MEpIUkBMzKQY/nk8dJOLOpGhoaKCpqWmcPTYR1Up8FHgDAE1NTTQ0NFT8\nWqpeBglJCsiJGRGDH88DFR5XmfXr19PY2DjOHncD3wHuZ86c17Nhw4ZYr6PqZZCQpICcmBEx8RGJ\n4cdVpq6uji1bttDa2jrGZY5+zj33/Zx55unMnv0ws2adXHyp2maQkKSAnJgRMfEaieHHVa6uro5N\nmzaxdetWOjo6fjtC0djYSEdHB4899i0eeugcHn30TO68M/bLqEoZJCQpICdmUlQ2IjHZmRSlUonb\nbruNQ4cOMW/ePC699FLmzZvHoUOHuO2229i/v8SqVXD33XD//ZN6KVUZF6SSpIB0dnayceNGensn\nXiORxEyK9vZ22tvbx92nvx927YJ3vAO6uuBv/gbO8K9IzXNEQpICcmImxcRHJLKaSXHaafCVr8Dq\n1dHj2mvh4OjrZamGGCQkKTDr16/n/PNnl38aP0g0NjZmOpNiyhT4i7+A73wHdu6ElhZ47LHMXl4B\nMkhIUmDq6ur41Kc+A8CZZ45eRDlt2jTmz5/PI488wnnnZT+T4pprossbF1wAv//78OUvR9v37t2b\n2k3GFCavbklSgF75ypkAfO97D/OlL32Ubdu2cfz4caZOncrChQvp7OzMfWGo2bNh82ZYuRLe/W7o\n7PwW/f3vo6/vZ8P2S+omYwqTQUKSAjR4G/E5cy5k7dq1+TZmHNOmwR139PHgg5/mwIE7gX8APgQ8\nNGy/3t5eent7Wbp0KVu2bDFMVBEvbUhSgAaDxGkF+JRua2vj0KFPAEuBXwH/CHwPuPqkfSdzkzGF\nqQBvUUmqPQPlWZ+hB4kTNxkD6AKWANcDZwMPE41MXDnsmLg3GYvDmo30Bf4WlaTaVJQRiRM3GRtq\nI9ACvBWoBx4FvglcAcS/yVgl+vr6WLZsGYsXL2bdunXs2LGDXbt2sWPHDtatW8fixYtZtmwZfX19\nqbajFgT+FpWk2jQYJKZMGX+/vI1/s7CvA68D2oBLgMeJRinew9atu1JrU19fH0uWLGHz5s2jhJxI\nb28vmzdvZunSpYaJSTJISFKAijIiceqbhQ0AG4DXAu3Ai8AX6O7exPLl8MAD8KtfJdumtrY2du/e\nPaF9rdmYvMDfopJUm4pSIzHxm4X9BlgPvBmYTX39pzlwAG66Cerq4JZbYONGeOGFybVneM3GxGRZ\ns1GNAn+LSlJtKsqIxImbjFWij+uv/wmPPQZPPgkf+ABs2QLXXw8zZsBVV8Fttx3hzW/+BK99bUtF\nRZKj12yML4uajWoW+FtUkmpTUWokOjs7qa+vr+iYoTcZu+QSuOOOKFA88QR87GO/4MknN/O3f9vP\nt7/9n9m5cwu7dt3Djh3LWbfuaa688i3jFkmOX7MxtrjHVaJaZ5C4IJUkBagoIxKDNxmrZBRgtJuM\nTZkCM2f2sWbNEp55ZjcwBVgALAPeAHwQmMHBg3Dw4D7mzfsxt956NkuXvpzf/V2YOzc6x6lrNkYX\n97iJ6Ovro62tje7u7pP6qRpW/QzhLfpnwB6iVUx+CFyVb3MkKX9FqZGA6CZjjY2NE9p3vJuMDS+S\nHAD+FfgssByYRTTz44+Ar/Dii8e4555jvO1t0NgIr3gFXHEFHDjwOeBu4BaiBbImdh+Sidd6VKYW\nZpDk/Ra9CfgMcBfRBOPvE01AvjDPRklS3ooyIgHRTca2bNlCa2vrmJc56uvraW1tHfMmY6cukhwA\nfgo8CPwVcD2zZl3OY4/9nI0bo8sjV14JZ511IfDHwDrg/wJ9wPPAH477OyxatOiUv2cctTCDJO+3\n6AeALwNrgV3A+4GfA3+aZ6MkKW9FqZEYVFdXx6ZNm9i6dSsdHR1cfvnlXHbZZVx++eV0dHSwdetW\nNm3aNOadSuMWSX7xix/luuvggx+EL30Jtm59GfX1i4CXAZcTLYr1MWDnmOcZWrMxljj1DbUygyTP\nGokzgWbg4yO2P0S0xqokJapUKlEqlQA4evQoTz31FHPmzGH69OkAtLe3097enmcTf6tIIxJDNTQ0\nxLrJWFJFkidqNjYDPy4/xjdazcagydQ3TGYGScg3ahspzyBxDnA60bjTUAeJ1lSVpEQNDQpdXV20\ntLRQKpVobm7OuWUnG6yRKMqIxGQlWSS5fv16li5dSk9PzymPH69mY7C+YbxLE+Pd1TTkGSRJctZG\nBd7wBnj66bxbISkJx469BtjFW996EdOm5d2akz3/fPFGIyYjbrHjaMcN1myMNZIA0eWMpqYmNmzY\nMOblljj1DZs2bfrtthBnkKQhzyBxiGips5FzXeqAA6MdsHLlSmbMmDFsW5ZDkddeC889l8lLSUpZ\nX9/zfPWrX6e19Wbq6qbn3ZxRXXxx3i3IzsKFC9mxY0fFx41VJDlYs7F3715WrVrFtm3bOH78OFOn\nTmXhwoV0dnaOeTkDJlffMHjeJMPRRA29fDfoyJEjsc9XBI8C94zYtpNo7s5QzcDA9u3bByQpCdu3\nbx/wcyUce/bsGaivrx8gmp4xoUd9ff3Anj17UmlPR0dHRW0ZfHR0dEz6HCtWrEj0dxl8r5f/liYu\n74GzTwN/AnQA84mmgl4A/Lc8GyVJytZgkWQlxiuSnKwk6hsmu+pnUeQdJB4AVgKdRPeXvQq4nmgK\nqCSphiS1sFUSkqhvCC0cpSXvIAHwRWAuMB1YSLSCiCSpxiSxsFVSkqpvCCkcpSWEICFJEjD5ha2S\nEu+upicXf4YUjtLi9E9JUnDiLmyVlM7OTjZu3FjRglJj1TdMdgZJ6AwSkiSNkNRdTUees0grVk6U\nlzYkSRpFLdQ3JMEgIUnSKGqhviEJXtqQJGkM1V7fkASDhCRJp1Ct9Q1J8NKGJEmKzSAhSZJiM0hI\nkqTYDBKSasrevXtZsWIFN954IwA33ngjK1asYO/evfk2TCooiy0l1YS+vj7a2tro7u4etshQT08P\nPT09bNy4kaamJtavX09dXV2OLZWKxSAhqer19fWxZMkSdu/ePeY+vb299Pb2snTpUrZs2WKYkCbI\nSxuSql5bW9u4IWKonp4e2traUm6RVD0MEpKq2p49e+ju7q7omO7ubmsmpAkySEiqanfddVdFN16C\n6DLHqlWrUmqRVF0MEpKq2rZt2zI9Tqo1BglJVe348eOZHifVGoOEpKo2derUTI+Tao1BQlJVW7hw\nYazjFi1alHBLpOpkkJBU1To7O6mvr6/omPr6em6//faUWiRVF4OEpKrW0NBAU1NTRcc0NTXR0NCQ\nToOkKmOQkFT11q9fT2Nj44T2bWxsZMOGDSm3SKoeBglJVa+uro4tW7bQ2to65mWO+vp6WltbeeSR\nRzjvvPMybqFUXAYJSTWhrq6OTZs2sXXrVjo6On47QtHY2EhHRwdbt25l06ZNhgipQt60S1JNaWho\nYO3atXR1ddHS0sIDDzxAc3Nz3s2SCssRCUmSFJtBQpIkxWaQkCRJsRkkJElSbAYJSZIUm0FCkiTF\nZpCQJEmxGSQkSVJsBglJkhSbQUKSJMVmkJAkSbEZJCRJUmwGCUmSFJtBQpIkxWaQkCRJsRkkJElS\nbGfk3QBJykqpVKJUKgFw9OhRLr30Uj784Q8zffp0ANrb22lvb8+ziVLhGCQk1QyDgpQ8L21IkqTY\nDBKSJCk2g4QkSYrNICFJkmIzSEiSpNgMEpIkKTaDhCRJii3PILEX6B/x+HiO7ZEkSRXKc0GqAeB2\n4O+GbHshp7ZIkqQY8l7Z8pfAwZzbIEmSYsq7RuJDwCHgceAjwNR8myNJkiqR54jEZ4HtwHPAlcB/\nAeYC786xTZIkqQJJj0jcwckFlCMfzeV9VwPfB3YAfw+8F3gXMDPhNkmSpJQkPSLxeeD+U+zz1Bjb\nf1D+ejGwbbQdVq5cyYwZM4Zt825+kiRFSqUSpVJp2LYjR46k+ppTUj17Zd4CfAO4CHh6xHPNwPbt\n27fT3Nx80oGSJGl0XV1dtLS0ALQAXUmfP68aidcDi4FNwPPAQuDTwD9wcoiQJEmByitIHANuBDqB\naUSXO9YAn8ipPZIkKYa8gsTjRCMSkiSpwPJeR0KSJBWYQUKSJMVmkJAkSbEZJCRJUmwGCUmSFJtB\nQpIkxWaQkCRJsRkkJElSbAYJSZIUm0FCkiTFZpCQJEmxGSQkSVJsBglJkhSbQUKSJMVmkJAkSbEZ\nJCRJUmwGCUmSFJtBQpIkxWaQkCRJsRkkJElSbAYJSZIUm0FCkiTFZpCQJEmxGSQkSVJsBglJkhSb\nQUKSJMVmkJAkSbEZJCRJUmwGCUmSFJtBQpIkxWaQkCRJsRkkJElSbAYJSZIUm0FCkiTFZpCQJEmx\nGSQkSVJsBglJkhSbQUKSJMVmkJAkSbEZJCRJUmwGCUmSFJtBQpIkxWaQkCRJsRkkJElSbAYJSZIU\nm0FCkiTFZpCQJEmxGSQkSVJsBglJkhSbQUKSJMVmkJAkSbGlFST+CngEeBF4box9LgK+CfwSeAb4\nLDA1pfYohlKplHcTao59nj37PHv2eXVJK0hMBTYAXxjj+dOB/wW8DFgKtAH/AfhUSu1RDP5jz559\nnj37PHv2eXU5I6Xz3lH+essYz78JmA9cC/SWt/0n4F7gI0SjFJIkKXB51UgsBn7EiRAB8BAwDWjJ\npUUjJJGYKznHRPY91T5jPT/a9oluy5J9nj37PHv2efbs83TlFSTqgb4R254DXio/lzvfeNmzz7Nn\nn2fPPs+efZ6uSi5t3AF0nmKf3wO6Jni+KRW8NgBPPPFEpYfEduTIEbq6JvqrTP4cE9n3VPuM9fxo\n2yeyLYk+qIR9bp9PZB/73D6vVK33edp/Oyv5Y/6q8mM8TwHHhvx8C/AZYOaI/e4ElgNXDNk2EzgM\nLAMeHrH/+cA2YHYF7ZUkSZF9wELgQNInrmRE4nD5kYStRFNE6zhxieNNRCFk+yj7HyDqgPMTen1J\nkmrJAVIIEWm6iGi0oRP4BfC68s9nl58/DfhX4J/K2/8t8DOitSQkSVKNuxfoLz9+M+Tr1UP2uZBo\nQaoXgEPAalyQSpIkSZIkSZIkSZIkaSJ+DTxefqzJuS215Cyiqb+fzLshNeAVwGNE7/EdwJ/n25ya\ncCGwGfgx8C/A23JtTe34GvAs8N/zbkgNeAvQDTwJvCvntuTumbwbUKPuBtYDn8i7ITXgNGB6+fuX\nAbuBc/NrTk2oB/5N+ftzgZ8T9b3SdQ3RHziDRLrOAHYRLa/wcqIwMauSE+S1RLaqxyXAZcBGYqxW\nqor1A0fL358FHB/ys9LRSzRdHaL/rDxLhR+0iuVhvIFjFhYRjbYdIOrv/020rtOEVVuQ+B2iJbq/\nT5Rmlb5PAh/OuxE15pVEQ+yDa6/8v3ybU1N+jygw78u7IVJCXs3w9/PTVLiKdLUFiTlAM/Be4CtE\nwULpWU40DPZTHI3I0vNEi7zNBd4HXJxvc2rGq4g+V96Td0OkBA1M9gR5BomriRak2kc0XLt8lH3+\nDNgD/Ar4IXDVkOf+I1HBWRcnFrIavC35j4Gd+AE7UtJ9fiXQVt7/k8C7gb9Oqe1Flcb7fNBBoiLA\nK9BQafT5NOB/Ah8HHk2l1cWW1vt80n/kasBk+34/w0cgLqRAI27XAauAPyT65W8Y8fxNRPfeWEF0\nDf4zREO4F45xvhlE/9gBLgD2lrfphKT7fKibcdbGaJLu8/M4MdL2O0TX7i9LtsmFl3SfTwFKwEfT\naGyVSOuzpRWLLU9lsn1/BtHI8quJZoU9yck32iyE0X75HwD3jNi2k+h/BKNZTPSh+s9EyXbk+TRc\nEn0+1M04a+NUkujzZqL39z+XHx1JNrAKJdHnVxEt8d/Fienlr02wjdUmqc+WfyQadXuBaKZMS1IN\nrGJx+/7fEc3c+AnwJ6m1LmUjf/kziarRRw7RrCYaytXk2efZs8+zZ59nzz7PTy59H2qx5TnA6Zy4\nxfigg0RzupU8+zx79nn27PPs2ef5yaTvQw0SkiSpAEINEoeIrknWjdheR7RohpJnn2fPPs+efZ49\n+zw/mfR9qEHiJWA7J6+udS3wSPbNqQn2efbs8+zZ59mzz/NT9X1/NtH89yuICkRWlr8fnJJyI9GU\nlQ5gPtFN7Q1jAAAAeklEQVSUlV8wsamIGp19nj37PHv2efbs8/zUdN+3Ev3S/URDL4Pfrx2yz58S\nLaJxFNjG8EU0VLlW7POstWKfZ60V+zxrrdjneWnFvpckSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIC9f8BHaAKSNiHdccAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "s, loc, scale = lognorm.fit(lag,loc=.008)\n", + "\n", + "xscale('log'); ylim(-10,15)\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=10,color=\"black\")\n", + "plot(np.logspace(np.log(fqd[0]),np.log(fqd[-1])),lognorm.pdf(np.logspace(np.log(fqd[0]),np.log(fqd[-1])),s,loc,scale))\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(0.47677903915219444, 1.214804919002201)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAFrCAYAAACE+GArAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAF7xJREFUeJzt3XFsnOd9H/CvHCtRq7RTmsSk46lmzNahI2nLyNBJrCCl\nsSUrhjUZsEElgQwrtVZZm23QNmQ1MljN5KEFhq11/9hWZIPWAoFP8ooVTrFpa4HSAUapm0Z6XZWK\na0eJXmqLdJJGbuNEihppfxwZUxQp8R7e3cu7+3yAA+/e93nf+5F6RH7vfZ/nfRMAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAA6BofSvLrSV5KciPJx9Zp85nl9d9IMpXk3e0qDgDYuntauO/vTvJCkk8uv765\nZv1PJzm6vH40yWKS30zy5hbWBAB0oBtJPrrq9Y4kl5N8atWyNyb5WpIjbawLANiCVh6RuJN3JulL\n8hurln0ryReSPFZJRQBAw6oKEv3LX5fWLH9l1ToAYJu7t+oC1rF2LMWK+5cfAEBjLi8/mq6qILG4\n/LVv1fP1Xq+4/x3veMfLL7/8cssLA4Au9FLqExuaHiaqChKXUg8MH0nyO8vL3pjkh3LrAMwV97/8\n8sv53Oc+l0ceeaRNJTbP0aNH8/TTT3fke21lf41uu9n2m2l3tzZ3Wt/Of69m09ea215f25i+1tz2\nrexrFy5cyMc//vEHUj+q31FBYneSH1z1+qEk70ny1SRfSvJ0kk8n+YMk/3f5+deTPLPRDh955JEM\nDw+3qt6W2bNnT9vqbvZ7bWV/jW672fabaXe3Nnda385/r2bT15rbXl/bmL7W3Pat7mut9IYW7vtg\nkjNJPpH6uIcfXn7+liTPJZlOsivJzyT5+0leTTKRZL3zF/cn+cQnPvGJ3H9/Zw6TOHDgQMe+11b2\n1+i2m22/mXZ3a7PR+lqtlomJiU3VsR3pa81tr69tTF9rbvtW9bXLly/ns5/9bJJ8Ni04IrGj2Tts\nkeEkMzMzMx2b3ukcH/3oR/P5z3++6jLoAfoa7TA7O5uRkZEkGUky2+z9VzX9EwDoAoIErNHJh5rp\nLPoa3UCQgDX8cqdd9DW6gSABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAU\nEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFB\nAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQA\ngGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAo\nJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKC\nBABQTJAAAIoJEgBAMUECACgmSAAAxaoMEp9JcmPN4+UK6wEAGnRvxe9/PslfWvX621UVAgA0ruog\n8e0kr1RcAwBQqOoxEj+Y5KUkF5PUkryz2nIAgEZUGSR+O8nfTPKRJD+RpD/JmSTfV2FNAEADqjy1\n8V9WPf9ikrNJ5pP8rSS/UElFAEBDqh4jsdo3kvxukh/YqMHRo0ezZ8+eW5ZNTExkYmKixaUBwPZX\nq9VSq9VuWXblypWWvueOlu69MW9K/YjELyX5Z2vWDSeZmZmZyfDwcNsLA4BONTs7m5GRkSQZSTLb\n7P1XOUbiXyT5UOoDLN+X5FeTvDnJr1RYEwDQgCpPbTyQ+kyNtyX5cupjJN6f5EsV1gQANKDKIGFg\nAwB0uKqvIwEAdDBBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADF\nBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQ\nAACKCRIAQDFBAgAodm/VBQA0U61WS61WS5JcvXo1L774Yh588MHs2rUrSTIxMZGJiYkqS4SuIkgA\nXWV1UJidnc3IyEhqtVqGh4crrgy6k1MbAEAxQQLoOgsLCzl8+HAOHTqUJDl06FAOHz6chYWFaguD\nLuTUBtA1lpaWMj4+nrm5uSwuLn5n+fz8fObn53P69OkMDQ3l5MmT6evrq7BS6B6CBNAVlpaW8thj\nj+XixYsbtllcXMzi4mIOHjyY6elpYQKawKkNoCuMj4/fMUSsNj8/n/Hx8RZXBL1BkAA63qVLlzI3\nN9fQNnNzc8ZMQBMIEkDHe+qpp24ZE7EZi4uLOX78eIsqgt4hSAAd79y5c23dDnidIAHc1cp0ygMH\nDmRoaCgHDhzYVtMpr1+/3tbtgNeZtQFsaGlpKY8//nguXryYa9eu3bLu/PnzeeaZZ/LQQw9lamqq\n0hkQO3fubOt2wOsckQDWtTKd8sKFC7eFiBXXrl3LhQsXcvDgwSwtLbW5wteNjo4Wbffoo482uRLo\nPYIEsK5Omk557Nix9Pf3N7RNf39/nnzyyRZVBL1DkABu02nTKQcGBjI0NNTQNkNDQxkYGGhNQdBD\nBAngNp04nfLkyZMZHBzcVNvBwcGcOnWqxRVBbxAkgNt04nTKvr6+TE9PZ2xsbMPTHP39/RkbG8uZ\nM2dy3333tblC6E6CBHCbTp1O2dfXl6mpqZw9ezaTk5PfOUIxODiYycnJnD17NlNTU0IENJHpn8Bt\nOn065cDAQE6cOJHZ2dmMjIzk2WefzfDwcNVlQVcSJIDbjI6O5vz58w1vtx2mU9ZqtdRqtSTJ1atX\n8/DDD+eJJ57Irl27kiQTExOZmJioskToKjuqLmCThpPMzMzM+FQBbbCwsJAPfOADDQ247O/vz9mz\nZ82EgG1m5chckpEks83evzESwG1MpwQ2S5AA1mU6JbAZggSwLtMpgc0QJIAN9fX15ciRI9m3b1/2\n7t2b3bt3Z+fOndm9e3f27t2bffv25ciRI0IE9DCzNoA7MssBuBNHJACaZGFhIYcPH86BAwcyNDSU\nAwcO5PDhw5XdgwTawREJgC1aWlrK+Ph45ubmbpsye/78+Zw+fTpDQ0M5efJk+vr6KqoSWkOQANiC\npaWlPPbYY3e85fri4mIWFxdz8ODBTE9PCxN0Fac2ALZgfHz8jiFitfn5+YyPj7e4ImgvQQKg0KVL\nlzI3N9fQNnNzc8ZM0FUECYBCTz31VEOXEU/qpzmOHz/eooqg/QQJgELnzp1r63bbiRkqrDDYEqDQ\n9evX27rddmCGCmsJEgCFdu7c2dbtqmaGCutxagOg0OjoaNF2jz76aJMraQ8zVFiPIAFQ6NixYxve\n0Gwj/f39efLJJ1tUUeuYocJGBAmAQgMDAxkaGmpom6GhoQwMDLSmoBYyQ4WNCBIAW3Dy5MkMDg5u\nqu3g4GBOnTrV1Pdv1+yJXp6hwp0ZbAmwBX19fZment5wJkNSP50xNDSUU6dONe2W6+2ePdGLM1RW\nLCws5Pjx4zl37lyuX7+enTt3ZnR0NMeOHevIo0vNJkgAbFFfX1+mpqba9genitkTvTZDJTHVdbO2\nQ5D4qSSfStKf5ItJjib5b5VW1CM+9amkCz4s9KSbN6uuYGPNqK2RfazXdqPtm9l2/ecDueeeE3nf\n+25dv3qYwMry9b7ebd3K69/6rd/Ll7/8c0l2bPDId57Pz+/Iu999Me9/f19u3kxu3Lh1f+stW3m9\n+uvi4nNJ/mh5v/csP34kyZfW/wEu69QZKqa6bl7VQeJHk/xCkp9MMp3k7yQ5neTduVvvZMuefz65\nerXqKugUO3bcvU2r97tR263uYzP7XXm+3rK77WPttnf6erd1V69+M6++ek+SPUluLj+y6vnax428\n9tqr+dM/fS1vfvPu7+xn5XHPPXd+vbLsoYfenueem843v/n1JDeW933nXyCdOkMlKZvqOjU11eKq\ntqeqg8Q/TPLvkpxYfv0Pkvzl1IPFp6sqqlf0+hioWq2WWq2WJLl69WpefPHFPPjgg9m1a1eSZGJi\nIhMTE1WWCLc5fPiTmZ7+9w1tc+1a8sADkzlx4sTdG2/oe/L44yfy/PPPb3qLTp2hspWprp34/Xay\nNya5nuRja5Y/neT5NcuGk9ycmZm5Ca0wMzNzUx+jE+zfv3+jQw93fOzfv3/L7724uHhzcHBwU+83\nODh4c2lpqQnf8esuXbp0c3Jy8ub+/ftvvutd77q5f//+m5OTkzcvXbrU1PeZnJws+hlPTk42tY5m\nWfn9tvy3tOmqPCLxtiRvSLK0ZvkrqY+XAGCNKmdPVDlD5fHHH8/Fixdz7dq1W9adP38+zzzzTB56\n6KFMTU01ZZyCqa6NqfrUBgANqHr2xHacoXLt2rVcuHChaYMee3mqa4kqg8RXknw7ydp/8b4kl9fb\n4OjRo9mzZ88ty5zHBnrJ6Ohozp8/3/B2zZ49MTAwsMUxF5tTxaDHqsPaVqwe+7XiypUrLX3PKoPE\nt5LMJPlIkudWLf9wkl9bb4Onn346w8MtOcUD0BGOHTuW06dPN3S56k6dPVHVoMftEtZKrPfhenZ2\nNiMjIy17z6ovkf3zSX48yWSSR1KfCvpnk/xSlUUBbFfu73Fnzbi/Ry/djK0Zqg4Sz6Z+AapjSV5I\n8sEkfyWuIQGwoarv79EuVQ167KWw1gxVB4kk+TdJ3plkV5LRuKolwB2tzJ4YGxvb8JNzf39/xsbG\ncubMmabNnmi3Kgc99kpYawazNgA6ULtnT1ShykGPVU117USCBEAHa9fsiSpUPeixF8JaMwgSAGxL\n22WGSjeHtWbYDmMkAOA2Bj12BkECgG3LoMftT5AAYNvqlRkqnUyQAGBb6+vry5EjR7Jv377s3bs3\nu3fvzs6dO7N79+7s3bs3+/bty5EjR4SIihhsCcC2575K25cjEgBAMUECACgmSAAAxQQJAKCYIAEA\nFBMkAIBiggQAUEyQoKctLCzk8OHDOXToUJLk0KFDOXz4cBYWFqotDKBDuCAVPWlpaSnj4+OZm5u7\n5c6C8/PzmZ+fz+nTpzM0NJSTJ0+mr6+vwkoBtjdBgp6ztLSUxx57LBcvXtywzeLiYhYXF3Pw4MFM\nT08LEwAbcGqDnjM+Pn7HELHa/Px8xsfHW1wRQOcSJOgply5dytzcXEPbzM3NGTMBsAFBgp7y1FNP\n3TImYjMWFxdz/PjxFlUE0NkECXrKuXPn2rodQLcTJOgp169fb+t2AN1OkKCn7Ny5s63bAXQ7QYKe\nMjo6WrTdo48+2uRKALqDIEFPOXbsWPr7+xvapr+/P08++WSLKgLobIIEPWVgYCBDQ0MNbTM0NJSB\ngYHWFATQ4QQJes7JkyczODi4qbaDg4M5depUiysC6FyCBD2nr68v09PTGRsb2/A0R39/f8bGxnLm\nzJncd999ba4QoHMIEvSkvr6+TE1N5ezZs5mcnPzOEYrBwcFMTk7m7NmzmZqaEiIA7sJNu+hpAwMD\nOXHiRGZnZzMyMpJnn302w8PDVZcF0DEckQAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKC\nBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgA\nAMUECQCgmCABABS7t+oCoCq1Wi21Wi1JcvXq1Tz88MN54oknsmvXriTJxMREJiYmqiwRYNsTJOhZ\nggLA1jm1AQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQ\nAACKVRkkFpLcWPP42QrrAQAaVOXdP28meTLJv1217LWKagEAClR9G/GvJ3ml4hoAgEJVj5H46SRf\nSfJCkk8n2VltOQBAI6o8IvGLSWaSfC3J+5L8XJJ3JvmJCmsCABrQ7CDxmSTH7tLmvUlmkzy9atn5\n1APFryb5x8vPb3P06NHs2bPnlmUTExOZmJgoLBcAuketVkutVrtl2ZUrV1r6njuavL+3Lj/u5MUk\n19ZZ/kCSL6V+dOLcmnXDSWZmZmYyPDy85SIBoFfMzs5mZGQkSUZS/yDfVM0+IvHV5UeJv7D89XKT\nagEAWqyqMRLvT/KBJFNJXk0ymuTnkzyX5A8rqgkAaFBVQeJakkOpj6d4U+qnOz6b5J9XVA8AUKCq\nIPFC6kckAIAOVvV1JACADiZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAA\nxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBM\nkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJ\nAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAA\nigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCY\nIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMVaFST+SZIzSb6R5GsbtPn+JL+e5OtJvpzk\nF5PsbFE9sGm1Wq3qEugR+hrdoFVBYmeSU0n+9Qbr35DkPyX5riQHk4wn+etJ/mWL6oFN88uddtHX\n6Ab3tmi/n1n++mMbrP9IkkeSfDjJ4vKyf5Tkl5N8OvWjFADANlfVGIkPJPndvB4ikuQ3krwpyUgl\nFbVQOz91NPu9trK/RrfdbPvNtLtbm279JKivNbe9vrYxfa257Tu5r1UVJPqTLK1Z9rUk31pe11X8\nh2tu+07+D9dq+lpz2+trG9PXmtu+k/taI6c2PpPk2F3avDfJ7Cb3t6OB906SXLhwodFNtoUrV65k\ndnazP5bt9V5b2V+j2262/Wba3a3Nnda389+r2fS15rbX1zamrzW3fSv7Wqv/djbyx/yty487eTHJ\ntVWvfyzJLyR5y5p2/zTJx5K8Z9WytyT5apLHk3xhTfv7k5xL8kAD9QIAdS8lGU1yudk7buSIxFeX\nH81wNvUpon15/RTHR1IPITPrtL+c+g/g/ia9PwD0kstpQYhope9P/WjDsSR/nOTPL7/evbz+niT/\nO8lvLi//i0n+X+rXkgAAetwvJ7mx/Pj2qq8fWtVmb+oXpHotyVeSPB0XpAIAAAAAAAAAuJvvSfI/\nkryQ5HySv1ttOXSxvUmeT/LFJL+T5G9UWg3d7teS/FGS/1B1IXStv5pkLsnvJ/nbFddSqXuS7Fp+\n/l1JLiZ5e3Xl0MX6k/y55edvT/Kl1PsctMIPpf6LXpCgFe5N8n9Sv7zCm1MPE9/XyA6qukR2K9xI\ncnX5+Xcnub7qNTTTYurTl5Pky6l/WmzoPx404AtxI0Na59HUj65eTr2f/efUr+u0ad0UJJLkz6R+\nqHnlmhR/Um059ID3pn6F2JeqLgSgwDty6++vP0yDV5HutiDxauoXv3pnkk8m+YFqy6HLvTXJryQ5\nUnUhAIVubnUHVQaJD6V+QaqXUj8t8bF12vxUkktJvpnkfyb54Kp1fy/1gZWzuf1CVq+kPhjuPYHW\n9LU3JfmPSX42yW+3pGo6Uat+r235lz1da6t97uXcegRibzroCOsPJzme5K+l/s1/dM36H0393huH\nk7wr9Zt//Unq3+R67kvyvcvPvzf1c9jvam7JdKhm97UdSWpJfqYVxdLRmt3XVozFYEvWt9U+d2/q\nAyzfkfrsx9/P7Tfa7AjrffP/Pcm/WrPs91L/BLie4dST/P9afkw2s0C6RjP62gdTv+T7bOp97oUk\n+5pYI92hGX0tSf5r6kdZX0t9htBIswqk65T2uR9JfebGHyT58ZZV12Jrv/k3pj7rYu0hmqdTP2UB\npfQ12kVfo90q6XPbdbDl25K8Ia/fYnzFK6nP4Ydm0ddoF32NdmtLn9uuQQIA6ADbNUh8JfVz0H1r\nlvelftEMaBZ9jXbR12i3tvS57RokvpVkJrdfXevDSc60vxy6mL5Gu+hrtFvX97ndqV/n4T2pDxA5\nuvx8ZUrKodSnrEwmeST1KSt/nLtPk4K19DXaRV+j3Xq6z42l/k3fSP3Qy8rzE6va/GTqF9G4muRc\nbr2IBmzWWPQ12mMs+hrtNRZ9DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC2qf8PO7Bz0KhO\nUkwAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "loc, scale = norm.fit(lag,loc=.01)\n", + "\n", + "xscale('log'); ylim(-10,10)\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=10,color=\"black\")\n", + "plot(np.logspace(np.log(fqd[3]),np.log(fqd[-1])),norm.pdf(np.logspace(np.log(fqd[0]),np.log(fqd[-1])),loc,scale))\n", + "\n", + "norm.fit(lag,loc=.01,scale=.1)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhEAAAFkCAYAAACemWn9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xd4VGX6//H3hF7UoAioYAFFEQsGEEFEQJnYVsV1wSji\n4oJdDDZ07X0VCzbAsrhiyYoFUb9qBqUIioAJggUUFRSXZgsKgoFkfn/ckx9hTJ3MmWdmzud1Xeci\nOTln5vaYnLnPU+4HRERERERERERERERERERERERERERERERERERERERERERERERERERERERERERE\nkt5FwHJgE/AR0Lua44cCi4GNwCpgIrCzlwGKiIhI8hkM/AGcC+wPPAD8BrSr5Pi+wFbgEmAv4Ejg\nE+AVrwMVERGR5DIPeDRq3+fAnZUcfyXwVdS+S4Hv4hyXiIiIJLGGwBbglKj9Y4GZlZxzCNZScTwQ\nAFoD7wHjvAlRRERE6qK+R6/bEqgHrI3avw5oU8k5i7ExES9iSUh9YCowsor32S2yiYiISO2sjmwx\n8yqJiMURwH+Am4B8YHdgDDABGF7B8bvtvvvuq1atWpWwAEVERNLI/4Du1CGR8CqJ+BEowbokymtN\n5cGOwpKH+yLff4rN0pgNXMefWzV2W7VqFc8++yydOnWKS9CpKjc3l7Fjx7oOIynoWhhdh210LYyu\nwza6FrBkyRKGDBmyB9aan3RJRDFQAASxLokyA4AplZwTwBKP8krL/axCnTp1IisrK8Yw00NmZqbv\nr0EZXQuj67CNroXRddhG1yJ+vOzOuB94BqsP8SFwHtAW654AuAvrsjgn8v2rWHfGBUAIy47GYrM8\n1ngYp4iIiMTAyyRiMrALcCOWEHwCnACsjPy8DdvXjHge2AmrE3EfUAS8C4z2MEYRERGJkdcDK8dH\ntooMq+XxIiIikkQyXAcgdZeTk+M6hKSha2F0HbbRtTC6DtvoWsRPpQMWU0AWUFBQUKABMiIiIrVQ\nWFhI165dAboChbG+jloiREREJCZKIkRERCQmSiJEREQkJkoiREREJCZKIkRERCQmSiJEREQkJkoi\nREREJCZKIkRERCQmSiJEREQkJkoiREREJCZKIkRERCQmSiJEREQkJkoiREREJCZKIkRERCQmSiJE\nREQkJkoiREREJCZKIkRERCQmSiJEREQkJkoiREREJCZKIkRERCQmSiJEREQkJkoiREREJCYpn0Ss\nXu06AhEREX9K+STi+eddRyAiIuJPKZ9EvPIK/Pyz6yhERET8J+WTiHAYHn3UdRQiIiL+k/JJxCmn\nwEMPwe+/u45ERETEX1I+iRgyBH75BZ56ynUkIiIi/pLyScQee8CgQXDvvbB1q+toRERE/CPlkwiA\nq6+GFSvgxRddRyIiIuIfaZFEdOkC2dlw99020FJERES853UScRGwHNgEfAT0rub4RsAdwApgM/AV\nMKwmbzR6NCxaBKFQzLGKiIhILXiZRAwGHgBuA7oAs4G3gHZVnDMZ6AecC3QEzgCW1uTN+vaF7t2t\nNUJERES852UScTnwJDAR+AIYBawELqzk+OOAPsAJwHTgO6z1Ym5N3iwQsNaIGTNgwYI6Ri4iIiLV\n8iqJaAhkAdGdCyGgVyXnnIwlDdcA32OJxxigcU3f9NRTYb/91BohIiKSCF4lES2BesDaqP3rgDaV\nnNMeGzNxIHAqkAucDoyr6ZvWqwdXXWWlsL/8stYxi4iISC0k0+yMDKAUOAtrkXgL6xI5BxtwWSNn\nnw2tW1vdCBEREfFOfY9e90egBGgdtb81UNni3auBVcBv5fYtBQJAW+Drik7Kzc0lMzNzu319++bw\n9NM53HIL7LZb7YMXERFJF3l5eeTl5W23r6ioKC6vHYjLq1TsQ6AAuLjcvs+BKcB1FRw/AhgLtAI2\nRvadArwMNAP+iDo+CygoKCggKytrux+sXw977gkXXKDxESIiItEKCwvp2rUrQFegMNbX8bI7435g\nOFbnoRM23bMtMCHy87uAp8sd/zzwE/BU5Pg+2MDKf/PnBKJKO+1kCcSECZZQiIiISPx5mURMxgZH\n3ggsxAZNnoBN8wQbYFm+ZsRGYACQiY2JeBaYCoyM5c1zc2HzZkskREREJP68GhNRZnxkq0hFlSi/\nAILxeOPddoOhQ2HsWLjsMmhc44miIiIiUhPJNDsj7q66CtauhWeecR2JiIhI+knrJKJjRxg4EMaM\ngZIS19GIiIikl7ROIsBKYS9bBq++6joSERGR9JL2ScThh9viXFomXEREJL7SPokAuOYaW5Rr5kzX\nkYiIiKQPXyQRwSB06aLCUyIiIvHkiyQiEICrr4b8fPj4Y9fRiIiIpAdfJBEAf/sb7LMP3HOP60hE\nRETSg2+SiPr14Yor4IUXYPly19GIiIikPt8kEQDDhsHOO8N997mOREREJPX5Kolo2hRGjoSJE+GH\nH1xHIyIiktp8lUQAXHwxZGTAww+7jkRERCS1+S6J2HlnGDECHnkENmxwHY2IiEjq8l0SAXD55fDb\nb/Dkk64jERERSV2+TCLatYMzz4T774ctW1xHIyIikpp8mUSAFZ9auRLy8lxHIiIikpp8m0R07gwn\nnWTFp0pLXUcjIiKSenybRIAtE/7ZZ/Dmm64jERERST2+TiJ694ZevbQwl4iISCx8nUSAtUbMmQPv\nv+86EhERkdTi+yTipJPgwAPVGiEiIlJbvk8iMjLgqqvg9ddtfISIiIjUjO+TCLCaEW3bwpgxriMR\nERFJHUoigIYNYdQoeO45qx0hIiIi1VMSETFiBDRvDg884DoSERGR1KAkImKHHWyFz8cfh59/dh2N\niIhI8lMSUc7IkVBSAuPGuY5EREQk+SmJKKdVKzj3XHjoIdi0yXU0IiIiyU1JRJQrroCffoKnnnId\niYiISHJTEhGlfXsYNAjuvRe2bnUdjYiISPJSElGBq6+G5cvhpZdcRyIiIpK8lERU4LDDIBi0Utjh\nsOtoREREkpOSiEqMHg0ffwzTprmOREREJDkpiahEv37QrZsW5hIREamM10nERcByYBPwEdC7hucd\nCWwFFnoUV7UCAWuNmD4dPvrIVRQiIiLJy8skYjDwAHAb0AWYDbwFtKvmvExgEvAO4HREwsCBsN9+\nao0QERGpiJdJxOXAk8BE4AtgFLASuLCa8yYAzwJzgYCH8VWrXj248kp4+WVYtsxlJCIiIsnHqySi\nIZAFhKL2h4BeVZw3DNgbuAXHCUSZoUOtkuW997qOREREJLl4lUS0BOoBa6P2rwPaVHLOfsBdwBCg\n1KO4aq1xY8jNhaefhjVrXEcjIiKSPOq7DiCiHvA8cBPwVW1OzM3NJTMzc7t9OTk55OTkxC24Cy6A\nO++EBx+Eu+6K28uKiIh4Li8vj7y8vO32FRUVxeW1veoyaAhsBE4Hppbb/yBwCNAv6vhM4GegpNy+\njEh8JcAAYGbUOVlAQUFBAVlZWXELvDJXX23LhH/3Hey4o+dvJyIi4pnCwkK6du0K0BUojPV1vOrO\nKAYKgGDU/gHABxUcvx44CDi03DYBG5B5KDDfozhrLDfXVvZ87DHXkYiIiCQHL2dn3A8MxwZLdsKm\ne7bFkgOw8Q9PR74OA59HbT8AmyNf/+5hnDWy++5w9tnwwAPwxx+uoxEREXHPyyRiMpAL3IgVjeoN\nnIBN8wQbYFlVzYgwjutERLvqKhtc+eyzriMRERFxz+uKleOBfYDGQHdgTrmfDQP6V3HuLdi4h6Sx\n//5w6qlwzz1QUlL98SIiIulMa2fU0ujR8OWXMHVq9ceKiIikMyURtdSjBxx9tJYJFxERURIRg9Gj\nYf58mDXLdSQiIiLuKImIwXHHwSGHaGEuERHxNyURMShbJvztt2HRItfRiIiIuKEkIkaDBsHee9tM\nDRERkZoaORJmzHAdRXwoiYhR/fpw4YUwZQps3uw6GhERSQX/+x88/DCsjV6eMkUpiaiD44+3Uthz\n5lR/rIiIyLRp1iV+7LGuI4kPJRF1cNBB0KYNhEKuIxERkVQQCkHXrtCypetI4kNJRB0EAhAMKokQ\nEZHqlZZaS0QwemnKFKYkoo6ys22Gxpo1riMREZFktnAh/PijfW6kCyURdVTWrzVtmts4REQkuYVC\n0Lw5HHGE60jiR0lEHbVqBYcdpi4NERGpWigE/fpBw4auI4kfJRFxUDYuorTUdSQiIpKMNmyA999P\nr/EQoCQiLrKzYd06WLzYdSQiIpKMZs6ELVvSazwEKImIi169oGlTdWmIiEjFQiGrcrzvvq4jiS8l\nEXHQqBH07askQkREKpafb10ZgYDrSOJLSUScZGfD7NmwcaPrSEREJJmsWAFffpl+XRmgJCJugkEo\nLob33nMdiYiIJJNp0yAjA/r3dx1J/CmJiJP994d27dSlISIi2wuFoEcPyMx0HUn8KYmIk7IS2Pn5\nriMREZFksXUrvPNOenZlgJKIuMrOhiVLYOVK15GIiEgy+OgjKCpKv/oQZZRExNExx1iLhEpgi4gI\nWFfGTjtB9+6uI/GGkog42nln+0XRuAgREQHr4j7mGKhf33Uk3lASEWfZ2dYSUVLiOhIREXGpqAjm\nzUvf8RCgJCLugkH4+WcoLHQdiYiIuDRjhj1QDhjgOhLvKImIsx49YIcd1KUhIuJ3oRDstx/ss4/r\nSLyjJCLOGjSw/i9N9RQR8a9w2D4H0rkrA5REeCIYhLlz4ddfXUciIiIufP01LF+evlM7yyiJ8EAw\naAVGZs50HYmIiLgQCtmMjL59XUfiLSURHujQAdq317gIERG/ys+HI4+0MXLpTEmER7KzNS5CRMSP\ntmyB6dPTvysDlER4JhiEr76Cb75xHYmIiCTShx/Chg1KIuLlImA5sAn4COhdxbGnAdOAdcB64AMg\nJf839OsH9eqpBLaIiN/k58Muu8Bhh7mOxHteJxGDgQeA24AuwGzgLaBdJccfBeQDxwNZwHTg9ci5\nKWWnnaBnT3VpiIj4TShkBabq1XMdife8TiIuB54EJgJfAKOAlcCFlRw/CrgXKAC+Bq4HlgF/8ThO\nTwSD8O67NlNDRETS308/2cqdfujKAG+TiIZYa0L0HIUQ0KuGr5EB7AD8FMe4EiYYtFoR8+e7jkRE\nRBLh3Xet0FQ6l7ouz8skoiVQD1gbtX8d0KaGr3EF0BSYHMe4EqZbN2jRQl0aIiJ+kZ8PnTtD27au\nI0mMZF6cNAe4CTgZ+LGyg3Jzc8nMzNz+xJwccnJyvI2uBurVg2OPtf6xW25xHY2IiHgpHLb7/d/+\n5jqS7eXl5ZGXl7fdvqKiori8tpdJxI9ACdA6an9rYHU15w7GxlKcjg2urNTYsWPJysqKNUbPBYNw\n/vnwyy/WKiEiIulp6VL4/vvkGw9R0YN1YWEhXbt2rfNre9mdUYwNkIy+nAOwqZuVyQGeAs7AZnKk\ntGAQSkut8IiIiKSv/Hxo1Aj69HEdSeJ4PTvjfmA4MAzohE33bAtMiPz8LuDpcsefCUzCxkIswMZO\ntAF29DhOz+y5JxxwgMZFiIiku1AIjjoKmjZ1HUnieJ1ETAZygRuBhVihqROwaZ5gCUL5mhEjIjE9\nCqwqt431OE5PBYP2yxUOu45ERES88McftuhisnVleC0RFSvHA/sAjYHuwJxyPxsG9C/3fT9sRkdG\n1HZuAuL0TDAI334Ly5a5jkRERLwwZw5s2qQkQjzQty80aKAuDRGRdBUKQevWcMghriNJLCURCdCs\nGfTuraXBRUTSVShkrRCBgOtIEktJRIIEgzBjBhQXu45ERETiae1a+Phj/3VlgJKIhAkGYeNGmDvX\ndSQiIhJPZas1+6XUdXlKIhKkSxfYdVeNixARSTehkN3jW0eXVvQBJREJkpFhWarGRYiIpI+yUtd+\n7MoAJREJFQxCYSH88IPrSEREJB4WL7YxEUoixHPBoGWt77zjOhIREYmHUAiaNLEZeH6kJCKBdtsN\nDj5YXRoiIukiFLJaQI0auY7EDSURCaYS2CIi6eH332H2bP92ZYCSiITLzoZVq+Dzz11HIiIidfHe\ne7ZmRna260jcURKRYL17Q+PGmuopIpLqQiFo29ZWavYrJREJ1qSJrTWvcREiIqnNr6Wuy1MS4UAw\nCLNmwebNriMREZFYfP89fPaZv8dDgJIIJ7KzLYGYPdt1JCIiEotp06wF4thjXUfilpIIBzp3tume\n6tIQEUlNoRB06wa77OI6EreURDgQCGyb6ikiIqmlpMRaIvzelQFKIpzJzrZyqatXu45ERERqY+FC\n+Oknf0/tLKMkwpGyfrSyJWRFRCQ1hELQvDkccYTrSNxTEuHIrrtCVpa6NEREUk1+PvTvDw0auI7E\nPSURDmVnW0tEaanrSEREpCZ++w0++EBdGWWURDgUDMK6dbBoketIRESkJmbOhK1bNaiyjJIIh3r2\nhGbN1KUhIpIqQiHYZx/o0MF1JMlBSYRDjRrZErJKIkREUkN+vkpdl6ckwrHsbJgzBzZudB2JiIhU\nZflyWLZM4yHKUxLhWDAIxcW2loaIiCSvadOgXj3o1891JMlDSYRjHTvCnnuqS0NEJNnl50OPHpCZ\n6TqS5KEkwrFAwJrGlESIiCSvrVvh3XfVlRFNSUQSCAZhyRJYudJ1JCIiUpEFC2D9ek3tjKYkIgn0\n7w8ZGWqNEBFJVqGQdWN06+Y6kuSiJCIJ7LwzdO+uJEJEJFnl59uaR/Xru44kuSiJSBJlJbBLSlxH\nIiIi5RUVwbx56sqoiJKIJBEMwi+/QEGB60hERKS86dNtjaMBA1xHkny8TiIuApYDm4CPgN7VHH80\nUBA5/mvgfE+jSyKHHw477qguDRGRZJOfb9Px997bdSTJx8skYjDwAHAb0AWYDbwFtKvk+H2AN4FZ\nkePvBB4CTvMwxqTRoAEcc4ySCBGRZBIOWxKhqZ0V8zKJuBx4EpgIfAGMAlYCF1Zy/AXAish5XwD/\njpx7pYcxJpVgEObOhV9/dR2JiIgAfPUVfPutxkNUxqskoiGQBUQ/V4eAXpWc07OS47sB9eIaXZIK\nBq2gyYwZriMRERGwVogGDWyxRPkzr5KIltgH/9qo/euANpWc07qC49cC9SOvl/bat4d991WXhohI\nsgiF4MgjoXlz15EkJ83OSDLBoGW+IiLiVnGxtQyrK6NyXpXN+BEowVoXymsNrK7knDX8uZWiNbA1\n8noVys3NJTNqNZScnBxycnJqE2/SCAZh3Dj4+mvo0MF1NCIi/vXhh7BhQ+onEXl5eeTl5W23r6io\nKC6v7VUSUYxN1QwCU8vtHwBMqeScucBfovYFgQVYQlKhsWPHkpWVFXukSaZfP6uINm2akggREZfy\n86FlSzjsMNeR1E1FD9aFhYV07dq1zq/tZXfG/cBwYBjQCZvu2RaYEPn5XcDT5Y6fAOwF3Bc5/tzI\ndq+HMSadHXeEnj01LkJExLVQyApMZajjv1JeXprJQC5wI7AQKzR1AjbNE6zronzNiBWRn/eNHH8d\ncCmVt1ykrWDQlpzdssV1JCIi/vTjj1ZBONW7MrzmdX41Hisi1RjoDswp97NhQP+o498DukaO7wA8\n7nF8SSkYtFoR8+e7jkRExJ/eeccKTanUddXUSJOEuna1lT3VpSEi4kYoBAcdBHvs4TqS5KYkIgnV\nq2dLzmqqp4hI4oXDlkSoK6N6SiKSVDAICxbAzz+7jkRExF8+/xz+9z8lETWhJCJJBYO29Oz06a4j\nERHxl1AIGjWCPn1cR5L8lEQkqXbtoFMnjYsQEUm0UMgSiCZNXEeS/JREJLGyEtjhsOtIRET8YfNm\nmDVLXRk1pSQiiQWD8N138OWXriMREfGHOXNg0yYlETWlJCKJHX00NGyoLg0RkUQJhaBNGzj4YNeR\npAYlEUmsWTPo3VtTPUVEEqVsamcg4DqS1KAkIskFg7YU7R9/uI5ERCS9rVkDixapK6M2lEQkuexs\n+P13mDvXdSQiIult2jT7V6Wua05JRJI75BBo1UrjIkREvBYK2bLfrVq5jiR1KIlIchkZlhVrXISI\niHdKS1XqOhZKIlJAMAiFhfDDD64jERFJT4sXw7p11oUsNackIgWU9c+9847bOERE0lUoBE2bQq9e\nriNJLUoiUsBuu9nYCHVpSE2pyqnRdZCaCoWgb19bM0NqTklEiggG7ZdcN0WpzvXXQ4cOtgqhn332\nGey+Ozz6qOtIJNlt3AizZ2s8RCyURKSI7GxYvdpujCKVeeYZuOMO69sdONDK9/rRTz/BySfDb7/B\nZZepK1Cq9t57UFys8RCxUBKRInr3hsaNNdVTKjd/PowYAeecYzfFTz+17/3WerVlCwwaBOvXw8cf\nwzHH2PdffeU6MklWoZCtnLz//q4jST1KIlJE48a2lobGRUhFVq+2locuXWDCBMjKgqeegueegzFj\nXEeXWFdcYUnUSy/BvvvCf/8LLVvCKafAr7+6jk6SUX6+Sl3HSklECsnOtpujX5uopWKbN1sCATBl\niiWcAIMHw3XXwTXXwP/9n7v4EumJJ+Dhh23r29f2tWgBU6fCypUwZIjVAxAps3IlLFmiroxYKYlI\nIcGgfWDMmeM6EkkW4TBccIE127/6qs3kKe/WW21sQE6O3SjT2ezZcPHFcOGFdk3K69QJ8vLgjTfg\nxhvdxCfJado0a4E45hjXkaQmJREp5MADbbS5ujSkzNix8PTT8OST0L37n3+ekWGDLffc05KJn39O\nfIyJ8O238Ne/wpFHwoMPVnzMiSfCnXfawNPJkxMbnySv/Hz729l5Z9eRpCYlESkkENg21VMkFIIr\nr7RtyJDKj9thB3jtNUsgBg+GrVsTF2MibNxo4x2aNYMXX4QGDSo/dvRoa5X5+99h4cKEhShJqqTE\nZu5oamfslESkmOxs+OQTG0gn/rVsmSUEwSD861/VH9++vQ00nDHDko50UVpqs1G++soSpZYtqz4+\nELBWmwMPtMRj3brExCnJqbDQkmuNh4idkogUc+yxdiNUa4R//fqrfQC2bm39/PXq1ey8fv3goYes\nuX/iRG9jTJTbb4eXX4Znn4WDD67ZOU2b2viR4mLrAiku9jZGSV6hkLXU9ejhOpLUpSQixbRsadP3\nlET4U0kJnHUWrFplMw4yM2t3/oUXwnnn2cDD99/3JsZEeeUVuOkmGzx66qm1O7dtWzt//ny49FL/\n1dIQk58P/ftX3QUmVVMSkYKys21Esaaq+c8NN9h0zby82ArjBAI2/fGII+C00+C77+IfYyIsWgRn\nnw1/+5uV+Y5Fr14wfjw8/rj9K/7y668wd666MupKSUQKCgZtWfBFi1xHIomUlwd33QV33w3HHx/7\n6zRsaF0ATZrYE/zvv8cvxkT44QfrzunY0Qpq1aVA0LnnwsiRVhp75sy4hSgpYOZMG2SsQZV1oyQi\nBfXsCc2ba6qnnxQU2AfekCHxGRi5667WHfLFFzBsWOo05xcXw+mnW+IzdarNyKir++6zarCnnw7L\nl9f99SQ15OfbgOMOHVxHktqURKSghg1tkJzGRfjDmjXWYnDQQdb0Hq/SvIceCpMmWc2EO++Mz2t6\n7bLLrAn6lVes9kU81K8PL7wAO+1kLRwbNsTndSW5hULqyogHJREpKhi0ypUbN7qORLz0xx82g2Dr\nVptR0KRJfF//r3+Fm2+2cQVTp8b3teNt/HhbF2T8eFuQLp522cWmiC5fDkOHarxRuvvmG5sWrK6M\nulMSkaKCQVutUP246SsctjLOH31ka2LssYc373PDDZZMDBliNUiS0YwZNnZh5Ej4xz+8eY/OnW2q\n6JQpNuND0te0aTY1ul8/15GkPi+TiBbAM0BRZJsE7FTF8fWBu4HFwAbgf8DTwG5VnONb++0He+2l\nLo109sgj8O9/w2OP2WwKr2RkWOnsDh2sOf/HH717r1h8843Nwujb18YveOmUU+C22+CWW2zwqaSn\n/Hz7m9qpqk8kqREvk4jngUOAbOA4oAuWVFSmGXAYcGvk39OAjsBrHsaYsgIB689TEpGe3n0XRo2C\n3Fwr0ey1Zs2sO2PDBvvA3rLF+/esid9+sw/2zEwbt1C/vvfved11dg2GDoXFi71/P0msrVvt70vj\nIeLDqySiE5Y8DAfmAR8CI4CTsMSgIuuBIPASsCxy3qVAV6CtR3GmtGAQli5N3bn+UrFvvoFBg6wI\nzpgxiXvfvfayp+85cyx5ca201GpBfPutjVdI1AJJgYBNHe3YMTlbZqRu5s+3GhEaDxEfXiURPbGk\nYEG5ffMi+3rW4nUygTDWHSJR+ve3pmi1RqSP336z1TZ33jlxT97lHXUUjBtn22OPJfa9o910kyUP\nzz9va10kUlnLzMaNydUyI3WXnw8tWkC3bq4jSQ9eJRFtgIqWtlkX+VlNNAb+BTyHjZGQKC1aWM13\nJRHpoezJ+7vv7MOzRQs3cYwYAZdcYtt777mJ4YUXbF2Mu+6Ck05yE8Oee1rLzPvvJ0fLjMRHKGRr\nENV0zRmpWm2TiJuB0mq2rnGIqwHw38jXF8Xh9dJWMGhL2W7a5DoSqaubb9725N2pk9tY7r8f+vSx\nWRsrViT2vQsLrQDWmWfC1Vcn9r2jHXWUDXAdN85qdEhqW7vWujPUlRE/tS1bs0tkq8q3wFnAfdgM\njfJ+AXKxWReVaQBMBvYG+kfOqUgWUHDUUUeRGbUKUU5ODjk5OdWEmR6WLoWuXS2zfvnlxDd/S3y8\n+KKNg7jzTrj2WtfRmJ9+gsMPt+qo779v/3pt7VprZm7TxlpB4l0XI1YXX2xJxPTpllhI6tm40e6T\nX38Nn34KrVq5jihx8vLyyMvL225fUVERs2fPBnvwL3QRV1U6Ya0S3cvt6xHZt18V5zUApmDTPKtL\nVrKAcEFBQdjv3nwzHK5fPxwePjwcLi11HY3U1sKF4XDTpuHwGWck3/+/Tz8Nh5s3D4cHDgyHS0q8\nfa/Nm8PhXr3C4TZtwuHvv/f2vWqruDgc7ts3HN5113B4xQrX0UhtFReHwyeeGA43axYOL1jgOprk\nUFBQEMbGHGbF/EmPd2MilgBvA09gycMRka9fx2ZelFkKlC3i2wCbmdEVGBL5vk1k00KtVTj+eKsn\n8OSTNhhE8JBRAAAYIUlEQVRNUse6dTYD4IAD7P9hvEpax0vnzvDcc1Yt08sCTOGwLVPudWGtWDVo\nYK1FzZpZCXJVik0d4TCcd54NqHzlFQ2ojDcv60ScCXwChIB84GPg7KhjOgI7Rr7eA/hL5N+PgVWR\n7X/UbkaHLw0daqs73nab9d9K8itbTGrzZvuQbtrUdUQVO/lkG+R4yy3w0kvevMdDD9m0yscf97aw\nVl20bGkzNpYtS61Fy/zun/+E//zHNo2FkPLUnRGltDQczs0NhwOBcPjFF11HI9U5//xwuEGDcHjO\nHNeRVK+0NBwePNi6XRYujO9rh0LhcEZGOHzFFfF9Xa+8/HI4DOHw7be7jkSq8+CD9v/qvvtcR5J8\nkr07QxwIBKws8BlnwFlnaV2NZDZ+vNVhGDcOjjzSdTTVCwRg4kTrdjnlFOuGiYdly2DwYHtCvPvu\n+Lym1047zboNr7/eZtNIcnrhBZuae+WVcPnlrqNJX0oi0kxGhjXb9eljN/tFi1xHJNFmzbKFpC65\nBIYPdx1NzTVtat0uZSuLFhfX7fXWr7ff0V13hby81Jq3f+ONMHCgJeuffeY6Gon27rtWc+Wss1In\nOU1VSiLSUMOGNoBo333huOMSP89fKrdihY2D6NPHajGkmnbtbODj/PmWBMU6LqCkxG7wq1bZ03zU\nLO2kl5EBkybBPvtYIvTzz64jkjILF1qC17+/tZ5l6FPOU7q8aWqHHeDNN200eXY2/PCD64hkwwb7\nwNlxR5g82Ub8p6KePWHCBHjiidgH8V53Hbz1ljU5779/fONLlObNbaBlUZF1yWzd6joi+eYbm612\nwAE2CDhV/8ZSiZKINNa6tU1rKiqy0sGaluZOaamtxvnNN/bBs0t1VVCS3LBhtsroZZdZAabaeO45\na2IeMyb1V1LcZx/7sJo50/rexZ116+z3aYcd4P/+LzHF0URJRNrr0MGe+D7/XAsJuXT77VZR9Nln\n4aCDXEcTH/fcA8ccY79XX39ds3MWLIB//APOOceSkHTQty88+KBtEye6jsaffvsNTjjB/s3Pt3E2\nkhhKInwgK8v6sd95xwbyaX57Yk2ZYqP5b73VujPSRf368N//WqvKySfb8spVWbXKCjUddph1hyRb\nYa26uPBCK2h0wQXwwQeuo/GX4mIb6Pvll/bA1L6964j8RUmETxx7rA0EmzQJrrnGdTT+8cknNkr8\n9NNtSmC6adHCBkZ+/z0MGWLdNhXZvNkGuwUCNui3cePExum1QAAeftgKZZ12Gqxc6Toifygtta61\nWbNs5tBhh7mOyH+URPjIGWfAAw9YM/TYsa6jSX8//mhP6Pvua9Nu0+nJu7wDDrAWiTfegBtu+PPP\ny8oOL15sN/rddkt8jInQsKGNj2jUyBImrazrvauusunBzzxjszEk8ZRE+Exuri2vPGqU/fGJN7Zs\nsbECGzbYQMpmzVxH5K3jj7fBknfe+effq/vus5v8xInpv25Bq1b2//vzz23sh7oOvXPvvTZN+sEH\nbQVccUMLR/vQv/4Fa9bY4LaWLWHAANcRpZ9Ro2DOHCt6s9derqNJjCuvtNaGc8+Fjh1tifo337Sk\n9ZprICfHdYSJ0aWLtTwNHgyHHgqjR7uOKP0884y1Qlx7LVx6qeto/E0tET4UCNiKn8cea/23BQWu\nI0ovTzwBjz5qfeR9+riOJnECAftvP+QQG0A6c6YlDieeaLNT/GTQIKuFce21Nt1Q4uftty1RHTYM\n7rjDdTSiJMKnypY2PvBAmxpV0yl6UrU5c+Dii22U/gUXuI4m8Ro3ttkopaXQr58t6f3cc6lV0jpe\nbr0V/vIXOPNMWLLEdTTpYcECG6ScnW0rvqbrOKNUoiTCx5o1s6ekzExbAGntWtcRpbZvv7WWnZ49\nrZ/Wr3bf3cYF9O9vMzd23NF1RG5kZFize7t2NsBWpbHr5ssv7YHn4IOt4mt9dcYnBSURPteypRVn\n2bRpW7EWqb0NG+yDolkzKyrVsKHriNzq3t3Gg+y7r+tI3NpxR0ukfvnFujhU7C02q1db60PLljYL\nqGlT1xFJGSURwt57Wz/jV1/Zk3RdV2f0m9JSq5HwzTfw+ut2oxMp0769Tf2cNSt9qnQm0vr1Nvun\nuNgeeFK9ZHy6URIhgA2GmzoV3nvP1niorGiQ/NkNN9jTZl5e+pS0lvjq29cWK3v0URg/3nU0qeOP\nP6zK6YoV9qCz556uI5Jo6lWS/69vXxsEN2iQLd51//0auFSd55+32gj33GOLnIlUZsQI+PRTm5K4\n//4qjlSdkhKr9jp3LoRCNhZCko9aImQ7p58OjzxiFS3HjHEdTXKbP9+mmg0dqhUcpWbuu8+Sh9NP\nt+5DqVg4bIXxXn7ZWvj8NFU61SiJkD+56CJb52H0aFtrQ/7s+++tFkJWFjz2mFpspGbq14cXXrBV\nJk8+2fr75c/uusseZsaNsxLikryUREiFbr3VVvw891xbGU+2+f1366dt0CA9F5MSb7VoYQNwV6+2\n9WxKSlxHlFwmTrRCXTfdBOef7zoaqY6SCKlQIGADwE480Zpe581zHVFyCIetUt6SJTaYsk0b1xFJ\nKurY0WodTJtmZcHFvPGGLdZ23nmWREjyUxIhlapf3/oju3SxZOKLL1xH5N5tt9nN/5ln7LqIxGrA\nABt7dP/99vTtd3Pn2qDuv/zFujHURZgalERIlZo2tabX1q2t2MuqVa4jcuell+zp6LbbrJ6GSF1d\nfLE12V9wgZVM96slS2x2U7duNuPJj2XSU5WSCKnWzjvbHO2SEiv64sfBYAsX2iyMM86w/lqReAgE\nbKG2I4+0xHTFCtcRJd7339sDSlm59CZNXEcktaEkQmqkXTtLJL77zmYlbN7sOqLEWbPGRtJ37mzN\nzmpmlXhq0MBauXbYwX7PNmxwHVHi/PILHHecff3WWzboVFKLkgipsc6dbeDTvHlW5tkPo8o3b7Yp\nZiUl8OqrekoSb+yyiw3UXbHC/rb8UDF20yZLmlavtnLWbdu6jkhioSRCauXII22e+5QpMHKkzVZI\nV+GwjRL/+GNLIPbYw3VEks46d7aBzK+9ZnVa0tnWrbZEekGBPZh06uQ6IomVkgiptZNPtgJL48bB\nHXe4jsY799xjszAmToTDD3cdjfjBiSfa791dd1kJ+nQUDtuA0tdft5lOPXu6jkjqQmtnSEyGD7dm\nyBtusFoJw4e7jii+XnsNrr3WnghzclxHI35yxRXw2Wfwj3/YUuo9eriOKL5uuQUef9ySc603k/qU\nREjMrr/eBh2efz60amUtFOngk0/grLOsKuUtt7iORvwmEIAJE+DLL+13cMGC9BkvMGGC/U3dcYcV\nbZPUp+4MiVkgAA89ZAMPBw+Gp59O/TESP/xgyVCHDrZuSIb+QsSBRo2spHrDhjYb6vffXUdUNyUl\ntvjYxRfDJZdYK5+kB90ipU7q1YNnn7XS2H//u03XStW57sXF8Ne/2g176lRo3tx1ROJnrVtbt9rS\npfa3laozNj79FHr1gquugssusyqdmiadPpRESJ01bmwDEN94Az7/HA46yAropNJNLxy21UvnzbOZ\nJ3vt5ToiETj0UEvSX3zRKqWmkuJi67rIyoJff7WKnPffr2qU6carJKIF8AxQFNkmATvV4vwJQClw\nWfxDE6+ceKINCBs61KZ/9uljT1Gp4KGH4N//tgFfvXq5jkZkm4ED4fbb4eabLZlIBfPnQ9euFvfo\n0VbxVX9X6cmrJOJ54BAgGzgO6IIlFTUxEOgBrAJSvIfdf3bc0aZ+zpoF69bZk9Sdd8KWLa4jq9zb\nb8Pll1tz6znnuI5G5M/++U+bJXTOOVBY6Dqaym3caLNLeva0cR0ffWQtKI0bu45MvOJFEtEJSx6G\nA/OAD4ERwElAx2rO3QN4CDgTSOKPHalOnz6waBGMGgU33gjdu1thmWSzdKkNCj3+eJubL5KMAgFr\nKTvoIBtouXq164j+bPp0OOQQe4j417/gww/tIULSmxdJRE9gPbCg3L55kX1VlRXJwFor7gGWeBCX\nJFiTJnYzmT/fboI9eljT5qZNriMzP/9syw63bauVAyX5NWlilVNLS62LI1nWrykqghEj4JhjbI2d\nxYutVa++Cgj4ghdJRBtgXQX710V+VpnRQDHwsAcxiUNZWZZI3HYbPPigPZ3MmuU2pi1bYNAgWwDo\n9detG0Yk2ZWtdLlokRV4cz2leupUOPBAK4U/YYK1Ruy3n9uYJLFqkyveDNxYzTHdY4yjKzASyIra\nX+1EoNzcXDIzM7fbl5OTQ47KDCaVBg1sbvjAgXbz69sXLrgA7r7bzQf4qFGWyEybBu3bJ/79RWLV\nrRv85z+2LP1BB8E11yQ+hrVrbfD05MlWdXL8+PQpiJWO8vLyyMvL225fUVFRwuPYBRvTUNXWCDgX\n+KWC838BKhu2lguUYOMgyrZSYCvwTSXnZAHhgoKCsKSWkpJw+JFHwuHmzcPhtm3D4TfeSOz7jxsX\nDkM4/NhjiX1fkXi64YZwOBAIh199NXHvWVoaDk+aFA7vvHM43LJlOPz887ZPUk9BQUEYm7wQ/fBe\nK7XpzvgJ+LKa7Q9gLjads3yrRI/Ivg8qee1JwMHAoZGtCzY74x5skKakkYwMq1z36af2JHXSSVZm\n+ocfvH/v6dPh0kvtKeq887x/PxGv3HwznHaa/e0sXuz9+337LZxwgk3hPu44qwmTk6PCUX7nxZiI\nJcDbwBNY8nBE5OvXgWXljlsKnBr5+mfg83LbZ1hrxJqocySN7LUXvPmmlZd++23rW83L866f96uv\nrLJm//5WglcklWVkWKn5/fazUu1eJeGlpfDoo5bwf/KJjSF67jnYdVdv3k9Si1d1Is4EPgFCQD7w\nMXB21DEdAQ1n87lAAM4+255q+veHM8+0G+L338f3fdavt5kYu+5qg8A0clzSQbNmNrhx82ZrlSgu\nju/rL11q07UvuQSGDLG/U628KeV5lUQUYUnDTpFtKPBrBe89qYrX2AerGSE+0Lq1fbhPmWL1JA48\nEB57LD6ls0tKbBDamjX2FNWiRd1fUyRZ7Lmn/d3Mnw8XXhiflrwtW6xI3KGHWtG4mTNt8KRmMUk0\nrZ0hSeXUU+1pZ/Bgm73Rvz8sq2OH1tVX2yyMyZOhY3XlzkRSUM+e8MQTMHGiLXBVF4WFcPjhViRu\n1CibTnr00fGJU9KPkghJOpmZdkN85x1YudKq4I0ZA1u31v61Jk60RX8eeAAGDIh/rCLJYuhQS5iv\nvBLeeqv252/aZNOwDz/cWjPmzbNicU2axD9WSR9KIiRpHXOMjTq/6CKbC3/EEfZUVFNz5lhrxvnn\nW5+uSLq7805bCO+MM2BJLer+zp4NXbpYwn3rrbBggS2gJVIdJRGS1Jo1s5kUH3xgg8e6dYMbboA/\n/qj6vBUrbKDZkUfasuSahiZ+UK+ezZzYc08bSPzTT1Uf/+uvlqT36QMtW8LHH9tiXw0aJCZeSX1K\nIiQl9OhhfbXXX29VLrt0scSiIhs22AyPHXaAl17SDVH8ZYcd4LXXbE2LQYMqX0H3zTehc2ebYv3w\nw9Ya0alTYmOV1KckQlJGw4Zw002wcCHstBP07g2XXWZJQ5nSUpuKtmKF3Uh32cVZuCLO7LMPvPIK\nvPee/Y2U9+OP9jdy4omWRHz2mXX3ZejTQGKgXxtJOZ07w/vvW//tk09aEZxQyH52/fWWPOTl2XEi\nftWnj03LHD/elucOh20a9YEHWivE00/bAMy99nIdqaQyldyRlFSvHuTmWrfFeedBdjYce6zN6Bgz\nxp6yRPxu+HArLz9ypHXtzZgBf/ubdV+0bu06OkkHaomQlNa+vdWA+Pe/bUT5uefCFVe4jkokedx7\nryXZS5ZYF8fkyUogJH7UEiEpLxCw5OGss2zchGZiiGxTv7518ZWWapCxxJ+SCEkbjRq5jkAkOdWr\nZ5tIvKk7Q0RERGKiJEJERERioiRCREREYqIkQkRERGKiJEJERERioiRCREREYqIkQkRERGKiJEJE\nRERioiRCREREYqIkQkRERGKiJEJERERioiRCREREYqIkQkRERGKiJEJERERioiRCREREYqIkQkRE\nRGKiJEJERERioiRCREREYqIkQkRERGKiJEJERERioiRCREREYqIkIg3k5eW5DiFp6FoYXYdtdC2M\nrsM2uhbx41US0QJ4BiiKbJOAnWpwXifgtcg5vwJzgXYexZg29Aexja6F0XXYRtfC6Dpso2sRP14l\nEc8DhwDZwHFAFyypqEoHYA7wOXB05Pxbgc0exSgiIiJ1UN+D1+yEJQ89gAWRfSOwVoWOwJeVnHcH\n8AZwTbl9KzyIT0REROLAi5aInsB6tiUQAPMi+3pWEccJwDIgH1gLfAic4kF8IiIiEgdetES0AdZV\nsH9d5GcVaQU0x1ohrgOuAo4HXgH6Ae9V9mZLliypS6xpoaioiMLCQtdhJAVdC6PrsI2uhdF12EbX\nws1n581AaTVbV+CfwBcVnP8FMLqS1949cv6zUfunYuMrKrIb8D0Q1qZNmzZt2rTVevse+yyNWW1a\nIh6m8g/0Mt8Ch2ItC9FaAWsqOe9HYCs2qLK8pcCRlZyzGuhOHS+AiIiIT62ObEmlE9aq0L3cvh6R\nfftVcd772FTQ8qbw59YJERERSWNvAh9jycMRwGKsa6K8pcCp5b4/FfgDGA7sC1wCbAF6eR2siIiI\nJI9MrC7E+sg2Cdgx6phSYGjUvmHYFNDfgULgL96GKSIiIiIiIiIiIiIiIiIiIpJULgKWA5uAj4De\nbsNx4lqsKuivWIXPKVhZcb+7Bhtv84DrQBzZA5vR9COwEVgIZDmNKPEaAHdh94jfga+BG4CAy6AS\noA/wOvA/7G+gooq/N0d+/jswAzgwUcElWFXXoj5wNzbgf0PkmKdJz3IBNfmdKDMhcsxltXmDVFwK\nfDD2AXEbtrDXbOAt/LfaZx+sdkcPYAD2hxECmroMyrHuwHnYzSHsOBYXWmBTpf/AFr7rBFyOrYrr\nJ//EZnldBBwAXI1Vwb3UZVAJ0BRLGi+OfB/9NzAayI38vDtWt2caVi043VR1LZoBh2ELPB4GnIY9\ngL2WyAATpLrfiTIDsc+SVVUckzbmAY9G7fscuNNBLMmkJZZF+rFVBuxG+AXQH3vCut9tOE78C5jl\nOogk8DrwRNS+l7GnTb8oBU4u930AKyp0Vbl9DYFfsMQ7nUVfi4p0ixzX1vtwnKnsOuwBrMQeOpYD\nI2vzoqnWEtEQa5oNRe0PoXoSmZF/f3YahTuPYqvATif9m60rczJQALyIdXEVYk/kfvMGcCzbitsd\nilW+fdNZRO7tA7Rm+3tnMZZ0+v3eCXb/DOO/VrsMrBzDPUBMi2l4sQCXl1oC9bAbZHlVLe7lBwGs\ni2c2fy4d7gdnYF1bZVVS0745rhLtgQuB+4DbgcOBh7APi+hqsOnsMWBvrGVqK3bP+CfwgsOYXCu7\nP1Z079wzwbEkm8ZYK95z2BgJPxmN3R8ejvUFUi2JkIo9AnTGn10Z7YAHsSfP4si+AP5sjcgA5gPX\nR75fBBwEXIC/koiRwN+x5PIzrN97LNac76frUFN+TbrBBuH+N/L1RS4DcaAr9rcSPfA6re+dDbFS\n2NEjTB/E+sH96GFs4bO9XAfiyKlYX9+WclspUIIlFWn9BxFlBfB41L4LsZX6/GQtf/5AuI4Ym2tT\nVHT/d/vIvkOjjpsKPJWooBypbCxAA2xW20JsUHK6i74Oudh9MvreuRX4pqYvmmpjIoqxPt9g1P4B\nwAeJD8epANYCcSo2mPBbt+E48w72tH1oZOuCTft9NvK1n56y3sdmI5TXEUsu/CSA3RzLK8VfCWW0\n5dhsjPL3zobA0fjv3gmWQEwGOmCtmL+4DceJScDBbH/vXIWNj8h2GJfnBmFT2IZho0kfwGol+G2K\n5zjsF78P1t9ZtjV2GVSSmIk/60R0wxLta7FF7M7E+nhzXAblwOPYaPMTsLERA7G+/7scxpQIzbAP\ngi5Y0pQb+brs3ng1ds84FUu8n8daqZolPFLvVXUt6mMtMN8Bh7D9/bOBi2A9VN3vRLRaz85IVRdi\n/7GbsYJLfhwLUNZkXxq1RS9q5kd+neIJcCJWJ2MTNh7gH27DcaIZcC/bik19hdUESPcxYH3Zdh8o\nf2+YWO6Ym7CnzU2kd7GpvlR+LfaqYH/Z930cxOqlvlT/O1Geb5IIERERERERERERERERERERERER\nERERERERERERERERERERERERERERERERERERERERSX3/D2y+T/mXB6XkAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot(irfft(lag))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lag/data/clag_analysis-origbins-noLFerrors-5404A.ipynb b/lag/data/clag_analysis-origbins-noLFerrors-5404A.ipynb new file mode 100644 index 0000000..b22d025 --- /dev/null +++ b/lag/data/clag_analysis-origbins-noLFerrors-5404A.ipynb @@ -0,0 +1,623 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X18VPWd9/9XSAKSRBRwbFEoxFBYg1pNKhD6s+qCqFBy\n1UI35PGzbbjorle73V2vSzK22u7P31W07aRre117tbXXlpL21zWmWnYXoevderNU7mro9sb4kxID\nyO2MiDcQhNyc64/vHOcmM8lM5szMOTPv5+ORR2BmMufkmzPnfM73+/l+viAiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjJm+4GhBF//K4/7JCIiIi42Fbg46msxJnj4\neD53SkRERLzju8DefO+EiIiIeMN44A3gy/neEREREXFOWRbf+5PABUD7CK+ZFv4SERGR9BwNf+Vc\nSRbf+0ngPeA/JXl+2iWXXHLkyJEjWdwFERGRgnUYuJY8BBDZ6nmYiUmWvG2E10w7cuQIP/vZz7j8\n8suztBsS78477+S73/1uvnejqKjNc09tnntq89x65ZVXuP322y/F9N4XTPCwBjgObB3thZdffjl1\ndXVZ2g2Jd+GFF6q9c0xtnntq89xTmxeXcVl6zzXATzDTNEVERKSAZCN4WAJMB36chfcWERGRPMvG\nsMVTQGkW3ldERERcIBs9D+Jizc3N+d6FoqM2zz21ee6pzYtLNqdqjqYO6Orq6lKSjYiISBr27NlD\nfX09QD2wJ9fbV8+DiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiI\npEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIik\nRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpKUs3zsgIlJIOjrMF8B778GBAzBzJpx3nnmsudl8\niXiZeh5ERBzU3AybN5vvZ8/C3r3wzjvw6qsmmOjogMbGSIAh4kXqeRARcVgoFOKppwK8/no3UMqh\nQ4McPlzL97/vZ/FiX753TyRj6nkQEXFQMBikoaGJ9vaV9PZuBOZy+LAF/Ae33HIDzc1/RSgUyvdu\nimREwYOIiIPuvruNnp4HgMuA1cBKYCvwNAMDv+eRR5ppaGhSACGepuBBRMRBu3d3AwuANuABYCFQ\nEn52HLCInp778fsDedpDkcwpeBARcdDAQCkmWLCDiEQWhIMMEW9S8CAi4qCyskHAAuwgIpFx4SBD\nxJsUPIiIOGj+/FpgF2AHEYkMhYMMEW9S8CAi4qBAwE9NzT3ARcDOJK/aFQ4yRLxJwYOIiIN8Ph87\ndnSyenUVZWX/GXgRGAo/OwTsoKbmXgIBf/52UiRDCh5ERBzm8/no6PgeTzzx78A/c+mlK4BGqqtX\n0NKyiR07OvH5VCxKvEsVJkVEHBS7toWPOXPamDwZDh+GGTNg6VJQ3CBep54HEREHRa9tcd55MHcu\nTJoEc+bAhAla20IKg3oeRESyQKtnSiFTz4OIiIikRcGDiIiIpEXDFiIiWRSbQAkHDsDMmSYfAjS8\nId6k4EFExCGjBQo33AD33mteU1eXt90UyZiCBxERh0T3IuzZA/X1JlCYMSOE3x/gRz/qBkpZtWqQ\n66+vJRDwq96DeJKCBxERB4VCJlB44QUTKNx2Wx8nT4Z4990fAgGghN7eIXp7d7NtW5MKRoknKWFS\nRMQhwWCQhoYm2ttX0tu7BdjMwYNX8+67DwELiayyOQ5YSE/P/fj9gbztr8hYKXgQEXHI3Xe30dPz\nALGBwivh/yeygN27u3OybyJOUvAgIuIQEwgsiHu0lEggEW8cAwOl2d0pkSxQ8CAi4hATCMQHCoOA\nleQnhigrG8zuTolkgYIHERGHmEAgPlCoBXYl+YldzJ9fm92dEskCBQ8iIg4xgUB8oOAH7gG2A0Ph\nx4aAHdTU3Esg4M/hHoo4Q8GDiIhDAgE/NTX3ADuIBApTgXVUVd3BzJm3Ao1UV6+gpWWTpmmKZ6nO\ng4iIQ3w+Hzt2dIbrPKynt7eU6mq7INSzvP66j/p6eOwxVZgUb1PwICLiIJ/Px8aNbe9XmPz852Hn\nTli71pSsnjMHvvxlrW0h3paN4OFS4FvALcBEYC+wFtiThW2JiLhG/NoWc+bA889HAoU1axQoSGFw\nOniYDLwI/BsmeAgCNcBbDm9HRMR11IsgxcLp4OFu4ACmp8F20OFtiIiISB45PduiEegCHgWOY4Yq\nPu/wNkRERCSPnA4eLgO+ALwKLAV+APxP4LMOb0dERETyxOlhi3HAbuCr4f//FrgC+C/ATxP9wJ13\n3smFF14Y81hzczPNGjgUERGho6ODDjsTN+ytt/KbSphstZax2g88BfxF1GNfAO4Fpse9tg7o6urq\nok4TnkVERFK2Z88e6uvrAerJw2xGp3seXgT+JO6xOZigQkSkaMVP4zxwAGbOVL0H8Sang4fvYAq4\nfwWTNDkf+PPwl4hI0WpuhiVLQuHqk9309pbS329Xn/SrTLV4itPBw0vAbcA3gL8FXgP+BugY6YdE\nRApdMBhk0aLV9PQ8AASAEnp7h+jt3c22bU1a50I8JRsLY20FrsJUl5wHbMjCNkREPOXuu9vCgcNC\nIulm44CF9PTcj98fyN/OiaRJq2qKiOTA7t3dwIIkzy4IPy/iDQoeRERyYGCglOQT3MaFnxfxBgUP\nIiI5UFY2CFhJnh0KPy/iDQoeRERyYP78WmBXkmd3hZ8X8QYFDyIiORAI+KmpuQfYAQyFHx0CdlBT\ncy+BgD9/OyeSJgUPIiI54PP52LGjk49/fBMVFSuARiZOXMGkSZuYPr2TtWt9NDZGCkmJuJnTdR5E\nRCQJn8/HCy+0sWcP1NfDP/wD3H47PPggqEq/eImCBxGRHIguT/3OOyEmTQrw53/eDZRy3XWDfPSj\ntTz2mCpNijdo2EJEJAeam2HzZvjRj4IcOtTEO++s5MyZLcBm+voe59//fSUNDU2EQqF876rIqBQ8\niIjkkCpNSiHQsIVIBrRSoqTLVJJMFiAsYPfu9bncHZExUfAgkoHo4MBOguvoUPKbJKdKk1IINGwh\nkqFQKMSaNa2sWrUcaGTVquWsWdOqsWtJSJUmpRCo50EkA1pmWdI1f34t3d27MDkP8VRpUrxBPQ8i\nGVDym6RLlSalEKjnQSQDSn4TSC9x1q406fcHeOGF9fT2llJdPcj119cSCKinSrxBwYNIBpT8JpBe\n4qwJNHxAG7NnQ3m5CTROnIC1azVDR7xBwxYiGVDym9hSTZy1i0U1N5ueiblzzeOvvmp6LTo60BoX\n4nrqeRDJgJLfBMaWONvcDEuWhMLDF9309pbS328PX6hMtbibeh5EMqDkN4GxJc4Gg0EaGppob19J\nb68pU93b+zjt7SpTLe6n4EEkA1pmWcBOnF2Q5NkF4edjaaaOeJmGLUTSEJ9V//vfw8CAj9LSNioq\nYNIkk/y2axdYlpLfCp19PBw4kH7irGbqiJcpeBBJQ6Ks+q4uk1UfCkXGr6GU118f5KmnalmyROPX\nhcrOW/jwh49gEmcTBRCJE2c1U0e8TMGDSJrig4RVqwaZP38mu3a9zP7930KVJouHnSj59tvzgJ1A\nQ4JXJU6cjczUST3gEHEL5TyIpKijA26+OcisWcOT3Do7T7N//zfQ+HVxieQtfBu4l+GJsy8mTZw1\nAcWuJO+smTribgoeRFLU3AxTpnydvr71DA8S3iDxXSckS5gT74skSvqATmATYBJn4RNccMFfJu11\nCgT8XHxx4pk6FRX3cuSIX4m24loKHkRSFAwG+cUvniVxkKDx62IUm7dgqkbCVmAz8EsGBj7E2rW+\nhEGAz+fjD3/oZPXqn1FVVQdcCXyUqqq/orFxHj/7mZJtxb2U8yCSorvvbqO//xISBwkavy5Go+Ut\nzJw5yObNyX/esix+/etXOHXqIUwPRgmnTg3xyCO7+fWvlSsj7qWeB5EUmS7q8SQuR12LSZhLROPX\nhSqTvIWODqivV60H8SYFDyIpMl3UyS4WfuAu4EVUaTLCXqehsRGWLjXrOCxdGnnM62P6mVQYbW6G\nSZPSLy4l4gYKHkRSZLqoW4FEF4s/UlYWYvXqR6iuNglz1dUraGnZVNRdz83NsGFDiKlTW9m3bzl7\n9zayb99ypk5tZcOGkOfH9O0Koy0tm8b0d1etB/Eq5TyIpMgsgvUaJqs+AKzHJEoOAhfh8y3l9Om/\n1zLLUcayYJQXxFYa9XHgQBsXXwy9vTBjhuldSeXXUq0H8SoFDyIpCgT8/PKXTQSD9wPfwnTcDQG7\nqKi4lyuv7CzaICGZ2PUbbLFj+hs3tuVp78bOriy5alWAl17qpq+vlIkTB5k0qZaSEj8dHWaGxWjH\ng1ZlFa9S8CCSIntqnakuuZ7e3lKqq+0llL15B51thbp+Q6IelTNnhjhzZjeHDqXeoxII+Nm2rYme\nnvsxuQ+RgNTkTHRm9fcQGSsFDyJp8Pl8bNzY9v66Fo89Zta1sMUvnHXggBm+OO8881ix9UwU6pi+\nUz0qds6EAlLxGgUPIimKDgx6e6GyEm6+2fz/zBm47DKYNQvOng3x3nsBXn+9m97eUvr77YtB8S2Q\nVahj+k71qJhjyhSXUq6MeImCB5EUJTuR270Q7e0wfXphJgiOVaGO6TvVo6LgQLxKUzVFxigUCrFm\nTSurVi0HGlm1ajkf+9ifhcevVfQHMquD4GaRHpVEvNujIpIqBQ8iYxAMBmloGL665r59JlBIrPiK\n/mRaB8GttCKmFDsNW4iMQfKEuSoKMUEwE6MlmXqRZklIsVPwIDIGyRPmCjNBcKziZ5/MmQNf/rL3\nZ59oloQUOwUPImOQPGHO7s4urATBsfJqcJCKQuxREUmVggeRMUg+BdEPNAFfBxqI7s6eOPFejhzp\npLGxsC+qxaBQe1REUqXgQWQMkk9B9AHrmD37Xs6dK+PgwROUlQ0wMFDFxRdP4pJLAkVZ76HQOB0c\nqLiYeI2CB5ExGClhrqLi21x66ffZvftLwA8YGFgAlHDgwBDt7cVR70EXw/TYa2WYHAoVFxP3S5YW\nngt1QFdXVxd1GigUDwqFYk/2kYQ5P35/gPb2lSTOfdhBS8smVy0IlY2L/Ujto4thrNi1MkywaYLR\n3dTU3FPwwaakb8+ePdTX1wPUA3tyvX0FDyJjMNrFds+e5Rw+vIVksy5qa1fw8stbc7W7KXHyYq+L\nYXrWrGn1VLAp+Zfv4EHDFiJjMNqd+Ny53loQKtEqkZmU1S7UpbizpVBXH5XCpQqTIlnglfLFHR3Q\n2Aj19dEX+8zLapuL4YIkzxZfpc3RFOrqo1K4FDyIZIFXyhc3N8OGDSHeffc5RrrYP/poN42NJtCw\nh2tGMtrFcP/+0rTer9B5JdgUsSl4EMkCrywIZa/R8fbbk4m92IeAVmA58EnOnj3I1KmtbNgQSilx\ncvjFMPr9Gunv703r/QqdV4JNEZvTwcN9mDNk9NcRh7ch4npeWRAqkpswnsjFPogpdLUSMIt+DQz8\nlvb2lTQ0NBEKhUZ939iL4fD36+9P7/3cwh7maWyEpUth7lzzPdNeFK8EmyI2p2db3Ad8ClgS9dgg\ncCLBazXbQgqWV+oczJu3nO7uLZjKmCuBGuDTwAPAogQ/kVrmfygUoqHBroPxC2AVhTKTIFtTUDW1\nVdJRiLMtBjG3GiJFyy3BQbz4oOaPf7RzE/zAbZi73fMwpbUTSS3zP3rhqH/8xyfp708WHHhrJoHT\ns1Js5u/iA9qYPRvKy02weeIErF3r3uNJilc2gocPA4eBs5h+y3uA3ixsR0TSZFcyXLUqwEsvddPf\nfxAzXOEDrgGagW+SaeZ/9MWwvPxV+vsLYyZBtqagKjgQr3E6eNgJfAbYC3wQ+CqwHZgHvOnwtkRc\nzY1DF7F3zq3An2HG2RcBr2F6HDJfVjz6d5s3b5Du7uTvd+TIYFqLhdntevgwHDwIZ87AhAlw9ixM\nnAgf+hBceml22lf1GEQMp4OHJ6L+/TLmrNQDfA74TqIfuPPOO7nwwgtjHmtubqZZYbh4nBvXK4jc\nOV8GrAbuxsT49wP2EIazy4rHLiIWwlx8u8Pbe5cPftBiw4ZQyu0R3a5vvPEb3njjBGfPmsXHLrpo\nEldddVXW2lf1GCQfOjo66IjLxn3rrbfytDe58xTwvQSP1wFWV1eXJVKIjh8/btXU3GjBDguGLLAs\nGLRgh1VTc6MVDAZzvk+1tcvC+7IuvF+WBcHw/68IPxe04EYLtof3197vX41pv4PBYLgdtoTfN749\ntqf1vpF23erI+6Uj0n5Wgq9Bq7Z2mePbFEmkq6vLwnQR5mXGQbbrPEzA3MYczfJ2RFwndnw886qN\nTojcOUdXgDS5CXALpsfBB3QCmwAzzRQWM3v2vWNKCLSTJ2fPbgPWM7w9GtJqj0i7PoeZFZLZ+6VD\n9RhEDKeDh28DHweqMWemx4Aq4CcOb0fE9dxYojlSvClR97sfk9+8A5iKCSgeB77CxIklXHbZo6xd\n60u7lkFHB6xd6+PYsUpGmsXx2GPdKb13pF1z376qxyBiOJ3zcCnQAVyEGdzcgbkteN3h7Yi4nhvH\nxyP5B4mSIu0eh29RXv4X9PdXR9UaGHthKztxce7cUvbuLWF43sMgUMvFFw+klOAYadfct2/0FNQX\nXlgfV4/BPcW/RLLN6eBBWY4iYZG7/LHPWnBSRwccOeKnoqKJvr4ZmMlR8T0BPmAlF11Uwvnntzla\na8D8vscxp4lInQRz576L11/fQig0euJkpF1z376qxyBiaEnuAuTGKYLFKHaWQbzcj4+bWQrw1399\nOY8//gKnT38GM6LYgBnBNBfxmho7t8HZ7Zv28BPJU7CZPIX+/h+lVCch0q7OzgpJhT47IobT5anT\nofLUWaRSt/kXW6J5AYkv0Ln7WwSDQa68cjXB4APh/XkD+Bamsu1JJk68mGuvvYrHHsvOMRIKhbj0\n0hvo7/8DyXoLamtX8PLLW0d9H9Ou6zBpVvHtu5OKiq9y7bWdHD3qcyRwVkAubpPv8tQKHgpQbCGg\nBUS6hndTU3OPqxZmKnRuCuLWrGmlvX0lydaYmDZtEx/9qLnrz9bFcPbs5fT0JA8O5sxp5NVXN4/6\nPna7Pvvsbzh48ARlZabOw8yZk2homA2MY9eu1+jtLaWiYpApU2qpqfFnFEy46W8pku/gQcMWBShb\nJXQlPW4bHx+tOuLkyevZPPp1e8w6OuD4ccg0T8Fu18OH2+jrg8rKSIXJd98NsmnTas6diwTOfX3H\n6evzc+zYDQwMzKK/n7Qv+tla00JE0qciUVkyWiGbysrF1vTp66zKymVWefkKq7JymTV9+jpr6dKg\n9fDD+d57yZY5c1YkOSbM15w5K7K+Dy0t0cWp4r+2Wy0t6xx+/+NJCkmlV6gr2/udiYcftqwVK8zX\nTTdZ1pw55rv9mD7ThanQi0RJHow8RfAN+voOc+jQSk6f3kJ//2ZOn36cQ4dW8vzzTbS3h2hsJO25\n/OJ+kVkKieRm9ke26yQMr63RRuJCUukV6nJjzQ5bczNs2BBi6tRW9u1bzt69jezbt5ypU1vZsCGk\nXAzJCg1bFKCRpwj+dyxrA4nWGTh3zuK11z7N9u2Pqgu2ALlh9keqdRLGmqA4PHB2ZiErN9bssI00\npNLZ2cR113UyYYJPSZ3iKAUPBSj5RSIIPAv8ffjfq4mfb79v304aGjSGW4gCAT/btiWf/REIdGZ9\nH1LNAxnromLDA+fML/qmPoa7anZEi81xir0hOHNGNwSSHQoeClDyi0QrpghoCbHdubZxwCIlVRYo\nN1RHTPXud6wJisMD59Qv+iP1dpx//mWcOmUvXR4vv2taRBJhi+OGQNNm3UE5DwXIvki0tGyiutos\nbFRdvYILLngZGI85mbp3DFeyw15j4sSJNmbP3sqcOZuZPXsrJ060jWnNimxKZ1Gxjg5obDRfvb1+\nysujcypqMZU0E4m96CfLHaio+CJlZS8B64DtxOZqvMisWV/O65oWkSGVZPkdi/K2EFs2KMfDHdTz\nUICSdQ1v394IzMVU5Ru5O/fNN0tpbDT/U3SfGbfcKXnpbzbatNLoXIXoIY4//KGb/v5yqqq+AJRx\n6tSFlJVtYWDgRySqpBk9VJO8t2MN8HfAh8OP309kTY6LWLjwirze0UeGapzJ73A7TZsVTdXMMTOF\n0566dsOI0zlra5dZwWDQamlZZ1VXL7NghVVdvcxqaVmX8vQ2iVBbpiedaaXHjx+3amoST8csL7/R\namjotqZPX2dVVIzc9smnY4489bmqallep0NG9jv/U3Fzwc3TZnMp31M180nBQ45FPnRBC6634MWk\nH8Cmpi8kPSGnMz9eRr64ub0t81VDYLRaJdEX7NEuJhMmrLMqKy1ryhTLqqy0rIsusqy6uuH7n3yb\n7r4oB4PB8PE1+g1BIRjt2CiU33M0+Q4elPNQRAIBPxdffA+wD7P08lcZPoZr5tuXlJSmPOYsI0tn\n/N5t8jW+bHIRdmFmD7QCy4HG8Pc1fOITs97fdvIaDCHgF5w79wSnTzdywQXL+fSnW+nuDtHVBZs3\nxw7jJJ+Omf/6GCOxc5xmz7YwuR6J5Dep00lunjZbTJTzUER8Ph9/+IPJtt+6tZtQqJzS0i9SUlIG\nfIAJE2Dy5FpqajrZtq2FkRMqC2P8NBfSGb93m2yNL4+WB7J8uZ/nnruNAweGgAeJXb57Jzt3fuX9\n5bsjF5PoaYoDwEFgI5bVltJ+J6+PYiddxi9fDm64KNs5Tpdd9iiHDzdx5kz+puLmgtuWupfc07BF\njjz8sGUtXRq0pkxZZ5WWLrNKSlZY48Yts8rK1llTpgQTduG6oZRxofBqWz78sGVNm/alEYe3Mhlf\nHikPJJ1tm27sY1ZsGep1FmxPa7+TD38ELWiw4Ffh4SZ72Gm748NOmQ4TFUNujXIejHwPW+STgocs\ns4OGadO+YJWU/MmIY+7xJ63x4zWu6BSvjtEeP37cKi+vzcq+p5IHkmq7mYvJZ+MuKOm3eSR3YPuw\nIOG88z5mTZv2pVGTLp0w1gCgWNa4GOnv5PYcIiflO3jQsEUBW7w4yNe+tpqjR2cAP2a0VTajK/qd\nO3cEM37qvqI4XuOGstBjcffdbfT3X8JI48sHDpSydGn6009HW/m1ri7Am2+mNrYdCPj5x3+8gf7+\n6GG29MfFn3nGR01NJ2fPBnjzza9x5swJYADLquLcuUmcPXse117b/v6y3tlYHTWTYSIvTcXNRPTf\n6eTJ9Zw7V8r48YPvD7k+84yvKNqhmKnnIcsi3Xuj34UNvxMMhruBXyya6D5bd25evVMyd/4jHTvH\nrLKyj4zpbnzkXoVj1gUXfMQqL78ipd6Dhx+2wvsQ/fzYe3vyOTtGXfKSKvU8iGPik9BeeMFO1Bv9\nLmz4naAPMyMjANwLvEd19ZScljLONbvY0KpVAV56qZu+vlJef32Q8vJarrnGT0eHqcKY7h1evstC\nZ7bIlF1ULH7dhAFgPwMDP2FgYAHRd8g//3kT117b+f4deqLtJM+YDwLNvP32Q8BjUduOF+mxaW6G\n9euhu9uKes/alH42kdF6RbJZuj0XybVuKVomMlbqeciC2PHSupTvwkYbXx4/fllBjp9Gi73jPG6Z\npLtbLVhilZXVWqtXf2lMd51uGIseyzh6bFGxLVZqCYlBCz5rVVXVj7id5Mdb9PvavV+j99gMv2NP\n/WcT/975yVHJVXJtvhMr3fCZ8Lp89zzkk4IHhw3vbrVPgqN3hXp1RoCTIhcg+4IZ3239oquHGZIZ\nazf8yEXFEl1gk7Xb8O2kXs0xGD5+zUWupOQKa/r0ddbSpcGYC0zioaFjFnzWKiurtWBZyhfIfH4W\nchG4uKVoWb4DGK9T8KDgwTHDT8jRJ/9Ed2G/SjuzvZBF2qCwxp3HOo4eDAatiy+2j5tb446PRBfY\n1LeTPA9kyZgv3PEXo4qKZdb06eus668PWnPmWNYVV1jWBz5gvq68MnK3W1dnHqury/9Mo1zkPLgh\nr8ItAYyX5Tt4UIXJAjK80p4fsCtKdgCbgE8AN1FWdiWrVz/yfvZ2pKIfDK/qt5j9+09z880hV628\n6LTIOHxhrTiavAIjjPT72EXFWlo2UVZ2jNgchURVF1Pfjp0xP336JiorV1Be3khl5QrKyk4meF9b\n8gJAiVYM/djHtnLNNW1MmuTjvvvg97+H3/8+xK23tnLqVKRa5lVXtfLcc69w1VWmimZkplEiu3jn\nndqsfQ4CAT81NdGrgkJ05VcnVu9MfDzYn/mv097+b1RVLWfGjNasfea9XHVV8k89Dw5L3N0a3e1b\nZ02cuMyaNMncjUWPL0buBOPHtlMfK/a6SM9DYQ3hjLUbPnpcurIy/m480d1r5u2Wzbvi5He7W62y\nsrlRj9s9dVssuMuyh0zgBquq6gqru7t7zPuQiky78+36LtOnr7MqK5dZpaUrrNLSZVZ5+TqrvDyY\n4O+U+nCTU9TTmbl89zzkk4IHh9gn+aqqsSc92iecior4sW1vd9mnI52prV7ixIk6tYTE+KGN9LeT\nzWmtyQOTRMmfL1twVYILanaDaCcSCY8fPx4ebored5P/AXMsmBv1+OiL5GXjM68cq8wpeFDw4Ihg\nMGjNnp35SaCY7wgiF67PJriYeDeAcuJuPvaifix8wf1TC64MX5DmW5WVVzlyEUp25/3QQ8GYO+ry\n8hVWZeWyhAmUiSQ/thM9nv+8gLGKTXRdZ8F1Fsy2YKtlAj77+LZ7HG7M+We+mM8zTlHwoOAhY5Hu\n2F9aiRMjU58lUMx3BJFy3l8Ml/PO/loGueDE3Xwqpc7PO+9j1sSJH894O8nuvJcuTXRHnXr3evJj\nO9Hj+b+4jbUXInatj60WXBH+m8QnUNtBRO4/825I2vQ6BQ8KHjIW+0GMndoGN1gVFdendGdmWboj\nsBXSNLL4MfB079ijjXbSnzbti45sZyzbHu2Ck17PgzuC6JF6YZIFFpWVK6IChXVWpGch+vcMWlCf\n4PHcfOar2oiKAAAgAElEQVQT92SZmiolJbXWtGlfcuSYKWT5Dh5UYbIAxFal8wHR1e+GmDVrBU8+\nmVoVQ6+uw+Ake4ljaGP2bCgvJ2trGeSC2d/442JsRquAOHnyel5+eWvG24lmV0R87rnMqi8mP7YT\nLbmd32WfOzrghz/s5le/amZw8IfErnOxi1/+sonnn/8egcCPeeGFbnp7S+nvN1VLL730LHv32m31\ndaAq/HtEV/X0Afa6JWOvxjlW9mybvr7/h2PHnsOyNr7/O1rWEEeP7qaiooklSzrD+yoSoZ4Hhzg5\n1ODVdRgkN0Y71ioqVmSlSmAwGLQmTVqY0XGe/Njeapkkwuh1XO6y8pn3cvz4cauq6ooR9mGLdf75\niRI6d4R/zq6XsSKqZyG+h8H+/+h1YLJFwxdjp54HyZi5C3LmLinf6zCIuw0/1qLXuyilv7+XqVNb\nCQT8KR0rqayzsHixWWnynXcmkslxHn1sP/vs1zh48ASlpe8xOGi/3+cpKRkHnM95553HuXNPMzj4\nA8wd+ThMvYVd4XoLnaP+bpm4++42Tp3ykbg3AOA53n33ByRaf+PUqW8xbtx/Y2jIwvSgXI7pWYjv\nYYj+v72OzXpMD8W7zJ5tsX37o45+5pOvv5NIbG+S1uRwFxWJKgCxBZ7ipdftGF9s54Mf3Mzbb7fz\nyCMwbVoLZWWNWS8gI+4Ve6wFgSZgJbAF2Ex//29pb19JQ0MToVBo1PdrboYNG0JMnWoKNNmFm6ZO\nbWXDhhDNzdEFherJ5Di3j+0jR1oJhYaA+xkcnIZZrv4VoBvL+h2W9SDnn1/Cddc9wvTp/xRTxGr6\n9E3vL/ucTWZ4yB5uSOQVYodZot1CVdV4TKGpWmAxpljcjeHvdgEqu4jcdmAqZljrceArTJxYwmWX\nPcratT5HP+Pxf+9z5+KLj0WLXTo9lWNFioOGLRySzaEGlZGVaLHH2l0ZdzmncnxFEh2d6V6PdJW7\nt8vcDA+NlMg42vDRUquiwp5tYX+/y4LFFlxtQa0FV1olJddZ48dfb02cuNTKRWJw8vV3Rk/W1Lko\nVr6HLfJJwYODsjU7QGOSEi165kZJyRUpn/iTGe34MjM3oi+U8bOJllmTJl2d1nEeCUbcO7PI7ONI\nwdkNI+77pZcus5YuDVpTpqyzxo2zA4YrLFhojRu31JoyZZ115ZVBq64utytbJl9/Z/Tzi85FsfId\nPCjnoQBkc3bAaNn1o2W4S2GJnrkxd+6r7N2bWpdzMrHHV2z+BAzw7rtHuPTSD7B3r4Xp3h4+m2ho\naAVr1/pSPs4ja5hEzz4Y2/5ni5kZ8qeYYYX7MWtR2HkXOykrO8zAQPwMEdsubrqplo0bnZlh46Th\n5xM/Zugr/nccnluic5G7KHgoANlMFIqcaBPJ7wlW8suJRN3I8RUEVgMPYE/ZgyHefnsng4N3MHwq\npW0Xq1bVsnHjWPY7v9MxRxII+Nm2rYmennXAL4hOZKyqeoMnntjI5z53Lz09o1903WT4+cRHbLLm\nMaqrP5gwQVvnIndRwqSMKHKiTSS/J1gndXTAzTeHmDGjlaqq5Ywfr8TQ0TiRqBs5vtowgUP8KouL\nOHXqW5x//n/BqZUmI/vtXKKx03w+H62tnUyf/hwVFa8ApZSVDTJt2kdZtOhZ/vqvP0ZFxfBVSXOV\n0DlWic8ndg/J44wf/0Fmz97KiRNtw5I1i+VcJKNTzoMHFMs4o5Kx0udEom6qi5FVVi52rHJlZL/t\nZMKxl3PPFicWyEp3e05VIR1JJueTYjkXpSrfOQ/5pODBA4qlaJROTOlz4oITOb6WJGl78+V0OWg7\nwfhDHzLJhGVlJplw5sylritDnotAIlfBcybnk2I5F6VKwYOCB9crpHUektGaHvlhByBlZfU5a3/7\nYlxXZ1kXXWRZlZWWNWWK+X7RRdb7MxDctK5Ctj+DuQyeM/ldiuFclKp8Bw/Jsk9yoQ7o6urqoq6u\n6AInzyiWqm5z5zayd+/mpM/PmdPIq68mf14ys2ZNK+3tK0lcUXEHLS2b2LjRXTMHciUYNBU2TaGs\nBdjJpLCbiRPvYdq0TmpqfBl9JufNW0539xaSJY/W1q5wZM2STM4nxXIuStWePXuor68HUz1tT663\nr9kWMqJi+UA6WeJb0heZXeCt2QO5EKmwGR1YnQB+wZkzFq+91ohlTQnPUEitLHi8XM1kyOR8Uizn\nIq9Q8CCjKoaIvxBXE/XS381eZfHs2QAnT67n3LlSxo8fZPLk2vdnD7hlX3NteH2D4dNazWqbu9m2\nrYkdO9Jfg0bBs3iJch48pNDHGgs1GSsXf7dcZeoXq+ErmTqfn6CEYe/Jd85DPil48IhimcZYaAFS\nrv5uxXJ85MvwZF7nk3sLNXguZPkOHlQkysM6OqCx0XwtXQpz55rv9mNOFTaKHXONLuCzkJ6e+/H7\nk5WM9Y741UTnzNmctFiNV+Tq71YMx0c+xRbjCgFv4nR+gr1ceUvLJqqrVwCNTJy4lIqKr3D0aDmX\nXro2b0XTVMBN4qnnwQG5uFvWNEZn5Kp7P9fTH3V8ZFekV2CLZYpa3eh4e0dPX50yJWiVln7Bgj/J\nWW/SSLUsli49bl18sXq24qnnQcYsGAzS0NBEe/tKenu3AJvp7X2c9vaVNDQ0EQqFHNmOaso7Y/Hi\nID09TRw6tJLTp7fQ37+Z06cf59ChlfT0NLFkiTN/L3s7AwOTycXfTcdHdtnJpBUVbZj1H+pxuqx2\nczNs3gz/+q9BJk9uYnDwNPBjctWb1NwMGzaEmDq1lX37lrN3byP79i1n6tRWpkz5OsGgerYkQj0P\nGcpVkpPuLJ2Rjb9Xoju2adNSK/msngdvibRz0EpcVvtXGd+Jp1ou3Om/6Uh5MyUltTq+ElDPg4yZ\nmcK1IMmzC8LPZ86JBZAkO3+vRHdsb7zxRHg7ufm76fjIjUgPj70S5SbA5CfACsrKvpTxoliRYzS6\nNykEtALL39/W3r1HHM03iM2beSO8vRXAA1jWeNSzVVy+jKny8p0kz6vnIUPDp3BlZz0AZWI7Ixt/\nr8R3bPZ2sneHGk3HR27koocncoza2zoePobiewScXTws8rsl2t6t6nlIoFB7Hq4F/gL4HSRdQ1Uy\nlKslau0xV68t/+s22fh7JZ7pYG8n0R3qJygr+0tH/26JMvWrq1fQ0rJpTAWLJLFc9PBEjlF7W8mX\nSncy3yDSq5Joe/NQz5b7ZKPCZBXwM+DzwNey8P4SlquqiKYSoQ/zwS4sHR3Q3h6iuzvAyZPdMZUN\na2v9tLQ4V9kwG3+v4dUHIXLiX4gJIKL/bju4/fZNbNzo3AXdVLI025k9G8rLTSXLEydg7Vp3VbL0\nslyU8I4co36gCRNIJAsQFrB79/qMtwnRQYt9PIfC37uBAWAL8COgAZUuL1w/Af4u/O/ngQeTvE7D\nFhlSd3HmclngKBt/r8RDIcmGK3RceFkupvrGHqPHLFiYk6HRSKLmiiRDF8cs+KwFc6yysmWqYGrl\nf9jC6Z6H1cDVmGEL0JBFVmk9gMwlXnQodhqYU6s5ZuPvlXhNAnu44luUlPwFllVNRcUgH/1oLY89\npmEEr8pFD6A9BOX3B3jhhW56e08x/PiyOTc0GulVsXs64j+TH8Dcl77I7bf/c9GusOomTgYPM4D/\nASwBzoUfK2GUZb/vvPNOLrzwwpjHmpubadZVb1SFPJyQK4m7/W3OdcuCc3+v6AWvTp6MHqKA2O7e\nc4wbN4HKyrlcc42fSZN8GkaQEcUPQZ040co772R/aNQOrI8e/TR9fV0k/4w0sHv3A45s00s6Ojro\niJva8tZbb+Vpb5z3ScxAVH/U1xAme+scw4MIDVtI3uVqxorT7MqiH/rQYstUAvyVBUeTZMYXdyU+\nGbtcD40Gg0GrvPxqT34mcy3fwxZOzrZ4BrgC+Ej462rgJUzy5NVoCENcKFczVpzS0QE33NDNtGlL\naG9fycGDTwP/DvwTptNvParEJ07J9UyaZ57xMX78xXjpM1msnAweTmH6Su2vl4E+zCouzlQrEnGY\nVwoc2YsD3XXXF3nhhUYGBx8iEiT4gG8DMzHZ6Ik4VzRMioe9YNzvftfG22+3U1Y2lwMH4Cc/eZVp\n01qYOtXZxamam+HTn74KL3wmi122K0za3SoirhQI+KmpuQfYgRllI/x9R3gamD9/OxfFXq/i6NHT\nmPSiRGPQWmNCnBW/5sXAwEqGhrZgWZsZHHycN990dl0W8M5nsthlO3i4EfhvWd6GyJh5pQBWZFbI\nG8D5JA4SvDUEI96Ry2XXVXTMG7JRJErEM7wyYyUyK6SUSJAQH0DUAjtJPHSh7l4Zu1zOSlLRMW9Q\n8CDiAZHyvYPA5cROzwQzRbMPaMEspaxKfOKcXC67ruDAG7SqpsfYiXMzZrRSVbWc8eMbqapazowZ\nziYuibvErjmwGIgeEw5iSgl/BtgG/DPwCeAmSkquZNq0h101BCPe47VZSZJ96nnwmMWLg3zta6s5\ndOgBTDdiCf39Q5w+vZsJE5pYsqQTk30vI4kutPTee3DggOkaPe8885jb7n6GrzmwDvgFZmrmEeB7\nRHoiIkMwlrWDm292di0LKT6R46+GSBEyewjtIk6enEVHx8ifmVyuIyOFTUWi0vDww5a1YoVlTZ9u\n14BPVEBlu9XSsi7fu+oZdqGl6uplFqywqquXWS0t61xZTGn4mgPrwksVL7FgjpYslqwKBoPWzJkf\ns6AhQRGyF61Zsz4+6ucml+vIFINCKhIlWdTcDBs2hHj33ecwK+olkt25/IU0ZBIMBmloaKK9fSW9\nvVuAzfT2Pk57+0oaGpoIhZybeuaE2Az0/wy8SnV1CS0tV1NTMxtN0ZRs8vl8NDRcg6knMnx57v37\nvznqjItcztiQ7NOwhUcEg0EWLVrN229PJl8XikIaMsnlglhOGCkD/fjx5eRi8SIpXh0dsGXLa4xc\nhGzkGRfpztjw2tBisVHPg0dELnbjyVfiUiHdOZgTWX56cBIZrVcHTLGezZvhqafg1VfN982bYdUq\nb1TJFO9qboZLLslsxkW6Mzbs3tapU1vZt285e/c2sm/fcqZObWXDhpAChzxT8OARkYtd/i4Ubrvg\nZiKXU89SYVeQPHRoJadPb6G/fzOnTz/OoUOjV/BTRT7JhdgZFyGgFVgONALLeO21gyMOX6Y7Y8Nr\nQ4vFRsGDR0Qudn5ip+kR/v5i1i8UbrvgZsJtU88y6dXxSpVM8bbIOjD21OCVgLmowxYGBr4/YqCb\n7joyhdTTKc7SbIs01NYui8pQDoaz7c0sAbjVKiv7iLV0adB6+OFc7YO3s/pbWtw1a6WQ2lYKU2TG\nz2fDs37S++yku7y3PhMj02wLSUls1G6XU96Kifq/xu2338STT2Z3nrRXVqBMhdu6+gupV0cKk93D\nVVb2MokXZoORhi/T7SHTZ8LdNNvCIwIBP9u2NdHTcz8m7yD3pYfdsA9OsU9kZ88GOHlyfUzBGvtE\nlsuErMgwimZMiDvZ68DMnXsJe/emf1FPdx0ZfSbcTcGDR7jhYueGfXCK2xbEilTwS3RH561eHSls\nubqo6zPhbgoePMINFzs37EMhSFSmt7y8j9LSpxgc/AHmZOndXh0pbLm6qBdST2chUs6DSI4lmpbZ\n1/cUg4PfpKrqDmbOvBVopLp6BS0tm9ixoxOfTzMmxB1ylS+kWUTulmzgKhfqgK6uri7q6vKSLCqS\nF2vWtNLevpLEd247mDZtE5bVxrlzIfr6AvT3m0WIzjtPiwiJO4RCIfz+AC+80E1vbynV1YNcf30t\ngYBfgW6O7Nmzh/r6eoB6YE+ut6+eBykqblifY7RiW5Mnd/Pb3waZPLmJ995byeDgRgYH53L6tMWh\nQ//B00/fwF13/ZXn1hORwtDRAWvX+jhxoo3Zs7cyZ85mZs/eyokTbaxd69MxWSSU8yBFxQ3rc6Qy\nBS1SIOcyYDUQ2V/LGuLo0Z1UVHhrPREpDPaaEnbuTl9fgO3bI0ts/+Y3tbS3q3es0KnnweXccKdc\nSNxQtS5xdUu73O8y9u49xE9+8gSmd6INEzgMX8lQVfYknzIpqS7ep+DB5dz4AY0PaMrKGiktXUJp\n6Q2Ult5MWZl7Axw3rM8xvNhWdLnfrcAeLKsaEyzkf39FEnFDIC75o+DB5dz4AY0PaAYHf8TQ0BBD\nQ99kaOgJBgfzH+Ak44aqdcOz1duA+4n9G9u9E/nfX5FE3BCIS/4oeHA5N35Ahwc0ybrW3XcH4oYF\nseKnoMETDJ95YfdO5H9/RRJxQyAu+aPgweXc+AGNDWhCwHO4LcBJxg3rczQ3w5NP+nj99TZOndrK\nnDn2EEU0e/XUi4CdSd5JVfYkf9wQiEv+KHhwOTd+QCMBjT1WPxm3BTjJuG1BLEj2N/YBnUAl8Bng\nRdyyvyKQeiCupO/CpODB5dxwpxwvcrGzhyvGE7n42bMGlgONwDJee+2ga04SbqpaZ59U9+8/jQlm\n4vmAzzBt2s1Mn/7Ped9fkWipBuJuTPoWb6sDrK6urnwvi+5qwWDQqqm50YLtFgy+v5Y9bLdqam60\ngsFgzveppWWdBTssWGbBkAX2/49bcGP430NR+/pi3vbVzY4fPx7+2/4y3G7xf2O1m7jXww9b1tKl\nQWvKlHXWuHGLLbjagissWGjBDVZJyfXWuHFLw4+/GD6u47+2Wy0t6/L9q3hSV1eXhblry0uJZvU8\nuJyb7pRtkTuOc5jhCnt8vpXhswZUkyCZSOLprZghik3ACkyPzWIqKu5R74K4lp2788orrVRXDwE/\nAH4H/AummJmZfQWXAA1J3sVdOVGSOlWYdDk3rmRpBzQHDtzKwIBFZHz+VhKv1wDmJLE+Z/voBeak\naQdU8X/jIWbNWsGTTypwEHeLnX0FsbOvQNONC5N6HiRt9h3H7bffSCQfw4e5w9BJIlVunEkjkq7R\nZ1+5L+lbMqfgQcZseMKUThLpcONMGpF0jT77yn1J35I5BQ8yZvH5GCUlR0g8awB0khjOjTNpRNI1\n8uwriOREuWd6tGROwYOMWXyxo+PHn6Km5qvoJJEaN9acEElXJAi2hy+ig+IQJq9nHPBF4ErgGsaN\nu5UpUzTd2MuUMCmOsXsizp4NcPLk+veX6J08ufb9k4SW6I1Qe0khCAT8bNvWRE+PPXzhxwxf3AX8\nHdHLyZvgeBfV1feyY4cfn0+Bg1cly9bKhTqgq6uri7q6vExTFRGRDHV0QHt7iGefvZWBgV9jLish\n4NOYwGFRgp/aQUvLJjZudM8sMq/Zs2cP9fX1APXAnlxvX8MWIiIyZslnX1Wi+g6FS8GDiIhkbHgO\nj6YiFzIFD1JUQqEQa9a0Mm/ecubObWTevOWsWdNKKKT6+iKZGL7UfC+aily4FDxI0XjooSCzZjXR\n3r6S7u4t7N27me7ux2lvX8msWU388IcKIETGKn72VUvLLWgqcuFS8CBFY9euNvr67LK50WtvLKSv\n73527tTaGyJO0VTkwqbgQYpGbBndeErgEnGSGxf1E+eozoMUDa0lIZI7blzUT5yjngcpGlpLQkTE\nGQoexHFundGgtSRERJyh4EEc5eYZDUrgEhFxhoIHcZSbZzQogUtExBlKmBRHmRkLyQKEBezevT6X\nuxNDCVwiIs5Qz4M4SjMaREQKn4IHcZRmNIiIFD4FD+Ko2BkNIaAVWA40AovZv/80N98coqMjX3so\nIiKZUvAgjorMaNgKNAErgS3AZuDf6Ov7Bj09TSxZonUkRES8yung4QvAb4G3w1/bgVsc3oa4mD2j\noaKiDVjP8FkXDfT03I/fr3UkRES8yung4XXgbqAOqAeexdxyznN4O+JS9sp6s2ZVAg1JXqV1JERE\nvMzpqZpb4v7/VUxvxHzgZYe3JS6mWRciIoUrm3UeSoFPAxOAbVncjrhQZNZFogBCsy5ERLwsG8HD\nlZj6vxOAM8CfAfuysB1xsfnza+nu3gXUYIpGdWPiyUHgIk6enEVHhxnmEBERb0nWr5yJcmAGcAGm\n5+FLwA3AnrjX1QFd1113HRdeeGHME83NzTTrquJpoVCIa6+9jQMHhoAHgQWYw20I2MmsWV9h9+7H\n8PlUElpEZCQdHR10xM1vf+utt9i2bRuY/ML462vWZSN4iPc0sB/487jH64Curq4u6urqcrAbkksd\nHXDXXX/F0aPNwKIEr9hBS8smNm5UqWgRkXTt2bOH+vp6yFPwkIs6D+NytB1xkeZmmDz5NTTjQkSk\n8Did8/AN4JeYKZvnA6uB64H7Hd6OeIBmXIiIFCangwcf8FNgGqZI1G+BmzH1HqTIaMaFiEhhcjp4\n+LzD7yceFplxsTDBs7vC62CIiIjXKBdBsmbhQj8VFfdgZu4OhR8dAnZQUXEvCxf687dzIiIyZtks\nEiVF7o47fHzqU534/QF2717PwEApZWWDzJ9fSyDQqWmaIiIepeBBssrn82k6pohIgdGwhYiIiKRF\nwYOIiIikRcMWUhRCoVA496I7LvfCr9wLEZE0KXiQgvfQQ0Huums1fX0PYBbpMmtsdHfv5uc/b+LB\nBzu54w4FECIiqdKwhRS8XbvawoHDQiIFq8YBC+nru5+dOwP52zkREQ9S8CAFz6yhsSDJs1pjQ0Qk\nXQoepOBpjQ0REWcpeJCCF1ljIxGtsSEiki4FD5IzHR1w880hZsxopapqOePHN1JVtZwZM1q5+eYQ\nHR3Z2a5ZQ2NXkme1xoaISLoUPEjOLF4cpKeniUOHVnL69Bb6+zdz+vTjHDq0kp6eJpYsCWVlu4GA\nn5qaxGts1NTcSyCgNTZERNKh4EFy5u672+jpSTzroafnfvz+7Mx6eOYZHzU1nUyfvonKyhWUlzdS\nWbmC6dM3UVPTyTPPaJqmiEg6VOdBcsbMakgWICxg9+71WdluczM0N/sArbEhIuIE9TxIzgyf9RAC\nWoHlwCfZt+8ga9a0EgplZ/hCREScoeBBciZ21kMQaAJWAluAzZw791va21cya1YTP/yhAggREbdS\n8CA5EzvroQ1Q1UcRES9S8CA5s3Chn4oKe9bDy6jqo4iINyl4kJy54w4f+/d30tKyifHjj6GqjyIi\n3qTgQXLK5/OxcWMbs2dPQ1UfRUS8ScGD5IWqPoqIeJeCB8mLXFR9zFc5bBGRQqciUZIXdtXHs2cD\nnDy5nnPnShk/fpDJk2vfr/rY3Dy29w6FQvj9AbZv/w29vYfp79+IKU5VQn//EKdP72bChCaWLOkE\nVF1SRCRdCh4kL5ys+mgHC7t3dxMKDfDGGwexrI2YnIr1mOmgtthy2Bs3quqkiEi6NGwhnvbQQ0Fm\nzWqivX0l3d1bCIWuwrJ+DNQAz6PpoCIizlPwIJ62a1cbfX12sak3gOeAyzDVKyej6aAiIs5T8CCe\nZnoPFhApdz0Z+DameuV4NB1URMR5Ch7Es0KhEIcOvYnpXbDLXY8H7IBC00FFRLJBwYPkVSgUYs2a\nVubNW87cuY3Mm7c8pZU17VyHd96ZiOldiA4YzmECCj+QaDroi1RU3MvChZlPBxURKUaabSF589BD\nQe66a3U4Z8FMpYQhurt38/OfN/Hgg53ccUfiqZSRXIdfYHoX7OW+/cANmIDCB3SG33t9+DUDXHDB\nEf74x6fx+TRNU0RkLNTzIHkTm+yY3sqakVwHu3fhXSIBw59iehsI/78N2ApsBr7GbbfdpMBBRCQD\nCh4kbyIBQCIjT6U0MyVKiPQuWEQChr8Fvko2q1eKiBQzBQ+SN5EAIJHkUylDoRDHjx8hMpPCBzxK\nJGCYigkofgEsBq6houJWpk/f9H71ShERGTvlPEjemKmSFokDiNiplHYVySee+A3Hjx/GsuYDO4GG\n8Cui8xvuoaTkPSoqpjB58keprfXT0jL2ctciIhJLwYPkzfz5tXR37yK2fLQtMpUyNrHSLjldg6nr\ncD9m6GMcpsfhk1RUdPHgg5uTJluKiEhmFDxI3ixc6OfnP2+iry86ABgCdoWnUnYC0YmVdsnpNkxv\nhWZSiIjkg4IHyZs77vDxqU91hhe1Ws/AQCllZYPMn19LIND5fgBgEifXMbzk9PCFtT7wgUYFDiIi\nWaaESckrn8/Hxo1tPP98O4sWzQVg+/ZXueGGlveLRZnESZWcFhFxC/U8SN6NVizqggvKMRUkA0RK\nTo+cJyEiItmjngfJu9GKRVVWniWVktOq4SAikhvqeZC8MzkNdjXJUPjf3dhJkIcPv0FJiYVlJS85\nXVZ2hJqap3nmGU3JFBHJNgUPkneRYlFBYDUmtyEyfHHmzE5KSz/P4OAOYBHDEyV3cPvtm9i4UYmS\nIiK5oGELybtIsSh7We344YtFDA5+m9LSL5Co5LRWyBQRyS31PEjeRYpFRQ9fxLuFmpoHWbRo04jT\nOkVEJPsUPEjeBQJ+tm1roqdn5LUuoIKNG9uSPC8iIrmiYQvJu2ee8VFT00lZ2UlUw0FExP0UPEje\nNTfDk0/6uP32GzE1HBJRDQcREbdQ8CCusXChn4qKRDUclBQpIuImynkQ10h1rQsREckv9TwUmY6O\njnzvwojstS5efnkrr766mZdf3srGjW2eDhzc3uaFSG2ee2rz4uJ08PAV4NfAO8Bx4J+AOQ5vQzKg\nD3juqc1zT22ee2rz4uJ08PBx4O+BBcBNmGGRp4AKh7cjIiIieeJ0zsOtcf9fg6k5XAf8yuFtiYiI\nSB5kO+fhwvD3N7O8HREREcmRbM62KAG+A2zD1B1O6JVXXsniLki8t956iz179uR7N4qK2jz31Oa5\npzbPrXxfO5PVAnbC9zDDGP8XcCTB89MwyZWXZnEfRERECtVh4FrgaK43nK3g4e+BRkwC5YERXjct\n/CUiIiLpOUoeAodsKAH+F/A6UJPnfREREREP+D5wEtPj8MGor/PyuVMiIiLiXkPAYPh79Ndn87lT\nIiIiIiIiIiIiIiIiIiIiUtTuY3guQ3z9hsuBzcBbmMWxdgAz4l7TADwLnMIkVz5HbELl/gTbeSDu\nPaAc+f8AAAV6SURBVD4EPB5+jxDwP4DyMf5ebnYfmbX5rAQ/b3+tjHqPycD/F36Pt4CfAhfEbUdt\nHuFEm+9P8LyO87GfWy4BHgaOYdprD7HtDTrOo91Hbtp8f4Lt6Dgfe5vXYBacDAJvA53AxXHv4brj\n/D7gd+Edtb+mRj1fA5wAvgl8BHMSvRWIXku5AfPL+DGNVAN8Chgf9Zpe4N647VRGPV8K/B54Jryd\nxcAh4H9m+gu60H1k1ubj4n72YuBrmIMuerGyfwV+i1nQbGF4m5ujnlebRzjV5jrOI+4j83PLc8BO\n4KPh5+8FBoCro16j4zziPnLT5jrOI+4jszavBHqAx4B5wBWYQGIXsTWbXHec3wf8ZoTnHwF+Msp7\n7AT+31Fe0wv8zQjP34o5QD8Y9VgTcAaoGuW9veY+Mm/zeL8B/iHq/5djIuBrox5bEH7sw+H/q80j\nnGhz0HEe7T4yb/N3gf877rE3MIvzgY7zePeR/TYHHefR7iOzNl+KaavodrkQcwwvDv8/Z8d5ugtj\nfRhTDvM1oAOojnqfZcAfgSeB45hA4T9F/ezFwHxMF8l2TFfX88DHEmznbsxB+BvgHmK7UxowUdOx\nqMeeAiYA9Wn+Pl6QSZvHq8dEmhuiHmvA3BX/OuqxXeHHFkW9Rm3uXJvbdJxHZNrmW4DVmC7bceF/\nj8ecY0DHeSLZbnObjvOITNp8AmAB56IeO4sJDOzrqCuP81uA2zDdJYsxXVZHgSmYCGYIM37yN8BV\nmANmEFMwCkz3yRDmIPoc5oT6IPAeMDtqO3cC12G6ZNZixnai79r+N/BEgv17DxM9FZJM2zze94E/\nxD12D/Bqgte+Gn4/UJs73eag4zyaE20+EdMNO4Q5ub5F5G4MdJzHy0Wbg47zaJm2+UWYNv4Opu0r\nMRWdh4AfhF/jieO8AvOL/1fM+hRDwM/iXvMvmIQaMFHPELA+7jW/ZXgCTbRPhX9ucvj//xsTmcUr\nxIMtXrptHm0i5sD7r3GPp3qwqc2da/NEdJxHjKXNN2GSy24ErgT+FpOQfUX4eR3nI8tGmyei4zxi\nLG1+E7APE1T0Y4Y5XsIsRAk5PM7THbaI1ofp+piN6U0YYPjS2/8/JqsTIot3xL/mlajXJLIr/N3u\nnTgGfCDuNZMx3WXHKGzptnm0VZiL2U/jHj/G8Gxdwo8di3qN2ty5Nk9Ex3lEum1+OfBJzJ3tc+Gf\n/e+Yk+pfhl+j43xk2WjzRHScR4zl3PJ0+PU+TLLl54DpmGEQyOFxnknwMAGoxQQF/Zgxlj+Je80c\nzFQdwt+PJHjN3KjXJHJN+LsdfGzHRLbRv/xSzNhPV4r77lXptnm0tZgo9kTc4zsw03jiE2wuwLQ1\nqM2dbvNEdJxHpNvm9nlsMO41Q0Sy0HWcjywbbZ6IjvOITM4tb2Kmci7GBBL2bApXHuffxoy9VId3\n5nFMl6w9B/WT4Y1/HhMZfQnTIIui3uNvwj+zMvyarwOniSSNLMR04VwdfuzPMFNI/inqPcZhpp48\nHX7dYuAgZp5qoXGizQk/N4g5QBL5JfAfxE7t+Zeo59Xmzra5jvNYmbZ5KeaO7QXMSbMGuAvT/rdE\nbUfHeUQu2rwBHefRnDi3rMEcuzXA7Zgei7a47bjuOO/AZImexRwAjzI8SloD7MV0x+wBViR4n7vD\nO3oK+BWxDXMNJnI6GX6PVzDjaPGrcs7ANPxpTON9l8IsKuJUmz/AyL07F2KKirwd/vopMCnuNWrz\niEzbXMd5LCfa/LLwzx3FnFt+w/BphDrOI3LR5jrOYznR5t/AtPdZzJDGnQm2o+NcRERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERE8ur/ANBpVY9jW9RvAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import sys\n", + "import getopt\n", + "sys.path.insert(1,\"/usr/local/science/clag/\")\n", + "import clag\n", + "%pylab inline\n", + "\n", + "from scipy.stats import norm\n", + "from scipy.stats import lognorm\n", + "from scipy.optimize import curve_fit\n", + "import numpy.fft\n", + "\n", + "ref_file=\"lc/1367A.lc\"\n", + "echo_file=\"lc/5404A.lc\"\n", + "\n", + "dt = 0.01\n", + "t1, l1, l1e = np.loadtxt(ref_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.005 , 0.01861938, 0.04473305, 0.06933623, 0.10747115,\n", + " 0.16658029, 0.25819945, 0.40020915, 0.62032418])" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "\n", + "fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029, \n", + " 0.25819945, 0.40020915, 0.62032418])\n", + "# fqL = np.logspace(np.log10(0.0006),np.log10(1.2),11)\n", + "nfq = len(fqL) - 1\n", + "fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.)\n", + "\n", + "\n", + "fqL\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.342e-01 5.077e+01 inf -- -5.530e+02 -- 1 1 1 1 1 1 1 1\n", + " 2 7.674e-01 5.065e+01 8.300e+01 -- -4.700e+02 -- 0.653018 0.587019 0.568277 0.567457 0.566281 0.566085 0.565773 0.566163\n", + " 3 3.298e+00 5.043e+01 8.075e+01 -- -3.893e+02 -- 0.414806 0.209135 0.141159 0.13784 0.133393 0.132728 0.131612 0.132761\n", + " 4 1.572e+00 5.010e+01 7.754e+01 -- -3.117e+02 -- 0.322539 -0.0834456 -0.273066 -0.284295 -0.297612 -0.299435 -0.302479 -0.300412\n", + " 5 5.908e-01 4.964e+01 7.386e+01 -- -2.379e+02 -- 0.302357 -0.214604 -0.654658 -0.688754 -0.723838 -0.729279 -0.736418 -0.733888\n", + " 6 3.713e-01 4.877e+01 6.953e+01 -- -1.683e+02 -- 0.284419 -0.200357 -0.96379 -1.05472 -1.13798 -1.15477 -1.17031 -1.16748\n", + " 7 2.709e-01 4.671e+01 6.269e+01 -- -1.056e+02 -- 0.277768 -0.185001 -1.13047 -1.34026 -1.52128 -1.56845 -1.6043 -1.60101\n", + " 8 2.135e-01 4.361e+01 5.281e+01 -- -5.282e+01 -- 0.277012 -0.185189 -1.16375 -1.49463 -1.83211 -1.9477 -2.03737 -2.03476\n", + " 9 1.764e-01 3.767e+01 4.019e+01 -- -1.264e+01 -- 0.282161 -0.184207 -1.17891 -1.53049 -2.01851 -2.24569 -2.46562 -2.46922\n", + " 10 1.508e-01 2.738e+01 2.645e+01 -- 1.382e+01 -- 0.289545 -0.182463 -1.18795 -1.52893 -2.08812 -2.41103 -2.87498 -2.90486\n", + " 11 1.349e-01 1.468e+01 1.390e+01 -- 2.772e+01 -- 0.293547 -0.180898 -1.1897 -1.52803 -2.10944 -2.46526 -3.22702 -3.34288\n", + " 12 1.358e-01 5.365e+00 5.378e+00 -- 3.309e+01 -- 0.295456 -0.179941 -1.19052 -1.52801 -2.11928 -2.48294 -3.46233 -3.79368\n", + " 13 1.868e-01 1.338e+00 1.633e+00 -- 3.473e+01 -- 0.297315 -0.17923 -1.19104 -1.52666 -2.12491 -2.48975 -3.55567 -4.30889\n", + " 14 6.248e-01 2.604e-01 4.517e-01 -- 3.518e+01 -- 0.299091 -0.178645 -1.191 -1.52463 -2.12805 -2.4915 -3.5672 -5.11363\n", + " 15 2.744e+02 2.611e-01 7.022e-02 -- 3.525e+01 -- 0.300248 -0.178286 -1.19075 -1.52307 -2.12961 -2.49161 -3.56337 -8\n", + " 16 2.745e+02 2.782e-01 4.368e-04 -- 3.525e+01 -- 0.300566 -0.178158 -1.19062 -1.52252 -2.13009 -2.49151 -3.5617 -8\n", + " 17 2.745e+02 2.805e-01 6.410e-05 -- 3.525e+01 -- 0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n", + "********************\n", + "0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n", + "0.238931 0.202434 0.232634 0.177249 0.153039 0.132988 0.297259 3285.23\n", + "-0.000915535 -0.00131061 -0.00195128 -0.00497899 -0.0226059 -0.0776175 -0.280541 -0.000206646\n", + "********************\n" + ] + } + ], + "source": [ + "P1 = clag.clag('psd10r', [t1], [l1], [l1e], dt, fqL)\n", + "p1 = np.ones(nfq)\n", + "p1, p1e = clag.optimize(P1, p1)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 3.525e+01 3.480e+01 3.006e-01 5.395e-01 0.891 +++\n", + "+++ 3.525e+01 3.431e+01 3.006e-01 6.590e-01 1.87 +++\n", + "+++ 3.525e+01 3.458e+01 3.006e-01 5.993e-01 1.34 +++\n", + "+++ 3.525e+01 3.469e+01 3.006e-01 5.694e-01 1.11 +++\n", + "+++ 3.525e+01 3.475e+01 3.006e-01 5.545e-01 0.997 +++\n", + "\t### errors for param 1 ###\n", + "+++ 3.525e+01 3.476e+01 -1.781e-01 2.430e-02 0.973 +++\n", + "+++ 3.525e+01 3.421e+01 -1.781e-01 1.255e-01 2.07 +++\n", + "+++ 3.525e+01 3.451e+01 -1.781e-01 7.491e-02 1.48 +++\n", + "+++ 3.525e+01 3.464e+01 -1.781e-01 4.961e-02 1.21 +++\n", + "+++ 3.525e+01 3.470e+01 -1.781e-01 3.696e-02 1.09 +++\n", + "+++ 3.525e+01 3.473e+01 -1.781e-01 3.063e-02 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.781e-01 2.747e-02 1 +++\n", + "\t### errors for param 2 ###\n", + "+++ 3.525e+01 3.511e+01 -1.191e+00 -1.074e+00 0.276 +++\n", + "+++ 3.525e+01 3.495e+01 -1.191e+00 -1.016e+00 0.598 +++\n", + "+++ 3.525e+01 3.485e+01 -1.191e+00 -9.870e-01 0.8 +++\n", + "+++ 3.525e+01 3.479e+01 -1.191e+00 -9.725e-01 0.91 +++\n", + "+++ 3.525e+01 3.476e+01 -1.191e+00 -9.652e-01 0.968 +++\n", + "+++ 3.525e+01 3.475e+01 -1.191e+00 -9.616e-01 0.997 +++\n", + "\t### errors for param 3 ###\n", + "+++ 3.525e+01 3.482e+01 -1.522e+00 -1.345e+00 0.865 +++\n", + "+++ 3.525e+01 3.432e+01 -1.522e+00 -1.257e+00 1.86 +++\n", + "+++ 3.525e+01 3.459e+01 -1.522e+00 -1.301e+00 1.32 +++\n", + "+++ 3.525e+01 3.471e+01 -1.522e+00 -1.323e+00 1.08 +++\n", + "+++ 3.525e+01 3.476e+01 -1.522e+00 -1.334e+00 0.97 +++\n", + "+++ 3.525e+01 3.473e+01 -1.522e+00 -1.329e+00 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.522e+00 -1.331e+00 0.998 +++\n", + "\t### errors for param 4 ###\n", + "+++ 3.525e+01 3.481e+01 -2.130e+00 -1.977e+00 0.874 +++\n", + "+++ 3.525e+01 3.429e+01 -2.130e+00 -1.901e+00 1.91 +++\n", + "+++ 3.525e+01 3.457e+01 -2.130e+00 -1.939e+00 1.35 +++\n", + "+++ 3.525e+01 3.470e+01 -2.130e+00 -1.958e+00 1.1 +++\n", + "+++ 3.525e+01 3.476e+01 -2.130e+00 -1.968e+00 0.983 +++\n", + "+++ 3.525e+01 3.473e+01 -2.130e+00 -1.963e+00 1.04 +++\n", + "+++ 3.525e+01 3.474e+01 -2.130e+00 -1.965e+00 1.01 +++\n", + "+++ 3.525e+01 3.475e+01 -2.130e+00 -1.966e+00 0.997 +++\n", + "\t### errors for param 5 ###\n", + "+++ 3.525e+01 3.474e+01 -2.491e+00 -2.358e+00 1.01 +++\n", + "+++ 3.525e+01 3.512e+01 -2.491e+00 -2.425e+00 0.263 +++\n", + "+++ 3.525e+01 3.496e+01 -2.491e+00 -2.392e+00 0.579 +++\n", + "+++ 3.525e+01 3.486e+01 -2.491e+00 -2.375e+00 0.781 +++\n", + "+++ 3.525e+01 3.480e+01 -2.491e+00 -2.367e+00 0.893 +++\n", + "+++ 3.525e+01 3.477e+01 -2.491e+00 -2.363e+00 0.952 +++\n", + "+++ 3.525e+01 3.476e+01 -2.491e+00 -2.361e+00 0.982 +++\n", + "+++ 3.525e+01 3.475e+01 -2.491e+00 -2.360e+00 0.997 +++\n", + "\t### errors for param 6 ###\n", + "+++ 3.525e+01 3.507e+01 -3.561e+00 -3.413e+00 0.363 +++\n", + "+++ 3.525e+01 3.484e+01 -3.561e+00 -3.339e+00 0.814 +++\n", + "+++ 3.525e+01 3.468e+01 -3.561e+00 -3.301e+00 1.13 +++\n", + "+++ 3.525e+01 3.477e+01 -3.561e+00 -3.320e+00 0.962 +++\n", + "+++ 3.525e+01 3.473e+01 -3.561e+00 -3.311e+00 1.04 +++\n", + "+++ 3.525e+01 3.475e+01 -3.561e+00 -3.315e+00 1 +++\n", + "\t### errors for param 7 ###\n", + "+++ 3.525e+01 3.524e+01 -8.000e+00 -6.000e+00 0.0178 +++\n", + "+++ 3.525e+01 3.515e+01 -8.000e+00 -5.000e+00 0.187 +++\n", + "+++ 3.525e+01 3.494e+01 -8.000e+00 -4.500e+00 0.618 +++\n", + "+++ 3.525e+01 3.466e+01 -8.000e+00 -4.250e+00 1.18 +++\n", + "+++ 3.525e+01 3.482e+01 -8.000e+00 -4.375e+00 0.851 +++\n", + "+++ 3.525e+01 3.475e+01 -8.000e+00 -4.312e+00 1 +++\n", + "********************\n", + "0.300605 -0.178131 -1.19059 -1.52241 -2.13019 -2.49148 -3.56144 -8\n", + "0.253864 0.205597 0.228999 0.191096 0.1638 0.131949 0.246154 3.6875\n", + "********************\n" + ] + } + ], + "source": [ + "p1, p1e = clag.errors(P1, p1, p1e)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAGp1JREFUeJzt3X9s4/d93/HnxZaj5dxOi12RZ+98bLhdaBhJDbLSHzrb\n5TIn2IY26dBOIbFsiLTCQdoOuHUrcMMgzZCAYS2G9uqua3FbD9kQjNQNaDYH2LXFUKW5UVqnimm7\nbmadUT+W5kxmTXvr6kSpVnt/UHeR1I9+8I7fL389HwAhivx8vp+3cJ+TXvx+P9/vFyRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvSA/iGwBvwh0AQ+A1zsakWSJKkn3AT+NvA08H7gs8AW\n8K4u1iRJknrQ48BbwHPdLkSSJJ3sHTGONbb39fdjHFOSJPW4M7QON/xqtwuRJEmn83BM4/xz4BmO\nP9Rwbu8hSZLa88beo6PiCAk/DXw38AJw+4g255544onbt28f9bYkSTrGl4EJOhwUogwJZ2gFhI8A\neWD7mLbnbt++zac//WmefvrpCEvqvMuXL3P16tW+HO9BttVu33ban6btSW2Oez/uf7NOca51vr1z\nLcy51vn2Uc611157jY997GNP0tob3zch4WeAIq2Q8CaQ3Hv9DrAT6vD000+TzWYjLKnzxsbGYq25\nk+M9yLba7dtO+9O0PanNce/H/W/WKc61zrd3roU51zrfPuq5FpWHItz2Z4F3AjPA39/3+CLwm4fa\nngM+8YlPfIJz5/pvWcL73ve+vh3vQbbVbt922p+m7Ultjnq/VCpRLBZPXUsvca51vr1zLcy51vn2\nUc21N954g2vXrgFco8N7Es50cmMPIAusr6+v92XqVn/58Ic/zKuvvtrtMjQEnGuKQ7VaJZfLAeSA\naie3Hed1EiRJUh8xJGjo9OvuX/Uf55r6nSFBQ8df3IqLc039zpAgSZKCDAmSJCnIkCBJkoIMCZIk\nKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnI\nkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAg\nSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmS\nggwJkiQpyJAgSZKCDAmSJCkoypDwAvBZ4MvAW8BHIhxLkiR1WJQh4V3AF4Af2vv+7QjHkiRJHfZw\nhNv+xb2HJEnqQ65JkCRJQYYESZIUZEiQJElBUa5JaNvly5cZGxs78FqxWKRYLHapIkmSekepVKJU\nKh147c6dO5GNdyayLR/0FvC9wKtHvJ8F1tfX18lmszGVJElS/6tWq+RyOYAcUO3ktqPck3AW+Iv7\nvn8P8CzwVeBLEY4rSZI6IMqQMAH8yt7zt4Gf2Hv+KWA2wnElSVIHRBkSPocLIyVJ6lv+EZckSUGG\nBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJ\nkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhT0cLcLkKJQKpUolUoA7OzssL29zYUL\nFxgdHQWgWCxSLBa7WaIk9TxDggbS/hBQrVbJ5XKUSiWy2WyXK5Ok/uHhBkmSFGRIkCRJQYYESZIU\nZEiQJElBhgQNrK2tLWZnZ5mengZgenqa2dlZtra2uluYJPUJz27QwGk2mxQKBWq1Go1G497r9Xqd\ner3OzZs3yWQylMtlEolEFyuVpN5mSNBAaTabTE1NsbGxcWSbRqNBo9Hg0qVLVCoVg4IkHcHDDRoo\nhULh2ICwX71ep1AoRFyRJPUvQ4IGxubmJrVara0+tVrNNQqSdARDggbG4uLigTUIp9FoNFhYWIio\nIknqb4YEDYy1tbVY+0nSoDMkaGDs7u7G2k+SBp0hQQNjZGQk1n6SNOgMCRoYExMT99VvcnKyw5VI\n0mAwJGhgzM/Pk0wm2+qTTCaZm5uLqCJJ6m+GBA2MVCpFJpNpq08mkyGVSkVTkCT1OUOCBkq5XCad\nTp+qbTqdZmlpKeKKJKl/GRI0UBKJBJVKhXw+f+Shh2QyST6fZ2VlhfHx8ZgrlKT+YUjQwEkkEiwv\nL7O6usrMzMy9PQvpdJqZmRlWV1dZXl42IEjSCbzBkwZWKpXi+vXrVKtVcrkcN27cIJvNdrssSeob\nUe9J+EFgE/g68OvAcxGPJ0mSOiTKkPBR4CeBReBZ4BZwEzgf4ZiSJKlDogwJPwL8K+A68DvA3wO+\nBHwywjElSVKHRBUSHgGywC8fev2XgamIxpQkSR0U1cLFx4GHgOah178CtHdJPOk+lEolSqUSADs7\nO1y8eJErV64wOjoKQLFYpFgsdrNESep5nt2ggWQIOJ3DYWp7e5sLFy4YpiQBcCai7T4CvAl8P/Af\n9r3+U8D7gb90qH0WWH/++ecZGxs78Ia/pKR43D1VdH193VNFpR61P9jfdefOHW7dugWQA6qdHC+q\nPQl/DKwDH+JgSPgg8JmjOl29etVfTpIkHSH0wfluwI9ClGc3/ATwA8AM8DSt0yH/PPBzEY4pqU1b\nW1vMzs4yPT0NwPT0NLOzs2xtbXW3MEldF+WahBvAY8A8cA74b8Bfo3UapKQuazabFAoFarUajUbj\n3uv1ep16vc7NmzfJZDKUy2USiUQXK5XULVEvXPzZvYekHtJsNpmammJjY+PINo1Gg0ajwaVLl6hU\nKgYFaQh5gydpCBUKhWMDwn71ep1CoRBxRZJ6kSFBGjKbm5vUarW2+tRqNdcoSEPIkCANmcXFxQNr\nEE6j0WiwsLAQUUWSepUhQRoya2trsfaT1L8MCdKQ2d3djbWfpP5lSJCGzMjISKz9JPUvQ4I0ZCYm\nJu6r3+TkZIcrkdTrDAnSkJmfnyeZbO9mrMlkkrm5uYgqktSrDAnSkEmlUmQymbb6ZDIZUqlUNAVJ\n6lmGBGkIlctl0un0qdqm02mWlpYirkhSLzIkSEMokUhQqVTI5/NHHnpIJpPk83lWVlYYHx+PuUJJ\nvcCQIA2pRCLB8vIyq6urzMzM3NuzkE6nmZmZYXV1leXlZQOCNMSivsGTpB6XSqW4fv36vXvS37hx\ng2w22+2yJPUA9yRIkqQgQ4IkSQrycIM0xEqlEqVSCYCdnR0uXrzIlStXGB0dBaBYLFIsFrtZoqQu\nMiRIQ8wQIOk4Hm6QJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAk\nSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElB\nhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUFFVI+EfACvA14A8iGkOSJEUoqpAwAiwB/yKi7UuS\npIg9HNF2X977+vGIti9JkiLmmgRJkhQU1Z4ESeq4UqlEqVQCYGdnh+3tbS5cuMDo6CgAxWKRYrHY\nzRKlgdJOSHgZmD+hzXcC1fuuRpKOsT8EVKtVcrkcpVKJbDbb5cqkwdROSPhp4N+e0Gb7AWrh8uXL\njI2NHXjNTwaSJLXs35t21507dyIbr52Q8NW9R2SuXr3qJwJJko4Q+uB8d69aFKJak/AU8O69rw8B\n3wGcAb4IvBnRmJIkqYOiOrthgdbahJeBs8AXgHUgmqgjaWhsbW0xOzvL9PQ0ANPT08zOzrK1tdXd\nwqQBFNWehI/jNRIkdVCz2aRQKFCr1Wg0Gvder9fr1Ot1bt68SSaToVwuk0gkulipNDg8BVJSz2s2\nm0xNTbGxsXFkm0ajQaPR4NKlS1QqFYOC1AFeTElSzysUCscGhP3q9TqFQiHiiqThYEiQ1NM2Nzep\n1Wpt9anVaq5RkDrAkCCppy0uLh5Yg3AajUaDhYWFiCqShochQVJPW1tbi7WfpG8yJEjqabu7u7H2\nk/RNhgRJPW1kZCTWfpK+yZAgqadNTEzcV7/JyckOVyINH0OCpJ42Pz9PMplsq08ymWRubi6iiqTh\nYUiQ1NNSqRSZTKatPplMhlQqFU1B0hAxJEjqeeVymXQ6faq26XSapaWliCuShoMhQVLPSyQSVCoV\n8vn8kYcekskk+XyelZUVxsfHY65QGkzeu0FSX0gkEiwvL7O1tcXCwgKf//znqdfrpNNpXnjhBebn\n5yM7xFAqlSiVSgDs7Oywvb3NhQsXGB0dBaBYLFIsFiMZW+qmM90uYE8WWF9fXyebzXa7Fkl9oFqt\nksvliPv3RrfGlY5yd04COaDayW17uEGSJAUZEiTpFLa2tpidnWV6ehqA6elpZmdnvZGUBpprEiTp\nGM1mk0KhQK1WO3CjqXq9Tr1e5+bNm2QyGcrlMolEoouVSp1nSJDUNw4vILx48SJXrlyJbAFhs9lk\namqKjY2NI9s0Gg0ajQaXLl2iUqkYFDRQDAmS+kbcZxEUCoVjA8J+9XqdQqHA8vJyxFVJ8XFNgiQF\nbG5uUqvV2upTq9Vco6CBYkiQpIDFxcUDaxBOo9FosLCwEFFFUvwMCZIUsLa2Fms/qRcZEiQpYHd3\nN9Z+Ui8yJEhSwMjISKz9pF5kSJCkgImJifvqNzk52eFKpO4xJEhSwPz8/JF3nDxKMplkbm4uooqk\n+BkSJCkglUqRyWTa6pPJZCK7E6XUDYYESTpCuVwmnU6fqm06nWZpaSniiqR4GRIk6QiJRIJKpUI+\nnz/y0EMymSSfz7OyssL4+HjMFUrRMiRI0jESiQTLy8usrq4yMzNzb89COp1mZmaG1dVVlpeXDQga\nSN67QZJOIZVKcf36darVKrlcjhs3bpDNZrtdlhQp9yRIkqQg9yRI0gnivkW11CsMCZJ0AkOAhpWH\nGyRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUlBUISEF/DywAXwN+J/Ay8BIRONJ\nkqQOi+piSu8FzgAv0QoI7wP+JXAW+NGIxpQkSR0UVUj4pb3HXVvAPwM+iSFBkqS+EOeahDHgqzGO\nJ0mSHkBc925IAz8M/EhM40lSXzt8U6nt7W0uXLjgTaUUq3b3JLwMvHXC4/AN1p8AfhG4AVx/gFol\naWgUi0VeeeUVHn/8cTY2Nnj99dfZ2Njg8ccf55VXXjEgKBZn2mz/2N7jONvAN/aePwEsA6vAx4/p\nkwXWn3/+ecbGxg68YVqWNGyazSaFQoFarUaj0fhT7yeTSTKZDOVymUQi0YUK1S379zDddefOHW7d\nugWQA6qdHK/dkNCOJ2kFhDXgY8Dbx7TNAuvr6+tks4d3REjS8Gg2m0xNTbGxsXFi23Q6TaVSMSgM\nuWq1Si6XgwhCQlQLF58EPkdrr8KPAgkgufeQJB2hUCicKiAA1Ot1CoVCxBVpmEW1cPGDtBYrvgf4\n3X2vvw08FNGYktTXNjc3qdVqbfWp1WpsbW2RSqWiKUpDLao9CZ/a2/ZDe1/fse97SVLA4uJicA3C\ncRqNBgsLCxFVpGHnvRskqUesra3F2k86iSFBknrE7u5urP2kkxgSJKlHjIzc3z3w7refdBJDgiT1\niImJifvqNzk52eFKpBZDgiT1iPn5eZLJ9s4UTyaTzM3NRVSRhp0hQZJ6RCqVIpPJtNUnk8l4+qMi\nY0iQpB5SLpdJp9OnaptOp1laWoq4Ig0zQ4Ik9ZBEIkGlUiGfzx956CGZTJLP51lZWWF8fDzmCjVM\nDAmS1GMSiQTLy8usrq4yMzNzb89COp1mZmaG1dVVlpeXDQiKXFSXZZYkPaBUKsX169fv3cDnxo0b\n3gRPsTIkSFIP2n9L4J2dHS5evMiVK1cYHR0FoFgsUiwWu1mihoAhQZJ6kCFAvcA1CZIkKciQIEm6\np1Qq8eKLL/LUU0/x6KOP8sgjj/Doo4/y1FNP8eKLL947BKLh4OEGSRIAzWaTa9euUavVDtyyend3\nlzfffJPd3V2uXbvGBz7wARKJRBcrVVwMCZIkms0mU1NTbGxsHNmm0WjQaDS4dOkSlUrFoDAEPNwg\nSaJQKBwbEPar1+sUCoWIK1IvMCRI0pDb3NykVqu11adWq7G1tRVNQeoZhgRJGnKLi4sH1iCcRqPR\nYGFhIaKK1CsMCZI05NbW1mLtp/5hSJCkIbe7uxtrP/UPQ4IkDbmRkZFY+6l/GBIkachNTEzcV7/J\nyckOV6JeY0iQpCE3Pz9PMplsq08ymWRubi6iitQrDAmSNORSqRSZTKatPplMhlQqFU1B6hmGBEkS\n5XKZdDp9qrbpdJqlpaWIK1IvMCRIkkgkElQqFfL5/JGHHpLJJPl8npWVFcbHx2OuUN1gSJAkAa2g\n8NJLL/HMM89w/vx5zp49y8jICGfPnuX8+fM888wzvPTSSwaEIeINniRJ9xSLRYrFYrfLUI9wT4Ik\nSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkK\niiokvApsA18HbgP/BjgX0ViSJCkCUYWEXwH+BnAR+D4gDfxCRGNJkqQIRHUXyKv7nn8J+DHgM8BD\nwJ9ENKYkSeqgONYkvBv4m8AyBgRJkvpGlCHhx4A/An4P+HbgoxGOJUmSOqydkPAy8NYJj+y+9j8O\nPAt8CPgG8O+BMw9csSRJikU7f7Qf23scZ5tWIDjsSVprE54DVgLvZ4H1559/nrGxsQNvFItFisVi\nG2VKkjSYSqUSpVLpwGt37tzh1q1bADmg2snx4vpkf55WgPgu4Fbg/Sywvr6+TjabDbwtSZJCqtUq\nuVwOIggJUZzdMLn3+M/AHwDvARaALwKrEYwnSZIiEMXCxa8Bfx34T0AN+Hngt2jtRfh/EYwnSZIi\nEMWehN8G/nIE25UkSTHy3g2SJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ\nkoIMCZIkKciQIEmSggwJkiQpKIp7N0iSdGqlUolSqQTAzs4O29vbXLhwgdHRUQCKxSLFYrGbJQ4t\nQ4Ikqav2h4BqtUoul6NUKpHNZrtcmTzcIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ6rqtrS1mZ2eZ\nnp4GYHp6mtnZWba2trpb2JDz7AZJUtc0m00KhQK1Wo1Go3Hv9Xq9Tr1e5+bNm2QyGcrlMolEoouV\nDidDgiSpK5rNJlNTU2xsbBzZptFo0Gg0uHTpEpVKxaAQMw83SJK6olAoHBsQ9qvX6xQKhYgr0mGG\nBElS7DY3N6nVam31qdVqrlGImSFBkhS7xcXFA2sQTqPRaLCwsBBRRQoxJEiSYre2thZrP90fQ4Ik\nKXa7u7ux9tP9MSRIkmI3MjISaz/dH0OCJCl2ExMT99VvcnKyw5XoOIYESVLs5ufnSSaTbfVJJpPM\nzc1FVJFCDAmSpNilUikymUxbfTKZDKlUKpqCFGRIkCR1RblcJp1On6ptOp1maWkp4op0mCFBktQV\niUSCSqVCPp8/8tBDMpkkn8+zsrLC+Ph4zBXKkCBJ6ppEIsHy8jKrq6vMzMzc27OQTqeZmZlhdXWV\n5eVlA0KXeIMnSVLXpVIprl+/TrVaJZfLcePGDbLZbLfLGnruSZAkSUGGBEmSFGRIkCRJQYYESZIU\n5MJFSVJXlUolSqUSADs7O1y8eJErV64wOjoKQLFYpFgsdrPEoWVIkCR1lSGgd3m4QZIkBRkSJElS\nUNQh4Z3AbwBvAe+PeCzpVO4e+5Si5lxTv4s6JPw48OWIx5Da4i9uxcW5pn4XZUj4q8CLwD+IcAxJ\nkhSRqEJCArgG/C3g6xGN0RPi/qTQyfEeZFvt9m2n/WnantRmED/BOdc63965FuZc63z7fp1rUYSE\nM8CngJ8FqhFsv6f4n6nz7fv1P1PUnGudb+9cC3Oudb59v861dq6T8DIwf0KbCeAS8CjwTw+9d+ak\nAV577bU2yukNd+7coVqNLwt1crwH2Va7fdtpf5q2J7U57v24/806xbnW+fbOtTDnWufbRznXovzb\neeIf7n0e23scZxsoA98DvL3v9YeAPwE+DcwE+p0D1oAn26hHkiS1fJnWB/U3OrnRdkLCaZ0HvmXf\n908CvwR8H/BrwO0j+p3be0iSpPa8QYcDQlxSeJ0ESZL6TlxXXHz75CaSJEmSJEmSJEmSJEmx+xbg\nvwJfAH4b+OHulqMBdh74HPDfgd8Evr+r1WjQfQb4feDfdbsQDazvBmrA68Df6XItkXkHMLr3/M8A\nG8C3da8cDbAk3zwT59uAL9Gac1IUvovWL3FDgqLwMPA7tC4v8CitoPDudjYQ19kND+otYGfv+buA\n3X3fS53UAH5r7/n/pvUpr63/VFIbfhX4o24XoYE1SWuv6Bu05tl/BD7Uzgb6JSQA/Flau3//F/BT\nwP/tbjkaAt9J64Jj3u5cUj96goO/v36XNq9s3E8h4f8A3wF8O/BDwF/objkacI8B/xp4qduFSNJ9\neuBrFEUVEl4APksrwbwFfCTQ5geBTVq3kv514Ll97/1dWosUq8DIoX5fobWw7NmOVqx+FcVceyfw\nC8A/Af5LJFWrH0X1e82LzekoDzrnbnNwz8F5emTP6F8BFoDvpfWDffjQ+x8FvgHMAu8FfpLW4YPz\nR2xvHPjWveffSuuY8Xs7W7L6VKfn2hmgBPzjKIpVX+v0XLsrjwsXFfagc+5hWosVn6B1luDrwJ+L\nvOo2hX6wXwN+5tBr/4PWJ7eQLK0E/ht7j9CdJKVOzLXnaN2xtEprzn0BeKaDNWowdGKuQevmd18B\n3qR1Jk2uUwVq4NzvnPseWmc4fBH4gciqewCHf7BHaJ2dcHi3yVVahxGk++VcU1yca4pbV+ZcNxYu\nPg48BDQPvf4VWueoS53iXFNcnGuKWyxzrp/ObpAkSTHqRkj4PVrHfBOHXk/QuuCD1CnONcXFuaa4\nxTLnuhES/hhY509f9emDwEr85WiAOdcUF+ea4tbXc+4sresYPEtrscXlved3T8uYpnXaxgzwNK3T\nNv6Qk08Vkg5zrikuzjXFbWDnXJ7WD/QWrd0hd59f39fmk7QuALEDrHHwAhDSaeVxrikeeZxrilce\n55wkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVIf+P9cYZ1EAfTlhQAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-4,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"black\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xt8XNV97/3P6GokWZYJwgbLWLKMHMuYGjsRxiaQ1Abj\n0nJLTDyEk8gPLU5f5FDatOa0aXuc8/Rc6qe5lCZPwS3FEJohQFsuIdiOkgAWGBRkaByPg7GwsSVs\nNAbfJPmiy5w/1uzRzGhGmtHsPbNn9H2/XvMCSzOz9yzt2fu31/qt3wIRERERERERERERERERERER\nEREREREREREREREREREREREREREREREREREREZFxOwAMxXl8L4v7JCIiIi72CeDCiMdyTPBwTTZ3\nSkRERHLHd4G92d4JERERyQ0lwFHgv2V7R0RERMQ+RQ6+9y3AFGDzKM+5KPQQERGR1BwOPTLO4+B7\nbwXOADcn+P1FF1988QcffPCBg7sgIiKSt7qAT5OFAMKpnodZmGTJW0d5zkUffPABjz/+OPPmzXNo\nNyTWfffdx3e/+91s78aEojbPPLV55qnNM2vPnj3ceeedMzC993kTPKwFPgReGOuJ8+bNY9GiRQ7t\nhsSqqqpSe2eY2jzz1OaZpzafWAoces+1wKOYaZoiIiKSR5wIHlYANcC/OPDeIiIikmVODFtsAwod\neF8RERFxASd6HsTFvF5vtndhwlGbZ57aPPPU5hOLk1M1x7IIaG9vb1eSjYiISAp27tzJ4sWLARYD\nOzO9ffU8iIiISEoUPIiIiEhKFDyIiIhIShQ8iIiISEoUPIiIiEhKFDyIiIhIShQ8iIiISEoUPIiI\niEhKFDyIiIhIShQ8iIiISEoUPIiIiEhKFDyIiIhIShQ8iIiISEoUPIiIiEhKFDyIiIhISoqyvQMi\nIvnEt8uH79c+uk52cfDkQU73n6a0qJSzA2c5r/g8Lqm8hBmVM/Be5sW7wJvt3RUZFwUPIiI28i7w\nsmL6CtZvWM/RHUc5evgoZznLQNEAF0y7gMuvvJyNGzZSXV2d7V0VGTcFDyIiNuru7mbpqqV0fLID\njgE3wkDNAHjg/aH32dy1me03bGfHlh0KICRnKedBRMRG93/zfjqu6IADwHJgJuAJ/bLA/Lvjig7W\nb1ifrV0USZuCBxERG7W93QY1QADz33hmhJ4nkqMUPIiI2GgAM0QRfsRTEHqeSI5S8CAiYqMiiiDI\n8COeodDzRHKUggcRERs1LWyCTqAa8994ukLPE8lRCh5ERGy0ccNG6t+qh1rgZ8AhYCj0yyHz7/q3\n6tm4YWO2dlEkbQoeRERsVF1dzY4tO2iuauaSqZfAC1C0qQj+GWa9MIvm0mZN05Scp0E3EREbhStM\nXt5FX20f5f3l4QqTvcW9/KryV9zVcpcqTEpOU/AgImIj7wIFBZL/NGwhIiIiKVHwICIiIilR8CAi\n4iDfLh8rH1rJzFUzqZhfQUljCRXzK5i5aiYrH1qJb5cv27sokjLlPIiI2MRKlgQ4M3CG90+8z0We\ni/jlA7+k7zN9cCXggf6hfnq7eindVMqK21Zkd6dFxkE9DyIiNvEu8PLwiof5ROsn2Pe9fez9h720\nb2w3gYMWyJI8op4HERGbhJfjvqIDVgEe6Hm8Z/QFslq0QJbkHgUPIiI2CS/HPTPihwVogSzJOxq2\nEBGxSXg57khaIEvykIIHERGbhJfjjqQFsiQPKXgQEbFJeDnuSMswC2QdRAtkSd5Q8CAiYpPwctyR\nyoHVQDtUPFoBP4S6LXVaIEtymoIHERGbhJfjjl2G+2MoO13G4j9bTMN/bWDO1+bw0dUfcVfLXSoS\nJTnJiUydGcDfAjcA5wF7gbuAnQ5sS0TENVqOtFB/dz1nnznLsR3HOBc8R4mnhKmXTKXxTxppXtqs\nRbMkL9gdPEwFXsWM8N0AdAP1wHGbtyMi4jrhFTXXZXtPRJxld/BwP/A+pqfBctDmbYiIiEgW2Z3z\ncBPQDjwFfIgZqvh9m7chIiIiWWR38DAb+EPgHeB64B+BB4Av27wdERERyRK7hy0KgDbgL0P//k/g\nMuCrwGPxXnDfffdRVVUV9TOv14vXq6QiERERn8+Hzxc9K+f48eymEiaquD5eB4BtwN0RP/tD4BuM\nLNq6CGhvb29n0aJFNu+GiIi7xFuue9aUWUwqmgSA9zKvZmJI0nbu3MnixYsBFpOF2Yx29zy8Cnwy\n5mcNmKBCRGTC8i7wsmL6CtZvWM/Lb77M/uP76a/q59pPXcvGDRtVLEpyit3Bw3eA14A/xyRNNgF/\nEHqIiExY8Zbr3j+0n/1d+9l+w3ZVm5ScYnfC5JvArYAX2IUZrvgjQCXURGRCi1qu2xowLgBmQscV\nHazfsD6LeyeSGicqTL4QeoiISEjb221wXYJfzoC2lraM7o9IOrS2hYhIBsRdrttSEPq9SI5Q8CAi\nkgFxl+u2DIV+L5IjFDyIiGRA3OW6LV2h34vkCAUPIiIZkHC57kNw3ivn8cHlH3CT7yYt0S05QcGD\niEgGVFdXs2PLDppLm7nk+UvgQSjaVARb4cLKC7n4Vxfz8IqHVShKcoIG2UREMsCqMHl2wVkCPw3A\njTBQY5Io3x96n81dm1XvQXKGeh5ERDLAu8DLc97nuHjXxZy+5rTqPUhOU8+DSBq0XoGkSvUeJB8o\neBBJg9YrkFSp3oPkAwUPImnQegWSqnC9h3gBhOo9SI5QzoNIGrRegaRK9R4kHyh4EElD29ttUJPg\nlzNCvxeJMFq9h/q36tm4YWMW904kOQoeRNKg8WsBkzi78qGVzFw1k4r5FZQ0llAxv4KZq2ay8qGV\nUYWfWo60UH93PTVdNZQ/XU7xj4opf7qcmq4a6u+up+VISxY/iUhyNLgmkgaNXwvA8mnL+atNf0Xn\nFZ1wJeCB/qF+ert6Kd1UyorbVoSf611gZuD4lvrY/Npm/M/4OXbwGB++/yHHHjiG/xk/m2/ZTPPS\nZs3UEddSz4NIGjR+LTC+3Jfl05bTsamDzhmd9K7upf+L/fR+oZfOGZ10bOpgxfQVI14j4hYKHkTS\noPFrgfHlvijZVnKZggeRNFjj1+cfOJ+CxwvgQcxjK+w/uZ9Pej85Ysxb8odvl4+bfDfx/sn3U859\nUbKt5DINyIqkwLcrepz6XPAcJZ4SKqdVUlpQyukbT5sLggeGhob4uOtj0wV9m7qg85FVJOzSb1ya\ncu6Lkm0ll6nnQSQFicapD398mNPXar2Ciaa7u5urbriKE5UnUs59CSfbxqNkW3E5BQ8iSfLt8rHw\njoXxx6n7UBf0BBTOW7ge+Bkjc18OJs59GSvZ9mTlSQ13iWsptBVJ0vJpyzm6+yhcHeeXHtQFPQGF\nF7nyAKuBV4FXQv8egin9U9jxy/glyjdu2Mj2G7bTcboD9gNHQ687BxUDFWzbto158+Zl7sOIpEA9\nDyJJuv+b99Nf1h8/SAiiLugJKCpvoRzTA/El4A7gThiYPMBdLXfF7UGorq7muR88x+Ttk6Ex9Jo7\ngC9Dz8oefu/O3yMQCGTok4ikRsGDSJLa3m6DQuIHCdWo3sMENFbewqzKWTznfS5usSffLh8rv76S\nU9efUq6M5BwFDyJJGmAgcZCwDNgKHET1HiKkUrY5F6VTJMy7wEvlyUrlykhOUvAgkqQiimAp8RPj\nPoKis0WsYQ11W+rgh1C3pY7m0uYJvSx3vldRTLdImKZrSq7SQKxIkpoWNuE/5h+ZGBcEyqCwvpC9\nTXuZ89k5FJ8oZtaUWXxU9BF3tdyF9zLvhFynIKqKosXqlsd0yz/y/UeytXvjZtX7ePOpNzl+/Di8\ngAkaSqBgUgFVs6rCi1x5qxP/3bU2iuQqHZkiSQpnx1/RASswF8EhoMvcZe54buL2MCQSno0Qzwxo\na8nNbnlrIayPr/jYzL4Jza6gC+reqmOHL7ljoWlhE/5Of3RwZVGujLiYhi1EklRdXc2OLTtoLm1O\nODSR72P8qcrXbnm71qXQ2iiSq9TzIJIk3y4fvl/74Goov6yc8mPlnCo+xY/5MU/901PMnjqbizwX\n0fqdVvo+0zfm0swTQb52y9vVo2KtjXL2mbMc2zFc7nzqJVOTGvYQyZbc/OaKZIF3QXTeQiAQYP2G\n9bz85sscPX6Unqoe3ut/zwQOeTbGP1752i1vV49K+JhaZ9++iWSCggeRceju7mbpqqWm63oV4IH9\nQ/vhMUafepejY/zjFc4ToQNmMCJPZOOW3OyWz9ceFZFkKedBZBwSjnmXkJdj/OOVTJ5ILkqnvoNI\nPlB4LDIOCce8rTLVuiMFovNE5izJnyms+dqjIpKsiXUmE7FJwjFvqwJlno3xj1dsnki+UKKjTHQK\nHkTGIeGY9zLgKeC3ganADqAbGAJPj4etC7ay8qGVNC9tzsuL6kShREeZ6BQ8iIxDwlkE5cBSOO/n\n53Gm5wzBm4PhJZuDQ0EOdx2mbFNZ3k/ZDA9XAGcGzvD+ifeZNWUWk4omAeTscIVTrIqV/mf8HDsY\n3ZPReEujgk1xnUSpXZmwCGhvb29n0aJFWdwNkdQFAgGuuuEqkzQZZ8z70ws/zROeJ+IPXxyC5tJm\nV03ZdOJiHzmVdf/x/dRV1XHtp65l44aNOZso6ZSo2Ts1RFWsrH+rPqeTS8UZO3fuZPHixQCLgZ2Z\n3r56HkTGYawx7+2btsPvJXixC6dsehd4WTF9RdTFvr+qf9wX+0RTWfd37Wf7Ddt1MYyRr2uASP5S\n8CAyDmONec99bG5OTdm0+2Kvi2Fq8nUNEMlfqvMg4oBwQmU8Lpqyaa3FUbeszpa1Gixtb7eNXizr\nbV0MI+XrGiCSv+wOHjZgRuoiHx/YvA0R18uVIkLLpy2nY1MHfQN90Rf7XmAb8K/Adnj03x5NaXGv\nERfDyPd7AvZ07Jmwi4XFkyvBpojFiSPy15gFiy2DDmxDxNVypYhQeHhhO8MX+x7gaWA5UTNFOrs6\nk17cK2oqqw3v5xZOzSLJ1zVAJH85MWwxiJnZbj0+cmAbIq5mJVTWdNVQ/nQ5xT8qpvzpcmq6asJF\nhNwgPLxgVcbsxdSpWE5aQxhRPS+vpf9+buFd4OXhFQ/zidZPsO97+9j7D3vZ9719fKL1Ezy84uFx\nT6fU0tySa5zoebgU6ALOAm8AfwHsd2A7Iq7l1iJCVj2BN596kxOHTjB4atBc0KuBdzEXeg9pL+4V\n1fPSTd4kAzo1i0QVKyXX2B08vA78F2AvMB34S8zpaD7wsc3bEpEULZ+2nL/a9Fd8fMXHcAUmByGI\nqYy5GbiJ6CGMWEkm70VeDLt6uwh6Egzop5EMmI3CSk7NInFrsCmSiN3Bw5aI/9+NKc7bAXwF+I7N\n2xJxNTdWDQxf/KZi8hAuZHgtjkqihzDSWNwr8mI4f9l8/EG/eb9e4FUgQLgQ0nu976VUsttq110/\n2sWRXUdMFc8rzfv1D/XT29XrWC6FplSKGE6n8PYBu4A5iZ5w3333UVVVFfUzr9eL16suOslt1l1+\n5xWdGbu4jSV88fspJg/hfIZzHAoZHsKwcXGvcDKgFbBEJE4yBANdA3Rs6ki6Pax2PTx4GG4mo7Uk\nNKVSssHn8+HzRc9KOn78eJb2xnC6PHUppufhQeBvYn6n8tSS19bes5bNZze7qkT13GVz2Xv9XjNc\ncQfRvQH7gD/EhPxWQBE5U6QT6t9OvVRyuJT3YAd8irTbI9yur0R8hlhD0NjSyO5Xdye9n8mYv2w+\n/uv8Gd2mSDzZLk9t92yLvwOuAeow91pPAxXAozZvR8T13FgoKWoKpXUBLAeux/QPdob+vRrYA/iA\nHwKPQdkrZeOaKWLlPxR9VGTaI7Lmww9D//XDUz97KqmaD+F2jfwMsRzqBciV+h0iTrN72GIG5nRz\nAWZUcwewBDMBSWRCcVsXt2+Xj2PnHTMXv3h5DZHLiddgAgobFmey8h/mPjaXvb174w5d0AXnfnyO\nFdPHHroIt6sNuRmpypX6HSJOs7vnwYv5SpViTj+rgd/YvA2RnOC2qoHLpy2ntLsUtgLnMfIO2upx\naIeih4tsr01RRJEZHklQ86H/xv6kaj6E29XKzYjHoV6AXKnfIeI01TzNQ27M8p+I3FY18P5v3s+B\npgMmSfIl4FnM1Mwahu+gP4b6wnp2vGX/qpdNC5vw/8RvejTiqUlutkK4Xa2ekgS5GU70AmhKpYjh\ndMLkaJQw6ZCoQjbW2LAN3c+SmnCi4BXxu7gz/XcYkewXM23Sc8LDjCtmOBZgBgIBZlwxg/4/6E/4\nnIZtDbzz6jtjvk+4Xaswg6PdwBAU9BRwwdwLKCwp5OThk5wZOkPwXND0VBSCp8jDpIJJKQfSCsjF\nbbKdMKmehzw0ViGb31rzWxSWFOok6DC3VQ0ckYNhJUqGXLrtUt55cfQLdzpajrRQUllCf7A/rTwF\nq12PPXWME4dOMOQZwlPgoWB6ARVXVnD82eOcu/YcXI0JkKwci1Ag3TvUm/J0WTdOuxXJJvU85KFR\np5OdguLHi+n/3X4z7/41wndtnh4P0xdMZ8HqBQoi8pAbphk6PX11xPtvA+Zh3/RQF027tahXZGLK\nds+DEwtjSZaNmuX/CsOBw9OYE+uXgC9D8KtBDtceNgV7ksh6l9zihmmGyS4A5dvlY+VDK5m5aiYV\n8ysoaSyhYn7FmMt4j5geG8CW6bJunHZrsZZV75zRSe/v9NI/tZ/ec7107u3kp3/9U77+x1/X0udi\nOwUPeShhln8PcABzEsyjlQ4lOW5YuTHZ2QpRF8TVvfR/sZ/eL/TSOaNz1OB2ROBsQy0I3y4fB44f\ncNW020gjSo7rhkAyQDkPeShhlv9rwGTMSTCAavRPMNXV1ezYsoP1G9bz8paX2X98P3VVdVz7qWvZ\nuGVjRpI3k52tMN4FqKKKYEFKtSASdf9XTqvkdOB0xmtKJGtEyfEMluvOBg3TuIN6HvJQwjvMDzDr\nF8RWGIylGv15ybfLx10td/HR1R8x52tzaPivDcz52hw+uvoj7mq5y1Xd2qkME0QOcezdvzd6aCaF\nWhCJejsOf3yY4MXBxO/Tmd3KkuHeFpuGaNxuvL1SYi/1POShRFn+Z4bOMFg9mLjCoGUIes/0svKh\nlYrubeCWO6XwXX8OSKU6Z9RMiMswXfdWlczYqpmjVIRM2NvRh1mAy5q1EVNToviFYjbuyl5lybgl\nx2Pl0Q2BU8uiS2oUPOShRF3D85fNx7/Ub06CUxh15cSrL7+aNze9qalpNtA0v9SFL4h9RC/hHQQu\ngK6Pu/Dt8uFd4B15MVkdes12YBAKzxRS+kopwaIgp4dOJxyqSbjctgezQo/1vq9E7Es1FE8tzvi0\n20jhYcoslOvOBi2L7g4atphAmhY2wTHMSbAEU2HwIHGT5zwFnuETshIq0xJ1ccuxthzvrId0NS1s\ngncxvQbzMKtn3oEpgN8IBX0F4e7p8BCHteDWM8BRYAAYhMHBQfoK+zg7dJaiC4s4ccMJfnX5r0YM\n1STs7bAuylZdjC+F9uVLwAqoPb82qz064WHKMrI+myYT3LZmzESVH6GojCkQCHDm9BmKf1JM/439\nsAo4DbQCPwfOQFlVGefXnk/93fVs37Qdfi/Bmym6T0ku3yk51Wsy1lDObbffxtN3Pk3Pyp643dOn\nrj8V7p4eYCC6GNR1DP97BeHiUENDQwx1DTH1x1PZsmXLiATREcmWFitvwiVlxmNZw5R9T/Zx5Nkj\nBG8KjjlEk8sS/p0gr3pY3E49D3kuEAhw1a1XMa1xGk8UPEH/f+k3S5X9EPg3YB9UXVLF9Ruu55+f\n/GcOvXiIreu2Uj6pXNG9TXL1Tsm3y8fCOxY60msyVtIbQHByMKkEwLgLbo1jKnLCOhjLMIuJJeil\ns3OK63h6erwLvGxdt5VvffdbXPc311HzQX4v2uWGeiWinoe89uBLD/L1dV+n77w+k/Bl3TlFLkx0\nCG4pvYXrl17P5tc2s379eo4dPEbv0d7hJZNjKbpPSa7eKS2ftpyju4+aMs/xpNFrMlbS2+tPvs6M\nqTPY69kb/w0igq64C26NYypy1HLbMWtmcBoKflYAxdHrY9hdZjydnp6JsmiXlkV3B/U85LE3nnqD\nvs/0maSzMe7gYu8EmcOEi+6dGt/P1Tul+795P/1lEetQWDkF/4rpufoB+N/xU3hpIUXzilJqq1Gn\nYlbB4//xOO92vJvUkuYbN2ykuL847eJQVvf/Re9dhOdRT1SxJe6BoRVD1FXWcfiVw/Ts7gn30tmZ\n75DL+TGZomXR3cGdtzwyLrHjyL1He+EPSepEOuJOMNFyx3kc3Y+Y8vca9Hf307u3l66/7mLXgl1s\nXr055amV2b5TGu9U0ba324brgiTKKbgFhmqGhhec2tfL4Q2Haa1q5SueryTcTsKhnB7g32DgdwbA\nT1K5BnEX3BrHzAPrzn3tr9ayefbmrEwFzOX8mEyZKD0sbqeehzwyovegiuEpZWPcwY24EyzHzMrY\ng7nLfIi8j+6dKvOb7TultEo9W8mCsTkE8XIK+szPB28cpO+LfaNuJ2EJ9cj3vRr4GWOW0/Yu8LL6\nc6vHXRwqVjbXschEfky2ZtC4bR8kPep5yCMjeg+soCGJbPHX3n5t5EkrYsnmhm0NvPOqc8s1u4FT\nZX6zfaeUVqnnpZhACqLviOPlFERe+MfYTsIS6pHvawWwEbUVPCc8zLhixohcgxG9OykUh4qVzQTX\nTOTHuKHuiBv2QdKj4CGPjOjytIKGREMQnVD/tjmRfvaWzw6ftHqJLswzBO/1vsfKh1bmdWXJqDK/\nedR1PN6u8KaFTfiP+c0F3MfYOQUptFvCoZzBmPeNCGABLt12Ke+8ODKIja2qemboDMGCIPwCKDRJ\njkUUQRV0lnYy85qZDHmGKPGUUHpRKZ4rPATfCnL28NnhZOEEBaqcnByTMKgC2/Jj4gaTp4E90PFx\nB9MWT6NscpmjFVBVJTL3KXjIIyPumCKDhs9jssdfBobA0+Nh+oLp4Tu48EnL6rK3xrZDwcNA14Dp\nes7jO4J8LfM73jvp8AX+ig6YxNgLTqXQbolKqJ89d5aBYIL9HeXOO5nene7ubpauWmo+T6j2Q/9Q\nP737eil6tIiBmwbMUMlPMQWqrJ6UiO8BXdDxQgcPvfwQ6661vyvJjvyY2ByXM0NnCJ4LEhwKEiQI\np4CvRbygh6jvfNATNPkrDvYCKLcj9ynnIU8EAgE+PPxh9DhyZN7Cs8B+KC8pp6ahhuv+x3V86zvf\nCmeLh6vURXbZT7Bs7/CsiCRyRHJJwvwCGPXzROZqFPUWDecQ9ALnGJlTkEK7WbUJDr14iJ7dPZzz\nn6Nndw933nSnYzNTEs5kOIAJHKyfL2PU78HgjYO8/uTr496P0diRH7N82nLe/t7bdJ7fSe+UXgb7\nBhk6PkRwaeiPMyXiM/UyfIORwe98rtY+kWG5dRaUuML1HCr7RuY2WN2+h6C5tDlhV6B10nr/b95n\noCbBFzfP7wjCd31lHa6uKJiq8XaFR97NBwIBrrrhKjpOd5g78mWYZMbIobALSLvdRrvzvvCNCznw\nlQPMXDVzXAuMJbzbjR1uKQcqGT1p0qHvgR35Mfd/8366L+82f6elwD7gVsxNxHJM/kjkDBoPGf+s\nuVr7RIbpL5QHwvUczmfM3IZErJPW3MfmJlWYJx/la5lfO7rCrbY5/HeH6VveZwKEGUQvFHUaPO96\nCN4cTHs7scMZUy+ZSv2X6/E/6qf7yu5xJdklvNuNN9xSGOdnlgx9D9KaYhvEnAf2YIKhGszf6TqG\nc6GsYGI7Gf+sUQFtbI7VOThQdCDvc6xynYKHPBC+o/IwcuW/ISjqLaL+vydXCW8i3xFYAZRvacRJ\n+/WYC5jNFQUzYdQLcpKfx2qb+Y/Nx1/jNz+MSWZkCMp+VMbUrqlpbyfenffae9by8pUvjzvJLuGx\nHS9/I8srVPp2+Xhoy0O0fruVwRsHRwRLJ797knOnzoUrwka29cfHP4Z+hgOGEoYDJGtY5qnQhq7L\nzmcNB7RWT1ZMbklfV1/e51jluvy9EkwgUXdUsSd0YPa22WxdtzWp98pEtrfbZXtqpd3s/Dwj7t5j\n7hr7TvQxlaksu3eZbXeN1h34z5/7OdyV4ElJdK8nPLbjTWXO8mJYy6ct5+4H7jaBQ5xg6eSik7Q/\n0M6p60+NCCyK3y42wy5WsBCMeVi5UNYMmix81rg9WTGfUbMu3E0Jk3lgvAlx8YQTJ8cozCMTU9Sx\n1sOIJbOD64JjFp+KlEyxIKvI1UBJekl2Ucf2KUyp7UeBvcC/E73w1VVkbDGseO7/5v30FPUkzkXY\nb1YWjZfk2D+t3yS0WsGClYsSWTirHDgv9HsrfyX2O3/Qmc8aCATY9uA2Oh/rZKB3IKWCXIFAgLX3\nrGX+svnMXTaX+cvms/aetQQCAVv3Ucam4CEP2Ll2Qmy2d+EThRQ8XkDBzwvYf3I/F11zkSrBTWBR\nx9o4Vq6MlUz1y/AsCatUdjxJBMkj1q6oDb3fzZgeDWu12cfMo2R6CaV7Sil9sjTjVUHb3m4bHm6I\n5yiJL7orwHPSMxww1GGCg1qigwQrmIicleUj3AZlr5TZ/lkffOlBaq+uZfPZzfiv83Nu8rmkA8LY\n1+69fi/+FX42n91M7dW1PPTyQ7btp4xNwxZ5wM61E2K7uOPNjXd6Dri4V9Sx1k3ac/WTKRYUzulJ\ns3t9xNoVVsJggtVm7yi9I2td5gMMjJ6LMFpNjckw6fxJnHvhHIOfGxyedbE/9JoXMMW4gsA7mOCp\nBvP5Q+eNsu1lfHvTt22vZRFO7o6tgptEvsWI10L4WOn7TB+vP/m6I7U3JD4FD3nAjoS4RFQJTiJF\nHmtdvV0EPQm6ApLM0o+aPhmnsunjvY9TMrUkOtEvzmyistYylmxaktRnCG/Tmn0QT5anJRdRNPrU\nV2tYIsFF9/zK85n/p/N586k3OV5wnKGfD5m2KoGCigKqZlXxqdWf4rZP3sbrT75OW0sbAwxQRBFN\nC5vY2LqR6upq2z9Xwiq4SQSEKizlLgoe8oCTCX76wkqkyGNt/rL5+IP+tLL0wwmYMVUOIyubel7w\nRCf6xcyjol7bAAAgAElEQVQmmtI/hXd/+W7SF7vwNl1cSbRpYRP+4/6RtTRCwVJRTxEDnQMJL7rX\nLbmOR9Y9ktQ5IZN366NWwR2j11SFpdxFwYOMaqJ8Ycc7p34is2NmTjgBc5RFtfqn9Q/fncbOJjoE\nt5bemtJdcnibWZ6OOZqNGzbyk9/+Cd1Lu83S5FawdA4KzxTSdE8T+/5tH910Z2WZ9/EaMV02MiB8\nGeiF8qnlcXtNJ/I0cjdSa8uoJsoXVqv8pc6OXJtwADLaolorwPNo/OJTZduTH64Ysc0sT8ccTcuR\nFhZ+baEJZk8c41xRKJidbYLZhpkNVFxUYX5vw1BlpoLnuAFnklVwNY3cXfLjzC+OmShfWOV2pM6O\nXJtwADLYMWoCYF1dHdeUXmPL2PyS25fw5N1P0vepvvjDAuMMSuwUOTwUe2H/xd//glc9r9p6Yc9U\n8JxOwGlnYrikT8GDjGqifGGV25E6O3JtotZUGWU1zUnFk2wL3tZdu47bWm9j/Yb1vFb9GkdajnDm\n3BkmlU1i+iems/RTSx1LGByPTFzYMxU8pxNwOpkYLqlT8CCjmihf2ImS2+E2UdMnOzdnrIeruro6\nZ3qS4l7YTwN7oOPjDqYtnkbZ5LK0eiIyFTynE3DmW+XXXKciUTIq7wIvzUubabylkamXTKXEU8K5\n4DmOHTyG/xk/m1/bnBeFouys0ukWyVRvtEu6lf+W3L6Esu1lcSublm0vY8nt2RtCyLa2t9uiC0JF\nVvb8CgTvCo4orJUqBc+SKgUPMqZkqgDmOjurdLpFpv5udlT+W3ftOg60HqC5tJnGlkYatjXQ2NJI\nc2kzB1oPTOjiPyMu7DZU9oyVj8GzOEvBg4wpqtvUppOV2+Tjmh6Z+rtFVf6L2Y5V+S8Z1lDC7ld3\n886r77D71d088v1HXJN7kC1RF/ZeTKXIFNaDSEbc4LkXs/7HY7Dn0J6slaXPZA+aJE/hZA7L1PSq\niZBMmIncjkz9vexahTJZE+H4yKbwjKepmEJa52H7EEN4Bspn+qAKU3PhAKZ09XUQ9AQdL0sfCATC\n5cgjZ9T82T1/ZnrQNI3aVRIdgpmwCGhvb29n0aJFWdyN3BVv3YnImRA7tuyw5a5t7rK57L1+b8Lf\nN2xr4J1X30l7O/kuU3+v8HaOd8CXEz/Prr+bjg9nBQIBrrrhKjOd9VOYglF3kHBmSmNLI7tf3T2u\n7dx090280foGwRlBs614Caxj1GMYjwdfepCvr/u6CV5ivhuFLxSOXJrcwX3JFTt37mTx4sUAi4Gd\nmd6+hi1yWKa6pTUeag+n/l6xyYoNTQ22rEKZLB0fzrJ6xYo+KjIX1siltWOlkZ9TXV3NJy/+pCnG\n1YftQyOjiRr66sMMl/iA7TA4OJjRfZHkOBk8/DdM7PgdB7cxoY3Iwo5k45cqH5MJs8GJv1e8ZMUT\nxSccvcjE0vHhLO8CL1vXbWX2JbOHFwiLXFqb0H8Ppj8zJXyMRq77YeU+/CtmuW4f7D2w19Z8g/B2\nI2eS3BF6TEUzQVzIqVuCTwN3A78i8T2JpClT06smSqEopznx90q4TPEYq1DWv23f303HR2aEe3hs\nWiAsnvAxaq370UvCBcs6NnXYlm8Q3m68NU5cvAbJROZEz0MF8Djw+8AxB95fQjLVXWx1m9Z01VD+\ndDnFPyqm/OlyarpqwsmEuSqTmdxO/L3i9mZYJ1vrIrMH0wX8Q/MoerHI1r9bPh8fbhLVw2OtB/El\nzN35tXDrjaktEBZP+Bi1eq0cmBY66nYDmOM5srfjFOrZciEnQrbvAz8Gfg78tQPvLyGZWncinyu7\nZXJBLCf+XnF7MyIXfIqzCuWdpXea5Zptks/Hh5tEzYhwaC2O8DFq9VpBRmbShLfrYWRvR19oX34b\nE1ioZ8sV7O55WAMsBP489G8NWThIVfnSl8kaFk7UkhjRm9EL9APPAgft245kXyYKaYWP0Y+BzwMD\nZGxotP6tejiHGY6J7O2wetB+AzwGnoc96tlyATt7HmYCfw+swBwCEJ12E9d9991HVVVV1M+8Xi9e\nb+6vl+C0yAV+7FhtcCLKZI0Cu2pJRNaLOLL/yHAvQw/Dd2zXYrqcX8EEDqegal5VXq1HMhE5vSZH\n7DHae643I/kG1nYP/91h+g73RfeWwXAP2hDMa5k3rqmouczn8+HzRQ+hHj9+PEt7Y9hZ5+EW4N+B\nwYifWZPFBoFSou+RVOdBsi7XahT4dvl4aMtDtH671cx9twoH/TYmt6ERzYcX26y9Zy2bz27O2DEV\nCASYccUM+v+gP+Fz3PadzJZ8qvPQAlwG/FbosRB4E5M8uRANYYgL5VKNgkAgwLPffpZX/s8rw0Vz\nKhju0u1A8+HFVlFDo6cwSYyPY4YPnvfwzpF3kl78LBktR1ooqSzJme/kRGZn8NAD+CMeuzGpLh+H\n/i3iOrlSo8Cq5/Cjt35EsDIYHSRYXbpVaD682MrKs1jy0RI8j3pM/YUvAV+G4FeD7Ji6I+nFz5Lh\nXeBl9edW58R3cqJzusKkNWlMxJVyZUGscD2HPqCE+EHCaN823bHJOEVVnkxz8bNk5Mp3cqJzOnj4\nHPAnDm9DZNxypUZBVOW/eEFCLyZNWXds4oBMVbOF3PlOTnS6FclBiVaf27hBMyxSlSs1CqIq/13A\n8AwLGJ5lYZUtjq0oqfnwkqZMVbOF3PlOTnRaGCvHxFvLwL/Cz+azm20de5wIYheUmr9sPmvvWWtr\nAphdoir/1RG9toFVBbCBkRUlH4Oyl8t0xyZpCR9/setc/CuwFbo+6hqzGmsmq7mK89TzkEMCgQDf\n+pNvxV/LIGLs0Y5iMaPtQz70ekQtARxRs9/f5efJq5/k25u+7Wg7pmpE5b+lmDTkV4ATDNeqiK0o\nOQS1LbVsXbc1o/sr+aVpYRP+d/3DgWrEd4YuKNhWwIrpo1djzWQ1V3Geeh5yhNXjsO/YvqxNx8un\nXo+oBaUcTgCzw4jKfwcw6wBYVVU0y0IctHHDRipeqUi4zsWp60+NWY01k9VcxXkKHnJE+GKXKNMe\nHL9Q5NoFdzSZTACzQ1QS2YvlFB8rpryknJqGGso/Ua5ZFuKoliMtBCcH0/rOpPqd0zCHuyl4yBHh\nL14Wp+Pl2gV3NJlMAEvGWCdKgK3rtnLoxUP07O7hnP8cPbt7OPTiIc2LF8d5F3iZMXXG8HcmNvfB\nB51dnaPmC6X6nVs+bTkdmzronNFJ7+pe+r/YT+8Xeumc0WmWAx9jmEScpeAhR4S/eNaKifE4fKFw\n2wU3HW6rLJnOiVLz4iUTwt+ZHkzezTzMcuB3AF44ueLkqMOXqX7nNMzhbgoeckT4i2dNx4u9UBx0\n/kLhtgtuOtxWWTKdE6XmxUsmhL8zVtJkisOXqX7n8qmnMx8peMgR4S+etTxt7HS8V5yfjue2C246\n3Ha3ns6J0rvAm3BIY+u6rWbOvEiawutcfMC4jtWodTJivnNl28tYcvuSqOfnU09nPsqdW8UJbuOG\njWy/YTsddJgCQKHlaa0CQDu27HB8quSIfcjhIkR2LY9tF50oxe3WXbuO21pvY85VczjpORn/SaMc\nq9br129YT1tLzFTv1pFTvcM9nQ4vBy7jo9bPEW642LlhH+yS7Sp2sfUyDuw/oBOluF51dTU102rw\nB/3jOlarq6uTXsI7XNsk3nLgOdbTmY90RsoR2b7YuWUf8kHcAlVbiS45HUknSnGRTF3Ul9y+hCfv\nftJ8T2J6Osu2l7Fk05Ix3kGcpJwHmXCyXZY6br2MqzGJsAcZHg8+BfwH8Bz8oOUHmuMurpCpfCFr\nOfDm0mYaWxpp2NZAY0sjzaXNHGg94KoKsBNRolHWTFgEtLe3t7No0aIs7oZMJFF3/dYqlRF3M5ko\nSz1/2Xz818Xp9u0FWqHkQAk1M2o4dOgQ/b/bD1MxGe7dZl89PR6mL5jOgtULaF7arIRIySjfLh+b\nX9uM/xk/H7/3MadPnYYhKCgtYFL5JBb/1mKefuDpnCpXn4t27tzJ4sWLARYDOzO9ffU85IBs3ynn\nEzdUyYybHNkLvAochWBhkI8CHw0HDk9j5tR/CfgyBL8a5HDtYRXKkaywZvd84/5vABD8nSDBrwYZ\n/H8G6V3dyyvlr+RcuXpJnYIHl3PrehKxAc3cprlcuuhS5l4519UBjhvmjo+olxFTdKf/9/s5UXzC\n7Ococ+pVKEeyyQ2BuGSPggeXc+MXdERAs3QvewN72bdoH3tX7XVNgBOPG6ZEjqiXkShA8GAWv1Kh\nHHEhNwTikj0KHlzOjV/QEQHNOCvOZYMbqmSOSDiLFyBYa5h4yHqwIxKPGwJxyR4FDy7nxi9oVEDT\nC+zHdQFOIm6okhlbTpoeRv6NrTVMsrgQmshoUgnElbeVfxQ8uJwb7pRjhQMaa6z+PNJabS+T3FCW\nOrKc9P6X9jNl0pSRf2NrDZPzyHqwIxJPsoG4W/O2JD0KHlzODXfKscIBjTVcUUhaq+1lkpsWkbJO\nqicqT4z8G1trmAxiaj1E1n8YZT0AkUyJCsRPYW4aHgceg6Lni3ip9SXmXjmX+5vvd13elqRPfZ4u\n58Yqa+EKcwFMhUSri30Pw7kPlpiTRLYLu7ipSmY4d+R8TNC1nOi/8UdQ1l/GN//lm+zetjup9QBE\nMsUKxD/61484vuc43Iw5H/TCwNMDHPj0ATOc+UNGH9Zscc+wpiRPwYPLpbqYTCaEA5rBPnMnsQxz\n8QNz8ohHJ4kR2t5uGy5PvRpT5+EVwoWrpvRP4d1fvmv+xjdnc09FRrIC8bW/Wsvmhs3DNw2RCdSg\npN88peAhB6SymEwmWAHNpVdeyongieEudh86SaQgKhm2HLNSaoRp26apZ0FcLxwEw3ACdeRNROTM\noVhK+s1ZynmQcamurubWVbcOj9WXY5L7XJbc6WZuTIYVSdWoCdQwPKwZj5J+c5aCBxm3JbcvoWx7\n2fDMBZ0kUuLGZFiRVCVMoAbTE9EPPEvcpN9MzXAS+yl4kHGLXfXuwp4L8Tzr0cyAJI0IvkDtJTkn\nHARbxc6smwirJ+JyoBn4DSZ58jHgH6Hq3aqMz3AS+6hfVNISm48RCARcldzpZm5MhhVJVcIE6ilE\nJ05G5vQcgltKb+GRde7J5ZLUaEluERFJSyAQMAnUXz5hriq9mJoPd5MwUbKxpZHdr+7O6H7mEy3J\nLSIiOS1uAvVkNPsqjyl4kAnDt8vHyodWMnPVTCrmV1DSWELF/ApmrprJyodW4tvly/YuiuSsETk8\nWpclryl4kAlj+bTldGzqoHNGJ72re+n/Yj+9X+ilc0YnHZs6WDF9RbZ3USRnxSZQV56r1GyiPKbg\nQSaM+795Px1XdMStsd9xRQfrN6zP4t6J5D4rgXr3q7vZ98t9WV+ETpyj4EEmjKilxGO5bOlwkVzn\npkXoxH4adJIJI6ocdCwlcInYyk2L0In91PMgtnJzUqLKQYuI2EPBg9jKzUmJKgctImIPBQ9iKzcn\nJaoctIiIPdRPK7aKWp431gxoa8leUqLKQYuI2EPBg9gqKimxF3gVs2COBwhC57lOAoFA1i7UsWtx\niIhI6jRsIbYKJyVaK+rNA+4IPbxwcsVJaq+u5aGXH8rmboqISBrsDh7+EPhP4ETo8Rpwg83bEBcL\nJyW+xvCKejG5D32f6eP1J1/P1i6KiEia7A4eDgH3Y1bMXAz8HHgOmG/zdsSlwkmJH6CCTCIiecru\n4OHHwBagA9gH/CVwCtAcuAnCqm9fWVipgkwiInnKyYTJQmA1UApsd3A74jLV1dXUTKvBH/RDHyOS\nJrkAFDuIiOQuJxImF2DS5c4Am4DbMb0QMoE0LWyCd4mbNEkjdBzqUNKkiEiOcqLn4TfA5cAUTM/D\nE8BngZ3xnnzfffdRVVUV9TOv14vX63Vg1yRTlty+hB+s+QGDNw6apElLKGly8MZBXn/yddZdq8L3\nIiKj8fl8+HzRpf2PHz+epb0xEo1K2+mnwAHgD2J+vghob29vZ9GiRRnYDcm0uVfOZe+qvfGPsiFo\nbGlk96u7M75fIiK5bufOnSxevBjM5IS4N+dOykSdh4IMbUfcpgglTYqI5CG7hy3+N/ATzJTNycAa\n4Frgf9q8HckB4YJRCXoetIqliEhusrtHoBp4DJP30AJ8GliJqfcgE4xWsRQRyU92Bw+/D9QBk4Bp\nwPXAz2zehuQIrWIpIpKf1G8sjtEqliIi+UnBgzhKq1iKiOQfzYKQCSEQCLD2nrXMXzafucvmMn/Z\nfNbes5ZAIJDtXRMRyTkKHiTvPfjSg9ReXcvms5vxX+dn7/V78a/ws/nsZi0PLiIyDgoeJO+98dQb\n9H2mT8uDi4jYRMGD5L22t9u0PLiIiI0UPEjeG2BAlS5FRGyk4EEyKhuJi+FKl/Go0qWISMoUPEjG\nZCtxUZUuRUTspeBBMiZbiYuqdCkiYi/110rGtL3dBtcl+OUMaGtxJnFRlS5FROyl4EEyZkTiYi/w\nKhAAPLDv1D7W3rOWjRvsv6Cr0qWIiH00bCEZE5W42AM8BcwD7jCPc39wToWbRERygIIHyZioxMXX\ngOWocJOISA5S8CAZE5W42I0KN4mI5CgFD5Ix665dx4HWAzSXNlNypkSFm0REcpSCB8koK3FxziVz\nMlK4SatpiojYT8GDZEUmCjdpNU0REWdoqqZkxZLbl/Dk3U+aolEzMGHsENAVKty0KfnCTYFAwNRw\neNvUcKAfhgaG6P6om77rQkWpLDFJmeuuXWfvBxMRmQAUPEhW2FW4qbu7m6WrltJxRYcpQNULPA0s\nBX7B6EmZDhWlEhHJdwoeJGvsKNy0+o9Wm8BhJiZweApYhpkKeh5KyhQRcYByHiSnHT141PQuWEWn\nPMB+TA2JQrSapoiIAxQ8SFalMxsiEAjQ+WGnCRisolMlwFFMQFGNVtMUEXGAbr0ka0bkK3iAIfB3\n+dl+w3Z2bNmRMPfhwZce5Ovrvk7fYJ/pXQhg3iMYeh8PZvjiKUxQEZmU2QllraklZYqIyDAFD5I1\nUfkKltBsiA46+MK9X+Bl38txXxte3nsPpnfBChiqgQ8wQUQ5sBqz+NYrhIOTKf1TePeX72o1TRGR\ncVLwIFlz9ODRUZfoPtpyNOFrw8t7n4/pXQATMCwDNmMCipmYAOL6iBcegltLb1XgICKSBuU8SNaM\nWKI7UsxsiMjciPqmen7z3m/Ma63ehSAmYCgHbgd+DBzEDFMQ+u+hUA2J2zVcISKSDvU8SNaEl+iO\nF0BEzIaIyo1YiqnjMInh11oBQ2R+w5eBVuDn4DnrYfqF01m5bGVKNSRERCQ+BQ+SNU0Lm/B3+qNz\nHiwRsyHCuRHnA08CKxjOdbBeG5nf8DM4j/Oou7iOpt9pYuMGBQwiInZS8CBZk2yJ6qMHj5oeB6uO\nQw3DuQ6RMynOAz4J9WfqR52pISIi6VHOg2RN5BLdDS82UPlIJSX/VELlS5XUVNXw+pOvEwgETO5D\nZB2HyFyHPYAP+KH5b+XPKhU4iIg4TD0PklXV1dX87X//W5auWsrJFSehBs55znFy6CR7u/ay/Ybt\nFBYVwjGG6zhE5jpEzqQYgpqWGgUOIiIOU/AgWTdifYpXMUWfPNBxroNJZycNr1NhVY0cI09CRESc\no+BBsi5c76EHM5NiOVEVJ8/sOwNbGK7joKqRIiJZpeBBsi5c78HKa4itONkA/CfDPQ6xVSPPwbSy\naexq3aUhCxGRDFDCpGRduN5DADOTIp4boPjHxXAIM4RxPeAFPgP159ez6yUFDiIimaKeB8m6cL0H\na32KeCbDzEtmck3pNbS1tDHAAEUU0bSwiY1bVMdBRCSTFDxI1oXrPZzrG7Xi5KTiSTzy/UcyvXsi\nIhJDwxaSdVa9hzlT55i8hng0k0JExDUUPIgrVFdX86ff+VPKtpeZvAYtaCUi4lp2Bw9/DvwSOAl8\nCPwHJldeZEyRFScbWxpp2NZAY0sjzaXNHGg9wLpr12V7F0VEBPtzHq4B/gETQBQD/xPYBjQCfTZv\nS/JQdXW18hpERFzO7uBhVcy/1wLdwCLMAskiIiKS45zOeagK/fdjh7cjIiIiGeJk8OABvgNsB/wO\nbkdEREQyyMk6D98D5gNXO7gNERERyTCngod/AH4Xk0D5wWhPvO+++6iqqor6mdfrxev1OrRrIiIi\nucPn8+Hz+aJ+dvz48SztjZGoGHA67/cPwM3AZ4GOUZ67CGhvb29n0aJFNu+GiIhI/tq5cyeLFy8G\nWAzszPT27e55+D5muaKbgV5geujnx4EzNm9LREREssDuhMmvApXAS5jhCutxu83bERERkSyxu+dB\n5a5FRETynC72IiIikhIFDyIiIpISBQ8iIiKSEgUPIiIikhIFDyIiIpISBQ8iIiKSEgUPIiIikhIF\nDyIiIpISBQ8iIiKSEgUPIiIikhIFDyIiIpISBQ8iIiKSEgUPIiIikhIFDyIiIpISBQ8iIiKSEgUP\nIiIikhIFDyIiIpISBQ8iIg4IBAJ4vV6qqqooKirC4/GMeNTU1LBnz55s76pIyhQ8iIjYzO/3U1tb\nyxNPPMGJEycYHByM+7yuri4aGxtHBBUlJSXceuutBAKBDO+5SHIUPIiI2Mjv93P55ZfT19c37vfo\n7+/nmWeeoba2Vj0T4kpF2d4BkXwRCARYv349bW1tDAwMADA0NERBgYnRi4qKaGpqYuPGjVRXV2dz\nV8VmgUCAe++9l+eff57e3l7b3revr4/LLruMuro6SktLdfyIa3iyuO1FQHt7ezuLFi3K4m6IpG7P\nnj3cdNNNvP/++wwMDBAMBpN+bXFxMZdccokuBnlgz5493HDDDRw8eDCj2508eTI33ngjDzzwgI6d\nCWrnzp0sXrwYYDGwM9Pb17CFSAoCgQDLly+nsbGRffv20d/fn1LgAKZLuqOjA7/fz+bNm5k9e3bW\nu6YDgQBr165l7ty5VFRUjBiDLy4uZs6cOaxdu5ZAIBCVDFhaWkppaSlVVVV4vd6ocfpAIMCtt95K\nSUlJ+L0KCwupq6vL+mdOJLItpkyZQklJCSUlJZSWljJlyhRqa2vDbdTY2JjxwAHg1KlTPPHEE1x4\n4YV4PB4KCgooKCgI50vMmTMHr9eL1+tl/vz51NfXU1VVRVVVFXV1dVRVVVFeXh5+jfUoKCigrq4u\n6rVz585l/vz54b99tll/Hzfum2TGIiDY3t4elMzo7u4ONjc3BxsbG4MNDQ3BxsbGYHNzc7C7uzvh\n7/x+f7C5uTnY0NAQrKysDJaUlAQrKyuDDQ0N4dfmO6ttGhoaggUFBUHAkcfVV18drK2tDRYXFwc9\nHk8QCBYXFwfr6+tTbuvR/taxz5k1a5Zjn2k8D4/HE5w5c2Zw9uzZwbKysqzvjx7Dj6Kioqx+9z/8\n8MNgfX193H2rr6+fEOcjS3t7u/XZJ1zXvYKHDIi88BUVFTlyor/lllvy8kvb2trquotXeXl5sLKy\nMjhlypRgfX193KBgtBOsHnrY+SgvL094HDqhubl51P1pbm52dPtuouBBwYPt/H5/sK6uLqsnlDVr\n1uRcQNHa2hqcPHly1k/I43kUFxcH16xZE/T7/cELLrgg6/ujx8R8pNozYZ2rrJ4261FQUBAsLi4O\nlpSUBOfMmRNsbW0NrlmzZsTzYh8XXXRRBs4U7qDgQcHDuCTqln7llVcc7VpP9TF58uSM3pmM18sv\nv5z1trLjUVhYmPV90GP0x/Tp04PFxcVZ349MPCZPnhw3mOju7g5efvnltm+vsrIyi2eRzFLwoOAh\nJd3d3cEvfvGLCU8+uXDxWLVqleuCiPLy8qy3ix75/SgrKwv6/f6Ex2B3d7cjQ4tueVRUVAT9fn/w\nww8/DM6cOdORbZSUlGTwrJFd2Q4eVOchh3R3d7N06VI6OjoSPidRJTs3efHFF1m8eDHt7e2umGbm\n9/ttnZsPZjrmzJkzw1nwAwMD7N+/P+WZGZL7iouL+fznPz/mtMrq6mpeeuklrr766gzuXeb09PTQ\n2Njo6Db0/ZoY1POQorGShXLtkY3kJr/fH5wzZ06wpKTEkbu8mTNnJhye8fv9Y47Z6pFfj/HMAGht\nbVVP2Dgf06dPt+tU4XrZ7nnIJgUPKZoxY0bWv5x2PjweT0anff361792rFu4qKgo2NraOuY+tLa2\nZr3d9XD2Yfd0xu7u7mBtbW3WP1cuPDTbYmJQ8JCi6dOnZ/3L6dTD6Tna3d3dts+kGO9ForW1NSd6\nIGbOnBmcM2dOcPbs2boTHuVRXFzseO2TyATp2bNnBydPnhwsKipy7DjKheMz9qE6DxOHgocUNTY2\nOv4FLCwsDNbW1gZnzZqV8YzwdO8auru7g2vWrAlOmTIlXGipoKAgWF5ebmuPgx21Lfx+v6umhRYX\nFwdra2uTnhWTTBGqsV7T0NAQnDNnzohjzePxBAsLC1NK/i0rKws2NDQE16xZE1y1alVKx67H4wlW\nVFQEa2trg7Nnz0742ly7OCVqb+v/x/qbtba25kQCNhAsLS3Nqb+NHRQ8KHhIWrI5D4kKG1mBQUVF\nRdTPCwoKgpWVlQlrM3R3d2ek6NCMGTPG1S7WDBSnhiQ8Ho8jd5bxLsBr1qwJrlmzJjh79uykP09x\ncXF435IdL8/F4l52BCxOvSZfxQtA6urqghUVFa7pnSgoKBh1Fku+UvCg4CFpyVzEa2trwyWl7Tz5\nRVaqjA0+7HpMnz493HswefLk8MkpMriJ/WwNDQ2O3sFPnjzZNReNZC9qkW0Y+VmsICgXC3iJez3/\n/PO29lBMmzYt6eeONf01nyl4UPCQksiLeDbXmkh0IWttbR13dcuGhgZXrbNgzUsXkbHFDhum+n3z\neDzB1tbWYHd3d/CWW24Z8z1ybRjJbtkOHrQktzgiEAhw1VVXjVqTItacOXPYt2+fg3uVnGTn5YvI\n6Pbs2cOVV17JqVOnEj6nuLiYWbNm8dxzzzFv3jx8Ph8+nw+AM2fO0NHRwenTpzl16hTBYJCqqiqu\nu5DofvUAAAfUSURBVO66Cb+UfbaX5FaRKHFEdXU1O3bs4N577+Xpp59mYGBg1OfX19fbXqgpFbW1\ntZSVldHU1DThT0oidpk3bx4dHR2sX7+etrY2BgYGKCoqGvV7Zi0HLu6mngdxXCAQ4N577+XFF1+k\nr6+PgYEBPB4P5eXlXHTRRSxdupSNGzdy+eWXc+TIkYzv35o1a8J3OiIiuUA9D5L3qqurk7o4n3/+\n+RkPHmpra3nggQcyuk0RkVxXkO0dkMxy8x12U1NTRrc3Z84c2traHB+icHOb5yu1eeapzScWJ4KH\na4DngS5gCLjZgW3IOLn5C75x40Zqa2vH9dqKigpmz55NRUUFHs/Yo3GTJ0/mtddey0hug5vbPF+p\nzTNPbT6xOBE8lAFvAfeE/h10YBuSh6qrq2lra2PNmjVMnjx5zCCguLiYhoYGmpubee+99+jo6ODU\nqVMMDQ3R3d1NfX193NdVVFTwxhtvKClSRGScnMh52BJ6iKQsXn5EIBBIKVvbep8dO3ak/DoRERmb\nEibF9aqrq3nkkUcy9joRERld1oOHPXv2ZHsXJpTjx4+zc2fGZ/VMaGrzzFObZ57aPLOyfe10us7D\nEHAL8Fyc310E/BKY4fA+iIiI5KMu4NPA4UxvOJs9D4cxH/qiLO6DiIhIrjpMFgIHyP6wRdY+uIiI\niIyPE8FDOXBpxL9nAwuBj4BDDmxPREREctxnMbkOQ8BgxP//Sxb3SURERERERERERERERERERCau\nDQznL1iPD2KeMw9T0+E4cBLYAcyMec5VwM+BHuAY8AtgUsTvD8TZzv+KeY9LMItv9QAB4O+B4nF+\nLjfbQHptXhvn9dbj8xHvMRX4Qeg9jgOPAVNitqM2H2ZHmx+I83sd5+M/t1wM/BA4gmmvnUS3N+g4\nj7SBzLT5gTjb0XE+/javB/4D6AZOAD8CLox5D9cd5xuAX4V21Hp8IuL39ZgZFf8H+C3MSXQVELmI\nwFWYD7Me00j1wG1AScRz9gPfiNlOecTvC4FdQEtoO8uBTuCBdD+gC20gvTYviHnthcBfYQ66soj3\neRH4T+BKYElom5GFvdTmw+xqcx3nwzaQ/rnlF8DrwKdCv/8GMICZ6WXRcT5sA5lpcx3nwzaQXpuX\nAx3A08B84DJMIPEG0QUfXXecb8CslpnIE8CjY7zH68A3x3jOfuCPRvn9KswBOj3iZ18ETgMVY7x3\nrtlA+m0e6y3gnyL+PQ8TAX864mdXhn5mTblVmw+zo81Bx3mkDaTf5qeAL8X87CiwNvT/Os6jbcD5\nNgcd55E2kF6bX49pq8h2qcIcw8tD/87YcZ7qktyXYsphvgf4gLqI9/kd4F1gK/AhJlC4OeK1FwJN\nmC6S1zBdXS8By+Js537MQfgW8BdEd6dchYmajkT8bBtQCixO8fPkgnTaPNZiTKT5cMTPrsLcFf8y\n4mdvhH62NOI5anP72tyi43xYum3+Y2ANpsu2IPT/JZhzDOg4j8fpNrfoOB+WTpuXAkHgXMTPzmIC\nA+s66srj/AbgVkx3yXJMl9Vh4HxMBDOEGT/5I+ByzAEzCFwTev2S0HOOAl/BnFC/DZwB5kRs5z7g\nM5gumbswYzuRd22biL/k9xlM9JRP0m3zWP8/8OuYn/0F8E6c574Tej9Qm9vd5qDjPJIdbX4epht2\nCHNyPc7w3RjoOI+ViTYHHeeR0m3zCzBt/B1M25cD3wu97h9Dz8mJ47wM88H/GLM+xRDweMxznsUk\n1ICJeoaAv4l5zn8yMoEm0m2h100N/XsTJjKLlY8HW6xU2zzSeZgD749jfp7swaY2t6/N49FxPmw8\nbf7vmOSyzwELgL/GJGRfFvq9jvPROdHm8eg4HzaeNr8O2IcJKvoxwxxvAt8P/T5jx3mqwxaR+jBd\nH3MwvQkDgD/mOb/BZHXC8BoWsc/ZE/GceN4I/dfqnTgCTIt5zlRMd9kR8luqbR7pC5iL2WMxPz/C\nyGxdQj87EvEctbl9bR6PjvNhqbb5PMzqvXdh7uZ2Af8Dc1K9J/QcHeejc6LN49FxPmw855afhp5f\njUm2/ApQgxkGgQwe5+kED6VAIyYo6MeMsXwy5jkNmKk6hP77QZznzI14TjxXhP5rBR+vYSLbyA9/\nPWbspz3Jfc9VqbZ5pLswUexHMT/fgZnGE5tgMwXT1qA2t7vN49FxPizVNrfOY4MxzxliOAtdx/no\nnGjzeHScD0vn3PIxZirnckwgYc2mcOVx/neYsZe60M48j+mSteag3hLa+O9jIqOvYRpkacR7/FHo\nNZ8PPef/BXoZThpZgunCWRj62e2YKST/EfEeBZipJz8NPW85cBAzTzXf2NHmhH43iDlA4vkJ8DbR\nU3uejfi92tzeNtdxHi3dNi/E3LG9jDlp1gNfx7T/DRHb0XE+LBNtfhU6ziPZcW5Zizl264E7MT0W\n/1/Mdlx3nPswWaJnMQfAU4yMktYCezHdMTuB34vzPveHdrQHaCW6Ya7ARE7HQu+xBzOONinmPWZi\nGr4X03jfJT+LitjV5v+L0Xt3qjBFRU6EHo8BlTHPUZsPS7fNdZxHs6PNZ4dedxhzbnmLkdMIdZwP\ny0Sb6ziPZkeb/29Me5/FDGncF2c7Os5FRERERERERERERERERERERERERERERERERERERERERERE\nREREREREREREREREREQkq/4vwbptSNrRFIEAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t2, l2, l2e = np.loadtxt(echo_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o', color=\"green\")\n", + "errorbar(t2, l2, yerr=l2e, fmt='o', color=\"black\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.610e-01 9.098e+01 inf -- 1.744e+02 -- 1 1 1 1 1 1 1 1\n", + " 2 8.066e-01 8.980e+01 1.014e+02 -- 2.758e+02 -- 0.764458 0.592778 0.539049 0.562235 0.572289 0.566582 0.574488 0.570186\n", + " 3 4.133e+00 8.890e+01 1.012e+02 -- 3.771e+02 -- 0.390803 0.167503 0.104265 0.129187 0.143015 0.13475 0.14757 0.142553\n", + " 4 7.028e+01 8.821e+01 1.004e+02 -- 4.775e+02 -- 0.00503816 -0.253372 -0.326662 -0.304159 -0.285875 -0.29734 -0.280456 -0.284431\n", + " 5 8.140e-01 8.698e+01 9.903e+01 -- 5.765e+02 -- -0.34905 -0.657519 -0.755903 -0.73766 -0.713908 -0.729735 -0.710276 -0.71228\n", + " 6 3.770e-01 8.522e+01 9.618e+01 -- 6.727e+02 -- -0.633175 -1.02654 -1.18245 -1.1696 -1.13984 -1.16159 -1.14079 -1.13949\n", + " 7 2.735e-01 8.339e+01 9.226e+01 -- 7.650e+02 -- -0.806027 -1.33498 -1.60319 -1.59717 -1.56166 -1.59163 -1.57085 -1.56469\n", + " 8 2.138e-01 8.120e+01 8.777e+01 -- 8.527e+02 -- -0.862131 -1.54146 -2.00828 -2.01427 -1.9772 -2.01825 -2.00048 -1.98894\n", + " 9 1.754e-01 7.801e+01 8.241e+01 -- 9.351e+02 -- -0.842095 -1.59954 -2.37394 -2.40556 -2.38506 -2.43954 -2.42825 -2.41302\n", + " 10 1.483e-01 7.298e+01 7.502e+01 -- 1.010e+03 -- -0.783896 -1.56622 -2.64497 -2.73499 -2.78365 -2.85462 -2.85094 -2.83628\n", + " 11 1.272e-01 6.498e+01 6.421e+01 -- 1.074e+03 -- -0.728704 -1.54164 -2.75253 -2.94491 -3.15964 -3.25681 -3.26391 -3.25681\n", + " 12 1.111e-01 5.364e+01 4.985e+01 -- 1.124e+03 -- -0.697013 -1.52135 -2.76748 -3.01573 -3.47965 -3.61977 -3.65793 -3.67111\n", + " 13 9.921e-02 3.928e+01 3.311e+01 -- 1.157e+03 -- -0.68286 -1.50549 -2.78198 -3.01943 -3.7022 -3.88826 -4.01576 -4.07908\n", + " 14 8.742e-02 2.316e+01 1.815e+01 -- 1.175e+03 -- -0.67696 -1.49524 -2.79447 -3.00982 -3.82195 -4.00921 -4.30702 -4.48377\n", + " 15 6.880e-02 9.460e+00 7.667e+00 -- 1.183e+03 -- -0.675273 -1.48938 -2.80142 -2.99712 -3.87606 -4.02132 -4.49151 -4.87573\n", + " 16 3.697e-02 2.241e+00 2.003e+00 -- 1.185e+03 -- -0.675444 -1.48628 -2.80573 -2.98594 -3.90153 -4.01347 -4.55974 -5.21119\n", + " 17 6.073e-03 2.318e-01 2.232e-01 -- 1.185e+03 -- -0.675725 -1.48454 -2.80827 -2.9785 -3.91588 -4.0101 -4.56645 -5.40386\n", + " 18 8.426e-04 9.306e-02 4.878e-03 -- 1.185e+03 -- -0.675636 -1.48368 -2.80908 -2.97402 -3.92351 -4.00944 -4.56338 -5.43668\n", + " 19 4.159e-04 3.811e-02 3.790e-04 -- 1.185e+03 -- -0.675401 -1.48333 -2.809 -2.97151 -3.92669 -4.00953 -4.56255 -5.4346\n", + " 20 1.919e-04 1.760e-02 7.212e-05 -- 1.185e+03 -- -0.675286 -1.48317 -2.80889 -2.97028 -3.92799 -4.00961 -4.56253 -5.43514\n", + "********************\n", + "-0.675286 -1.48317 -2.80889 -2.97028 -3.92799 -4.00961 -4.56253 -5.43514\n", + "0.231904 0.203388 0.246283 0.177512 0.182405 0.144335 0.166268 0.423476\n", + "0.000864464 0.00208153 0.00125836 0.0175976 -0.0171085 -0.00187558 -1.56774e-05 2.12549e-05\n", + "********************\n" + ] + } + ], + "source": [ + "P2 = clag.clag('psd10r', [t2], [l2], [l2e], dt, fqL)\n", + "p2 = np.ones(nfq)\n", + "p2, p2e = clag.optimize(P2, p2)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 1.185e+03 1.185e+03 -6.752e-01 -4.433e-01 0.84 +++\n", + "+++ 1.185e+03 1.184e+03 -6.752e-01 -3.274e-01 1.76 +++\n", + "+++ 1.185e+03 1.185e+03 -6.752e-01 -3.854e-01 1.27 +++\n", + "+++ 1.185e+03 1.185e+03 -6.752e-01 -4.144e-01 1.04 +++\n", + "+++ 1.185e+03 1.185e+03 -6.752e-01 -4.288e-01 0.94 +++\n", + "+++ 1.185e+03 1.185e+03 -6.752e-01 -4.216e-01 0.992 +++\n", + "\t### errors for param 1 ###\n", + "+++ 1.185e+03 1.185e+03 -1.483e+00 -1.280e+00 0.943 +++\n", + "+++ 1.185e+03 1.184e+03 -1.483e+00 -1.178e+00 2 +++\n", + "+++ 1.185e+03 1.185e+03 -1.483e+00 -1.229e+00 1.43 +++\n", + "+++ 1.185e+03 1.185e+03 -1.483e+00 -1.254e+00 1.18 +++\n", + "+++ 1.185e+03 1.185e+03 -1.483e+00 -1.267e+00 1.06 +++\n", + "+++ 1.185e+03 1.185e+03 -1.483e+00 -1.273e+00 0.999 +++\n", + "\t### errors for param 2 ###\n", + "+++ 1.185e+03 1.185e+03 -2.809e+00 -2.563e+00 0.987 +++\n", + "+++ 1.185e+03 1.184e+03 -2.809e+00 -2.439e+00 2.1 +++\n", + "+++ 1.185e+03 1.185e+03 -2.809e+00 -2.501e+00 1.5 +++\n", + "+++ 1.185e+03 1.185e+03 -2.809e+00 -2.532e+00 1.23 +++\n", + "+++ 1.185e+03 1.185e+03 -2.809e+00 -2.547e+00 1.11 +++\n", + "+++ 1.185e+03 1.185e+03 -2.809e+00 -2.555e+00 1.05 +++\n", + "+++ 1.185e+03 1.185e+03 -2.809e+00 -2.559e+00 1.02 +++\n", + "+++ 1.185e+03 1.185e+03 -2.809e+00 -2.561e+00 1 +++\n", + "\t### errors for param 3 ###\n", + "+++ 1.185e+03 1.185e+03 -2.970e+00 -2.792e+00 0.612 +++\n", + "+++ 1.185e+03 1.185e+03 -2.970e+00 -2.703e+00 1.31 +++\n", + "+++ 1.185e+03 1.185e+03 -2.970e+00 -2.748e+00 0.934 +++\n", + "+++ 1.185e+03 1.185e+03 -2.970e+00 -2.726e+00 1.12 +++\n", + "+++ 1.185e+03 1.185e+03 -2.970e+00 -2.737e+00 1.02 +++\n", + "+++ 1.185e+03 1.185e+03 -2.970e+00 -2.742e+00 0.978 +++\n", + "+++ 1.185e+03 1.185e+03 -2.970e+00 -2.740e+00 1 +++\n", + "\t### errors for param 4 ###\n", + "+++ 1.185e+03 1.185e+03 -3.929e+00 -3.746e+00 0.715 +++\n", + "+++ 1.185e+03 1.185e+03 -3.929e+00 -3.655e+00 1.61 +++\n", + "+++ 1.185e+03 1.185e+03 -3.929e+00 -3.701e+00 1.12 +++\n", + "+++ 1.185e+03 1.185e+03 -3.929e+00 -3.723e+00 0.906 +++\n", + "+++ 1.185e+03 1.185e+03 -3.929e+00 -3.712e+00 1.01 +++\n", + "\t### errors for param 5 ###\n", + "+++ 1.185e+03 1.185e+03 -4.010e+00 -3.865e+00 0.991 +++\n", + "\t### errors for param 6 ###\n", + "+++ 1.185e+03 1.185e+03 -4.563e+00 -4.396e+00 1.01 +++\n", + "\t### errors for param 7 ###\n", + "+++ 1.185e+03 1.185e+03 -5.435e+00 -5.223e+00 0.386 +++\n", + "+++ 1.185e+03 1.185e+03 -5.435e+00 -5.118e+00 0.993 +++\n", + "********************\n", + "-0.675245 -1.48309 -2.80886 -2.96971 -3.92857 -4.00963 -4.56252 -5.43512\n", + "0.253646 0.209743 0.248217 0.230185 0.21667 0.144334 0.166265 0.317595\n", + "********************\n" + ] + } + ], + "source": [ + "p2, p2e = clag.errors(P2, p2, p2e)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X9w2/d93/GnLDFW67ZWZI2AHHlChE6B4sjOyFC1ydil\nurZLvTbtklYFlmwXMpqzxq1P2+yb1p44H7nL0kbXuE7a5lSb6bpYIL1rssZ3Zp3+gGuXolOWTGyr\nJuIUJGgrFqAqitw2iVTa1v4AGVEyKBIkvvj5fNzhSAGfD75vSV9BL36/n+/3DZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVqj/w6MA38P5IEvADurWpEkSaoJI8B/AHYBNwGPAlng+6tY\nkyRJqkFbgNeBd1e7EEmStLyrKritTfNfz1Rwm5Ikqcato3C64S+qXYgkSVqZDRXazqeBG7nyqYat\n8w9JklSak/OPsqpESPgU8NPA7cDLS4zZev3117/88stLvSxJkq7gG0AHZQ4KQYaEdRQCws8C3cDs\nFcZuffnll/nc5z7Hrl27Aiyp/A4cOMD9999fl9tby3uVOreU8SsZu9yYK71e6b+zcnFfK/9497Xi\n3NfKPz7IfW1qaooPfvCDb6FwNL5uQsJvAwkKIeHbQHj++bPAuWITdu3aRVtbW4Alld+mTZsqWnM5\nt7eW9yp1binjVzJ2uTFXer3Sf2fl4r5W/vHua8W5r5V/fND7WlDWB/jejwJXAz3Af130+DrwzGVj\ntwIf+chHPsLWrfW3LGH37t11u721vFepc0sZv5Kxy41Z6vVkMkkikVhxLbXEfa38493XinNfK//4\noPa1kydPcuTIEYAjlPlIwrpyvtkatAETExMTdZm6VV/e+9738sUvfrHaZagJuK+pEiYnJ2lvbwdo\nBybL+d6VvE+CJEmqI4YENZ16Pfyr+uO+pnpnSFDT8YNbleK+pnpnSJAkSUUZEiRJUlGGBEmSVJQh\nQZIkFWVIkCRJRRkSJElSUYYESZJUlCFBkiQVZUiQJElFGRIkSVJRhgRJklSUIUGSJBVlSJAkSUUZ\nEiRJUlGGBEmSVJQhQZIkFWVIkCRJRRkSJElSUYYESZJUlCFBkiQVZUiQJElFGRIkSVJRhgRJklSU\nIUGSJBVlSJAkSUUFGRJuBx4FvgG8DvxsgNuSJEllFmRI+H7gK8Bd87++EOC2JElSmW0I8L3/eP4h\nSZLqkGsSJElSUYYESZJUlCFBkiQVFeSahJIdOHCATZs2XfJcIpEgkUhUqSJJkmpHMpkkmUxe8tzZ\ns2cD2966wN75Uq8DPwd8cYnX24CJiYkJ2traKlSSJEn1b3Jykvb2doB2YLKc7x3kkYRrgH+x6Nc7\ngHcC3wReCnC7kiSpDIIMCR3An89/fwH4zfnvfx/oDXC7kiSpDIIMCU/gwkhJkuqW/4lLkqSiDAmS\nJKkoQ4IkSSrKkCBJkooyJEiSpKIMCZIkqShDgiRJKsqQIEmSijIkSJKkogwJkiSpKEOCJEkqypAg\nSZKKCrLBk1Q1yeeSJI8nATj36jlmX5ll+7Xb2bhhIwCJdyRI7E5Us0RJqnmGBDWkxO6LIWDy5CTt\nR9pJvj9J29a2KlcmSfXD0w2SJKkoQ4IaVjabpfeuXva9bx8chX3v20fvXb1ks9lqlyZJdcHTDWo4\n+Xye+P446TNpcm/PwXsKz2fIkDmRYeQDI8Q2xxh6cIhQKFTdYiWphhkS1FDy+Tydd3Qyfcs0vKvI\ngG2Q25YjdypH1x1djD42alCQpCV4ukENJb4/XggIrcsMbIXMLRni++MVqUuS6pEhQQ1jZmaG9Jn0\n8gFhQSukz6RdoyBJSzAkqGEMHB4orEEoQW5Xjv7D/QFVJEn1zZCghjH+7DhsK3HSNhh/ZjyQeiSp\n3hkS1DDmXpsrfdI6mHt9FfMkqQkYEtQwWta3lD7pArRctYp5ktQEDAlqGB03dcCJEiedgD037wmk\nHkmqd4YENYy+e/sIPx8uaU54Ksyhew4FVJEk1TdDghpGJBIhtjkGp1Y44RTENseIRCJBliVJdSvo\nkPBRYAb4LvDXwLsD3p6a3NCDQ0Sfji4fFE5B9Okoww8NV6QuSapHQYaEXwQ+CQwA7wSeAkaAGwLc\npppcKBRi9LFRul/sJvylMLwEXJh/8QLwEoS/FKb7xW6OjRyjtXWld16SpOYTZEj4L8CDwCDwNeA/\nU/jI/qUAtykRCoVIPZpi7OExejb2EH08Ckch+niUno09jD08RurRlAFBkpYRVIOnNwFtwMcue/5L\nQGdA25QuEYlEGPz0IJMnJ2k/0s4jdz5C29a2apclSXUjqCMJW4D1QP6y508BpS0/lyRJVWGraDWk\n5HNJkseTAJx79Rw7r9vJwT89yMYNGwFIvCNBYneimiXWhMv/nGZfmWX7tdv9c5IEwLqA3vdNwLeB\nnwf+aNHzvwXcBOy9bHwbMHHbbbexadOmS15IJBIkEn5ISUHJZrP0f6KfJyefJHMmQ3RzlNvbbqfv\n3j4vD5VqTDKZJJlMXvLc2bNneeqppwDagclybi+okADwNDAB3LXoueeBLwC/dtnYNmBiYmKCtjbP\nGUuVkM/nie+Pkz6TLnTPXNwc6wSEnw8T2xxj6MEhQqFQ1eqUdGWTk5O0t7dDACEhyNMNvwn8Hwr3\nR3gauJPCx9BnAtympBXI5/N03tHJ9C3T8K4iA7ZBbluO3KkcXXd0MfrYqEFBakJBXgL5CHAA6AO+\nQuFGSndQuAxSUhXF98cLAWG5q0BbIXNLhvj+eEXqklRbgr7j4u8CbwU2Ah3AXwa8PUnLmJmZIX0m\nvXxAWNAK6TNpstlskGVJqkH2bpCazMDhgcIahBLkduXoP9wfUEWSapUhQWoy48+OX7pIcSW2wfgz\n44HUI6l2GRKkJjP32lzpk9bB3OurmCeprhkSpCbTsr6l9EkXoOWqVcyTVNcMCVKT6bipA06UOOkE\n7Ll5TyD1SKpdhgSpyfTd20f4+dJaqISnwhy651BAFUmqVYYEqclEIhFim2OFdmsrcQpim2Peollq\nQoYEqQkNPThE9Ono8kHhFESfjjL80HBF6pJUWwwJUhMKhUKMPjZK94vdhL8ULtwH9cL8ixeAlyD8\npTDdL3ZzbOQYra0rvfOSpEZiq2ipSYVCIVKPpgpdIA/38+Tji7pAtt9O38N2gZSanSFBamLJ55Ik\njyehC3b8yA7Wv7Ke7ddu5/SG09w9djeJf0iQ2G2rdqlZGRKkJpbYbQiQtDRDghpSMpkkmUwCcO7c\nOWZnZ9m+fTsbN24EIJFIkEj4n6MkXYkhQQ1pcQiYnJykvb2dZDJJW1tblSuTpPrh1Q2SJKkoQ4Ia\nVjabpbe3l3379gGwb98+ent7yWaz1S1MkuqEpxvUcPL5PPF4nHQ6TS6X+97zmUyGTCbDyMgIsViM\noaEhQqFQFSuVpNpmSFBDyefzdHZ2Mj09veSYXC5HLpejq6uL0dFRg4IkLcHTDWoo8Xj8igFhsUwm\nQzweD7giSapfhgQ1jJmZGdLpdElz0um0axQkaQmGBDWMgYGBS9YgrEQul6O/vz+giiSpvhkS1DDG\nx8crOk+SGp0hQQ1jbm6uovMkqdEZEtQwWlpaKjpPkhqdIUENo6OjY1Xz9uzZU+ZKJKkxGBLUMPr6\n+giHwyXNCYfDHDp0KKCKJKm+GRLUMCKRCLFYrKQ5sViMSCQSTEGSVOcMCWooQ0NDRKPRFY2NRqMM\nDw8HXJEk1a+gQsKvAceA7wDfCmgb0huEQiFGR0fp7u5e8tRDOBymu7ubY8eO0draWuEKJal+BBUS\nWoBh4HcCen9pSaFQiFQqxdjYGD09Pd87shCNRunp6WFsbIxUKmVAkKRlBNXg6b75rx8K6P2lZUUi\nEQYHB5mcnKS9vZ1HHnmEtra2apclSXXDLpBqSMlkkmQyCcC5c+fYuXMnBw8eZOPGjQAkEgkSiUQ1\nS5SkmmdIUEMyBEjS2pUSEu4D+pYZ8y5gctXVSNIVJJ9Lkjw+f4To1XPMvjLL9mu3s3HD/BGidyRI\n7DYcSuVSSkj4FHB0mTGza6iFAwcOsGnTpkue8ydCSQsSuxPc+oO30v+Jfp6cfJLMmQyvbX6N29tu\np+/ePu95oYa3+FTqgrNnzwa2vXWBvXPBh4BPAm9eZlwbMDExMeHCMklF5fN54vvjpM+kyb09B9sW\nvXgCws+HiW2OMfTgEKFQqGp1SpW2sDgbaKfMR/ODWpPwz4HN81/XAzdTCCRfB74d0DYlNah8Pk/n\nHZ1M3zJdOKl5uW2Q25YjdypH1x1djD42alCQyiCo+yT0U0gz9wHXAF8BJiikHEkqSXx/vBAQlru1\nRStkbskQ3x+vSF1SowsqJHxo/r2vonAkYeHrkwFtT1KDmpmZIX0mvXxAWNAK6TNpstlskGVJTcHe\nDZJq2sDhgcIahBLkduXoP9wfUEVS8zAkSKpp48+OX7pIcSW2wfgz44HUIzUTQ4Kkmjb32lzpk9bB\n3OurmCfpEoYESTWtZX1L6ZMuQMtVq5gn6RKGBEk1reOmDjhR4qQTsOfmPYHUIzUTQ4KkmtZ3bx/h\n58MlzQlPhTl0z6GAKpKahw2epCZ2ebfM2dlZtm/fXlPdMiORCLHNMXKnciu7DPIUxDbHvEWzVAYe\nSZCaWCKR4IEHHmDLli1MT0/zwgsvMD09zZYtW3jggQeqHhAWDD04RPTpKJxaZuApiD4dZfih4YrU\nJTU6jyRITSqfzxOPx0mn0+RyF+9DkMlkyGQyjIyMEIvFGBqqfi+EUCjE6GOjhd4NX02T2zXfu2Ed\ncIFC74apQu+G4ZFhWltXeuellUk+l+Sh1EO8MPICZ06c4Z9e+yfetP5NbN62mZ0/tZMP7/2w3SfV\nkAwJUhPK5/N0dnYyPT295JhcLkcul6Orq4vR0er3QgiFQqQeTZHNZuk/3M+Tjxe6QEY3R7m9/Xb6\nHg6mC2Q+n+fIrx652FjqlsLzc8zx7RPfZm54jiN/coQfe/DHqv5nJJVb0F0gV8oukFIF7d27lyee\neGLF47u7u0mlUsEVtAqTJydpP9LOxJ0TtG0N5nPjksZSVzo4MX+aw8ZSqoZ67AIpqUbNzMyQTqdL\nmpNOF3ohVHsxYPK5JMnj8wstXz3Hzut2cvBPD7Jxw/xCy3ckynrYfzWNpVKP1laYktbCkCA1mYGB\ngUvWIKxELpejv7+fwcHBgKpamcTu8oaAK/leY6liramLaYX0V2sjTEnl4tUNUpMZH19dT4PVzqtX\nNpaSDAlS05mbW11Pg9XOq1c2lpIMCVLTaWlZXU+D1c6rVzaWkgwJUtPp6OhY1bw9e5qrF4KNpSRD\ngtR0+vr6CIdL7IUQDnPoUHP1QrCxlGRIkJpOJBIhFouVNCcWa75eCDaWkgwJUlMaGhoiGo2uaGw0\nGmV4uPl6ISw0llq2X8QCG0upARkSpCYUCoUYHR2lu7t7yVMP4XCY7u5ujh07VvZeCPXCxlJqdoYE\nqUmFQiFSqRRjY2P09PR878hCNBqlp6eHsbExUqlU0wYEuNhYqvvFbsJfCsNLFBpKMf/1JQh/KUz3\ni90cG2neMKXGZUiQmlgymeTuu+/m9OnT7Nixg507d7Jjxw5Onz7N3XffTTKZrHaJVbfQWGrs4TF6\nNvYQfTwKRyH6eJSejT2MPTxG6tHmDlNqXDZ4kqRlXN4zYvaVWbZfuz2wnhFSKWzwJElVVMmeEVIt\n8XSDJEkqypAgSZKKMiRIkqSiggoJEeAhYBr4DvC3wH2ANzWXJKlOBLVw8W0Urpy4k0JA2A38HnAN\ncG9A25QkSWUUVEh4fP6xIAscBn4JQ4IkSXWhkmsSNgHfrOD2JEnSGlQqJESBXwY+U6HtSVLdy2az\n9N7Vy+7bdhPrjLH7tt303tVLNputdmlqEqWebrgP6FtmzLu49I5P1wN/DDwCDJa4PUlqOvl8nr3x\nvUz//TTn287Dj1987fiJ4xx9/1F2/NAOUkMpQqFQ9QpVwyv1tszXzT+uZBY4P//99UAKGAM+dIU5\nbcDEbbfdxqZNmy55IZFIkEh4pzNJzSGfz9N5RyfTt0zDldpBzHeeHH1s1KDQRJLJ5Bt6qpw9e5an\nnnoKArgtc5C9G95CISCMAx/kYu+0YuzdIEnA3p/ZyxP//IkrB4QFp6D7xW5Sj6YCrkq1LMjeDUGt\nSXgL8ASFowr3AiEgPP+QJBUxMzND+kx6ZQEBoBXSZ9KuUVBgggoJP0FhseKPASeAl+cf3whoe5JU\n9wYOD5B7e66kObldOfoP9wdUkZpdUCHh9+ffe/3816sW/VqSVMT4s+OwrcRJ22D8mfFA6pHs3SBJ\nNWLutbnSJ62DuddXMU9aAUOCJNWIlvWraG9zAVqusi2OgmFIkKQa0XFTR2EVVylOwJ6b9wRSj2RI\nkKQa0XdvH+HnS7sILDwV5tA9hwKqSM3OkCBJNSISiRDbHINTK5xwCmKbY0QikSDLUhMzJEhSDRl6\ncIjo09Hlg8L8HReHHxquSF1qToYESaohoVCI0cdG2fX8Lq7+4tXwEhfvV3sBeAmu/uLV7Hp+F8dG\njtHautI7L0mlK7XBkyQpYKFQiOdTz5PNZuk/3M/4n40z9/ocLVe10HFzB31/2BfoKYZsNkv/J/oZ\nf3acudfmaFnfQsdNHfTdG+x2VXsMCZJUoyKRCIOfrlzz3Hw+T3x/nPSZdOHOj5d1nxz5wAixzTGG\nHhyyqVSTMCRIki7tPvmuIgO2QW5bjtypHF13dNl9skm4JkGSRHx/fPn21ACtkLklQ3x/vCJ1qboM\nCZLU5Ow+qaUYEiSpydl9UksxJEhSk7P7pJZiSJCkJmf3SS3FkCBJTc7uk1qKIUGSmpzdJ7UU75Mg\nqW4kk0mSySQA586dY3Z2lu3bt7Nx40YAEokEiUSimiXWpb57+xj5wAi5bStfvBieCnPoYbtPNjpD\ngqS6sTgETE5O0t7eTjKZpK2trcqV1beF7pO5U7mVXQZp98mm4ekGSXUlm83S29vLvn37ANi3bx+9\nvb1es79Gdp9UMR5JkFQX8vk88XicdDpNLnfxsHgmkyGTyTAyMkIsFmNoyL4Cq7HQfTK+P076q2ly\nu3KFyyLXUeg+eaJwiiG2OcbwyLDdJ5uEIUFSzcvn83R2djI9Pb3kmFwuRy6Xo6uri9FR+wqsRigU\nIvVoaunukw/bBbLZGBIk1bx4PH7FgLBYJpMhHo+TSqUCrqpxVbr7pGqXaxIk1bSZmRnS6XRJc9Jp\n+wpI5eCRBEk1bWBg4JI1CCuRy+Xo7+9ncLA8Pw176aWalUcSJNW08fHV9QdY7bxiEokEDzzwAFu2\nbGF6epoXXniB6elptmzZwgMPPGBAUMPySIKkmjY3t7r+AKuddzmvqlAzMyRIqmktLavrD7DaeYt5\nVYWaXVCnG74IzALfBV4G/gDYGtC2JDWwjo6OVc3bs2ftfQVWc1WF1EiCCgl/DvwCsBN4PxAFPh/Q\ntiQ1sL6+PsLhcElzwuEwhw6tra+AV1VIwYWE+4G/Al4CxoBfB/YA6wPanqQGFYlEiMViJc2Jxdbe\nV2AtV1VIjaISVzdsBj4ApIDXKrA9SQ1maGiIaDS6orHRaJTh4bX3FaiFqyqkagsyJPw68I/AaeCt\nwC8GuC1JDSwUCjE6Okp3d/eSpx7C4TDd3d0cO3asLH0Fqn1VhVQLSgkJ9wGvL/NY3K/1N4B3Aj8J\nnAf+H4VWIZJUslAoRCqVYmxsjJ6enu8dWYhGo/T09DA2NkYqlSpb46FqXlUh1YpSLoH8FHB0mTGz\ni77/5vzjb4EpCusTbgWOLTX5wIEDbNq06ZLnvJOZpMUikQiDg4NMTk7S3t7OI488Qltb2/ITS9TR\n0cHx48dLnleOqyqkpSy+++eCs2fPBra9Sv1kfwOFAPGjwFNFXm8DJiYmJgL5xy6p8SyEhKA+N7LZ\nLLfeemtJixfD4TBjY2N2SlRFLfxbANqByXK+dxA3U9oz//hL4FvADqAf+DqFKx0kaVUu76Gwc+dO\nDh48GEgPhYWrKkoJCeW4qkKqJUGEhO8A/5bCGoZrgJPACDAAvBrA9iQ1iUqffhwaGqKrq4tMJrPs\n2HJdVSHVkiCubjgO/CtgC/B9FI4k3AWUdsGxJFVZNa6qkGqJXSAl6QoqfVWFVEts8CRJK1Cpqyqk\nWmJIkKRlVHLBpFRLDAmStAxDgJqVaxIkSVJRhgRJklSUIUGSJBXlmgRJUlUln0uSPD6/MPTVc8y+\nMsv2a7ezccP8wtB3JEjsdk1INRgSJElVldh9MQRMnpyk/Ug7yfcnadvqJabV5ukGSVLVZbNZeu/q\nZd/79sFR2Pe+ffTe1Us2m612aU3NIwmSpKrJ5/PE98dJn0mTe3sO3lN4PkOGzIkMIx8YIbY5xtCD\nQ4RCoeoW24QMCZKkqsjn83Te0cn0LdPwriIDtkFuW47cqRxdd3Qx+tioQaHCPN0gSaqK+P54ISAs\n1/aiFTK3ZIjvj1ekLl1kSJAkVdzMzAzpM+nlA8KCVkifSbtGocIMCZKkihs4PFBYg1CC3K4c/Yf7\nA6pIxRgSJEkVN/7sOGwrcdI2GH9mPJB6VJwhQZJUcXOvzZU+aR3Mvb6KeVo1Q4IkqeJa1reUPukC\ntFy1inlaNUOCJKniOm7qgBMlTjoBe27eE0g9Ks6QIEmquL57+wg/Hy5pTngqzKF7DgVUkYoxJEiS\nKi4SiRDbHINTK5xwCmKbY0QikSDL0mUMCZKkqhh6cIjo09Hlg8IpiD4dZfih4YrUpYu8LbMk1aBk\nMkkyOd8++dw5Zmdn2b59Oxs3zrdPTiRIJOq7fXIoFGL0sdFC74avpsntyhUui1wHXABOFE4xxDbH\nGB4ZprV1pXdeUrmsq3YB89qAiYmJCdrabA0qSYtNTk7S3t5OI39GZrNZ+g/38+TEk2TOZIhujnJ7\n++303dPnKYZlLOwfQDswWc739nSDJNWobDZLb28v+/btA2Dfvn309jZm++RIJMLgpwd55POPwL+D\nRz7/CIOfHjQgVJmnGySpxuTzeeLxOOl0mlzu4q2LM5kMmUyGkZERYrEYQ0O2T1awDAmSVEPy+Tyd\nnZ1MT08vOSaXy5HL5ejq6mJ0tP7bJyefS5I8Pr/+4tVz7LxuJwf/9CAbN8yvv3hHgsTu+l5/Ua8M\nCZJUQ+Lx+BUDwmKZTIZ4PE4qlSprDdlslv7+fsbHx5mbm6OlpYWOjg76+oJZH5DYbQioVUGHhKuB\nLwM3Ae8Eng14e5JUt2ZmZkin0yXNSacL7ZPL8Z93Pp9n7969TE9Pc/78+UteO378OEePHmXHjh2k\nUqm6P3qhlQl64eJvAN8IeBuS1BAGBgYuWYOwErlcjv7+tbdPXjjNMTU19YaAsOD8+fNMTU3R1dVF\nPp9f8zZV+4IMCT8F/DhwT4DbkKSGMT6+ujbIq5232GpOc6jxBRUSQsAR4N8D3w1oG5LUUObmVtcG\nebXzFqzlNIcaWxAhYR3w+8DvUuabOkhSI2tpWV0b5NXOW1DN0xyqbaUsXLwP6FtmTAfQBfwA8PHL\nXlv27o4HDhxg06ZNlzzXCLcelaSV6Ojo4Pjx4yXP27Nnbe2Tq3maQ6VZfLvuBWfPng1se6Xclvm6\n+ceVzAJDwM9QuPP2gvXAa8DngJ4i87wts6Sml81mufXWW0v6qT4cDjM2NramqxtisRhf+9rXSp73\ntre9reTTFCq/IG/LXMqRhG/OP5ZzN/Bri379FuBxYB+FyyElSUVEIhFisVhJISEWW3v75Gqd5lDt\nC2JNwkvA84seX59/PgO8HMD2JKlhDA0NEY1GVzQ2Go0yPLz29skdHR2rmrfW0xyqfZVq8HRh+SGS\npFAoxOjoKN3d3YTD4aJjwuEw3d3dHDt2rCztk/v6+pbc1lLC4TCHDh1a87ZV2yoRErIU1iR4t0VJ\nWoFQKEQqlWJsbIyenp7vHVmIRqP09PQwNjZGKpUqS0CAi6c5SlGO0xyqfbaKlqQalEwmufvuuzl9\n+jQ7duxg586d7Nixg9OnT3P33Xe/YYX7WlXjNIdqnw2eJKkGVfry74XTHMVaVC8Ih8PEYjGGh4fL\ndhRDtc2QIEkCLp7mqHQXSNUuQ4Ik6RKRSITBwcFql6Ea4JoESZJUlCFBkiQV5ekGSVJTSj6XJHm8\ncJXIuVfPMfvKLNuv3c7GDRsBSLwjQWJ3c/cOMiRIkppSYvfFEDB5cpL2I+0k35+kbas9hBZ4ukGS\nJBVlSJAkVV02m6W3t5fdu3cTi8XYvXs3vb29ZLPZapfW1DzdIEmqmnw+z969e5menub8+fOXvHb8\n+HGOHj3Kjh07SKVShEKhKlXZvDySIEmqinw+T2dnJ1NTU28ICAvOnz/P1NQUXV1d5PP5ClcoQ4Ik\nqSri8TjT09MrGpvJZIjH4wFXpMsZEiRJFTczM0M6nS5pTjqddo1ChRkSJEkVNzAwULSJ1JXkcjn6\n+/sDqkjFGBIkSRU3Pj5e0XlaHUOCJKni5ubmKjpPq2NIkCRVXEtLS0XnaXUMCZKkiuvo6FjVvD17\n9pS5El2JIUGSVHF9fX2Ew+GS5oTDYQ4dOhRQRSrGkCBJqrhIJEIsFitpTiwWIxKJBFOQijIkSJKq\nYmhoiGg0uqKx0WiU4eHhgCvS5QwJkqSqCIVCjI6O0t3dveSph3A4THd3N8eOHaO1tbXCFcqQIEmq\nmlAoxJ133smNN97IDTfcwDXXXENLSwvXXHMNN9xwAzfeeCN33nmnAaFK7AIpSaqqRCJBIpGodhkq\nwiMJkiSpKEOCJEkqKqiQkAVev+zxsYC2JUmSAhDUmoQLwCHg9xY99+2AtiVJkgIQ5MLFfwROBfj+\nkiQpQEGuSfhvwGngK8CvAnblkCSpjgR1JOG3gAngW8CPAP8LeCvwHwPaniRJKrNSjiTcxxsXI17+\naJsfez/wFHAceAj4T8CHgTeXo2hJkhS8Uo4kfAo4usyY2SWe//L81x8GxpeafODAATZt2nTJc95k\nQ5KkgmQySTKZvOS5s2fPBra9UkLCN+cfq/Ev57+evNKg+++/n7a2tisNkSSpaRX7wXlycpL29vZA\nthfEmoTlyrRcAAAG90lEQVRbgFuBFPAK0AH8JvBHwIkAtidJkgIQREg4D+wD+oCrKZyCOAL8RgDb\nkiRJAQkiJHyFwpEESZJUx+wCKUlqSosXAZ565RT8DXz0zz9K67WFttQunDckSJKa1OIQ8PDjD/Pl\n93yZX/nVX+ED//oDVa6sdtgFUpIkFWVIkCRJRRkSJElSUYYESVLTymaz9Pb2cvAjBwE4+JGD9Pb2\nks1mq1tYjXDhoiSp6eTzeeLxOOl0mlwu973nT8ye4LOf/SwjIyPEYjGGhoYIhUJVrLS6DAmSpKaS\nz+fp7Oxkenp6yTG5XI5cLkdXVxejo6NNGxQ83SBJairxePyKAWGxTCZDPB4PuKLaZUiQJDWNmZkZ\n0ul0SXPS6XTTrlEwJEiSmsbAwMAlaxBWIpfL0d/fH1BFtc2QIElqGuPj4xWdV+8MCZKkpjE3N1fR\nefXOkCBJahotLS0VnVfvDAmSpKbR0dGxqnl79uwpcyX1wZAgSWoafX19hMPhkuaEw2EOHToUUEW1\nzZAgSWoakUiEWCxW0pxYLEYkEgmmoBpnSJAkNZWhoSGi0eiKxkajUYaHhwOuqHYZEiRJTSUUCjE6\nOkp3d/eSpx7C4TDd3d0cO3aM1tbWCldYOwwJkqSmEwqFSKVSjI2N0dPTw7bINgC2RbbR09PD2NgY\nqVSqqQMCGBIkSU0sEokwODjIxz/zcQA+/pmPMzg42LRrEC5nSJAkSUUZEiRJUlGGBEmSVNSGahcg\nSVI1JJNJkskkAKdeOQXXwac+9imGf7twyWMikSCRSFSzxKozJEiSmtLiEDB5cpL2I+38zp2/Q9vW\ntipXVjs83SBJkooyJEiSpKKCDAn/Bvgy8B3g74A/DHBb0ootnIOUgua+pnoXVEh4P/AHwEPATUAn\n8HBA25JK4ge3KsV9TfUuiIWLG4DfAu4BPrvo+a8HsC1JkhSQII4ktAHXAxeArwAvA48BNwawraqr\n9E8K5dzeWt6r1LmljF/J2OXGNOJPcO5r5R/vvlZcs+5rPBfctup1XwsiJOyY/3of0A/8NPAt4Ang\nzQFsr6qa9R+TH9yV575W/vHua8U1675mSHijUk433Af0LTOmg4vB438CX5j/vgc4AfwCcGSpyVNT\nUyWUUxvOnj3L5ORkXW5vLe9V6txSxq9k7HJjrvR6pf/OysV9rfzj3deKa8Z9bervpuAcTD07BSfL\nv60g97Ug/+9cV8LY6+YfVzJLYZHinwHvBo4teu1p4E+AQ0XmbQXGgbeUUI8kSSr4BoUf1FcYcVam\nlCMJ35x/LGcCOA/EuBgSWoAIhRBRzEkKv7mtJdQjSZIKTlLmgBCkTwIvAT8BvA14kELx11azKEmS\nVH0bgE8AOeAV4HFgV1UrkiRJkiRJkiRJkiRJeqMfBP6Kwh0cjwO/XN1y1MBuoHDjr78BngF+vqrV\nqNF9ATgD/N9qF6KG9dNAGngB+HCVawnMVcDG+e+/D5gG/ln1ylEDC1NoSgaFfewlCvucFIQfpfAh\nbkhQEDYAX6Nwe4EfoBAUNpfyBkG2ii6n14Fz899/PzC36NdSOeWAZ+e//zsKP+WV9I9KKsFfAP9Y\n7SLUsPZQOCp6ksJ+9hjwk6W8Qb2EBCjcY+EZ4EUKXSb/obrlqAm8i8JdSb9R7UIkaRWu59LPrxOU\neGfjegoJrwA3A28F7gJ+uLrlqMFdB/xv4M5qFyJJq3RhrW8QVEi4HXiUQoJ5HfjZImM+CswA3wX+\nmkKvhwW/QmGR4iSFWzovdorCwrJ3lrVi1asg9rWrgc8DH6PQc0SC4D7X1vxBroa11n3uZS49cnAD\nNXJk9D0U2kT/HIXf2Hsve/0XKfR36KVw2+ZPUjh9cMMS79cK/ND89z9E4Zzx28pbsupUufe1dUAS\n+B9BFKu6Vu59bUE3LlxUcWvd5zZQWKx4PYWrBF8A3hx41SUq9hv7MvDblz33PIWf3Ippo5DAvzr/\n6ClngWoY5djX3g28RuGnva/MP24sY41qDOXY16Bwy/pTwLcpXEnTXq4C1XBWu8/9DIUrHL4O7A+s\nujW4/Df2JgpXJ1x+2OR+CqcRpNVyX1OluK+p0qqyz1Vj4eIWYD2Qv+z5UxSuUZfKxX1NleK+pkqr\nyD5XT1c3SJKkCqpGSDhN4Zxv6LLnQxRu+CCVi/uaKsV9TZVWkX2uGiHhn4AJ3njXp58AjlW+HDUw\n9zVVivuaKq2u97lrKNzH4J0UFlscmP9+4bKMfRQu2+gBdlG4bOPvWf5SIely7muqFPc1VVrD7nPd\nFH5Dr1M4HLLw/eCiMb9E4QYQ54BxLr0BhLRS3bivqTK6cV9TZXXjPidJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJklQH/j956uHhBWxPygAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-6,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"green\")\n", + "errorbar(fqd, p2, yerr=p2e, fmt='o', ms=10, color=\"black\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 3.996e+02 1.150e+01 inf -- 1.244e+03 -- -0.48732 -1.13061 -2.29972 -2.54606 -3.32938 -3.55056 -4.36198 -7.01756 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1\n", + " 3 1.146e+02 1.274e+01 2.644e+00 -- 1.247e+03 -- -0.46592 -1.09839 -2.27929 -2.51606 -3.2945 -3.53263 -4.40205 -7.31756 0.173375 0.179509 0.201787 0.171316 0.150055 0.152867 0.0990853 -2.1868\n", + " 5 6.107e+01 1.422e+01 2.363e+00 -- 1.249e+03 -- -0.445096 -1.06944 -2.25767 -2.48924 -3.26504 -3.51627 -4.44162 -7.01756 0.23367 0.240665 0.283299 0.22705 0.187337 0.196036 0.0982347 -2.11553\n", + " 7 2.105e+01 1.585e+01 2.131e+00 -- 1.251e+03 -- -0.425484 -1.04389 -2.23659 -2.46561 -3.24012 -3.50157 -4.48059 -6.71756 0.283283 0.288529 0.348404 0.27129 0.21583 0.231595 0.0974289 -2.46919\n", + " 9 2.358e+01 1.743e+01 1.909e+00 -- 1.253e+03 -- -0.40737 -1.02151 -2.21687 -2.44489 -3.21894 -3.48846 -4.51886 -6.41756 0.324291 0.326635 0.400676 0.306939 0.238059 0.261125 0.0966177 -1.38312\n", + " 11 4.074e+01 1.911e+01 1.751e+00 -- 1.255e+03 -- -0.390833 -1.00195 -2.19886 -2.42677 -3.20086 -3.47683 -4.55632 -6.71756 0.358383 0.357437 0.443033 0.336042 0.255704 0.285884 0.0957404 1.63909\n", + " 13 1.370e+01 2.129e+01 1.587e+00 -- 1.256e+03 -- -0.375838 -0.984839 -2.18261 -2.41092 -3.18537 -3.46656 -4.59286 -6.41756 0.386914 0.382651 0.477698 0.360091 0.269847 0.306761 0.095098 2.03338\n", + " 15 1.158e+01 2.351e+01 1.408e+00 -- 1.258e+03 -- -0.362294 -0.96986 -2.16805 -2.39704 -3.17203 -3.45749 -4.62837 -6.11756 0.410934 0.403523 0.506367 0.380155 0.281317 0.324474 0.0944395 -1.46371\n", + " 16 1.607e+03 7.266e+02 8.010e+00 -- 1.266e+03 -- -0.240266 -0.83846 -2.03814 -2.27523 -3.05681 -3.37736 -4.97188 -8 0.614202 0.577977 0.745974 0.548634 0.37576 0.476151 0.0813258 0.437418\n", + " 17 9.038e+02 4.128e+00 3.834e+00 -- 1.270e+03 -- -0.232783 -0.852575 -2.04678 -2.29283 -3.08252 -3.39513 -5.04543 -8 0.548929 0.498486 0.710668 0.487552 0.327531 0.450717 -0.157389 -0.565487\n", + " 18 2.647e+02 5.497e-01 2.932e-02 -- 1.270e+03 -- -0.23322 -0.852233 -2.04339 -2.2905 -3.07964 -3.39057 -5.07095 -8 0.552004 0.51698 0.698282 0.491552 0.331349 0.451833 -0.156166 -2.69909\n", + " 19 9.652e-01 2.219e+00 6.531e-01 -- 1.269e+03 -- -0.233246 -0.852217 -2.0438 -2.29075 -3.08035 -3.39107 -5.06163 -5 0.551423 0.515009 0.700327 0.490665 0.330402 0.452209 -0.176384 -0.814953\n", + " 20 7.789e+00 7.955e-01 6.402e-01 -- 1.270e+03 -- -0.233412 -0.852282 -2.04423 -2.29033 -3.07948 -3.38989 -5.09639 -5.98364 0.551849 0.515428 0.700779 0.489124 0.333636 0.45985 -0.205833 -1.60153\n", + " 21 8.557e+01 4.082e-02 1.163e-02 -- 1.270e+03 -- -0.233294 -0.852207 -2.04379 -2.29075 -3.08047 -3.39073 -5.05794 -7.0122 0.551775 0.515347 0.699486 0.490646 0.330835 0.451633 -0.186288 -1.50956\n", + " 22 1.000e+03 9.633e-02 1.325e-03 -- 1.270e+03 -- -0.233263 -0.852211 -2.04374 -2.29072 -3.08027 -3.39085 -5.06491 -8 0.551627 0.515234 0.700132 0.49056 0.330468 0.452479 -0.17545 1.26429\n", + " 23 6.947e+01 7.583e-02 5.012e-04 -- 1.270e+03 -- -0.23325 -0.852208 -2.04374 -2.29072 -3.08029 -3.39091 -5.06372 -8 0.551664 0.515214 0.700074 0.490679 0.330402 0.452326 -0.175132 2.98034\n", + " 24 1.062e+00 2.147e+00 6.150e-01 -- 1.269e+03 -- -0.23325 -0.852208 -2.04374 -2.29072 -3.08028 -3.39091 -5.06387 -5 0.551636 0.515215 0.70009 0.490675 0.330405 0.452326 -0.175244 -0.97755\n", + " 25 5.159e+00 7.693e-01 6.227e-01 -- 1.270e+03 -- -0.233412 -0.852294 -2.04429 -2.29036 -3.07951 -3.38938 -5.09276 -5.9203 0.551804 0.515509 0.700612 0.48922 0.334134 0.458766 -0.237317 -2.01536\n", + " 26 3.256e+00 2.577e+00 8.259e-01 -- 1.269e+03 -- -0.233292 -0.852208 -2.04377 -2.29076 -3.08053 -3.3906 -5.0573 -4.88481 0.551755 0.515396 0.699418 0.490641 0.330803 0.451361 -0.185258 0.154178\n", + " 27 8.306e+00 8.513e-01 7.419e-01 -- 1.269e+03 -- -0.2334 -0.85217 -2.04371 -2.2903 -3.07979 -3.394 -5.12588 -5.6438 0.551608 0.514436 0.70228 0.489167 0.329463 0.464863 0.0259555 0.65621\n", + " 28 3.018e+02 2.512e-01 7.557e-02 -- 1.270e+03 -- -0.23325 -0.852177 -2.04375 -2.29075 -3.08018 -3.3918 -5.06768 -7.58414 0.552082 0.51496 0.699848 0.491275 0.330113 0.452176 -0.189638 -1.62114\n", + " 29 9.648e+02 1.054e-01 5.781e-05 -- 1.270e+03 -- -0.233258 -0.852207 -2.04374 -2.29072 -3.08024 -3.39094 -5.06451 -8 0.551479 0.515219 0.700113 0.49073 0.330409 0.452292 -0.172337 -0.754914\n", + "********************\n", + "-0.233258 -0.852207 -2.04374 -2.29072 -3.08024 -3.39094 -5.06451 -8 0.551479 0.515219 0.700113 0.49073 0.330409 0.452292 -0.172337 -0.754914\n", + "0.0271527 0.0112859 0.0294371 0.0238447 0.0419821 0.0761252 1.60955 678.342 0.189103 0.111853 0.196777 0.152506 0.193957 0.252076 3.72644 1583.62\n", + "0.0121717 -0.0302322 -0.0279866 -0.0393548 -0.105374 -0.0168605 -0.00293106 -0.000917936 0.00679344 -3.13658e-05 -4.94438e-05 -0.00117381 0.00319937 0.00794062 0.00314398 -0.000234878\n", + "********************\n" + ] + } + ], + "source": [ + "Cx = clag.clag('cxd10r', [[t1,t2]], [[l1,l2]], [[l1e,l2e]], dt, fqL, p1, p2)\n", + "p = np.concatenate( ((p1+p2)*0.5-0.3,p1*0+0.1) ) # a good starting point generally\n", + "p, pe = clag.optimize(Cx, p)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "phi, phie = p[nfq:], pe[nfq:]\n", + "lag, lage = phi/(2*np.pi*fqd), phie/(2*np.pi*fqd) \n", + "cx, cxe = p[:nfq], pe[:nfq]" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 9.0966594 , 2.8412865 , 2.00075511, 0.90476609, 0.39301911,\n", + " 0.34709626, -0.08532525, -0.24113739])" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhkAAAFtCAYAAACqQXjBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAGUhJREFUeJzt3X2QXWd9H/Cvg2REUFL5Be+aNLbwBnkdogzZHTm11aFr\n6jKFBhhSELoDQ1kB9jTMOGqTP8wfFow8kwYynVGnk6YVRe5MoFdWQtyh8YiaNKvCyJqg0cL4pV7K\nrCXHxd4NRgiMi7DA6h9n11qtd6W7q/vcc+/u5zNzZ3fPyz0/SY92v3vO85IAAAAAAAAAAAAAAAAA\nAAAAAAAAAAC9Z32SzyR5KMl3k7yU5JMLHPdfZvbNf/3vjlQJALTNmg5d5+okH0vyzSQPJPlokrOL\nHPvjJLctsA0A6CGdChknklwx8/lVqULGYn6W5OulCwIAyvq5Gq552SXuBwB6QB0h42Jek+TZJD9N\n8nSSf59zd0EAgB7Rqcclrfpmkm8keWzm65Ek/yrJP06yJckL9ZQFACxVt4WMPfO+/p+pQsefp+rH\n8e8WOOfamRcAsDTPzryK6LaQsZAHUt3B+M0F9l37+te//plnnnmmwyUBwIrwnVRPCooEjV4IGZdl\n8b4j1z7zzDP5/Oc/n5tuuqmTNbXFzp07s2fP/Js33X+tS3mv5Zzb6jmtHHexYy60v5P/Xu2mrbX3\nHG1tcautrT3xxBP54Ac/uOSfQ93Q1mZq/6VUTwNWbch4b6rOoEcWO+Cmm27K0NBQ5ypqkw0bNnSs\n7nZe61LeaznntnpOK8dd7JgL7e/kv1e7aWvtPUdbW9xqbGvJ0n8OdUtbK+1VHbzW25O8OcnmJO9O\nNfNnkvxqkuNJfinJXyZZl2oujTcm+UiSP0wykeR3Uo04mevaJHfeeeedufba3uyWsXnz5p681qW8\n13LObfWcVo672DGL7W82m2k0Gi3V0Y20tfaeo60tbjW1tWeffTZ79+7Ncn4O1d3WZmtPsjeF7mR0\nck6K40mun/n87Jxrn03yhiQ/TPK5JL+RpC9VADqRqk/GHyR5foH3HEpy7NixYz2b+ukd73rXu/Kl\nL32p7jJYBbS13jE+Pp7h4eH04s+h2dqTDCcZL3GNTj4ueUMLx/zz4lUAAB3RjZNxQVfq5dvX9BZt\njZVCyIAW+cZPp2hrrBRCBgBQhJABABQhZAAARQgZAEARQgYAUISQAQAUIWQAAEUIGQBAEUIGAFCE\nkAEAFCFkAABFCBkAQBFCBgBQhJABABQhZAAARQgZAEARQgYAUISQAQAUIWQAAEUIGQBAEUIGAFCE\nkAEAFCFkAABFCBkAQBFCBgBQhJABABSxpu4CoNs0m800m80kyenTp/PUU0/l+uuvz7p165IkjUYj\njUajzhIBeoKQAfPMDRHj4+MZHh5Os9nM0NBQzZUB9BaPSwCAIoQMAKAIIQMAKELIAACKEDIAgCKE\nDACgCCEDAChCyAAAihAyAIAihAwAoAghAwAoQsgAAIoQMgCAIoQMAKAIIQMAKELIAACKEDIAgCKE\nDACgCCEDACiiEyFjfZLPJHkoyXeTvJTkk4scO5Tkr5I8n+T7Sb6Y5A0dqBEAaLNOhIyrk3wsydok\nD8xsO7vAcYNJDiVZk+R9SXYk2ZTkazPvAQD0kDUduMaJJFfMfH5Vko8uctzuJD9O8ltJfjSz7ViS\nbyf5/SR3lysRAGi3TvfJuGyR7WtShYsv5lzASJK/TTKW5D2F6wIA2qxbOn4OJFmX5JEF9j2a5FeS\nXN7RigCAS9ItIeOqmY8nF9h3MtUdkCsW2AcAdKluCRkAwArTiY6frfjezMcrF9h3ZarRKN9f7OSd\nO3dmw4YN521rNBppNBptKxAAelWz2Uyz2Txv26lTp4pft1tCxmSqkSW/vsC+zalGmLy42Ml79uzJ\n0NBQodIAoLct9Iv3+Ph4hoeHi163Wx6X/DTJf0/y26km75p1XZLbkvxFHUUBAMvXqTsZb0/y2iS/\nMPP1m5K8d+bzB1PdxfhkkqNJ/jLJHyZ5Taq5M/4uyb/tUJ0AQJt06k7Gf0hyIMnnUvWveN/M1/cn\ned3MMd9KMpLkTJI/T3Jfkv+T5C0512cDOuLEiRPZsWNHtm3bliTZtm1bduzYkRMnTtRbGEAP6dSd\njFbXHxlP8k9KFgIXMj09ne3bt2diYiJTU1Mvb5+cnMzk5GQOHjyYwcHB7N+/P319fTVWCtD9uqXj\nJ9Rueno6t956a5588slFj5mamsrU1FS2bt2aw4cPCxoAF9AtHT+hdtu3b79gwJhrcnIy27dvL1wR\nQG8TMiDJ8ePHMzExsaRzJiYm9NEAuAAhA5Lce++95/XBaMXU1FR2795dqCKA3idkQJKjR4929DyA\n1UDIgCRnzpzp6HkAq4GQAUnWrl3b0fMAVgMhA5Js2bJlWefdfPPNba4EYOUQMiDJrl270t/fv6Rz\n+vv7c8899xSqCKD3CRmQZOPGjRkcHFzSOYODg9m4cWOZggBWACEDZuzfvz8DAwMtHTswMJD777+/\ncEUAvU3IgBl9fX05fPhwRkZGFn100t/fn5GRkTz88MO55pprOlwhQG8RMmCOvr6+jI2N5ciRIxkd\nHX35zsbAwEBGR0dz5MiRjI2NCRgALbBAGixg48aN2bdvX8bHxzM8PJwDBw5kaGio7rIAeoo7GQBA\nEUIGAFCEkAEAFCFkAABFCBkAQBFCBgBQhJABABQhZAAARQgZAEARQgYAUISQAQAUIWQAAEUIGQBA\nEUIGAFCEkAEAFCFkAABFCBkAQBFCBgBQhJABABQhZAAARQgZAEARQgYAUISQAQAUIWQAAEUIGQBA\nEUIGAFCEkAEAFCFkAABFCBkAQBFr6i4Auk2z2Uyz2UySnD59Ops2bcrdd9+ddevWJUkajUYajUad\nJQL0BCED5hEiANrD4xIAoAghAwAoQsgAAIoQMgCAIrotZIwkeWmR1831lQUALFW3ji75RJKxedse\nr6MQAGB5ujVkfDvJ1+suAgBYvm57XDLrsroLAAAuTbeGjD9OcibJD5J8OcnWessBAJaq20LGqSR7\nktyRqhPo7yb55SSHkryttqoAgCXrtj4Z35x5zTqc5IEkjyb5dJKH6igKAFi6bgsZC/lBkgeT3Jnk\n1Ul+Mv+AnTt3ZsOGDedts/4EAFTmLvw469SpU8Wv2wshY66zC23cs2dPhoaGOl0LAPSEhX7xHh8f\nz/DwcNHrdlufjIVckeSdSb6R5MWaawEAWtRtdzK+kOR4kvEkJ5O8McnvJXldkg/VWBcAsETdFjIe\nSfL+JB9Psj5V0Phakg8kOVZjXQDAEnVbyPj0zAsA6HG90CcDAOhBQgYAUISQAQAUIWQAAEUIGQBA\nEUIGAFCEkAEAFCFkAABFCBkAQBFCBgBQhJABABQhZAAARQgZAEARQgawZM1mM7fffnuuu+66rF+/\nPpdffnnWr1+f6667LrfffnuazWbdJQJdoNuWege63PT0dPbu3ZuJiYlMTU29vP3MmTN54YUXcubM\nmezduzdvfetb09fXV2OlQN2EDKBl09PTufXWW/Pkk08ueszU1FSmpqaydevWHD58WNCAVczjEqBl\n27dvv2DAmGtycjLbt28vXBHQzYQMoCXHjx/PxMTEks6ZmJjIiRMnyhQEdD0hA2jJvffee14fjFZM\nTU1l9+7dhSoCup2QAbTk6NGjHT0P6H1CBtCSM2fOdPQ8oPcJGUBL1q5d29HzgN4nZAAt2bJly7LO\nu/nmm9tcCdArhAygJbt27Up/f/+Szunv788999xTqCKg2wkZQEs2btyYwcHBJZ0zODiYjRs3lilo\niUyFDp0nZAAt279/fwYGBlo6dmBgIPfff3/hilozOxX6448/nqeffvrl6c9feOGFPP3003n88cez\nd+/eTE9P110qrChCBtCyvr6+HD58OCMjI4s+Ounv78/IyEgefvjhXHPNNR2u8JVmp0I/dOjQovN8\nTE1N5dChQ9m6daugAW0kZABL0tfXl7GxsRw5ciSjo6Mv39kYGBjI6Ohojhw5krGxsa4IGImp0KFO\nQgawZM1mM3fddVeee+653HDDDdm0aVNuuOGGPPfcc7nrrru6pn+DqdChXlZhBZas0Wik0WjUXcZF\nXcpU6Pv27StUFawe7mQAK5ap0KFeQgawYpkKHeolZAArlqnQoV5CBrBimQod6qXjJ7Bi7dq1KwcP\nHlxS509TofeWZrP58mim06dP56mnnsr111+fdevWJemdTsorlZABrFizU6EvJWR001ToXNzcEDE+\nPp7h4eE0m80MDQ3VXBmJxyXACterU6HDSiBkACta3VOhnzhxIjt27MjmzZszODiYzZs3Z8eOHSb8\nYlXwuARY8fr6+nLHHXfkc5/7XNauXZuTJ0/mxRdfzOWXX54rr7wymzZtykc+8pG2Bozp6els3749\nExMTr3hc89hjj+XgwYMZHBzM/v3709fX17brQjcRMoBVoZMdAGcXZbvQmilTU1OZmprK1q1bc/jw\nYUGDFcnjEoA2sygbVIQMgDayKBucI2QAtNGlLMoGK42QAdBGFmWDc4QMgDbqlkXZ6hg6a7gu8xld\nAtBGdS/KVsfQWcN1WYyQAdBGW7ZsyWOPPbbk89qxKFsdQ2cN1+VCPC4BaKNdu3YtOrPoYtq1KFsd\nQ2cN1+VChAyANppdlG0p2rEoWx1DZw3X5WK6LWSsT7InyXeS/DjJN5K8v9aKAJaojkXZ6hg6a7gu\nF9NtIeMvknwoyaeS/NMkR5M0k3RmLmCANqhjUbY6hs52y3Dd2VEt27ZtS5Js27bNqJYu0U0dP9+R\n5PZUgWI21v+vJNcn+aOZbS/VUxrA0vT19WVsbCwnTpzI7t27c/To0Zw5cyZr167Nli1bsmvXrkt+\nRDJXHUNn6x6uu9iolsnJyUxOThrV0gW6KWS8J8nzSf5s3vb7kvzXJL+Z5EiniwK4FBs3bsy+ffuK\nX6eOobN1Dtete1TLbHj86le/mqS6e/KWt7yl7eGx13XT45JfS/JEXnm34tGZj2/qbDkAvWPLli3L\nOu9Shs7Wcc1ZdY1qmZ6ezm233ZZbbrkl9913XyYnJ1++xn333Zdbbrklt912W6anp9tyvV7XTSHj\nqiQnF9h+cs5+ABZQx9DZuobr1jWqZfbuyaFDhxbt8Do1NZVDhw5l69atgka6K2QAsEx1DJ2ta7hu\nXaNazAmydN3UJ+N7WfhuxZVz9i9o586d2bBhw3nbGo1GGg2DUoDVY//+/dm6devLt/AvpF1DZ+u4\nZh2jWi7l7kk39NFoNptpNpvnbTt16lRN1dTjPyX5YV55d2V7qn4a/2CBc4aSnD127NhZAM6enZqa\nOjsyMnK2v7//bJJXvPr7+8+OjIycnZ6e7tlr3njjjQte52KvG2+8cdnXHB0dXdY1R0dH2/JnLuHY\nsWOzdQ4t+yf3RXTTnYwHknwsyXuTHJiz/cOpJuf6mxpqAugpnR46W8c16xjV0i1zgvSabgoZX07y\nlSR/kuQXk0ymmjPjbUk+kCptAdCCTg2dreOadSxCV/ecIL2q2zp+/naSP02yO8nBJFtSPS5pXugk\nAFaPOka11DknSC/rtpDxQpKdSV6fZF2S38j5j04AWOXqGNVS55wgvazbQgYAXFSnF6Gra06QXidk\nANBzOr0IXV1zgvQ6IQOAnjQ7quXIkSMZHR19+c7GwMBARkdHc+TIkYyNjbVllduk83dPVgIhA4Ce\nNjuq5cCBqgvfgQMHsm/fviJDdTt592QlEDIAoEWdvnvS67ppngwA6Amzd0/Gx8czPDycAwcOZGio\n2MSZPcudDACgCCEDAChCyAAAihAyAIAihAwAoAghAwAoQsgAAIoQMgCAIoQMAKAIIQMAKELIAACK\nsHYJAD2r2Wym2WwmSU6fPp1Nmzbl7rvvzrp165IkjUYjjUajzhJXNSEDgJ4lRHQ3j0sAgCKEDACg\nCCEDAChCyAAAihAyAIAihAwAoAghAwAoQsgAAIoQMgCAIoQMAKAIIQMAKELIAACKEDIAgCKEDACg\nCCEDAChCyAAAihAyAIAihAwAoAghAwAoQsgAAIoQMgCAIoQMAKAIIQMAKELIAACKEDIAgCKEDACg\nCCEDAChCyAAAihAyAIAihAwAoIhuChkjSV5a5HVzfWUBAMuxpu4CFvCJJGPztj1eRyEAwPJ1Y8j4\ndpKv110EAHBpuulxyazL6i4AALh03Rgy/jjJmSQ/SPLlJFvrLQcAWI5uChmnkuxJckeqTqC/m+SX\nkxxK8rbaqgIAlqVUn4yRJH/d4rFvTvJIkm/OvGYdTvJAkkeTfDrJQ22sDwAorFTImEjy0RaPffoC\n+36Q5MEkdyZ5dZKfLHTQzp07s2HDhvO2NRqNNBqNFksAgJWr2Wym2Wyet+3UqVPFr1sqZEwl2dfm\n9zy72I49e/ZkaGiozZcDgJVhoV+8x8fHMzw8XPS63dQnYyFXJHlnkm8kebHmWgCAJeimeTK+kOR4\nkvEkJ5O8McnvJXldkg/VWBcAsAzdFDIeSfL+JB9Psj5V0Phakg8kOVZjXQDAMnRTyPj0zAsAWAG6\nvU8GANCjhAwAoAghAwAoQsgAAIoQMgCAIoQMAKAIIQMAKELIAACKEDIAgCKEDACgCCEDAChCyAAA\nihAyAIAihAwAoAghAwAoQsgAAIoQMgCAIoQMAKAIIQMAKELIAACKEDIAgCKEDACgCCEDAChCyAAA\nihAyAIAihAwAoAghAwAoQsgAAIoQMgCAIoQMAKAIIQMAKELIAACKEDIAgCKEDACgCCEDAChCyAAA\nihAyAIAihAwAoAghAwAoQsgAAIoQMgCAIoQMAKAIIQMAKELIAACKEDIAgCKEDACgCCEDAChCyAAA\nihAyAIAiSoeM9Uk+k+ShJN9N8lKST17g+KEkf5Xk+STfT/LFJG8oXCMAUEDpkHF1ko8lWZvkgZlt\nZxc5djDJoSRrkrwvyY4km5J8beZ9oFbNZrPuElgltDVWitIh40SSK5LcluQTFzl2d5IfJ/mtJF9O\nFUr+WZLXJfn9ciVCa3zjp1O0NVaKTvbJuOwC+9akChdfTPKjOdv/NslYkvcUrAsAKKBbOn4OJFmX\n5JEF9j2a5FeSXN7Rijqgk7+ttPNal/Jeyzm31XNaOe5ix6zU3yC1tfaeo60tbjW2tZLX6/W21i0h\n46qZjycX2Hcy1V2QKzpXTmesxv+MvvHXQ1tr7zna2uJWY1sreb1eb2trlnDsSJK/bvHYN2fhuxJF\nPPHEE526VFudOnUq4+PjPXetS3mv5Zzb6jmtHHexYy60v5P/Xu2mrbX3HG1tcautrc3+/Fnqz6Fu\naGud+Nl5oX4S8/UneUeLxz6QagjqXFcn+bskn0rVyXOuG5M8keR3kvzHefv+KMm/TvKaJC/O23dt\nkqNJfqnFugCAc76TZEuSZ0u8+VLuZEwl2VeiiCSTqUaW/PoC+zYn+XZeGTCS6i9lS6qwAQAszbMp\nFDA67epUk3HtWmT//lRBZv2cbdcl+UmSPyhbGgDQbq/qwDXenqqPxuYk704182eS/GqS40l+OvP1\no0k+nmpOjamZ4/9zkp8l+Rep7nQAALzseKo7GC+lCgxzP79u3rFDSb6Saq6MUzGtOAAAAAAAAABA\nt5sdvfLDJN9KtTostNvlSe5Lte7OD5IcSXJLrRWxkv3LJOOphvh/suZaWJlel+TBVH0lv5Xk9nrL\n6V435dy8IFtSjVbRqZR2+/kk9yT5+zNffyjViKrX1FYRK9m7Uy0ueSCLTw8Al+JAks+mWl/snamW\n+riy1op6wFCS6VRzd0Bp30s1JBtK+WzcyaD91qeaq+r1c7aNJRlt9Q26ZYG0TvlCqjsYh5PckeS5\nesthFRhMdRdjsu5CAJbojakekzwzZ9ujSd7U6hustpDxgSSvTdJI9dx8/jwd0E4/n+RPk9yb5P/V\nXAvAUq1P1Y9xrh/m/Jm5L2ilhowPJHl+5vXgvH0vJflvqe5mvKvDdbHyLNbW1ib5sySPJfk3NdTF\nynOh72tQwo+S/OK8bX8vVRvsKeuTfCbJQ6k6yb2UxZ8vrk+yJ9XKcT9O8o0k71/GNQ8m+fAyzqO3\ndaKt/Vyq0UwPZOUGeS6uk9/XPhsdP2l/m1uoT8ah9ODPzo2ploYfS7I3F15I7aFUvVs/luQfzTm+\ncYH370vy3lSPStYk2TbzHpaIX302pmxbS6pv+GNJXn3p5dLDNqZ8W3tVql7/96V6LLcugu1qtjHt\nb3MrbnTJVVn8L+YdM/vmp63/keT/ZvH/XH1JvppqPZSTM5//w3YUS08r0daunznvhZy7tf18kq1t\nqJfeVaKtJcmncm49qNnXhy6xVlaGdrW5q1M9nnshK2SejAstCf/ZVBMczf9Pt33mHJMesRTaGp2i\nrdFpXdHmeu222q8leSLVX8Jcj858bHlYDVyEtkanaGt0WsfaXK+FjKtSPe6Y7+Sc/dAO2hqdoq3R\naR1rc70WMgCAHtFrIeN7WThhXTlnP7SDtkanaGt0WsfaXK+FjEdSLXQ2v+7ZdSEe62w5rGDaGp2i\nrdFpHWtzvRYyHkg1Och7523/cKoJRf6m0wWxYmlrdIq2Rqd1rM2tufghHfP2VJNl/cLM12/Kub+A\nB1PNSPblJF9J8ieppjqdTDVxyNtSTbl7toP10ru0NTpFW6PTtLlFHM+5yWR+Nu/zuQuZvTbVVKjP\nJDmdairUbR2tlF6nrdEp2hqdps0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtfv//jLVr3Q315IA\nAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "\n", + "xscale('log'); ylim(-10,15)\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=10,color=\"black\")\n", + "\n", + "lag" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGYCAYAAABPgZiFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XmcHGWd+PHP5IBwhwQ5lXsDSQBhonguBK9FwAME11FW\nAos/d1dZo4BGRIOCoGLceIAHkqDgjqtccigIyuG6CJgRucJhQBDDmQMSIOSY/v3xraZrOt3T3VPV\n0zM9n/fr1a/qrnrqqaerpqe//VwFkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJKnkz\n8EtgKfAC8ABwalmaTuB6YAWwDLgE2KVKficA9wGrgIeALwBjci+1JElSFR8E1gI/AQ4FDgT+lb4B\nzp7Ac8CNwMHA4cBdwGPAVmX5fQ5YB5wBHACcRAQ632/WG5AkSUrbAVgJfKdGup8BTwKbptbtCLwE\nfCW1biLwIvDdsv0/SwQ9k7MUVpIkqR6zgV7gVf2kGUM0W51bYds1wP2p1x9K8tu/LN22yfrPDrik\nkiQpk1GtLsAgOgBYAkwB7gDWEDU13wU2S9LsBowD7qyw/13A7sAGyeu9UuvTngCeAabmVXBJktSY\nkRTg7ABsQjRBdQNvBc4GPkx0OoZodoLogFxuKdABbJlK+xLRTFVuWSovSZI0yEbSaJ9RRO3MacDX\nknU3A6uBucBbiA7Cg2W75CFJkhrzePKoaiQFOEuIJqZry9Zfkyz3A65Mnk+osP8EoEDUzhTz25AI\nmsoDownA7f2UZbvtt99+8eLFi+sruSRJSltItMRUDXJGUoBzB/C6frYXgEVEk9M+FbbvDTxI1PhA\nqZ/OPsBtqXTbEs1Td/dzrO0WL17MRRddxOTJtQdbzZw5k7lz59ZMp5LheM5aXeZmH78Z+eeR50Dz\nGMh+je7T6r+J4Wg4nrNWl3m4ffYXLlzI0UcfPZloBTHAISbr+yhwCPDn1PpDk+WtxPDuK4EjgE8T\nw8ohhokfBMxJ7XcNUXMzg74BzgwiWLq8VoEmT55MZ2dnzYKPHz++rnQqGY7nrNVlbvbxm5F/HnkO\nNI+B7NfoPq3+mxiOhuM5a3WZh+Nnvx4jKcC5HriKmGl4FBHQvCZ5fSXw+yTdbKJ56Spi3puNgC8B\nT9E3wFlGTPB3OtEB+Trgtcn+5xGzG6tFurq6Wl2EhrW6zM0+fjPyzyPPgeYxkP1afY1HguF4jltd\n5uH42a9HR0uO2jrjiADkg0TV1t+JWY2/SAwbL+oEvgq8gZj5+DfELMUPV8jzBOBjwM5EVdl84MtE\nbVA1ncCCBQsW1BXVvvvd7+aKK66omU5Se/GzL62vp6eHadOmAUwDeqqlG0k1OBBNSp+l9iR8PcDb\n68zz28lDkiQNESNpHpxhq9XVl5Jaw8++NHAGOMOA/+SkkcnPvjRwBjiSJKntGOBIkqS2Y4AjSZLa\njgGOJElqOwY4kiSp7RjgSJKktmOAI0mS2o4BjiRJajsGOJIkqe0Y4EiSpLZjgCNJktqOAY4kSWo7\nBjiSJKntGOBIkqS2Y4AjSZLajgGOJElqO2NaXQBJktQ+uru76e7uBmDVqlU88sgj7LTTTowbNw6A\nrq4uurq6ml4OAxxJkpSbdADT09PDtGnT6O7uprOzc1DLYROVJElqOwY4kiSp7RjgSJKktmOAI0mS\n2o4BjiRJajsGOJIkqe0Y4EiSpLZjgCNJktqOAY4kSWo7BjiSJKntGOBIkqS2Y4AjSZLajgGOJElq\nOwY4kiSp7RjgSJKktmOAI0mS2o4BjiRJajsGOJIkqe0Y4EiSpLYz0gOc44FeYEWFbZ3A9cm2ZcAl\nwC5V8jkBuA9YBTwEfAEYk3dhJUlSffL4Et4EeBPwOmAb4BXAFsBy4GngCeBW4P+AF3I4Xl52AL4O\nLAY2L9u2J3Aj0AMcBWwEfAn4HbAv8Ewq7eeSbWcBvwb2B85I8v9o00ovSZKqGmiA8wrgaOD9RE3H\nGKCjxj5rgAXAz4CfEMFPK30PuIEIxI4s2/Yl4EXgMGBlsm4B8CBwEjArWTcROBX4QbIEuBkYSwQ5\nc4GFzSm+JEmqptEmqt2AecCjwByi1mYsfYOblUStyPNl+44FXg98A3gEOD/JrxWOBv4R+BjrB2Zj\niMDmEkrBDcR7vgE4PLXuYGBDYH5ZHvOTfN+bX5ElSVK96g1wJgLfJWojZhBf6i8BvwJmE1/02yXr\nNwdeCWyWvN4BOBT4InANsBoYBxwL3JvkOyGPN1OnbYialVlEIFZuN6J8d1bYdhewO7BB8nqv1Pq0\nJ4hmrKlZCytJkhpXbxPVA8CWyfObgIuAnwPP1dhvDfB48vhVsm4Lol/Lh4ADiX4qRwFb1V3qbM4h\nAqvvVdk+MVkurbBtKVEzsyXwZJL2JaI5q9yyVF6SJGkQ1RvgbAlcDZxG9EXJ4lngh8ljWpLnoRnz\nrNeRRPPTqwfpeP2aOXMm48eP77Ouq6uLrq6uFpVIkqSho7u7m+7u7j7rli9fXte+9QY4+wN/bKxY\ndVkAvAt4TRPyLrcp8B3gW0TtSzGyKDY3bQGsBZYkrys1m00ACkTtDEnaDYkmrVUV0t7eX4Hmzp1L\nZ2dn/e9AkqQRpNKP/p6eHqZNm1Zz33r74DQjuBnM/CGawLYmRkEtTT0+QAx1XwZcCPyFaHLap0Ie\nexMjqVYnr4v9dMrTbks0T92dX/ElSVK9RtJkdI8DBxE1MEUdRGfjA4mO0s8A64ArgSOAT1MaSbVj\nsv+c1P7XEDU3M4DbUutnJMe5PN+3IEmS6jGSApyXiA7S5Y4lgpqbU+tmE81LVwFfoTTR31P0DXCW\nEfPdnE7UBl0HvDbZ/zxidmNJkjTIst6qYQNgSvIYV2H7RsS8N48RzT73Erc1GEoK9K3VAbgfmE6M\nAruYmNfmAeAASn10is4EZhIdmK8l5tY5K1lKkqQWyFqD817gp8SsxK+qsP1S4J9Sr/cEvgn8A/Cf\nGY+dl2OTR7ke4O115vHt5CFJkoaArDU4xeDlMkodb4sOTW1/jOiPUpxY72PAGzIeW5IkqaKsAU5x\nnNbNFbYVa0UeIGb0PSJZ3kd07j0+47ElSZIqyhrgbE30X1lUId9i8853gBXJ82eT1wBvzHhsSZKk\nirIGOMXbK5RPcrcvcS+qAjEDclpxbphKfXYkSZIyyxrgFPvdlN9H6oBk+RjwcNm2Ym3O6IzHliRJ\nqihrgPNXoj/N68vWvytZ/q7CPsVbIDyd8diSJEkVZQ1wbkiWHyfmwgF4NzGHDMAvK+wzNVk+nvHY\nkiRJFWUNcL5NTIa3DXAXcauDy4lanb8Dl1TY5x3J8q6Mx5YkSaooa4DzAHA08AIR1BSbn5YDXcTt\nEdK2pRTg/DbjsSVJkirK415UPyfmwTmUCGAWA1cQ92Yqtw/w38ToqkrNV5IkSZnldbPNJ4F5daT7\ndfKQJElqmqxNVJIkSUNO1gDnPuDTRCdjSZKkISFrgDMJ+ArwN+AXwHtwAj9JktRiWQOcPyXLMcTk\nfpcRsxefDeyZMW9JkqQByeNu4vsC3wSWJOu2AU4E7gH+j7hr+KYZjyNJklS3PDoZ3wl8EtgeOJK4\nueY6Srdw+AExa/F84B9zOJ4kSVK/8hxFtQa4lGiqehUwC7g/2bYJcAxwEzE54CxguxyPLUmS9LJm\nDRN/AvgaMBl4I/BDSncR3x04E3gEuAo4HDsmS5KkHA3GPDh/AP4f8CEi8CkaAxxC3K/qEaKZK6+J\nByVJ0gjW7ABnJ2A2sIgYRr5tsn4tcA0xvByi/84c4FZgyyaXSZIktblmBDgbETfg/A0R2MwGdiE6\nHT9I9L95JVF7swvwT8D1yb77Aac1oUySJGkEyTPAeQOlEVM/Bg5K8l8F/ASYDuxB9M15KtmnF7iO\nuMP4t5N178qxTJIkaQTK2udle+BfgBlE8JL2Z6Jz8UXAs3Xk9SPgBGIEliRJ0oBlDXAepW8t0Aqg\nmwhs/thgXs8lS0dUSZKkTLIGOMXg5hbgPOBnwAsDzOsJ4DigkLFMkiRphMsa4MwlApuFOZRlJXBB\nDvlIkqQRLmuA86lcSiFJkpSjwZjoT5IkaVAZ4EiSpLaT560R3gK8F9gH2IqY8K+jxj675nh8SZIk\nIJ8AZxvgp8CBOeQlSZKUWdYAZyzwS+IWCwB3AIuJ2zAAXAhMADqB7ZJ1PcDdOBxckiQ1SdY+ODMo\nBTfHEYHMrOR1ATiGuPXCK4HDids4TAauBI7NeGxJkqSKsgY470uW19D/HDYF4m7iBwBriNsyTMp4\nbEmSpIqyBjj7JsuLqmwv72S8iJgccGPgExmPLUmSVFHWAGcCUTvzUGrd6tTzjSvs89tk+baMx5Yk\nSaooa4CzumwJpZtmAuxQYZ9V/WyTJEnKLGuA8yjRDLVNat2TxH2lOoDXVdhnSrIc7FFUbyX6/jwA\nPA88BlxOdIwu1wlcT9wdfRlwCbBLlXxPAO4jAreHgC+Q7/xCkiSpQVkDnJ5kuV9qXQG4OXk+E9gw\ntW088OnkeR436GzER4Edgf8C3kn0Adoa+ANwUCrdnsCNRJByFDE6bBLwO2ICw7TPEX2KLgbeAZwL\nnAKc06T3IEmS6pC1puE3wAeBw4AzU+u/S8yFsx9wFzGCahNiyHixaerHGY/dqI8DT5Wtuwb4CxGU\n3JCs+xLwIvGeVibrFgAPAidRGgY/ETgV+EGyhAjsxgJnEIHPYAdxkiSJ7DU4lxPNVK8EdkutvxqY\nlzzfHTgR+DdKwc2viSBoMJUHNxBNVQuJ8kMEfIcRTVIrU+keJQKgw1PrDiZqp+aX5TmfaJ57b/Yi\nS5Kkgcga4CwDdiaafhaVbftI8riNCCReImpzTiaCiHUZj52HLYj+Nvckr3cDxgF3Vkh7FxGsbZC8\n3iu1Pu0J4Blgaq4llSRJdWtmZ9gCcH7yGKrOIW4K+uXk9cRkubRC2qVEzcyWREfqiUTQ9mKFtMtS\neUmSpEE2kkf7nE70H/o48KcWl0WSJOVopAY4s4kRUKcQI5+KliTLCRX2KU5quCyVdkOiSWtVhbS3\n1yrEzJkzGT9+fJ91XV1ddHV11dpVkqS2193dTXd3d591y5cvr2vfkRjgzE49vlK2bRHR5LRPhf32\nJkZSFSc1LPbT2YfoZ1S0LdE8dXetgsydO5fOzkrT8EiSpEo/+nt6epg2bVrNfesNcB6mORPz7dqE\nPPvzeSKwOT15lFtL3On8CGK+nuJIqh2JuXLmpNJeQ9TczKBvgDODOFeX51dsSZLUiHoDnJ2aWorB\ncSLwRSIw+SXw+rLtf0iWs4nmpauIGp6NiLlxnqJvgLOMmO/mdKID8nXAa5P9zyNmN5YkSS1Qb4BT\na1K+VycPgOVEp93ivDPbEHcdL3Y2+TNwRwNlzMthRM3KwckjrQCMTp7fD0wHvkrMULyWmNDwJEp9\ndIrOJG7n8LFk++PAWZRGZUmSpBaoN8CZ0c+2Y4Eu4t5OJwKXEUFB+XEOB75O3Ivq25QmAhwsB9VO\n8rIe4O11pv128pAkSUNE1on+XgN8n6jZeD3wc9YPbkjW/TxJs4SYxfi1GY8tSZJUUdYA55NE7cyZ\nwOI60j+epB0LfCrjsSVJkirKGuAcQPRf+UOthCm3Jss3ZTy2JElSRVkDnFckyw0b2Kd4L6dX9JtK\nkiRpgLIGOE8T92c6pIF9immfyXhsSZKkirIGOL9Nlp8E3lxH+jcladP7SpIk5SprgPNVYA1xP6br\ngW8Sc950pNJ0APsBc4mgZhxxu4Py2yRIkiTlIuu9qO4FjgEuJPrWnEDcnXs1Mbtvgbgv0waUgp61\nxLw6CzMeW5IkqaKsNTgAPyWap3qS1x1Ep+PtgO2T58XgpidJ+9McjitJklRRXncTv5WY9G9/4G3E\nnbe3TLYtBe4imrBuz+l4kiRJVeUV4BTdRt87a0uSJA26PJqoJEmShhQDHEmS1HbqDXCafWNMb7wp\nSZJyU2+AcytwBTHHTZ46gato7F5WkiRJ/ao3wFkGHAYsAK4DPgxsMsBjbg4cR0z690fi1g3LBpiX\nJEnSeuodRTUJOAM4Hnhr8jiXGPp9KzFy6k5gCdCb2m8UcVPNfYkh5K8HpgMbJdvXAj8ETs3wHiRJ\nkvqoN8BZAvw7MAf4HPBBYGPg3cmjkEr7HLCCqKnZLFmXvnUDwEvAT4CzgEUDKbgkSVI1jY6i+gtw\nLLAjcDIxcV8vEcAUH1sAryQCnOI6knS3AScl+x+PwY0kSWqCgU709yRRmzOHqKV5E9EEtR3RJLUF\nsBx4GlhMBDa/B57PWF5JkqSa8pjJeAVwTfKQJElqOSf6kyRJbccAR5IktR0DHEmS1HYMcCRJUtsx\nwJEkSW3HAEeSJLUdAxxJktR2DHAkSVLbMcCRJEltxwBHkiS1HQMcSZLUdgxwJElS28l6s83ZQKHB\nfQrAKuBZ4EFgAfBcxnJIkiS9LI8AJ6vVwBXAKcBfcshPkiSNcEOhiWoD4EjgDuBtLS6LJElqA1kD\nnFHALsBtyevLgMOBVwEbJY8dgSOAy5M0twK7AxOAA4DvAr3AxsDPgYkZyyRJkka4rAHOZsCvgWnA\nUcD7gF8AfwdeSh6PEcHNEUma1yT7FID/BT4GHEoEOVsAH89YJkmSNMJlDXBmAv9A1MJcUkf6S4Dv\nAbsCJ6XWXwtclDw/OGOZJEnSCJc1wHl/srysgX0uTZaHl62/IlnunqlErbEpMJeouXoR+BPwzy0t\nkSRJI1jWAGcXoqnp2Qb2KQ4J36ls/SPJcvOMZWqFS4EPA6cRNVC3A91AVyOZzJs3j6lTp7LHHnsw\ndepU5s2bl3tBJUkaCbIOE19DdA7eG+ipc5+9UvumFYOt5RnLNNgOIUZ/dQH/k6y7iQjgzk7W9dbK\nZN68eZx88sksXbr05XUnn3wyAMcdd1y+JZYkqc1lrcG5K1meBIyrI/1GwMnJ87vLtu2aLJ/OWKbB\ndjiwghgBljYf2B54XT2ZzJkzp09wA7B06VLmzJmTRxk1hFhT1z/Pj6Q8ZK3BOR94MzAVuAH4COsH\nLkV7A+cBU1L7phXnwLmL4WUvYCHr19IU38dU4Jb+Muju7uaRR4otdF1Ea1cBKHD//aPo7Pw722+/\nAx0d1HxA7TTNSNfKYw+n93z99dcxf/51rFy5M7AOWMfMmVdw//3b8u53H8Lo0VR9jBlTfVt5mlGj\nSscdTtqlJnPevHnMmTOHtWvXMmbMGE488UTLP8iG+3sY7uWHeA9nnHEGAEceeSSnnnrqoL6HrAHO\nj4lJ+g4lair+TEzYtwB4KkmzDTE0/NWp/a4CfpR6PZ5Sh+VfZSzTYJtI5RmYl6a219Tx8rfRGuB5\noCN5jGXUqAKjR0OhEI/e3tLz9AMqrx9oumbkORTTDa63J4+SFSvga1+LR55GjcoWJDVre39pvv71\np1m69EPAWiIA7GXp0nV8/vN/YYMN+s+z0vvNM+2oOuu7mxWkFT/7jTwGss/ll/+Cb36zm+ee24z4\nH1Tgk5/s5q9/nch73vOel4PnUaPI9Hwg+9VruAfKw738sP57ePjhhwf9PeTxG28D4NtE7U0tBaIW\n5wT69sGZSNTwFIA/Et/ww8UDRIBzSNn67YhRVZ8Fvlq2rRNYsGDBAjo7O4HKf9ATJkzg7LPPHjZ/\n0MPZYARXn/3sKVxwwY/o7e0lPnqjX36MGrUBH/jAh5g161TWraPmY+3afNIMpbxWrnyB1avXpc7L\nmGQ5dNQKhFavfoHly5dQKBQDNIieAKPo6BjNlltOZMMNNx5QEKL+g6P0uueee5be3jVExXrpV8zo\n0aPZaqut+uRXnn+rt61cuYKnn36KQp9fX4UkTQdbb70Nm222WdV8KqknOMyaR/n2RYsWsXr1S8mr\ny4BTAZgyZQr33HNP7QL1o6enh2nTpkHMwVe1/2/WGhyIe0l9FPg+8P+AtwK7laVZBPwG+EGVwiwB\nbsyhLK2whMq1NBNS2yuaOXMm48ePf/n1q171KjbaaCM22WSTYVslOVylm5Ka5fzzz+QPf/gF9957\n73rb9txzCj/5yanNLcCQtzFTp06tcH46mDx5b3p6/txv4NTbW18QVm+6geR5xx2LuOKKq1mzphio\nFYgv2V7GjBnDQQcdxj777P3yF/FAHukv8rz3P/vsr3LxxT9LBQdx/qGDUaPGctRR7+fkkz+zXmCW\nrlmuFLjVuz2PvC699DJuueXW5Nz3DZB7e0ezyy77c9hh7+pTe1vteX/bmrX/vff+jV/96lesWVOs\nAyj9YxozZiz7738wkydPqbhvJfXUUmfNo9L2+fNvZvXqZcmrUs+VtWvX1i5QSnd3N93d3X3WLV/e\n2rFI44Btk0c9nY+Hs+8TQ9/LK7A/QPyHeH2FfTqBwoIFCwoaWc4///zChAkTCsDLjwkTJhTOP//8\nVhdtSGiH8zNlypQ+5S8+pkyZ0uqi1WW4l79QGP7vYbiXv1Bo7ntYsGBBMb/O/r6cm3WzzVXAE8lj\nVZOOMVRcRkz0d2TZ+hlEE9Wtg10gDV3HHXccZ599NlOmTGHSpElMmTLFZsiUdjg/J554IhMmTOiz\nbsKECZx44oktKlFjhnv5Yfi/h+FefmiP96BwLdEUdTxwENEU10v1if6swZHa2Pnnn1+YMmVKYdKk\nSYUpU6YMqxqoQmH4l79QGP7vYbiXv1CI97DrrrsWgMKuu+6a23uotwZnGA4kHZI2Ab5MjASbQAwb\nPwv4WZX063UyliSp3RQ7BOf5fTeYnYyL3gK8F9gH2IqY1K9WALVrje3DxfPEjUdntrogkiQpnwBn\nG+CnwIE55CVJkpRZ1gBnLPBLYL/k9R3AYkpzwlxINNl0EvPCQFQn3U16cgJJkqQcZR1FNYNScHMc\nEcjMSl4XgGOAdwGvJO7Z9DgwGbgSODbjsSVJkirKGuC8L1leA1zQT7oC8AvgAGIG4x8BkzIeW5Ik\nqaKsAc6+yfKiKtvLOxkvAuYCGwOfyHhsSZKkirIGOBOI2pmHUutWp55vXGGf3ybLt1XYJkmSlFnW\nAGd12RLitgVFO1TYZ1U/2yRJkjLLGuA8SjRDbZNa9ySwMln/ugr7FO8S5igqSZLUFFkDnOIMgvul\n1hWAm5PnM4ENU9vGA59Oni/MeGxJkqSKsgY4v0mWh5Wt/26y3A+4CzgbODd5vmey7ccZjy1JklRR\n1gDncqKZ6pXAbqn1VwPzkue7AycC/0ap382vKQVBkiRJuco6k/EyYOcq2z4C3JIspybHeoCoufkm\nsC7jsSVJkirK82ab5QrA+clDkiRp0DQzwKlmG6IfTrozsiRJUm5aEeAcDMwnApzRLTi+JElqc1k7\nGQ9E+e0bJEmSctWKAEeSJKmpDHAkSVLbMcCRJEltxwBHkiS1HQMcSZLUdgxwJElS2zHAkSRJbaeR\nif6OISbny+pNOeQhSZJUVSMBTnH2YSfqkyRJQ1qjTVR5BjcGSpIkqSkaqcE5Ludj59HcJUmStJ5G\nApwLmlUISZKkPDmKSpIktR0DHEmS1HYMcCRJUtsxwJEkSW3HAEeSJLUdAxxJktR2DHAkSVLbMcCR\nJEltxwBHkiS1HQMcSZLUdgxwJElS28k7wNkNOBo4Cfg88Iqc88/ircCPgAeA54HHgMuBzirpO4Hr\ngRXAMuASYJcqaU8A7gNWAQ8BX6Cx+3xJkqQc5RXg7AvcRAQPPwK+BpzG+gHOCcDTwF+AsTkdu14f\nBXYE/gt4J/AJYGvgD8BBZWn3BG4kgpSjiDupTwJ+B2xVlvZzwFzgYuAdwLnAKcA5TXgPkiSpDnnU\nMrwTuBTYsGx9R4W0Pwa+AkwEDgMuy+H49fo48FTZumuIYOsU4IbU+i8BLxJlXJmsWwA8SNROzUrW\nTQROBX6QLAFuJoK3M4jAZ2Geb0KSJNWWtQZnG+CnRHCzEDgU2DzZVqiQ/lngyuT5OzMeu1HlwQ1E\nU9VC4JWpdWOIwOYSSsENwKNEEHR4at3BxHufX5bvfCLAe2+2IkuSpIHIGuDMBDYj+rO8GfgVfYOC\nSm5MltMyHjsPWxB9be5JrdsNGAfcWSH9XcDuwAbJ671S69OeAJ4BpuZWUkmSVLesAU6xFua/iI64\n9Sg22eyc8dh5OAfYCPhyat3EZLm0QvqlRM3Mlqm0LxHNWeWWpfKSJEmDKGsfnF2Ipqj/a2CfZ5Pl\nZhmOOx34bZ1p96VybczpwAeJvjl/ylCWAZs5cybjx4/vs66rq4uurq5WFEeSpCGlu7ub7u7uPuuW\nL19e175ZA5xiU81LDeyzabJ8PsNx7wOOrzPt3yqsm02MfjqFGPWUtiRZTqiw3wQioFuWSrsh0aS1\nqkLa2/sr2Ny5c+nsrDZKXZKkka3Sj/6enh6mTavdyyVrgPMkMfR6R+COOvfZL1n+PcNxnwDmDXDf\n2anHVypsX0Q0Oe1TYdvexEiq1cnrYs3QPsBtqXTbEs1Tdw+wjJIkKYOsfXBuSZaH1Zm+g1LNy+8y\nHnsgPk8ENqcnj0rWEiO9jqBU2wQRxB1EDIkvuoaouZlRlscMoqbn8qwFliRJjcsa4FyULI8B9q8j\n/TeIWhCACzIeu1EnAl8kgpJfAq8ve6TNBjYGriKGgh8OXE0MNZ+TSreMmO/mo8nyQGKenNnAeURT\nmiRJGmRZm6iuBn5NzOD7a+KL/X9S28cCOwBvAv4TeGOy/n+AWzMeu1GHEbUqByePtAIwOvX6fqIj\n81eJGYrXAr8hgpclZfueSdzO4WPJ9seBs+g7MkuSJA2iPGYy/mfink3TiOHi30jWdwA9qedFt1B/\nB+E8ld+OoZYe4O11pv128pAkSUNAHveiepaoofky8Bx9g5mO1OvniU6908k2gkqSJKlfed3xejXR\ngferRD+U1xA3shxN3FzzT0QTz7PVMpAkScpLXgFO0UqiX87VOecrSZJUtzyaqCRJkoYUAxxJktR2\n8myi2gp4A3F/qs3oO+y6mi/leHxJkiQgnwBnO2Jo+PuIoKaj/+QvK2CAI0mSmiBrgPMK4k7iOw1g\n33oDIUmSpIZk7YPzRUrBzc+BtxBNVWOSvGs9JEmScpe1Bqd4k80LiftRSZIktVzWWpStib4083Io\niyRJUi46kObeAAAYNElEQVSyBjiLk+XKrAWRJEnKS9YA5yais/A+OZRFkiQpF1kDnDnAGuBEYFz2\n4kiSJGWXNcC5G/hXYE/gOmCPzCWSJEnKKI+J/i4CHgauBO4B7gQeAF6oY9/jcji+JElSH3kEOHsT\nMxmPT17vmzxqKWCAI0mSmiBrgLMLcAMwIbVuJbAc6K2xbyHjsSVJkirKGuB8nghuCsDXgXOBR7IW\nSpIkKYusAc5bk+Vc4DMZ85IkScpFXjMZX5JDWSRJknKRNcB5PFmuzloQSZKkvGQNcK4lZjLeP4ey\nSJIk5SJrgPN1YAXwaWBi9uJIkiRllzXAWQS8D9gc+D3wjswlkiRJyijrKKobiE7GTwOTgGuAZcCD\n1DeT8VsyHl+SJGk9WQOcAyus25L6+uQ40Z8kSWqKrAHOzRn2NcCRJElNkTXAmZ5HISRJkvKUtZOx\nJEnSkGOAI0mS2o4BjiRJajv19sHZMfX80SrrB+LR2kkkSZIaU2+A81dKo55GV1nfiI5kv9G1EkqS\nJDWqkVFUHQ2uH2h+kiRJmdQb4BxH5Zqa4zIc23lwJElSU9Qb4FwA9BJBye3Avan1kiRJQ0qjo6hs\nVpIkSUNeowFOOzUrHU/USq2osr0TuD7Zvgy4BNilStoTgPuAVcBDwBfIPku0JEkaoJE6D84OwNeB\nxVQO2vYEbiSClKOIvkaTgN8BW5Wl/RwwF7gYeAdwLnAKcE4Tyi1JkuowUmsZvgfcACwHjqyw/UvA\ni8BhwMpk3QLgQeAkYFaybiJwKvCDZAlxA9KxwBlE4LMw/+JLkqT+jMQanKOBfwQ+RuU+RWOIwOYS\nSsENxKSENwCHp9YdDGwIzC/LY36S93vzKbIkSWrESAtwtiFqVWYRzVOV7AaMA+6ssO0uYHdgg+T1\nXqn1aU8AzwBTsxRWkiQNTKNNVB3AtcCajMctzmS8a8Z8GnUOMcT9e/2kmZgsl1bYtpQo+5bAk0na\nl4jmrHLLUnlJkqRBNJA+ODvkdOwsI7KmA7+tM+2+RG3MkUTT06szHFeSJA0DAwlwFgNrczh2lgDn\nPmKYdz0eBTYFvgN8i6h5GZ9sKzY1bUG8p+eBJcm6CRXymkCUe1nyegnRB2ccMUS8PO3t/RVs5syZ\njB8/vs+6rq4uurq6+n1DkiSNBN3d3XR3d/dZt3z58rr2bTTAKQD/BNzT4H55ewKY10D6nYGtiRFQ\nJ1XYvgy4HDgCWEQ0Oe1TId3exEiq1cnrYj+dfYDbUum2JZqn7u6vUHPnzqWzs7OuNyBJ0khT6Ud/\nT08P06ZNq7nvQGpwhuNkf48DB9G37B1EZ+MDidFQzyTr1wJXEsHOpymNpNoxyWNOKo9riJqbGfQN\ncGYkx7o8v7cgSZLqNVLmwXkJuKnC+mOBdcTcNWmziealq4CvABsRc+M8Rd8AZxkx383pRAfk64DX\nJvufRzSlSZKkQTbShomXK1C5Rup+oiPzGmKG4vnAA8ABlProFJ0JzCQ6MV9LzK9zVrKUJEktMFJq\ncKo5NnlU0gO8vc58vp08JEnSEDDSa3AkSVIbajTAqXRrA0mSpCGlkSaq4qzDjzWjIJIkSXlpJMD5\na7MKIUmSlCf74EiSpLZjgCNJktqOAY4kSWo7BjiSJKntGOBIkqS2Y4AjSZLajgGOJElqOwY4kiSp\n7RjgSJKktmOAI0mS2o4BjiRJajsGOJIkqe0Y4EiSpLZjgCNJktqOAY4kSWo7BjiSJKntGOBIkqS2\nY4AjSZLazphWF0CSJLWP7u5uuru7AVi1ahWTJk1i1qxZjBs3DoCuri66urqaXg4DHEmSlJvBCmBq\nsYlKkiS1HQMcSZLUdgxwJElS2zHAkSRJbccAR5IktR0DHEmS1HYMcCRJUtsxwJEkSW3HAEeSJLUd\nAxxJktR2DHAkSVLbMcCRJEltxwBHkiS1HQMcSZLUdgxwJElS2xmJAc6bgV8CS4EXgAeAUyuk6wSu\nB1YAy4BLgF2q5HkCcB+wCngI+AIwJtdSS5Kkuo20AOeDwI1EwPIvwDuBr1ZIt2eSbgxwFHAcMAn4\nHbBVWdrPAXOBi4F3AOcCpwDn5FXo7u7uvLKSNIz42ZcGbiQFODsAPwC+B3wIuBq4CTgfOKMs7ZeA\nF4HDgGuAy4BDgVcAJ6XSTSRqf36QLG8Gvg58ETgemJxHwf0nJ41MfvalgRtJAc7xwMZUrrFJG0ME\nNpcAK1PrHwVuAA5PrTsY2BCYX5bHfKADeG+G8kqSpAEaSQHOAcASYApwB7AGeBL4LrBZKt1uwDjg\nzgp53AXsDmyQvN4rtT7tCeAZYGoeBVfjhuMv31aXudnHb0b+eeQ50DwGsl+rr/FIMBzPcavLPBw/\n+/UYSQHODsAmwM+AbuCtwNnAh4lOx0UTk+XSCnksJWpmtkylfYloziq3LJWXBlmr/2EMRKvLPBz/\nyRngqNxwPMetLvNw/OzXY7iO9JkO/LbOtPsStTGjiJqZ04CvJdtuBlYTnYTf0kCeuVi4cGFd6ZYv\nX05PT0+TS9NehuM5a3WZm338ZuSfR54DzWMg+zW6T6v/Joaj4XjOWl3m4fbZr/e7syO3Iw6ubYFD\n6kx7KbAcuAV4HbAf8OfU9knEEO+TgTnAHsBC4D+IDslpZwOfAjYiAqOzgM8QfXtWlaV9GrgWOLpC\nmbYDbidqlSRJUmMWEi0xj1dLMFxrcJ4A5jW4zx1EgFNNIVkuIpqc9qmQZm/gQSK4gVI/nX2A21Lp\ntiWap+6ucqzHgdcSgY4kSWrM4/QT3Iw0bwN6gc+Wrf9ksv5NqXU/JYKoTVPrdiT625yZWrclMVng\nuWV5zgLWEfPpSJIkNdUVRO3M54iAZxYRoPyiLN0ewHPEZH8HE0PD7wL+xvodh08hgpkzgAOJeXJe\nZP3mLUmSpKYYR/SbeYRoZnqYCEzGVkjbCVxHzIWznPpv1fAwcauG0XkWXJIkSZIkSZIkSZIkSVLT\nbUDcA+tR4Fli3p83tLREkgbLvwM9RN/C2S0uizQkjKRbNbS7McBDwBuBLYh7bF1BTEooqb0tJgY3\nXE5pTi9JaltLiMkJJY0M52ENjgRYg9PO9iRqbxa1uiCSJA02A5z2tDFwIXA6MZGhJEkjigHO8PUh\nYEXyuDq1fizwc+I+WGe1oFySmqvaZ1+SWmJT4GvAr4k7jfdSva18U2Au8Hfitg9/Av65jmOMIu6j\ndRkGr9JQMRif/aLziM7G0ojnl+Dg2Qr4CFHDclmyrtpoh0uBDwOnEffCuh3oBrpqHOP7wDbAB4h/\nopJabzA++6OJW9GMSY4zDv+/S2qBiUQAUumX1iHJtvJfbdcCj1H9n9ZOyX7PU6q+XkHfu6RLaq1m\nfPYhAqLesseHM5ZVkhq2FdX/yZ1HTNRX/s+sWCvj5H3S8OVnXxokVmEOPXsBC1m/iemuZDl1cIsj\naZD42ZdyZIAz9EwEllZYvzS1XVL78bMv5cgAR5IktR0DnKFnCZV/qU1IbZfUfvzsSzkywBl67gQm\ns/61Kd5T6u7BLY6kQeJnX8qRAc7Qcxkx2deRZetnEJN/3TrYBZI0KPzsSzka0+oCjDDvBDYBNkte\nT6X0z+xqYubSa4DrgO8CmxM3y+wC3kFM0V5tgjBJQ5effUlt7WFKk3CtK3u+YyrdJsR07YuBVcR0\n7e8f1JJKypOffUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElta2fg\n4lYXYigb1eoCSJKkhrwduAmY0OqCDGVjWl0ASZJUl2nA6cCjwIstLoukNjAD6E0eO7a2KNKQtwFw\nP/F5OXKAeczAz1wtNwK/bSD9d4jz+eOmlGYIsolKjZpO6R9PPY9jWlLK5ii0ugANms7IvVZqnU8C\n/wDcSfY+IsPtMzeUnQm8BHwIeH2LyzIoDHCUVaGOx3DXDu8BRsa1UmuNB2YRf0uzW1wW9bUYOA/o\nAM5qcVkGhX1wlMW5yaM/fx+MgjTZj5LHcDZSrpVa6xPAFsBfgF+0uCxa3zeAjwMHAgcAN7e2OM1l\ngKMsngLubXUhVBevlZptQ+A/kucXtbIgquqvwO+BNwEzafMAxyYqSVIeDgNeQTRPGeAMXcVrcyhx\nvdqWAY5aYQPil94NwNPAauAJ4GqiA1xHP/teQHSIfbjGMWbQ/yiM01LbIarVPw/8CVhO3063tfJK\nezMwj6iifx5YCSwEvgXs2s9+jZRnsAy0TAM9B0VbAl8B7iOGwj4FXEdpRM4M+r8eF5DP30hRXtd0\nHHAy0AOsSB63Ah8DRtcoa9GbgB8So5SeIz47jwFXEp+pLZJ0Y4nPVC/wqzry3StV1ll1lqXc+5Pl\nXcBDNdLWusb12As4FbiWOAcvEdfmQeJv4HVV9svz3GxPvI8e4FlK/8vuAv6b+HxsVrbP/sAtDTwO\nq6OMjbg0WY4Fjsg5b2lYm07pw/6FAey/M/HlkB69s67s9c3EP8BKLkjS1PoHOiOVd38Bzjpgd+LL\nsLxMH64zL4jq+R9VyCP93l4Cjq2yfyPlqdd0sl2rRsuU9RwATCE6Q1bb/4fEl0Z/1+MC8vkbyfOa\nbg3cUZZPOt9f0H9gvxHxhdlfWXrp27H3q8m6NcQXcX++kaRdDWxXI201xaDh+zXS1XONZ9D/tZlO\n3/dd7XycWaUMeZybfySCmlplOLRG/gN1I40NE09bRJStO7fSDEH2wdFg2hT4DbBL8voy4pfxYuKX\ncLHz25uJX6QHUPr12ywdwCXEP65vAVcAy4hhro80kM/PgHcR5b0E+DnxBTsK6CTau/ck/nk/Cfxy\nAOV5tIHy5KneMmU9B1sQv8a3TV7/lAgwngL2AD4FHAfsneeb60ee1/SyJO03ib/tpcnrzwOTk+N8\nBPhBhf1HEQHQ25LXDxAdxv8IvEB8Qb8ROIq+I+F+SNQYjSYC0a9UKd9Y4Ojk+a+Bx6uk68+eRBAH\ncFs/6fK6xmOI2rSriC/5+4gara2JGpf/BHYialweIILetKznZsOk7Jslx/0uUSP9VLLPzsAbiBqS\noTg68Vbi//ABrS6INJRMp/TL5BxgKvEPpdKjvH337NS+X6yS/4WpNP9WYfsF5FuDU/wV97YKaerN\n618p/Zp/V5U8xhH/AHuJX0/lzcONlKde0xn4tWq0THmcgzmp432mwv5jgGtSaZpZg5P3NV1F5S+T\nLYkvzV6ihqeST6TyuZj4Aq2kg/VrX25M9ruvyj4Ah6fyP7yfdP35MKVz+dp+0uV1jScCm/dznLFE\nINVL1DxW6o5xIwM/N29JrT+kn/1Hs34TVV7+QAQqA/EZSuf3VbmVSBrmprN+1XC1R7q6fEPiV38v\n0T5drTp+M6JfTi9wd4XtF5B/gHNehrw6iDb/XuC/auQzOZXPWzOUp17TGdi1arRMeZyDDYlajV6i\nj081OxBBRzMDnGZc07P7yePMJM1a1v/SHkX0L+klass2rlGeckenyvDGKmmuSLY/Sf19gcqlvzB3\nqZImz2tcj31SeXRW2J7l3HwwlfemAyzfQOxIBG7FmaLXEX3DriVqjep1fGr/1+RbxKHDTsbKqt6J\n46ZR6gB5AdWrbVcQTQMQXx7bVkmXp59k2HcKsBvxfv6nRtqFxD/4DqL6uhnl6U+WSf76K1Me52Aa\nMUkc9D/n0N+JpoJmyvuaFuj//C1Ilh2s/yW1L6U+IucRTVKNuJjoEA6V+wptA7wzeX4R8YU3EOka\nwKVV0jTzGm9IfPlPIWokp1L6fusAXl1hnyznZnEq7+MaLGsWjwL/RDTnjSKCrt2TdX9tIJ/iNeqg\njUdSGeAoi9OID1i1x5dSafdKlgVqV6umt+9VNVU+CsSU8gNV/PXTAfwftWtKinf/rRa4ZS1PNadR\n/7VqtEx5nINin4sCcHuN99JfH4885H1Nof9mkGWp5+XNGfslywIDm7NkFdE5GWKU00Zl2/+FuP4F\noj/cQG2Rer6iSpq8r/EmwGeBPxP9cf5K1PreSdQS96TSTqywf5Zz87+UagjnEv+zZhFBbrUmxKHk\nudTzLaqmGuYMcDRYJqSeP1kjbXF7B9VHU+VpWe0kVW2del7vrRAKrP/PNK/yNEt/ZcrjHKSv81M1\nylJre1bNuKar+tnWm3pe3kS0Ver5QDr/Qql5cTPWH4ZdrLm4HbhngPlDqSYEqveNyfMa70wEMV8m\nAqcO+q+VrHZtBnpu1hJ9sxYmr19LNDX+nhhZ9Uugi6H7HZsOapZXTTXMOYpKyjbKIf2F9C7qrybu\n75/KUBx10V+Z8j4HrX7/zbimrfRnohlsGvGlfWGy/nVEMzBkq72B6DdXNIHa5yLrNb6QCHJ6gfnE\niKaFSTnWJGk6KDUrVevzl+XcLCSCq3cljwOJ0aDjgIOTx6eITshPV8mjVYo/OAsMvbLlxgBHg2VJ\n6vm2RCfOatJV/eXt+cVfu7V+GW1SZ7myKv5zKBC/3Ebi7RDyOAfp67wt0XGymm1q5JX1b2QoXdP0\nl8/2xJDngfgh8SV+IBEY/JVSDcULZJ8PZXHq+Suo3ME7r2u8JzHhIcRNIz9fJd2EKuvLZTk3vcQQ\n/uJ9t7Yl+u38R5LnNGJeoKE2oV66ZvCJlpWiyYZq9ZnaT3FEVAfVZxgt2j9ZFlh/JFWxfX88/duj\n/qJlUhwN0kHpn+5Ik8c5uCuVR3/DjKlje9a/kaF0TYv9SDrINmfJfxNf1h3E6LFxwAeSbZdSvd9M\nvYp9ZjqIjtGV5HWNpybLAlFzU029o4PyPDdPEDVKb6B07Q4lOkEPJcVrtJg2vsmuAY4GywJK1dbH\nUP1vbzNKU77fy/r9dR5KpZtUJY8NgPcNrJgN+xPwt+T5Rxl6/8gGQx7nYAGlfj7/0k+6HYB31Mgr\n69/IULqmf06V5XgGXjOZHp14DDEp4OZEkHB+lgImHqD0Wd2/Spq8rnG65aG/81FpHq1KmnFu1lLq\nFD6G2sH2YCteo9+1tBRNZoCjwbKaqAqG+AVWad6VDuA7lEY8fKdCmptSaU+sksc3Gfh0840qEB0d\nIeb/uJD+vxDHETM2t1MglMc5WE388oX4dXlyhf3GEJ1Ca41Syfo3MpSuaYHSHDqvBH5M9fc/iv7/\n7oufv52IWxVABIM3VU7esGI+r6+yPa9rXGym66D6/dn+HXhPP3mUa/TcvJmYSqCaDYgmL4j7Yw2l\nfi7bEO8TYrJDSYnplIbHfqHBfTcl2t2L+19CVN92Er+mb0ht+1+qdwz8fSrd/KRMncA/p/Iopqnn\nXlS1zKiRF8QvwGKZFgGfJv7B7Uv8MzyW6KxYnOywfMK2RspTr+kM/FpB42XKeg42J+b5KObxE2J+\nj06iyeC2ZP2t1L4eefyNDNY1nZ5KV6kZqoPSrLy9xJDz/ySaz/Yj+nx8kfjir/TDIe2eVD69wOdq\npG/EEZTeR7Was7yu8Z1leRyS5PEe4pYavUQNSiN//42cm9OSst0AnETUOHUS1+TYVPl7idmbh5J/\nI8r1En374kgj3nSyfWnuRDQ99TevyM30X6W7B6Ub+5U/1hG/eI9JrcsrwKmWF8TIm7lE1XSteVOe\nY/1f+42Up17TyXatTqOxMmU9B7D+jRjLr209N9uEfP5GBuuaTk/lUynAgRjmnA64qr2vWtf5U6n0\na4jmoLyMpXTbif7mVWrkGle7Nq8mBi5UOxd3EB1+G/n7b+TczO7n2On38nOiNmco+V+ifJfWSiiN\nNAdS/z/TasYSowyKN6dbRfzDu5qYAr0e2xP3V3oYeJH4MruaGJoJtb8EZ6e211LPF2rRZOLuwwuA\nZ4hq+WXEL84fAR+icr+BRspTr6zXaqBlGug5KNqSuPnh/UTnzyeB64naF6ivRg2y/41kfT/1nr/0\ndaoW4BRNT475F6Lp40Vi1M/l1NdHZ2tKX8DVbg6axalJ3otqpKt1jeu5Nq8ibjr6MPE/5GngFuCT\nlIKKRv7+Gzk3mxD3pjqHqAl8mJhs8Hnivf83pb+zoWRnSufkH1tbFElSuRnUH3Cqr7dS+hIvn9gu\nD1tQut/UUBsaXUuzz81Q8C3i/d3Q6oJIktY3AwOcgfoJce6eonm3FPh0coxm3HKkmQbj3LTSDkRN\n1zqqdwSXJLXQDAxwBmJnonmtl9JIoWYYSzQ9rSOGXA8HOzM456aVvkNck/5udCpJaqEZGODUawfg\nH4hRPj3EeXuewZtGYSjz3EiShpQZ1B7VpnAj64/sqTQ30Eh0I56btua9qCQNN4Wypaor3lX7BWKe\nnLmUbig50nluJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSpCHq/wM8tnJ4\nPLHuYQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from scipy.optimize import curve_fit\n", + "\n", + "# Define model function to be used to fit to the data above:\n", + "def tophat_time(x, *p):\n", + " mean, width = p\n", + " if x>(mean+width): y=0\n", + " if x<(mean-width): y=0\n", + " if x==(mean+width) | x==(mean-width): y=5\n", + " return y\n", + "\n", + "def tophat_freq(f, *pars):\n", + " A,T,t0 = pars\n", + " #return A*T*sinc(pi*f*T)*exp(-i*2*pi*f*t0)\n", + " return A*T*sinc(pi*f*T)*cos(2*pi*f*t0)\n", + "\n", + "x=np.logspace(fqd[0],fqd[-1],200)\n", + "\n", + "# p0 is the initial guess for the fitting coefficients\n", + "p0 = [3, 3, 3]\n", + "coeff, var_matrix = curve_fit(tophat_freq, fqd, lag, p0)\n", + "fit = tophat_freq(fqd, *coeff)\n", + "\n", + "\n", + "mpl.rcParams['xtick.labelsize']=12\n", + "mpl.rcParams['ytick.labelsize']=12\n", + "xscale('log'); xlim(.009,.6)\n", + "xlabel(\"Fourier Frequency (days$^{-1}$)\",fontsize=20)\n", + "ylabel(\"Time Lag (days)\",fontsize=20)\n", + "\n", + "\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=5,color=\"black\")\n", + "plot(fqd,fit)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lag/data/clag_analysis-origbins-noLFerrors.ipynb b/lag/data/clag_analysis-origbins-noLFerrors.ipynb new file mode 100644 index 0000000..b70d09b --- /dev/null +++ b/lag/data/clag_analysis-origbins-noLFerrors.ipynb @@ -0,0 +1,887 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python2.7/dist-packages/IPython/core/magics/pylab.py:161: UserWarning: pylab import has clobbered these variables: ['norm']\n", + "`%matplotlib` prevents importing * from pylab and numpy\n", + " \"\\n`%matplotlib` prevents importing * from pylab and numpy\"\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X18VPWd9/9XSAKSRBRwbFEoxFBYg1pNKhD6s+qCqFBy\n1UI35PGzbbjorle73V2vSzK22u7P31W07aRre117tbXXlpL21zWmWnYXoevderNU7mro9sb4kxID\nyO2MiDcQhNyc64/vHOcmM8lM5szMOTPv5+ORR2BmMufkmzPnfM73+/l+viAiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjJm+4GhBF//K4/7JCIiIi42Fbg46msxJnj4\neD53SkRERLzju8DefO+EiIiIeMN44A3gy/neEREREXFOWRbf+5PABUD7CK+ZFv4SERGR9BwNf+Vc\nSRbf+0ngPeA/JXl+2iWXXHLkyJEjWdwFERGRgnUYuJY8BBDZ6nmYiUmWvG2E10w7cuQIP/vZz7j8\n8suztBsS78477+S73/1uvnejqKjNc09tnntq89x65ZVXuP322y/F9N4XTPCwBjgObB3thZdffjl1\ndXVZ2g2Jd+GFF6q9c0xtnntq89xTmxeXcVl6zzXATzDTNEVERKSAZCN4WAJMB36chfcWERGRPMvG\nsMVTQGkW3ldERERcIBs9D+Jizc3N+d6FoqM2zz21ee6pzYtLNqdqjqYO6Orq6lKSjYiISBr27NlD\nfX09QD2wJ9fbV8+DiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiI\npEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIik\nRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpKUs3zsgIlJIOjrMF8B778GBAzBzJpx3nnmsudl8\niXiZeh5ERBzU3AybN5vvZ8/C3r3wzjvw6qsmmOjogMbGSIAh4kXqeRARcVgoFOKppwK8/no3UMqh\nQ4McPlzL97/vZ/FiX753TyRj6nkQEXFQMBikoaGJ9vaV9PZuBOZy+LAF/Ae33HIDzc1/RSgUyvdu\nimREwYOIiIPuvruNnp4HgMuA1cBKYCvwNAMDv+eRR5ppaGhSACGepuBBRMRBu3d3AwuANuABYCFQ\nEn52HLCInp778fsDedpDkcwpeBARcdDAQCkmWLCDiEQWhIMMEW9S8CAi4qCyskHAAuwgIpFx4SBD\nxJsUPIiIOGj+/FpgF2AHEYkMhYMMEW9S8CAi4qBAwE9NzT3ARcDOJK/aFQ4yRLxJwYOIiIN8Ph87\ndnSyenUVZWX/GXgRGAo/OwTsoKbmXgIBf/52UiRDCh5ERBzm8/no6PgeTzzx78A/c+mlK4BGqqtX\n0NKyiR07OvH5VCxKvEsVJkVEHBS7toWPOXPamDwZDh+GGTNg6VJQ3CBep54HEREHRa9tcd55MHcu\nTJoEc+bAhAla20IKg3oeRESyQKtnSiFTz4OIiIikRcGDiIiIpEXDFiIiWRSbQAkHDsDMmSYfAjS8\nId6k4EFExCGjBQo33AD33mteU1eXt90UyZiCBxERh0T3IuzZA/X1JlCYMSOE3x/gRz/qBkpZtWqQ\n66+vJRDwq96DeJKCBxERB4VCJlB44QUTKNx2Wx8nT4Z4990fAgGghN7eIXp7d7NtW5MKRoknKWFS\nRMQhwWCQhoYm2ttX0tu7BdjMwYNX8+67DwELiayyOQ5YSE/P/fj9gbztr8hYKXgQEXHI3Xe30dPz\nALGBwivh/yeygN27u3OybyJOUvAgIuIQEwgsiHu0lEggEW8cAwOl2d0pkSxQ8CAi4hATCMQHCoOA\nleQnhigrG8zuTolkgYIHERGHmEAgPlCoBXYl+YldzJ9fm92dEskCBQ8iIg4xgUB8oOAH7gG2A0Ph\nx4aAHdTU3Esg4M/hHoo4Q8GDiIhDAgE/NTX3ADuIBApTgXVUVd3BzJm3Ao1UV6+gpWWTpmmKZ6nO\ng4iIQ3w+Hzt2dIbrPKynt7eU6mq7INSzvP66j/p6eOwxVZgUb1PwICLiIJ/Px8aNbe9XmPz852Hn\nTli71pSsnjMHvvxlrW0h3paN4OFS4FvALcBEYC+wFtiThW2JiLhG/NoWc+bA889HAoU1axQoSGFw\nOniYDLwI/BsmeAgCNcBbDm9HRMR11IsgxcLp4OFu4ACmp8F20OFtiIiISB45PduiEegCHgWOY4Yq\nPu/wNkRERCSPnA4eLgO+ALwKLAV+APxP4LMOb0dERETyxOlhi3HAbuCr4f//FrgC+C/ATxP9wJ13\n3smFF14Y81hzczPNGjgUERGho6ODDjsTN+ytt/KbSphstZax2g88BfxF1GNfAO4Fpse9tg7o6urq\nok4TnkVERFK2Z88e6uvrAerJw2xGp3seXgT+JO6xOZigQkSkaMVP4zxwAGbOVL0H8Sang4fvYAq4\nfwWTNDkf+PPwl4hI0WpuhiVLQuHqk9309pbS329Xn/SrTLV4itPBw0vAbcA3gL8FXgP+BugY6YdE\nRApdMBhk0aLV9PQ8AASAEnp7h+jt3c22bU1a50I8JRsLY20FrsJUl5wHbMjCNkREPOXuu9vCgcNC\nIulm44CF9PTcj98fyN/OiaRJq2qKiOTA7t3dwIIkzy4IPy/iDQoeRERyYGCglOQT3MaFnxfxBgUP\nIiI5UFY2CFhJnh0KPy/iDQoeRERyYP78WmBXkmd3hZ8X8QYFDyIiORAI+KmpuQfYAQyFHx0CdlBT\ncy+BgD9/OyeSJgUPIiI54PP52LGjk49/fBMVFSuARiZOXMGkSZuYPr2TtWt9NDZGCkmJuJnTdR5E\nRCQJn8/HCy+0sWcP1NfDP/wD3H47PPggqEq/eImCBxGRHIguT/3OOyEmTQrw53/eDZRy3XWDfPSj\ntTz2mCpNijdo2EJEJAeam2HzZvjRj4IcOtTEO++s5MyZLcBm+voe59//fSUNDU2EQqF876rIqBQ8\niIjkkCpNSiHQsIVIBrRSoqTLVJJMFiAsYPfu9bncHZExUfAgkoHo4MBOguvoUPKbJKdKk1IINGwh\nkqFQKMSaNa2sWrUcaGTVquWsWdOqsWtJSJUmpRCo50EkA1pmWdI1f34t3d27MDkP8VRpUrxBPQ8i\nGVDym6RLlSalEKjnQSQDSn4TSC9x1q406fcHeOGF9fT2llJdPcj119cSCKinSrxBwYNIBpT8JpBe\n4qwJNHxAG7NnQ3m5CTROnIC1azVDR7xBwxYiGVDym9hSTZy1i0U1N5ueiblzzeOvvmp6LTo60BoX\n4nrqeRDJgJLfBMaWONvcDEuWhMLDF9309pbS328PX6hMtbibeh5EMqDkN4GxJc4Gg0EaGppob19J\nb68pU93b+zjt7SpTLe6n4EEkA1pmWcBOnF2Q5NkF4edjaaaOeJmGLUTSEJ9V//vfw8CAj9LSNioq\nYNIkk/y2axdYlpLfCp19PBw4kH7irGbqiJcpeBBJQ6Ks+q4uk1UfCkXGr6GU118f5KmnalmyROPX\nhcrOW/jwh49gEmcTBRCJE2c1U0e8TMGDSJrig4RVqwaZP38mu3a9zP7930KVJouHnSj59tvzgJ1A\nQ4JXJU6cjczUST3gEHEL5TyIpKijA26+OcisWcOT3Do7T7N//zfQ+HVxieQtfBu4l+GJsy8mTZw1\nAcWuJO+smTribgoeRFLU3AxTpnydvr71DA8S3iDxXSckS5gT74skSvqATmATYBJn4RNccMFfJu11\nCgT8XHxx4pk6FRX3cuSIX4m24loKHkRSFAwG+cUvniVxkKDx62IUm7dgqkbCVmAz8EsGBj7E2rW+\nhEGAz+fjD3/oZPXqn1FVVQdcCXyUqqq/orFxHj/7mZJtxb2U8yCSorvvbqO//xISBwkavy5Go+Ut\nzJw5yObNyX/esix+/etXOHXqIUwPRgmnTg3xyCO7+fWvlSsj7qWeB5EUmS7q8SQuR12LSZhLROPX\nhSqTvIWODqivV60H8SYFDyIpMl3UyS4WfuAu4EVUaTLCXqehsRGWLjXrOCxdGnnM62P6mVQYbW6G\nSZPSLy4l4gYKHkRSZLqoW4FEF4s/UlYWYvXqR6iuNglz1dUraGnZVNRdz83NsGFDiKlTW9m3bzl7\n9zayb99ypk5tZcOGkOfH9O0Koy0tm8b0d1etB/Eq5TyIpMgsgvUaJqs+AKzHJEoOAhfh8y3l9Om/\n1zLLUcayYJQXxFYa9XHgQBsXXwy9vTBjhuldSeXXUq0H8SoFDyIpCgT8/PKXTQSD9wPfwnTcDQG7\nqKi4lyuv7CzaICGZ2PUbbLFj+hs3tuVp78bOriy5alWAl17qpq+vlIkTB5k0qZaSEj8dHWaGxWjH\ng1ZlFa9S8CCSIntqnakuuZ7e3lKqq+0llL15B51thbp+Q6IelTNnhjhzZjeHDqXeoxII+Nm2rYme\nnvsxuQ+RgNTkTHRm9fcQGSsFDyJp8Pl8bNzY9v66Fo89Zta1sMUvnHXggBm+OO8881ix9UwU6pi+\nUz0qds6EAlLxGgUPIimKDgx6e6GyEm6+2fz/zBm47DKYNQvOng3x3nsBXn+9m97eUvr77YtB8S2Q\nVahj+k71qJhjyhSXUq6MeImCB5EUJTuR270Q7e0wfXphJgiOVaGO6TvVo6LgQLxKUzVFxigUCrFm\nTSurVi0HGlm1ajkf+9ifhcevVfQHMquD4GaRHpVEvNujIpIqBQ8iYxAMBmloGL665r59JlBIrPiK\n/mRaB8GttCKmFDsNW4iMQfKEuSoKMUEwE6MlmXqRZklIsVPwIDIGyRPmCjNBcKziZ5/MmQNf/rL3\nZ59oloQUOwUPImOQPGHO7s4urATBsfJqcJCKQuxREUmVggeRMUg+BdEPNAFfBxqI7s6eOPFejhzp\npLGxsC+qxaBQe1REUqXgQWQMkk9B9AHrmD37Xs6dK+PgwROUlQ0wMFDFxRdP4pJLAkVZ76HQOB0c\nqLiYeI2CB5ExGClhrqLi21x66ffZvftLwA8YGFgAlHDgwBDt7cVR70EXw/TYa2WYHAoVFxP3S5YW\nngt1QFdXVxd1GigUDwqFYk/2kYQ5P35/gPb2lSTOfdhBS8smVy0IlY2L/Ujto4thrNi1MkywaYLR\n3dTU3FPwwaakb8+ePdTX1wPUA3tyvX0FDyJjMNrFds+e5Rw+vIVksy5qa1fw8stbc7W7KXHyYq+L\nYXrWrGn1VLAp+Zfv4EHDFiJjMNqd+Ny53loQKtEqkZmU1S7UpbizpVBXH5XCpQqTIlnglfLFHR3Q\n2Aj19dEX+8zLapuL4YIkzxZfpc3RFOrqo1K4FDyIZIFXyhc3N8OGDSHeffc5RrrYP/poN42NJtCw\nh2tGMtrFcP/+0rTer9B5JdgUsSl4EMkCrywIZa/R8fbbk4m92IeAVmA58EnOnj3I1KmtbNgQSilx\ncvjFMPr9Gunv703r/QqdV4JNEZvTwcN9mDNk9NcRh7ch4npeWRAqkpswnsjFPogpdLUSMIt+DQz8\nlvb2lTQ0NBEKhUZ939iL4fD36+9P7/3cwh7maWyEpUth7lzzPdNeFK8EmyI2p2db3Ad8ClgS9dgg\ncCLBazXbQgqWV+oczJu3nO7uLZjKmCuBGuDTwAPAogQ/kVrmfygUoqHBroPxC2AVhTKTIFtTUDW1\nVdJRiLMtBjG3GiJFyy3BQbz4oOaPf7RzE/zAbZi73fMwpbUTSS3zP3rhqH/8xyfp708WHHhrJoHT\ns1Js5u/iA9qYPRvKy02weeIErF3r3uNJilc2gocPA4eBs5h+y3uA3ixsR0TSZFcyXLUqwEsvddPf\nfxAzXOEDrgGagW+SaeZ/9MWwvPxV+vsLYyZBtqagKjgQr3E6eNgJfAbYC3wQ+CqwHZgHvOnwtkRc\nzY1DF7F3zq3An2HG2RcBr2F6HDJfVjz6d5s3b5Du7uTvd+TIYFqLhdntevgwHDwIZ87AhAlw9ixM\nnAgf+hBceml22lf1GEQMp4OHJ6L+/TLmrNQDfA74TqIfuPPOO7nwwgtjHmtubqZZYbh4nBvXK4jc\nOV8GrAbuxsT49wP2EIazy4rHLiIWwlx8u8Pbe5cPftBiw4ZQyu0R3a5vvPEb3njjBGfPmsXHLrpo\nEldddVXW2lf1GCQfOjo66IjLxn3rrbfytDe58xTwvQSP1wFWV1eXJVKIjh8/btXU3GjBDguGLLAs\nGLRgh1VTc6MVDAZzvk+1tcvC+7IuvF+WBcHw/68IPxe04EYLtof3197vX41pv4PBYLgdtoTfN749\ntqf1vpF23erI+6Uj0n5Wgq9Bq7Z2mePbFEmkq6vLwnQR5mXGQbbrPEzA3MYczfJ2RFwndnw886qN\nTojcOUdXgDS5CXALpsfBB3QCmwAzzRQWM3v2vWNKCLSTJ2fPbgPWM7w9GtJqj0i7PoeZFZLZ+6VD\n9RhEDKeDh28DHweqMWemx4Aq4CcOb0fE9dxYojlSvClR97sfk9+8A5iKCSgeB77CxIklXHbZo6xd\n60u7lkFHB6xd6+PYsUpGmsXx2GPdKb13pF1z376qxyBiOJ3zcCnQAVyEGdzcgbkteN3h7Yi4nhvH\nxyP5B4mSIu0eh29RXv4X9PdXR9UaGHthKztxce7cUvbuLWF43sMgUMvFFw+klOAYadfct2/0FNQX\nXlgfV4/BPcW/RLLN6eBBWY4iYZG7/LHPWnBSRwccOeKnoqKJvr4ZmMlR8T0BPmAlF11Uwvnntzla\na8D8vscxp4lInQRz576L11/fQig0euJkpF1z376qxyBiaEnuAuTGKYLFKHaWQbzcj4+bWQrw1399\nOY8//gKnT38GM6LYgBnBNBfxmho7t8HZ7Zv28BPJU7CZPIX+/h+lVCch0q7OzgpJhT47IobT5anT\nofLUWaRSt/kXW6J5AYkv0Ln7WwSDQa68cjXB4APh/XkD+Bamsu1JJk68mGuvvYrHHsvOMRIKhbj0\n0hvo7/8DyXoLamtX8PLLW0d9H9Ou6zBpVvHtu5OKiq9y7bWdHD3qcyRwVkAubpPv8tQKHgpQbCGg\nBUS6hndTU3OPqxZmKnRuCuLWrGmlvX0lydaYmDZtEx/9qLnrz9bFcPbs5fT0JA8O5sxp5NVXN4/6\nPna7Pvvsbzh48ARlZabOw8yZk2homA2MY9eu1+jtLaWiYpApU2qpqfFnFEy46W8pku/gQcMWBShb\nJXQlPW4bHx+tOuLkyevZPPp1e8w6OuD4ccg0T8Fu18OH2+jrg8rKSIXJd98NsmnTas6diwTOfX3H\n6evzc+zYDQwMzKK/n7Qv+tla00JE0qciUVkyWiGbysrF1vTp66zKymVWefkKq7JymTV9+jpr6dKg\n9fDD+d57yZY5c1YkOSbM15w5K7K+Dy0t0cWp4r+2Wy0t6xx+/+NJCkmlV6gr2/udiYcftqwVK8zX\nTTdZ1pw55rv9mD7ThanQi0RJHow8RfAN+voOc+jQSk6f3kJ//2ZOn36cQ4dW8vzzTbS3h2hsJO25\n/OJ+kVkKieRm9ke26yQMr63RRuJCUukV6nJjzQ5bczNs2BBi6tRW9u1bzt69jezbt5ypU1vZsCGk\nXAzJCg1bFKCRpwj+dyxrA4nWGTh3zuK11z7N9u2Pqgu2ALlh9keqdRLGmqA4PHB2ZiErN9bssI00\npNLZ2cR113UyYYJPSZ3iKAUPBSj5RSIIPAv8ffjfq4mfb79v304aGjSGW4gCAT/btiWf/REIdGZ9\nH1LNAxnromLDA+fML/qmPoa7anZEi81xir0hOHNGNwSSHQoeClDyi0QrpghoCbHdubZxwCIlVRYo\nN1RHTPXud6wJisMD59Qv+iP1dpx//mWcOmUvXR4vv2taRBJhi+OGQNNm3UE5DwXIvki0tGyiutos\nbFRdvYILLngZGI85mbp3DFeyw15j4sSJNmbP3sqcOZuZPXsrJ060jWnNimxKZ1Gxjg5obDRfvb1+\nysujcypqMZU0E4m96CfLHaio+CJlZS8B64DtxOZqvMisWV/O65oWkSGVZPkdi/K2EFs2KMfDHdTz\nUICSdQ1v394IzMVU5Ru5O/fNN0tpbDT/U3SfGbfcKXnpbzbatNLoXIXoIY4//KGb/v5yqqq+AJRx\n6tSFlJVtYWDgRySqpBk9VJO8t2MN8HfAh8OP309kTY6LWLjwirze0UeGapzJ73A7TZsVTdXMMTOF\n0566dsOI0zlra5dZwWDQamlZZ1VXL7NghVVdvcxqaVmX8vQ2iVBbpiedaaXHjx+3amoST8csL7/R\namjotqZPX2dVVIzc9smnY4489bmqallep0NG9jv/U3Fzwc3TZnMp31M180nBQ45FPnRBC6634MWk\nH8Cmpi8kPSGnMz9eRr64ub0t81VDYLRaJdEX7NEuJhMmrLMqKy1ryhTLqqy0rIsusqy6uuH7n3yb\n7r4oB4PB8PE1+g1BIRjt2CiU33M0+Q4elPNQRAIBPxdffA+wD7P08lcZPoZr5tuXlJSmPOYsI0tn\n/N5t8jW+bHIRdmFmD7QCy4HG8Pc1fOITs97fdvIaDCHgF5w79wSnTzdywQXL+fSnW+nuDtHVBZs3\nxw7jJJ+Omf/6GCOxc5xmz7YwuR6J5Dep00lunjZbTJTzUER8Ph9/+IPJtt+6tZtQqJzS0i9SUlIG\nfIAJE2Dy5FpqajrZtq2FkRMqC2P8NBfSGb93m2yNL4+WB7J8uZ/nnruNAweGgAeJXb57Jzt3fuX9\n5bsjF5PoaYoDwEFgI5bVltJ+J6+PYiddxi9fDm64KNs5Tpdd9iiHDzdx5kz+puLmgtuWupfc07BF\njjz8sGUtXRq0pkxZZ5WWLrNKSlZY48Yts8rK1llTpgQTduG6oZRxofBqWz78sGVNm/alEYe3Mhlf\nHikPJJ1tm27sY1ZsGep1FmxPa7+TD38ELWiw4Ffh4SZ72Gm748NOmQ4TFUNujXIejHwPW+STgocs\ns4OGadO+YJWU/MmIY+7xJ63x4zWu6BSvjtEeP37cKi+vzcq+p5IHkmq7mYvJZ+MuKOm3eSR3YPuw\nIOG88z5mTZv2pVGTLp0w1gCgWNa4GOnv5PYcIiflO3jQsEUBW7w4yNe+tpqjR2cAP2a0VTajK/qd\nO3cEM37qvqI4XuOGstBjcffdbfT3X8JI48sHDpSydGn6009HW/m1ri7Am2+mNrYdCPj5x3+8gf7+\n6GG29MfFn3nGR01NJ2fPBnjzza9x5swJYADLquLcuUmcPXse117b/v6y3tlYHTWTYSIvTcXNRPTf\n6eTJ9Zw7V8r48YPvD7k+84yvKNqhmKnnIcsi3Xuj34UNvxMMhruBXyya6D5bd25evVMyd/4jHTvH\nrLKyj4zpbnzkXoVj1gUXfMQqL78ipd6Dhx+2wvsQ/fzYe3vyOTtGXfKSKvU8iGPik9BeeMFO1Bv9\nLmz4naAPMyMjANwLvEd19ZScljLONbvY0KpVAV56qZu+vlJef32Q8vJarrnGT0eHqcKY7h1evstC\nZ7bIlF1ULH7dhAFgPwMDP2FgYAHRd8g//3kT117b+f4deqLtJM+YDwLNvP32Q8BjUduOF+mxaW6G\n9euhu9uKes/alH42kdF6RbJZuj0XybVuKVomMlbqeciC2PHSupTvwkYbXx4/fllBjp9Gi73jPG6Z\npLtbLVhilZXVWqtXf2lMd51uGIseyzh6bFGxLVZqCYlBCz5rVVXVj7id5Mdb9PvavV+j99gMv2NP\n/WcT/975yVHJVXJtvhMr3fCZ8Lp89zzkk4IHhw3vbrVPgqN3hXp1RoCTIhcg+4IZ3239oquHGZIZ\nazf8yEXFEl1gk7Xb8O2kXs0xGD5+zUWupOQKa/r0ddbSpcGYC0zioaFjFnzWKiurtWBZyhfIfH4W\nchG4uKVoWb4DGK9T8KDgwTHDT8jRJ/9Ed2G/SjuzvZBF2qCwxp3HOo4eDAatiy+2j5tb446PRBfY\n1LeTPA9kyZgv3PEXo4qKZdb06eus668PWnPmWNYVV1jWBz5gvq68MnK3W1dnHqury/9Mo1zkPLgh\nr8ItAYyX5Tt4UIXJAjK80p4fsCtKdgCbgE8AN1FWdiWrVz/yfvZ2pKIfDK/qt5j9+09z880hV628\n6LTIOHxhrTiavAIjjPT72EXFWlo2UVZ2jNgchURVF1Pfjp0xP336JiorV1Be3khl5QrKyk4meF9b\n8gJAiVYM/djHtnLNNW1MmuTjvvvg97+H3/8+xK23tnLqVKRa5lVXtfLcc69w1VWmimZkplEiu3jn\nndqsfQ4CAT81NdGrgkJ05VcnVu9MfDzYn/mv097+b1RVLWfGjNasfea9XHVV8k89Dw5L3N0a3e1b\nZ02cuMyaNMncjUWPL0buBOPHtlMfK/a6SM9DYQ3hjLUbPnpcurIy/m480d1r5u2Wzbvi5He7W62y\nsrlRj9s9dVssuMuyh0zgBquq6gqru7t7zPuQiky78+36LtOnr7MqK5dZpaUrrNLSZVZ5+TqrvDyY\n4O+U+nCTU9TTmbl89zzkk4IHh9gn+aqqsSc92iecior4sW1vd9mnI52prV7ixIk6tYTE+KGN9LeT\nzWmtyQOTRMmfL1twVYILanaDaCcSCY8fPx4ebored5P/AXMsmBv1+OiL5GXjM68cq8wpeFDw4Ihg\nMGjNnp35SaCY7wgiF67PJriYeDeAcuJuPvaifix8wf1TC64MX5DmW5WVVzlyEUp25/3QQ8GYO+ry\n8hVWZeWyhAmUiSQ/thM9nv+8gLGKTXRdZ8F1Fsy2YKtlAj77+LZ7HG7M+We+mM8zTlHwoOAhY5Hu\n2F9aiRMjU58lUMx3BJFy3l8Ml/PO/loGueDE3Xwqpc7PO+9j1sSJH894O8nuvJcuTXRHnXr3evJj\nO9Hj+b+4jbUXInatj60WXBH+m8QnUNtBRO4/825I2vQ6BQ8KHjIW+0GMndoGN1gVFdendGdmWboj\nsBXSNLL4MfB079ijjXbSnzbti45sZyzbHu2Ck17PgzuC6JF6YZIFFpWVK6IChXVWpGch+vcMWlCf\n4PHcfOar2oiKAAAgAElEQVQT92SZmiolJbXWtGlfcuSYKWT5Dh5UYbIAxFal8wHR1e+GmDVrBU8+\nmVoVQ6+uw+Ake4ljaGP2bCgvJ2trGeSC2d/442JsRquAOHnyel5+eWvG24lmV0R87rnMqi8mP7YT\nLbmd32WfOzrghz/s5le/amZw8IfErnOxi1/+sonnn/8egcCPeeGFbnp7S+nvN1VLL730LHv32m31\ndaAq/HtEV/X0Afa6JWOvxjlW9mybvr7/h2PHnsOyNr7/O1rWEEeP7qaiooklSzrD+yoSoZ4Hhzg5\n1ODVdRgkN0Y71ioqVmSlSmAwGLQmTVqY0XGe/Njeapkkwuh1XO6y8pn3cvz4cauq6ooR9mGLdf75\niRI6d4R/zq6XsSKqZyG+h8H+/+h1YLJFwxdjp54HyZi5C3LmLinf6zCIuw0/1qLXuyilv7+XqVNb\nCQT8KR0rqayzsHixWWnynXcmkslxHn1sP/vs1zh48ASlpe8xOGi/3+cpKRkHnM95553HuXNPMzj4\nA8wd+ThMvYVd4XoLnaP+bpm4++42Tp3ykbg3AOA53n33ByRaf+PUqW8xbtx/Y2jIwvSgXI7pWYjv\nYYj+v72OzXpMD8W7zJ5tsX37o45+5pOvv5NIbG+S1uRwFxWJKgCxBZ7ipdftGF9s54Mf3Mzbb7fz\nyCMwbVoLZWWNWS8gI+4Ve6wFgSZgJbAF2Ex//29pb19JQ0MToVBo1PdrboYNG0JMnWoKNNmFm6ZO\nbWXDhhDNzdEFherJ5Di3j+0jR1oJhYaA+xkcnIZZrv4VoBvL+h2W9SDnn1/Cddc9wvTp/xRTxGr6\n9E3vL/ucTWZ4yB5uSOQVYodZot1CVdV4TKGpWmAxpljcjeHvdgEqu4jcdmAqZljrceArTJxYwmWX\nPcratT5HP+Pxf+9z5+KLj0WLXTo9lWNFioOGLRySzaEGlZGVaLHH2l0ZdzmncnxFEh2d6V6PdJW7\nt8vcDA+NlMg42vDRUquiwp5tYX+/y4LFFlxtQa0FV1olJddZ48dfb02cuNTKRWJw8vV3Rk/W1Lko\nVr6HLfJJwYODsjU7QGOSEi165kZJyRUpn/iTGe34MjM3oi+U8bOJllmTJl2d1nEeCUbcO7PI7ONI\nwdkNI+77pZcus5YuDVpTpqyzxo2zA4YrLFhojRu31JoyZZ115ZVBq64utytbJl9/Z/Tzi85FsfId\nPCjnoQBkc3bAaNn1o2W4S2GJnrkxd+6r7N2bWpdzMrHHV2z+BAzw7rtHuPTSD7B3r4Xp3h4+m2ho\naAVr1/pSPs4ja5hEzz4Y2/5ni5kZ8qeYYYX7MWtR2HkXOykrO8zAQPwMEdsubrqplo0bnZlh46Th\n5xM/Zugr/nccnluic5G7KHgoANlMFIqcaBPJ7wlW8suJRN3I8RUEVgMPYE/ZgyHefnsng4N3MHwq\npW0Xq1bVsnHjWPY7v9MxRxII+Nm2rYmennXAL4hOZKyqeoMnntjI5z53Lz09o1903WT4+cRHbLLm\nMaqrP5gwQVvnIndRwqSMKHKiTSS/J1gndXTAzTeHmDGjlaqq5Ywfr8TQ0TiRqBs5vtowgUP8KouL\nOHXqW5x//n/BqZUmI/vtXKKx03w+H62tnUyf/hwVFa8ApZSVDTJt2kdZtOhZ/vqvP0ZFxfBVSXOV\n0DlWic8ndg/J44wf/0Fmz97KiRNtw5I1i+VcJKNTzoMHFMs4o5Kx0udEom6qi5FVVi52rHJlZL/t\nZMKxl3PPFicWyEp3e05VIR1JJueTYjkXpSrfOQ/5pODBA4qlaJROTOlz4oITOb6WJGl78+V0OWg7\nwfhDHzLJhGVlJplw5sylritDnotAIlfBcybnk2I5F6VKwYOCB9crpHUektGaHvlhByBlZfU5a3/7\nYlxXZ1kXXWRZlZWWNWWK+X7RRdb7MxDctK5Ctj+DuQyeM/ldiuFclKp8Bw/Jsk9yoQ7o6urqoq6u\n6AInzyiWqm5z5zayd+/mpM/PmdPIq68mf14ys2ZNK+3tK0lcUXEHLS2b2LjRXTMHciUYNBU2TaGs\nBdjJpLCbiRPvYdq0TmpqfBl9JufNW0539xaSJY/W1q5wZM2STM4nxXIuStWePXuor68HUz1tT663\nr9kWMqJi+UA6WeJb0heZXeCt2QO5EKmwGR1YnQB+wZkzFq+91ohlTQnPUEitLHi8XM1kyOR8Uizn\nIq9Q8CCjKoaIvxBXE/XS381eZfHs2QAnT67n3LlSxo8fZPLk2vdnD7hlX3NteH2D4dNazWqbu9m2\nrYkdO9Jfg0bBs3iJch48pNDHGgs1GSsXf7dcZeoXq+ErmTqfn6CEYe/Jd85DPil48IhimcZYaAFS\nrv5uxXJ85MvwZF7nk3sLNXguZPkOHlQkysM6OqCx0XwtXQpz55rv9mNOFTaKHXONLuCzkJ6e+/H7\nk5WM9Y741UTnzNmctFiNV+Tq71YMx0c+xRbjCgFv4nR+gr1ceUvLJqqrVwCNTJy4lIqKr3D0aDmX\nXro2b0XTVMBN4qnnwQG5uFvWNEZn5Kp7P9fTH3V8ZFekV2CLZYpa3eh4e0dPX50yJWiVln7Bgj/J\nWW/SSLUsli49bl18sXq24qnnQcYsGAzS0NBEe/tKenu3AJvp7X2c9vaVNDQ0EQqFHNmOaso7Y/Hi\nID09TRw6tJLTp7fQ37+Z06cf59ChlfT0NLFkiTN/L3s7AwOTycXfTcdHdtnJpBUVbZj1H+pxuqx2\nczNs3gz/+q9BJk9uYnDwNPBjctWb1NwMGzaEmDq1lX37lrN3byP79i1n6tRWpkz5OsGgerYkQj0P\nGcpVkpPuLJ2Rjb9Xoju2adNSK/msngdvibRz0EpcVvtXGd+Jp1ou3Om/6Uh5MyUltTq+ElDPg4yZ\nmcK1IMmzC8LPZ86JBZAkO3+vRHdsb7zxRHg7ufm76fjIjUgPj70S5SbA5CfACsrKvpTxoliRYzS6\nNykEtALL39/W3r1HHM03iM2beSO8vRXAA1jWeNSzVVy+jKny8p0kz6vnIUPDp3BlZz0AZWI7Ixt/\nr8R3bPZ2sneHGk3HR27koocncoza2zoePobiewScXTws8rsl2t6t6nlIoFB7Hq4F/gL4HSRdQ1Uy\nlKslau0xV68t/+s22fh7JZ7pYG8n0R3qJygr+0tH/26JMvWrq1fQ0rJpTAWLJLFc9PBEjlF7W8mX\nSncy3yDSq5Joe/NQz5b7ZKPCZBXwM+DzwNey8P4SlquqiKYSoQ/zwS4sHR3Q3h6iuzvAyZPdMZUN\na2v9tLQ4V9kwG3+v4dUHIXLiX4gJIKL/bju4/fZNbNzo3AXdVLI025k9G8rLTSXLEydg7Vp3VbL0\nslyU8I4co36gCRNIJAsQFrB79/qMtwnRQYt9PIfC37uBAWAL8COgAZUuL1w/Af4u/O/ngQeTvE7D\nFhlSd3HmclngKBt/r8RDIcmGK3RceFkupvrGHqPHLFiYk6HRSKLmiiRDF8cs+KwFc6yysmWqYGrl\nf9jC6Z6H1cDVmGEL0JBFVmk9gMwlXnQodhqYU6s5ZuPvlXhNAnu44luUlPwFllVNRcUgH/1oLY89\npmEEr8pFD6A9BOX3B3jhhW56e08x/PiyOTc0GulVsXs64j+TH8Dcl77I7bf/c9GusOomTgYPM4D/\nASwBzoUfK2GUZb/vvPNOLrzwwpjHmpubadZVb1SFPJyQK4m7/W3OdcuCc3+v6AWvTp6MHqKA2O7e\nc4wbN4HKyrlcc42fSZN8GkaQEcUPQZ040co772R/aNQOrI8e/TR9fV0k/4w0sHv3A45s00s6Ojro\niJva8tZbb+Vpb5z3ScxAVH/U1xAme+scw4MIDVtI3uVqxorT7MqiH/rQYstUAvyVBUeTZMYXdyU+\nGbtcD40Gg0GrvPxqT34mcy3fwxZOzrZ4BrgC+Ej462rgJUzy5NVoCENcKFczVpzS0QE33NDNtGlL\naG9fycGDTwP/DvwTptNvParEJ07J9UyaZ57xMX78xXjpM1msnAweTmH6Su2vl4E+zCouzlQrEnGY\nVwoc2YsD3XXXF3nhhUYGBx8iEiT4gG8DMzHZ6Ik4VzRMioe9YNzvftfG22+3U1Y2lwMH4Cc/eZVp\n01qYOtXZxamam+HTn74KL3wmi122K0za3SoirhQI+KmpuQfYgRllI/x9R3gamD9/OxfFXq/i6NHT\nmPSiRGPQWmNCnBW/5sXAwEqGhrZgWZsZHHycN990dl0W8M5nsthlO3i4EfhvWd6GyJh5pQBWZFbI\nG8D5JA4SvDUEI96Ry2XXVXTMG7JRJErEM7wyYyUyK6SUSJAQH0DUAjtJPHSh7l4Zu1zOSlLRMW9Q\n8CDiAZHyvYPA5cROzwQzRbMPaMEspaxKfOKcXC67ruDAG7SqpsfYiXMzZrRSVbWc8eMbqapazowZ\nziYuibvErjmwGIgeEw5iSgl/BtgG/DPwCeAmSkquZNq0h101BCPe47VZSZJ96nnwmMWLg3zta6s5\ndOgBTDdiCf39Q5w+vZsJE5pYsqQTk30vI4kutPTee3DggOkaPe8885jb7n6GrzmwDvgFZmrmEeB7\nRHoiIkMwlrWDm292di0LKT6R46+GSBEyewjtIk6enEVHx8ifmVyuIyOFTUWi0vDww5a1YoVlTZ9u\n14BPVEBlu9XSsi7fu+oZdqGl6uplFqywqquXWS0t61xZTGn4mgPrwksVL7FgjpYslqwKBoPWzJkf\ns6AhQRGyF61Zsz4+6ucml+vIFINCKhIlWdTcDBs2hHj33ecwK+olkt25/IU0ZBIMBmloaKK9fSW9\nvVuAzfT2Pk57+0oaGpoIhZybeuaE2Az0/wy8SnV1CS0tV1NTMxtN0ZRs8vl8NDRcg6knMnx57v37\nvznqjItcztiQ7NOwhUcEg0EWLVrN229PJl8XikIaMsnlglhOGCkD/fjx5eRi8SIpXh0dsGXLa4xc\nhGzkGRfpztjw2tBisVHPg0dELnbjyVfiUiHdOZgTWX56cBIZrVcHTLGezZvhqafg1VfN982bYdUq\nb1TJFO9qboZLLslsxkW6Mzbs3tapU1vZt285e/c2sm/fcqZObWXDhpAChzxT8OARkYtd/i4Ubrvg\nZiKXU89SYVeQPHRoJadPb6G/fzOnTz/OoUOjV/BTRT7JhdgZFyGgFVgONALLeO21gyMOX6Y7Y8Nr\nQ4vFRsGDR0Qudn5ip+kR/v5i1i8UbrvgZsJtU88y6dXxSpVM8bbIOjD21OCVgLmowxYGBr4/YqCb\n7joyhdTTKc7SbIs01NYui8pQDoaz7c0sAbjVKiv7iLV0adB6+OFc7YO3s/pbWtw1a6WQ2lYKU2TG\nz2fDs37S++yku7y3PhMj02wLSUls1G6XU96Kifq/xu2338STT2Z3nrRXVqBMhdu6+gupV0cKk93D\nVVb2MokXZoORhi/T7SHTZ8LdNNvCIwIBP9u2NdHTcz8m7yD3pYfdsA9OsU9kZ88GOHlyfUzBGvtE\nlsuErMgwimZMiDvZ68DMnXsJe/emf1FPdx0ZfSbcTcGDR7jhYueGfXCK2xbEilTwS3RH561eHSls\nubqo6zPhbgoePMINFzs37EMhSFSmt7y8j9LSpxgc/AHmZOndXh0pbLm6qBdST2chUs6DSI4lmpbZ\n1/cUg4PfpKrqDmbOvBVopLp6BS0tm9ixoxOfTzMmxB1ylS+kWUTulmzgKhfqgK6uri7q6vKSLCqS\nF2vWtNLevpLEd247mDZtE5bVxrlzIfr6AvT3m0WIzjtPiwiJO4RCIfz+AC+80E1vbynV1YNcf30t\ngYBfgW6O7Nmzh/r6eoB6YE+ut6+eBykqblifY7RiW5Mnd/Pb3waZPLmJ995byeDgRgYH53L6tMWh\nQ//B00/fwF13/ZXn1hORwtDRAWvX+jhxoo3Zs7cyZ85mZs/eyokTbaxd69MxWSSU8yBFxQ3rc6Qy\nBS1SIOcyYDUQ2V/LGuLo0Z1UVHhrPREpDPaaEnbuTl9fgO3bI0ts/+Y3tbS3q3es0KnnweXccKdc\nSNxQtS5xdUu73O8y9u49xE9+8gSmd6INEzgMX8lQVfYknzIpqS7ep+DB5dz4AY0PaMrKGiktXUJp\n6Q2Ult5MWZl7Axw3rM8xvNhWdLnfrcAeLKsaEyzkf39FEnFDIC75o+DB5dz4AY0PaAYHf8TQ0BBD\nQ99kaOgJBgfzH+Ak44aqdcOz1duA+4n9G9u9E/nfX5FE3BCIS/4oeHA5N35Ahwc0ybrW3XcH4oYF\nseKnoMETDJ95YfdO5H9/RRJxQyAu+aPgweXc+AGNDWhCwHO4LcBJxg3rczQ3w5NP+nj99TZOndrK\nnDn2EEU0e/XUi4CdSd5JVfYkf9wQiEv+KHhwOTd+QCMBjT1WPxm3BTjJuG1BLEj2N/YBnUAl8Bng\nRdyyvyKQeiCupO/CpODB5dxwpxwvcrGzhyvGE7n42bMGlgONwDJee+2ga04SbqpaZ59U9+8/jQlm\n4vmAzzBt2s1Mn/7Ped9fkWipBuJuTPoWb6sDrK6urnwvi+5qwWDQqqm50YLtFgy+v5Y9bLdqam60\ngsFgzveppWWdBTssWGbBkAX2/49bcGP430NR+/pi3vbVzY4fPx7+2/4y3G7xf2O1m7jXww9b1tKl\nQWvKlHXWuHGLLbjagissWGjBDVZJyfXWuHFLw4+/GD6u47+2Wy0t6/L9q3hSV1eXhblry0uJZvU8\nuJyb7pRtkTuOc5jhCnt8vpXhswZUkyCZSOLprZghik3ACkyPzWIqKu5R74K4lp2788orrVRXDwE/\nAH4H/AummJmZfQWXAA1J3sVdOVGSOlWYdDk3rmRpBzQHDtzKwIBFZHz+VhKv1wDmJLE+Z/voBeak\naQdU8X/jIWbNWsGTTypwEHeLnX0FsbOvQNONC5N6HiRt9h3H7bffSCQfw4e5w9BJIlVunEkjkq7R\nZ1+5L+lbMqfgQcZseMKUThLpcONMGpF0jT77yn1J35I5BQ8yZvH5GCUlR0g8awB0khjOjTNpRNI1\n8uwriOREuWd6tGROwYOMWXyxo+PHn6Km5qvoJJEaN9acEElXJAi2hy+ig+IQJq9nHPBF4ErgGsaN\nu5UpUzTd2MuUMCmOsXsizp4NcPLk+veX6J08ufb9k4SW6I1Qe0khCAT8bNvWRE+PPXzhxwxf3AX8\nHdHLyZvgeBfV1feyY4cfn0+Bg1cly9bKhTqgq6uri7q6vExTFRGRDHV0QHt7iGefvZWBgV9jLish\n4NOYwGFRgp/aQUvLJjZudM8sMq/Zs2cP9fX1APXAnlxvX8MWIiIyZslnX1Wi+g6FS8GDiIhkbHgO\nj6YiFzIFD1JUQqEQa9a0Mm/ecubObWTevOWsWdNKKKT6+iKZGL7UfC+aily4FDxI0XjooSCzZjXR\n3r6S7u4t7N27me7ux2lvX8msWU388IcKIETGKn72VUvLLWgqcuFS8CBFY9euNvr67LK50WtvLKSv\n73527tTaGyJO0VTkwqbgQYpGbBndeErgEnGSGxf1E+eozoMUDa0lIZI7blzUT5yjngcpGlpLQkTE\nGQoexHFundGgtSRERJyh4EEc5eYZDUrgEhFxhoIHcZSbZzQogUtExBlKmBRHmRkLyQKEBezevT6X\nuxNDCVwiIs5Qz4M4SjMaREQKn4IHcZRmNIiIFD4FD+Ko2BkNIaAVWA40AovZv/80N98coqMjX3so\nIiKZUvAgjorMaNgKNAErgS3AZuDf6Ov7Bj09TSxZonUkRES8yung4QvAb4G3w1/bgVsc3oa4mD2j\noaKiDVjP8FkXDfT03I/fr3UkRES8yung4XXgbqAOqAeexdxyznN4O+JS9sp6s2ZVAg1JXqV1JERE\nvMzpqZpb4v7/VUxvxHzgZYe3JS6mWRciIoUrm3UeSoFPAxOAbVncjrhQZNZFogBCsy5ERLwsG8HD\nlZj6vxOAM8CfAfuysB1xsfnza+nu3gXUYIpGdWPiyUHgIk6enEVHhxnmEBERb0nWr5yJcmAGcAGm\n5+FLwA3AnrjX1QFd1113HRdeeGHME83NzTTrquJpoVCIa6+9jQMHhoAHgQWYw20I2MmsWV9h9+7H\n8PlUElpEZCQdHR10xM1vf+utt9i2bRuY/ML462vWZSN4iPc0sB/487jH64Curq4u6urqcrAbkksd\nHXDXXX/F0aPNwKIEr9hBS8smNm5UqWgRkXTt2bOH+vp6yFPwkIs6D+NytB1xkeZmmDz5NTTjQkSk\n8Did8/AN4JeYKZvnA6uB64H7Hd6OeIBmXIiIFCangwcf8FNgGqZI1G+BmzH1HqTIaMaFiEhhcjp4\n+LzD7yceFplxsTDBs7vC62CIiIjXKBdBsmbhQj8VFfdgZu4OhR8dAnZQUXEvCxf687dzIiIyZtks\nEiVF7o47fHzqU534/QF2717PwEApZWWDzJ9fSyDQqWmaIiIepeBBssrn82k6pohIgdGwhYiIiKRF\nwYOIiIikRcMWUhRCoVA496I7LvfCr9wLEZE0KXiQgvfQQ0Huums1fX0PYBbpMmtsdHfv5uc/b+LB\nBzu54w4FECIiqdKwhRS8XbvawoHDQiIFq8YBC+nru5+dOwP52zkREQ9S8CAFz6yhsSDJs1pjQ0Qk\nXQoepOBpjQ0REWcpeJCCF1ljIxGtsSEiki4FD5IzHR1w880hZsxopapqOePHN1JVtZwZM1q5+eYQ\nHR3Z2a5ZQ2NXkme1xoaISLoUPEjOLF4cpKeniUOHVnL69Bb6+zdz+vTjHDq0kp6eJpYsCWVlu4GA\nn5qaxGts1NTcSyCgNTZERNKh4EFy5u672+jpSTzroafnfvz+7Mx6eOYZHzU1nUyfvonKyhWUlzdS\nWbmC6dM3UVPTyTPPaJqmiEg6VOdBcsbMakgWICxg9+71WdluczM0N/sArbEhIuIE9TxIzgyf9RAC\nWoHlwCfZt+8ga9a0EgplZ/hCREScoeBBciZ21kMQaAJWAluAzZw791va21cya1YTP/yhAggREbdS\n8CA5EzvroQ1Q1UcRES9S8CA5s3Chn4oKe9bDy6jqo4iINyl4kJy54w4f+/d30tKyifHjj6GqjyIi\n3qTgQXLK5/OxcWMbs2dPQ1UfRUS8ScGD5IWqPoqIeJeCB8mLXFR9zFc5bBGRQqciUZIXdtXHs2cD\nnDy5nnPnShk/fpDJk2vfr/rY3Dy29w6FQvj9AbZv/w29vYfp79+IKU5VQn//EKdP72bChCaWLOkE\nVF1SRCRdCh4kL5ys+mgHC7t3dxMKDfDGGwexrI2YnIr1mOmgtthy2Bs3quqkiEi6NGwhnvbQQ0Fm\nzWqivX0l3d1bCIWuwrJ+DNQAz6PpoCIizlPwIJ62a1cbfX12sak3gOeAyzDVKyej6aAiIs5T8CCe\nZnoPFhApdz0Z+DameuV4NB1URMR5Ch7Es0KhEIcOvYnpXbDLXY8H7IBC00FFRLJBwYPkVSgUYs2a\nVubNW87cuY3Mm7c8pZU17VyHd96ZiOldiA4YzmECCj+QaDroi1RU3MvChZlPBxURKUaabSF589BD\nQe66a3U4Z8FMpYQhurt38/OfN/Hgg53ccUfiqZSRXIdfYHoX7OW+/cANmIDCB3SG33t9+DUDXHDB\nEf74x6fx+TRNU0RkLNTzIHkTm+yY3sqakVwHu3fhXSIBw59iehsI/78N2ApsBr7GbbfdpMBBRCQD\nCh4kbyIBQCIjT6U0MyVKiPQuWEQChr8Fvko2q1eKiBQzBQ+SN5EAIJHkUylDoRDHjx8hMpPCBzxK\nJGCYigkofgEsBq6houJWpk/f9H71ShERGTvlPEjemKmSFokDiNiplHYVySee+A3Hjx/GsuYDO4GG\n8Cui8xvuoaTkPSoqpjB58keprfXT0jL2ctciIhJLwYPkzfz5tXR37yK2fLQtMpUyNrHSLjldg6nr\ncD9m6GMcpsfhk1RUdPHgg5uTJluKiEhmFDxI3ixc6OfnP2+iry86ABgCdoWnUnYC0YmVdsnpNkxv\nhWZSiIjkg4IHyZs77vDxqU91hhe1Ws/AQCllZYPMn19LIND5fgBgEifXMbzk9PCFtT7wgUYFDiIi\nWaaESckrn8/Hxo1tPP98O4sWzQVg+/ZXueGGlveLRZnESZWcFhFxC/U8SN6NVizqggvKMRUkA0RK\nTo+cJyEiItmjngfJu9GKRVVWniWVktOq4SAikhvqeZC8MzkNdjXJUPjf3dhJkIcPv0FJiYVlJS85\nXVZ2hJqap3nmGU3JFBHJNgUPkneRYlFBYDUmtyEyfHHmzE5KSz/P4OAOYBHDEyV3cPvtm9i4UYmS\nIiK5oGELybtIsSh7We344YtFDA5+m9LSL5Co5LRWyBQRyS31PEjeRYpFRQ9fxLuFmpoHWbRo04jT\nOkVEJPsUPEjeBQJ+tm1roqdn5LUuoIKNG9uSPC8iIrmiYQvJu2ee8VFT00lZ2UlUw0FExP0UPEje\nNTfDk0/6uP32GzE1HBJRDQcREbdQ8CCusXChn4qKRDUclBQpIuImynkQ10h1rQsREckv9TwUmY6O\njnzvwojstS5efnkrr766mZdf3srGjW2eDhzc3uaFSG2ee2rz4uJ08PAV4NfAO8Bx4J+AOQ5vQzKg\nD3juqc1zT22ee2rz4uJ08PBx4O+BBcBNmGGRp4AKh7cjIiIieeJ0zsOtcf9fg6k5XAf8yuFtiYiI\nSB5kO+fhwvD3N7O8HREREcmRbM62KAG+A2zD1B1O6JVXXsniLki8t956iz179uR7N4qK2jz31Oa5\npzbPrXxfO5PVAnbC9zDDGP8XcCTB89MwyZWXZnEfRERECtVh4FrgaK43nK3g4e+BRkwC5YERXjct\n/CUiIiLpOUoeAodsKAH+F/A6UJPnfREREREP+D5wEtPj8MGor/PyuVMiIiLiXkPAYPh79Ndn87lT\nIiIiIiIiIiIiIiIiIiIiUtTuY3guQ3z9hsuBzcBbmMWxdgAz4l7TADwLnMIkVz5HbELl/gTbeSDu\nPaAc+f8AAAV6SURBVD4EPB5+jxDwP4DyMf5ebnYfmbX5rAQ/b3+tjHqPycD/F36Pt4CfAhfEbUdt\nHuFEm+9P8LyO87GfWy4BHgaOYdprD7HtDTrOo91Hbtp8f4Lt6Dgfe5vXYBacDAJvA53AxXHv4brj\n/D7gd+Edtb+mRj1fA5wAvgl8BHMSvRWIXku5AfPL+DGNVAN8Chgf9Zpe4N647VRGPV8K/B54Jryd\nxcAh4H9m+gu60H1k1ubj4n72YuBrmIMuerGyfwV+i1nQbGF4m5ujnlebRzjV5jrOI+4j83PLc8BO\n4KPh5+8FBoCro16j4zziPnLT5jrOI+4jszavBHqAx4B5wBWYQGIXsTWbXHec3wf8ZoTnHwF+Msp7\n7AT+31Fe0wv8zQjP34o5QD8Y9VgTcAaoGuW9veY+Mm/zeL8B/iHq/5djIuBrox5bEH7sw+H/q80j\nnGhz0HEe7T4yb/N3gf877rE3MIvzgY7zePeR/TYHHefR7iOzNl+KaavodrkQcwwvDv8/Z8d5ugtj\nfRhTDvM1oAOojnqfZcAfgSeB45hA4T9F/ezFwHxMF8l2TFfX88DHEmznbsxB+BvgHmK7UxowUdOx\nqMeeAiYA9Wn+Pl6QSZvHq8dEmhuiHmvA3BX/OuqxXeHHFkW9Rm3uXJvbdJxHZNrmW4DVmC7bceF/\nj8ecY0DHeSLZbnObjvOITNp8AmAB56IeO4sJDOzrqCuP81uA2zDdJYsxXVZHgSmYCGYIM37yN8BV\nmANmEFMwCkz3yRDmIPoc5oT6IPAeMDtqO3cC12G6ZNZixnai79r+N/BEgv17DxM9FZJM2zze94E/\nxD12D/Bqgte+Gn4/UJs73eag4zyaE20+EdMNO4Q5ub5F5G4MdJzHy0Wbg47zaJm2+UWYNv4Opu0r\nMRWdh4AfhF/jieO8AvOL/1fM+hRDwM/iXvMvmIQaMFHPELA+7jW/ZXgCTbRPhX9ucvj//xsTmcUr\nxIMtXrptHm0i5sD7r3GPp3qwqc2da/NEdJxHjKXNN2GSy24ErgT+FpOQfUX4eR3nI8tGmyei4zxi\nLG1+E7APE1T0Y4Y5XsIsRAk5PM7THbaI1ofp+piN6U0YYPjS2/8/JqsTIot3xL/mlajXJLIr/N3u\nnTgGfCDuNZMx3WXHKGzptnm0VZiL2U/jHj/G8Gxdwo8di3qN2ty5Nk9Ex3lEum1+OfBJzJ3tc+Gf\n/e+Yk+pfhl+j43xk2WjzRHScR4zl3PJ0+PU+TLLl54DpmGEQyOFxnknwMAGoxQQF/Zgxlj+Je80c\nzFQdwt+PJHjN3KjXJHJN+LsdfGzHRLbRv/xSzNhPV4r77lXptnm0tZgo9kTc4zsw03jiE2wuwLQ1\nqM2dbvNEdJxHpNvm9nlsMO41Q0Sy0HWcjywbbZ6IjvOITM4tb2Kmci7GBBL2bApXHuffxoy9VId3\n5nFMl6w9B/WT4Y1/HhMZfQnTIIui3uNvwj+zMvyarwOniSSNLMR04VwdfuzPMFNI/inqPcZhpp48\nHX7dYuAgZp5qoXGizQk/N4g5QBL5JfAfxE7t+Zeo59Xmzra5jvNYmbZ5KeaO7QXMSbMGuAvT/rdE\nbUfHeUQu2rwBHefRnDi3rMEcuzXA7Zgei7a47bjuOO/AZImexRwAjzI8SloD7MV0x+wBViR4n7vD\nO3oK+BWxDXMNJnI6GX6PVzDjaPGrcs7ANPxpTON9l8IsKuJUmz/AyL07F2KKirwd/vopMCnuNWrz\niEzbXMd5LCfa/LLwzx3FnFt+w/BphDrOI3LR5jrOYznR5t/AtPdZzJDGnQm2o+NcRERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERE8ur/ANBpVY9jW9RvAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "from scipy.stats import norm\n", + "from scipy.stats import lognorm\n", + "import sys\n", + "import getopt\n", + "sys.path.insert(1,\"/usr/local/science/clag/\")\n", + "import clag\n", + "%pylab inline\n", + "\n", + "ref_file=\"lc/1367A.lc\"\n", + "echo_file=\"lc/2246A.lc\"\n", + "\n", + "\n", + "dt = 0.01\n", + "t1, l1, l1e = np.loadtxt(ref_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.005 , 0.01861938, 0.04473305, 0.06933623, 0.10747115,\n", + " 0.16658029, 0.25819945, 0.40020915, 0.62032418])" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "\n", + "fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029, \n", + " 0.25819945, 0.40020915, 0.62032418])\n", + "# fqL = np.logspace(np.log10(0.0006),np.log10(1.2),11)\n", + "nfq = len(fqL) - 1\n", + "fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.)\n", + "\n", + "\n", + "fqL\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.342e-01 5.077e+01 inf -- -5.530e+02 -- 1 1 1 1 1 1 1 1\n", + " 2 7.674e-01 5.065e+01 8.300e+01 -- -4.700e+02 -- 0.653018 0.587019 0.568277 0.567457 0.566281 0.566085 0.565773 0.566163\n", + " 3 3.298e+00 5.043e+01 8.075e+01 -- -3.893e+02 -- 0.414806 0.209135 0.141159 0.13784 0.133393 0.132728 0.131612 0.132761\n", + " 4 1.572e+00 5.010e+01 7.754e+01 -- -3.117e+02 -- 0.322539 -0.0834456 -0.273066 -0.284295 -0.297612 -0.299435 -0.302479 -0.300412\n", + " 5 5.908e-01 4.964e+01 7.386e+01 -- -2.379e+02 -- 0.302357 -0.214604 -0.654658 -0.688754 -0.723838 -0.729279 -0.736418 -0.733888\n", + " 6 3.713e-01 4.877e+01 6.953e+01 -- -1.683e+02 -- 0.284419 -0.200357 -0.96379 -1.05472 -1.13798 -1.15477 -1.17031 -1.16748\n", + " 7 2.709e-01 4.671e+01 6.269e+01 -- -1.056e+02 -- 0.277768 -0.185001 -1.13047 -1.34026 -1.52128 -1.56845 -1.6043 -1.60101\n", + " 8 2.135e-01 4.361e+01 5.281e+01 -- -5.282e+01 -- 0.277012 -0.185189 -1.16375 -1.49463 -1.83211 -1.9477 -2.03737 -2.03476\n", + " 9 1.764e-01 3.767e+01 4.019e+01 -- -1.264e+01 -- 0.282161 -0.184207 -1.17891 -1.53049 -2.01851 -2.24569 -2.46562 -2.46922\n", + " 10 1.508e-01 2.738e+01 2.645e+01 -- 1.382e+01 -- 0.289545 -0.182463 -1.18795 -1.52893 -2.08812 -2.41103 -2.87498 -2.90486\n", + " 11 1.349e-01 1.468e+01 1.390e+01 -- 2.772e+01 -- 0.293547 -0.180898 -1.1897 -1.52803 -2.10944 -2.46526 -3.22702 -3.34288\n", + " 12 1.358e-01 5.365e+00 5.378e+00 -- 3.309e+01 -- 0.295456 -0.179941 -1.19052 -1.52801 -2.11928 -2.48294 -3.46233 -3.79368\n", + " 13 1.868e-01 1.338e+00 1.633e+00 -- 3.473e+01 -- 0.297315 -0.17923 -1.19104 -1.52666 -2.12491 -2.48975 -3.55567 -4.30889\n", + " 14 6.248e-01 2.604e-01 4.517e-01 -- 3.518e+01 -- 0.299091 -0.178645 -1.191 -1.52463 -2.12805 -2.4915 -3.5672 -5.11363\n", + " 15 2.744e+02 2.611e-01 7.022e-02 -- 3.525e+01 -- 0.300248 -0.178286 -1.19075 -1.52307 -2.12961 -2.49161 -3.56337 -8\n", + " 16 2.745e+02 2.782e-01 4.368e-04 -- 3.525e+01 -- 0.300566 -0.178158 -1.19062 -1.52252 -2.13009 -2.49151 -3.5617 -8\n", + " 17 2.745e+02 2.805e-01 6.410e-05 -- 3.525e+01 -- 0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n", + "********************\n", + "0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n", + "0.238931 0.202434 0.232634 0.177249 0.153039 0.132988 0.297259 3285.23\n", + "-0.000915535 -0.00131061 -0.00195128 -0.00497899 -0.0226059 -0.0776175 -0.280541 -0.000206646\n", + "********************\n" + ] + } + ], + "source": [ + "P1 = clag.clag('psd10r', [t1], [l1], [l1e], dt, fqL)\n", + "p1 = np.ones(nfq)\n", + "p1, p1e = clag.optimize(P1, p1)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 3.525e+01 3.480e+01 3.006e-01 5.395e-01 0.891 +++\n", + "+++ 3.525e+01 3.431e+01 3.006e-01 6.590e-01 1.87 +++\n", + "+++ 3.525e+01 3.458e+01 3.006e-01 5.993e-01 1.34 +++\n", + "+++ 3.525e+01 3.469e+01 3.006e-01 5.694e-01 1.11 +++\n", + "+++ 3.525e+01 3.475e+01 3.006e-01 5.545e-01 0.997 +++\n", + "\t### errors for param 1 ###\n", + "+++ 3.525e+01 3.476e+01 -1.781e-01 2.430e-02 0.973 +++\n", + "+++ 3.525e+01 3.421e+01 -1.781e-01 1.255e-01 2.07 +++\n", + "+++ 3.525e+01 3.451e+01 -1.781e-01 7.491e-02 1.48 +++\n", + "+++ 3.525e+01 3.464e+01 -1.781e-01 4.961e-02 1.21 +++\n", + "+++ 3.525e+01 3.470e+01 -1.781e-01 3.696e-02 1.09 +++\n", + "+++ 3.525e+01 3.473e+01 -1.781e-01 3.063e-02 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.781e-01 2.747e-02 1 +++\n", + "\t### errors for param 2 ###\n", + "+++ 3.525e+01 3.511e+01 -1.191e+00 -1.074e+00 0.276 +++\n", + "+++ 3.525e+01 3.495e+01 -1.191e+00 -1.016e+00 0.598 +++\n", + "+++ 3.525e+01 3.485e+01 -1.191e+00 -9.870e-01 0.8 +++\n", + "+++ 3.525e+01 3.479e+01 -1.191e+00 -9.725e-01 0.91 +++\n", + "+++ 3.525e+01 3.476e+01 -1.191e+00 -9.652e-01 0.968 +++\n", + "+++ 3.525e+01 3.475e+01 -1.191e+00 -9.616e-01 0.997 +++\n", + "\t### errors for param 3 ###\n", + "+++ 3.525e+01 3.482e+01 -1.522e+00 -1.345e+00 0.865 +++\n", + "+++ 3.525e+01 3.432e+01 -1.522e+00 -1.257e+00 1.86 +++\n", + "+++ 3.525e+01 3.459e+01 -1.522e+00 -1.301e+00 1.32 +++\n", + "+++ 3.525e+01 3.471e+01 -1.522e+00 -1.323e+00 1.08 +++\n", + "+++ 3.525e+01 3.476e+01 -1.522e+00 -1.334e+00 0.97 +++\n", + "+++ 3.525e+01 3.473e+01 -1.522e+00 -1.329e+00 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.522e+00 -1.331e+00 0.998 +++\n", + "\t### errors for param 4 ###\n", + "+++ 3.525e+01 3.481e+01 -2.130e+00 -1.977e+00 0.874 +++\n", + "+++ 3.525e+01 3.429e+01 -2.130e+00 -1.901e+00 1.91 +++\n", + "+++ 3.525e+01 3.457e+01 -2.130e+00 -1.939e+00 1.35 +++\n", + "+++ 3.525e+01 3.470e+01 -2.130e+00 -1.958e+00 1.1 +++\n", + "+++ 3.525e+01 3.476e+01 -2.130e+00 -1.968e+00 0.983 +++\n", + "+++ 3.525e+01 3.473e+01 -2.130e+00 -1.963e+00 1.04 +++\n", + "+++ 3.525e+01 3.474e+01 -2.130e+00 -1.965e+00 1.01 +++\n", + "+++ 3.525e+01 3.475e+01 -2.130e+00 -1.966e+00 0.997 +++\n", + "\t### errors for param 5 ###\n", + "+++ 3.525e+01 3.474e+01 -2.491e+00 -2.358e+00 1.01 +++\n", + "+++ 3.525e+01 3.512e+01 -2.491e+00 -2.425e+00 0.263 +++\n", + "+++ 3.525e+01 3.496e+01 -2.491e+00 -2.392e+00 0.579 +++\n", + "+++ 3.525e+01 3.486e+01 -2.491e+00 -2.375e+00 0.781 +++\n", + "+++ 3.525e+01 3.480e+01 -2.491e+00 -2.367e+00 0.893 +++\n", + "+++ 3.525e+01 3.477e+01 -2.491e+00 -2.363e+00 0.952 +++\n", + "+++ 3.525e+01 3.476e+01 -2.491e+00 -2.361e+00 0.982 +++\n", + "+++ 3.525e+01 3.475e+01 -2.491e+00 -2.360e+00 0.997 +++\n", + "\t### errors for param 6 ###\n", + "+++ 3.525e+01 3.507e+01 -3.561e+00 -3.413e+00 0.363 +++\n", + "+++ 3.525e+01 3.484e+01 -3.561e+00 -3.339e+00 0.814 +++\n", + "+++ 3.525e+01 3.468e+01 -3.561e+00 -3.301e+00 1.13 +++\n", + "+++ 3.525e+01 3.477e+01 -3.561e+00 -3.320e+00 0.962 +++\n", + "+++ 3.525e+01 3.473e+01 -3.561e+00 -3.311e+00 1.04 +++\n", + "+++ 3.525e+01 3.475e+01 -3.561e+00 -3.315e+00 1 +++\n", + "\t### errors for param 7 ###\n", + "+++ 3.525e+01 3.524e+01 -8.000e+00 -6.000e+00 0.0178 +++\n", + "+++ 3.525e+01 3.515e+01 -8.000e+00 -5.000e+00 0.187 +++\n", + "+++ 3.525e+01 3.494e+01 -8.000e+00 -4.500e+00 0.618 +++\n", + "+++ 3.525e+01 3.466e+01 -8.000e+00 -4.250e+00 1.18 +++\n", + "+++ 3.525e+01 3.482e+01 -8.000e+00 -4.375e+00 0.851 +++\n", + "+++ 3.525e+01 3.475e+01 -8.000e+00 -4.312e+00 1 +++\n", + "********************\n", + "0.300605 -0.178131 -1.19059 -1.52241 -2.13019 -2.49148 -3.56144 -8\n", + "0.253864 0.205597 0.228999 0.191096 0.1638 0.131949 0.246154 3.6875\n", + "********************\n" + ] + } + ], + "source": [ + "p1, p1e = clag.errors(P1, p1, p1e)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAGp1JREFUeJzt3X9s4/d93/HnxZaj5dxOi12RZ+98bLhdaBhJDbLSHzrb\n5TIn2IY26dBOIbFsiLTCQdoOuHUrcMMgzZCAYS2G9uqua3FbD9kQjNQNaDYH2LXFUKW5UVqnimm7\nbmadUT+W5kxmTXvr6kSpVnt/UHeR1I9+8I7fL389HwAhivx8vp+3cJ+TXvx+P9/vFyRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvSA/iGwBvwh0AQ+A1zsakWSJKkn3AT+NvA08H7gs8AW\n8K4u1iRJknrQ48BbwHPdLkSSJJ3sHTGONbb39fdjHFOSJPW4M7QON/xqtwuRJEmn83BM4/xz4BmO\nP9Rwbu8hSZLa88beo6PiCAk/DXw38AJw+4g255544onbt28f9bYkSTrGl4EJOhwUogwJZ2gFhI8A\neWD7mLbnbt++zac//WmefvrpCEvqvMuXL3P16tW+HO9BttVu33ban6btSW2Oez/uf7NOca51vr1z\nLcy51vn2Uc611157jY997GNP0tob3zch4WeAIq2Q8CaQ3Hv9DrAT6vD000+TzWYjLKnzxsbGYq25\nk+M9yLba7dtO+9O0PanNce/H/W/WKc61zrd3roU51zrfPuq5FpWHItz2Z4F3AjPA39/3+CLwm4fa\nngM+8YlPfIJz5/pvWcL73ve+vh3vQbbVbt922p+m7Ultjnq/VCpRLBZPXUsvca51vr1zLcy51vn2\nUc21N954g2vXrgFco8N7Es50cmMPIAusr6+v92XqVn/58Ic/zKuvvtrtMjQEnGuKQ7VaJZfLAeSA\naie3Hed1EiRJUh8xJGjo9OvuX/Uf55r6nSFBQ8df3IqLc039zpAgSZKCDAmSJCnIkCBJkoIMCZIk\nKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnI\nkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAg\nSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmS\nggwJkiQpyJAgSZKCDAmSJCkoypDwAvBZ4MvAW8BHIhxLkiR1WJQh4V3AF4Af2vv+7QjHkiRJHfZw\nhNv+xb2HJEnqQ65JkCRJQYYESZIUZEiQJElBUa5JaNvly5cZGxs78FqxWKRYLHapIkmSekepVKJU\nKh147c6dO5GNdyayLR/0FvC9wKtHvJ8F1tfX18lmszGVJElS/6tWq+RyOYAcUO3ktqPck3AW+Iv7\nvn8P8CzwVeBLEY4rSZI6IMqQMAH8yt7zt4Gf2Hv+KWA2wnElSVIHRBkSPocLIyVJ6lv+EZckSUGG\nBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJ\nkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhT0cLcLkKJQKpUolUoA7OzssL29zYUL\nFxgdHQWgWCxSLBa7WaIk9TxDggbS/hBQrVbJ5XKUSiWy2WyXK5Ok/uHhBkmSFGRIkCRJQYYESZIU\nZEiQJElBhgQNrK2tLWZnZ5mengZgenqa2dlZtra2uluYJPUJz27QwGk2mxQKBWq1Go1G497r9Xqd\ner3OzZs3yWQylMtlEolEFyuVpN5mSNBAaTabTE1NsbGxcWSbRqNBo9Hg0qVLVCoVg4IkHcHDDRoo\nhULh2ICwX71ep1AoRFyRJPUvQ4IGxubmJrVara0+tVrNNQqSdARDggbG4uLigTUIp9FoNFhYWIio\nIknqb4YEDYy1tbVY+0nSoDMkaGDs7u7G2k+SBp0hQQNjZGQk1n6SNOgMCRoYExMT99VvcnKyw5VI\n0mAwJGhgzM/Pk0wm2+qTTCaZm5uLqCJJ6m+GBA2MVCpFJpNpq08mkyGVSkVTkCT1OUOCBkq5XCad\nTp+qbTqdZmlpKeKKJKl/GRI0UBKJBJVKhXw+f+Shh2QyST6fZ2VlhfHx8ZgrlKT+YUjQwEkkEiwv\nL7O6usrMzMy9PQvpdJqZmRlWV1dZXl42IEjSCbzBkwZWKpXi+vXrVKtVcrkcN27cIJvNdrssSeob\nUe9J+EFgE/g68OvAcxGPJ0mSOiTKkPBR4CeBReBZ4BZwEzgf4ZiSJKlDogwJPwL8K+A68DvA3wO+\nBHwywjElSVKHRBUSHgGywC8fev2XgamIxpQkSR0U1cLFx4GHgOah178CtHdJPOk+lEolSqUSADs7\nO1y8eJErV64wOjoKQLFYpFgsdrNESep5nt2ggWQIOJ3DYWp7e5sLFy4YpiQBcCai7T4CvAl8P/Af\n9r3+U8D7gb90qH0WWH/++ecZGxs78Ia/pKR43D1VdH193VNFpR61P9jfdefOHW7dugWQA6qdHC+q\nPQl/DKwDH+JgSPgg8JmjOl29etVfTpIkHSH0wfluwI9ClGc3/ATwA8AM8DSt0yH/PPBzEY4pqU1b\nW1vMzs4yPT0NwPT0NLOzs2xtbXW3MEldF+WahBvAY8A8cA74b8Bfo3UapKQuazabFAoFarUajUbj\n3uv1ep16vc7NmzfJZDKUy2USiUQXK5XULVEvXPzZvYekHtJsNpmammJjY+PINo1Gg0ajwaVLl6hU\nKgYFaQh5gydpCBUKhWMDwn71ep1CoRBxRZJ6kSFBGjKbm5vUarW2+tRqNdcoSEPIkCANmcXFxQNr\nEE6j0WiwsLAQUUWSepUhQRoya2trsfaT1L8MCdKQ2d3djbWfpP5lSJCGzMjISKz9JPUvQ4I0ZCYm\nJu6r3+TkZIcrkdTrDAnSkJmfnyeZbO9mrMlkkrm5uYgqktSrDAnSkEmlUmQymbb6ZDIZUqlUNAVJ\n6lmGBGkIlctl0un0qdqm02mWlpYirkhSLzIkSEMokUhQqVTI5/NHHnpIJpPk83lWVlYYHx+PuUJJ\nvcCQIA2pRCLB8vIyq6urzMzM3NuzkE6nmZmZYXV1leXlZQOCNMSivsGTpB6XSqW4fv36vXvS37hx\ng2w22+2yJPUA9yRIkqQgQ4IkSQrycIM0xEqlEqVSCYCdnR0uXrzIlStXGB0dBaBYLFIsFrtZoqQu\nMiRIQ8wQIOk4Hm6QJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAk\nSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElB\nhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUFFVI+EfACvA14A8iGkOSJEUoqpAwAiwB/yKi7UuS\npIg9HNF2X977+vGIti9JkiLmmgRJkhQU1Z4ESeq4UqlEqVQCYGdnh+3tbS5cuMDo6CgAxWKRYrHY\nzRKlgdJOSHgZmD+hzXcC1fuuRpKOsT8EVKtVcrkcpVKJbDbb5cqkwdROSPhp4N+e0Gb7AWrh8uXL\njI2NHXjNTwaSJLXs35t21507dyIbr52Q8NW9R2SuXr3qJwJJko4Q+uB8d69aFKJak/AU8O69rw8B\n3wGcAb4IvBnRmJIkqYOiOrthgdbahJeBs8AXgHUgmqgjaWhsbW0xOzvL9PQ0ANPT08zOzrK1tdXd\nwqQBFNWehI/jNRIkdVCz2aRQKFCr1Wg0Gvder9fr1Ot1bt68SSaToVwuk0gkulipNDg8BVJSz2s2\nm0xNTbGxsXFkm0ajQaPR4NKlS1QqFYOC1AFeTElSzysUCscGhP3q9TqFQiHiiqThYEiQ1NM2Nzep\n1Wpt9anVaq5RkDrAkCCppy0uLh5Yg3AajUaDhYWFiCqShochQVJPW1tbi7WfpG8yJEjqabu7u7H2\nk/RNhgRJPW1kZCTWfpK+yZAgqadNTEzcV7/JyckOVyINH0OCpJ42Pz9PMplsq08ymWRubi6iiqTh\nYUiQ1NNSqRSZTKatPplMhlQqFU1B0hAxJEjqeeVymXQ6faq26XSapaWliCuShoMhQVLPSyQSVCoV\n8vn8kYcekskk+XyelZUVxsfHY65QGkzeu0FSX0gkEiwvL7O1tcXCwgKf//znqdfrpNNpXnjhBebn\n5yM7xFAqlSiVSgDs7Oywvb3NhQsXGB0dBaBYLFIsFiMZW+qmM90uYE8WWF9fXyebzXa7Fkl9oFqt\nksvliPv3RrfGlY5yd04COaDayW17uEGSJAUZEiTpFLa2tpidnWV6ehqA6elpZmdnvZGUBpprEiTp\nGM1mk0KhQK1WO3CjqXq9Tr1e5+bNm2QyGcrlMolEoouVSp1nSJDUNw4vILx48SJXrlyJbAFhs9lk\namqKjY2NI9s0Gg0ajQaXLl2iUqkYFDRQDAmS+kbcZxEUCoVjA8J+9XqdQqHA8vJyxFVJ8XFNgiQF\nbG5uUqvV2upTq9Vco6CBYkiQpIDFxcUDaxBOo9FosLCwEFFFUvwMCZIUsLa2Fms/qRcZEiQpYHd3\nN9Z+Ui8yJEhSwMjISKz9pF5kSJCkgImJifvqNzk52eFKpO4xJEhSwPz8/JF3nDxKMplkbm4uooqk\n+BkSJCkglUqRyWTa6pPJZCK7E6XUDYYESTpCuVwmnU6fqm06nWZpaSniiqR4GRIk6QiJRIJKpUI+\nnz/y0EMymSSfz7OyssL4+HjMFUrRMiRI0jESiQTLy8usrq4yMzNzb89COp1mZmaG1dVVlpeXDQga\nSN67QZJOIZVKcf36darVKrlcjhs3bpDNZrtdlhQp9yRIkqQg9yRI0gnivkW11CsMCZJ0AkOAhpWH\nGyRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUlBUISEF/DywAXwN+J/Ay8BIRONJ\nkqQOi+piSu8FzgAv0QoI7wP+JXAW+NGIxpQkSR0UVUj4pb3HXVvAPwM+iSFBkqS+EOeahDHgqzGO\nJ0mSHkBc925IAz8M/EhM40lSXzt8U6nt7W0uXLjgTaUUq3b3JLwMvHXC4/AN1p8AfhG4AVx/gFol\naWgUi0VeeeUVHn/8cTY2Nnj99dfZ2Njg8ccf55VXXjEgKBZn2mz/2N7jONvAN/aePwEsA6vAx4/p\nkwXWn3/+ecbGxg68YVqWNGyazSaFQoFarUaj0fhT7yeTSTKZDOVymUQi0YUK1S379zDddefOHW7d\nugWQA6qdHK/dkNCOJ2kFhDXgY8Dbx7TNAuvr6+tks4d3REjS8Gg2m0xNTbGxsXFi23Q6TaVSMSgM\nuWq1Si6XgwhCQlQLF58EPkdrr8KPAgkgufeQJB2hUCicKiAA1Ot1CoVCxBVpmEW1cPGDtBYrvgf4\n3X2vvw08FNGYktTXNjc3qdVqbfWp1WpsbW2RSqWiKUpDLao9CZ/a2/ZDe1/fse97SVLA4uJicA3C\ncRqNBgsLCxFVpGHnvRskqUesra3F2k86iSFBknrE7u5urP2kkxgSJKlHjIzc3z3w7refdBJDgiT1\niImJifvqNzk52eFKpBZDgiT1iPn5eZLJ9s4UTyaTzM3NRVSRhp0hQZJ6RCqVIpPJtNUnk8l4+qMi\nY0iQpB5SLpdJp9OnaptOp1laWoq4Ig0zQ4Ik9ZBEIkGlUiGfzx956CGZTJLP51lZWWF8fDzmCjVM\nDAmS1GMSiQTLy8usrq4yMzNzb89COp1mZmaG1dVVlpeXDQiKXFSXZZYkPaBUKsX169fv3cDnxo0b\n3gRPsTIkSFIP2n9L4J2dHS5evMiVK1cYHR0FoFgsUiwWu1mihoAhQZJ6kCFAvcA1CZIkKciQIEm6\np1Qq8eKLL/LUU0/x6KOP8sgjj/Doo4/y1FNP8eKLL947BKLh4OEGSRIAzWaTa9euUavVDtyyend3\nlzfffJPd3V2uXbvGBz7wARKJRBcrVVwMCZIkms0mU1NTbGxsHNmm0WjQaDS4dOkSlUrFoDAEPNwg\nSaJQKBwbEPar1+sUCoWIK1IvMCRI0pDb3NykVqu11adWq7G1tRVNQeoZhgRJGnKLi4sH1iCcRqPR\nYGFhIaKK1CsMCZI05NbW1mLtp/5hSJCkIbe7uxtrP/UPQ4IkDbmRkZFY+6l/GBIkachNTEzcV7/J\nyckOV6JeY0iQpCE3Pz9PMplsq08ymWRubi6iitQrDAmSNORSqRSZTKatPplMhlQqFU1B6hmGBEkS\n5XKZdDp9qrbpdJqlpaWIK1IvMCRIkkgkElQqFfL5/JGHHpLJJPl8npWVFcbHx2OuUN1gSJAkAa2g\n8NJLL/HMM89w/vx5zp49y8jICGfPnuX8+fM888wzvPTSSwaEIeINniRJ9xSLRYrFYrfLUI9wT4Ik\nSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkK\niiokvApsA18HbgP/BjgX0ViSJCkCUYWEXwH+BnAR+D4gDfxCRGNJkqQIRHUXyKv7nn8J+DHgM8BD\nwJ9ENKYkSeqgONYkvBv4m8AyBgRJkvpGlCHhx4A/An4P+HbgoxGOJUmSOqydkPAy8NYJj+y+9j8O\nPAt8CPgG8O+BMw9csSRJikU7f7Qf23scZ5tWIDjsSVprE54DVgLvZ4H1559/nrGxsQNvFItFisVi\nG2VKkjSYSqUSpVLpwGt37tzh1q1bADmg2snx4vpkf55WgPgu4Fbg/Sywvr6+TjabDbwtSZJCqtUq\nuVwOIggJUZzdMLn3+M/AHwDvARaALwKrEYwnSZIiEMXCxa8Bfx34T0AN+Hngt2jtRfh/EYwnSZIi\nEMWehN8G/nIE25UkSTHy3g2SJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ\nkoIMCZIkKciQIEmSggwJkiQpKIp7N0iSdGqlUolSqQTAzs4O29vbXLhwgdHRUQCKxSLFYrGbJQ4t\nQ4Ikqav2h4BqtUoul6NUKpHNZrtcmTzcIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ6rqtrS1mZ2eZ\nnp4GYHp6mtnZWba2trpb2JDz7AZJUtc0m00KhQK1Wo1Go3Hv9Xq9Tr1e5+bNm2QyGcrlMolEoouV\nDidDgiSpK5rNJlNTU2xsbBzZptFo0Gg0uHTpEpVKxaAQMw83SJK6olAoHBsQ9qvX6xQKhYgr0mGG\nBElS7DY3N6nVam31qdVqrlGImSFBkhS7xcXFA2sQTqPRaLCwsBBRRQoxJEiSYre2thZrP90fQ4Ik\nKXa7u7ux9tP9MSRIkmI3MjISaz/dH0OCJCl2ExMT99VvcnKyw5XoOIYESVLs5ufnSSaTbfVJJpPM\nzc1FVJFCDAmSpNilUikymUxbfTKZDKlUKpqCFGRIkCR1RblcJp1On6ptOp1maWkp4op0mCFBktQV\niUSCSqVCPp8/8tBDMpkkn8+zsrLC+Ph4zBXKkCBJ6ppEIsHy8jKrq6vMzMzc27OQTqeZmZlhdXWV\n5eVlA0KXeIMnSVLXpVIprl+/TrVaJZfLcePGDbLZbLfLGnruSZAkSUGGBEmSFGRIkCRJQYYESZIU\n5MJFSVJXlUolSqUSADs7O1y8eJErV64wOjoKQLFYpFgsdrPEoWVIkCR1lSGgd3m4QZIkBRkSJElS\nUNQh4Z3AbwBvAe+PeCzpVO4e+5Si5lxTv4s6JPw48OWIx5Da4i9uxcW5pn4XZUj4q8CLwD+IcAxJ\nkhSRqEJCArgG/C3g6xGN0RPi/qTQyfEeZFvt9m2n/WnantRmED/BOdc63965FuZc63z7fp1rUYSE\nM8CngJ8FqhFsv6f4n6nz7fv1P1PUnGudb+9cC3Oudb59v861dq6T8DIwf0KbCeAS8CjwTw+9d+ak\nAV577bU2yukNd+7coVqNLwt1crwH2Va7fdtpf5q2J7U57v24/806xbnW+fbOtTDnWufbRznXovzb\neeIf7n0e23scZxsoA98DvL3v9YeAPwE+DcwE+p0D1oAn26hHkiS1fJnWB/U3OrnRdkLCaZ0HvmXf\n908CvwR8H/BrwO0j+p3be0iSpPa8QYcDQlxSeJ0ESZL6TlxXXHz75CaSJEmSJEmSJEmSJEmx+xbg\nvwJfAH4b+OHulqMBdh74HPDfgd8Evr+r1WjQfQb4feDfdbsQDazvBmrA68Df6XItkXkHMLr3/M8A\nG8C3da8cDbAk3zwT59uAL9Gac1IUvovWL3FDgqLwMPA7tC4v8CitoPDudjYQ19kND+otYGfv+buA\n3X3fS53UAH5r7/n/pvUpr63/VFIbfhX4o24XoYE1SWuv6Bu05tl/BD7Uzgb6JSQA/Flau3//F/BT\nwP/tbjkaAt9J64Jj3u5cUj96goO/v36XNq9s3E8h4f8A3wF8O/BDwF/objkacI8B/xp4qduFSNJ9\neuBrFEUVEl4APksrwbwFfCTQ5geBTVq3kv514Ll97/1dWosUq8DIoX5fobWw7NmOVqx+FcVceyfw\nC8A/Af5LJFWrH0X1e82LzekoDzrnbnNwz8F5emTP6F8BFoDvpfWDffjQ+x8FvgHMAu8FfpLW4YPz\nR2xvHPjWveffSuuY8Xs7W7L6VKfn2hmgBPzjKIpVX+v0XLsrjwsXFfagc+5hWosVn6B1luDrwJ+L\nvOo2hX6wXwN+5tBr/4PWJ7eQLK0E/ht7j9CdJKVOzLXnaN2xtEprzn0BeKaDNWowdGKuQevmd18B\n3qR1Jk2uUwVq4NzvnPseWmc4fBH4gciqewCHf7BHaJ2dcHi3yVVahxGk++VcU1yca4pbV+ZcNxYu\nPg48BDQPvf4VWueoS53iXFNcnGuKWyxzrp/ObpAkSTHqRkj4PVrHfBOHXk/QuuCD1CnONcXFuaa4\nxTLnuhES/hhY509f9emDwEr85WiAOdcUF+ea4tbXc+4sresYPEtrscXlved3T8uYpnXaxgzwNK3T\nNv6Qk08Vkg5zrikuzjXFbWDnXJ7WD/QWrd0hd59f39fmk7QuALEDrHHwAhDSaeVxrikeeZxrilce\n55wkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVIf+P9cYZ1EAfTlhQAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-4,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"black\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xt4XPV97/v3WDdbkuUb8gXJ2I5sOcgxwTYVsg2BVL7g\nZJcAxQkDJJEPKUpKyaal284+3XQ7fXqe06O2NBuSbuy9va1QwiRgWuKGxDZKapCNwcGOwZWohYVs\nJGEj+W7drNucP5bWaEaa29Ksuerzeh49YM3MWmtGM7O+6/f7/r5fEBERERERERERERERERERERER\nERERERERERERERERERERERERERERERERERERGbNTwKCfnx/G8ZhEREQkgc0AZnr9lGMED1+I50GJ\niIhI8vgB0BDvgxAREZHkkAmcA74X7wMRERER+6RHcdv3AFOA6iD3mTP0IyIiItacGfqJOUcUt70X\n6AG+EuD2Oddff/0nn3zySRQPQUREJGW1Ar9HHAKIaI08zMNIlrw3yH3mfPLJJ7zwwgvceOONUToM\nGemJJ57gBz/4QbwPY1zRax57es1jT695bH3wwQc8/PDDBRij9ykTPGwCPgVeC3XHG2+8keXLl0fp\nMGSkqVOn6vWOMb3msafXPPb0mo8vE6K0zU3AjzGWaYqIiEgKiUbwsAYoBP5PFLYtIiIicRaNaYt9\nQFoUtisiIiIJIBojD5LAnE5nvA9h3NFrHnt6zWNPr/n4Es2lmqEsB44cOXJESTYiIiIWHD16lBUr\nVgCsAI7Gev8aeRARERFLFDyIiIiIJQoeRERExBIFDyIiImKJggcRERGxRMGDiIiIWKLgQURERCxR\n8CAiIiKWKHgQERERSxQ8iIiIiCUKHkRERMQSBQ8iIiJiiYIHERERsUTBg4iIiFii4EFEREQsSY/3\nAYiIpBLXcReuf3fReqWVj698THdfN1npWVzrv8akjEnckHcDBXkFOD/nxLnUGe/DFRkTBQ8iIjZy\nLnWyZvYaNm/dzLlD5zh35hzXuEZ/ej/XzbqOm269iaqtVeTn58f7UEXGTMGDiIiN2traWLVhFY2f\nbYSLwJehv7AfHHB68DTVrdXU3lXLoT2HFEBI0lLOg4iIjbZ8fwuNyxrhFFAOzAUcQzdOMP7duKyR\nzVs3x+sQRSKm4EFExEaHjx2GQqAd47/+FAzdTyRJKXgQEbFRP8YUhefHnwlD9xNJUgoeRERslE46\nuBn+8Wdw6H4iSUrBg4iIjUpvLoUWIB/jv/60Dt1PJEkpeBARsVHV1iqKflcE84FfA83A4NCNg8a/\ni35XRNXWqngdokjEFDyIiNgoPz+fQ3sOUTG1ghum3QCvQfr2dPjfMO+1eVRkVWiZpiQ9TbqJiNjI\nU2Hypla65neR05fjqTDZmdHJ+3nv80jNI6owKUlNwYOIiI2cSxUUSOrTtIWIiIhYouBBRERELFHw\nICISRa7jLtZvW8/cDXPJXZJLZkkmuUtymbthLuu3rcd13BXvQxSxTDkPIiI2MZMlAXr6ezh9+TRz\nHHP47TO/pev2LrgVcEDfYB+drZ1kbc9izX1r4nvQImOgkQcREZs4lzrZsWYHMw7M4OQPT9LwbANH\nqo4YgYMaZEkK0ciDiIhNPO24lzXCBsABHS90BG+QVaMGWZJ8FDyIiNjE0457rtcvJ6AGWZJyNG0h\nImITTztub2qQJSlIwYOIiE087bi9qUGWpCAFDyIiNvG04/a2GqNB1seoQZakDAUPIiI28bTj9pYD\nbASOQO6Pc+FFWLBngRpkSVJT8CAiYhNPO+6RbbgvQHZ3Niv+ywqKHy9m4Z8s5Pxt53mk5hEViZKk\nFI1MnQLg/wPuAiYBDcAjwNEo7EtEJGHUnK2h6NEirr16jYuHLtLr7iXTkcm0G6ZR8mclVKyqUNMs\nSQl2Bw/TgIMYM3x3AW1AEXDJ5v2IiCQcT0fNyngfiUh02R08bAFOY4w0mD62eR8iIiISR3bnPNwN\nHAFeBj7FmKr4ls37EBERkTiyO3j4DPAd4ASwDvifwDPAN2zej4iIiMSJ3dMWE4DDwH8b+vd7wOeA\nbwPP+3vAE088wdSpU31+53Q6cTqVVCQiIuJyuXC5fFflXLoU31TCQBXXx+oUsA941Ot33wH+gtFF\nW5cDR44cOcLy5cttPgwRkcTir133vCnzmJg+EQDn55xaiSFhO3r0KCtWrABYQRxWM9o98nAQ+OyI\n3xVjBBUiIuOWc6mTNbPXsHnrZt549w2aLjXRN7WPO265g6qtVSoWJUnF7uDhH4C3gP+KkTRZCvzR\n0I+IyLjlr11302ATTa1N1N5Vq2qTklTsTph8F7gXcALHMaYr/jOgEmoiMq75tOs2J4wnAHOhcVkj\nm7dujuPRiVgTjQqTrw39iIjIkMPHDsPaADcWwOGawzE9HpFIqLeFiEgM+G3XbZowdLtIklDwICIS\nA37bdZsGh24XSRIKHkREYsBvu25T69DtIklCwYOISAwEbNfdDJPenMQnN33C3a671aJbkoKCBxGR\nGMjPz+fQnkNUZFVww7/eAM9B+vZ02Asz82Zy/fvXs2PNDhWKkqSgSTYRkRgwK0xeW3qN9tfb4cvQ\nX2gkUZ4ePE11a7XqPUjS0MiDiEgMOJc62e3czfXHr6f7C92q9yBJTSMPIhFQvwKxSvUeJBUoeBCJ\ngPoViFWq9yCpQMGDSATUr0Cs8tR78BdAqN6DJAnlPIhEQP0KxCrVe5BUoOBBJAKHjx2GwgA3Fgzd\nLuIlWL2Hot8VUbW1Ko5HJxIeBQ8iEdD8tYCROLt+23rmbphL7pJcMksyyV2Sy9wNc1m/bb1P4aea\nszUUPVpEYWshObtyyPhZBjm7cihsLaTo0SJqztbE8ZmIhEeTayIR0Py1AJTPKuep7U/RsqwFbgUc\n0DfYR2drJ1nbs1hz3xrPfZ1LjRU4rlUuqt+qpv7Vei5+fJFPT3/KxWcuUv9qPdX3VFOxqkIrdSRh\naeRBJAKavxYYW+5L+axyGrc30lLQQufGTvq+1kfn/Z20FLTQuL2RNbPXjHqMSKJQ8CASAc1fC4wt\n90XJtpLMFDyIRMCcv55+ajoTXpgAz2H87IWmK0181vnZUXPekjpcx13c7bqb01dOW859UbKtJDNN\nyIpY4DruO0/d6+4l05FJ3qw8siZk0f3lbuOE4IDBwUEutF4whqDv0xB0KjKLhC36i0WWc1+UbCvJ\nTCMPIhYEmqc+c+EM3XeoX8F409bWxsq7VnI577Ll3BdPsq0/SraVBKfgQSRMruMubn7wZv/z1F1o\nCHoc8uQtrAN+zejcl48D576ESra9kndF012SsBTaioSpfFY55+rOwW1+bnSgIehxyNPkygFsBA4C\nbw79exCm9E3h0G/9lyiv2lpF7V21NHY3QhNwbuhxvZDbn8u+ffu48cYbY/dkRCzQyINImLZ8fwt9\n2X3+gwQ3GoIeh3zyFnIwRiAeAh4EHob+yf08UvOI3xGE/Px8dv/TbibXToaSocc8CHwDOtZ38AcP\n/wHt7e0xeiYi1ih4EAnT4WOHIQ3/QUI+qvcwDoXKW5iXN4/dzt1+iz25jrtY/+R6rq67qlwZSToK\nHkTC1E9/4CBhNbAX+BjVe/BipWxzMoqkSJhzqZO8K3nKlZGkpOBBJEzppMMq/CfGnYf0a+k8wAMs\n2LMAXoQFexZQkVUxrttyp3oVxUiLhGm5piQrTcSKhKn05lLqL9aPToxzA9mQVpRGQ2kDC+9cSMbl\nDOZNmcf59PM8UvMIzs85x2WfAp8qiiZzWB5jWH7nj3bG6/DGzKz38e7L73Lp0iV4DSNoyIQJEycw\ndd5UT5MrZ37gv7t6o0iy0jtTJEye7PhljbAG4yQ4CLQaV5mHdo/fEYZAPKsR/CmAwzXJOSxvNsK6\nsOyCsfpmaHUFrbDgdws45ArvvVB6cyn1LfW+wZVJuTKSwDRtIRKm/Px8Du05REVWRcCpiVSf47cq\nVYfl7epLod4okqw08iASJtdxF65/d8FtkPO5HHIu5nA14yq/4Be8/L9e5jPTPsMcxxwO/MMBum7v\nCtmaeTxI1WF5u0ZUzN4o1169xsVDw+XOp90wLaxpD5F4Sc5PrkgcOJf65i20t7ezeetm3nj3Dc5d\nOkfH1A4+6vvICBxSbI5/rFJ1WN6uERXPe6rSvmMTiQUFDyJj0NbWxqoNq4yh6w2AA5oGm+B5gi+9\nS9I5/rHy5InQCAWMyhOp2pOcw/KpOqIiEi7lPIiMQcA570xSco5/rMLJE0lGkdR3EEkFCo9FxiDg\nnLdZplpXpIBvnsjCstRZwpqqIyoi4Rpf32QiNgk4521WoEyxOf6xGpknkiqU6CjjnYIHkTEIOOe9\nGngZ+H1gGnAIaAMGwdHhYO/Svazftp6KVRUpeVIdL5ToKOOdggeRMQi4iiAHWAWTfjOJno4e3F9x\ne1o2uwfdnGk9Q/b27JRfsumZrgB6+ns4ffk086bMY2L6RICkna6IFrNiZf2r9Vz82Hcko+SeEgWb\nknACpXbFwnLgyJEjR1i+fHkcD0PEuvb2dlbetdJImvQz5/17N/8eP3X81P/0RTNUZFUk1JLNaJzs\nvZeyNl1qYsHUBdxxyx1Uba1K2kTJaPFZvVOIT8XKot8VJXVyqUTH0aNHWbFiBcAK4Gis96+RB5Ex\nCDXnXbu9Fv4gwIMTcMmmc6mTNbPX+Jzs+6b2jflkH2gpa1NrE7V31epkOEKq9gCR1KXgQWQMQs15\nL35+cVIt2bT7ZK+ToTWp2gNEUpfqPIhEgSeh0p8EWrJp9uJYsHqBLb0aTIePHQ5eLOuYTobeUrUH\niKQuu4OHrRgzdd4/n9i8D5GElyxFhMpnldO4vZGu/i7fk30nsA/4CVALP37lx5aae406GXpv76fw\nQeMH47ZZmD/JEmyKmKLxjvx3jIbFpoEo7EMkoSVLESHP9EItwyf7DmAXUI7PSpGW1pawm3v5LGW1\nYXuJIlqrSFK1B4ikrmhMWwxgrGw3f85HYR8iCc1MqCxsLSRnVw4ZP8sgZ1cOha2FniJCicAzvWBW\nxuzEqFNRTkRTGD4jL29Fvr1E4VzqZMeaHcw4MIOTPzxJw7MNnPzhSWYcmMGONTvGvJxSrbkl2URj\n5GER0ApcA94B/m+gKQr7EUlYiVpEyKwn8O7L73K5+TIDVweME3o+8CHGid5BxM29fEZe2kiZZMBo\nrSJRxUpJNnYHD28DXwcagNnAf8P4OloCXLB5XyJiUfmscp7a/hQXll2AZRg5CG6MypjVwN34TmGM\nFGbynvfJsLWzFbcjwIR+BMmA8SisFK1VJIkabIoEYnfwsMfr/+swivM2At8E/sHmfYkktESsGug5\n+U3DyEOYyXAvjjx8pzAiaO7lfTJcsnoJ9e56Y3udwEGgHU8hpI86P7JUstt8XY//7Dhnj581qnje\namyvb7CPztbOqOVSaEmliCHaKbxdwHFgYaA7PPHEE0ydOtXnd06nE6dTQ3SS3Myr/JZlLTE7uYXi\nOfm9jpGHMJ3hHIc0hqcwbGzu5UkGNAMWr8RJBqG/tZ/G7Y1hvx7m63pm4Ax8hZjWktCSSokHl8uF\ny+W7KunSpUtxOhpDtMtTZ2GMPDwH/PWI21SeWlLapsc2UX2tOqFKVC9evZiGdQ3GdMWD+I4GnAS+\ngxHymwGF90qRFig6Zr1UsqeU90Aj3ELEr4fndX3T6zmMNAglNSXUHawL+zjDsWT1EurX1sd0nyL+\nxLs8td2rLf4O+AKwAONaaxeQC/zY5v2IJLxELJTks4TSPAHmAOswxgdbhv69EfgAcAEvAs9D9pvZ\nY1opYuY/pJ9PN14P75oPLw79tx5e/vXLYdV88Lyu3s9hpCiNAiRL/Q6RaLN72qIA4+vmOoxZzUNA\nGcYCJJFxJdGGuF3HXVycdNE4+fnLa/BuJ16IEVDY0JzJzH9Y/PxiGjob/E5d0Aq9v+hlzezQUxee\n19WG3AyrkqV+h0i02T3y4MT4SGVhfP1sBP7D5n2IJIVEqxpYPqucrLYs2AtMYvQVtDnicATSd6Tb\nXpsinXRjeiRAzYe+L/eFVfPB87qauRn+RGkUIFnqd4hEm2qepqBEzPIfjxKtauCW72/hVOkpI0ly\nP/BzjKWZhQxfQV+AorQiDv3O/q6XpTeXUv/LemNEw5/C8FYreF5Xc6QkQG5GNEYBtKRSxBDthMlg\nlDAZJT6FbMy5YRuGn8UaT6LgMv9D3LH+O4xK9huxbNJx2UHBsoKoBZjt7e0ULCug74/6At6neF8x\nJw6eCLkdz+s6FWNytA0YhAkdE7hu8XWkZaZx5cwVegZ7cPe6jZGKNHCkO5g4YaLlQFoBuSSaeCdM\nauQhBYUqZPP5Bz5PWmaavgSjLNGqBo7KwTATJYcs2reIE78KfuKORM3ZGjLzMulz90WUp2C+rhdf\nvsjl5ssMOgZxTHAwYfYEcm/N5dLPL9F7Ry/chhEgmTkWQ4F052Cn5eWyibjsViSeNPKQgoIuJ7sK\nGS9k0Pef+ox192/huWpzdDiYvXQ2SzcuVRCRghJhmWG0l6+O2v4+4EbsWx6aQMtuTRoVGZ/iPfIQ\njcZYEmdBs/zfZDhw2IXxxfoQ8A1wf9vNmflnjII9YWS9S3JJhGWG4TaAch13sX7beuZumEvuklwy\nSzLJXZIbso33qOWx7diyXDYRl92azLbqLQUtdH6pk75pfXT2dtLS0MLrf/k6T/7pk2p9LrZT8JCC\nAmb5dwCnML4EU6jToYQnETo3hrtaweeEuLGTvq/10Xl/Jy0FLUGD21GBsw21IFzHXZy6dCqhlt16\nG1VyXBcEEgPKeUhBAbP83wImY3wJtqMa/eNMfn4+h/YcYvPWzbyx5w2aLjWxYOoC7rjlDqr2VMUk\neTPc1QpjbUDlUwQLLNWCCDT8nzcrj+727pjXlAjXqJLjMSzXHQ+apkkMGnlIQQGvMD/B6F8wssLg\nSKrRn5Jcx108UvMI5287z8I/WUjx48Us/JOFnL/tPI/UPJJQw9pWpgm8pzgamhp8p2Ys1IIINNpx\n5sIZ3Ne7A2+nJb6VJT2jLTZN0SS6sY5Kib008pCCAmX59wz2MJA/ELjCoGkQOns6Wb9tvaJ7GyTK\nlZLnqj8JWKnO6bMS4nMYQ/dmlcyRVTODVIQMONrRhdGAy1y1MaKmRMZrGVQdj19lSb8lx0dKoQuC\naLVFF2sUPKSgQEPDS1YvoX5VvfElOIWgnRNvu+k23t3+rpam2UDL/KzznBC78G3h7Qaug9YLrbiO\nu3AudY4+mWwcekwtMABpPWlkvZmFO91N92B3wKmagO22HRgdesztvul1LPmQMS0j5stuvXmmKeNQ\nrjse1BY9MWjaYhwpvbkULmJ8CWZiVBj8GL/Jc44JjuEvZCVURsTn5JZkr+VYVz1EqvTmUvgQY9Tg\nRozumQ9iFMAvgQldEzzD054pDrPh1qvAOaAfGICBgQG60rq4NniN9JnpXL7rMu/f9P6oqZqAox3m\nSdmsi/HQ0LE8BKyB+dPnx3VExzNNmU3cV9PEQqL1jBmvUiMUlZDa29vp6e4h45cZ9H25DzYA3cAB\n4DdAD2RPzWb6/OkUPVpE7fZa+IMAG1N0b0kyXylFa9Qk1FTOfV+9j10P76JjfYff4emr6656hqf7\n6fctBrWW4X+vwVMcanBwkMHWQab9Yhp79uwZlSA6KtnSZOZNJEiZ8ZHMacqul7o4+/OzuO92h5yi\nSWYB/06QUiMsiU4jDymuvb2dlfeuZFbJLH464af0fb3PaFX2IvAKcBKm3jCVdVvX8b9f+t80/6qZ\nvZV7yZmYo+jeJsl6peQ67uLmB2+OyqhJqKQ3APdkd1gJgH4bbo1hKXLAOhirMZqJBRils3OJ61hG\nepxLneyt3Mvf/+DvWfvXayn8JLWbdiVCvRLRyENKe27/czxZ+SRdk7qMhC/zysm7MVEz3JN1D+tW\nraP6rWo2b97MxY8v0nmuc7hl8kiK7i1J1iul8lnlnKs7Z5R59ieCUZNQSW9vv/Q2BdMKaHA0+N+A\nV9Dlt+HWGJYi+7TbHtEzg26Y8OsJkOHbH8PuMuORjPSMl6ZdaoueGDTykMLeefkdum7vMpLOQlzB\njbwSZCHjLrqP1vx+sl4pbfn+FvqyvfpQmDkFP8EYufonqD9RT9qiNNJvTLf0WgVdijkVXviXF/iw\n8cOwWppXba0ioy8j4uJQ5vD/nI/m4Pixw6fYEo/B4JpBFuQt4MybZ+io6/CM0tmZ75DM+TGxorbo\niSExL3lkTEbOI3ee64TvENYX6agrwUDtjlM4uh+15O8t6Gvro7Ohk9a/bOX40uNUb6y2vLQy3ldK\nY10qevjY4eG6IIFyCu6BwcLB4YZTJzs5s/UMB6Ye4JuObwbcT8CpnA7gFej/Uj/UE1augd+GW2NY\neWBeuW96fxPVn6mOy1LAZM6PiZXxMsKS6DTykEJGjR5MZXhJWYgruFFXgjkYqzI+wLjK3EbKR/fR\nKvMb7yuliEo9m8mCI3MI/OUUdBm/H/jyAF1f6wq6n4Al1L23exvwa0KW03YudbLxixvHXBxqpHj2\nsYhFfky8VtAk2jFIZDTykEJGjR6YQUMY2eJvHXtr9JeWV8vm4n3FnDgYvXbNiSBaZX7jfaUUUann\nVRiBFPheEfvLKfA+8YfYT8AS6t7bNQNYr9oKjssOCpYVjMo1GDW6Y6E41EjxTHCNRX5MItQdSYRj\nkMgoeEgho4Y8zaAh0BRECxQdM75I77znzuEvrU58C/MMwkedH7F+2/qUrizpU+Y3hYaOxzoUXnpz\nKfUX640TuIvQOQUWXreAUzkDI7brFcACLNq3iBO/Gh3Ejqyq2jPYg3uCG/4NSDOSHNNJh6nQktXC\n3C/MZdAxSKYjk6w5WTiWOXD/zs21M9eGk4UDFKiK5uKYgEEV2JYf4zeY7AY+gMYLjcxaMYvsydlR\nrYCqKpHJT8FDChl1xeQdNPwhRvb4G8AgODoczF4623MF5/nSMofszbntoeChv7XfGHpO4SuCVC3z\nO9Yrac8JflkjTCR0wykLr1ugEurXeq/R7w5wvEGuvMMZ3Wlra2PVhlXG8xmq/dA32EfnyU7Sf5xO\n/939xlTJ6xgFqsyRFK/PAa3Q+Foj297YRuUd9g8l2ZEfMzLHpWewB3evG/egGzduuAr8idcDOvD5\nzLsdbiN/JYqjAMrtSH7KeUgR7e3tfHrmU995ZO+8hZ8DTZCTmUNhcSFr/2otf/8Pf+/JFvdUqfMe\nsh9n2d6eVRFh5Igkk4D5BRD0+XjnaqR3pg/nEHQCvYzOKbDwupm1CZp/1UxHXQe99b101HXw8N0P\nR21lSsCVDKcwAgfz96sJ+jkY+PIAb7/09piPIxg78mPKZ5Vz7IfHaJneQueUTga6Bhi8NIh71dAf\nZ4rXc+pk+AIjhp/5ZK19IsOS61tQ/PLUc8jrGp3bYA77NkNFVkXAoUDzS+v0X5+mvzDABzfFrwg8\nV33ZjQldUdCqsQ6Fe1/Nt7e3s/KulTR2NxpX5Ksxkhm9p8KuI+LXLdiV98x3ZnLqm6eYu2HumBqM\nBbzaHTndkgPkETxpMkqfAzvyY7Z8fwttN7UZf6dVwEngXoyLiHKM/BHvFTQOYv5ck7X2iQzTXygF\neOo5TCdkbkMg5pfW4ucXh1WYJxWlaplfO4bCzdfmzN+doau8ywgQCvBtFNUNjg8duL/ijng/I6cz\npt0wjaJvFFH/43rabm0bU5JdwKtdf9MtaX5+Z4rR5yCiJbZujO+BDzCCoUKMv9NahnOhzGCilpg/\nV5+AdmSOVS+cSj+V8jlWyU7BQwrwXFE5GN35bxDSO9Mp+u/hVcIbz1cEZgDlWuX1pf32iBOYzRUF\nYyHoCTnM52O+NkueX0J9Yb3xyxHJjAxC9s+ymdY6LeL9+Lvy3vTYJt649Y0xJ9kFfG/7y9+Ic4dK\n13EX2/Zs48DTBxj48sCoYOnKD67Qe7XXUxHW+7W+cOkC9DEcMGQyHCCZ0zIvD+1obXyeqyegNUey\nRuSWdLV2pXyOVbJL3TPBOOJzRTXyCx34zL7PsLdyb1jbikW2d6KL99JKu9n5fEZdvY+4auy63MU0\nprH6u6ttu2o0r8B/s/s38EiAO4UxvB7wve1vKXOcm2GVzyrn0WceNQIHP8HSleVXOPLMEa6uuzoq\nsMg4lmFMu5jBgnvEj5kLZa6gicNz9TuSNeI5atVFYlPCZAoYa0KcP57EyRCFeWR88nmvdTCqZba7\n0h2y+JS3cIoFmUWu+jMjS7LzeW9fxSi1/WOgAfhnfBtfrSRmzbD82fL9LXSkdwTORWgyOov6S3Ls\nm9VnJLSawYKZi+JdOCsHmDR0u5m/MvIz/3F0nmt7ezv7nttHy/Mt9Hf2WyrI1d7ezqbHNrFk9RIW\nr17MktVL2PTYJtrb2209RglNwUMKsLN3wshs77SfpjHhhQlM+M0Emq40MecLc1QJbhzzea+NoXPl\nSOFUv/SskjBLZfsTRpA8qnfF/KHtfQVjRMPsNvu88ZM5O5OsD7LIeikr5lVBDx87PDzd4M85Ap90\n14DjimM4YFiAERzMxzdIMIMJ71VZLjyvQfab2bY/1+f2P8f82+ZTfa2a+rX19E7uDTsgHPnYhnUN\n1K+pp/paNfNvm8+2N7bZdpwSmqYtUoCdvRNGDnH7Wxsf7TXgkrh83mttRLxWP5xiQZ6cngiH10f1\nrjATBgN0m30w68G4DZn30x88FyFYTY3JMHH6RHpf62XgiwPDqy6ahh7zGkYxLjdwAiN4KsR4/kPf\nG9m12Ty9/Wnba1l4krtHVsENI99i1GPB817pur2Lt196Oyq1N8Q/BQ8pwI6EuEBUCU68eb/XWjtb\ncTsCDAWEmaXvs3zST2XTFzpfIHNapm+in5/VRNkHsinbXhbWc/Ds01x94E+clyWnkx586as5LRHg\npDs9bzpL/nwJ7778LpcmXGLwN4PGa5UJE3InMHXeVG7ZeAv3ffY+3n7pbQ7XHKafftJJp/TmUqoO\nVJGfn2/78wpYBTeMgFCFpRKLgocUEM0EP31gxZv3e23J6iXUu+sjytL3JGCOqHLoXdnU8ZrDN9Fv\nxGqiKX0vgvj0AAAgAElEQVRT+PC3H4Z9svPsM4EriZbeXEr9pfrRtTSGgqX0jnT6W/oDnnTXlq1l\nZ+XOsL4TYnm1HrQKbohRUxWWSiwKHiSo8fKBHeua+vHMjpU5ngTMIE21+mb1DV+djlxN1Az3Zt1r\n6SrZs884L8cMpmprFb/8/V/StqrNaE1uBku9kNaTRuljpZx85SRttMWlzftYjVou6x0QvgF0Qs60\nHL+jpuN5GXki0qstQY2XD6y6/FlnR66NJwAJ1lRrDTh+7L/4VHZt+NMVo/YZ5+WYwdScreHmP7nZ\nCGYvX6Q3fSiY/YwRzBbPLSZ3Tq5xuw1TlbEKnv0GnGFWwdUy8sSSGt/8EjXj5QOr3A7r7Mi18QQg\nA41BEwAXLFjAF7K+YMvcfNlXy3jp0ZfouqXL/7TAGIMSO3lPD408sf/b//g3DjoO2npij1XwHEnA\naWdiuEROwYMENV4+sMrtsM6OXBufnipBumlOzJhoW/BWeUcl9x24j81bN/NW/lucrTlLT28PE7Mn\nMnvGbFbdsipqCYNjEYsTe6yC50gCzmgmhot1Ch4kqPHygR0vuR2Jxmf5ZEt1zEa48vPzk2Ykye+J\nvRv4ABovNDJrxSyyJ2dHNBIRq+A5koAz1Sq/JjsViZKgnEudVKyqoOSeEqbdMI1MRya97l4ufnyR\n+lfrqX6rOiUKRdlZpTNRhFO90S6RVv4r+2oZ2bXZfiubZtdmU/bV+E0hxNvhY4d9C0J5V/b8Jrgf\ncY8qrGWVgmexSsGDhBROFcBkZ2eVzkQRq7+bHZX/Ku+o5NSBU1RkVVBSU0LxvmJKakqoyKrg1IFT\n47r4z6gTuw2VPUdKxeBZokvBg4TkM2xq05dVoknFnh6x+rv5VP4bsR+z8l84zKmEuoN1nDh4grqD\ndez80c6EyT2IF58TeydGpUgL/SDC4Td47sTo//E8fND8QdzK0sdyBE3Cp3AyicVqedV4SCaMRW5H\nrP5ednWhDNd4eH/Ek2fF0zSMQlqTsH2KwbMC5fYumIpRc+EURunqteB2uKNelr69vd1Tjtx7Rc1/\neey/GCNoWkadUAK9BWNhOXDkyJEjLF++PI6Hkbz89Z3wXglxaM8hW67aFq9eTMO6hoC3F+8r5sTB\nExHvJ9XF6u/l2c+lRvhG4PvZ9XfT+8OXy+XC5TKuhnt6ejh9+jTz5s1j4sSJADidTpzO8IPE9vZ2\nVt610ljOegtGwagHCbgypaSmhLqDdZaPu729nbsfvZt3DryDu8Bt7MtfAmuIegxj8dz+53iy8kkj\neBnx2Uh7LW10a/IoHkuyOHr0KCtWrABYARyN9f41bZHEYjUsrflQe0Tr7zUyWbG4tNiWLpTh0vvD\nl9PpZMeOHcyYMYOTJ0/S0NDAyZMnmTFjBjt27LAUOMDwqFj6+XTjxOrdWnukCPJz8vPz+ez1nzWK\ncXVh+9RIMD5TX10Y0yUuoBYGBgZieiwSnmgGD9/DiB3/IYr7GNdGZWF7s/FDlYrJhPEQjb+Xv2TF\nyxmXo3qSGUnvD19tbW2sXLmS6upqmpqaAGhqaqK6upqCggLuvPNO7r77bu6++27PCEUwzqVO9lbu\n5TM3fGa4QZh3a22G/vtx5CtTPO9R774fZu7DTzDadbug4VSDrfkGnv16ryR5cOhnGloJkoCidUnw\ne8CjwPsEviaRCMVqedV4KRQVbdH4ewVsUxyiC2XRMfv+bnp/+NqyZQuNjY1+b+vr6+PIkSPcf//9\nVFVZK0TlGeGxqUGYP573qNn3o5OADcsatzfalm/g2a+/HicJ3INkPIvGyEMu8ALwLeBiFLYvQ2I1\nXGwOmxa2FpKzK4eMn2WQsyuHwtZCTzJhsoplJnc0/l5+RzPML1vzJPMBxhDwi8ZP+q/Sbf27pfL7\nYywOHw4+gtTR0UF1dTUrV64Muw4GjBjhMftBPIRxdX4H3Ptlaw3C/PG8R81RqygsCw2633aM97P3\naMdVNLKVgKIRsv0I+AXwG+Avo7B9GRKrvhOpXNktlg2xovH38jua4d3wyU8XyoezHjbaNdskld8f\nY9HfH94IUmNjI5s3b2bnzvD+Fj4rIqLUi8PzHjVHrSAmK2k8+3UwerSja+hYfh8jsBjnI1uJwu6R\nhweAm4H/OvRvTVlEkaryRS6WNSyiUUti1GhGJ9AH/Bz42L79SPg6OzvDvm+oUQpvsSik5XmPXgD+\nEOgnZlOjRb8rgl6M6Rjv0Q5zBO0/gOfBscMxrke2EoWdIw9zgf8BrMF4C4Bv2o1fTzzxBFOnTvX5\nndWlTOOVd4MfO7oNjkexrFFgVy0J73oRZ5vODo8ydDB8xXYHxpDzmxiBw1WYeuPUlOpHkqjWrl1L\ndXV1WPcNd5TCFO2eHCPfo529nTHJNzD3e+bvztB1pst3tAyGR9AG4caaG8e0FDWZeS//NV26dClO\nR2Ows87DPcA/AwNevzMXiw0AWfheI6nOg8RdstUocB13sW3PNg48fcBY+24WDvp9jNyGErQePs7q\n6+v5/Oc/H1ZgUFJSQl1d4p4INz22iepr1TF7T7W3t1OwrIC+P+oLeJ9E+0zGSyrVeagBPgd8fujn\nZuBdjOTJm9EUhiSgZKpR0N7ezs+f/jlv/s2bw0Vzchke0m1E6+ETwN/+7d+GPaJQWprYyX4+U6NX\nMZIYX8CYPvhXByfOnrCU9BlKzdkaMvMyk+YzOZ7ZGTx0APVeP3UYqS4Xhv4tknCSpUaBWc/hZ7/7\nGe48t2+QYA7pTkXr4RNAuHkMRUVFVFUldv6JmWdRdr4Mx48dRv2Fh4BvgPvbbg5NOxR287NwOJc6\n2fjFjUnxmRzvol1h0lw0JpKQkqUhlqeeQxeQif8gIdinTVdsMXPhwoWgt6elpVFRUcGhQ/aUI482\nn8qTETY/C0eyfCbHu2gHD18E/izK+xAZs2SpUeBT+c9fkNCJkaasK7a4mz59etDbb7jhBnbuTK5u\nobGqZgvJ85kc73QpkoQCdZ+r2qoVFlYlS40Cn8p/1zG8wgKGV1mYZYtHVpTUeviYKi0tpb4+8Ext\nT08Pd999N5A8K8tiVc0WkuczOd4peEgyPt3nvMrF1rfW89JtL/H09qdtWe89HiRTEOZT+W8+vkGC\ndxXAAnzLFvdCdno2RX+uJZqx8Pjjj/Ov//qvOBwO3O7Rc0h5eXm89957Cff+CsXz/uvCeH+14xPM\ntl5oxXXcFbSlfKxa0ktsqCV3Emlvb2fV+lWcXH4ybsvxkumEG0ywFsDZtdkJF4R5lsxNx6i2twpo\nAs4Bl4HvYHuLZrGura2NW2+9lVOnTo26LS0tjdLSUs6fPx9Ri+542PTYJqovVQ8HqiM+M5P3Tabx\nSGPQ74BYtaQfL1JpqaZEkZltf/Liybgtx/PXwbF+TT3V16ptzbiOBZ+GUlFOALPDqMp/pzCu/syq\nKlplkRC++93v+g0cwGgt/dvf/paGhgZ++9vfcvjwYQ4dOsSf/dmfsW7dOkudNmOtamsVuW/mBuxz\ncXXd1ZDVWGNZzVWiT8FDkvCc7AJl2kPUTxTJdsINJpYJYHbwSSL7VQ4ZFzPIycyhsLiQnBk5WmWR\nAFwuF6+88krQ+5j1Hy5dukRbWxtXr17l7NmzHDx4kMuXL7Njx46EHIWoOVuDe7I7os+M1c9cLJvW\niXUKHpKE54MXx+V4yXbCDSaWCWDhCPVFCbC3ci/Nv2qmo66D3vpeOuo6aP5Vs9bFJ4jy8nJL5abd\nbjfXrl0DoKurizfffNNyp81YcS51UjCtYPgz49318kXABS2tLUGP3epnrnxWOY3bG2kpaKFzYyd9\nX+uj8/5OWgpajHbgs+1rWifWKXhIEp4Pntkx0Z8onygS7YQbiUSrLBnJF6XWxSeGLVu2RLwNs9Nm\nIvJ8Zjow8m5uxGgH/iDghCtrrgSdvrT6mdM0R2JT8JAkPB88czneyBPFx9E/USTaCTcSiVZZMpIv\nSq2LTwxWOmTGYjt283xmvFf3WJi+tPqZS6WRzlSUPN/245yn3/1cjF4GcViO53MMIyXZ8HjV1ipq\n76qlkcaIayJ4d7zr6enh9OnTlrPpI+nuqXXxicFqh8xob8duZV8t46VHX6Krt2tM71XP42/vGvWZ\ny67Npmx7mc/9U2mkMxVp5CFJ+AxNT8LoZeAEboei6UWceusUeyv3RnWddCoNj9t5te50OtmxYwcz\nZszg5MmTNDQ0cPLkSWbMmBF2Apy+KJNfero912J2bcduZp+LvLS8Mb1XzcdXZFVQUlNC8b5iSmpK\nqMiq4NSBU6OWRqfSSGcq0qufJMyT3bVXr3HxkG+BFfNkF+0CQIlwDHax82q9ra2NVatW0djY6Pld\nU1MTTU1N1NbW+u1hMLJexqmmU8YXZYBaDfqiTHyhKkuG6+LFiwlbgTI/P5/CWYXUu+vH9F7Nz88P\nuw5NKo10piJ9IyWJRBiaToRjSERbtmzxCRy8mQlwO3cOf2H6rRK6F9+S0970RZmwvKesrly5Qlpa\nGgMDAyEeFdzFixd54403WLZsmWf7iRRExOqkbnWaQ2JLFSZl3LG7SuaSJUuCXnHm5uayfft2z5e/\np1qk95dvJ0YG++9jJIlNAK4CNcAnkDYtjYnpE1XKNwG1t7ezefNm3njjDZqamsjNzQWgo6Mjou0W\nFhZy9OjRhKu62N7ezsq7VhoJvn7yheysFJkqFW2jId4VJhU8yLgSjbLUixcvpqGhIeDtn/nMZ3xG\nJpasXkL9Wj/Dvp3AAcg8lUlhQSHNzc30/ac+mIaR4d5mHKujw8HspbNZunGpgog48zdlZUpPTyct\nLc1Ty2EsFi5cyFtvvZVQJ0rvHhUXPrpA99VuGIQJWROYmDORFZ9fwa5ndiXUMaeieAcPSphMAu3t\n7Wx6bBNLVi9h8erFLFm9hE2PbUrIYjKJzq4qmS6Xy1NOuLW1Neh9m5ubff5WfpMjOzFW0JwDd5qb\n8+3nhwOHXRhr6h8CvgHub7s5M/+MCuUkgGBTVv39/dx7772UlZWRlpY2pu2fPHmSefPmsW1b4pR+\ndy51srdyL3+x5S8AcH/Jjfvbbgb+rwE6N3byZs6bSVeuXqxT8JDgErWfxMiAZnHpYhYtX8TiWxcn\ndIBj19px7xUWDkfwAby+vj4WLlzo6V/wyQefwPtedxhRdKfvW31czrhsHGeQNfUqlBN/oWoyvPrq\nqzQ1NTFt2jSys7PJzs5m+vTpTJw4kczMzLD20d3dzf79+204WnulUrl6sU4JkwnO5wNqGvEBjXX3\nx1EJf50YV8cjuu0lYptwO5ZEPv7447hcLi5cuOC37bI/V65coaamhkmTJjF56mQ6LnjNh3sHCF7H\nggOj+dUY6z9I9IWqyXDDDTdw4sQJv7d5DTuH9Ktf/crysUVbJLVJJPlp5CHBJWKVtVFXHGOsOBcP\ndqwdf+qpp+jp6Qk7cDC53W66uro433aeuZ/OHa6X0c7ov7HZw8SB6j8ksFA1GUbe7j3d9b3vfY+8\nvLyw9tPd3T3mY4wW1SYZ3xQ8JLhE/ID6BDSdQBMJF+AEYkdZ6u9+97t0dnaO+Rj6+/s5d+6cp0AV\nHYz+G5s9TOLYCE1Cu+666yzd7r3kcuLEiSxbtoyMjIyoHV80WQnElbeVevTNk+A8H9AEKh7kCWg6\nMKYrJuHbbe8gxtW0A3BDS6/RbS8Rsq/tKEu9Z8+eiI9j4PIAzb8yEikX3bqIy+7Lvn/j1Rh5EHmk\nRP0HO0p4J6Jdu3ZRWlrKqVOnRt02f/58du3aNer3TqeTNWvWsHnzZv793/+dvr6+kPuZNGmSHYdr\nq3DrPfita5Kg05oSPgUPCS4Rq6x5AhpzuuJNjH975z54fUlcaTW67SXCl4QdVTLtGEJ2u93DX6p5\nXaMDhByMHia/BP4FuIfh+g9JWCjHOzgw5/pdLlfSL9O2OnUFwZd3BrJhwwbL+4k2n0B8KnAIz3Li\n9I509s/ez+JbF3P207N0rUmsvC2JnIKHBJeIVdY8AY2ZzGcOsX+A/8S/BPqSGEuVTJfLRXV1NfX1\n9Vy4cIHe3t6Ij8PhcAznjkzHGGUox/dvfB6y+7L5/v/5PnX76jhcM6JQzoHkKpTjXUwJ4P777+eO\nO+6gqiq5nof3KEptbS2XLl3ye79Tp05x//33e56vKdjyTn+uu+46nnnmmbEfcJSYgfj5n5zn0geX\n4Ct4Eqj7d/Vz6vdOGQHviwSf1lRiZVJS8JDgKu+o5L4D9xlV1hLk5OEJaAa6jNEFc4gdUjL7ury8\nnKeeeoqWlkDJEtbdcMMNw9nqDkZ3Sh2EKX1T+PC3Hxp/46/Ytuu4GEv/j0TlPe0QKvfl3Llzo34X\nbsvtSZMm8ZWvfIVnnnkmIV8bMxDf9P4mqourhy8aRq4eUtJvSlLCZBIwm8nUHazjxMET1B2sY+eP\ndsbtC8XsjjfFPcWYrjCH2PtJyS8Jq1eKoaSnp7N7927fZNgcjE6pDwEPAg/DrIJZCXnSGItw+n8k\nA5fLxfr165k/fz7V1dUh8xX8LeUMt+V2d3c3L7/8MkuWLOHxxx8f0/HGQsgEaiX9piT91WRM8vPz\nuXfDvVS3VBtXGDkYiZMJltxph3CvFMORkZHBe++9x4033piQybDREuo1PHz4cFIkVTqdTnbv3k1X\nV1dY9/e3lNNKy+2BgQGysrI4ffq0p0FWogmaQA3D05oJlLclkUudbyeJuVH5GCn6JRHulWI4+vr6\n+OIXv8jGjRsTMhnWTt7BgL/VCN7M23fv3g0kblJlW1sbL7/8cug7DiktHf03tNq6++rVq+zYsSNh\nR6ECJlA7MEYi+oCfA3czKuk33BVOkng0bSFjZk5fVGRVUFJTwsyOmTh+7oCPMb4cGPpv81By51eT\nY2XASFauFEPJzMzk7NmzPPvss5R9tYzs2uzhYlGQEq8XDAcO165d49133w15pd7X18eaNYnfp2PL\nli1ht9yeP38+VVWjT4xVVVUUFRWFvc/Lly+zcuXKhK2J4KmdYhY7My8izLLrNwEVwH9gJE8+D/xP\nmPrhVM8KJ0k+GnmQiJj5GCZPC90ESe6MlMvl4uLFi7ZtzxyCh8RMhrWL0+nk85//PGVlZVy9ejXk\n/fv6+ti8eTM7d+4Med94sjKFVVZW5vdvmJ+fz6FDh3zaeIfS2NjI8uXLqaqqSripi4AJ1FPwTZxc\n5/WgZrgn6x52Vib231sCU/AgthoZTCS7y5cvB1yKNxbd3d2sW7fOZx4/EV+vSPMP2trauPXWW+no\n6Ah4n5HszC2JhPfS3IsXL9Lb20tmZiZZWVmW3gu/+MUv/OYpeL+2Cxcu5Pz581y5ciXk9rKzsxMu\ncIDhINhT7MxMoH4BLdFMYZq2EAninXfesbWvQF9fHydPnmTGjBns2LEjIU8G4Ns19OTJkzQ0NFg6\n7i1btlgKHABPUmC8mH0nqqurqa2tpaWlhc7OTvr6+ujs7OTChQsMDg6G3tCQ66+/3u/rZCZd7t69\nm3379nHy5MmwpjE+/PDDhGrN7c1MoPaUfs8BJpOSq6/EoOBBxg3XcRfrt61n7oa55C7JJbMkk9wl\nuczdMJf129bjOj76xPXWW2/ZfhxNTU1UV1cn9Dx2W1sbK1eupLq62jOsbuW4xzKKUFBQwJo1a9i0\naRP3338/YBSS2rQpNj0QzIDpo48+siVgDDdXxpzGmDJlStD7ud3uhGzNbRqVw6MlmilNwYOMG+Wz\nymnc3khLQQudGzvp+1ofnfd30lLQQuP2RtbMHp2wd/bs2bC3n56ebqnJkTmPHc+rbW9mDYO5c+dS\nUFAQUV2GsaxQaW1tpbS01HLA4n3cubm5ZGZmkpuby9y5c1m/fn3Yr68ZMJ08edLysfvjb6WFPy6X\ni0ceeYTJkyeHvO+uXbs8XTkT5X1jGplAndebF3ETOhF/lgPuI0eOuEVioeKPK9w8gputfn4ewV3x\nxxWjHpOZmWleP4X8KSgocK9bt85dWFjozsnJcWdkZLgdDkfQxxQXF8fhlfDv008/dRcVFYX1XEtK\nSoJuq6SkJOzXLdyf7Oxs97p169wvvvhi2MddVFTkbmtrC+v5V1RU2HasVvZramtrC2vbFRUVlrcd\nD21tbe6i5UXGZ+4vhz5nf2l81oqWW399xNeRI0fM90Rc1jJr5EHGDZ9KeCMFaB3uvToilLVr17J3\n716am5vp6Oigt7eXRYsWBX1MU1NTwkxdWKmkGWpkIdyrbiu6uro4duwY27dv9xllCDVKcv311/uM\nRtx0003cdNNNPtuYOHEi1dXVthzn1KlTKSoqoqbG2hLEmpoaHI5ASQLDqqurmTdvXsLmP5jM3hdm\n6/mMn2WQsyuHwtZCLdFMAZp0knHDpxz0SAESuGbPnh1WJnxRUZHfNf2h5r0TaYmilTyF9vZ21q9f\nP2pFwrRp0ygpKeG+++7jl7/8JW1tbbYeY1tbG+3t7Za6WZqBjpn4mJaWhsPhsLVXiWnSpEn8zd/8\nDZWV1hvAOZ1OvvOd73D58uWQ9+3u7mb//v1j2k+sjKUJnSQPjTyIrcaSlBgrnkp4/gRI4Fq1alXI\n7WZnZwe80gznCvzll1+O2fy1y+XipptuYuLEiTgcDp8fK1UP77jjDhobG0etSGhpaaG2tpbvf//7\ndHR0hHUlbZWVwMGf06dPh6x4OVbd3d28/fbbY368ldbbsXzfiIyk4EFsNZakxFjxVMLzZ0QCl5mE\n9+qrrwbdZn5+PqdOnWLv3r1+l+VVVVWFTKLs7e2NWXXF8vJyrly5wrVr1yLazp49ewJOFXR3d3Pm\nzBm6uroiPtEno0jqVTzzzDNhJ90ODAwkRVVOSU0KHsRWW76/hcZljUZVOfOicwIwFxqXNbJ5a/y6\nJ4ZTDtoMGp588klef/31oEWBsrKymD17dtC57ZqaGjIzM4Melzl1EQtbtmzh9OnTEW+np6dnTI+7\n5557bC33nYgi6YVSU1NjacVOsnQjldSj4EFsNZakxFgZuZSseF8xJTUlVGRVcOrAKSrvqOTy5cvs\n37+fM2fOBL1qrqiooKenh/fffz9owSSn08nGjRtDHlushqDjXcVx9+7dtjYaS0SRBkcTJoT/tfzC\nCy9YWo4qYhcFDynIrnXvY+GTlNgJ7AN+gtEQxwUtrS1xXV1gls+uO1jHiYMnqDtYx84f7fT0INi/\nfz+9vb0ht7Nr166wX8dEmroI58Rt5eRllZUKjckqkpUmTqfTUyArHP39/TQ2Nmr6QmJOwUMKKi8v\nD5jMZuWLZixBiCcp0eyodyPw4NCPE66sucL82+az7Y3EXGa2Z8+esO43c+bMsEtLJ9LURThXxdEM\nHlJdoFU3VlRVVZGbmxv2/cMp2iViN7u/Jb4DvAdcHvp5C7jL5n1ICMHW61v5ohlLEOJJSnyL4Y56\nI3Ifum7v4u2Xxp6RHk3hliVubm4OewQl3KmL119/PaztRSKcq+L777+f+fPnR/1YUklubi4VFRUc\nOnQo4m6o+fn5HD582NJKlXhPR8n4Y3fw0Axswah4tQL4DbAbWGLzfiSIUF8k4X7RjCUI8SQlfkLC\n5j4E4nK56OvrC+u+VkcKqqqqQl71Z2Vlhb09K7xHkF566aWg950/fz533nknkydPjtrxpJqMjAxW\nrFjB+fPneeSRRyKeFnS5XGzZsoXZs2eH/ZgLFy5EtE8Rq+xOe/7FiH//N4zRiFKgzuZ9SQCh5rWD\n3e7djri1tTXodvwFIWZ73oUrF3LFEaC4UoJ21CsvL7d0fytXe/n5+WRnZwctOHX+/HlL+w9XeXk5\nTz31VMiiSOnp6UyePJm8vDzef/99n9uWLFliqQ7EeJCdnc306dMpKSmhoqLCtg6p5nauXbvG5cuX\n6erqCvmYjo4Ov+2/RaIlmpObacADQBZQG8X9yAihrnCD3e49VRFqjX6gICQ/P5/CWYVG7sPIpMmf\nAHuB8C7wY8blcnHjjTeOqXJhuNsPdRLo7Oy05ap1ZJ5KsPLNpqKiIj755JOAq0eiUW46HiZNmmTL\ndh544AE6Oztpbm4OWOMjEk6nk7179/L0009TWFgYMg9lzZo1ChwkpqIRPCzFSJfrAbYDXwXsaVMn\nYQn1RR/sdiv9DYIFIaU3l8KH+E2apAQamxsTKmnS6XQydepUS4+xsiTP6XQyb968oPcpLCwMeQII\nlcR6+fLlUXkq4QQ5gaahzP3t3bvXlmqRVmoY2C0jIyNoTovD4WDmzJnMmTOHGTNmBLxfdnY2Fy5c\niPrySJfLxWuvvcayZctC5lHU1NQkTI8UGR/srx0LGRhpclOAjcCfAHcCR0fcbzlw5Pbbbx/1pe10\nOhVFR6C9vZ2VK1f6DQKKioqCJnVZGZ6uqKgI2JNh2xvbeOyBxxj48oDxbhipGSqyKtj5o/j3dACj\nZ8Ls2bMtjTwEe/7+hHptMzIyaG1tDXqiaGtrY9WqVQEDvLS0NAYGBsI+Jm8lJSXU1fnOLoban1Xm\nUP+FCxfCGo6PFbPEeEZGBgUFBTQ1NfHRRx8xMDBAf38/g4ODZGZmkp+fb/s0RTjC+VxafT9K8nC5\nXKOC1UuXLlFbWwtGfuHI82tKeB34X35+r5bcUfLiiy+Oag2dk5PjLiws9NvS2FtxcXHY7ZGfe+65\noMdRXFrs5r8HaIH9l7hLVgVv6xxLVtsxj6Xl8he+8IWw2i0H8uKLL7qnTp1qe6tr88dfe/BQr0t6\nerqlfZitvO1sf52WlhbyPhMmTAjruBLV7Nmzw35tZXyId0vuWNSJnYDqScRUJCM3oYbiMzMzefDB\nB6mqqgq9JC0dy10s4+Hxxx/n+eefD+u+EyZM8Gm5bOV13rVrFwUFBUFXdARLwiwvL6ejoyPs/Vnl\n728fKinUarVIc8rMrqWF2dnZzJs3jw8++CDo/dxjzN9JFNOnT+fs2bNB75Poz0FSi93Bw/8L/BJj\nyeZkjITJO4D/x+b9SJSUlpYGHR598MEHwx4a9RSM8hdABOhiGQ/f/va3+eEPfxjyfsXFxZw4cWLM\n+/j9wYsAABbGSURBVDH7FgQLHhoaGsjNzR3V4rqiooJ9+/ZF9QThLxfGzv15F1Cya7vTp09n4cKF\nXLx4MejJNSMjI2jl0ETvtxHqcwmJ/xwktdg9IpAPPA/8B1AD/B6wHqPegySBsrIysrOz/d6WnZ1N\nWVlZ2Nuy0sUynu65556w7mdl3b0/TqeTadOmBb1Pf39/wIJc0SwEFKgyol0npJFty+3YblFREUeP\nHmX37t1Mnz496H1DrbJI9NUk4VSdTPTnIKnF7uDhW8ACYCIwC1gH/NrmfUgUVVZWcurUKSoqKigp\nKaG4uNhz5fv000/zz//8z2GXqw6ni2Ui+Pjjj0PeZ/LkyezatSvifd12222WH9PY2MjMmTNpaGiI\neP/33HMPFRUVLFiwAIAFCxYErYxoxwkpLS1tVNvysWw3LS0N8H/Moba3YcMGioqK/N5mR0npaKup\nqeGWW27xvAYjzZw5M+Gfg6QW5SLIKPn5+ezcuZO6ujpOnDhBXV0dO3fuxO12U1tb67dcdW1t7agC\nSOF0sUwEoebDAVasWBG09Xa4IlnuONZVFN5effVVXnvtNXJyciguLmbhwoVBKyNWVVUFPOmGa+bM\nmaNeO6vbzc7O5rbbbgt4zMG2V1RUxJ133klRURGFhYXk5OSQkZFBTk4OhYWFPiMiicrpdPLoo49S\nXl7u9zncfPPNCf8cJLVokkzCtn///oDr5Lu7u9m/fz+Vlb4BgdnFMlG5XK6w5t8fffRRW5bmDS2t\nGpNwgpxw5OXl8Zvf/CasHgw1NTUUFRVx7do1Ll68SG9vL263O+ychUBLg723G2zZpsPhYPbs2Sxd\nujTo8kh/x2nmjBQVFZGXl8fevXvDOuZEpSXsIgYt1UwyU6ZMCbpUbMqUKfE+xIDa2trcFX9c4S5Z\nVeIuXlXsLllV4q744wp3XV1dyOWGCxcutO04wl0KG+2fYEtCw3kti4qK/G7X4XC409PTw14a7L3N\niooK94IFC9yAe8GCBe6KigrLy2FFxovxsFRTUkSojpPhdqSMtef2P8eTlU/SdXsXrMVY/TEI9a31\n/NPKf2KgP/B0gMPhYPfu3bYdS6JkxEeSfBnsKn+sBZTMqbKjR4+yYsUKdu3axfLlcflOFJEwJMY3\nmUgUvfPyO0bg4F3pcqg9+MCE0HkE//iP/8izzz5ry7GEs+QuFiJZKmn38Ll39byenh6Ki4v53ve+\nx8SJE6OyPxGJnIIHCdukSZOCrpW3q+mQ3Q4fO2yMOIx0HKMLSxCLFi2yLXAAI7HvhRdeiHtBn0QZ\nAQEFByLJSKstJGwbNmwIentJSUnQpk3RbiQUSD/9/gtVLWB4CWkAdp9ka2pqQq7XjwXVBBCRSCh4\nkLDdeeedQUcX6urqAi7lNAsdtbe3s+mxTSxZvYTFqxezZPUSNj22KaodAT2VLr0dB35IyODB7pOs\n0+mkoaEh4uWPkUiGugYiktgUPEjY8vLyuP3225kzZ47fegVXrlwJmDTZ2NjI3d+4m/m3zaf6WjX1\na+tpWNdA/Zp6qq9VM/+2+VFr0e230uUCIPAMDGCUNI7GSdZMOIyl9PT0pKprICKJTcGDhM3pdLJ3\n714WLVo0ppoDH7zzwXDiohl7DCUudt3exdsvvW3n4Xr4rXT5OiFHHQYGBqJykjVfx3nz5tm+bX/m\nzJnD888/T0dHB83NzT6VHkVExkLBg1gWqrtfIN3d3VAY4MaCocTGKPBX6TLzRGbIx6Wnp0f1JBvN\nqRpTUVER7733noIFEbGVggexbKzBAw58Exc7gX3AT4Cfwsmmk1HLfzArXdYdrONPv/6n9F0L3NnS\nZC4VjJaMjIyobTstLU1TFCISNYmzXkuSRk9Pz5gelzYhbbhFdwewCyjHU7ipd7CX6tZqXrrtJZ7e\n/nRUel+4XC7+6q/+Kqxpl0i7aIaSlZU15sc6HI6gzyE3N5fm5uYxb19EJBiNPIglzz33XNBaD8Fc\nN/O64cTFtzAChxjnP5SXl3Pu3Lmw7hvt4OG6664L637Z2dmjGiGFkqjVPkUkNSh4EEveeeedMT+2\nuamZjH/NMBIX24hL/sOWLVvo6ws9ZZGfn29LC+5gQi0DXbhwIW1tbXR2dtLR0UFvb68n6TGaUx4i\nIqEoeBBLIumJAPCHv/+HVGRVkNmT6b9wE8CEocJOURDO8aenp7Ns2bKo5wqUlZWRnZ3t97bs7Gz+\n/M//PGDny1DVPBO12qeIpAblPIglkZZVfv/996mrq+PwscPUu+v9BxCDQ4WdbNDe3s7mrZs5fOww\n/fRz6qNTIR/z8MMPs3Nn9NuIV1ZWct9997F582YOHz5Mf38/6enplJaWUlVVFbRldklJCYcOHQp6\nu4hItCh4EEsiLddsBh+lN5dS31Lv26zK1DpU2ClCfrtpvh/8MWlpaTGtvmh2k7Tqm9/8JseOHfOb\n2zBp0iS++c1v2nF4IiJ+adpCLIm0XLMZfPgt3DQINEN2bTZlXy0Le5sjS14vLl3MouWL2PLNLaOL\nUoVIFcjMzEyKpY2VlZWcPn2aiooKSkpKKC4u9rTDPn36NJWV9q9UERExaeRBLKmqqqK2tpbGxsYx\nPd4MPirvqOS+A/cZUwo1xpRCOumU3lxK1YHgQ/be2traWLVhFY3LGo3RhU6MJaCrgH9jdFJmiIUi\nU6ZMSZqCSmMdtRARiZSCB7HE7Mtw7do1Ll68SG9vL5mZmWRlZeFwOBgYGODy5ct+axCMbMhkFm6K\nxMb/vNEIHOZiBA4vA6sxloJOYnROxcSh+wWQl5cX0fGIiIwHmrYQS8y+DM3NzT7LB8+fP8+5c+f4\nx3/8R9auXUthYeGo2gTRqHZ47uNzxuhCB0bg4ACaMGpIpDG6m2aId7zdLbhFRFKRvinFVk6n09Kw\n/8jVEJ6pi62hpy7a29tp+bTFCBjMolO1wDmMgCIfoyiVd1Lm9UCQ6td2t+AWEUlFGnmQuGlra2Pl\nXSv9tuheedfKoD0untv/HPNvm8+VgSvG6EI7RsBglr92YExf/BrfpMw1wGT/2xw5rSIiIv4peJCo\ncrlcrF+/nrlz55Kbm0tmZia5ubnMnTuXxTctpjGv0W+J6sZljdz/3fsDbvedl98xVlJcjzG6YAYM\n+RhJkW4gB9gIfAC4gBeBFyCtL43rr78+JtMqIiKpSNMWElXl5eU89dRTtLS0eH7X19dHZ2cnGVkZ\ncEuABxbAuZrAPSgOHztsrK6YjpHrAEbAsBqoZni6IgdY5/XAZvh61tcjTtQUERnPNPIgUbVly5aA\nyzr7rvXB6wEeOKJEtXcth6LSIv7jo/8wRhrM0QU3RsCQA3wV+AXwMRHXkBARkdE08iBRFbKXxHsY\nJ/l0jCmIdRgBgFeJap9aDqsw6jhMZDi/wQwYXsZImiwAvgEcAH4DjmsOZs+czR3L74Dl8MwfP8PT\n/U+HXQpaRER8KXiQqAqrF8bFof+2A/XAemDWcIlqTy2H6cBLGEmPH+C7ksIcgTgI/BomMYkF1y+g\n9EvGyo1XXnmFJ598kq6uLp9d19fX89JLL/H000+rKqOISJgUPEhUWa6b0Af8GjKnZFL2U2N64dzH\n54wRB7OOQyHDuQ7mSMMEjKJQn4WiniIO7TnkM5rwzjvvjAocTF1dXbz99tsKHkREwqScB4mqMdVN\n6IbCOYW8/dLbtLe3G7kPZh2HTHxzHbxXUrgg79d5owIHgF/+8pdBdxnqdhERGabgQaKqrKyM7Oxs\ny4/7aPAjT70H+vGt42BWjTRXUjwEfAXIhp62Hm677TaWLFnCpk2baG9v57nnnqOtrS3o/tra2ti2\nbZvl4xQRGY8UPEhUVVZWcurUKaZMmWLtge8DtdB4oZGPmz+GAYbrOLSMuO9vgR8A70Fvdy8NDQ3U\n19dTXV3N/Pnzef7558Pa5dtvv23tGEVExikFDxJ1+fn53HvvvdYe5AaKgW9Azxd74BLDdRxGVo1s\nwciV8KOrq4v6+vqwdhlyZYiIiAAKHiRGysrKcDhGtrgMoRnjHVoMzGG4jsPIXIcQsUGgRMmRwloZ\nIiIiCh4kNiorK/na175m7UGfeP3/XZDxiwwjoJiEkevgBG6HCYPB38Z9fQGGJUZQR00RkfAoeJCY\nufPOO60lT3oPBEyGuTfMpSKrgpKaEor3FVNSU0JFVgW5Obm2HJ86aoqIhEfBg8SMmTxZUVERXgLl\nReDdof8fhIkZE6naWkVpcSnpl9LpP9fP4f2H6e7ujvjYsrOzKStT2WoRkXBonFZiKj8/n507d1JW\nVsZjjz3GwMBA8Ac0YzTPaoW8jDzmz58fdg5DODIyMnjooYdUolpExAKNPEhcVFZWcvz48dBJlK1A\nM0z6t0k0fthoa+AAsGjRInbu3KnAQUTEAruDh/+Kser+CvAp8C8YufIio/zd3/0dbrc76H0mXJpA\n2ckyOAPtn7TbfgzKcxARsc7u4OELwLPArcBajGmRfYD1EoOS8gYHB0Pfp3+Q+t/V25LX4I/yHERE\nrLM752HDiH9vAtqA5RgNkkU8wi3KdOXKlajsf8WKFWqGJSIyBtHOeZg69N8LUd6PJKF4F2X6oz/6\no7juX0QkWUUzeHAA/wDUErIGoIxH8SzK9MADD2jUQURkjKIZPPwQWIJRB1BklHglK2ZnZ3PnnXfG\nZd8iIqkgWpd+zwL/CSOB8pNgd3ziiSeYOnWqz++cTidOp2KOVFdWVsZPfvKTsMtHj5XD4SA/P5/r\nrruO0tJS1XQQkaTicrlwuVw+v7t06VKcjsZgsVNRWNt7FvgKcCfQGOS+y4EjR44cYfny5TYfhiSL\n9vZ2vvvd7/LKK6/YHkQ4HA7Kysr4+c9/rmBBRFLK0aNHWbFiBcAK4Gis92/3tMWPgIeGfjqB2UM/\nE23ej6SI/Px8XC4Xzz77rG3bnDNnDhUVFXz66ae89dZbChxERGxmd/DwbSAP2I8xXWH+fNXm/UiK\nqays5JZbboloG2lpafzt3/4tn3zyiapGiohEkd05Dyp3LWP2rW99i7q6OksFobKyspg3bx6rVq1S\nLoOISIzoZC8Jo7KyktOnT1NRUUFaWlrI+8+cOZOenh5OnDihkQYRkRhS8CAJxey6+fWvfz3kfb/0\npS/F4IhERGQkBQ+SkMrKysjIyAh4e2ZmpvpSiIjEiYIHSUiVlZW0trbywAMPMGXKFDIzM8nMzGTK\nlCk88MADtLS0qEKkiEicxK8+sEgI5jJOERFJLBp5EBEREUsUPIiIiIglCh5ERETEEgUPIiIiYomC\nBxEREbFEwYOIiIhYouBBRERELFHwICIiIpYoeBARERFLFDyIiIiIJQoeRERExBIFDyIiImKJggcR\nERGxRMGDiIiIWKLgQURERCxR8CAiIiKWKHgQERERSxQ8iIiIiCUKHkRERMQSBQ8iIiJiiYIHERER\nsUTBg4iIiFii4EFEREQsUfAgIiIilih4EBEREUsUPIiIiIglCh5ERETEEgUPIiIiYomCBxEREbFE\nwYOIiIhYouBBRERELFHwICIiIpYoeBARERFLFDyIiIiIJQoeRERExBIFD+OMy+WK9yGMO/9/e/ce\nIlUZh3H8m5a3jdRKy8pIVyvLSjHTNZJiSTQITaOCAhH7z0AlSFCK6YIFRTe6gFGQRRZFYkY3IwtC\nXazdzGizm1LpbqW5lpamO/bH7x3OO2dPqzPnMruzzweG3TnnPZd5+O3Zd95zzowyz54yz54y71nS\n6DxMBdYCO4E8MDOFbUiZ9AeePWWePWWePWXes6TReRgANAEL3POjKWxDREREKuTEFNb5nnuIiIhI\nFdI1DyIiIlKSNEYeStLc3FzpXehR2traaGxsrPRu9CjKPHvKPHvKPFuV/t95QsrrzwOzgLci5g0D\nNgNnp7wPIiIi1WgnMBFoyXrDlRx5aMFe9LAK7oOIiEh31UIFOg5Q+dMWFXvhIiIiUp40Og81wGjv\n+UhgHLAH+DmF7YmIiEg3dzV2rUMeaPd+f6GC+yQiIiIiIiIiIiIiIiIiIiI9V47g+oXCY1eozRjs\nMx3agD+BjcDwUJs64CNgP7AXWA/08+bviNjO8tA6zsW+fGs/8DvwBHBSma+rK8sRL/PzIpYvPOZ4\n6xgMvOTW0QasBAaGtqPMA0lkviNivuq8/GPLWcArQCuWVyPFeYPq3Jcjm8x3RGxHdV5+5rXAauA3\nYB/wGjA0tI4uV+c54Eu3o4XHad78WuyOioeAy7CD6AxgiNemDnsxd2Eh1QKzgT5em+3AstB2arz5\nvYGtwIduO/XAL8CTcV9gF5QjXua9QssOBe7Gim6At553gS3AJGCy26b/wV7KPJBU5qrzQI74x5b1\nwCbgcjd/GXAEu9OrQHUeyJFN5qrzQI54mdcAPwBvABcDY7GORAPFH/jY5eo8h31b5v95FXjxGOvY\nBNx7jDbbgYWdzJ+BFeiZ3rSbgX+Ak4+x7u4mR/zMw5qA57znY7Ae8ERv2iQ3rXDLrTIPJJE5qM59\nOeJn/hdwa2jabmCe+111XixH+pmD6tyXI17m07Cs/FwGYTVc755nVuelfjHWaOzjMH8EVgEjvPVc\nB3wHvA/8inUUZnrLDgWuwIZINmBDXR8DV0ZsZwlWhE3AUoqHU+qwXlOrN+0DoC8wocTX0x3EyTxs\nAtbTfN6bVoe9K97sTWtw06Z4bZR5cpkXqM4DcTN/G7gFG7Lt5X7vgx1jQHUeJe3MC1TngTiZ9wWO\nAv960w5hHYPC/9EuWefTgRuw4ZJ6bMiqBTgV68HksfMnC4FLsYJpB6a65Se7NruBudgB9VHgIDDK\n284i4CpsSGY+dm7Hf9e2guiv/D6I9Z6qSdzMw54BvgpNWwpsi2i7za0PlHnSmYPq3JdE5v2xYdg8\ndnBtI3g3BqrzsCwyB9W5L27mp2MZP4ZlXwM85ZZ71rXpFnU+AHvhi7Hvp8gDL4farMEuqAHr9eSB\nB0JtttDxAhrfbLfcYPd8BdYzC6vGYgsrNXNff6zwFoemH2+xKfPkMo+iOg+Uk/mb2MVl1wCXAPdg\nF2SPdfNV551LI/MoqvNAOZlfC3yPdSoOY6c5PgOedvMzq/NST1v4/saGPkZhowlHgK9Dbb7BruqE\n4Dsswm2avTZRGtzPwuhEK3BGqM1gbLislepWaua+G7F/ZitD01vpeLUublqr10aZJ5d5FNV5oNTM\nx2Df3jsfeze3FbgPO6gucG1U551LI/MoqvNAOceWda79EOxiy7nAOdhpEMiwzuN0HvoCF2GdgsPY\nOZYLQ23Ox27Vwf3cFdHmAq9NlPHuZ6HzsQHr2fovfhp27ufz49z37qrUzH3zsV7sntD0jdhtPOEL\nbAZiWYMyTzrzKKrzQKmZF45j7aE2eYKr0FXnnUsj8yiq80CcY8sf2K2c9VhHonA3RZes80ewcy8j\n3M6sxYZkC/egznIbvx3rGd2BBTLFW8dCt8wc1+Z+4ADBRSOTsSGccW7aTdgtJKu9dfTCbj1Z59rV\nAz9h96lWmyQyx81rxwokyjvAFxTf2rPGm6/Mk81cdV4sbua9sXdsn2AHzVrgTiz/6d52VOeBLDKv\nQ3XuS+LYMg+r3VrgNmzE4uHQdrpcna/CrhI9hBXA63TsJc0DvsWGYxqB6yPWs8Tt6H7gU4qDGY/1\nnPa6dTRj59H6hdYxHAv+ABbe41Tnh4oklflyOh/dGYR9qMg+91gJnBJqo8wDcTNXnRdLIvORbrkW\n7NjSRMfbCFXngSwyV50XSyLzB7G8D2GnNBZFbEd1LiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhX1H6pqPaL0WwyQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t2, l2, l2e = np.loadtxt(echo_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o', color=\"green\")\n", + "errorbar(t2, l2, yerr=l2e, fmt='o', color=\"black\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.379e-01 6.748e+01 inf -- -3.302e+02 -- 1 1 1 1 1 1 1 1\n", + " 2 7.796e-01 6.679e+01 7.758e+01 -- -2.526e+02 -- 0.618991 0.579498 0.564066 0.564121 0.56476 0.563682 0.563867 0.56205\n", + " 3 3.540e+00 6.595e+01 7.576e+01 -- -1.769e+02 -- 0.314779 0.183356 0.127531 0.127909 0.129377 0.127333 0.127748 0.123875\n", + " 4 1.452e+00 6.481e+01 7.321e+01 -- -1.036e+02 -- 0.145822 -0.154058 -0.309225 -0.308235 -0.306082 -0.309022 -0.308575 -0.314603\n", + " 5 5.873e-01 6.313e+01 7.037e+01 -- -3.327e+01 -- 0.101594 -0.377738 -0.742409 -0.742747 -0.740971 -0.745083 -0.745333 -0.753741\n", + " 6 3.716e-01 6.044e+01 6.710e+01 -- 3.383e+01 -- 0.0846307 -0.469976 -1.15278 -1.17038 -1.1732 -1.18022 -1.18308 -1.19385\n", + " 7 3.359e-01 5.601e+01 6.209e+01 -- 9.591e+01 -- 0.0659456 -0.50867 -1.48798 -1.574 -1.5971 -1.61323 -1.62275 -1.63479\n", + " 8 5.149e-01 4.857e+01 5.399e+01 -- 1.499e+02 -- 0.0437973 -0.538092 -1.68322 -1.90776 -2.00001 -2.04069 -2.06646 -2.07709\n", + " 9 7.563e-01 3.652e+01 4.228e+01 -- 1.922e+02 -- 0.0212475 -0.55813 -1.75872 -2.09423 -2.35209 -2.45331 -2.51958 -2.52359\n", + " 10 1.974e+00 2.058e+01 2.756e+01 -- 2.197e+02 -- 0.00517809 -0.569653 -1.80128 -2.12815 -2.59485 -2.83321 -2.9937 -2.97691\n", + " 11 1.071e+00 7.198e+00 1.293e+01 -- 2.327e+02 -- -0.00504406 -0.575918 -1.82651 -2.12905 -2.68784 -3.15505 -3.51079 -3.42807\n", + " 12 2.091e-01 1.531e+00 3.715e+00 -- 2.364e+02 -- -0.0104477 -0.580461 -1.83547 -2.13193 -2.69807 -3.39738 -4.11475 -3.83333\n", + " 13 5.653e-01 3.932e-01 6.297e-01 -- 2.370e+02 -- -0.0124146 -0.583395 -1.83764 -2.13329 -2.69789 -3.54657 -4.97511 -4.11701\n", + " 14 1.852e+02 1.372e-01 6.354e-02 -- 2.371e+02 -- -0.0129899 -0.584709 -1.83799 -2.13471 -2.69697 -3.6137 -7.78741 -4.23122\n", + " 15 2.921e+02 7.159e-02 2.904e-03 -- 2.371e+02 -- -0.0130755 -0.585195 -1.83773 -2.13556 -2.696 -3.63655 -8 -4.24469\n", + " 16 2.917e+02 5.374e-02 4.141e-04 -- 2.371e+02 -- -0.0130579 -0.585335 -1.83758 -2.13596 -2.69543 -3.64347 -8 -4.24419\n", + " 17 2.916e+02 4.858e-02 9.106e-05 -- 2.371e+02 -- -0.0130506 -0.585376 -1.83754 -2.13607 -2.69524 -3.64553 -8 -4.24379\n", + "********************\n", + "-0.0130506 -0.585376 -1.83754 -2.13607 -2.69524 -3.64553 -8 -4.24379\n", + "0.269171 0.232445 0.302922 0.233996 0.234912 0.539942 6377.59 0.989373\n", + "-0.000636424 -0.00149059 -0.00259185 -0.00860622 -0.0213922 -0.0485818 -5.7966e-05 -0.0291693\n", + "********************\n" + ] + } + ], + "source": [ + "P2 = clag.clag('psd10r', [t2], [l2], [l2e], dt, fqL)\n", + "p2 = np.ones(nfq)\n", + "p2, p2e = clag.optimize(P2, p2)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 2.371e+02 2.366e+02 -1.305e-02 2.561e-01 0.96 +++\n", + "+++ 2.371e+02 2.361e+02 -1.305e-02 3.907e-01 2 +++\n", + "+++ 2.371e+02 2.364e+02 -1.305e-02 3.234e-01 1.44 +++\n", + "+++ 2.371e+02 2.365e+02 -1.305e-02 2.898e-01 1.19 +++\n", + "+++ 2.371e+02 2.365e+02 -1.305e-02 2.729e-01 1.07 +++\n", + "+++ 2.371e+02 2.366e+02 -1.305e-02 2.645e-01 1.02 +++\n", + "+++ 2.371e+02 2.366e+02 -1.305e-02 2.603e-01 0.987 +++\n", + "+++ 2.371e+02 2.366e+02 -1.305e-02 2.624e-01 1 +++\n", + "\t### errors for param 1 ###\n", + "+++ 2.371e+02 2.366e+02 -5.854e-01 -3.529e-01 0.949 +++\n", + "+++ 2.371e+02 2.361e+02 -5.854e-01 -2.367e-01 1.99 +++\n", + "+++ 2.371e+02 2.364e+02 -5.854e-01 -2.948e-01 1.43 +++\n", + "+++ 2.371e+02 2.365e+02 -5.854e-01 -3.239e-01 1.18 +++\n", + "+++ 2.371e+02 2.365e+02 -5.854e-01 -3.384e-01 1.06 +++\n", + "+++ 2.371e+02 2.366e+02 -5.854e-01 -3.457e-01 1 +++\n", + "\t### errors for param 2 ###\n", + "+++ 2.371e+02 2.369e+02 -1.838e+00 -1.686e+00 0.273 +++\n", + "+++ 2.371e+02 2.368e+02 -1.838e+00 -1.610e+00 0.6 +++\n", + "+++ 2.371e+02 2.367e+02 -1.838e+00 -1.572e+00 0.806 +++\n", + "+++ 2.371e+02 2.366e+02 -1.838e+00 -1.554e+00 0.92 +++\n", + "+++ 2.371e+02 2.366e+02 -1.838e+00 -1.544e+00 0.979 +++\n", + "+++ 2.371e+02 2.366e+02 -1.838e+00 -1.539e+00 1.01 +++\n", + "\t### errors for param 3 ###\n", + "+++ 2.371e+02 2.369e+02 -2.136e+00 -2.019e+00 0.267 +++\n", + "+++ 2.371e+02 2.368e+02 -2.136e+00 -1.961e+00 0.589 +++\n", + "+++ 2.371e+02 2.367e+02 -2.136e+00 -1.931e+00 0.793 +++\n", + "+++ 2.371e+02 2.366e+02 -2.136e+00 -1.917e+00 0.905 +++\n", + "+++ 2.371e+02 2.366e+02 -2.136e+00 -1.909e+00 0.964 +++\n", + "+++ 2.371e+02 2.366e+02 -2.136e+00 -1.906e+00 0.994 +++\n", + "\t### errors for param 4 ###\n", + "+++ 2.371e+02 2.370e+02 -2.695e+00 -2.578e+00 0.256 +++\n", + "+++ 2.371e+02 2.368e+02 -2.695e+00 -2.519e+00 0.577 +++\n", + "+++ 2.371e+02 2.367e+02 -2.695e+00 -2.490e+00 0.787 +++\n", + "+++ 2.371e+02 2.366e+02 -2.695e+00 -2.475e+00 0.904 +++\n", + "+++ 2.371e+02 2.366e+02 -2.695e+00 -2.468e+00 0.965 +++\n", + "+++ 2.371e+02 2.366e+02 -2.695e+00 -2.464e+00 0.997 +++\n", + "\t### errors for param 5 ###\n", + "+++ 2.371e+02 2.369e+02 -3.646e+00 -3.376e+00 0.301 +++\n", + "+++ 2.371e+02 2.367e+02 -3.646e+00 -3.241e+00 0.783 +++\n", + "+++ 2.371e+02 2.365e+02 -3.646e+00 -3.173e+00 1.15 +++\n", + "+++ 2.371e+02 2.366e+02 -3.646e+00 -3.207e+00 0.953 +++\n", + "+++ 2.371e+02 2.366e+02 -3.646e+00 -3.190e+00 1.05 +++\n", + "+++ 2.371e+02 2.366e+02 -3.646e+00 -3.199e+00 1 +++\n", + "\t### errors for param 6 ###\n", + "+++ 2.371e+02 2.371e+02 -8.000e+00 -5.000e+00 0.0545 +++\n", + "+++ 2.371e+02 2.353e+02 -8.000e+00 -3.500e+00 3.58 +++\n", + "+++ 2.371e+02 2.369e+02 -8.000e+00 -4.250e+00 0.39 +++\n", + "+++ 2.371e+02 2.365e+02 -8.000e+00 -3.875e+00 1.18 +++\n", + "+++ 2.371e+02 2.367e+02 -8.000e+00 -4.062e+00 0.674 +++\n", + "+++ 2.371e+02 2.366e+02 -8.000e+00 -3.969e+00 0.891 +++\n", + "+++ 2.371e+02 2.366e+02 -8.000e+00 -3.922e+00 1.03 +++\n", + "+++ 2.371e+02 2.366e+02 -8.000e+00 -3.945e+00 0.956 +++\n", + "+++ 2.371e+02 2.366e+02 -8.000e+00 -3.934e+00 0.99 +++\n", + "\t### errors for param 7 ###\n", + "+++ 2.371e+02 2.367e+02 -4.244e+00 -3.749e+00 0.707 +++\n", + "+++ 2.371e+02 2.359e+02 -4.244e+00 -3.502e+00 2.45 +++\n", + "+++ 2.371e+02 2.364e+02 -4.244e+00 -3.625e+00 1.37 +++\n", + "+++ 2.371e+02 2.366e+02 -4.244e+00 -3.687e+00 0.998 +++\n", + "********************\n", + "-0.0130485 -0.585388 -1.83753 -2.1361 -2.69519 -3.64613 -8 -4.24367\n", + "0.275479 0.239709 0.298186 0.230343 0.23123 0.447579 2 0.556379\n", + "********************\n" + ] + } + ], + "source": [ + "p2, p2e = clag.errors(P2, p2, p2e)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X9w3Hd95/Gn44i4/DQm590Eg7dsz6wpTnIScmOLuEqP\ndkraAgdXdbdlbpDIhdL0Or47Mudrz7qMfNOjJVNSoJRxE9H2gJV808KRmfiAUrlJZYUTEpC49lJu\nJZmYeFcNxoFSlBOx74/vKpbNV5ZW2u/+0Pf5mNmRvPv5fD8fT76RX/p+P9/PGyRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkrRG/xkYB74LlIFPAzsaOiNJktQUjgL/BtgJ3AQ8BMwAL2zg\nnCRJUhO6HrgAvLHRE5EkScu7po5jba58PVfHMSVJUpPbQHC74W8aPRFJkrQy19ZpnI8AP8nVbzXc\nUHlJkqTqnK28aqoeIeHDwC8C+4Cnlmhzw4033vjUU08t9bEkSbqKbwGd1DgoRBkSNhAEhLcC3cDp\nq7S94amnnuITn/gEO3fujHBKtbd//37uv//+lhxvLceqtm817VfSdrk2V/u83v/NasVzrfbtPdfC\nea7Vvn2U59qpU6d45zvf+UqCq/EtExL+CMgRhITvA8nK++eBubAOO3fupL29PcIp1d7mzZvrOuda\njreWY1Xbt5r2K2m7XJurfV7v/2a14rlW+/aea+E812rfPupzLSobIzz2Q8B1QC/wHxe9vgF87Yq2\nNwDvec973sMNN7TesoRdu3a17HhrOVa1fatpv5K2y7VZ6vN8Pk8ul1vxXJqJ51rt23uuhfNcq337\nqM61s2fPcvjwYYDD1PhKwoZaHmwN2oGJiYmJlkzdai1vectb+OxnP9voaSgGPNdUD5OTk3R0dAB0\nAJO1PHY990mQJEktxJCg2GnVy79qPZ5ranWGBMWOP7hVL55ranWGBEmSFMqQIEmSQhkSJElSKEOC\nJEkKZUiQJEmhDAmSJCmUIUGSJIUyJEiSpFCGBEmSFMqQIEmSQhkSJElSKEOCJEkKZUiQJEmhDAmS\nJCmUIUGSJIUyJEiSpFCGBEmSFMqQIEmSQhkSJElSKEOCJEkKZUiQJEmhDAmSJCmUIUGSJIUyJEiS\npFCGBEmSFCrKkLAPeAj4FnABeGuEY0mSpBqLMiS8EPgKcHflzxcjHEuSJNXYtREe+39XXpIkqQW5\nJkGSJIUyJEiSpFCGBEmSFCrKNQlV279/P5s3b77svVwuRy6Xa9CMJElqHvl8nnw+f9l758+fj2y8\nDZEd+XIXgLcBn13i83ZgYmJigvb29jpNSZKk1jc5OUlHRwdABzBZy2NHeSXhRcA/X/Tn1wC3AN8G\nnoxwXEmSVANRhoRO4K8r318E/qDy/Z8CfRGOK0mSaiDKkHAMF0ZKktSy/EdckiSFMiRIkqRQhgRJ\nkhTKkCBJkkIZEiRJUihDgiRJCmVIkCRJoQwJkiQplCFBkiSFMiRIkqRQhgRJkhTKkCBJkkJFWeBJ\napj8E3nyJ/IAzP1wjtPPnGb7y7az6dpNAORenyO3K9fIKUpS0zMkaF3K7boUAibPTtJxuIP8O/K0\n39De4JlJUuvwdoMkSQplSNC6NTMzQ9/dffS8vQc+BT1v76Hv7j5mZmYaPTVJagnebtC6Uy6Xyd6Z\npXCuQOl1Jfj54P0iRYpnihz9taNktmQYemCIRCLR2MlKUhMzJGhdKZfL7L1jL1O3TsEbQhpsg9K2\nEqXZEl13dDH68KhBQZKW4O0GrSvZO7NBQNi6TMOtULy1SPbObF3mJUmtyJCgdWN6eprCucLyAWHB\nViicK7hGQZKWYEjQunHovkPBGoQqlHaWGLhvIKIZSVJrMyRo3Rh/fBy2VdlpG4x/bTyS+UhSqzMk\naN2Yf26++k4bYP7CKvpJUgz4dIPWjbaNbZf+8ETltZRdlddFaLum7SoNJSm+DAlaNzpv6uTEmRPB\nLYeFELCcM7D75t0Rz0ySWpO3G7Ru9N/TT/Jksqo+yVNJDr7vYEQzkqTWZkjQupFKpchsycDsCjvM\nQmZLhlQqFeW0JKllRR0SfgOYBn4AfBl4Y8TjKeaGHhgi/Vg6CArfAT4DfBT4cOXrZyrvz0L6sTTD\nDw43brKS1OSiXJPwK8AHgfcCo8CvA0eB1wFPRjiuYiyRSPCZP/sMb+x+I9/77ve4MH/h8gazcM3f\nXcNLXvoSPnPsM2zdutKdlyQpfqK8kvAfgAeAQeDrwL8nCAfvjXBMxVy5XOatb30rz3z7mR8NCBUX\n5i/wzLef4W1vexvlcrnOM5Sk1hFVSHgB0A58/or3Pw/sjWhMiWw2y9TU1IraFotFsllrN0jSUqIK\nCdcDG4Erf02bBapbfi6t0PT0NIVCoao+hYK1GyRpKe6ToHXj0KFDlEpV1m4olRgYGGBwcDCiWTW3\n/BN58ifyAMz9cI7Tz5xm+8u2s+naTQDkXp8jtyvXyClKaqCoQsLTwHNA4or3E8DZpTrt37+fzZs3\nX/ZeLpcjl/OHlJY3Pr66Ggyr7bce5Hbl2POSPQx8YIBHJh+heK7Ic1ueY1/7Pvrv6ffxUKnJ5PN5\n8vn8Ze+dP38+svE2RHZkeAyYAO5e9N5J4NPA71zRth2YmJiYoL29PcIpaT3LZDJ8/etfr7rfa1/7\n2qpvU6wH5XKZ7J1ZCucKQfXMxcWxzkDyZJLMlgxDDwyRSFyZ9yU1i8nJSTo6OgA6gMlaHjvK2w1/\nAPwPgv0RHgPuIvgx9LEIx1SMtbWtrgbDavu1snK5zN479jJ16xS8IaTBNihtK1GaLdF1RxejD48a\nFKQYivIRyCPAfqAf+ArBRkp34B4JikhnZ+eq+u3eHb/aDdk7s0FAWG6biK1QvLVI9k6fApHiKOod\nF/8Y+HFgE9AJ/G3E4ynG+vv7SSarrN2QTHLwYLxqN0xPT1M4V1g+ICzYCoVzPgUixZG1G7RupFIp\nMplMVX0ymfjVbjh036FgDUIVSjtLDNw3ENGMJDUrQ4LWlaGhIdLp9IraptNphofjV7th/PHxyxcp\nrsQ2GP9afJ8CkeLKkKB1JZFIMDo6Snd395K3HpLJJN3d3Rw/fjyWtRvmn5uvvtMGmL+win6SWpoh\nQetOIpFgZGSEsbExent7n7+ykE6n6e3tZWxsjJGRkVgGBIC2jat4muMitF0Tv6dApLhzx0WtW6lU\nisHBweefIT5y5Ij7cACdN3Vy4syJ6m45nIHdN8fvKRAp7rySIMVM/z39JE9W+RTIqSQH3xevp0Ak\nGRKk2EmlUmS2ZIJyaysxC5kt8XsKRJK3G7ROLd7ffG5ujh07dnDgwAE2baoULop5TZChB4bouqOL\n4q3Fq++XMAvpx9IMH43fUyCSDAlap+IeApaTSCQYfXg0qN3w1QKlnZXaDRuAiwS1G04FtRuGjw7H\ndpGnFHeGBCmmEokEd/3qXTz44IO0fbGNp7/zND949gf82HU/xvUvv54d6R28+1ffbUCQYsyQIMXZ\n6+GF734ht3ALs+dm+dLol7ip6ya2btn6/OeS4suFi1KM5Xbl+NCeD3H9F67n6Q8+DXl4+oNPc/0X\nrudDez5Ebpe3bKQ480qCFFPlcplsNkuhUKBUulTLoVgsUiwWOXr0KJlMhqGhIctESzFlSJBiqFwu\ns3fvXqamppZsUyqVKJVKdHV1MTo6alCQYsjbDVIMZbPZqwaExYrFItlsNuIZSWpGhgQpZqanpykU\nClX1KRQKzMzMRDMhSU3LkCDFzKFDhy5bg7ASpVKJgYGBiGYkqVkZEqSYGR8fr2s/Sa3LkCDFzPz8\nfF37SWpdhgQpZtra2uraT1LrMiRIMdPZ2bmqfrt3767xTCQ1O0OCFDP9/f0kk8mq+iSTSQ4ePBjR\njCQ1K0OCFDOpVIpMJlNVn0wmQyqVimZCkpqWIUGKoaGhIdLp9IraptNphoeHI56RpGZkSJBiKJFI\nMDo6Snd395K3HpLJJN3d3Rw/ftxy0VJMGRKkmEokEoyMjDA2NkZvb+/zVxbS6TS9vb2MjY0xMjJi\nQJBizAJPUsylUikGBweZnJyko6ODI0eO0N7e3uhpSWoChgQpxvL5PPl8HoC5uTl27NjBgQMH2LRp\nEwC5XI5cLtfIKUpqoKhCwu8AvwDcAjwLvDyicSStgSFA0tVEtSahDRgGPhrR8SVJUsSiupJwb+Xr\nuyI6viRJiphPN0iSpFCGBEmSFKqa2w33Av3LtHkDMLnq2UjSVeSfyJM/UXka44dznH7mNNtftp1N\n11aexnh9jtwuF2JKtVJNSPgw8Kll2pxew1zYv38/mzdvvuw9V19LWpDblWPPS/Yw8IEBHpl8hOK5\nIs9teY597fvov6ff+hJa9xY/trzg/PnzkY23IbIjB94FfJDlH4FsByYmJibcxEVSqHK5TPbOLIVz\nBUqvK8G2RR+egeTJJJktGYYeGCKRSDRsnlK9LWyEBnRQ46v5UT3d8GpgS+XrRuBmgkDyDeD7EY0p\naZ0ql8vsvWMvU7dOBTc1r7QNSttKlGZLdN3RxejDowYFqQaiWrg4QJBm7gVeBHwFmCBIOZJUleyd\n2SAgLFdGYisUby2SvTNbl3lJ611UIeFdlWNfQ3AlYeHrIxGNJ2mdmp6epnCusHxAWLAVCucKzMzM\nRDktKRZ8BFJSUzt036FgDUIVSjtLDNw3ENGMpPgwJEhqauOPj1++SHEltsH418YjmY8UJ4YESU1t\n/rn56jttgPkLq+gn6TKGBElNrW1jW/WdLkLbNavoJ+kyhgRJTa3zpk44U2WnM7D75t2RzEeKE0OC\npKbWf08/yZPJqvokTyU5+L6DEc1Iig9DgqSmlkqlyGzJwOwKO8xCZkvGLZqlGjAkSGp6Qw8MkX4s\nvXxQmIX0Y2mGHxyuy7yk9c6QIKnpJRIJRh8epfub3SQ/n4QngYuVDy8CT0Ly80m6v9nN8aPH2bp1\npTsvrUz+iTxv+tCbePWbX82Ld72YF7zuBbx414t59ZtfzZs+9CbyT+SXP4jUgqKq3SBJNZVIJBh5\naISZmRkG7hvgkc8FVSDTW9Ls69hH/yejqQJZLpc5/NuHLxWWujV4f555vn/m+8wPz3P4C4f5mQd+\nxnoRWncMCZJaSiqVYvAjg0yenaTjcAdH7jpC+w3RVI+1sJTizpAgqWXkn8iTPxFc2p/74Rw7XrGD\nA391gE3XbgIg9/ocuV25mo23msJSIw+N1Gx8qdEMCZJaRm5XbUPA1TxfWCrsCkKYrVD4alBYyicr\ntF64cFGSQlhYSjIkSFIoC0tJhgRJCmVhKck1CZJaSD6fJ5+vLFycm+P06dNs376dTZsqCxdzOXK5\n2qxZsLCUZEiQ1EIWh4DJyUk6OjrI5/O0t9f+EcjOmzo5ceZEdbccLCyldcbbDZIUwsJSkiFBkkJZ\nWEoyJEjSkiwspbgzJEhqKTMzM/T19dHT0wNAT08PfX19zMzM1HysRheWkhrNhYuSWkK5XCabzVIo\nFCiVLm1yVCwWKRaLHD16lEwmw9DQUE3rJzSqsJTUDAwJkppeuVxm7969TE1NLdmmVCpRKpXo6upi\ndLS2hZaerxnRBa/5qdew8ZmNbH/Zdp6+9ml+a+y3yH2vfttFS/VkSJDU9LLZ7FUDwmLFYpFsNsvI\nSO0KLdWzZoTUTFyTIKmpTU9PUygUqupTKBQiWaMgxY0hQVJTO3To0GVrEFaiVCoxMGChJWmtDAmS\nmtr4+OoKJq22n6RLogoJKeBBYAr4J+D/AvcCbmouqSrz86srmLTafpIuiWrh4muBDcBdBAFhF/An\nwIuAeyIaU9I61Na2ut8tVttP0iVRhYTPVV4LZoD7gPdiSJBUhc7OTk6cOFF1v927a1doqZ7VJ6Vm\nsqGOY/034OeAsP9z24GJiYmJSKq5SWpdMzMz7Nmzp6rFi8lkkrGxsUg2OVqoPunPKzWLhXMS6AAm\na3nsei1cTAO/CXysTuNJWidSqRSZTKaqPplM7Qst1XM76MvGvLuPXbftIrM3w67bdtF3d7RjSotV\neyXhXqB/mTZv4PIkcyPwN8AIwRqFMF5JkLSkcrlMV1cXxWJx2bbpdJrjx2tXR2Gp7aAXJJPJmm8H\nXS6XuT17O1PfneLZ9mdh26IPz8B1k9fxmpe+hpGhkZruLKnWFOWVhGpDwisqr6s5DTxb+f5GgnAw\nBrzrKn3agYnbbruNzZs3X/aB9/okwcr/sR4eHq5pQFhuO+gF6XS6JttBl8tl9t6xl6lbp+Bqf41K\n5cnRh2u7BbWa2+L1MQvOnz/Po48+Ck0QEqrxSoKAMA68k0u108J4JUHSiszMzDAwMMAjjzxCsVgk\nnU6zb98++vtrX2jp9ttv59ixYytu393dvebtoG//pds59upjVw8IC2ah+5vdjDxUuy2o1XpacU3C\nK4FjBFcV7gESQLLykqRVS6VSDA4OcuTIEQCOHDnC4OBgzQNCI7aDnp6epnCusLKAALAVCufcglrR\niSok/CzBYsWfAc4AT1Ve34poPEmqqUZsB33ovkOUXlflmDtLDNznFtSKRlQh4U8rx95Y+XrNoj9L\nUtNrxHbQ44+PX75IcSW2wfjX3IJa0bBUtKSWceWmRjt27ODAgQORbGrUiO2g559bRd8NMH/BLagV\nDUOCpJZRz6edGrEddNvGVfS9CG3XuAW1omEVSEkK0dnZuap+a9kOuvOmzmAVVzXOwO6ba7cFtbSY\nIUGSQvT395NMVvdAVjKZ5ODBg6sf855+kierHPNUkoPvW/2Y0tUYEiQpRCO2g06lUmS2ZGB2hR1m\nIbOl9ltQSwsMCZK0hKGhIdLp9IraptNphoeH1z7mA0OkH0svHxQqOy4OP7j2MaWlGBIkaQmJRILR\n0VG6u7uXvPWQTCbp7u6uWb2IRCLB6MOj7Dy5k+s+ex08yaX9ai8CT8J1n72OnSd3cvxo7WpUSGF8\nukGSriKRSDAyMlLX7aATiQQnR04GY943wPgXx5m/ME/bNW103txJ/1/UfszFZmZmGPjAAOOPjzP/\n3DxtG9vovKmT/nuiHVfNJ8raDdWwdoOklrCwT/56/HlVLpfJ3pmlcK4Q7Px4RfXJ5MkkmS0Zhh6o\nXcVLrV2UtRu8kiBJy6jnJk6Ncln1yTeENNgGpW0lSrMluu7osvpkTHglQZJk9ckW1opVICVJLcLq\nk1qKIUGSYs7qk1qKaxIkqQlduQ7i9OnTbN++PZJ1EOOPj8Obquy0Dca/aPXJ9c6QIElNaHEIWLjn\nnM/nI1m3ZfVJLcXbDZLUpGZmZujr66OnpweAnp4e+vr6ar4WwOqTWopXEiSpyZTLZbLZLIVCgVLp\n0lqBYrFIsVjk6NGjZDIZhoZqs19B502dnDhz4vJ9EZZj9clY8EqCJDWRcrnM3r17OXbs2GUBYbFS\nqcSxY8fo6uqiXC6veUyrT2ophgRJaiLZbJapqakVtS0Wi2Sz2TWPafVJLcWQIElNYnp6mkKhUFWf\nQqE2+xVYfVJhDAmS1CQOHTq05C2GpZRKJQYG1r5fwUL1ye5vdpP8fDK0+mTy80m6v9lt9ckYceGi\nJDWJ8fHV7Tuw2n5XSiQSjDw0snT1yU9aBTJuDAmS1CTm51e378Bq+y0llUox+JHBmh5TrcnbDZLU\nJNraVrfvwGr7ScsxJEhSk+js7FxVv9273a9A0TAkSFKT6O/vJ5mscr+CZJKDB92vQNEwJEhSk0il\nUmQymar6ZDLuV6DoGBIkqYkMDQ2RTqdX1DadTjM87H4Fik5UIeGzwGngB8BTwJ8DN0Q0liStG4lE\ngtHRUbq7u5e89ZBMJunu7ub4cfcrULSiCgl/DfwysAN4B5AG/jKisSRpXUkkEoyMjDA2NkZvb+/z\nVxbS6TS9vb2MjY0xMjJiQFDkoton4f5F3z8J/B7waWAj8FxEY0rSupJKpRgcHGRycpKOjg6OHDlC\ne3t7o6elGKnHZkpbgF8DRjAgSNKK5PN58vk8AHNzc+zYsYMDBw6wadMmAHK5HLlcrpFTVAxEGRJ+\nD7gbeCHwZeDNEY4lSeuKIUDNoJo1CfcCF5Z5Lb4O9vvALcDPAc8CnwE2rHnGkiSpLqr5R/sVldfV\nnCYIBFd6JcHahDcCx0M+bwcmbrvtNjZv3nzZB6ZpSZICi29DLTh//jyPPvooQAcwWcvx6vWb/asI\nAsRPA4+GfN4OTExMTLgoR5KkKiwsbCWCkBDFmoTdldffAt8BXgMMAN8AxiIYT5IkRSCKfRL+CfhX\nwF8BBeBB4HGCqwg/jGA8SZIUgSiuJJwA/mUEx5UkSXVk7QZJkhTKkCBJkkLVY8dFSVKLuHKnx9On\nT7N9+3Z3eowpQ4Ik6XmLQ8DCo3X5fN7H02PK2w2SJCmUIUGSJIUyJEiSpFCuSZAkNVT+iTz5E5XF\nkj+c4/Qzp9n+su1surayWPL1OXK7XCzZCIYESVJD5XZdCgGTZyfpONxB/h152m9wsWSjebtBktRw\nMzMz9N3dR8/be+BT0PP2Hvru7mNmZqbRU4s1ryRIkhqmXC6TvTNL4VyB0utK8PPB+0WKFM8UOfpr\nR8lsyTD0wBCJRKKxk40hQ4IkqSHK5TJ779jL1K1T8IaQBtugtK1EabZE1x1djD48alCoM283SJIa\nIntnNggIW5dpuBWKtxbJ3pmty7x0iSFBknSZmZkZ+vr66OnpAaCnp4e+vtquD5ienqZwrrB8QFiw\nFQrnCq5RqDNDgiQJCC7/33777ezZs4ePf/zjFItFAIrFIh//+MfZs2cPt99+O+Vyec1jHbrvULAG\noQqlnSUG7htY89haOdckSJKC9QF79zI1NbVkm1KpRKlUoquri9HRta0PGH98HN5UZadtMP7F8VWP\nqep5JUGSRDabvWpAWKxYLJLNrm19wPxz89V32gDzF1bRT6tmSJCkmJuenqZQKFTVp1BY2/qAto1t\n1Xe6CG3XrKKfVs2QIEkxd+jQIUqlKtcHlEoMDKx+fUDnTZ1wpspOZ2D3zbtXPaaqZ0iQpJgbH1/d\nff7V9gPov6ef5MlkVX2Sp5IcfN/BVY+p6hkSJCnm5udXd59/tf0AUqkUmS0ZmF1hh1nIbMmQSqVW\nPaaq59MNkhRzbW2ru8+/2n4Lhh4YouuOLoq3Fq++X8IspB9LM3x0eE3jXSmfz5PPV6pPzs1x+vRp\ntm/fzqZNleqTuRy5XLyrTxoSJCnmOjs7OXHiRNX9du9e2/qARCLB6MOjQe2GrxYo7SzBNmADcBE4\nE9xiyGzJMHx0mK1bV7rz0sosDgGTk5N0dHSQz+dpb7f65AJvN0hSzPX395NMVrk+IJnk4MG1rw9I\nJBKMPDTC2CfH6N3US/pzafgUpD+XpndTL2OfHGPkoZGaBwStjFcSJCnmUqkUmUymqiccMpnarg9I\npVIMfmSQybOTdBzu4MhdR2i/wd/oG80rCZIkhoaGSKfTK2qbTqcZHq7t+gA1J68kSJKC9QGjo2Sz\nWQqFQuhVhWQySSaTYXi4tusD8k/kyZ+oLCD84Rw7XrGDA391gE3XVhYQvj5Hble8FxA2iiFBkgRU\n1geMjDAzM8PAwACPPPIIxWKRdDrNvn376O/vj+QRxNwuQ0CzijokXAd8CbgJuAV4POLxJElrlEql\nGBwcfH7F/5EjR1zxH1NRr0n4feBbEY8hSZIiEGVIeDNBIdD3RTiGJEmKSFS3GxLAYeCtwA8iGkOS\nJEUoiisJG4A/Bf4YmIzg+JIkqQ6quZJwL9C/TJtOoAt4MfD+Kz7bsNwA+/fvZ/PmzZe9597ZkiQF\nFtebWHD+/PnIxqsmJHwY+NQybU4D/wXYAzx7xWdfBj4B9C7V+f7773cFrSRJSwj7xXnhKZQoVBMS\nvl15Lee3gN9Z9OdXAp8Deggeh5QkSS0gijUJTwInF72+UXm/CDwVwXiSJK3KzMwMfX199PT0ANDT\n00NfXx8zMzONnViTqNeOixfrNI4kaQ0W3/Oem5tjx44dHDhwgE2bKlskr5N1YuVyOXQL6mKxSLFY\n5OjRo2QyGYaGhkgkEg2caWPVIyTMABvrMI4kaY3WSwi4mnK5zN69e5mamlqyTalUolQq0dXVxejo\naGyDglUgJUmxks1mrxoQFisWi2Sz2Yhn1LwMCZKk2JienqZQKFTVp1AoxHaNgiFBkhQbhw4dCi2D\nfTWlUomBgYGIZtTcDAmSpNgYHx+va79WZ0iQJMXG/Px8Xfu1OkOCJCk22tra6tqv1RkSJEmx0dnZ\nuap+u3fvrvFMWoMhQZIUG/39/SSTyar6JJNJDh48GNGMmpshQZIUG6lUikwmU1WfTCZDKpWKZkJN\nzpAgSYqVoaEh0un0itqm02mGh4cjnlHzMiRIkmIlkUgwOjpKd3f3krcekskk3d3dHD9+nK1bt9Z5\nhs3DkCBJip1EIsHIyAhjY2P09vayLbUNgG2pbfT29jI2NsbIyEisAwIYEiRJMZZKpRgcHOT9H3s/\nAO//2PsZHByM7RqEKxkSJElSKEOCJEkKZUiQJEmhDAmSJCmUIUGSJIUyJEiSpFCGBEmSFMqQIEmS\nQhkSJElSKEOCJEkKZUiQJEmhDAmSJCnUtY2egCRJjZDP58nn8wDMPjMLr4AP/+6HGf6jYQByuRy5\nXK6RU2w4Q4IkKZYWh4DJs5N0HO7go3d9lPYb2hs8s+YR1e2GGeDCFa/fjWgsSZIUgaiuJFwEDgJ/\nsui970c0liRJikCUtxv+EZiN8PiSJClCUT7d8J+Ap4GvAL8NtEU4liRJqrGoriT8ITABfAf4KeC/\nAz8O/NuIxpMkSTVWzZWEe/nRxYhXvhaWhN4PPAqcAB4Efh14N/DyWkxakiRFr5orCR8GPrVMm9NL\nvP+lytefAMaX6rx//342b9582Xs+pypJUmDx3g4Lzp8/H9l41YSEb1deq/EvKl/PXq3R/fffT3u7\nz6dKkhQm7BfnyclJOjo6IhkvijUJtwJ7gBHgGaAT+APgfwFnIhhPkiRFIIqQ8CzQA/QD1xHcgjgM\n/H4EY0mSpIhEERK+QnAlQZIktTCrQEqSpFCGBEmSFMqQIEmSQhkSJElSKEOCJEkKZUiQJEmhDAmS\nJCmUIUGy/M51AAAE9ElEQVSSJIUyJEiSpFCGBEmSFMqQIEmSQhkSJElSKEOCJEkKZUiQJEmhDAmS\nJCmUIUGSJIUyJEiSpFCGBEmSFMqQIEmSQhkSJElSKEOCJEkKZUiQJEmhDAmSJCmUIUGSJIUyJEiS\npFCGBEmSFMqQIEmSQhkSJElSqChDwi8AXwL+CfgH4C8iHEtasXw+3+gpKCY819TqogoJ7wD+HHgQ\nuAnYC3wyorGkqviDW/XiuaZWd21Ex/xD4H3Axxe9/40IxpIkSRGJ4kpCO3AjcBH4CvAU8DDwkxGM\n1XD1/k2hluOt5VjV9q2m/UraLtdmPf4G57lW+/aea+Hieq7xRHRjteq5FkVIeE3l673AAPCLwHeA\nY8DLIxivoeL6P5M/uOvPc6327T3XwsX1XDMk/KhqbjfcC/Qv06aTS8HjvwGfrnzfC5wBfhk4vFTn\nU6dOVTGd5nD+/HkmJydbcry1HKvavtW0X0nb5dpc7fN6/zerFc+12rf3XAsXx3Pt1D+cgjk49fgp\nOFv7saI816L8t3NDFW1fUXldzWmCRYpfBN4IHF/02WPAF4CDIf1uAMaBV1YxH0mSFPgWwS/qK4w4\nK1PNlYRvV17LmQCeBTJcCgltQIogRIQ5S/CXu6GK+UiSpMBZahwQovRB4EngZ4HXAg8QTP5ljZyU\nJElqvGuBDwAl4Bngc8DOhs5IkiRJkiRJkiRJkiTpR70E+D8EOzieAH6zsdPROvYqgo2//g74GvCv\nGzobrXefBs4B/7PRE9G69YtAAfh74N0NnktkrgE2Vb7/MWAK+GeNm47WsSRBUTIIzrEnCc45KQo/\nTfBD3JCgKFwLfJ1ge4EXEwSFLdUcIMpS0bV0AZirfP9CYH7Rn6VaKgGPV77/B4Lf8qr6n0qqwt8A\n/9joSWjd2k1wVfQswXn2MPBz1RygVUICBHssfA34JkGVye81djqKgTcQ7Er6rUZPRJJW4UYu//l1\nhip3Nm6lkPAMcDPw48DdwE80djpa514B/BlwV6MnIkmrdHGtB4gqJOwDHiJIMBeAt4a0+Q1gGvgB\n8GWCWg8L/h3BIsVJgi2dF5slWFh2S01nrFYVxbl2HfCXwO8S1ByRILqfa2v+Qa51a63n3FNcfuXg\nVTTJldGfJygT/TaCv9hbrvj8VwjqO/QRbNv8QYLbB69a4nhbgZdWvn8pwT3j19Z2ympRtT7XNgB5\n4L9GMVm1tFqfawu6ceGiwq31nLuWYLHijQRPCf498PLIZ12lsL/Yl4A/uuK9kwS/uYVpJ0jgX628\nems5Qa0btTjX3gg8R/Db3lcqr5+s4Ry1PtTiXINgy/pZ4PsET9J01GqCWndWe879EsETDt8A7oxs\ndmtw5V/sBQRPJ1x52eR+gtsI0mp5rqlePNdUbw055xqxcPF6YCNQvuL9WYJn1KVa8VxTvXiuqd7q\ncs610tMNkiSpjhoREp4muOebuOL9BMGGD1KteK6pXjzXVG91OecaERL+HzDBj+769LPA8fpPR+uY\n55rqxXNN9dbS59yLCPYxuIVgscX+yvcLj2X0EDy20QvsJHhs47ss/6iQdCXPNdWL55rqbd2ec90E\nf6ELBJdDFr4fXNTmvQQbQMwB41y+AYS0Ut14rqk+uvFcU3114zknSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZLUAv4/ZzQeXoShUskAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-6,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"green\")\n", + "errorbar(fqd, p2, yerr=p2e, fmt='o', ms=10, color=\"black\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 5.670e+03 9.675e+00 inf -- 2.919e+02 -- -0.156222 -0.68176 -1.81406 -2.12926 -2.71269 -3.36881 -6.08072 -6.42184 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1\n", + " 3 1.047e+03 1.151e+01 2.879e+00 -- 2.948e+02 -- -0.118762 -0.639838 -1.76688 -2.08895 -2.66889 -3.26353 -5.78072 -6.12184 0.0424515 0.105123 0.138683 0.0948799 0.140121 0.0393153 2.81332 0.248074\n", + " 5 4.807e+02 1.352e+01 2.643e+00 -- 2.974e+02 -- -0.0866187 -0.605762 -1.72887 -2.05583 -2.63238 -3.19092 -6.08072 -5.82184 0.000648562 0.108523 0.164491 0.0915061 0.170413 0.00913963 2.85855 1.07978\n", + " 7 1.906e+02 1.570e+01 2.338e+00 -- 2.998e+02 -- -0.0590998 -0.577513 -1.69772 -2.02818 -2.60158 -3.1372 -6.38072 -5.52184 -0.0305296 0.110846 0.182461 0.0892265 0.194212 -0.00858619 2.71513 -3.11054\n", + " 9 5.891e+01 1.810e+01 2.317e+00 -- 3.021e+02 -- -0.0354896 -0.55376 -1.67186 -2.0048 -2.57534 -3.09575 -6.30939 -5.82184 -0.0543126 0.112411 0.195339 0.0877287 0.21341 -0.0199574 1.23313 2.11694\n", + " 11 5.912e+01 2.072e+01 2.113e+00 -- 3.042e+02 -- -0.0151439 -0.533554 -1.65012 -1.98485 -2.55283 -3.06281 -6.00939 -5.52184 -0.0727701 0.113507 0.204816 0.0866854 0.229407 -0.0274598 -2.84324 2.21189\n", + " 13 5.318e+02 2.358e+01 2.081e+00 -- 3.063e+02 -- 0.00246155 -0.516217 -1.63169 -1.96771 -2.5334 -3.03613 -6.30939 -5.22184 -0.0873173 0.114241 0.211893 0.0859833 0.242956 -0.0325361 -0.803414 1.81103\n", + " 15 6.000e+01 2.669e+01 1.754e+00 -- 3.080e+02 -- 0.0177641 -0.501232 -1.61594 -1.95288 -2.51654 -3.01421 -6.60939 -4.92184 -0.0989192 0.114745 0.21724 0.085486 0.254699 -0.0358684 -2.05745 -0.439047\n", + " 17 2.760e+02 3.007e+01 2.029e+00 -- 3.101e+02 -- 0.0311238 -0.488205 -1.60242 -1.93999 -2.50187 -2.99581 -6.90939 -4.99492 -0.108184 0.115134 0.221508 0.0852356 0.26512 -0.0377338 1.31525 1.49865\n", + " 19 3.455e+02 3.375e+01 1.932e+00 -- 3.120e+02 -- 0.0428159 -0.476826 -1.59071 -1.92874 -2.48903 -2.98053 -6.60939 -4.69492 -0.115759 0.115347 0.224648 0.0849875 0.274357 -0.0388865 2.71661 0.824234\n", + " 21 5.627e+02 3.773e+01 2.106e+00 -- 3.141e+02 -- 0.0530961 -0.466839 -1.58055 -1.91888 -2.47782 -2.96759 -6.90939 -4.39492 -0.121894 0.115561 0.227171 0.0847372 0.282893 -0.0391746 3.09606 1.24474\n", + " 23 1.412e+03 4.204e+01 2.098e+00 -- 3.162e+02 -- 0.0621536 -0.458045 -1.57168 -1.9102 -2.468 -2.95676 -7.20939 -4.18138 -0.126953 0.115732 0.229039 0.084359 0.29081 -0.0390341 -1.48027 1.23885\n", + " 25 4.162e+04 4.667e+01 1.855e+00 -- 3.181e+02 -- 0.0701599 -0.450276 -1.56393 -1.90253 -2.45941 -2.94767 -7.50939 -4.06761 -0.131108 0.115932 0.230463 0.0838354 0.298357 -0.0385057 0.151626 1.24726\n", + " 27 1.368e+03 5.163e+01 1.694e+00 -- 3.197e+02 -- 0.0772509 -0.443397 -1.55713 -1.89576 -2.45187 -2.94001 -7.20939 -3.99039 -0.134522 0.11614 0.231552 0.0832518 0.30556 -0.0376963 2.85355 1.25729\n", + " 29 3.278e+03 5.692e+01 1.564e+00 -- 3.213e+02 -- 0.0835427 -0.437294 -1.55116 -1.88977 -2.44524 -2.93357 -7.50939 -3.9332 -0.137326 0.116351 0.232387 0.0826471 0.312468 -0.0366776 2.17754 1.26747\n", + " 31 7.767e+02 6.255e+01 1.446e+00 -- 3.228e+02 -- 0.0891349 -0.43187 -1.54591 -1.88447 -2.4394 -2.92816 -7.20939 -3.88882 -0.139623 0.116565 0.233032 0.0820438 0.319124 -0.0354977 -1.72243 1.27737\n", + " 33 6.146e+04 6.851e+01 1.343e+00 -- 3.241e+02 -- 0.0941131 -0.427041 -1.5413 -1.87977 -2.43426 -2.92364 -7.50939 -3.85335 -0.141498 0.116784 0.233532 0.0814561 0.325567 -0.0341934 0.110556 1.28681\n", + " 35 5.141e+02 7.481e+01 1.246e+00 -- 3.253e+02 -- 0.0985508 -0.422736 -1.53723 -1.87561 -2.42973 -2.91988 -7.20939 -3.82441 -0.143017 0.117008 0.233923 0.0808916 0.331826 -0.0327907 0.968192 1.29571\n", + " 37 2.561e+03 8.143e+01 1.157e+00 -- 3.265e+02 -- 0.102512 -0.418892 -1.53365 -1.87193 -2.42573 -2.9168 -6.90939 -3.80046 -0.144236 0.11724 0.234234 0.0803546 0.337926 -0.0313104 0.474092 1.30403\n", + " 39 4.175e+02 8.835e+01 1.071e+00 -- 3.276e+02 -- 0.106051 -0.415457 -1.53049 -1.86867 -2.4222 -2.91429 -6.60939 -3.78043 -0.145202 0.117482 0.234484 0.0798467 0.343885 -0.0297682 2.50013 1.31174\n", + " 41 2.484e+02 9.557e+01 9.861e-01 -- 3.286e+02 -- 0.109218 -0.412381 -1.52772 -1.86578 -2.41908 -2.91229 -6.30939 -3.76351 -0.14595 0.117736 0.234692 0.079367 0.349713 -0.0281813 -1.35794 1.31885\n", + " 43 1.664e+02 1.030e+02 9.286e-01 -- 3.295e+02 -- 0.112053 -0.409626 -1.52527 -1.86322 -2.41632 -2.91073 -6.60939 -3.74914 -0.146514 0.118004 0.234875 0.0789157 0.355418 -0.0265569 0.955065 1.32532\n", + " 45 3.715e+01 1.108e+02 8.360e-01 -- 3.303e+02 -- 0.114595 -0.407155 -1.52313 -1.86096 -2.41388 -2.90956 -6.30939 -3.73686 -0.146919 0.118288 0.235035 0.0784863 0.361005 -0.024906 -2.00648 1.33124\n", + " 47 1.757e+03 1.187e+02 7.899e-01 -- 3.311e+02 -- 0.116875 -0.404936 -1.52125 -1.85897 -2.41171 -2.90871 -6.60939 -3.7263 -0.147187 0.118587 0.235191 0.0780786 0.366467 -0.0232463 -0.606714 1.3366\n", + " 49 2.419e+03 1.268e+02 7.198e-01 -- 3.318e+02 -- 0.118922 -0.402941 -1.5196 -1.85722 -2.40977 -2.90815 -6.90939 -3.71719 -0.147336 0.118903 0.235343 0.0776863 0.371808 -0.0215787 -0.828333 1.34144\n", + " 50 3.758e+03 1.322e+04 4.674e+00 -- 3.272e+02 -- 0.137314 -0.384994 -1.50519 -1.84182 -2.39252 -2.9049 -8 -3.63812 -0.147803 0.122227 0.236936 0.0738852 0.423919 -0.00499483 -1.20255 1.3852\n", + " 52 2.909e+04 6.385e+02 1.073e+01 -- 3.379e+02 -- 0.136943 -0.384318 -1.50651 -1.84446 -2.39241 -2.90988 -8 -3.64036 -0.1468 0.121814 0.239523 0.0607648 0.447789 0.00582078 -0.683535 1.38625\n", + " 53 8.944e+04 2.504e+02 4.851e-01 -- 3.384e+02 -- 0.137108 -0.382857 -1.511 -1.85395 -2.38877 -2.93977 -8 -3.6534 -0.132666 0.131148 0.26174 0.0372861 0.519783 0.0387377 0.222008 1.38794\n", + " 55 1.907e+04 2.097e+02 2.143e-01 -- 3.386e+02 -- 0.137241 -0.382905 -1.51059 -1.85324 -2.38834 -2.93581 -7.7 -3.65133 -0.133058 0.131502 0.26506 0.0380769 0.517294 0.0298916 0.427458 1.38872\n", + " 57 2.701e+03 1.743e+02 1.707e-01 -- 3.388e+02 -- 0.137362 -0.382947 -1.51023 -1.85264 -2.38795 -2.93261 -7.4 -3.64964 -0.133373 0.131817 0.267849 0.0388293 0.515228 0.0226558 -1.3799 1.38928\n", + " 58 1.901e+04 6.807e+03 9.857e+00 -- 3.289e+02 -- 0.138463 -0.383316 -1.50699 -1.84755 -2.38449 -2.90718 -8 -3.63586 -0.135895 0.13461 0.291172 0.0458143 0.498444 -0.0363648 -0.545357 1.39317\n", + " 60 5.237e+04 4.383e+02 8.985e+00 -- 3.379e+02 -- 0.138201 -0.382988 -1.50809 -1.84815 -2.38423 -2.91079 -8 -3.63639 -0.138737 0.135181 0.288716 0.034039 0.510877 -0.0254366 -0.396913 1.39809\n", + " 61 8.766e+03 4.097e+02 8.172e-01 -- 3.387e+02 -- 0.137968 -0.382536 -1.51047 -1.85072 -2.38194 -2.93875 -8 -3.64468 -0.141543 0.135484 0.281935 0.0183923 0.556885 0.045315 1.79478 1.42693\n", + " 63 1.814e+04 3.493e+02 1.618e-01 -- 3.389e+02 -- 0.13803 -0.382587 -1.51013 -1.85062 -2.38179 -2.93566 -7.7 -3.64395 -0.140901 0.135271 0.284223 0.0205977 0.55377 0.0372067 -0.67593 1.42469\n", + " 64 4.667e+03 9.194e+03 7.138e+00 -- 3.317e+02 -- 0.138594 -0.383049 -1.50705 -1.84979 -2.38045 -2.91127 -8 -3.63796 -0.135166 0.133564 0.302461 0.0405415 0.526549 -0.0285933 1.72877 1.40601\n", + " 66 2.229e+03 8.468e+02 6.334e+00 -- 3.381e+02 -- 0.138375 -0.382821 -1.50788 -1.8493 -2.38027 -2.91526 -7.7 -3.63713 -0.138411 0.134331 0.300768 0.0296213 0.534063 -0.0172368 -2.02693 1.41805\n", + " 67 6.383e+03 4.433e+02 6.946e-01 -- 3.388e+02 -- 0.138019 -0.382446 -1.51012 -1.84832 -2.37854 -2.94579 -8 -3.63552 -0.145232 0.136059 0.290585 0.00900103 0.566205 0.0595408 -1.58605 1.49345\n", + " 69 2.791e+04 3.818e+02 1.832e-01 -- 3.389e+02 -- 0.13807 -0.382495 -1.50981 -1.84878 -2.37843 -2.94234 -8 -3.63605 -0.14425 0.135725 0.292234 0.0124456 0.563364 0.0504802 -0.811369 1.48719\n", + " 71 7.592e+03 3.289e+02 1.419e-01 -- 3.391e+02 -- 0.138118 -0.382539 -1.50952 -1.84915 -2.37833 -2.93967 -8 -3.63644 -0.143394 0.135448 0.293502 0.0154512 0.560893 0.0432337 1.73025 1.48211\n", + " 72 9.792e+00 1.238e+04 4.549e+00 -- 3.345e+02 -- 0.138556 -0.382946 -1.50702 -1.85213 -2.37736 -2.91947 -5 -3.63926 -0.135949 0.133151 0.302987 0.0415893 0.539598 -0.0143255 -2.01979 1.44199\n", + " 73 1.790e+03 2.036e+04 5.362e+00 -- 3.292e+02 -- 0.13686 -0.381484 -1.51285 -1.83573 -2.37645 -2.96346 -8 -3.61694 -0.169822 0.139603 0.306242 -0.0616507 0.578831 0.105014 -2.94898 1.60824\n", + " 75 2.000e+04 3.767e+03 7.143e+00 -- 3.363e+02 -- 0.136937 -0.381554 -1.51207 -1.84035 -2.37648 -2.95217 -8 -3.62182 -0.164447 0.137434 0.31164 -0.0445826 0.577957 0.0688955 -1.04621 1.58574\n", + " 77 1.670e+04 2.864e+03 1.308e+00 -- 3.376e+02 -- 0.137027 -0.381619 -1.51152 -1.84295 -2.37643 -2.94676 -8 -3.62459 -0.16153 0.135849 0.316596 -0.035261 0.576777 0.0522889 -1.10409 1.57318\n", + " 79 3.940e+03 2.269e+03 6.679e-01 -- 3.383e+02 -- 0.137114 -0.381682 -1.51105 -1.8448 -2.37637 -2.94335 -8 -3.62651 -0.159205 0.134652 0.320529 -0.028154 0.575644 0.041706 1.23968 1.56483\n", + " 81 3.136e+03 1.843e+03 4.148e-01 -- 3.387e+02 -- 0.137197 -0.381742 -1.51062 -1.84618 -2.3763 -2.9411 -7.7 -3.62789 -0.157267 0.133753 0.323527 -0.0224013 0.574634 0.0345912 2.94827 1.55921\n", + " 83 7.332e+03 1.524e+03 2.814e-01 -- 3.390e+02 -- 0.137277 -0.381798 -1.51025 -1.84723 -2.37623 -2.9396 -8 -3.6289 -0.155627 0.133083 0.325719 -0.0176294 0.573764 0.0297776 1.97421 1.55551\n", + " 84 4.352e+01 2.419e+05 8.521e+00 -- 3.305e+02 -- 0.13802 -0.382337 -1.50692 -1.85513 -2.37556 -2.92991 -5 -3.63632 -0.141645 0.128163 0.340891 0.0224931 0.566412 -0.00221606 2.81464 1.53266\n", + " 86 2.646e+01 1.360e+05 5.846e+00 -- 3.363e+02 -- 0.137542 -0.382135 -1.50734 -1.85175 -2.3755 -2.93273 -4.7 -3.63458 -0.154265 0.130343 0.343497 0.00406723 0.567925 0.0074277 1.76444 1.5434\n", + " 88 3.599e+00 1.247e+03 4.005e+00 -- 3.403e+02 -- 0.137281 -0.382038 -1.50761 -1.84969 -2.37546 -2.93454 -4.44346 -3.63355 -0.162752 0.1317 0.344853 -0.00669382 0.568721 0.0140179 2.19787 1.55056\n", + " 90 1.187e+00 3.038e+03 3.904e-01 -- 3.407e+02 -- 0.13727 -0.382043 -1.50767 -1.84906 -2.37542 -2.93544 -4.35974 -3.63317 -0.162904 0.131742 0.343848 -0.00910299 0.569009 0.0171214 2.09178 1.55417\n", + " 92 7.462e-01 5.052e+03 2.290e-01 -- 3.409e+02 -- 0.13728 -0.382056 -1.50771 -1.84873 -2.3754 -2.93603 -4.30688 -3.63296 -0.16231 0.131703 0.342609 -0.0100924 0.569167 0.0191537 2.00906 1.55662\n", + " 94 5.215e-01 6.434e+03 1.735e-01 -- 3.411e+02 -- 0.137299 -0.382072 -1.50773 -1.84856 -2.37538 -2.93645 -4.26782 -3.63284 -0.161418 0.131643 0.341287 -0.0103928 0.569258 0.0205828 1.9431 1.5584\n", + " 96 3.952e-01 7.618e+03 1.468e-01 -- 3.413e+02 -- 0.137323 -0.38209 -1.50774 -1.84848 -2.37536 -2.93676 -4.23675 -3.63278 -0.16042 0.131584 0.339946 -0.0103403 0.569314 0.0216563 1.89017 1.55979\n", + " 98 3.181e-01 8.762e+03 1.305e-01 -- 3.414e+02 -- 0.137349 -0.382109 -1.50775 -1.84843 -2.37535 -2.93701 -4.21105 -3.63274 -0.159411 0.131539 0.338623 -0.0101102 0.56935 0.0225121 1.84758 1.56093\n", + " 100 3.494e-01 9.944e+03 1.188e-01 -- 3.415e+02 -- 0.137376 -0.382128 -1.50775 -1.84841 -2.37533 -2.93721 -4.18933 -3.63272 -0.158443 0.131511 0.337339 -0.00979793 0.569375 0.0232282 1.81316 1.56189\n", + " 102 3.644e-01 1.121e+04 1.096e-01 -- 3.416e+02 -- 0.137403 -0.382146 -1.50776 -1.8484 -2.37532 -2.93738 -4.17073 -3.63271 -0.157537 0.131501 0.336106 -0.0094556 0.569394 0.023849 1.78523 1.56274\n", + " 104 3.648e-01 1.258e+04 1.021e-01 -- 3.417e+02 -- 0.13743 -0.382164 -1.50776 -1.84839 -2.37531 -2.93754 -4.15467 -3.6327 -0.156705 0.131508 0.33493 -0.00911106 0.569409 0.0244002 1.7624 1.56349\n", + " 106 3.569e-01 1.408e+04 9.589e-02 -- 3.418e+02 -- 0.137456 -0.382182 -1.50777 -1.84838 -2.3753 -2.93768 -4.14072 -3.6327 -0.155947 0.13153 0.333816 -0.00877869 0.569422 0.0248968 1.74363 1.56416\n", + " 108 3.443e-01 1.574e+04 9.062e-02 -- 3.419e+02 -- 0.137481 -0.382199 -1.50777 -1.84838 -2.3753 -2.9378 -4.12855 -3.63269 -0.155261 0.131565 0.332764 -0.00846538 0.569432 0.0253482 1.72809 1.56477\n", + " 110 3.290e-01 1.757e+04 8.614e-02 -- 3.420e+02 -- 0.137504 -0.382216 -1.50778 -1.84837 -2.37529 -2.93791 -4.11789 -3.63269 -0.154643 0.131611 0.331773 -0.00817392 0.569442 0.0257602 1.71513 1.56532\n", + " 112 3.124e-01 1.961e+04 8.229e-02 -- 3.421e+02 -- 0.137527 -0.382232 -1.50779 -1.84837 -2.37528 -2.93801 -4.10852 -3.63269 -0.154086 0.131666 0.330844 -0.00790497 0.569451 0.0261371 1.70424 1.56582\n", + " 114 2.950e-01 2.186e+04 7.896e-02 -- 3.422e+02 -- 0.137548 -0.382247 -1.50779 -1.84836 -2.37527 -2.9381 -4.10026 -3.63269 -0.153586 0.131728 0.329975 -0.00765804 0.569459 0.0264824 1.69505 1.56628\n", + " 116 2.774e-01 2.436e+04 7.607e-02 -- 3.422e+02 -- 0.137569 -0.382262 -1.5078 -1.84835 -2.37527 -2.93819 -4.09297 -3.63269 -0.153136 0.131795 0.329162 -0.00743212 0.569466 0.0267986 1.68724 1.5667\n", + " 118 2.597e-01 2.714e+04 7.354e-02 -- 3.423e+02 -- 0.137588 -0.382276 -1.50781 -1.84835 -2.37526 -2.93826 -4.08651 -3.63268 -0.152733 0.131866 0.328406 -0.00722598 0.569472 0.0270881 1.68057 1.56707\n", + " 120 2.423e-01 3.022e+04 7.133e-02 -- 3.424e+02 -- 0.137606 -0.38229 -1.50781 -1.84834 -2.37526 -2.93833 -4.08078 -3.63268 -0.15237 0.13194 0.327701 -0.0070383 0.569478 0.0273531 1.67485 1.56742\n", + " 122 2.253e-01 3.365e+04 6.937e-02 -- 3.424e+02 -- 0.137623 -0.382303 -1.50782 -1.84833 -2.37525 -2.93839 -4.07569 -3.63268 -0.152044 0.132015 0.327048 -0.00686775 0.569484 0.0275954 1.66993 1.56773\n", + " 124 2.087e-01 3.745e+04 6.764e-02 -- 3.425e+02 -- 0.137638 -0.382316 -1.50783 -1.84833 -2.37525 -2.93845 -4.07116 -3.63268 -0.151752 0.132092 0.326442 -0.00671305 0.569489 0.027817 1.66568 1.56802\n", + " 126 1.926e-01 4.168e+04 6.611e-02 -- 3.426e+02 -- 0.137653 -0.382328 -1.50783 -1.84832 -2.37525 -2.9385 -4.06713 -3.63268 -0.15149 0.132168 0.325881 -0.00657297 0.569493 0.0280195 1.66199 1.56827\n", + " 128 1.773e-01 4.637e+04 6.474e-02 -- 3.426e+02 -- 0.137667 -0.38234 -1.50784 -1.84831 -2.37524 -2.93855 -4.06353 -3.63268 -0.151255 0.132244 0.325363 -0.00644634 0.569497 0.0282044 1.65879 1.56851\n", + " 130 1.626e-01 5.158e+04 6.353e-02 -- 3.427e+02 -- 0.13768 -0.382351 -1.50784 -1.84831 -2.37524 -2.93859 -4.06031 -3.63268 -0.151045 0.132319 0.324886 -0.00633207 0.569501 0.0283732 1.656 1.56872\n", + " 132 1.487e-01 5.737e+04 6.244e-02 -- 3.428e+02 -- 0.137692 -0.382362 -1.50785 -1.8483 -2.37524 -2.93863 -4.05743 -3.63268 -0.150856 0.132392 0.324446 -0.00622911 0.569505 0.0285272 1.65356 1.56892\n", + " 134 1.356e-01 6.381e+04 6.147e-02 -- 3.428e+02 -- 0.137703 -0.382372 -1.50785 -1.84829 -2.37524 -2.93866 -4.05486 -3.63268 -0.150688 0.132464 0.324041 -0.00613648 0.569508 0.0286677 1.65143 1.56909\n", + " 136 1.233e-01 7.096e+04 6.059e-02 -- 3.429e+02 -- 0.137714 -0.382381 -1.50786 -1.84829 -2.37523 -2.9387 -4.05256 -3.63268 -0.150538 0.132535 0.32367 -0.00605327 0.569511 0.0287957 1.64957 1.56925\n", + " 138 1.118e-01 7.890e+04 5.981e-02 -- 3.429e+02 -- 0.137723 -0.382391 -1.50786 -1.84828 -2.37523 -2.93873 -4.05049 -3.63268 -0.150404 0.132603 0.32333 -0.00597864 0.569514 0.0289123 1.64794 1.5694\n", + " 140 1.012e-01 8.773e+04 5.910e-02 -- 3.430e+02 -- 0.137732 -0.382399 -1.50787 -1.84828 -2.37523 -2.93875 -4.04864 -3.63267 -0.150285 0.132669 0.323018 -0.00591178 0.569516 0.0290186 1.6465 1.56953\n", + " 142 9.132e-02 9.753e+04 5.847e-02 -- 3.431e+02 -- 0.137741 -0.382407 -1.50787 -1.84827 -2.37523 -2.93878 -4.04698 -3.63267 -0.150179 0.132732 0.322732 -0.00585198 0.569518 0.0291153 1.64524 1.56965\n", + " 144 8.225e-02 1.084e+05 5.790e-02 -- 3.431e+02 -- 0.137748 -0.382415 -1.50788 -1.84827 -2.37523 -2.9388 -4.04549 -3.63267 -0.150085 0.132794 0.322472 -0.00579854 0.56952 0.0292034 1.64413 1.56976\n", + " 146 7.394e-02 1.205e+05 5.739e-02 -- 3.432e+02 -- 0.137755 -0.382422 -1.50788 -1.84826 -2.37523 -2.93882 -4.04416 -3.63267 -0.150003 0.132852 0.322234 -0.00575085 0.569522 0.0292835 1.64315 1.56985\n", + " 148 6.635e-02 1.340e+05 5.692e-02 -- 3.432e+02 -- 0.137762 -0.382429 -1.50788 -1.84826 -2.37523 -2.93883 -4.04295 -3.63267 -0.14993 0.132909 0.322017 -0.00570833 0.569524 0.0293563 1.64229 1.56994\n", + " 150 5.944e-02 1.489e+05 5.650e-02 -- 3.433e+02 -- 0.137767 -0.382436 -1.50788 -1.84825 -2.37522 -2.93885 -4.04187 -3.63267 -0.149865 0.132963 0.321819 -0.00567045 0.569526 0.0294226 1.64153 1.57002\n", + " 152 5.317e-02 1.655e+05 5.613e-02 -- 3.434e+02 -- 0.137773 -0.382442 -1.50789 -1.84825 -2.37522 -2.93887 -4.0409 -3.63267 -0.149809 0.133014 0.32164 -0.00563675 0.569527 0.0294828 1.64086 1.5701\n", + " 154 4.750e-02 1.840e+05 5.579e-02 -- 3.434e+02 -- 0.137778 -0.382448 -1.50789 -1.84825 -2.37522 -2.93888 -4.04003 -3.63267 -0.14976 0.133063 0.321476 -0.00560678 0.569529 0.0295374 1.64027 1.57016\n", + " 156 4.239e-02 2.045e+05 5.548e-02 -- 3.435e+02 -- 0.137782 -0.382453 -1.50789 -1.84824 -2.37522 -2.93889 -4.03925 -3.63267 -0.149717 0.13311 0.321328 -0.00558015 0.56953 0.0295871 1.63974 1.57022\n", + " 158 3.778e-02 2.273e+05 5.521e-02 -- 3.435e+02 -- 0.137786 -0.382458 -1.50789 -1.84824 -2.37522 -2.9389 -4.03854 -3.63267 -0.149679 0.133154 0.321193 -0.00555649 0.569531 0.0296321 1.63928 1.57028\n", + " 160 3.366e-02 2.526e+05 5.496e-02 -- 3.436e+02 -- 0.13779 -0.382462 -1.5079 -1.84824 -2.37522 -2.93891 -4.03791 -3.63267 -0.149647 0.133196 0.321071 -0.0055355 0.569532 0.029673 1.63887 1.57033\n", + " 162 2.995e-02 2.807e+05 5.473e-02 -- 3.436e+02 -- 0.137794 -0.382467 -1.5079 -1.84823 -2.37522 -2.93892 -4.03734 -3.63267 -0.149619 0.133236 0.32096 -0.00551686 0.569533 0.0297101 1.63851 1.57037\n", + " 164 2.663e-02 3.119e+05 5.453e-02 -- 3.437e+02 -- 0.137797 -0.382471 -1.5079 -1.84823 -2.37522 -2.93893 -4.03683 -3.63267 -0.149594 0.133273 0.32086 -0.00550034 0.569534 0.0297438 1.63819 1.57041\n", + " 166 2.370e-02 3.467e+05 5.435e-02 -- 3.437e+02 -- 0.137799 -0.382475 -1.5079 -1.84823 -2.37522 -2.93894 -4.03636 -3.63266 -0.149574 0.133308 0.320769 -0.0054857 0.569535 0.0297742 1.6379 1.57045\n", + " 168 2.105e-02 3.852e+05 5.418e-02 -- 3.438e+02 -- 0.137802 -0.382478 -1.5079 -1.84823 -2.37522 -2.93894 -4.03595 -3.63266 -0.149556 0.133341 0.320686 -0.00547269 0.569536 0.0298019 1.63765 1.57048\n", + " 170 1.872e-02 4.281e+05 5.403e-02 -- 3.438e+02 -- 0.137804 -0.382481 -1.5079 -1.84823 -2.37522 -2.93895 -4.03557 -3.63266 -0.14954 0.133373 0.320612 -0.00546117 0.569536 0.0298269 1.63743 1.57051\n", + " 172 1.661e-02 4.757e+05 5.390e-02 -- 3.439e+02 -- 0.137806 -0.382484 -1.5079 -1.84822 -2.37522 -2.93895 -4.03524 -3.63266 -0.149527 0.133402 0.320545 -0.00545095 0.569537 0.0298495 1.63723 1.57054\n", + " 174 1.477e-02 5.286e+05 5.378e-02 -- 3.440e+02 -- 0.137808 -0.382487 -1.5079 -1.84822 -2.37522 -2.93896 -4.03493 -3.63266 -0.149516 0.133429 0.320484 -0.00544189 0.569537 0.02987 1.63705 1.57056\n", + " 176 1.314e-02 5.874e+05 5.367e-02 -- 3.440e+02 -- 0.13781 -0.382489 -1.50791 -1.84822 -2.37522 -2.93896 -4.03466 -3.63266 -0.149506 0.133454 0.320429 -0.00543385 0.569538 0.0298886 1.63689 1.57058\n", + " 178 1.169e-02 6.528e+05 5.357e-02 -- 3.441e+02 -- 0.137812 -0.382492 -1.50791 -1.84822 -2.37522 -2.93897 -4.03442 -3.63266 -0.149498 0.133478 0.320379 -0.00542671 0.569538 0.0299054 1.63675 1.5706\n", + " 180 1.036e-02 7.254e+05 5.348e-02 -- 3.441e+02 -- 0.137813 -0.382494 -1.50791 -1.84822 -2.37522 -2.93897 -4.0342 -3.63266 -0.149491 0.1335 0.320335 -0.00542037 0.569539 0.0299206 1.63663 1.57062\n", + " 182 9.239e-03 8.060e+05 5.340e-02 -- 3.442e+02 -- 0.137814 -0.382496 -1.50791 -1.84822 -2.37522 -2.93897 -4.034 -3.63266 -0.149485 0.133521 0.320294 -0.00541475 0.569539 0.0299343 1.63652 1.57064\n", + " 184 8.217e-03 8.957e+05 5.333e-02 -- 3.442e+02 -- 0.137815 -0.382498 -1.50791 -1.84822 -2.37522 -2.93898 -4.03382 -3.63266 -0.149481 0.13354 0.320258 -0.00540975 0.56954 0.0299467 1.63642 1.57065\n", + " 186 7.314e-03 9.952e+05 5.327e-02 -- 3.443e+02 -- 0.137816 -0.382499 -1.50791 -1.84821 -2.37522 -2.93898 -4.03366 -3.63266 -0.149476 0.133557 0.320225 -0.00540531 0.56954 0.0299579 1.63633 1.57066\n", + " 188 6.496e-03 1.106e+06 5.321e-02 -- 3.443e+02 -- 0.137817 -0.382501 -1.50791 -1.84821 -2.37522 -2.93898 -4.03351 -3.63266 -0.149472 0.133573 0.320195 -0.00540135 0.56954 0.029968 1.63625 1.57068\n", + " 190 5.793e-03 1.229e+06 5.315e-02 -- 3.444e+02 -- 0.137818 -0.382502 -1.50791 -1.84821 -2.37522 -2.93899 -4.03338 -3.63266 -0.14947 0.133589 0.320169 -0.00539784 0.56954 0.0299772 1.63618 1.57069\n", + " 192 5.217e-03 1.365e+06 5.311e-02 -- 3.444e+02 -- 0.137819 -0.382503 -1.50791 -1.84821 -2.37522 -2.93899 -4.03326 -3.63266 -0.149468 0.133603 0.320144 -0.00539472 0.569541 0.0299854 1.63612 1.5707\n", + " 194 4.529e-03 1.517e+06 5.306e-02 -- 3.445e+02 -- 0.13782 -0.382504 -1.50791 -1.84821 -2.37522 -2.93899 -4.03316 -3.63266 -0.149465 0.133615 0.320123 -0.0053919 0.569541 0.0299928 1.63606 1.57071\n", + " 196 4.139e-03 1.686e+06 5.303e-02 -- 3.445e+02 -- 0.13782 -0.382505 -1.50791 -1.84821 -2.37522 -2.93899 -4.03306 -3.63266 -0.149464 0.133627 0.320103 -0.00538946 0.569541 0.0299996 1.63601 1.57071\n", + " 198 3.573e-03 1.873e+06 5.299e-02 -- 3.446e+02 -- 0.137821 -0.382506 -1.50791 -1.84821 -2.37522 -2.93899 -4.03298 -3.63266 -0.149462 0.133636 0.320085 -0.00538723 0.569541 0.0300056 1.63597 1.57072\n", + " 200 3.302e-03 2.081e+06 5.296e-02 -- 3.446e+02 -- 0.137821 -0.382507 -1.50791 -1.84821 -2.37522 -2.93899 -4.0329 -3.63266 -0.14946 0.133646 0.32007 -0.00538531 0.569541 0.0300111 1.63593 1.57073\n", + " 202 2.976e-03 2.313e+06 5.293e-02 -- 3.447e+02 -- 0.137822 -0.382508 -1.50791 -1.84821 -2.37521 -2.93899 -4.03283 -3.63266 -0.149459 0.133656 0.320055 -0.00538353 0.569542 0.0300161 1.63589 1.57073\n", + " 204 2.400e-03 2.570e+06 5.291e-02 -- 3.448e+02 -- 0.137822 -0.382509 -1.50791 -1.84821 -2.37521 -2.939 -4.03277 -3.63266 -0.149457 0.133663 0.320042 -0.00538193 0.569542 0.0300205 1.63586 1.57074\n", + " 206 2.292e-03 2.855e+06 5.288e-02 -- 3.448e+02 -- 0.137823 -0.382509 -1.50791 -1.84821 -2.37521 -2.939 -4.03271 -3.63266 -0.149457 0.13367 0.320031 -0.00538063 0.569542 0.0300245 1.63583 1.57074\n", + " 208 2.150e-03 3.173e+06 5.287e-02 -- 3.449e+02 -- 0.137823 -0.38251 -1.50791 -1.84821 -2.37521 -2.939 -4.03266 -3.63266 -0.149456 0.13368 0.32002 -0.0053794 0.569542 0.0300281 1.6358 1.57075\n", + " 210 1.886e-03 3.525e+06 5.285e-02 -- 3.449e+02 -- 0.137823 -0.38251 -1.50791 -1.84821 -2.37521 -2.939 -4.03262 -3.63266 -0.149456 0.133687 0.320011 -0.00537824 0.569542 0.0300314 1.63578 1.57075\n", + " 212 1.670e-03 3.917e+06 5.283e-02 -- 3.450e+02 -- 0.137823 -0.382511 -1.50791 -1.84821 -2.37521 -2.939 -4.03258 -3.63266 -0.149454 0.133693 0.320002 -0.00537723 0.569542 0.0300343 1.63576 1.57075\n", + " 214 1.507e-03 4.352e+06 5.281e-02 -- 3.450e+02 -- 0.137824 -0.382511 -1.50791 -1.84821 -2.37521 -2.939 -4.03254 -3.63266 -0.149455 0.133696 0.319995 -0.00537633 0.569542 0.030037 1.63574 1.57076\n", + " 216 1.104e-03 4.836e+06 5.280e-02 -- 3.451e+02 -- 0.137824 -0.382512 -1.50791 -1.84821 -2.37521 -2.939 -4.03251 -3.63266 -0.149453 0.133698 0.319988 -0.00537552 0.569542 0.0300394 1.63572 1.57076\n", + " 218 1.248e-03 5.374e+06 5.279e-02 -- 3.451e+02 -- 0.137824 -0.382512 -1.50791 -1.84821 -2.37521 -2.939 -4.03247 -3.63266 -0.14945 0.133705 0.319982 -0.00537493 0.569542 0.0300416 1.63571 1.57076\n", + " 220 9.861e-04 5.971e+06 5.278e-02 -- 3.452e+02 -- 0.137824 -0.382512 -1.50791 -1.84821 -2.37521 -2.939 -4.03245 -3.63266 -0.14945 0.13371 0.319976 -0.00537426 0.569542 0.0300435 1.6357 1.57077\n", + " 222 1.025e-03 6.634e+06 5.277e-02 -- 3.452e+02 -- 0.137824 -0.382513 -1.50791 -1.84821 -2.37521 -2.939 -4.03242 -3.63266 -0.149451 0.133714 0.319971 -0.00537373 0.569542 0.0300453 1.63568 1.57077\n", + " 224 7.583e-04 7.371e+06 5.276e-02 -- 3.453e+02 -- 0.137825 -0.382513 -1.50791 -1.84821 -2.37521 -2.939 -4.0324 -3.63266 -0.14945 0.133716 0.319966 -0.00537318 0.569542 0.0300468 1.63567 1.57077\n", + " 226 6.529e-04 8.190e+06 5.275e-02 -- 3.453e+02 -- 0.137825 -0.382513 -1.50791 -1.84821 -2.37521 -2.939 -4.03238 -3.63266 -0.149445 0.133722 0.319962 -0.00537277 0.569542 0.0300482 1.63566 1.57077\n", + " 228 8.712e-04 9.101e+06 5.274e-02 -- 3.454e+02 -- 0.137825 -0.382513 -1.50791 -1.84821 -2.37521 -2.939 -4.03236 -3.63266 -0.14945 0.133724 0.319959 -0.00537242 0.569543 0.0300495 1.63566 1.57077\n", + " 230 7.297e-04 1.011e+07 5.274e-02 -- 3.454e+02 -- 0.137825 -0.382514 -1.50791 -1.84821 -2.37521 -2.939 -4.03235 -3.63266 -0.149455 0.133729 0.319955 -0.00537195 0.569543 0.0300506 1.63565 1.57077\n", + " 232 7.713e-04 1.124e+07 5.273e-02 -- 3.455e+02 -- 0.137825 -0.382514 -1.50791 -1.84821 -2.37521 -2.939 -4.03233 -3.63266 -0.149461 0.133726 0.319952 -0.00537156 0.569543 0.0300516 1.63564 1.57077\n", + " 234 1.232e-03 1.248e+07 5.273e-02 -- 3.455e+02 -- 0.137825 -0.382514 -1.50791 -1.84821 -2.37521 -2.939 -4.03232 -3.63266 -0.14946 0.133736 0.319949 -0.00537133 0.569543 0.0300525 1.63563 1.57078\n", + " 236 8.332e-04 1.387e+07 5.272e-02 -- 3.456e+02 -- 0.137825 -0.382514 -1.50791 -1.84821 -2.37521 -2.939 -4.03231 -3.63266 -0.149466 0.133721 0.319947 -0.00537067 0.569543 0.0300532 1.63562 1.57078\n", + " 238 1.904e-03 1.541e+07 5.271e-02 -- 3.456e+02 -- 0.137825 -0.382514 -1.50791 -1.84821 -2.37521 -2.939 -4.0323 -3.63266 -0.149478 0.133724 0.319945 -0.00537055 0.569543 0.0300541 1.63562 1.57078\n", + " 240 1.685e-03 1.712e+07 5.271e-02 -- 3.457e+02 -- 0.137825 -0.382514 -1.50791 -1.84821 -2.37521 -2.939 -4.03229 -3.63266 -0.149472 0.13372 0.319943 -0.00536953 0.569543 0.0300545 1.63561 1.57078\n", + " 242 2.904e-03 1.903e+07 5.268e-02 -- 3.458e+02 -- 0.137825 -0.382514 -1.50791 -1.84821 -2.37521 -2.939 -4.03228 -3.63266 -0.149485 0.133743 0.319941 -0.00537003 0.569543 0.0300553 1.63561 1.57078\n", + " 244 2.822e-03 2.113e+07 5.268e-02 -- 3.458e+02 -- 0.137826 -0.382515 -1.50791 -1.84821 -2.37521 -2.939 -4.03227 -3.63266 -0.149462 0.133738 0.319939 -0.00536847 0.569543 0.0300552 1.63559 1.57078\n", + " 246 3.296e-03 2.349e+07 5.271e-02 -- 3.459e+02 -- 0.137826 -0.382514 -1.50791 -1.84821 -2.37521 -2.939 -4.03227 -3.63266 -0.149478 0.133747 0.319938 -0.00536999 0.569543 0.0300566 1.63561 1.57078\n", + " 248 8.922e-04 2.610e+07 5.276e-02 -- 3.459e+02 -- 0.137826 -0.382515 -1.50791 -1.84821 -2.37521 -2.939 -4.03226 -3.63266 -0.149469 0.133756 0.319936 -0.00536822 0.569543 0.0300563 1.63559 1.57078\n", + " 250 1.022e-03 2.900e+07 5.270e-02 -- 3.460e+02 -- 0.137826 -0.382515 -1.50791 -1.84821 -2.37521 -2.939 -4.03226 -3.63266 -0.149478 0.133751 0.319935 -0.0053687 0.569543 0.0300571 1.63559 1.57078\n", + " 252 1.275e-03 3.223e+07 5.272e-02 -- 3.460e+02 -- 0.137826 -0.382515 -1.50791 -1.84821 -2.37521 -2.939 -4.03225 -3.63266 -0.149493 0.133745 0.319934 -0.00536846 0.569543 0.0300572 1.63559 1.57078\n", + " 254 2.477e-03 3.581e+07 5.270e-02 -- 3.461e+02 -- 0.137826 -0.382515 -1.50791 -1.84821 -2.37521 -2.939 -4.03225 -3.63266 -0.149483 0.133762 0.319933 -0.00536868 0.569543 0.0300576 1.63558 1.57078\n", + " 256 2.786e-03 3.976e+07 5.253e-02 -- 3.461e+02 -- 0.137826 -0.382515 -1.50791 -1.84821 -2.37521 -2.939 -4.03224 -3.63266 -0.149446 0.133745 0.319932 -0.00536896 0.569543 0.0300578 1.63558 1.57078\n", + " 258 2.532e-03 4.421e+07 5.284e-02 -- 3.462e+02 -- 0.137827 -0.382514 -1.50791 -1.84821 -2.37521 -2.939 -4.03224 -3.63266 -0.149451 0.133732 0.319933 -0.00537046 0.569543 0.0300589 1.6356 1.57078\n", + " 260 5.032e-03 4.907e+07 5.240e-02 -- 3.462e+02 -- 0.137827 -0.382515 -1.50791 -1.84821 -2.37521 -2.939 -4.03223 -3.63266 -0.149413 0.133704 0.319932 -0.00536945 0.569543 0.0300589 1.63559 1.57078\n", + " 262 3.782e-03 5.456e+07 5.281e-02 -- 3.463e+02 -- 0.137827 -0.382514 -1.50791 -1.84821 -2.37521 -2.939 -4.03223 -3.63266 -0.149414 0.133736 0.319934 -0.00537215 0.569543 0.0300602 1.63561 1.57078\n", + " 264 4.099e-03 6.056e+07 5.240e-02 -- 3.463e+02 -- 0.137827 -0.382515 -1.50791 -1.84821 -2.37521 -2.939 -4.03223 -3.63266 -0.149357 0.133751 0.319931 -0.00537099 0.569543 0.0300595 1.63559 1.57078\n", + " 266 3.335e-03 6.736e+07 5.298e-02 -- 3.464e+02 -- 0.137827 -0.382514 -1.50791 -1.8482 -2.37521 -2.939 -4.03222 -3.63266 -0.14935 0.133787 0.319931 -0.00537319 0.569543 0.030061 1.63561 1.57079\n", + " 268 2.128e-03 7.485e+07 5.274e-02 -- 3.464e+02 -- 0.137827 -0.382515 -1.50791 -1.84821 -2.37521 -2.939 -4.03222 -3.63266 -0.149373 0.133832 0.319929 -0.00537226 0.569543 0.0300605 1.6356 1.57079\n", + " 270 4.362e-03 8.314e+07 5.273e-02 -- 3.465e+02 -- 0.137827 -0.382516 -1.50791 -1.84821 -2.37521 -2.939 -4.03222 -3.63266 -0.149357 0.133842 0.319928 -0.00537111 0.569543 0.0300599 1.63558 1.57078\n", + " 272 7.401e-03 9.241e+07 5.281e-02 -- 3.465e+02 -- 0.137827 -0.382515 -1.50791 -1.84821 -2.37521 -2.939 -4.03222 -3.63266 -0.149297 0.133867 0.319929 -0.00537346 0.569543 0.0300607 1.6356 1.57079\n", + " 273 2.449e-01 9.778e+11 3.957e+01 -- 3.070e+02 -- 0.137829 -0.382514 -1.50792 -1.8482 -2.37521 -2.93901 -4.03219 -3.63266 -0.149811 0.134858 0.319919 -0.00539408 0.569543 0.0300672 1.63566 1.57079\n", + " 275 2.085e-01 1.216e+12 5.713e+01 -- 2.498e+02 -- 0.137838 -0.382547 -1.50791 -1.84822 -2.37521 -2.93901 -4.03229 -3.63267 -0.146142 0.136356 0.319715 -0.00536682 0.569539 0.0300298 1.63519 1.57077\n", + " 278 1.768e-01 1.553e+11 6.527e+01 -- 3.151e+02 -- 0.13783 -0.382542 -1.50791 -1.84822 -2.37521 -2.93901 -4.03228 -3.63266 -0.146083 0.136071 0.319727 -0.00537179 0.56954 0.0300328 1.63531 1.57077\n", + " 280 1.401e-01 2.293e+10 2.877e+01 -- 3.439e+02 -- 0.13781 -0.382487 -1.50792 -1.8482 -2.37521 -2.93902 -4.03218 -3.63266 -0.147503 0.133665 0.319814 -0.00542418 0.569545 0.0300764 1.63632 1.57081\n", + " 282 3.005e-01 1.584e+12 6.015e+01 -- 2.837e+02 -- 0.137818 -0.38251 -1.50792 -1.84821 -2.37521 -2.93902 -4.03219 -3.63266 -0.149569 0.134696 0.319799 -0.00539672 0.56954 0.0300658 1.63602 1.5708\n", + " 285 6.887e-01 3.338e+12 5.965e+01 -- 2.241e+02 -- 0.137808 -0.382511 -1.50792 -1.84821 -2.37521 -2.93901 -4.03218 -3.63266 -0.149948 0.13503 0.319788 -0.0053805 0.569539 0.0300609 1.63597 1.5708\n", + " 286 2.694e+01 1.474e+08 6.253e+01 -- 2.866e+02 -- 0.13812 -0.382806 -1.50771 -1.84841 -2.37523 -2.93893 -4.03632 -3.63262 -0.0891567 0.0420396 0.319568 -0.00184545 0.56953 0.029434 1.62857 1.57017\n", + " 289 1.835e+01 2.710e+07 3.352e+01 -- 3.201e+02 -- 0.137998 -0.382649 -1.50775 -1.84833 -2.37522 -2.93901 -4.03602 -3.63259 -0.0918629 0.0445307 0.319829 -0.00234263 0.56956 0.0297005 1.63399 1.57042\n", + " 291 1.677e+00 4.770e+04 1.799e+01 -- 3.381e+02 -- 0.13705 -0.381771 -1.50801 -1.84766 -2.3752 -2.93967 -4.03323 -3.63229 -0.113651 0.0634674 0.321859 -0.00664201 0.569811 0.0320009 1.68021 1.57254\n", + " 293 8.980e-01 2.894e+05 2.261e+00 -- 3.404e+02 -- 0.137302 -0.381985 -1.50798 -1.84785 -2.37521 -2.93948 -4.03313 -3.63237 -0.110751 0.0693232 0.32106 -0.00552825 0.569729 0.0313773 1.66678 1.57201\n", + " 295 7.368e-01 3.177e+05 9.101e-01 -- 3.413e+02 -- 0.137338 -0.382099 -1.50797 -1.84786 -2.37521 -2.93948 -4.03253 -3.63238 -0.112228 0.0755485 0.320805 -0.00556173 0.569719 0.0313963 1.66607 1.57205\n", + " 297 5.900e-01 3.573e+05 6.175e-01 -- 3.419e+02 -- 0.137345 -0.382178 -1.50797 -1.84784 -2.37521 -2.93949 -4.03194 -3.63237 -0.114034 0.0811151 0.320645 -0.00570323 0.56972 0.0314796 1.66672 1.57213\n", + " 299 4.790e-01 3.999e+05 4.486e-01 -- 3.424e+02 -- 0.137357 -0.382242 -1.50797 -1.84783 -2.37521 -2.9395 -4.03146 -3.63237 -0.11548 0.0859006 0.320493 -0.00578771 0.569719 0.0315348 1.66691 1.57219\n", + " 301 3.950e-01 4.458e+05 3.396e-01 -- 3.427e+02 -- 0.137372 -0.382298 -1.50797 -1.84783 -2.37521 -2.93951 -4.03105 -3.63237 -0.116614 0.0900153 0.320346 -0.00582755 0.569717 0.0315672 1.66675 1.57223\n", + " 303 3.299e-01 4.961e+05 2.661e-01 -- 3.430e+02 -- 0.137388 -0.382345 -1.50797 -1.84783 -2.37521 -2.93951 -4.03071 -3.63237 -0.117524 0.0935712 0.320206 -0.00584073 0.569714 0.0315858 1.6664 1.57225\n", + " 305 2.783e-01 5.518e+05 2.149e-01 -- 3.432e+02 -- 0.137405 -0.382386 -1.50797 -1.84783 -2.37521 -2.93951 -4.03042 -3.63237 -0.118268 0.0966579 0.320075 -0.00583822 0.569712 0.0315961 1.66596 1.57227\n", + " 307 2.366e-01 6.135e+05 1.782e-01 -- 3.434e+02 -- 0.137421 -0.382421 -1.50797 -1.84783 -2.37521 -2.93951 -4.03017 -3.63237 -0.118886 0.0993476 0.319954 -0.00582657 0.569709 0.0316013 1.66548 1.57227\n", + " 309 2.026e-01 6.820e+05 1.512e-01 -- 3.435e+02 -- 0.137436 -0.382452 -1.50797 -1.84784 -2.37521 -2.93951 -4.02995 -3.63238 -0.119407 0.101698 0.319843 -0.00580983 0.569707 0.0316033 1.665 1.57228\n", + " 311 1.745e-01 7.581e+05 1.310e-01 -- 3.436e+02 -- 0.137449 -0.382478 -1.50797 -1.84784 -2.37521 -2.9395 -4.02976 -3.63238 -0.11985 0.103759 0.319742 -0.00579053 0.569705 0.0316034 1.66454 1.57228\n", + " 313 1.511e-01 8.426e+05 1.157e-01 -- 3.438e+02 -- 0.137462 -0.382502 -1.50797 -1.84784 -2.37521 -2.9395 -4.02959 -3.63238 -0.120231 0.10557 0.319649 -0.00577023 0.569703 0.0316024 1.6641 1.57228\n", + " 315 1.314e-01 9.364e+05 1.039e-01 -- 3.439e+02 -- 0.137474 -0.382522 -1.50797 -1.84785 -2.37521 -2.9395 -4.02944 -3.63238 -0.120561 0.107165 0.319566 -0.00574994 0.569701 0.0316007 1.66369 1.57228\n", + " 317 1.146e-01 1.041e+06 9.470e-02 -- 3.440e+02 -- 0.137484 -0.38254 -1.50797 -1.84785 -2.37521 -2.9395 -4.0293 -3.63238 -0.120849 0.108572 0.31949 -0.00573024 0.569699 0.0315987 1.66331 1.57228\n", + " 319 1.002e-01 1.157e+06 8.741e-02 -- 3.440e+02 -- 0.137494 -0.382556 -1.50797 -1.84785 -2.37521 -2.9395 -4.02918 -3.63238 -0.121102 0.109816 0.319421 -0.00571149 0.569698 0.0315965 1.66296 1.57228\n", + " 321 8.813e-02 1.285e+06 8.158e-02 -- 3.441e+02 -- 0.137503 -0.382571 -1.50797 -1.84786 -2.37521 -2.9395 -4.02907 -3.63239 -0.121323 0.110917 0.319359 -0.0056939 0.569696 0.0315944 1.66265 1.57228\n", + " 323 7.747e-02 1.428e+06 7.694e-02 -- 3.442e+02 -- 0.13751 -0.382583 -1.50797 -1.84786 -2.37521 -2.9395 -4.02898 -3.63239 -0.12152 0.111894 0.319303 -0.00567758 0.569695 0.0315923 1.66236 1.57228\n", + " 325 6.841e-02 1.587e+06 7.313e-02 -- 3.443e+02 -- 0.137518 -0.382594 -1.50797 -1.84786 -2.37521 -2.93949 -4.02889 -3.63239 -0.121694 0.112761 0.319252 -0.00566248 0.569694 0.0315904 1.6621 1.57228\n", + " 327 6.037e-02 1.764e+06 7.004e-02 -- 3.443e+02 -- 0.137524 -0.382604 -1.50797 -1.84786 -2.37521 -2.93949 -4.02881 -3.63239 -0.121849 0.113533 0.319207 -0.00564862 0.569693 0.0315885 1.66187 1.57228\n", + " 329 5.354e-02 1.960e+06 6.747e-02 -- 3.444e+02 -- 0.13753 -0.382613 -1.50797 -1.84786 -2.37521 -2.93949 -4.02875 -3.63239 -0.121987 0.114218 0.319166 -0.00563591 0.569692 0.0315868 1.66165 1.57228\n", + " 331 4.752e-02 2.178e+06 6.536e-02 -- 3.445e+02 -- 0.137535 -0.382621 -1.50797 -1.84787 -2.37521 -2.93949 -4.02868 -3.63239 -0.12211 0.114829 0.319129 -0.00562439 0.569691 0.0315853 1.66146 1.57228\n", + " 333 4.222e-02 2.420e+06 6.360e-02 -- 3.445e+02 -- 0.13754 -0.382628 -1.50797 -1.84787 -2.37521 -2.93949 -4.02863 -3.63239 -0.122219 0.115375 0.319095 -0.00561382 0.56969 0.0315839 1.66129 1.57228\n", + " 335 3.769e-02 2.689e+06 6.211e-02 -- 3.446e+02 -- 0.137544 -0.382634 -1.50797 -1.84787 -2.37521 -2.93949 -4.02858 -3.63239 -0.122317 0.115862 0.319065 -0.00560428 0.56969 0.0315826 1.66113 1.57228\n", + " 337 3.311e-02 2.989e+06 6.088e-02 -- 3.447e+02 -- 0.137547 -0.38264 -1.50797 -1.84787 -2.37521 -2.93949 -4.02853 -3.63239 -0.122404 0.116299 0.319038 -0.00559562 0.569689 0.0315815 1.66099 1.57228\n", + " 339 2.982e-02 3.321e+06 5.975e-02 -- 3.447e+02 -- 0.137551 -0.382645 -1.50797 -1.84787 -2.37521 -2.93949 -4.02849 -3.63239 -0.122484 0.116684 0.319014 -0.00558779 0.569689 0.0315804 1.66087 1.57228\n", + " 341 2.639e-02 3.690e+06 5.889e-02 -- 3.448e+02 -- 0.137554 -0.382649 -1.50797 -1.84787 -2.37521 -2.93949 -4.02845 -3.63239 -0.122555 0.117032 0.318992 -0.00558071 0.569688 0.0315795 1.66076 1.57228\n", + " 343 2.409e-02 4.100e+06 5.809e-02 -- 3.448e+02 -- 0.137557 -0.382653 -1.50797 -1.84787 -2.37521 -2.93949 -4.02842 -3.63239 -0.122619 0.117341 0.318972 -0.00557437 0.569688 0.0315786 1.66065 1.57228\n", + " 345 2.129e-02 4.556e+06 5.751e-02 -- 3.449e+02 -- 0.137559 -0.382657 -1.50797 -1.84787 -2.37521 -2.93949 -4.02839 -3.63239 -0.122676 0.117624 0.318955 -0.00556861 0.569687 0.0315779 1.66056 1.57227\n", + " 347 1.889e-02 5.062e+06 5.690e-02 -- 3.450e+02 -- 0.137561 -0.38266 -1.50797 -1.84787 -2.37521 -2.93949 -4.02837 -3.6324 -0.12273 0.117874 0.318939 -0.0055633 0.569687 0.0315772 1.66048 1.57227\n", + " 349 1.666e-02 5.625e+06 5.637e-02 -- 3.450e+02 -- 0.137563 -0.382663 -1.50797 -1.84788 -2.37521 -2.93949 -4.02834 -3.6324 -0.122775 0.118097 0.318924 -0.00555856 0.569687 0.0315765 1.6604 1.57227\n", + " 351 1.548e-02 6.250e+06 5.589e-02 -- 3.451e+02 -- 0.137565 -0.382666 -1.50797 -1.84788 -2.37521 -2.93949 -4.02832 -3.6324 -0.122815 0.118293 0.318911 -0.00555438 0.569686 0.031576 1.66034 1.57227\n", + " 353 1.367e-02 6.945e+06 5.559e-02 -- 3.451e+02 -- 0.137567 -0.382668 -1.50797 -1.84788 -2.37521 -2.93949 -4.0283 -3.6324 -0.122851 0.118477 0.3189 -0.00555074 0.569686 0.0315756 1.66028 1.57227\n", + " 355 1.218e-02 7.717e+06 5.527e-02 -- 3.452e+02 -- 0.137568 -0.38267 -1.50797 -1.84788 -2.37521 -2.93949 -4.02828 -3.6324 -0.122888 0.118639 0.318889 -0.00554714 0.569686 0.0315751 1.66022 1.57227\n", + " 357 1.125e-02 8.574e+06 5.496e-02 -- 3.452e+02 -- 0.13757 -0.382672 -1.50797 -1.84788 -2.37521 -2.93949 -4.02827 -3.6324 -0.122919 0.118783 0.31888 -0.00554391 0.569686 0.0315747 1.66017 1.57227\n", + " 359 9.239e-03 9.527e+06 5.475e-02 -- 3.453e+02 -- 0.137571 -0.382674 -1.50797 -1.84788 -2.37521 -2.93949 -4.02825 -3.6324 -0.122951 0.118917 0.318871 -0.00554137 0.569686 0.0315743 1.66013 1.57227\n", + " 361 8.671e-03 1.059e+07 5.442e-02 -- 3.453e+02 -- 0.137572 -0.382675 -1.50797 -1.84788 -2.37521 -2.93949 -4.02824 -3.6324 -0.122974 0.119027 0.318864 -0.00553843 0.569685 0.0315738 1.66009 1.57227\n", + " 363 7.118e-03 1.176e+07 5.421e-02 -- 3.454e+02 -- 0.137573 -0.382677 -1.50797 -1.84788 -2.37521 -2.93949 -4.02823 -3.6324 -0.122989 0.11913 0.318857 -0.00553662 0.569685 0.0315737 1.66005 1.57227\n", + " 365 6.502e-03 1.307e+07 5.400e-02 -- 3.454e+02 -- 0.137574 -0.382678 -1.50797 -1.84788 -2.37521 -2.93948 -4.02822 -3.6324 -0.123017 0.119215 0.318851 -0.0055347 0.569685 0.0315735 1.66002 1.57227\n", + " 367 5.241e-03 1.452e+07 5.386e-02 -- 3.455e+02 -- 0.137574 -0.382679 -1.50797 -1.84788 -2.37521 -2.93948 -4.02821 -3.6324 -0.123025 0.119292 0.318845 -0.00553265 0.569685 0.0315732 1.65999 1.57227\n", + " 369 4.797e-03 1.614e+07 5.362e-02 -- 3.456e+02 -- 0.137575 -0.382679 -1.50797 -1.84788 -2.37521 -2.93948 -4.0282 -3.6324 -0.123045 0.119355 0.318841 -0.00553154 0.569685 0.0315732 1.65997 1.57227\n", + " 371 4.242e-03 1.793e+07 5.357e-02 -- 3.456e+02 -- 0.137575 -0.38268 -1.50797 -1.84788 -2.37521 -2.93948 -4.0282 -3.6324 -0.123059 0.119412 0.318836 -0.00553001 0.569685 0.031573 1.65995 1.57227\n", + " 373 5.841e-03 1.992e+07 5.347e-02 -- 3.457e+02 -- 0.137576 -0.382681 -1.50797 -1.84788 -2.37521 -2.93948 -4.02819 -3.6324 -0.123078 0.119463 0.318832 -0.00552879 0.569685 0.0315729 1.65993 1.57227\n", + " 375 3.219e-03 2.213e+07 5.366e-02 -- 3.457e+02 -- 0.137577 -0.382682 -1.50797 -1.84788 -2.37521 -2.93948 -4.02818 -3.6324 -0.123089 0.119532 0.318828 -0.00552759 0.569685 0.0315728 1.65991 1.57227\n", + " 377 2.633e-03 2.459e+07 5.334e-02 -- 3.458e+02 -- 0.137577 -0.382683 -1.50797 -1.84788 -2.37521 -2.93948 -4.02818 -3.6324 -0.123107 0.119571 0.318825 -0.00552604 0.569685 0.0315725 1.65989 1.57227\n", + " 379 4.116e-03 2.733e+07 5.319e-02 -- 3.458e+02 -- 0.137578 -0.382683 -1.50797 -1.84788 -2.37521 -2.93948 -4.02817 -3.6324 -0.12312 0.119602 0.318822 -0.00552505 0.569685 0.0315725 1.65988 1.57227\n", + " 380 5.533e+01 8.512e+13 3.580e+01 -- 3.100e+02 -- 0.13758 -0.382687 -1.50797 -1.84788 -2.37521 -2.93948 -4.02813 -3.6324 -0.123171 0.120095 0.318799 -0.0055189 0.569684 0.0315729 1.65977 1.57227\n", + " 382 7.194e+00 3.296e+06 1.119e+02 -- 1.981e+02 -- 0.136564 -0.384498 -1.50899 -1.84727 -2.37514 -2.93869 -4.00752 -3.63339 -0.76763 0.784575 0.315418 -0.0211879 0.568207 0.0342865 1.65043 1.57386\n", + " 385 6.393e+00 7.364e+05 4.355e+01 -- 2.417e+02 -- 0.134399 -0.385404 -1.5086 -1.84755 -2.37516 -2.93833 -4.01279 -3.63358 -0.756411 0.778329 0.313579 -0.0196636 0.5681 0.0330514 1.62964 1.57277\n", + " 387 6.586e+00 2.759e+05 6.486e+01 -- 3.066e+02 -- 0.116998 -0.394901 -1.50618 -1.84965 -2.37527 -2.93545 -4.04221 -3.6351 -0.661407 0.711541 0.301895 -0.00709193 0.567185 0.023737 1.46306 1.56458\n", + " 389 8.793e-01 6.706e+03 1.268e+01 -- 3.192e+02 -- 0.115989 -0.400915 -1.50697 -1.8488 -2.37519 -2.93697 -4.03138 -3.63433 -0.618922 0.64982 0.305913 -0.0117627 0.567838 0.0280683 1.55938 1.56838\n", + " 391 8.721e-01 1.576e+04 4.935e+00 -- 3.242e+02 -- 0.112264 -0.405631 -1.5073 -1.84862 -2.37517 -2.93742 -4.02343 -3.63415 -0.565235 0.59268 0.305403 -0.0120062 0.568 0.0294253 1.57977 1.56959\n", + " 393 8.609e-01 2.268e+04 2.879e+00 -- 3.271e+02 -- 0.110008 -0.408683 -1.50757 -1.84848 -2.37515 -2.93776 -4.01681 -3.63402 -0.51694 0.540991 0.304308 -0.0120189 0.568108 0.0304757 1.59266 1.57052\n", + " 395 8.448e-01 2.811e+04 1.940e+00 -- 3.290e+02 -- 0.108886 -0.410427 -1.50779 -1.8484 -2.37513 -2.938 -4.01122 -3.63393 -0.473875 0.494416 0.302852 -0.011813 0.568178 0.0312724 1.60029 1.57123\n", + " 397 8.241e-01 3.293e+04 1.442e+00 -- 3.304e+02 -- 0.108628 -0.411163 -1.50798 -1.84834 -2.37512 -2.93818 -4.00644 -3.63387 -0.435812 0.452647 0.30122 -0.0114726 0.568224 0.0318892 1.60467 1.57177\n", + " 399 7.993e-01 3.764e+04 1.149e+00 -- 3.316e+02 -- 0.108995 -0.411144 -1.50813 -1.84831 -2.37512 -2.93832 -4.00231 -3.63383 -0.402379 0.415346 0.299533 -0.0110612 0.568256 0.0323797 1.60708 1.5722\n", + " 401 7.711e-01 4.253e+04 9.635e-01 -- 3.325e+02 -- 0.109791 -0.410578 -1.50827 -1.84829 -2.37511 -2.93843 -3.99871 -3.6338 -0.37314 0.382148 0.297866 -0.01062 0.568277 0.0327796 1.60828 1.57255\n", + " 403 7.403e-01 4.778e+04 8.370e-01 -- 3.334e+02 -- 0.110862 -0.409634 -1.50838 -1.84828 -2.3751 -2.93852 -3.99556 -3.63378 -0.347639 0.35268 0.296263 -0.0101744 0.568292 0.0331127 1.60875 1.57284\n", + " 405 7.072e-01 5.351e+04 7.456e-01 -- 3.341e+02 -- 0.11209 -0.408441 -1.50848 -1.84827 -2.3751 -2.93859 -3.9928 -3.63377 -0.325436 0.326572 0.29475 -0.00973915 0.568303 0.0333948 1.60877 1.57308\n", + " 407 6.726e-01 5.984e+04 6.759e-01 -- 3.348e+02 -- 0.11339 -0.407097 -1.50857 -1.84826 -2.3751 -2.93866 -3.99036 -3.63375 -0.306122 0.303476 0.29334 -0.00932269 0.568311 0.0336367 1.60852 1.57328\n", + " 409 6.368e-01 6.686e+04 6.201e-01 -- 3.354e+02 -- 0.114702 -0.405678 -1.50865 -1.84826 -2.37509 -2.93871 -3.98821 -3.63374 -0.289327 0.283064 0.292038 -0.00892928 0.568317 0.033846 1.60811 1.57346\n", + " 411 6.003e-01 7.469e+04 5.735e-01 -- 3.360e+02 -- 0.115982 -0.404238 -1.50873 -1.84826 -2.37509 -2.93876 -3.98632 -3.63374 -0.274719 0.265039 0.290845 -0.00856069 0.568322 0.0340282 1.60761 1.57361\n", + " 413 5.635e-01 8.343e+04 5.332e-01 -- 3.365e+02 -- 0.117205 -0.402814 -1.50879 -1.84826 -2.37509 -2.9388 -3.98465 -3.63373 -0.262009 0.249128 0.289757 -0.0082171 0.568325 0.0341871 1.60706 1.57375\n", + " 415 5.268e-01 9.320e+04 4.976e-01 -- 3.370e+02 -- 0.118353 -0.401435 -1.50885 -1.84826 -2.37509 -2.93884 -3.98317 -3.63373 -0.25094 0.235089 0.288769 -0.00789773 0.568328 0.034326 1.60648 1.57386\n", + " 417 4.906e-01 1.041e+05 4.652e-01 -- 3.375e+02 -- 0.119416 -0.400117 -1.5089 -1.84826 -2.37508 -2.93887 -3.98187 -3.63372 -0.241292 0.222703 0.287874 -0.00760125 0.56833 0.0344471 1.60589 1.57396\n", + " 419 4.551e-01 1.164e+05 4.356e-01 -- 3.379e+02 -- 0.120392 -0.398872 -1.50895 -1.84826 -2.37508 -2.93889 -3.98073 -3.63372 -0.23287 0.211778 0.287065 -0.00732599 0.568331 0.0345524 1.6053 1.57405\n", + " 421 4.207e-01 1.301e+05 4.080e-01 -- 3.383e+02 -- 0.12128 -0.397707 -1.50899 -1.84826 -2.37508 -2.93892 -3.97972 -3.63372 -0.225507 0.202139 0.286336 -0.00707017 0.568332 0.0346434 1.6047 1.57413\n", + " 423 3.877e-01 1.454e+05 3.822e-01 -- 3.387e+02 -- 0.122083 -0.396622 -1.50902 -1.84826 -2.37508 -2.93894 -3.97883 -3.63372 -0.219056 0.193634 0.285679 -0.00683198 0.568332 0.0347216 1.6041 1.57419\n", + " 425 3.562e-01 1.626e+05 3.580e-01 -- 3.391e+02 -- 0.122806 -0.39562 -1.50906 -1.84827 -2.37508 -2.93895 -3.97805 -3.63372 -0.213392 0.186128 0.285086 -0.0066097 0.568332 0.034788 1.60349 1.57425\n", + " 427 3.264e-01 1.818e+05 3.352e-01 -- 3.394e+02 -- 0.123454 -0.394697 -1.50909 -1.84827 -2.37508 -2.93897 -3.97737 -3.63372 -0.208405 0.179498 0.284553 -0.00640172 0.568331 0.0348437 1.60289 1.57429\n", + " 429 2.984e-01 2.032e+05 3.137e-01 -- 3.397e+02 -- 0.124033 -0.39385 -1.50911 -1.84827 -2.37508 -2.93898 -3.97677 -3.63372 -0.204002 0.173639 0.284072 -0.0062066 0.56833 0.0348898 1.60227 1.57433\n", + " 431 2.872e-01 2.272e+05 2.934e-01 -- 3.400e+02 -- 0.124549 -0.393077 -1.50913 -1.84828 -2.37508 -2.93899 -3.97624 -3.63372 -0.200103 0.168457 0.283638 -0.00602309 0.568329 0.034927 1.60166 1.57436\n", + " 433 2.792e-01 2.540e+05 2.744e-01 -- 3.403e+02 -- 0.125009 -0.392371 -1.50915 -1.84828 -2.37508 -2.939 -3.97578 -3.63372 -0.196637 0.163868 0.283246 -0.00585012 0.568328 0.0349564 1.60104 1.57439\n", + " 435 2.715e-01 2.839e+05 2.565e-01 -- 3.406e+02 -- 0.125417 -0.39173 -1.50917 -1.84828 -2.37508 -2.939 -3.97538 -3.63372 -0.193545 0.159801 0.282892 -0.00568681 0.568326 0.0349787 1.60041 1.57441\n", + " 437 2.639e-01 3.173e+05 2.396e-01 -- 3.408e+02 -- 0.12578 -0.391148 -1.50919 -1.84829 -2.37508 -2.939 -3.97503 -3.63373 -0.190778 0.156191 0.282571 -0.00553244 0.568324 0.0349948 1.59979 1.57442\n", + " 439 2.564e-01 3.545e+05 2.239e-01 -- 3.410e+02 -- 0.126102 -0.390621 -1.5092 -1.84829 -2.37508 -2.93901 -3.97472 -3.63373 -0.188292 0.152983 0.282281 -0.00538642 0.568322 0.0350054 1.59916 1.57443\n", + " 441 2.488e-01 3.960e+05 2.092e-01 -- 3.412e+02 -- 0.126388 -0.390144 -1.50921 -1.8483 -2.37508 -2.93901 -3.97446 -3.63373 -0.186054 0.150128 0.282017 -0.00524832 0.56832 0.0350114 1.59854 1.57443\n", + " 443 2.409e-01 4.422e+05 1.954e-01 -- 3.414e+02 -- 0.126643 -0.389713 -1.50922 -1.84831 -2.37508 -2.93901 -3.97422 -3.63373 -0.18403 0.147582 0.281778 -0.00511776 0.568317 0.0350133 1.59793 1.57443\n", + " 445 2.327e-01 4.937e+05 1.827e-01 -- 3.416e+02 -- 0.126869 -0.389324 -1.50923 -1.84831 -2.37508 -2.93901 -3.97402 -3.63374 -0.182195 0.14531 0.281562 -0.00499447 0.568315 0.0350119 1.59733 1.57443\n", + " 447 2.243e-01 5.511e+05 1.709e-01 -- 3.418e+02 -- 0.12707 -0.388974 -1.50923 -1.84832 -2.37508 -2.93901 -3.97384 -3.63374 -0.18053 0.143277 0.281365 -0.00487824 0.568313 0.0350078 1.59674 1.57443\n", + " 449 2.155e-01 6.150e+05 1.600e-01 -- 3.419e+02 -- 0.127249 -0.388658 -1.50924 -1.84833 -2.37508 -2.939 -3.97369 -3.63374 -0.179014 0.141458 0.281186 -0.00476884 0.56831 0.0350015 1.59617 1.57442\n", + " 451 2.064e-01 6.861e+05 1.499e-01 -- 3.421e+02 -- 0.127409 -0.388373 -1.50924 -1.84833 -2.37508 -2.939 -3.97356 -3.63375 -0.177636 0.139827 0.281023 -0.00466608 0.568308 0.0349935 1.59562 1.57441\n", + " 453 1.969e-01 7.653e+05 1.407e-01 -- 3.422e+02 -- 0.127551 -0.388118 -1.50925 -1.84834 -2.37508 -2.939 -3.97344 -3.63375 -0.176375 0.138362 0.280875 -0.00456977 0.568305 0.0349843 1.59509 1.5744\n", + " 455 1.874e-01 8.534e+05 1.322e-01 -- 3.424e+02 -- 0.127678 -0.387888 -1.50925 -1.84835 -2.37508 -2.939 -3.97334 -3.63375 -0.175226 0.137048 0.280741 -0.00447979 0.568303 0.0349741 1.59459 1.57439\n", + " 457 1.775e-01 9.514e+05 1.245e-01 -- 3.425e+02 -- 0.127792 -0.387681 -1.50925 -1.84835 -2.37508 -2.93899 -3.97325 -3.63376 -0.174176 0.135866 0.28062 -0.00439585 0.568301 0.0349634 1.59411 1.57438\n", + " 459 1.678e-01 1.060e+06 1.174e-01 -- 3.426e+02 -- 0.127894 -0.387495 -1.50926 -1.84836 -2.37508 -2.93899 -3.97317 -3.63376 -0.17322 0.134805 0.280509 -0.0043178 0.568299 0.0349524 1.59365 1.57437\n", + " 461 1.581e-01 1.182e+06 1.110e-01 -- 3.427e+02 -- 0.127985 -0.387328 -1.50926 -1.84836 -2.37508 -2.93899 -3.9731 -3.63376 -0.172347 0.13385 0.280409 -0.00424533 0.568297 0.0349413 1.59322 1.57436\n", + " 463 1.484e-01 1.317e+06 1.052e-01 -- 3.428e+02 -- 0.128066 -0.387178 -1.50926 -1.84837 -2.37508 -2.93898 -3.97304 -3.63376 -0.171549 0.132987 0.280318 -0.0041782 0.568295 0.0349303 1.59282 1.57435\n", + " 465 1.387e-01 1.467e+06 9.997e-02 -- 3.429e+02 -- 0.128139 -0.387043 -1.50926 -1.84837 -2.37508 -2.93898 -3.97299 -3.63377 -0.170819 0.132211 0.280236 -0.00411621 0.568293 0.0349196 1.59244 1.57434\n", + " 467 1.295e-01 1.634e+06 9.520e-02 -- 3.430e+02 -- 0.128204 -0.386922 -1.50926 -1.84838 -2.37508 -2.93898 -3.97295 -3.63377 -0.170155 0.131513 0.280162 -0.0040591 0.568292 0.0349092 1.59209 1.57433\n", + " 469 1.206e-01 1.820e+06 9.088e-02 -- 3.431e+02 -- 0.128263 -0.386813 -1.50926 -1.84838 -2.37508 -2.93898 -3.97291 -3.63377 -0.169555 0.130886 0.280094 -0.00400655 0.56829 0.0348992 1.59177 1.57432\n", + " 471 1.118e-01 2.026e+06 8.702e-02 -- 3.432e+02 -- 0.128316 -0.386716 -1.50926 -1.84839 -2.37508 -2.93897 -3.97287 -3.63377 -0.169004 0.130321 0.280033 -0.00395823 0.568289 0.0348897 1.59147 1.57431\n", + " 473 1.033e-01 2.256e+06 8.358e-02 -- 3.433e+02 -- 0.128363 -0.386628 -1.50926 -1.84839 -2.37508 -2.93897 -3.97284 -3.63377 -0.168497 0.129809 0.279978 -0.00391395 0.568287 0.0348807 1.59119 1.57431\n", + " 475 9.579e-02 2.511e+06 8.038e-02 -- 3.433e+02 -- 0.128405 -0.386549 -1.50926 -1.84839 -2.37508 -2.93897 -3.97282 -3.63378 -0.168047 0.129353 0.279928 -0.00387351 0.568286 0.0348723 1.59093 1.5743\n", + " 477 8.818e-02 2.794e+06 7.758e-02 -- 3.434e+02 -- 0.128443 -0.386478 -1.50926 -1.8484 -2.37508 -2.93897 -3.97279 -3.63378 -0.167639 0.128938 0.279883 -0.00383641 0.568285 0.0348643 1.59069 1.57429\n", + " 479 8.091e-02 3.109e+06 7.509e-02 -- 3.435e+02 -- 0.128478 -0.386415 -1.50926 -1.8484 -2.37508 -2.93896 -3.97277 -3.63378 -0.167267 0.128559 0.279842 -0.00380258 0.568284 0.0348569 1.59048 1.57428\n", + " 481 7.424e-02 3.460e+06 7.280e-02 -- 3.436e+02 -- 0.128509 -0.386357 -1.50926 -1.8484 -2.37508 -2.93896 -3.97275 -3.63378 -0.166936 0.128218 0.279805 -0.00377181 0.568283 0.0348501 1.59028 1.57428\n", + " 483 6.806e-02 3.849e+06 7.073e-02 -- 3.436e+02 -- 0.128537 -0.386306 -1.50926 -1.84841 -2.37508 -2.93896 -3.97274 -3.63378 -0.166628 0.127921 0.279772 -0.00374381 0.568282 0.0348438 1.5901 1.57427\n", + " 485 6.227e-02 4.282e+06 6.891e-02 -- 3.437e+02 -- 0.128562 -0.38626 -1.50926 -1.84841 -2.37508 -2.93896 -3.97272 -3.63378 -0.166346 0.127652 0.279742 -0.00371833 0.568281 0.034838 1.58993 1.57426\n", + " 487 5.690e-02 4.762e+06 6.723e-02 -- 3.438e+02 -- 0.128585 -0.386219 -1.50926 -1.84841 -2.37508 -2.93896 -3.97271 -3.63378 -0.166098 0.127408 0.279715 -0.00369517 0.56828 0.0348326 1.58978 1.57426\n", + " 489 5.246e-02 5.297e+06 6.572e-02 -- 3.438e+02 -- 0.128605 -0.386181 -1.50926 -1.84841 -2.37508 -2.93896 -3.9727 -3.63378 -0.165881 0.127186 0.27969 -0.00367415 0.56828 0.0348277 1.58964 1.57426\n", + " 491 4.668e-02 5.891e+06 6.451e-02 -- 3.439e+02 -- 0.128623 -0.386148 -1.50926 -1.84841 -2.37508 -2.93895 -3.97269 -3.63378 -0.165662 0.126983 0.279668 -0.00365488 0.568279 0.0348231 1.58952 1.57425\n", + " 493 4.336e-02 6.551e+06 6.330e-02 -- 3.440e+02 -- 0.12864 -0.386118 -1.50927 -1.84842 -2.37508 -2.93895 -3.97268 -3.63379 -0.165486 0.126802 0.279649 -0.00363782 0.568279 0.0348191 1.58941 1.57425\n", + " 495 3.896e-02 7.284e+06 6.215e-02 -- 3.440e+02 -- 0.128655 -0.386091 -1.50927 -1.84842 -2.37508 -2.93895 -3.97267 -3.63379 -0.165321 0.12665 0.279631 -0.00362204 0.568278 0.0348153 1.5893 1.57424\n", + " 497 3.577e-02 8.098e+06 6.116e-02 -- 3.441e+02 -- 0.128668 -0.386067 -1.50927 -1.84842 -2.37508 -2.93895 -3.97266 -3.63379 -0.165157 0.126529 0.279614 -0.00360793 0.568278 0.0348118 1.58921 1.57424\n", + " 499 3.106e-02 9.005e+06 6.042e-02 -- 3.442e+02 -- 0.12868 -0.386045 -1.50927 -1.84842 -2.37508 -2.93895 -3.97266 -3.63379 -0.164994 0.126396 0.2796 -0.00359503 0.568277 0.0348086 1.58912 1.57424\n", + "********************\n", + "0.128691 -0.386025 -1.50927 -1.84842 -2.37508 -2.93895 -3.97265 -3.63379 -0.164908 0.12629 0.279587 -0.00358386 0.568277 0.034806 1.58905 1.57423\n", + "0.00126105 0.000998709 0.00018594 0.000356512 2.30678e-05 0.000253636 0.00869718 0.000210956 0.0200512 0.0186844 0.00479074 0.00354031 0.000510855 0.00183101 0.0188838 0.0015161\n", + "-10903 199.23 -2.70075 -1.73798 -1.01372 0.00748608 0.0139392 -0.0830399 -358.669 233.027 -1.33222 -0.312077 -0.267079 -0.122273 0.0137976 -0.0193582\n", + "********************\n" + ] + } + ], + "source": [ + "Cx = clag.clag('cxd10r', [[t1,t2]], [[l1,l2]], [[l1e,l2e]], dt, fqL, p1, p2)\n", + "p = np.concatenate( ((p1+p2)*0.5-0.3,p1*0+0.1) ) # a good starting point generally\n", + "p, pe = clag.optimize(Cx, p)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "phi, phie = p[nfq:], pe[nfq:]\n", + "lag, lage = phi/(2*np.pi*fqd), phie/(2*np.pi*fqd) \n", + "cx, cxe = p[:nfq], pe[:nfq]" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAFrCAYAAACE+GArAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAFI1JREFUeJzt3WtsZOddB+Bf2rgttMD2QjxJKXJqqnghC8WuA8lWxRE0\nQghSJBDYUhGsuURctRICpKKYsEFFQkCXD1wUpKRIFd4FBGoRhMuHpBK7LRg7XAxxgawNIbvjtKVb\neoHWasyH46Ver73reT0zxzPzPNJox+e858zfPu/O+c25vJMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nQN94S5I/TvJckheSvG2XNg9tzf90kieSfGW3igMADu5FHVz3FyZ5KsmPbv28uWP+zyQ5uTV/Mkkz\nyV8meUUHawIAetALSe7f9vNNSS4l+alt016S5GNJfqiLdQEAB9DJIxLXc3uS4SR/sW3aZ5O8P8k9\ntVQEALSsriDR2Pp3fcf057fNAwAOuZvrLmAXO6+luOLWrQcA0JpLW4+2qytINLf+Hd72fLefr7j1\ntttuu3jx4sWOFwYAfei5VDc2tD1M1BUkVlMFhvuS/P3WtJck+YZcfQHmFbdevHgx73nPe3L06NEu\nldg+J0+ezOnTp3vytQ6yvlaX3W/7/bS7UZvrze/m9mo3fa297fW1velr7W3fyb729NNP5+1vf/tr\nUx3V76kg8fIkb9j28+uTvDHJR5M8m+R0knck+dck/7b1/JNJfnevFR49ejTj4+Odqrdjjhw50rW6\n2/1aB1lfq8vut/1+2t2ozfXmd3N7tZu+1t72+tre9LX2tu90X+ukF3dw3ceTnE/yQKrrHr556/kr\nk7w3ybkkL0vyc0l+IsnHk8wk2e38xa1JHnjggQdy6629eZnEsWPHeva1DrK+Vpfdb/v9tLtRm73m\nz8/PZ2ZmZl91HEb6Wnvb62t709fa275Tfe3SpUt55JFHkuSRdOCIxE3tXmGHjCdZXFxc7Nn0Tu+4\n//778773va/uMhgA+hrdsLS0lImJiSSZSLLU7vXXdfsnANAHBAnYoZcPNdNb9DX6gSABO3hzp1v0\nNfqBIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAA\nigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCY\nIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkS\nAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEA\nFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAx\nQQIAKCZIAADF6gwSDyV5YcfjYo31AAAturnm119O8k3bfv5cXYUAAK2rO0h8LsnzNdcAABSq+xqJ\nNyR5LsmFJPNJbq+3HACgFXUGiQ8m+Z4k9yX5wSSNJOeTvKrGmgCAFtR5auPPtj3/pyQfSPJMku9N\n8q5aKgIAWlL3NRLbfTrJPyb5ir0anDx5MkeOHLlq2szMTGZmZjpcGgAcfvPz85mfn79q2uXLlzv6\nmjd1dO2teWmqIxK/leQXdswbT7K4uLiY8fHxrhcGAL1qaWkpExMTSTKRZKnd66/zGolfTvKWVBdY\nfl2SP0jyiiS/U2NNAEAL6jy18dpUd2q8JsmHU10j8fVJnq2xJgCgBXUGCRc2AECPq3scCQCghwkS\nAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEA\nFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAx\nQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMk\nAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIA\nKCZIAADFBAkAoJggAfSdtbW1zM7O5tixYxkbG8uxY8cyOzubtbW1ukuDvnNz3QUAtMv6+nqmp6ez\nsrKSZrN51bzl5eU8/vjjGRsby5kzZzI8PFxTlZRaW1vLqVOnsrCwkI2NjQwNDWVycjJzc3MZGRmp\nu7yBJUgAN9QLb+Dr6+u55557cuHChT3bNJvNNJvNHD9+POfOneuLMNEL2+agBETaYTzJ5uLi4ibQ\nPc1mc3Nqamqz0WhsJrnm0Wg0NqempjabzWbdpW5OTU3tWuNej6mpqbpLPpBe2jYH0Ww2N1//+tfv\na5uOjo72/O/bCYuLi1f+RuOd2EG7RgLY1ZVP+E8++eQ1nwKvaDabefLJJ3P8+PGsr693ucLPW11d\nzcrKSkvLrKys9Ow1E720bQ5qenr6ukeZtnvmmWcyPT3d4YrYSZAAdtVLb+APP/zwnjvUvTSbzZw6\ndapDFXVWL22bgzgsAdHFu9fnGgngGgd5A6/jvPzCwkJXl6tTr22bgzhIQHz00UcP/PquzdgfRySA\na/TaJ/yNjY2uLlenXts2B1FnQByk00cHJUgA1+i1T/hDQ0NdXa5OvbZtDqLOgDgop4/aQZAArtFr\nn/AnJyeLlrvrrrvaXEnn9dq2OYi6AuJhuTajVwgSwDV67RP+3NxcGo1GS8s0Go08+OCDHaqoc3pt\n2xxEXQFxkE4ftYMgAVyj1z7hj4yMZGxsrKVlxsbGeu7iw6T3ts1B1BUQB+n0UTsIEsA1evET/pkz\nZzI6OrqvtqOjozl79myHK+qMw7JtunFLZF0BcZBOH7WDIAFcoxc/4Q8PD+fcuXOZmprac0fbaDQy\nNTWV8+fP55Zbbml7Df28c71ifX099957b+6+++489thjWV5ezoc+9KEsLy/nsccey91335177723\nbXcx1BEQB+n0Ub/4kSSrSf4nyd8mefMubQyRDV3WbDY3R0dH9z008fr6et0l/7/V1dXNEydObN55\n552bd9xxx+add965eeLEic3V1dWOvF63h6uua9vUNVz1fv++7fo9T5w40dJw61ces7OzbXn9duv0\nENl1++4kn0kym+SOJO9K8okkr9vRTpCAGnT7DbwXDcrOdXOz/u8z6VZAXF1d3fPvutej0Wh0LKge\nVL8Hib9O8us7pv1zknfumCZIQI26/Qm/lwzKzvXChQt9tXO9kbq3azv1c5B4SZKNJG/bMf10kid3\nTBMkgENnkHaupYf7T5w4UXfpRXr51N5O/fztn69J8uIkO6/IeT5Ja5ckA9RgkMYbGLRbIg/Dxbu9\nwpd2ARQapJ3rIN4SOTw8nCeeeCJra2s5depUFhYWsrGxkaGhoUxOTmZubq4nxyJptzqDxEeSfC7J\nzq9MG05yabcFTp48mSNHjlw1bWZmJjMzMx0pEOB6BmnnOsi3RI6MjLTl20S7YX5+PvPz81dNu3z5\nckdfs84g8dkki0nuS/LebdPfmuSPdlvg9OnTGR/vu2tFgB41SDvXycnJLC8vt7xcL46o2ct2+3C9\ntLSUiYmJjr1m3QNS/WqSH0hyIsnRVLd/flmS36qzKID9MFz19dU92indUXeQ+L0kJ5PMJXkq1WBU\n35Lk2TqLAtiPQdq51j2iJodX3UEiSX4zye1JXpZkMslf1VsOwP4M2s51UL7PhNYchiAB0LMGaefq\nlkh24/ZPgAO4snOdnp7OysrKruNKNBqNjI2N5ezZsz2/c3VLJDsJEgAHNIg71166JZLOEiQA2sTO\nlUHkGgkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQA\nUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADF\nBAkAoJggAQAUEyQYaGtra5mdnc2xY8cyNjaWY8eOZXZ2Nmtra3WXBtATbq67AKjD+vp6pqens7Ky\nkmazedW85eXlPP744xkbG8uZM2cyPDxcU5UAh58gwcBZX1/PPffckwsXLuzZptlsptls5vjx4zl3\n7pwwAbAHpzYYONPT09cNEds988wzmZ6e7nBFAL1LkGCgrK6uZmVlpaVlVlZWXDMBsAdBgoHy8MMP\nX3NNxI00m82cOnWqQxUB9DZBgoGysLDQ1eUA+p0gwUDZ2Njo6nIA/U6QYKAMDQ11dTmAfidIMFAm\nJyeLlrvrrrvaXAlAfxAkGChzc3NpNBotLdNoNPLggw92qCKA3iZIMFBGRkYyNjbW0jJjY2MZGRnp\nTEEAPU6QYOCcOXMmo6Oj+2o7Ojqas2fPdrgigN4lSDBwhoeHc+7cuUxNTe15mqPRaGRqairnz5/P\nLbfc0uUKAXqH79pgIA0PD+eJJ57I2tpaTp06lYWFhWxsbGRoaCiTk5OZm5tzOgNgHwQJBtrIyEge\nffTRussA6FlObQAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCAB\nABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQrM4gsZbkhR2P\nd9ZYDwDQoptrfO3NJA8m+e1t0z5VUy0AQIE6g0SSfDLJ8zXXAAAUqvsaiZ9J8pEkTyV5R5KhessB\nAFpR5xGJX0uymORjSb4uyS8muT3JD9ZYEwDQgnYHiYeSzN2gzZuSLCU5vW3acqpA8QdJfnrr+TVO\nnjyZI0eOXDVtZmYmMzMzheUCQP+Yn5/P/Pz8VdMuX77c0de8qc3re/XW43r+Pclndpn+2iTPpjo6\nsbBj3niSxcXFxYyPjx+4SAAYFEtLS5mYmEiSiVQf5Nuq3UckPrr1KPG1W/9ealMtAECH1XWNxNcn\nuTvJE0k+nmQyya8meW+S/6ypJgCgRXUFic8k+a5U11O8NNXpjkeS/FJN9QAABeoKEk+lOiIBAPSw\nuseRAAB6mCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQ\nTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUE\nCQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAA\nAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCg\nmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJ\nEgBAMUECACgmSAAAxQQJAKCYIAEAFOtUkPjZJOeTfDrJx/Zo8+VJ/jjJJ5N8OMmvJRnqUD2wb/Pz\n83WXwIDQ1+gHnQoSQ0nOJvmNPea/OMmfJPmCJMeTTCf5jiS/0qF6YN+8udMt+hr94OYOrfehrX+/\nb4/59yU5muStSZpb034yybuTvCPVUQoA4JCr6xqJu5P8Yz4fIpLkL5K8NMlELRV1UDc/dbT7tQ6y\nvlaX3W/7/bS7UZt+/SSor7W3vb62N32tve17ua/VFSQaSdZ3TPtYks9uzesr/sO1t30v/4frNH2t\nve31tb3pa+1t38t9rZVTGw8lmbtBmzclWdrn+m5q4bWTJE8//XSrixwKly9fztLSfv8sh+u1DrK+\nVpfdb/v9tLtRm+vN7+b2ajd9rb3t9bW96Wvtbd/JvtbpfWcrO/NXbz2u59+TfGbbz9+X5F1JXrmj\n3c8neVuSN26b9sokH01yb5L372h/a5KFJK9toV4AoPJckskkl9q94laOSHx069EOH0h1i+hwPn+K\n475UIWRxl/aXUv0Bbm3T6wPAILmUDoSITvryVEcb5pL8d5Kv2fr55VvzX5TkH5L85db0b0zyH6nG\nkgAABty7k7yw9fjctn/fsq3N61INSPWpJB9JcjoGpAIAAAAAAAAAuJEvSvI3SZ5Kspzkx+othz72\nuiRPJvmnJH+f5DtrrYZ+90dJ/ivJ79ddCH3rW5OsJPmXJN9fcy21elGSl209/4IkF5J8aX3l0Mca\nSb566/mXJnk2VZ+DTviGVG/0ggSdcHOSD6UaXuEVqcLEq1pZQV1DZHfCC0n+d+v5FybZ2PYztFMz\n1e3LSfLhVJ8WW/qPBy14f3yRIZ1zV6qjq5dS9bM/TTWu0771U5BIki9Jdaj5ypgUn6i3HAbAm1KN\nEPtc3YUAFLgtV79//WdaHEW634LEx1MNfnV7kh9N8hX1lkOfe3WS30nyQ3UXAlBo86ArqDNIvCXV\ngFTPpTot8bZd2vxIktUk/5Pkb5O8edu8H091YeVSrh3I6vlUF8O9MdCZvvbSJH+Y5J1JPtiRqulF\nnXpfO/CbPX3roH3uYq4+AvG69NAR1m9OcirJt6f65e/fMf+7U333xmySO1J9+dcnUv2Su7klyRdv\nPf/iVOew72hvyfSodve1m5LMJ/m5ThRLT2t3X7tiKi62ZHcH7XM3p7rA8rZUdz/+S679os2esNsv\n/9dJfn3HtH9O9QlwN+OpkvzfbT1OtLNA+kY7+tqbUw35vpSqzz2V5KvaWCP9oR19LUn+PNVR1k+l\nukNool0F0ndK+9y3pbpz41+T/EDHquuwnb/8S1LddbHzEM3pVKcsoJS+Rrfoa3RbLX3usF5s+Zok\nL87nv2L8iudT3cMP7aKv0S36Gt3WlT53WIMEANADDmuQ+Eiqc9DDO6YPpxo0A9pFX6Nb9DW6rSt9\n7rAGic8mWcy1o2u9Ncn57pdDH9PX6BZ9jW7r+z738lTjPLwx1QUiJ7eeX7kl5btS3bJyIsnRVLes\n/HdufJsU7KSv0S36Gt020H1uKtUv/UKqQy9Xnj+6rc0PpxpE43+TLOTqQTRgv6air9EdU9HX6K6p\n6HMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcEj9H9vlXSDNP4kCAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "\n", + "xscale('log'); ylim(-10,10)\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=10,color=\"black\")\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(0.095117985155199827, 1.1056585227168947)" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFkCAYAAACq4KjhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAHwFJREFUeJzt3X98XHWd7/FX2sYWQagiTVpFQ+OWVItgYvjRIqassPcq\nCyiKmb0otrIg668o8lhQiNx2F68sAuLeqwvSqrBMio9d3eralcdiqkubqzXRK5EGsW24ru0E5aao\nQGulvX98E5u0J00mM2dmzpzX8/GYR6cz58en7bft+5zz/QGSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEkJVlPuAsaYP/KSJEn52TXyKqpKCQnzm5qadg4MDJS7DkmSkmgr8KcUOShUSkhoBnrvu+8+\nFi9eXO5a8tLR0cEdd9yRyPMVcqx8981n+6lsO9k2R/q+o6OD2267g9ZW+MQn4G1vm1JZZWdbG+8n\nP4EVK+Daa6G9fXrnKkVbK+WfWbHY1oq/fZxtbevWrVx22WUALUDflAqaolnFPFihFi9eTHNzc7nL\nyMvcuXNLWnMxz1fIsfLdN5/tp7LtZNsc6fu5c+fS2Bi+O/VUSEqTs62N19wMvb3w938PV1wBixbl\nf65StLWk/ZsGtrU4to+7rcVlZknPNrH5wFVXXXUV8+cnr1vCKaecktjzFXKsfPfNZ/upbDvZNhN9\nn81mWb48w2c/C1deCQsXTrmssrOtjffGN8L998ODD4a7CjNm5H+uuNtaJpOZci2VxLZW/O3jamu7\ndu3irrvuAriLan7c0Nvbm8jUrWS58MILuemm9bS0wJYt8PrXl7siFWLzZnjDG+Dmm+Gv/7rc1Yx3\n4YUXsn79+nKXoSrX19dHS0sLxPC4YUYxDyYlxfBw+PHFLy5vHSrc0qVwzTXQ2QmPPFLuaqTqYkhQ\n6mQyGXbvDu8NCdVh1Sp41avg8sth375yV3NQUh81SKMMCUqdTCbzxzsJxx1X3lpUHHPmwFe+EkY8\n/O3flruagwwJSjpDglJpeBiOPRZmVkrXXRWspQVuuAH+5m/CqAdJhTMkKJWGh33UUI0+8Ql47Wvh\n3e+GPXvKXY2UfIYEpdLu3YaEalRbGx47/PznoSOjpMIYEpRKw8Mwd265q1AcliyB1avh1lth06Zy\nVyMlmyFBqeTjhup2zTVw5plhtMMzz5S7Gim5DAlKJR83VLeZM+FLX4KdO+G668pdjZRchgSlkncS\nqt+iRfDpT4e1HR56qNzVSMlkSFAq2SchHd7/fli+HFauhKefLnc1UvIYEpQ6Bw54JyEtZsyANWvC\nn/dHP1ruaqTkMSQodZ59Fv7wB0NCWjQ0wO23h7DwzW+WuxopWQwJSp3RKZl93JAeK1fCm98Mf/mX\n8NRT5a5GSg5DglLHFSDTp6YG7r4b9u6FD36w3NVIyWFIUOq4AmQ6LVgQRjpks/DVr5a7GikZDAlK\nHe8kpFcmA5dcAldfDUND5a5GqnxxhoRzgG8AvwT2AxfFeC5pyuyTkF41NfD5z4dRD1deGUa6SJpY\nnCHhhcCPgPeP/Ny/jqoIw8Nw1FEwe3a5K1E5nHAC3HUXrF8P995b7mqkyjYrxmP/28hLqihOyayL\nL4Z3vQs+9CE491x4+cvLXZFUmeyToNRxtkUBfPazcMwx8N73+thBmoghQanjbIuC0AbuuQcefDA8\nfpB0OEOCUsfHDRr1Z38WOjBecw1s317uaqTKE2efhLx1dHQw95D7wJlMhkwmU6aKVI2Gh+Gkk8pd\nhSrFrbeGuwnveQ9s3BhGPkiVKpvNks1mx322e3TylxjUxHbk8fYDFwPrJ/i+Gejt7e2lubm5RCUp\nrZYsCZ3V7ryz3JWoUnz3u9DWBrfdBh/5SLmrkfLT19dHS0sLQAvQV8xjx5mZjwZOG3kBLBx5f2KM\n55QmZZ8EHeqNb4SODrj+ehgYKHc1UuWIMyS0EhJNH2GOhNtG3v/3GM8pTco+CYpy881hxcjLLw+r\nhEqKNyRsHDn+DGDmmPcrYzyndES//31YKtohkMk1ODjIypUrOeWUU2hqauKUU05h5cqVDA4OFnTc\no46CL38ZfvhDuOWW4tQqJV1FdVyU4ua6Dck1NDREe3s7AwMD5HK5cd/19/ezYcMGmpqa6Orqoq6u\nblrnOOMMuO46uOkmeMtb4NRTi1C4pmRwcJBVq1axZcsW9u3bR21tLa2trXR2dtLQ0FDu8lLLkKBU\ncQXIZBoaGmLp0qVsP8I4xVwuRy6XY9myZWzatGnaQaGzE77xDXj3u2HLFnjBC6ZbtaaiFOFP0+dg\nH6WKdxKSqb29/YgBYaxt27bR3t4+7XPNng1f+Qo8+iisWjXtw2gKRsPfxo0bDwsIo3K5HBs3bmTZ\nsmUMuXRnyRkSlCquAJk8O3bsYCDPIQcDAwMF9VE47TT45CfhU5+CH/xg2ofRJEoZ/jQ9hgSlio8b\nkmf16tUTXmVOJJfLsarA2wDXXQctLWG0w3PPFXQoRShH+FP+DAlKleFhmDULjj663JVUjrhGCxTL\nli1bSrrfqFmzwmiHHTvghhsKOpQilCv8KT92XFSqjK4AWVOquUYr2NDQEMuXL2f79u3s3bt33Hf9\n/f3cf//9LFy4kO7u7rJ2GNu3b19J9xtr8eIwf8LHPgYXXQTnnFPwIfNSzT3+yxX+lB9DglLF2RaD\nqYwW2Lt3L1u3bi14tEChamtrS7rfoT78Yfj618PaDj/5SVheOm5p6PFfzvCnqfNxg1LF2RaDJHUY\na21tndZ+p59+elHOP3MmrF0LTz4J115blEMeUVp6/Jc7/GlqDAlKFe8kJK/DWGdnJ/X19XntU19f\nz4033li0Ghob4e/+Dr7whbBiZJySFOAKUe7wp6kxJChVRvskpFnSOow1NDTQ1NSU1z5NTU1Ff2b/\nvvfBeefBe997cJRMsSUtwBWiEsKfJmdIUKr4uCGZHca6urpobGyc0raNjY2sW7eu6DXU1MA998Bv\nfxumb37ooaKfInEBrhCVEv50ZIYEpYqPG5LZYayuro5NmzbR1tY24dVnfX09bW1tbN68mXnz5sVS\nx4knwubNUF8Pb3oT/MVfwK5dxTt+EgNcISoh/OnIDAlKFR83JLfDWF1dHd3d3fT09LBixQqWLFnC\nySefzJIlS1ixYgU9PT10d3fHFhBGvfrVsHFjmEPh3/8dmprgc5+D558v/NhJDHCFqJTwp4k5BFKp\n8fzz8PTT3klobW2lv78/7/0qpcNYQ0MDa9asKWsNNTVhAagLLoCPfzwMk1y7NnRsLOS3KakBrhCj\n4a+a54RIMu8kKDV+85vwY9pDgh3GiuclLwnBoKcHDhyAM8+Eq68+uEZIvtLc4380/D3yyCMMDAzw\nyCOPsGbNGgNCmRkSlBquABnYYaz4zjgjLCt9xx3wj/8YHkHce28IDvkwwJVepU9LXm6GBKWGK0Ae\nZIex4ps1Cz70IXjsMTj33PA4YvnysOT0VBngSmd0WvKzzjqLtWvX0t/fz2OPPUZ/fz9r167lrLPO\nYvny5YmdrKpYDAlKDVeAPGi0w9jixYuZPXt25DazZ89m8eLFdhjL0/z5kM2GSZd27oRTT4Xrr4dn\nnpna/ga4+KVlVstiMCQoNXzcMF5dXR2PPvooAwMDkaMFBgYGePTRRw0I03TeeWGth85OuP12eM1r\nYP36yfezx3/80jKrZTE4ukGpMRoSjj22vHVUmkoYLVCt5syBG28M8yl84ANhJckLL4Q774RXvnLi\n/ezxH59CZrVM4++5IUGpMTwMxx0XFuyRSqmxEb71Lfinf4KOjrAEdWcnfPSj8IIXTLyfAa74CpnV\nMo1/Fj5uUGo4JbPKqaYG3v522Lo1DJO84QZ43evgu98td2XpkrZZLQtlSFBqOCWzKsGLXgSf+Qz0\n9oY7W21tcPnlYSlqxS9ts1oWypCg1HBKZlWSU0+Fhx+Gu++Gb34TTj45TMxUjOmdNbE0zmpZCEOC\nUsPHDao0M2bAFVeEuRXe9rbwGGLpUujrK3dl1SvNs1pOhyFBqeHjBlWql740LEP9H/8Bzz4Lra1h\nYqanny53ZdXHWS3zY0hQavi4QZXu7LPDXYRbboE1a8L0zl1d+U/vrIk5q2V+DAlKDe8kKAlqa+Ga\na8IoiKVLIZOB888PjyRUHM5qOXWGBKXCgQP2SVCynHhimFfhX/8Vtm0LdxXOOANuvhl++lPvLhTC\nWS2nzpCgVHjmGfjDHwwJSp43vzmEgnvvhVe8IoSEJUvgT/4EPvax0I/BERH5G53VsqenJ3Ja8p6e\nHrq7u1MdEMAZF5USrgCpJDvqKLjssvDaswe+8x34l38Jy1J/5jOh4+MFF4Rpn88/H174wnJXnBzO\nanlk3klQKrgCpKrFnDnh7sI//AP88pfQ0xOGUX7/+/DWt4bAcNFFoeOjEzSpUIYEpYIrQKoazZgB\nZ54Jn/oUPPoo/OxnsGoVPPVUCA719WHExK23wuOPl7taJZEhQang4walwWg/hYcfhlwOvvhFOP74\nsBLlokXw6lfD9deHuw7795e7WiWBIUGp4OMGpc28ebByZei78Otfw9e+FkZH3H13uPvw8pfDVVeF\n1Sn37Cl3tapUhgSlwvBw6Mx1pGV5pWp19NFw8cWwdi0MDcH3vhfmX3joIXjLW+CEE+Ad74D77jt4\n100CQ4JSwomUpGDmTHjDG8KoiMcfh/7+8AjiiSfgXe8KgeHcc+HOO8NnSjeHQCoVnJJZOlxNDbzm\nNeH18Y/Dzp2wfn14RHHttfDhD4fHEkuWjH8tXuwwy7QwJCgVnG1RmtyCBfC+94XXb34DDz4Y1pLo\n7w+zP956a9iupgYaGw8PD4sWhWmlVT0MCUoFHzdI+Tn2WHj728Nr1O9+F4Za9vcffN1zD+zaFb6v\nrYWTTz48PJx0UhiuqeQxJCgVhodh4cJyVyEl2zHHwOmnh9dYTz0Vpo4eGx6+/e2DnSCPOio80jg0\nPCxYEO5KqHIZEpQKPm6Q4nP88XDOOeE16sCBcIdhbHDo74cHHoBnnw3bHHfc4cFhyZIwa6QqgyFB\nqeDjBmnqBgcHWbVqFVu2bGHfvn3U1tbS2tpKZ2cnDQ0NUzpGTU24U7BgQVhPYtT+/TA4GALD6N2H\nnp4wjfS+fWGb448PHSYXLID58w8eZ+z7ujr7P5SCIUGpYEiQJjc0NER7ezsDAwPkcrlx3/X397Nh\nwwaampro6uqirq5uWueYMSM8+lu4EC688ODn+/bBz38eQsNjj4WRFjt3hp8/+GC4KzF2tcuamjBc\nczQ0TBQo6upglv/TTZu/dap6e/fCc885BFKFKcbVdSUbGhpi6dKlbN++fcJtcrkcuVyOZcuWsWnT\npmkHhSi1tWFo5eLF0d/v3w+/+lUIC6MBYuz7H/8YNmwI01EfGibq6ia+IzH683nzDBNR4v4t+Svg\nWqAe+CnQATwc8zmlcZySWYUoxdV1JWhvbz9iQBhr27ZttLe3093dHXNVB82YEf6zr6uD006beLvn\nnz88TIwNFH194X0uN379ihkzYPXqMF+EDoozJLwTuB24GtgEvA/YALwa+EWM55XGcQVITVe5r65L\nZceOHQwMDOS1z8DAAIODgxV3F2XmzLD6ZX09vO51E2/3/PNhKe2xAeJI4SOt4hy5+lHgi8Aa4DHg\nI4RwcHWM55QO4wqQmq7pXF0n0erVqw+7SzKZXC7HqlWrYqoofjNnhscMLS1wwQVw5ZWHD+1UfCHh\nBUAz8OAhnz8ILI3pnFIkHzdoOgq5uk6aLVu2lHQ/JUdcIeGlwExg6JDPnyT0T5BKxscNmo40XV3v\nGx17WKL9lBwV1Zezo6ODuYfcE85kMmQymTJVpGowPBx6TrsgjfKRpqvr2mlOODDd/TR92WyWbDY7\n7rPdo7dLYxBXSPg18DxwaA+eOmDXRDvdcccdNDc3x1SS0uqKK+CSS5z+VflJ09V1a2sr/f39ee93\nug/xSy7qwrmvr4+WlpZYzhfX44bfA73A+Yd8fh6wOaZzSpFmzw49naV8pOnqurOzk/o8/5LU19dz\n4403xlSRKkWcoxtuA64AVgCLCcMhXw58IcZzSlJRtLa2Tmu/JF5dNzQ00NTUlNc+TU1NFTf8UcUX\nZ0h4gDB5UifwI+Bs4M04R4KkBEjb1XVXVxeNjY1T2raxsZF169bFXJEqQdwrfH8eOAmYA7TibIuS\nEiJtV9d1dXVs2rSJtra2CcNRfX09bW1tbN68mXnz5pW4QpVDRY1ukKRK0tXVxbJly9i2bduk21bD\n1XVdXR3d3d1Vv06Fps6QIEkTGL26nmjtBghX101NTaxbt65qrq4bGhpYs2ZNuctQBTAkSNIReHWt\nNDMkSNIUeHWtNIq746IkSUooQ4IkSYpkSJAkSZEMCZIkKZIhQZIkRTIkSJKkSIYESZIUyZAgSZIi\nGRIkSVIkQ4IkSYpkSJAkSZEMCZIkKZIhQZIkRTIkSJKkSIYESZIUyZAgSZIiGRIkSVIkQ4IkSYpk\nSJAkSZEMCZIkKZIhQZIkRTIkSJKkSIYESZIUyZAgSZIiGRIkSVIkQ4IkSYpkSJAkSZEMCZIkKZIh\nQZIkRTIkSJKkSIYESZIUyZAgSZIiGRIkSVIkQ4IkSYpkSJAkSZEMCZIkKZIhQZIkRTIkSJKkSIYE\nSZIUyZAgSZIiGRIkSVKkuELCJ4DNwLPAcEznkCRJMYorJNQC64D/FdPxJUlSzGbFdNybRn58T0zH\nlyRJMbNPgiRJimRIkCRJkfIJCTcB+yd5NRe5PkmSVCb59En4HHD/JNs8UUAtdHR0MHfu3HGfZTIZ\nMplMIYeVJKkqZLNZstnsuM92794d2/lqYjty8B7gduDFk2zXDPT29vbS3OzNCEmSpqqvr4+WlhaA\nFqCvmMeOa3TDK4CXjPw4EziVEEgeB56J6ZySJKmI4goJq4B3j7w/APxo5MflwPdiOqckSSqiuEY3\nvGfk2DMIdxJGfzQgSJKUEA6BlCRJkQwJkiQpkiFBkiRFMiRIkqRIhgRJkhTJkCBJkiIZEiRJUiRD\ngiRJimRIkCRJkQwJkiQpkiFBkiRFMiRIkqRIhgRJkhTJkCBJkiIZEiRJUiRDgiRJimRIkCRJkQwJ\nkiQpkiFBkiRFMiRIkqRIhgRJkhTJkCBJkiIZEiRJUiRDgiRJimRIkCRJkQwJkiQpkiFBkiRFMiRI\nkqRIhgRJkhTJkCBJkiIZEiRJUiRDgiRJimRIkCRJkQwJkiQpkiFBkiRFMiRIkqRIhgRJkhTJkCBJ\nkiIZEiRJUiRDgiRJimRIkCRJkQwJkiQpkiFBkiRFMiRIkqRIhgRJkhQprpDQANwDbAeeBX4O3ATU\nxnQ+SZJUZLNiOu7JQA1wJSEgnALcDRwNXBvTOSVJUhHFFRK+PfIaNQjcClyNIUGSpEQoZZ+EucBT\nJTyfJEkqQKlCQiPwAeALJTqfJEkqUL4h4SZg/ySv5kP2WQD8G/AAsKaAWiVJUgnl2yfhc8D9k2zz\nxJj3C4BuYBOhE+MRdXR0MHfu3HGfZTIZMplMnmVKklR9stks2Wx23Ge7d++O7Xw1sR0ZXkYICFuA\ny4ADR9i2Gejt7e2lufnQGxGSJGkifX19tLS0ALQAfcU8dlyjG14GbCSMargWqBvzXS6mc0qSpCKK\nKyScR+isuBD4zzGfHwBmxnROSZJURHGNbvjSyLFnjvw4Y8zPJUlSArh2gyRJimRIkCRJkQwJkiQp\nkiFBkiRFMiRIkqRIhgRJkhTJkCBJkiIZEiRJUiRDgiRJimRIkCRJkQwJkiQpkiFBkiRFMiRIkqRI\nhgRJkhTJkCBJkiIZEiRJUiRDgiRJijSr3AVIcchms2SzWQD27NnDE088wStf+UrmzJkDQCaTIZPJ\nlLNESap4hgRVpbEhoK+vj5aWFrLZLM3NzWWuTJKSw8cNkiQpkiFBkiRFMiRIkqRIhgRJkhTJkCBJ\nkiIZEiRJUiRDgiRJimRIkCRJkQwJkiQpkiFBkiRFMiSoag0ODrJy5UouvfRSAC699FJWrlzJ4OBg\neQuTpIRw7QZVnaGhIdrb2xkYGCCXy/3x823btrFt2zY2bNhAU1MTXV1d1NXVlbFSSapshgRVlaGh\nIZYuXcr27dsn3CaXy5HL5Vi2bBmbNm0yKEjSBHzcoKrS3t5+xIAw1rZt22hvb4+5IklKLkOCqsaO\nHTsYGBjIa5+BgQH7KEjSBAwJqhqrV68e1wdhKnK5HKtWrYqpIklKNkOCqsaWLVtKup8kVTtDgqrG\nvn37SrqfJFU7Q4KqRm1tbUn3k6RqZ0hQ1WhtbZ3WfqeffnqRK5Gk6mBIUNXo7Oykvr4+r33q6+u5\n8cYbY6pIkpLNkKCq0dDQQFNTU177NDU10dDQEE9BkpRwhgRVla6uLhobG6e0bWNjI+vWrYu5IklK\nLkOCqkpdXR2bNm2ira1twkcP9fX1tLW1sXnzZubNm1fiCiUpOQwJqjp1dXV0d3fT09PDihUr/nhn\nobGxkRUrVtDT00N3d7cBQZIm4QJPqloNDQ2sWbOGvr4+WlpaeOCBB2hubi53WZKUGN5JkCRJkeIK\nCeuBJ4DngJ3AV4D5MZ1LkiTFIK6Q8B3gHcAi4BKgEfjnmM4lSZJiEFefhDvGvP8F8Gnga8BM4PmY\nzilJkoqoFH0SXgL8N6AbA4IkSYkRZ0j4NPA74NfAScA7YzyXJEkqsnweN9wEdE6yzeuBvpH3twB3\nAw3AJ4GvA+cABybauaOjg7lz5477LJPJkMlk8ihTkqTqlM1myWaz4z7bvXt3bOeryWPb40deR/IE\nsDfi85cR+iacDWyO+L4Z6O3t7XUcu4pudJ4E25ekajT6bxzQwsEL9aLI507CUyOv6Rh9rDFzmvtL\nkqQSi2N0w+kjr4eBYWAhsAp4HOiJ4XzSYcbektuzZw+LFi3iuuuuY86cOYCPsSRpKuIICc8CbyX0\nYTga2AVsAFYDf4jhfNJhDAGSVLg4QkI/8KcxHFeSJJWQazdIkqRIhgRJkhTJkCBJkiIZEiRJUiRD\ngiRJimRIkCRJkQwJkiQpkiFBkiRFMiRIkqRIhgRJkhTJkCBJkiIZEiRJUiRDgiRJimRIkCRJkQwJ\nkiQpkiFBkiRFMiRIkqRIhgRJkhTJkCBJkiIZEiRJUiRDgiRJimRIkCRJkQwJkiQpkiFBkiRFMiRI\nkqRIhgRJkhTJkCBJkiIZEiRJUiRDgiRJimRIkCRJkQwJkiQpkiFBkiRFMiRIkqRIhgRJkhTJkCBJ\nkiIZEiRJUiRDgiRJimRIkCRJkQwJkiQpkiFBkiRFMiRIkqRIhgRJkhTJkCBJkiIZEiRJUiRDgiRJ\nihR3SJgN/BjYD7w25nNJU5LNZstdglLCtqakizsk3AL8MuZzSHnxH26Vim1NSRdnSPivwJuAj8V4\nDkmSFJO4QkIdcBfwLuC5mM5REUp9pVDM8xVyrHz3zWf7qWw72TbVeAVnWyv+9ra1aLa14m+f1LYW\nR0ioAb4EfB7oi+H4FcW/TMXfPql/meJmWyv+9ra1aLa14m+f1LY2K49tbwI6J9mmFVgGHAP8j0O+\nq5nsBFu3bs2jnMqwe/du+vpKl4WKeb5CjpXvvvlsP5VtJ9vmSN+X+s+sWGxrxd/ethbNtlb87eNs\na3H+3znpf9xjHD/yOpIngC7gz4EDYz6fCTwP3AesiNhvPrAFeFke9UiSpOCXhAv1XcU8aD4hYapO\nBF405ucvA74NXAJ8H9g5wX7zR16SJCk/uyhyQCiVBpwnQZKkxCnVjIsHJt9EkiRJkiRJkiRJkiSp\n5F4E/AD4EdAPfKC85aiKnQhsBH4K/B/g7WWtRtXua8D/A75a7kJUtS4ABoCfAe8tcy2xmQHMGXl/\nFLAdOKF85aiK1XNwJM4JwC8IbU6KwxsJ/4gbEhSHWcBjhOkFjiEEhZfkc4BSjW4o1H5gz8j7FwL7\nxvxcKqYc8JOR978iXOXl9ZdKysN3gd+VuwhVrdMJd0V3EdrZt4Dz8zlAUkICwHGE27//F/gs8Nvy\nlqMUeD1hwjGXO5eURAsY/+/Xf5LnzMZJCglPA6cCJwHvB15V3nJU5Y4HvgxcWe5CJGmaCp6jKK6Q\ncA7wDUKC2Q9cFLHNXwE7CEtJ/xA4e8x3HyR0UuwDag/Z70lCx7LTilqxkiqOtjYb+GfgZuB/x1K1\nkiiuf9ecbE4TKbTN7WT8nYMTqZA7o/8FWAVcTPiFXXjI9+8E9gIrgZOB2wmPD06c4HjzgGNH3h9L\neGZ8cnFLVkIVu63VAFngk3EUq0Qrdlsb1YYdFxWt0DY3i9BZcQFhlODPgBfHXnWeon5h3wf+5yGf\nPUq4covSTEjgPx55Ra0kKRWjrZ1NWLG0j9DmfgS8pog1qjoUo61BWPzuSeAZwkialmIVqKoz3Tb3\n54QRDo8DV8RWXQEO/YW9gDA64dDbJncQHiNI02VbU6nY1lRqZWlz5ei4+FJgJjB0yOdPEsaoS8Vi\nW1Op2NZUaiVpc0ka3SBJkkqoHCHh14RnvnWHfF5HmPBBKhbbmkrFtqZSK0mbK0dI+D3Qy+GzPp0H\nbC59OapitjWVim1NpZboNnc0YR6D0widLTpG3o8Oy7iUMGxjBbCYMGzjN0w+VEg6lG1NpWJbU6lV\nbZtrI/yC9hNuh4y+XzNmm6sJE0DsAbYwfgIIaarasK2pNNqwram02rDNSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkJcD/B94LUhO2deHpAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "s, loc, scale = lognorm.fit(lag,loc=.01)\n", + "xscale('log'); ylim(-4,1.5)\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=10,color=\"black\")\n", + "#plot(fqd,norm.pdf(fqd,mu,sigma))\n", + "plot(fqd,lognorm.pdf(fqd,s,loc,scale))\n", + "mu,sigma\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/lib/python2.7/dist-packages/numpy/core/numeric.py:460: ComplexWarning: Casting complex values to real discards the imaginary part\n", + " return array(a, dtype, copy=False, order=order)\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAFkCAYAAACjCwibAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XucleP+//HXjEolNREdsEOKkU3NsCuHCpEoClumZtoi\nx1B03vv7JWyaksohp2x0HJEdQkmiQsKMECX7m9oSFRodqan1++Oz+s00zUxrZta9rnXf6/18PO7H\nzNyzDh9LM/Ne93VdnwtERERERERERERERERERERERERERERERERERERERERERERERERERERERERE\nRCQB3QJ8B+wAPgXOLuO2DYBpwDfAbmCs59WJiIhIxJI9fOzu2B/++4AWwCJgNnBMKbc/GNgQvv3n\nQMjD2kRERCSOLAHGFzv3NfBABPd9FxgT9YpERESkwry60lANSAPmFjs/FzjTo+cUERERD1Xx6HHr\nAQcB64ud34DNXYiWhuFDREREyufH8BExr0JDLDRs1KjRunXr1rmuQ0RExI9+AM6gHMHBq9DwM7YC\non6x8/UpZ6opQ8N169YxZcoUUlNTo/SQ/tS/f3/GjRvnuoy4oNfC6HUopNfC6HUopNcCli9fTmZm\n5lHY1XrnoWEnkAtcCLxa5PwFwMxoPlFqaippaWnRfEjfSUlJSfjXYC+9FkavQyG9FkavQyG9FhXn\n5fDEGGAy1p/hI+AG4GjgyfD3RwCNgL8VuU+L8MdDgSPDX+/EVl2UaNu2qNYsIiIipfAyNLwIHA7c\nhV3++BK4GPg+/P0G7N+zIS/8MYStvugBrAaOL+1J3n0XzjknajWLiIhIKbxs7gTwBHAcUB2bbPF+\nke/1Bs4roZ5kbOXF3s9LDQwAb74ZrVJFRESkLF6HBs99/DEk+gKKjIwM1yXEDb0WRq9DIb0WRq9D\nIb0WFZfkuoBKSANyq1bNZcSINAYMcF2OiIiIP+Tl5ZGeng6QTuHUgAPy/ZWGtm1h8mTXVYiIiASf\n70PDJZfA55/Dl1+6rkRERCTYfB8azjwTDj8cpk51XYmIiEiw+T40VK0K3btbaNizx3U1IiIiweX7\n0ACQmQlr18KCBa4rERERCa5AhIbWraFJE02IFBER8VIgQkNSkl1tmDEDduxwXY2IiEgwBSI0APTs\nCVu2wGuvua5EREQkmAITGpo2tWGKKVNcVyIiIhJMgQkNYEMUc+bAxo2uKxEREQmeQIWG7t3t4/Tp\nbusQEREJokCFhnr1oFMnDVGIiIh4IVChASArC5YsgZUrXVciIiISLIELDZ07Q+3aaistIiISbYEL\nDTVqwJVX2hBFKOS6GhERkeAIXGgAG6JYtQoWL3ZdiYiISHAEMjS0bQvHHKO20iIiItEUyNCQnGwd\nIqdPh507XVcjIiISDIEMDWCNnjZtgjffdF2JiIhIMAQ2NDRvDi1bqmeDiIhItAQ2NIBdbZg1C/Lz\nXVciIiLif4EODRkZUFAAL73kuhIRERH/C3RoaNgQOnTQEIWIiEg0BDo0gA1RLFwIq1e7rkRERMTf\nAh8aunWDmjVh2jTXlYiIiPhb4ENDrVoWHCZPVltpERGRygh8aABrK71iBeTlua5ERETEvxIiNJx/\nPtSvrwmRIiIilZEQoaFKFejRA3JybAmmiIiIlF9ChAawVRTr18O8ea4rERER8aeECQ0tW0Jqqna+\nFBERqSivQ8MtwHfADuBT4OwD3L4dkBu+/f8BN0arkKQkmxA5cyZs2RKtRxUREUkcXoaG7sBY4D6g\nBbAImA0cU8rtjwPeBBaEb/8A8AhwebQK6tEDduyw4CAiIiLl42VouBN4BngW+Aa4A/geuLmU298E\nrA7f7xvgX+H7DoxWQY0bQ7t2WkUhIiJSEV6FhmpAGjC32Pm5wJml3KdNKbc/HTgoWoVlZsI778C6\nddF6RBERkcTgVWioh/2hX1/s/AagQSn3qV/C7dcDVcKPFxVXXglVq9rySxEREYlcwqye2CslBbp0\n0RCFiIhIeVXx6HF/BnZjVw+Kqg/8WMp9fmL/qxD1gYLw45Wof//+pKSk7HMuIyODjIyMUovLyoLL\nLoNly+CUU0q9mYiIiO/l5OSQU+zyen5+foUeKykaBZXiI2z5ZN8i574GZgL/KOH22UAXoHmRc08A\npwJnlXD7NCA3NzeXtLS0chW2cyc0bAjXXw/Z2eW6q4iIiO/l5eWRnp4OkA5EvDOTl8MTY4A+QG8g\nFVt+eTTwZPj7I4CJRW7/JNAYeCh8+2vDx+hoF1atGnTvDlOnwp490X50ERGRYPIyNLwI9AfuAj7D\nGjtdjC27BBuKKNqzYXX4++3Dt/8HcBt2ZSLqsrJg7VpYsMCLRxcREQker+Y07PVE+ChJ7xLOLcQu\nlXiudWto0sTaSp97biyeUURExN8SbvXEXklJ1rNhxgzrEikiIiJlS9jQANCzp+1D8dprrisRERGJ\nfwkdGpo2tWEK9WwQERE5sIQODWBDFHPmwMaNrisRERGJbwkfGrp3t4/Tp7utQ0REJN4lfGioVw86\nddIQhYiIyIEkfGgAG6JYsgRWrnRdiYiISPxSaMA2sKpd2zpEioiISMkUGoAaNWzL7ClTIBRyXY2I\niEh8UmgIy8qCVatg8WLXlYiIiMQnhYawtm3hmGOsrbSIiIjsT6EhLDnZOkROn25bZ4uIiMi+FBqK\nyMyETZtg9mzXlYiIiMQfhYYimjeHFi00RCEiIlIShYZisrJg1izIz3ddiYiISHxRaCgmIwMKCuCl\nl1xXIiIiEl8UGopp2BA6dFBbaRERkeIUGkqQmQkLF8Lq1a4rERERiR8KDSXo1g1q1oRp01xXIiIi\nEj8UGkpQq5YFh8mT1VZaRERkL4WGUmRlwYoVkJfnuhIREZH4oNBQivPPh/r1NSFSRERkL4WGUlSp\nYssvc3JsCaaIiEiiU2goQ1YWrF8P8+a5rkRERMQ9hYYytGwJqalqKy0iIgIKDWVKSrKrDTNnwpYt\nrqsRERFxS6HhAHr0gB07LDiIiIgkMoWGA2jcGNq10yoKERERhYYIZGbCO+/AunWuKxEREXFHoSEC\nV14JVava8ksREZFEpdAQgZQU6NJFQxQiIpLYFBoilJkJS5fCsmWuKxEREXFDoSFCnTrBYYfpaoOI\niCQuhYYIVasG3bvD1KmwZ4/rakRERGLPq9BQF5gM5IePSUCdA9zncmAu8AuwBzjVo9oqLCsL1q6F\nBQtcVyIiIhJ7XoWGadgf/Y7ARUALLESUpSawEBjsUU2V1ro1NGmittIiIpKYvAgNqVhY6AMsAT4C\nrgc6A83KuN8U4J/AOx7UFBVJSTYhcsYM6xIpIiKSSLwIDW2A34BPipxbEj7XxoPni6mePW0filmz\nXFciIiISW16EhgbAhhLObwh/z9eaNrVhCg1RiIhIoqlSjtsOB+46wG3OqHgpFdO/f39SUlL2OZeR\nkUFGRoZnz5mZCf37w8aNcMQRnj2NiIhIpeXk5JBTrKVxfn5+hR4rqRy3PTx8lGUN0BN4CFtBUdQm\noD8w8QCPcSywCps8+UUZt0sDcnNzc0lLSzvAQ0bXzz9Dw4YwdizcemtMn1pERKTS8vLySE9PB0gH\n8iK9X3muNPwSPg5kMba88gwK5zW0Cp/7sBzPF7fq1bNmT1OmKDSIiEji8GJOw3JgDjABCwutw5/P\nAr4tcrsVQNciX9fFri6cHP76pPDX9T2osdIyM2HJEli50nUlIiIiseFVn4YewJdYs6a3gKVAVrHb\nNANqF/n6MuwSyetACHgh/PWNHtVYKV26QO3a1iFSREQkEZRneKI88tk/JBRXPLA8Hz58oUYN2zJ7\nyhQYPtx6OIiIiASZ9p6ohKwsWLUKFi92XYmIiIj3FBoqoW1bOPpo7XwpIiKJQaGhEpKTrUPk9Omw\nc6frakRERLyl0FBJWVnw668we7brSkRERLyl0FBJzZtDixZqKy0iIsGn0BAFWVm2gVUFu3KKiIj4\ngkJDFGRkQEEBvPSS60pERES8o9AQBQ0bQocOWkUhIiLBptAQJZmZsHAhrFnjuhIRERFvKDRESbdu\nULOm2kqLiEhwKTRESa1aFhwmT4ZQyHU1IiIi0afQEEWZmbBiBeRFvDO5iIiIfyg0RFGHDlC/viZE\niohIMCk0RFGVKrb8MifHlmCKiIgEiUJDlGVlwfr1MG+e60pERESiS6Ehylq2hNRUtZUWEZHgUWiI\nsqQku9owcyZs2eK6GhERkehRaPBAjx6wYwe88orrSkRERKJHocEDjRtDu3YaohARkWBRaPBIZia8\n8w6sW+e6EhERkehQaPDIlVdC1aq2/FJERCQIFBo8kpICXbqo0ZOIiASHQoOHMjNh6VJYtsx1JSIi\nIpWn0OChTp3gsMN0tUFERIJBocFD1apB9+62XfaePa6rERERqRyFBo9lZcHatbBggetKREREKkeh\nwWOtW0OTJhqiEBER/1No8FhSkk2InDHDukSKiIj4lUJDDPTsCZs3w6xZrisRERGpOIWGGGjaFFq1\nUltpERHxN4WGGMnKgjlzYONG15WIiIhUjEJDjHTvbh+nT3dbh4iISEUpNMRIvXrW7EmrKERExK+8\nDA11gclAfviYBNQp4/ZVgJHAF8BW4AdgItDQwxpjKjMTliyBb791XYmIiEj5eRkapgGnAh2Bi4AW\nWIgozSFAS+De8MfLgWbAax7WGFNdukDt2rraICIi/uRVaEjFwkIfYAnwEXA90BkLAiX5DbgQmAF8\nG77fbUA6cLRHdcZUjRq2ZfaUKRAKua5GRESkfLwKDW2wEPBJkXNLwufalONxUoAQNrwRCJmZsGoV\nLF7suhIREZHy8So0NAA2lHB+Q/h7kagOZANTsTkOgdCuHRx9tIYoRETEf6qU8/bDgbsOcJszKlbK\nPqoCL4Q/v6WsG/bv35+UlJR9zmVkZJCRkRGFMqIvOdk6RE6YAOPG2U6YIiIiXsnJySEnJ2efc/n5\nFbuAn1TO2x8ePsqyBugJPIStoChqE9AfWxVRmqrAi8CxwHnh+5QkDcjNzc0lLS3tACXFl6++glNO\ngVdegcsuc12NiIgkmry8PNLT08HmDeZFer/yXmn4JXwcyGJseeUZFM5raBU+92EZ99sbGJoA51J6\nYPC15s2hRQtrK63QICIifuHVnIblwBxgAhYWWoc/n4WtjNhrBdA1/HlVbOVEOpAZ/rpB+KjqUZ3O\nZGXZBlYVvEIkIhHYtct1BSLB4mWfhh7Al8Bc4C1gKZBV7DbNgNrhz48CuoQ/LgXWhY8fKN+KC1/I\nyICCAtsyW0Si76ef4IgjoNhQrohUgpehIR8LCXXCRy9gcwnPPyn8+erw1weFPyYX+Xqhh3U60bAh\ndOignS9FvPLww/Dbb3DvvbBnj+tqRIJBe084lJkJCxfCmjWuKxEJlt9+g8cft2C+YgW8+qrrikSC\nQaHBoW7doGZNmDrVdSUiwfLEE/D77zBpkvVGyc5WF1aRaFBocKhWLQsOkyfrF5pItOzYYT1QrrnG\nhgGHDoWPP4b33nNdmYj/KTQ4lplpl0/zIl4lKyJlef552LgRBg2yrzt2tCXOI0Y4LUskEBQaHOvQ\nAerXV1tpkWgoKIAHH4S//hVOOMHOJSXZ1Ya334bcXLf1ifidQoNjVarY8sucHPuFJyIV99JL8N13\nMGTIvuevuAKaNIGRI93UJRIUCg1xICsL1q+HefNcVyLiX6GQTXi86CJo2XLf71WpAoMHW1+UlSvd\n1CcSBAoNcaBlS0hN1RCFSGXMng1ffGFDESXp1cuGAh98MLZ1iQSJQkMcSEqyqw0zZ8LWwGwCLhJb\n2dnQujW0bVvy96tXhzvugIkT4YcfYlubSFAoNMSJHj1g+3YLDiJSPh98AIsWwbBhFsJLc9NN1htl\n7NjY1SYSJAoNcaJxY3uHpLbSIuWXnQ0nnwydO5d9u9q1oW9feOop+PXX2NQmEiQKDXEkKwveeQfW\nrXNdiYh/fPklvP66rZhIjuA3Wr9+tlJp/HjvaxMJGoWGOHLllVC1qnblEymPkSPhT3+ypcuROPJI\nuO4629Bq2zZvaxMJGoWGOJKSAl26aBWFSKS++w5eeAEGDrTAHamBAyE/H5591rvaRIJIoSHOZGbC\n0qWwbJnrSkTi3+jRULeuXTkoj2OPtSsTo0fDrl2elCYSSAoNcaZTJzjsMF1tEDmQ9evtSkG/frYi\norwGD4b//lfDgSLlodAQZ6pVg+7dbbvsPXtcVyMSvx55xDo99u1bsfv/+c+22mLkSP2siURKoSEO\nZWXB2rWwYIHrSkTi0+bNtvrhpptseKKihg2Dr7+GWbOiV5tIkCk0xKHWreH44zVEIVKaJ5+EHTus\nw2NlnHkmnHOObZsdCkWnNpEgU2iIQ0lJNiFyxgz7xSgihX7/3To69uoFjRpV/vGGDoUlS3RlTyQS\nCg1xKjPTLsHqsqnIviZOtEmQgwdH5/E6dYJTT7WukiJSNoWGONW0KbRqpbbSIkUVFMCoUdYIrWnT\n6DxmUpJdbXjrLfjss+g8pkhQKTTEsawsmDMHNm50XYlIfJgxA1atKn3764r6619tHpGuNoiUTaEh\njnXvbh9ffNFtHSLxIBSyP+oXXghpadF97CpVYNAgCyXffhvdxxYJEoWGOFavno23aohCxIYPPv88\n+lcZ9rrmGjjiCOsSKSIlU2iIc5mZNrNb734k0Y0YYfN82rf35vGrV7clnM8/r51mRUqj0BDnunSB\n2rXVs0ES24cfwsKFdpUhKcm757npJgsP48Z59xwifqbQEOdq1LCZ4lOmqPmMJK7sbEhNhUsv9fZ5\n6tSBW26BJ56ATZu8fS4RP1Jo8IHMTJsxvnix60pEYm/ZMutXMmQIJMfgN1b//rbz5eOPe/9cIn6j\n0OAD7drB0UdriEIS06hRcMwxtpV1LNSvD9deCw8/DNu3x+Y5RfxCocEHkpOhZ0+YPh127nRdjUjs\nrF4N06bBwIG2A2ysDBoEv/5qW2+LSCGFBp/IyrJfYrNnu65EJHYeeghSUuC662L7vMcdZ31SRo+2\noQoRMQoNPtG8ObRooSEKSRwbNsAzz8Dtt8Mhh8T++YcMgTVr7AqfiBivQkNdYDKQHz4mAXUOcJ/h\nwHJgK/Ar8DbQyqP6fCkryyaE5ee7rkTEe488AgcdBLfe6ub5Tz0VLrnEVm7s2eOmBpF441VomAac\nCnQELgJaYCGiLN8AfYFTgLOB1cBcoJ5HNfrO1VfbpdIZM1xXIuKtzZth/Hi48UY47DB3dQwdCl99\nBW+84a4GkXjiRWhIxcJCH2AJ8BFwPdAZaFbG/XKA+VhY+BoYABwK/NmDGn2pUSM4/3y1lZbge/pp\n2LbNOjS6dPbZcNZZ1o1SfVJEvAkNbYDfgE+KnFsSPtcmwseoBtwAbAS0WW0RWVnWGW/NGteViHjj\njz9gzBjo1cuWGrs2bJj1SFm0yHUlIu55ERoaABtKOL8h/L2ydAa2ADuAgcAl2JwICevWDWrWhKlT\nXVci4o1Jk+Cnn2zZYzy4+GI45RRtmy0C5QsNw4E9BzjSK1nPfOA07IrE6+EjDt5rxI9atSw4TJ6s\ny6USPLt3WzOnyy+HE090XY1JSrK5DbNnw9KlrqsRcas8W78cHj7KsgboCTyEraAoahPQH5hYjudc\nGb79/SV8Lw3IPeecc0hJSdnnGxkZGWTEqn2cA3Pm2JbZn34K6ZWNaSJx5MUXrT/CJ5/A6ae7rqZQ\nQQE0bQqtW0NOjutqRMonJyeHnGL/cPPz81lkY27pQF6kj+XFfnGpwFfYcsm98xpaAYuBE4HybPL8\nHyw03FfC99KA3NzcXNLS0iperQ8VFNhYb0YGjB3ruhqR6AiFLAQffji8/bbravb3+ONw222wciU0\naeK6GpHKycvLI93edZYrNHgxp2E5MAeYgIWF1uHPZ7FvYFgBdA1/XhN4IHz7xlggeAZoBLzkQY2+\nVqWKBYacHAsQIkEwdy589plNPIxHvXtDvXrw4IOuKxFxx6s+DT2AL7E+C28BS4GsYrdpBtQOf74b\nuwrxMtavYRY2FHIOFi6kmKwsWL8e5s1zXYlIdGRnwxlnwLnnuq6kZDVq2A6Yzz0HP/7ouhoRN7wK\nDflYSKgTPnoBm0t47knhz/8ArsAmPVYHjgK6Abke1ed7LVtCaqraSkswfPQRvPeeTThM8mLQNEpu\nvhkOPth2wBRJRNp7wqeSkiAzE2bOhK1bXVcjUjnZ2bZaomvXA9/WpZQUuOUWm9+gdu6SiBQafKxn\nT9i+3YKDiF99/TW8+qptEJXsg99I/frZFvVPPOG6EpHY88GPqJSmcWNo21ZtpcXfRo601UA9e7qu\nJDING8I118C4cbBjh+tqRCrm558rdj+FBp/r1csmQyo4iB+tWQPTpsGAAVCtmutqIjdokP3Sfe45\n15WIlN8331jwrQiFBp/7299sKVivXjYurC6R4idjxkDt2tCnj+tKyqdJE7jqKlt+qWXP4ieLF8OZ\nZ0L16hW7v0KDz1WpAs88A3fdZevbb7vNWvGKxLuNG2HCBLj9dmuP7jdDh8Lq1TB9uutKRCLzyitw\n3nnQvDk8+2zFHkOhIQCSkuCee2w74SeegL/+VWOtEv8efdT+7d56q+tKKua006ydu67wiR88+SRc\ncQV07myN1GrXPvB9SqLQECDXX2+z0OfMgQsugF9/dV2RSMm2bIHHHoMbbrC20X41dCgsWwZvvum6\nEpGShULwP/9jPUZuvRVeeKHiQxOg0BA4nTvDu+/aRJezzrKJZiLx5umnrb/IgAGuK6mcc86x8eER\nI1xXIrK/Xbtsztv999v8m3Hj4KCDKveYCg0B1KoVfPihrSVv0wY+/9x1RSKF/vjDJkBmZtpSSz/b\nu232Bx/A+++7rkak0JYt0KWLrU6aOhUGDoxOt1WFhoBq2tSCQ6NG9m7onXdcVyRiJk+2vRsGD3Zd\nSXRccolNLNPVBokXP/0E7dvb34A5c6BHj+g9tkJDgNWvb/38zzrLJmxNneq6Ikl0u3fDqFHQrRuc\ndJLraqIjOdmuNrz5JnzxhetqJNGtXGlDZj/+CIsW2WqJaFJoCLhateC116zbXmam/cLWTG9xZeZM\n+PZb+yMbJN27W4fWkSNdVyKJ7KOPCnswLF5sK3yiTaEhAVStamty//d/rb9/v37q5SCxFwrZJfzz\nz7ctsIOkalXrEvnCC7BqletqJBG99ppdVTjpJJtf07ixN8+j0JAgkpLg3nttre748fbO6PffXVcl\niWTePMjLC95Vhr1697blo6NHu65EEs1TT9mQX6dO8PbbcNhh3j2XQkOCufFGu0T85ptw4YXq5SCx\nk50N6el2pSGIata0q3jPPgvr17uuRhJBKGTdgG+6ybZsf/FFqFHD2+dUaEhAl15qqym+/hrOPhv+\n+1/XFUnQffwxzJ9vrc6jsewrXvXtaxtvjRvnuhIJul274Lrr4L77bC7NI49UvgdDJBQaElSbNrYc\n5/ff7XPN+hYvZWdDs2bQtavrSryVkmLv+h5/HH77zXU1ElRbt9qbv8mT7Rg8OHZhXKEhgTVrZsGh\nQQPr5TB/vuuKJIiWL7chscGDY/NOyLX+/S2MP/mk60okiNavtx4MH3xgw8yZmbF9foWGBNeggfVy\naNMGLroIcnJcVyRBM2oUHHVU7H+5udKoEVxzDYwdq43jJLq+/daWVP7wAyxcaHsMxZpCg3DooTBr\nFmRkWOew0aPVy0Gi4/vvYcoUuPNOOPhg19XEzqBBtvX3xImuK5GgWLLEAkO1ataDoUULN3UoNAhg\n68yffx7+8Q/7hXfHHbBnj+uqxO8eeshC6Q03uK4ktk44wbaoHzUKCgpcVyN+9/rrcO65NqT8wQdw\n7LHualFokP8vKQn++U+bxPXoo3D11erlIBX3888wYQLcdpt1Jk00Q4bAd9/BSy+5rkT8bMIEuOwy\n6NjRep142YMhEgoNsp+bb4aXX7Yhi44dYdMm1xWJHz32mH287Ta3dbjSsqX9/GRna7hPyi8Ugrvv\ntqt0N90EM2Z434MhEgoNUqKuXa2Xw7Jl1svh++9dVyR+snWrrRu//nqoV891Ne4MG2bLmWfPdl2J\n+ElBgf3s3HuvtV5/7LH4WXmk0CClOvNMW5K5fbutrvjyS9cViV9MmABbttgEyETWti20bm1XG0Qi\nsW2bDUdMnAiTJlnb9XhqiKbQIGU68UQLDkccYVcc3n3XdUUS73butAmQPXvCn/7kuhq3kpLsl/6i\nRTaBTaQsGzbYhMeFC+GNNyAry3VF+1NokANq2BAWLIBWrayXw/TpriuSeDZliq0jHzLEdSXxoUsX\nOPlkXW2Qsv3nP3Z19/vvLTRceKHrikqm0CARqV3blv10726rKsaMcV2RxKPdu22ZYdeukJrqupr4\nkJxsAer11zXEJyX7+GMLDAcdZFd2W7Z0XVHpFBokYtWq2TjbsGEwYICNV6uXgxT1yivwzTfB3f66\nojIybKhm5EjXlUi8eeMNG5I44QQbwjruONcVlU2hQcolKQkeeMBm844bZ78M//jDdVUSD0IhuwR/\n7rk2lCWFqlaFgQPhhResd4MIwL/+ZZMeL7jAejD4YaWRQoNUSN++1svhtddsLXp+vuuKxLX58+HT\nT3WVoTTXXQd169okUUlsoRDccw/06WN9GF5+GWrWdF1VZBQapMK6dbN0/MUXtkvm2rWuKxKXRoyA\ntDQ3m+j4Qc2a0K+fvbtcv951NeJKQYEFheHD4f77Yfz4+OnBEAmvQkNdYDKQHz4mAXXKcf8ngT1A\nv+iXJtF01lk2Drd5s/VyWLbMdUXiwiefWDOweFtTHm/69oUqVazxlSSebdvszdbzz8Nzz8Hf/+6/\nnxevQsM04FSgI3AR0AILEZHoBrQC1gFqvuoDqam269rhh1svhwULXFcksTZyJDRtCpdf7rqS+Fa3\nLtx4o7273LzZdTUSSxs3wnnnWa+b11+37dP9yIvQkIqFhT7AEuAj4HqgM9DsAPc9CngE6AHs8qA2\n8UijRra2+PTTbX3xiy+6rkhiZcUK+Pe/YfBgf11mdeXOO2HHDnjySdeVSKz83//Zkso1a+xNVceO\nriuqOC+WVSbvAAAUDElEQVRCQxvgN+CTIueWhM+1OUAtk4FRwHIP6hKP1a4Nb75pWwJffbWtrpDg\ne/BBaNAgPrvXxaNGjaBXLxg7VrvIJoJPP7Wh26Qk68GQnu66osrxIjQ0ADaUcH5D+HulGQLsBB71\noCaJkWrVrF/64MFwxx22zEy9HIJr7VqYPNnePR98sOtq/GPQIJsMOXGi60rES7NnQ/v2cPzxFhiO\nP951RZVXntAwHJucWNZR0QyVDtwO9C523mdTRASsA152tk32GjPG9iBQL4dgGjMGDjnExuklcs2a\nwZVXWvfMggLX1YgXnnvOWoiff74tR/ZDD4ZIVCnHbR/FJjiWZQ1wGnBkCd87EviplPudE/7+f4uc\nOwh4CFtBUWo+69+/PykpKfucy8jIICMj4wClitduu80uxfbsCT/9ZN0C65RnDY3EtV9+gaeftitK\nhx7quhr/GTrULlW//LK1Z5dgCIXgn/+Eu+6yMP3YY7ZixqWcnBxycnL2OZdfweY6XryTTwW+wlZA\n7J3X0ApYDJwIfFvCfQ5j36GLJOAtbKnmc6XcJw3Izc3NJS0tLTqViyfef98S9zHH2OW6o45yXZFE\nwz332KqJNWtsF1Qpv44dbZjis8/8t/RO9ldQYMtqn34a7rsP/vGP+P3/mpeXR7pNsEgH8iK9nxdz\nGpYDc4AJWFhoHf58Fvv+8V8BdA1//ivwdZHjK2z1xE+UHBjER84+23o55OfbhKCvvnJdkVTWtm02\n/NSnjwJDZQwdCp9/Dm+95boSqazt223J8b/+Bc8+C//zP/EbGCrDqz4NPYAvgbnYFYOlQPG51c2A\n2h49v8SZk0+2Xg5161qIWLjQdUVSGc88Y30GBgxwXYm/tW8Pf/mLts32u709GObPh1mzoHfx2XkB\n4lVoyMdCQp3w0Qso3sokGRt+KM1xWM8GCYijjrKwsLfV8IwZriuSiti5E0aPhh49oHFj19X4W1KS\n7Rq7YIGFavGfVausM+5338F770GnTq4r8pb2npCYqlPH5jVccQVcdZXa6frRtGm21HLwYNeVBMOl\nl8JJJ+lqgx/l5tqQayhkSypPP911Rd5TaJCYq1YNpkyxHg79+tkfH/Vy8Ic9e2zy46WXQvPmrqsJ\nhuRkGDLEdozVfB//mDMH2rWDY4+1wNCkieuKYkOhQZxITrY16uPG2aXurCy77C3x7dVXrW30sGGu\nKwmWHj1sddHIka4rkUg8/7ytCDv3XJvHkEiTgRUaxKl+/Wyfipdfhosvht9+c12RlCYUskvo7dpB\n69auqwmWatVsUum0abaEVeJTKGTbWffubcfMmdbcLJEoNIhzV14Jc+fa+GDbtrBuneuKpCTvvgsf\nf6yrDF7p0wdSUuzKm8Sf3bvhlltsKeU998BTT7lv2uSCQoPEhbZtrQnUr7/axKKvv3ZdkRSXnQ0t\nWtguphJ9hxwCt99uy1k3lLR7jzizfbtN3p4wwf7/3HVXMHswREKhQeJG8+a27KxOHVvC9P77riuS\nvXJz4e23rRlRov6yjIVbb7XtxR/Vtn1x45dfoEMH+/f/2mtw3XWuK3JLoUHiytFHw6JF9o62Qwf4\n979dVyRgVxmaNLGhJPHOYYcV7lewuXhnG4m5776zNzD/+Y/1YLj4YtcVuafQIHGnTh1bztS1q/2R\neuwx1xUltpUrbaLq4MH2Lli8dccd1qb76addV5LY8vJsqLSgwJZUnnGG64rig0KDxKWDD7aZ5Hfe\nabtlDhmiXg6uPPgg1K8PvXq5riQxHH20LUEeM0Zbyrsyd66tEvrTnywwnHCC64rih0KDxK3kZJtJ\nPnas/eHq1Uu9HGLthx9g4kQLb9Wru64mcQwebNvJTyqr0b54YtIkuOQSm5z97rtw5JGuK4ovCg0S\n9/r3hxdegJdesh9mjfXGztixNqv/xhtdV5JYTjzRdkwcNcqW+on3QiEYMQL+9jc7Xn018XowREKh\nQXzhqqts++BPPlEvh1j59Vd48kno2xdqaz/amBs61Cbgvfyy60qCb/duW7ny97/D3Xfb0spE7MEQ\nCYUG8Y327W0Z5s8/2wSl5ctdVxRs48fbL9Pbb3ddSWI6/XRbQZSdbe+CxRs7dtiE66eesrAwfLiW\nFZdFoUF85ZRT4KOP7J3vWWfBBx+4riiYtm2Dhx+2Neka03Vn6FD47DPrESDRt7cHw1tvwSuvWFdO\nKZtCg/jO3l4Op55qP/AzZ7quKHj+9S/Iz7edSMWd886zpX4jRriuJHhWr7Y3HitX2oTHzp1dV+QP\nCg3iSykp9u7g0kutvev48a4rCo5du2zVSkaGbfsr7iQl2dWG996zK2wSHUuX2hDnrl22pLJVK9cV\n+YdCg/jWwQdDTo6trrj1VttISWO/lZeTA99/b70xxL2uXW01hbbNjo6337bJ1EcfbYGhaVPXFfmL\nQoP4WnKyNcF56KHCbZvffVfhoaL27LHXsUsXmz8i7iUnW4B75RVt5FYZa9bATTdZK+izz7bfE/Xr\nu67KfxQaJBDuvNOGK7Zvt3Hg9u0VHipi1ixblTJ0qOtKpKiePe2d8ahRrivxn71hoWlTW776wAPW\ng6FWLdeV+ZNCgwTGhRdaH4dZs2z2v8JD+extbtO2LZx5putqpKhq1WDAAJg6Ff77X9fV+EPxsHD/\n/Tb5cdAgqFrVdXX+pdAggZKUZLOgFR7Kb8ECWLJEVxniVZ8+ttT4oYdcVxLfygoL6vBYeQoNEkgK\nD+WXnQ2nnQYXXeS6EilJrVq2eduECdbgTPalsBAbCg0SaAoPkcnLszkhQ4eqG148u+02+//zyCOu\nK4kfCguxpdAgCUHhoWwjR8Lxx1s7XYlfhx8ON9wAjz0GW7a4rsYthQU3FBokoSg87O/bb2HGDPtl\nq0164t+dd8LWrTZMkYgUFtxSaJCEpPBQ6MEH4Ygj4JprXFcikTjmGMjMtAmRf/zhuprYUViIDwoN\nktASPTysWwcTJ8Idd0D16q6rkUgNGgQ//ghTpriuxHsKC/FFoUGExA0P48ZZWLjpJteVSHmkplp7\n6VGjbPvyIFJYiE8KDSJFJFJ42LQJnngC+vaFOnVcVyPlNXSo7dAYtF1eFRbim0KDSAkSITw8/jgU\nFEC/fq4rkYr4y1/s32R2djD+PSos+INCg0gZghoetm+3oYlrr9WmPX42bBjk5sK8ea4rqTiFBX9R\naBCJQNDCw7PP2vDEwIGuK5HKOP98SE+3qw1+o7DgTwoNIuUQhPCwaxeMHg3du8Nxx7muRiojKcnm\nNsyfDx9/7LqayCgs+JtXoaEuMBnIDx+TgANNtXoe2FPs+NCj+kQqxc/h4YUX7Be3NqYKhm7doFmz\n+L/aoLAQDF6FhmnAqUBH4CKgBRYiyhICZgMNihwXe1SfSFT4LTzs2WMtoy+5BP78Z9fVSDQcdBAM\nHmyrKJYvd13N/hQWgsWL0JCKhYU+wBLgI+B6oDPQrIz7JQE7gQ1FjnwP6hOJOr+EhzfegK++0lWG\noMnMhEaNrLtnvFBYCCYvQkMb4DfgkyLnloTPtSnjfiGgPbAe+AZ4GjjCg/pEPBPP4SEUghEj4Oyz\n7ZDgOPhgGDAAJk+G7793W4vCQrB5ERoaYFcJitsQ/l5pZgM9gHOBAcAZwHygWrQLFPFaPIaHRYtg\n8WJdZQiq66+HQw+FMWPcPL/CQmJIKsdthwN3HeA2Z2BDE38DTiz2vW+AZ4GRET5fA2A1kAGU1PMs\nDcg955xzSElJ2ecbGRkZZGRkRPg0It4LhWxoYPhwW1fftq193r69BYxY6NQJfvgBPv88ds8psXX3\n3bYyZs0aqFcvNs+5Zo1dwXr2WessOngw3HKLgkI8ycnJIScnZ59z+fn5LFq0CCAdyPPieQ/H5iSU\ndRwMXAtsKuH+m7AwUR4rgUGlfC8NCOXm5oZE/GLPnlBo1qxQKD09FIJQqG3bUGj+fDvvpc8+s+eb\nOtXb5xG3Nm4MhWrUCIXuvtv751q9OhS68cZQqGrVUKhevVBo1KhQaOtW759XoiM3NzeETQtIK88f\n5fIMT/wS/iNe1vEHsBhbXnlGkfu2Cp8rzxLKesAxwI/luI9IXHM1bDFypPVkuOoqbx5f4kO9ejZM\n8eijsHWrN8+hYYjE5sWchuXAHGACFhZahz+fBXxb5HYrgK7hzw8BRodveyw2IfI1YCMlD02I+Fos\nw8N//gMvvmi/1KtUid7jSnwaMAA2b4YJE6L7uAoLAt71aegBfAnMBd4ClgJZxW7TDKgd/nw3cArw\nKjb34XksVLQBtnlUo4hzsQgPo0fbO9Brrqn8Y0n8+9OfoGdPeOgh2Lmz8o+nsCBFeRUa8rGQUCd8\n9AI2l/Dck8Kf/441gaqPzYs4Fpsb8YNH9YnEFa/Cw48/wnPPQf/+UKNGVEuWODZ4sE16nTq14o+h\nsCAl0d4TInEk2uFh3DioXt1ms0viOPlk6NrV5rLs3l2++yosSFkUGkTiUDTCQ34+PPEE3HyzLYWT\nxDJ0KHzzDbz6amS3V1iQSCg0iMSxyoSHxx+3Me3+/WNWrsSRVq3g3HOth0JZ/04UFqQ8FBpEfKC8\n4WHHDhua6N0bGpTVh1UCbehQ+PRT2zq7OIUFqQiFBhEfiTQ8PPcc/PILDBzotFxx7IILoGXLfbfN\nVliQylBoEPGhssLDvHm222H37tCkietKxaWkJBg2zP5N/PvfCgtSeWr1IuJje8PDJZcU7m1xwQX2\nvVdecVqaxInLL4cTToArrrB+Hfffr70hpOIUGkQCoHh4WLcOTjvNdVUSDw46CJ5/HvLy4NprFRak\nchQaRAJkb3gQKeqss+wQqSzNaRAREZGIKDSIiIhIRBQaREREJCIKDSIiIhIRhQYRERGJiEKDiIiI\nREShQURERCKi0CAiIiIRUWgQERGRiCg0iIiISEQUGkRERCQiCg0iIiISEYUGERERiYhCg4iIiERE\noUFEREQiotAgIiIiEVFoEBERkYgoNIiIiEhEFBpEREQkIgoNIiIiEhGFBhEREYmIQoOIiIhERKFB\nREREIqLQEAA5OTmuS4gbei2MXodCei2MXodCei0qzqvQUBeYDOSHj0lAnQjulwq8Fr7PZmAxcIxH\nNQaGfgAK6bUweh0K6bUweh0K6bWoOK9CwzTgVKAjcBHQAgsRZWkCvA98DbQL3/9e4HePahQREZFy\nqOLBY6ZiYaEV8En43PXYVYNmwMpS7nc/8DowtMi51R7UJyIiIhXgxZWGNsBvFAYGgCXhc23KqONi\n4FvgLWA98BFwmQf1iYiISAV4caWhAbChhPMbwt8ryZFALewqwz+AQUAn4N/AucDC0p5s+fLllak1\nEPLz88nLy3NdRlzQa2H0OhTSa2H0OhTSaxGbv53DgT0HONKBvwPflHD/b4AhpTx2o/D9pxQ7/yo2\nP6IkDYG1QEiHDh06dOjQUe5jLfa3NGLludLwKKX/Ad9rDXAaduWguCOBn0q5389AATYJsqgVwFml\n3OdH4AzK+R8sIiIigP0d/dF1EanYVYMzipxrFT7XtIz7fYAtzSxqJvtffRAREZEAeRNYioWF1sAX\n2FBDUSuArkW+7gr8AfQBTgBuBXYBZ3pdrIiIiLiTgvVl+C18TAJqF7vNHqBXsXO9sSWZ24E8oIu3\nZYqIiIiIiIiIiIiIiIiIiIhE1S3Ad8AO4FPgbLflONEWmAX8gM0PSeTumcOwDqSbsW6iM7GW5Ynm\nZuBzCucSfYjt/ZLohmI/I2NdF+LAcPbvp7POZUEOHYWtxvsZ2AZ8BqQ5rciN1ZTcZ+mxSO7sx62x\nu2M//PdhG2EtAmaTeLth1sT+0fcNfx1yWItrbbE+Iq2AC7D+I3Ox1yiRfI81UEvDGq3Nx3aNbe6y\nKMfOAG7AVnAl6s/IMqwb797jz27LcaIutqz/DyxIpwJ3YjsqJ5p09v33cEH4/IvOKvLYEmB8sXNf\nAw84qCVe7AEudV1EHKmHvSaJeAWquF+wVUmJqBbWifY84F1gjNtynBiOvblIdNnAAtdFxKlxlL6R\n5H78dqWhGvYuam6x83NRPwcplBL++KvTKtw6CLgaOBi7GpeIxmM7584HkhzX4lJTbBhzFZADHOe2\nHCcuBXKBl7AhzDysJ1CiqwZkAs+6LsQre/eoaF3s/N+xZlGJSlcaCiVhcz0S9V3Fn4GtWGO0zdju\nsYnoamx+R7Xw14l6peEioBs2RHU+9jr8CBzmsigHfsfmwP0T2+rgeqwfUPFeQYnmKux3RWmbSfqe\nQkPJFBoKjcfeUTVyXYgjVYHjgZbYkN1mEm+y1zHYu8miY/fvkZgTIYuriYWGO1wXEmM7gfeLnXsY\nmyycyN5i/27NgVINS0XFVwo8jCXoRKXQYB7FNk1r7LqQOPI2MMF1ETHWFfuZ2FXk2APsxv54JPJQ\nBdhwbvF5YUG3Gni62LmbsV0eE1VjbKPIcnVe9tuchp3YuNSFxc5fgBJjIkvClgt1xSa9rXFbTlxJ\nxn8/55U1DzgFuwx9GrbK6lNsuV0LEncVBdgcl5OJg50NY+wD4KRi55phYSJR9cauyL3huhCvXYUt\nm+mNLZsZi12CTbQll4dgvwBbYO+i+oc/T7TXAeBxYBO29LLoUqLqLotyYARwDnAsdmn+fuydxHkO\na4oX75GYwxOjsZ+L47AlybOwZYaJ9nvidOxN5zBsQ8Qe2NyfDJdFOZSMvblKmFWHN2PNnX7Hmvok\n4tK69hQ25dhd5PPAzoItQ/HXYO+RaJOcnqHw52I9dhn6fKcVxY9EnQiZg62c+AO7FP8S+7/jThSX\nYP06dgBfAde5LcepC7HfmSe4LkRERERERERERERERERERERERERERERERERERERERERERERERERE\nRERERERERERERERi5/8B5ExnbdanXmMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot(ifft(lag))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lag/data/clag_analysis-origbins.ipynb b/lag/data/clag_analysis-origbins.ipynb new file mode 100644 index 0000000..56bfb3f --- /dev/null +++ b/lag/data/clag_analysis-origbins.ipynb @@ -0,0 +1,830 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X18VPWd9/9XSAKSRBRwbFEoxFBYg1pNKhD6s+qCqFBy\n1UI35PGzbbjorle73V2vSzK22u7P31W07aRre117tbXXlpL21zWmWnYXoevderNU7mro9sb4kxID\nyO2MiDcQhNyc64/vHOcmM8lM5szMOTPv5+ORR2BmMufkmzPnfM73+/l+viAiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjJm+4GhBF//K4/7JCIiIi42Fbg46msxJnj4\neD53SkRERLzju8DefO+EiIiIeMN44A3gy/neEREREXFOWRbf+5PABUD7CK+ZFv4SERGR9BwNf+Vc\nSRbf+0ngPeA/JXl+2iWXXHLkyJEjWdwFERGRgnUYuJY8BBDZ6nmYiUmWvG2E10w7cuQIP/vZz7j8\n8suztBsS78477+S73/1uvnejqKjNc09tnntq89x65ZVXuP322y/F9N4XTPCwBjgObB3thZdffjl1\ndXVZ2g2Jd+GFF6q9c0xtnntq89xTmxeXcVl6zzXATzDTNEVERKSAZCN4WAJMB36chfcWERGRPMvG\nsMVTQGkW3ldERERcIBs9D+Jizc3N+d6FoqM2zz21ee6pzYtLNqdqjqYO6Orq6lKSjYiISBr27NlD\nfX09QD2wJ9fbV8+DiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiI\npEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIik\nRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpKUs3zsgIlJIOjrMF8B778GBAzBzJpx3nnmsudl8\niXiZeh5ERBzU3AybN5vvZ8/C3r3wzjvw6qsmmOjogMbGSIAh4kXqeRARcVgoFOKppwK8/no3UMqh\nQ4McPlzL97/vZ/FiX753TyRj6nkQEXFQMBikoaGJ9vaV9PZuBOZy+LAF/Ae33HIDzc1/RSgUyvdu\nimREwYOIiIPuvruNnp4HgMuA1cBKYCvwNAMDv+eRR5ppaGhSACGepuBBRMRBu3d3AwuANuABYCFQ\nEn52HLCInp778fsDedpDkcwpeBARcdDAQCkmWLCDiEQWhIMMEW9S8CAi4qCyskHAAuwgIpFx4SBD\nxJsUPIiIOGj+/FpgF2AHEYkMhYMMEW9S8CAi4qBAwE9NzT3ARcDOJK/aFQ4yRLxJwYOIiIN8Ph87\ndnSyenUVZWX/GXgRGAo/OwTsoKbmXgIBf/52UiRDCh5ERBzm8/no6PgeTzzx78A/c+mlK4BGqqtX\n0NKyiR07OvH5VCxKvEsVJkVEHBS7toWPOXPamDwZDh+GGTNg6VJQ3CBep54HEREHRa9tcd55MHcu\nTJoEc+bAhAla20IKg3oeRESyQKtnSiFTz4OIiIikRcGDiIiIpEXDFiIiWRSbQAkHDsDMmSYfAjS8\nId6k4EFExCGjBQo33AD33mteU1eXt90UyZiCBxERh0T3IuzZA/X1JlCYMSOE3x/gRz/qBkpZtWqQ\n66+vJRDwq96DeJKCBxERB4VCJlB44QUTKNx2Wx8nT4Z4990fAgGghN7eIXp7d7NtW5MKRoknKWFS\nRMQhwWCQhoYm2ttX0tu7BdjMwYNX8+67DwELiayyOQ5YSE/P/fj9gbztr8hYKXgQEXHI3Xe30dPz\nALGBwivh/yeygN27u3OybyJOUvAgIuIQEwgsiHu0lEggEW8cAwOl2d0pkSxQ8CAi4hATCMQHCoOA\nleQnhigrG8zuTolkgYIHERGHmEAgPlCoBXYl+YldzJ9fm92dEskCBQ8iIg4xgUB8oOAH7gG2A0Ph\nx4aAHdTU3Esg4M/hHoo4Q8GDiIhDAgE/NTX3ADuIBApTgXVUVd3BzJm3Ao1UV6+gpWWTpmmKZ6nO\ng4iIQ3w+Hzt2dIbrPKynt7eU6mq7INSzvP66j/p6eOwxVZgUb1PwICLiIJ/Px8aNbe9XmPz852Hn\nTli71pSsnjMHvvxlrW0h3paN4OFS4FvALcBEYC+wFtiThW2JiLhG/NoWc+bA889HAoU1axQoSGFw\nOniYDLwI/BsmeAgCNcBbDm9HRMR11IsgxcLp4OFu4ACmp8F20OFtiIiISB45PduiEegCHgWOY4Yq\nPu/wNkRERCSPnA4eLgO+ALwKLAV+APxP4LMOb0dERETyxOlhi3HAbuCr4f//FrgC+C/ATxP9wJ13\n3smFF14Y81hzczPNGjgUERGho6ODDjsTN+ytt/KbSphstZax2g88BfxF1GNfAO4Fpse9tg7o6urq\nok4TnkVERFK2Z88e6uvrAerJw2xGp3seXgT+JO6xOZigQkSkaMVP4zxwAGbOVL0H8Sang4fvYAq4\nfwWTNDkf+PPwl4hI0WpuhiVLQuHqk9309pbS329Xn/SrTLV4itPBw0vAbcA3gL8FXgP+BugY6YdE\nRApdMBhk0aLV9PQ8AASAEnp7h+jt3c22bU1a50I8JRsLY20FrsJUl5wHbMjCNkREPOXuu9vCgcNC\nIulm44CF9PTcj98fyN/OiaRJq2qKiOTA7t3dwIIkzy4IPy/iDQoeRERyYGCglOQT3MaFnxfxBgUP\nIiI5UFY2CFhJnh0KPy/iDQoeRERyYP78WmBXkmd3hZ8X8QYFDyIiORAI+KmpuQfYAQyFHx0CdlBT\ncy+BgD9/OyeSJgUPIiI54PP52LGjk49/fBMVFSuARiZOXMGkSZuYPr2TtWt9NDZGCkmJuJnTdR5E\nRCQJn8/HCy+0sWcP1NfDP/wD3H47PPggqEq/eImCBxGRHIguT/3OOyEmTQrw53/eDZRy3XWDfPSj\ntTz2mCpNijdo2EJEJAeam2HzZvjRj4IcOtTEO++s5MyZLcBm+voe59//fSUNDU2EQqF876rIqBQ8\niIjkkCpNSiHQsIVIBrRSoqTLVJJMFiAsYPfu9bncHZExUfAgkoHo4MBOguvoUPKbJKdKk1IINGwh\nkqFQKMSaNa2sWrUcaGTVquWsWdOqsWtJSJUmpRCo50EkA1pmWdI1f34t3d27MDkP8VRpUrxBPQ8i\nGVDym6RLlSalEKjnQSQDSn4TSC9x1q406fcHeOGF9fT2llJdPcj119cSCKinSrxBwYNIBpT8JpBe\n4qwJNHxAG7NnQ3m5CTROnIC1azVDR7xBwxYiGVDym9hSTZy1i0U1N5ueiblzzeOvvmp6LTo60BoX\n4nrqeRDJgJLfBMaWONvcDEuWhMLDF9309pbS328PX6hMtbibeh5EMqDkN4GxJc4Gg0EaGppob19J\nb68pU93b+zjt7SpTLe6n4EEkA1pmWcBOnF2Q5NkF4edjaaaOeJmGLUTSEJ9V//vfw8CAj9LSNioq\nYNIkk/y2axdYlpLfCp19PBw4kH7irGbqiJcpeBBJQ6Ks+q4uk1UfCkXGr6GU118f5KmnalmyROPX\nhcrOW/jwh49gEmcTBRCJE2c1U0e8TMGDSJrig4RVqwaZP38mu3a9zP7930KVJouHnSj59tvzgJ1A\nQ4JXJU6cjczUST3gEHEL5TyIpKijA26+OcisWcOT3Do7T7N//zfQ+HVxieQtfBu4l+GJsy8mTZw1\nAcWuJO+smTribgoeRFLU3AxTpnydvr71DA8S3iDxXSckS5gT74skSvqATmATYBJn4RNccMFfJu11\nCgT8XHxx4pk6FRX3cuSIX4m24loKHkRSFAwG+cUvniVxkKDx62IUm7dgqkbCVmAz8EsGBj7E2rW+\nhEGAz+fjD3/oZPXqn1FVVQdcCXyUqqq/orFxHj/7mZJtxb2U8yCSorvvbqO//xISBwkavy5Go+Ut\nzJw5yObNyX/esix+/etXOHXqIUwPRgmnTg3xyCO7+fWvlSsj7qWeB5EUmS7q8SQuR12LSZhLROPX\nhSqTvIWODqivV60H8SYFDyIpMl3UyS4WfuAu4EVUaTLCXqehsRGWLjXrOCxdGnnM62P6mVQYbW6G\nSZPSLy4l4gYKHkRSZLqoW4FEF4s/UlYWYvXqR6iuNglz1dUraGnZVNRdz83NsGFDiKlTW9m3bzl7\n9zayb99ypk5tZcOGkOfH9O0Koy0tm8b0d1etB/Eq5TyIpMgsgvUaJqs+AKzHJEoOAhfh8y3l9Om/\n1zLLUcayYJQXxFYa9XHgQBsXXwy9vTBjhuldSeXXUq0H8SoFDyIpCgT8/PKXTQSD9wPfwnTcDQG7\nqKi4lyuv7CzaICGZ2PUbbLFj+hs3tuVp78bOriy5alWAl17qpq+vlIkTB5k0qZaSEj8dHWaGxWjH\ng1ZlFa9S8CCSIntqnakuuZ7e3lKqq+0llL15B51thbp+Q6IelTNnhjhzZjeHDqXeoxII+Nm2rYme\nnvsxuQ+RgNTkTHRm9fcQGSsFDyJp8Pl8bNzY9v66Fo89Zta1sMUvnHXggBm+OO8881ix9UwU6pi+\nUz0qds6EAlLxGgUPIimKDgx6e6GyEm6+2fz/zBm47DKYNQvOng3x3nsBXn+9m97eUvr77YtB8S2Q\nVahj+k71qJhjyhSXUq6MeImCB5EUJTuR270Q7e0wfXphJgiOVaGO6TvVo6LgQLxKUzVFxigUCrFm\nTSurVi0HGlm1ajkf+9ifhcevVfQHMquD4GaRHpVEvNujIpIqBQ8iYxAMBmloGL665r59JlBIrPiK\n/mRaB8GttCKmFDsNW4iMQfKEuSoKMUEwE6MlmXqRZklIsVPwIDIGyRPmCjNBcKziZ5/MmQNf/rL3\nZ59oloQUOwUPImOQPGHO7s4urATBsfJqcJCKQuxREUmVggeRMUg+BdEPNAFfBxqI7s6eOPFejhzp\npLGxsC+qxaBQe1REUqXgQWQMkk9B9AHrmD37Xs6dK+PgwROUlQ0wMFDFxRdP4pJLAkVZ76HQOB0c\nqLiYeI2CB5ExGClhrqLi21x66ffZvftLwA8YGFgAlHDgwBDt7cVR70EXw/TYa2WYHAoVFxP3S5YW\nngt1QFdXVxd1GigUDwqFYk/2kYQ5P35/gPb2lSTOfdhBS8smVy0IlY2L/Ujto4thrNi1MkywaYLR\n3dTU3FPwwaakb8+ePdTX1wPUA3tyvX0FDyJjMNrFds+e5Rw+vIVksy5qa1fw8stbc7W7KXHyYq+L\nYXrWrGn1VLAp+Zfv4EHDFiJjMNqd+Ny53loQKtEqkZmU1S7UpbizpVBXH5XCpQqTIlnglfLFHR3Q\n2Aj19dEX+8zLapuL4YIkzxZfpc3RFOrqo1K4FDyIZIFXyhc3N8OGDSHeffc5RrrYP/poN42NJtCw\nh2tGMtrFcP/+0rTer9B5JdgUsSl4EMkCrywIZa/R8fbbk4m92IeAVmA58EnOnj3I1KmtbNgQSilx\ncvjFMPr9Gunv703r/QqdV4JNEZvTwcN9mDNk9NcRh7ch4npeWRAqkpswnsjFPogpdLUSMIt+DQz8\nlvb2lTQ0NBEKhUZ939iL4fD36+9P7/3cwh7maWyEpUth7lzzPdNeFK8EmyI2p2db3Ad8ClgS9dgg\ncCLBazXbQgqWV+oczJu3nO7uLZjKmCuBGuDTwAPAogQ/kVrmfygUoqHBroPxC2AVhTKTIFtTUDW1\nVdJRiLMtBjG3GiJFyy3BQbz4oOaPf7RzE/zAbZi73fMwpbUTSS3zP3rhqH/8xyfp708WHHhrJoHT\ns1Js5u/iA9qYPRvKy02weeIErF3r3uNJilc2gocPA4eBs5h+y3uA3ixsR0TSZFcyXLUqwEsvddPf\nfxAzXOEDrgGagW+SaeZ/9MWwvPxV+vsLYyZBtqagKjgQr3E6eNgJfAbYC3wQ+CqwHZgHvOnwtkRc\nzY1DF7F3zq3An2HG2RcBr2F6HDJfVjz6d5s3b5Du7uTvd+TIYFqLhdntevgwHDwIZ87AhAlw9ixM\nnAgf+hBceml22lf1GEQMp4OHJ6L+/TLmrNQDfA74TqIfuPPOO7nwwgtjHmtubqZZYbh4nBvXK4jc\nOV8GrAbuxsT49wP2EIazy4rHLiIWwlx8u8Pbe5cPftBiw4ZQyu0R3a5vvPEb3njjBGfPmsXHLrpo\nEldddVXW2lf1GCQfOjo66IjLxn3rrbfytDe58xTwvQSP1wFWV1eXJVKIjh8/btXU3GjBDguGLLAs\nGLRgh1VTc6MVDAZzvk+1tcvC+7IuvF+WBcHw/68IPxe04EYLtof3197vX41pv4PBYLgdtoTfN749\ntqf1vpF23erI+6Uj0n5Wgq9Bq7Z2mePbFEmkq6vLwnQR5mXGQbbrPEzA3MYczfJ2RFwndnw886qN\nTojcOUdXgDS5CXALpsfBB3QCmwAzzRQWM3v2vWNKCLSTJ2fPbgPWM7w9GtJqj0i7PoeZFZLZ+6VD\n9RhEDKeDh28DHweqMWemx4Aq4CcOb0fE9dxYojlSvClR97sfk9+8A5iKCSgeB77CxIklXHbZo6xd\n60u7lkFHB6xd6+PYsUpGmsXx2GPdKb13pF1z376qxyBiOJ3zcCnQAVyEGdzcgbkteN3h7Yi4nhvH\nxyP5B4mSIu0eh29RXv4X9PdXR9UaGHthKztxce7cUvbuLWF43sMgUMvFFw+klOAYadfct2/0FNQX\nXlgfV4/BPcW/RLLN6eBBWY4iYZG7/LHPWnBSRwccOeKnoqKJvr4ZmMlR8T0BPmAlF11Uwvnntzla\na8D8vscxp4lInQRz576L11/fQig0euJkpF1z376qxyBiaEnuAuTGKYLFKHaWQbzcj4+bWQrw1399\nOY8//gKnT38GM6LYgBnBNBfxmho7t8HZ7Zv28BPJU7CZPIX+/h+lVCch0q7OzgpJhT47IobT5anT\nofLUWaRSt/kXW6J5AYkv0Ln7WwSDQa68cjXB4APh/XkD+Bamsu1JJk68mGuvvYrHHsvOMRIKhbj0\n0hvo7/8DyXoLamtX8PLLW0d9H9Ou6zBpVvHtu5OKiq9y7bWdHD3qcyRwVkAubpPv8tQKHgpQbCGg\nBUS6hndTU3OPqxZmKnRuCuLWrGmlvX0lydaYmDZtEx/9qLnrz9bFcPbs5fT0JA8O5sxp5NVXN4/6\nPna7Pvvsbzh48ARlZabOw8yZk2homA2MY9eu1+jtLaWiYpApU2qpqfFnFEy46W8pku/gQcMWBShb\nJXQlPW4bHx+tOuLkyevZPPp1e8w6OuD4ccg0T8Fu18OH2+jrg8rKSIXJd98NsmnTas6diwTOfX3H\n6evzc+zYDQwMzKK/n7Qv+tla00JE0qciUVkyWiGbysrF1vTp66zKymVWefkKq7JymTV9+jpr6dKg\n9fDD+d57yZY5c1YkOSbM15w5K7K+Dy0t0cWp4r+2Wy0t6xx+/+NJCkmlV6gr2/udiYcftqwVK8zX\nTTdZ1pw55rv9mD7ThanQi0RJHow8RfAN+voOc+jQSk6f3kJ//2ZOn36cQ4dW8vzzTbS3h2hsJO25\n/OJ+kVkKieRm9ke26yQMr63RRuJCUukV6nJjzQ5bczNs2BBi6tRW9u1bzt69jezbt5ypU1vZsCGk\nXAzJCg1bFKCRpwj+dyxrA4nWGTh3zuK11z7N9u2Pqgu2ALlh9keqdRLGmqA4PHB2ZiErN9bssI00\npNLZ2cR113UyYYJPSZ3iKAUPBSj5RSIIPAv8ffjfq4mfb79v304aGjSGW4gCAT/btiWf/REIdGZ9\nH1LNAxnromLDA+fML/qmPoa7anZEi81xir0hOHNGNwSSHQoeClDyi0QrpghoCbHdubZxwCIlVRYo\nN1RHTPXud6wJisMD59Qv+iP1dpx//mWcOmUvXR4vv2taRBJhi+OGQNNm3UE5DwXIvki0tGyiutos\nbFRdvYILLngZGI85mbp3DFeyw15j4sSJNmbP3sqcOZuZPXsrJ060jWnNimxKZ1Gxjg5obDRfvb1+\nysujcypqMZU0E4m96CfLHaio+CJlZS8B64DtxOZqvMisWV/O65oWkSGVZPkdi/K2EFs2KMfDHdTz\nUICSdQ1v394IzMVU5Ru5O/fNN0tpbDT/U3SfGbfcKXnpbzbatNLoXIXoIY4//KGb/v5yqqq+AJRx\n6tSFlJVtYWDgRySqpBk9VJO8t2MN8HfAh8OP309kTY6LWLjwirze0UeGapzJ73A7TZsVTdXMMTOF\n0566dsOI0zlra5dZwWDQamlZZ1VXL7NghVVdvcxqaVmX8vQ2iVBbpiedaaXHjx+3amoST8csL7/R\namjotqZPX2dVVIzc9smnY4489bmqallep0NG9jv/U3Fzwc3TZnMp31M180nBQ45FPnRBC6634MWk\nH8Cmpi8kPSGnMz9eRr64ub0t81VDYLRaJdEX7NEuJhMmrLMqKy1ryhTLqqy0rIsusqy6uuH7n3yb\n7r4oB4PB8PE1+g1BIRjt2CiU33M0+Q4elPNQRAIBPxdffA+wD7P08lcZPoZr5tuXlJSmPOYsI0tn\n/N5t8jW+bHIRdmFmD7QCy4HG8Pc1fOITs97fdvIaDCHgF5w79wSnTzdywQXL+fSnW+nuDtHVBZs3\nxw7jJJ+Omf/6GCOxc5xmz7YwuR6J5Dep00lunjZbTJTzUER8Ph9/+IPJtt+6tZtQqJzS0i9SUlIG\nfIAJE2Dy5FpqajrZtq2FkRMqC2P8NBfSGb93m2yNL4+WB7J8uZ/nnruNAweGgAeJXb57Jzt3fuX9\n5bsjF5PoaYoDwEFgI5bVltJ+J6+PYiddxi9fDm64KNs5Tpdd9iiHDzdx5kz+puLmgtuWupfc07BF\njjz8sGUtXRq0pkxZZ5WWLrNKSlZY48Yts8rK1llTpgQTduG6oZRxofBqWz78sGVNm/alEYe3Mhlf\nHikPJJ1tm27sY1ZsGep1FmxPa7+TD38ELWiw4Ffh4SZ72Gm748NOmQ4TFUNujXIejHwPW+STgocs\ns4OGadO+YJWU/MmIY+7xJ63x4zWu6BSvjtEeP37cKi+vzcq+p5IHkmq7mYvJZ+MuKOm3eSR3YPuw\nIOG88z5mTZv2pVGTLp0w1gCgWNa4GOnv5PYcIiflO3jQsEUBW7w4yNe+tpqjR2cAP2a0VTajK/qd\nO3cEM37qvqI4XuOGstBjcffdbfT3X8JI48sHDpSydGn6009HW/m1ri7Am2+mNrYdCPj5x3+8gf7+\n6GG29MfFn3nGR01NJ2fPBnjzza9x5swJYADLquLcuUmcPXse117b/v6y3tlYHTWTYSIvTcXNRPTf\n6eTJ9Zw7V8r48YPvD7k+84yvKNqhmKnnIcsi3Xuj34UNvxMMhruBXyya6D5bd25evVMyd/4jHTvH\nrLKyj4zpbnzkXoVj1gUXfMQqL78ipd6Dhx+2wvsQ/fzYe3vyOTtGXfKSKvU8iGPik9BeeMFO1Bv9\nLmz4naAPMyMjANwLvEd19ZScljLONbvY0KpVAV56qZu+vlJef32Q8vJarrnGT0eHqcKY7h1evstC\nZ7bIlF1ULH7dhAFgPwMDP2FgYAHRd8g//3kT117b+f4deqLtJM+YDwLNvP32Q8BjUduOF+mxaW6G\n9euhu9uKes/alH42kdF6RbJZuj0XybVuKVomMlbqeciC2PHSupTvwkYbXx4/fllBjp9Gi73jPG6Z\npLtbLVhilZXVWqtXf2lMd51uGIseyzh6bFGxLVZqCYlBCz5rVVXVj7id5Mdb9PvavV+j99gMv2NP\n/WcT/975yVHJVXJtvhMr3fCZ8Lp89zzkk4IHhw3vbrVPgqN3hXp1RoCTIhcg+4IZ3239oquHGZIZ\nazf8yEXFEl1gk7Xb8O2kXs0xGD5+zUWupOQKa/r0ddbSpcGYC0zioaFjFnzWKiurtWBZyhfIfH4W\nchG4uKVoWb4DGK9T8KDgwTHDT8jRJ/9Ed2G/SjuzvZBF2qCwxp3HOo4eDAatiy+2j5tb446PRBfY\n1LeTPA9kyZgv3PEXo4qKZdb06eus668PWnPmWNYVV1jWBz5gvq68MnK3W1dnHqury/9Mo1zkPLgh\nr8ItAYyX5Tt4UIXJAjK80p4fsCtKdgCbgE8AN1FWdiWrVz/yfvZ2pKIfDK/qt5j9+09z880hV628\n6LTIOHxhrTiavAIjjPT72EXFWlo2UVZ2jNgchURVF1Pfjp0xP336JiorV1Be3khl5QrKyk4meF9b\n8gJAiVYM/djHtnLNNW1MmuTjvvvg97+H3/8+xK23tnLqVKRa5lVXtfLcc69w1VWmimZkplEiu3jn\nndqsfQ4CAT81NdGrgkJ05VcnVu9MfDzYn/mv097+b1RVLWfGjNasfea9XHVV8k89Dw5L3N0a3e1b\nZ02cuMyaNMncjUWPL0buBOPHtlMfK/a6SM9DYQ3hjLUbPnpcurIy/m480d1r5u2Wzbvi5He7W62y\nsrlRj9s9dVssuMuyh0zgBquq6gqru7t7zPuQiky78+36LtOnr7MqK5dZpaUrrNLSZVZ5+TqrvDyY\n4O+U+nCTU9TTmbl89zzkk4IHh9gn+aqqsSc92iecior4sW1vd9mnI52prV7ixIk6tYTE+KGN9LeT\nzWmtyQOTRMmfL1twVYILanaDaCcSCY8fPx4ebored5P/AXMsmBv1+OiL5GXjM68cq8wpeFDw4Ihg\nMGjNnp35SaCY7wgiF67PJriYeDeAcuJuPvaifix8wf1TC64MX5DmW5WVVzlyEUp25/3QQ8GYO+ry\n8hVWZeWyhAmUiSQ/thM9nv+8gLGKTXRdZ8F1Fsy2YKtlAj77+LZ7HG7M+We+mM8zTlHwoOAhY5Hu\n2F9aiRMjU58lUMx3BJFy3l8Ml/PO/loGueDE3Xwqpc7PO+9j1sSJH894O8nuvJcuTXRHnXr3evJj\nO9Hj+b+4jbUXInatj60WXBH+m8QnUNtBRO4/825I2vQ6BQ8KHjIW+0GMndoGN1gVFdendGdmWboj\nsBXSNLL4MfB079ijjXbSnzbti45sZyzbHu2Ck17PgzuC6JF6YZIFFpWVK6IChXVWpGch+vcMWlCf\n4PHcfOar2oiKAAAgAElEQVQT92SZmiolJbXWtGlfcuSYKWT5Dh5UYbIAxFal8wHR1e+GmDVrBU8+\nmVoVQ6+uw+Ake4ljaGP2bCgvJ2trGeSC2d/442JsRquAOHnyel5+eWvG24lmV0R87rnMqi8mP7YT\nLbmd32WfOzrghz/s5le/amZw8IfErnOxi1/+sonnn/8egcCPeeGFbnp7S+nvN1VLL730LHv32m31\ndaAq/HtEV/X0Afa6JWOvxjlW9mybvr7/h2PHnsOyNr7/O1rWEEeP7qaiooklSzrD+yoSoZ4Hhzg5\n1ODVdRgkN0Y71ioqVmSlSmAwGLQmTVqY0XGe/Njeapkkwuh1XO6y8pn3cvz4cauq6ooR9mGLdf75\niRI6d4R/zq6XsSKqZyG+h8H+/+h1YLJFwxdjp54HyZi5C3LmLinf6zCIuw0/1qLXuyilv7+XqVNb\nCQT8KR0rqayzsHixWWnynXcmkslxHn1sP/vs1zh48ASlpe8xOGi/3+cpKRkHnM95553HuXNPMzj4\nA8wd+ThMvYVd4XoLnaP+bpm4++42Tp3ykbg3AOA53n33ByRaf+PUqW8xbtx/Y2jIwvSgXI7pWYjv\nYYj+v72OzXpMD8W7zJ5tsX37o45+5pOvv5NIbG+S1uRwFxWJKgCxBZ7ipdftGF9s54Mf3Mzbb7fz\nyCMwbVoLZWWNWS8gI+4Ve6wFgSZgJbAF2Ex//29pb19JQ0MToVBo1PdrboYNG0JMnWoKNNmFm6ZO\nbWXDhhDNzdEFherJ5Di3j+0jR1oJhYaA+xkcnIZZrv4VoBvL+h2W9SDnn1/Cddc9wvTp/xRTxGr6\n9E3vL/ucTWZ4yB5uSOQVYodZot1CVdV4TKGpWmAxpljcjeHvdgEqu4jcdmAqZljrceArTJxYwmWX\nPcratT5HP+Pxf+9z5+KLj0WLXTo9lWNFioOGLRySzaEGlZGVaLHH2l0ZdzmncnxFEh2d6V6PdJW7\nt8vcDA+NlMg42vDRUquiwp5tYX+/y4LFFlxtQa0FV1olJddZ48dfb02cuNTKRWJw8vV3Rk/W1Lko\nVr6HLfJJwYODsjU7QGOSEi165kZJyRUpn/iTGe34MjM3oi+U8bOJllmTJl2d1nEeCUbcO7PI7ONI\nwdkNI+77pZcus5YuDVpTpqyzxo2zA4YrLFhojRu31JoyZZ115ZVBq64utytbJl9/Z/Tzi85FsfId\nPCjnoQBkc3bAaNn1o2W4S2GJnrkxd+6r7N2bWpdzMrHHV2z+BAzw7rtHuPTSD7B3r4Xp3h4+m2ho\naAVr1/pSPs4ja5hEzz4Y2/5ni5kZ8qeYYYX7MWtR2HkXOykrO8zAQPwMEdsubrqplo0bnZlh46Th\n5xM/Zugr/nccnluic5G7KHgoANlMFIqcaBPJ7wlW8suJRN3I8RUEVgMPYE/ZgyHefnsng4N3MHwq\npW0Xq1bVsnHjWPY7v9MxRxII+Nm2rYmennXAL4hOZKyqeoMnntjI5z53Lz09o1903WT4+cRHbLLm\nMaqrP5gwQVvnIndRwqSMKHKiTSS/J1gndXTAzTeHmDGjlaqq5Ywfr8TQ0TiRqBs5vtowgUP8KouL\nOHXqW5x//n/BqZUmI/vtXKKx03w+H62tnUyf/hwVFa8ApZSVDTJt2kdZtOhZ/vqvP0ZFxfBVSXOV\n0DlWic8ndg/J44wf/0Fmz97KiRNtw5I1i+VcJKNTzoMHFMs4o5Kx0udEom6qi5FVVi52rHJlZL/t\nZMKxl3PPFicWyEp3e05VIR1JJueTYjkXpSrfOQ/5pODBA4qlaJROTOlz4oITOb6WJGl78+V0OWg7\nwfhDHzLJhGVlJplw5sylritDnotAIlfBcybnk2I5F6VKwYOCB9crpHUektGaHvlhByBlZfU5a3/7\nYlxXZ1kXXWRZlZWWNWWK+X7RRdb7MxDctK5Ctj+DuQyeM/ldiuFclKp8Bw/Jsk9yoQ7o6urqoq6u\n6AInzyiWqm5z5zayd+/mpM/PmdPIq68mf14ys2ZNK+3tK0lcUXEHLS2b2LjRXTMHciUYNBU2TaGs\nBdjJpLCbiRPvYdq0TmpqfBl9JufNW0539xaSJY/W1q5wZM2STM4nxXIuStWePXuor68HUz1tT663\nr9kWMqJi+UA6WeJb0heZXeCt2QO5EKmwGR1YnQB+wZkzFq+91ohlTQnPUEitLHi8XM1kyOR8Uizn\nIq9Q8CCjKoaIvxBXE/XS381eZfHs2QAnT67n3LlSxo8fZPLk2vdnD7hlX3NteH2D4dNazWqbu9m2\nrYkdO9Jfg0bBs3iJch48pNDHGgs1GSsXf7dcZeoXq+ErmTqfn6CEYe/Jd85DPil48IhimcZYaAFS\nrv5uxXJ85MvwZF7nk3sLNXguZPkOHlQkysM6OqCx0XwtXQpz55rv9mNOFTaKHXONLuCzkJ6e+/H7\nk5WM9Y741UTnzNmctFiNV+Tq71YMx0c+xRbjCgFv4nR+gr1ceUvLJqqrVwCNTJy4lIqKr3D0aDmX\nXro2b0XTVMBN4qnnwQG5uFvWNEZn5Kp7P9fTH3V8ZFekV2CLZYpa3eh4e0dPX50yJWiVln7Bgj/J\nWW/SSLUsli49bl18sXq24qnnQcYsGAzS0NBEe/tKenu3AJvp7X2c9vaVNDQ0EQqFHNmOaso7Y/Hi\nID09TRw6tJLTp7fQ37+Z06cf59ChlfT0NLFkiTN/L3s7AwOTycXfTcdHdtnJpBUVbZj1H+pxuqx2\nczNs3gz/+q9BJk9uYnDwNPBjctWb1NwMGzaEmDq1lX37lrN3byP79i1n6tRWpkz5OsGgerYkQj0P\nGcpVkpPuLJ2Rjb9Xoju2adNSK/msngdvibRz0EpcVvtXGd+Jp1ou3Om/6Uh5MyUltTq+ElDPg4yZ\nmcK1IMmzC8LPZ86JBZAkO3+vRHdsb7zxRHg7ufm76fjIjUgPj70S5SbA5CfACsrKvpTxoliRYzS6\nNykEtALL39/W3r1HHM03iM2beSO8vRXAA1jWeNSzVVy+jKny8p0kz6vnIUPDp3BlZz0AZWI7Ixt/\nr8R3bPZ2sneHGk3HR27koocncoza2zoePobiewScXTws8rsl2t6t6nlIoFB7Hq4F/gL4HSRdQ1Uy\nlKslau0xV68t/+s22fh7JZ7pYG8n0R3qJygr+0tH/26JMvWrq1fQ0rJpTAWLJLFc9PBEjlF7W8mX\nSncy3yDSq5Joe/NQz5b7ZKPCZBXwM+DzwNey8P4SlquqiKYSoQ/zwS4sHR3Q3h6iuzvAyZPdMZUN\na2v9tLQ4V9kwG3+v4dUHIXLiX4gJIKL/bju4/fZNbNzo3AXdVLI025k9G8rLTSXLEydg7Vp3VbL0\nslyU8I4co36gCRNIJAsQFrB79/qMtwnRQYt9PIfC37uBAWAL8COgAZUuL1w/Af4u/O/ngQeTvE7D\nFhlSd3HmclngKBt/r8RDIcmGK3RceFkupvrGHqPHLFiYk6HRSKLmiiRDF8cs+KwFc6yysmWqYGrl\nf9jC6Z6H1cDVmGEL0JBFVmk9gMwlXnQodhqYU6s5ZuPvlXhNAnu44luUlPwFllVNRcUgH/1oLY89\npmEEr8pFD6A9BOX3B3jhhW56e08x/PiyOTc0GulVsXs64j+TH8Dcl77I7bf/c9GusOomTgYPM4D/\nASwBzoUfK2GUZb/vvPNOLrzwwpjHmpubadZVb1SFPJyQK4m7/W3OdcuCc3+v6AWvTp6MHqKA2O7e\nc4wbN4HKyrlcc42fSZN8GkaQEcUPQZ040co772R/aNQOrI8e/TR9fV0k/4w0sHv3A45s00s6Ojro\niJva8tZbb+Vpb5z3ScxAVH/U1xAme+scw4MIDVtI3uVqxorT7MqiH/rQYstUAvyVBUeTZMYXdyU+\nGbtcD40Gg0GrvPxqT34mcy3fwxZOzrZ4BrgC+Ej462rgJUzy5NVoCENcKFczVpzS0QE33NDNtGlL\naG9fycGDTwP/DvwTptNvParEJ07J9UyaZ57xMX78xXjpM1msnAweTmH6Su2vl4E+zCouzlQrEnGY\nVwoc2YsD3XXXF3nhhUYGBx8iEiT4gG8DMzHZ6Ik4VzRMioe9YNzvftfG22+3U1Y2lwMH4Cc/eZVp\n01qYOtXZxamam+HTn74KL3wmi122K0za3SoirhQI+KmpuQfYgRllI/x9R3gamD9/OxfFXq/i6NHT\nmPSiRGPQWmNCnBW/5sXAwEqGhrZgWZsZHHycN990dl0W8M5nsthlO3i4EfhvWd6GyJh5pQBWZFbI\nG8D5JA4SvDUEI96Ry2XXVXTMG7JRJErEM7wyYyUyK6SUSJAQH0DUAjtJPHSh7l4Zu1zOSlLRMW9Q\n8CDiAZHyvYPA5cROzwQzRbMPaMEspaxKfOKcXC67ruDAG7SqpsfYiXMzZrRSVbWc8eMbqapazowZ\nziYuibvErjmwGIgeEw5iSgl/BtgG/DPwCeAmSkquZNq0h101BCPe47VZSZJ96nnwmMWLg3zta6s5\ndOgBTDdiCf39Q5w+vZsJE5pYsqQTk30vI4kutPTee3DggOkaPe8885jb7n6GrzmwDvgFZmrmEeB7\nRHoiIkMwlrWDm292di0LKT6R46+GSBEyewjtIk6enEVHx8ifmVyuIyOFTUWi0vDww5a1YoVlTZ9u\n14BPVEBlu9XSsi7fu+oZdqGl6uplFqywqquXWS0t61xZTGn4mgPrwksVL7FgjpYslqwKBoPWzJkf\ns6AhQRGyF61Zsz4+6ucml+vIFINCKhIlWdTcDBs2hHj33ecwK+olkt25/IU0ZBIMBmloaKK9fSW9\nvVuAzfT2Pk57+0oaGpoIhZybeuaE2Az0/wy8SnV1CS0tV1NTMxtN0ZRs8vl8NDRcg6knMnx57v37\nvznqjItcztiQ7NOwhUcEg0EWLVrN229PJl8XikIaMsnlglhOGCkD/fjx5eRi8SIpXh0dsGXLa4xc\nhGzkGRfpztjw2tBisVHPg0dELnbjyVfiUiHdOZgTWX56cBIZrVcHTLGezZvhqafg1VfN982bYdUq\nb1TJFO9qboZLLslsxkW6Mzbs3tapU1vZt285e/c2sm/fcqZObWXDhpAChzxT8OARkYtd/i4Ubrvg\nZiKXU89SYVeQPHRoJadPb6G/fzOnTz/OoUOjV/BTRT7JhdgZFyGgFVgONALLeO21gyMOX6Y7Y8Nr\nQ4vFRsGDR0Qudn5ip+kR/v5i1i8UbrvgZsJtU88y6dXxSpVM8bbIOjD21OCVgLmowxYGBr4/YqCb\n7joyhdTTKc7SbIs01NYui8pQDoaz7c0sAbjVKiv7iLV0adB6+OFc7YO3s/pbWtw1a6WQ2lYKU2TG\nz2fDs37S++yku7y3PhMj02wLSUls1G6XU96Kifq/xu2338STT2Z3nrRXVqBMhdu6+gupV0cKk93D\nVVb2MokXZoORhi/T7SHTZ8LdNNvCIwIBP9u2NdHTcz8m7yD3pYfdsA9OsU9kZ88GOHlyfUzBGvtE\nlsuErMgwimZMiDvZ68DMnXsJe/emf1FPdx0ZfSbcTcGDR7jhYueGfXCK2xbEilTwS3RH561eHSls\nubqo6zPhbgoePMINFzs37EMhSFSmt7y8j9LSpxgc/AHmZOndXh0pbLm6qBdST2chUs6DSI4lmpbZ\n1/cUg4PfpKrqDmbOvBVopLp6BS0tm9ixoxOfTzMmxB1ylS+kWUTulmzgKhfqgK6uri7q6vKSLCqS\nF2vWtNLevpLEd247mDZtE5bVxrlzIfr6AvT3m0WIzjtPiwiJO4RCIfz+AC+80E1vbynV1YNcf30t\ngYBfgW6O7Nmzh/r6eoB6YE+ut6+eBykqblifY7RiW5Mnd/Pb3waZPLmJ995byeDgRgYH53L6tMWh\nQ//B00/fwF13/ZXn1hORwtDRAWvX+jhxoo3Zs7cyZ85mZs/eyokTbaxd69MxWSSU8yBFxQ3rc6Qy\nBS1SIOcyYDUQ2V/LGuLo0Z1UVHhrPREpDPaaEnbuTl9fgO3bI0ts/+Y3tbS3q3es0KnnweXccKdc\nSNxQtS5xdUu73O8y9u49xE9+8gSmd6INEzgMX8lQVfYknzIpqS7ep+DB5dz4AY0PaMrKGiktXUJp\n6Q2Ult5MWZl7Axw3rM8xvNhWdLnfrcAeLKsaEyzkf39FEnFDIC75o+DB5dz4AY0PaAYHf8TQ0BBD\nQ99kaOgJBgfzH+Ak44aqdcOz1duA+4n9G9u9E/nfX5FE3BCIS/4oeHA5N35Ahwc0ybrW3XcH4oYF\nseKnoMETDJ95YfdO5H9/RRJxQyAu+aPgweXc+AGNDWhCwHO4LcBJxg3rczQ3w5NP+nj99TZOndrK\nnDn2EEU0e/XUi4CdSd5JVfYkf9wQiEv+KHhwOTd+QCMBjT1WPxm3BTjJuG1BLEj2N/YBnUAl8Bng\nRdyyvyKQeiCupO/CpODB5dxwpxwvcrGzhyvGE7n42bMGlgONwDJee+2ga04SbqpaZ59U9+8/jQlm\n4vmAzzBt2s1Mn/7Ped9fkWipBuJuTPoWb6sDrK6urnwvi+5qwWDQqqm50YLtFgy+v5Y9bLdqam60\ngsFgzveppWWdBTssWGbBkAX2/49bcGP430NR+/pi3vbVzY4fPx7+2/4y3G7xf2O1m7jXww9b1tKl\nQWvKlHXWuHGLLbjagissWGjBDVZJyfXWuHFLw4+/GD6u47+2Wy0t6/L9q3hSV1eXhblry0uJZvU8\nuJyb7pRtkTuOc5jhCnt8vpXhswZUkyCZSOLprZghik3ACkyPzWIqKu5R74K4lp2788orrVRXDwE/\nAH4H/AummJmZfQWXAA1J3sVdOVGSOlWYdDk3rmRpBzQHDtzKwIBFZHz+VhKv1wDmJLE+Z/voBeak\naQdU8X/jIWbNWsGTTypwEHeLnX0FsbOvQNONC5N6HiRt9h3H7bffSCQfw4e5w9BJIlVunEkjkq7R\nZ1+5L+lbMqfgQcZseMKUThLpcONMGpF0jT77yn1J35I5BQ8yZvH5GCUlR0g8awB0khjOjTNpRNI1\n8uwriOREuWd6tGROwYOMWXyxo+PHn6Km5qvoJJEaN9acEElXJAi2hy+ig+IQJq9nHPBF4ErgGsaN\nu5UpUzTd2MuUMCmOsXsizp4NcPLk+veX6J08ufb9k4SW6I1Qe0khCAT8bNvWRE+PPXzhxwxf3AX8\nHdHLyZvgeBfV1feyY4cfn0+Bg1cly9bKhTqgq6uri7q6vExTFRGRDHV0QHt7iGefvZWBgV9jLish\n4NOYwGFRgp/aQUvLJjZudM8sMq/Zs2cP9fX1APXAnlxvX8MWIiIyZslnX1Wi+g6FS8GDiIhkbHgO\nj6YiFzIFD1JUQqEQa9a0Mm/ecubObWTevOWsWdNKKKT6+iKZGL7UfC+aily4FDxI0XjooSCzZjXR\n3r6S7u4t7N27me7ux2lvX8msWU388IcKIETGKn72VUvLLWgqcuFS8CBFY9euNvr67LK50WtvLKSv\n73527tTaGyJO0VTkwqbgQYpGbBndeErgEnGSGxf1E+eozoMUDa0lIZI7blzUT5yjngcpGlpLQkTE\nGQoexHFundGgtSRERJyh4EEc5eYZDUrgEhFxhoIHcZSbZzQogUtExBlKmBRHmRkLyQKEBezevT6X\nuxNDCVwiIs5Qz4M4SjMaREQKn4IHcZRmNIiIFD4FD+Ko2BkNIaAVWA40AovZv/80N98coqMjX3so\nIiKZUvAgjorMaNgKNAErgS3AZuDf6Ov7Bj09TSxZonUkRES8yung4QvAb4G3w1/bgVsc3oa4mD2j\noaKiDVjP8FkXDfT03I/fr3UkRES8yung4XXgbqAOqAeexdxyznN4O+JS9sp6s2ZVAg1JXqV1JERE\nvMzpqZpb4v7/VUxvxHzgZYe3JS6mWRciIoUrm3UeSoFPAxOAbVncjrhQZNZFogBCsy5ERLwsG8HD\nlZj6vxOAM8CfAfuysB1xsfnza+nu3gXUYIpGdWPiyUHgIk6enEVHhxnmEBERb0nWr5yJcmAGcAGm\n5+FLwA3AnrjX1QFd1113HRdeeGHME83NzTTrquJpoVCIa6+9jQMHhoAHgQWYw20I2MmsWV9h9+7H\n8PlUElpEZCQdHR10xM1vf+utt9i2bRuY/ML462vWZSN4iPc0sB/487jH64Curq4u6urqcrAbkksd\nHXDXXX/F0aPNwKIEr9hBS8smNm5UqWgRkXTt2bOH+vp6yFPwkIs6D+NytB1xkeZmmDz5NTTjQkSk\n8Did8/AN4JeYKZvnA6uB64H7Hd6OeIBmXIiIFCangwcf8FNgGqZI1G+BmzH1HqTIaMaFiEhhcjp4\n+LzD7yceFplxsTDBs7vC62CIiIjXKBdBsmbhQj8VFfdgZu4OhR8dAnZQUXEvCxf687dzIiIyZtks\nEiVF7o47fHzqU534/QF2717PwEApZWWDzJ9fSyDQqWmaIiIepeBBssrn82k6pohIgdGwhYiIiKRF\nwYOIiIikRcMWUhRCoVA496I7LvfCr9wLEZE0KXiQgvfQQ0Huums1fX0PYBbpMmtsdHfv5uc/b+LB\nBzu54w4FECIiqdKwhRS8XbvawoHDQiIFq8YBC+nru5+dOwP52zkREQ9S8CAFz6yhsSDJs1pjQ0Qk\nXQoepOBpjQ0REWcpeJCCF1ljIxGtsSEiki4FD5IzHR1w880hZsxopapqOePHN1JVtZwZM1q5+eYQ\nHR3Z2a5ZQ2NXkme1xoaISLoUPEjOLF4cpKeniUOHVnL69Bb6+zdz+vTjHDq0kp6eJpYsCWVlu4GA\nn5qaxGts1NTcSyCgNTZERNKh4EFy5u672+jpSTzroafnfvz+7Mx6eOYZHzU1nUyfvonKyhWUlzdS\nWbmC6dM3UVPTyTPPaJqmiEg6VOdBcsbMakgWICxg9+71WdluczM0N/sArbEhIuIE9TxIzgyf9RAC\nWoHlwCfZt+8ga9a0EgplZ/hCREScoeBBciZ21kMQaAJWAluAzZw791va21cya1YTP/yhAggREbdS\n8CA5EzvroQ1Q1UcRES9S8CA5s3Chn4oKe9bDy6jqo4iINyl4kJy54w4f+/d30tKyifHjj6GqjyIi\n3qTgQXLK5/OxcWMbs2dPQ1UfRUS8ScGD5IWqPoqIeJeCB8mLXFR9zFc5bBGRQqciUZIXdtXHs2cD\nnDy5nnPnShk/fpDJk2vfr/rY3Dy29w6FQvj9AbZv/w29vYfp79+IKU5VQn//EKdP72bChCaWLOkE\nVF1SRCRdCh4kL5ys+mgHC7t3dxMKDfDGGwexrI2YnIr1mOmgtthy2Bs3quqkiEi6NGwhnvbQQ0Fm\nzWqivX0l3d1bCIWuwrJ+DNQAz6PpoCIizlPwIJ62a1cbfX12sak3gOeAyzDVKyej6aAiIs5T8CCe\nZnoPFhApdz0Z+DameuV4NB1URMR5Ch7Es0KhEIcOvYnpXbDLXY8H7IBC00FFRLJBwYPkVSgUYs2a\nVubNW87cuY3Mm7c8pZU17VyHd96ZiOldiA4YzmECCj+QaDroi1RU3MvChZlPBxURKUaabSF589BD\nQe66a3U4Z8FMpYQhurt38/OfN/Hgg53ccUfiqZSRXIdfYHoX7OW+/cANmIDCB3SG33t9+DUDXHDB\nEf74x6fx+TRNU0RkLNTzIHkTm+yY3sqakVwHu3fhXSIBw59iehsI/78N2ApsBr7GbbfdpMBBRCQD\nCh4kbyIBQCIjT6U0MyVKiPQuWEQChr8Fvko2q1eKiBQzBQ+SN5EAIJHkUylDoRDHjx8hMpPCBzxK\nJGCYigkofgEsBq6houJWpk/f9H71ShERGTvlPEjemKmSFokDiNiplHYVySee+A3Hjx/GsuYDO4GG\n8Cui8xvuoaTkPSoqpjB58keprfXT0jL2ctciIhJLwYPkzfz5tXR37yK2fLQtMpUyNrHSLjldg6nr\ncD9m6GMcpsfhk1RUdPHgg5uTJluKiEhmFDxI3ixc6OfnP2+iry86ABgCdoWnUnYC0YmVdsnpNkxv\nhWZSiIjkg4IHyZs77vDxqU91hhe1Ws/AQCllZYPMn19LIND5fgBgEifXMbzk9PCFtT7wgUYFDiIi\nWaaESckrn8/Hxo1tPP98O4sWzQVg+/ZXueGGlveLRZnESZWcFhFxC/U8SN6NVizqggvKMRUkA0RK\nTo+cJyEiItmjngfJu9GKRVVWniWVktOq4SAikhvqeZC8MzkNdjXJUPjf3dhJkIcPv0FJiYVlJS85\nXVZ2hJqap3nmGU3JFBHJNgUPkneRYlFBYDUmtyEyfHHmzE5KSz/P4OAOYBHDEyV3cPvtm9i4UYmS\nIiK5oGELybtIsSh7We344YtFDA5+m9LSL5Co5LRWyBQRyS31PEjeRYpFRQ9fxLuFmpoHWbRo04jT\nOkVEJPsUPEjeBQJ+tm1roqdn5LUuoIKNG9uSPC8iIrmiYQvJu2ee8VFT00lZ2UlUw0FExP0UPEje\nNTfDk0/6uP32GzE1HBJRDQcREbdQ8CCusXChn4qKRDUclBQpIuImynkQ10h1rQsREckv9TwUmY6O\njnzvwojstS5efnkrr766mZdf3srGjW2eDhzc3uaFSG2ee2rz4uJ08PAV4NfAO8Bx4J+AOQ5vQzKg\nD3juqc1zT22ee2rz4uJ08PBx4O+BBcBNmGGRp4AKh7cjIiIieeJ0zsOtcf9fg6k5XAf8yuFtiYiI\nSB5kO+fhwvD3N7O8HREREcmRbM62KAG+A2zD1B1O6JVXXsniLki8t956iz179uR7N4qK2jz31Oa5\npzbPrXxfO5PVAnbC9zDDGP8XcCTB89MwyZWXZnEfRERECtVh4FrgaK43nK3g4e+BRkwC5YERXjct\n/CUiIiLpOUoeAodsKAH+F/A6UJPnfREREREP+D5wEtPj8MGor/PyuVMiIiLiXkPAYPh79Ndn87lT\nIiIiIiIiIiIiIiIiIiIiUtTuY3guQ3z9hsuBzcBbmMWxdgAz4l7TADwLnMIkVz5HbELl/gTbeSDu\nPaAc+f8AAAV6SURBVD4EPB5+jxDwP4DyMf5ebnYfmbX5rAQ/b3+tjHqPycD/F36Pt4CfAhfEbUdt\nHuFEm+9P8LyO87GfWy4BHgaOYdprD7HtDTrOo91Hbtp8f4Lt6Dgfe5vXYBacDAJvA53AxXHv4brj\n/D7gd+Edtb+mRj1fA5wAvgl8BHMSvRWIXku5AfPL+DGNVAN8Chgf9Zpe4N647VRGPV8K/B54Jryd\nxcAh4H9m+gu60H1k1ubj4n72YuBrmIMuerGyfwV+i1nQbGF4m5ujnlebRzjV5jrOI+4j83PLc8BO\n4KPh5+8FBoCro16j4zziPnLT5jrOI+4jszavBHqAx4B5wBWYQGIXsTWbXHec3wf8ZoTnHwF+Msp7\n7AT+31Fe0wv8zQjP34o5QD8Y9VgTcAaoGuW9veY+Mm/zeL8B/iHq/5djIuBrox5bEH7sw+H/q80j\nnGhz0HEe7T4yb/N3gf877rE3MIvzgY7zePeR/TYHHefR7iOzNl+KaavodrkQcwwvDv8/Z8d5ugtj\nfRhTDvM1oAOojnqfZcAfgSeB45hA4T9F/ezFwHxMF8l2TFfX88DHEmznbsxB+BvgHmK7UxowUdOx\nqMeeAiYA9Wn+Pl6QSZvHq8dEmhuiHmvA3BX/OuqxXeHHFkW9Rm3uXJvbdJxHZNrmW4DVmC7bceF/\nj8ecY0DHeSLZbnObjvOITNp8AmAB56IeO4sJDOzrqCuP81uA2zDdJYsxXVZHgSmYCGYIM37yN8BV\nmANmEFMwCkz3yRDmIPoc5oT6IPAeMDtqO3cC12G6ZNZixnai79r+N/BEgv17DxM9FZJM2zze94E/\nxD12D/Bqgte+Gn4/UJs73eag4zyaE20+EdMNO4Q5ub5F5G4MdJzHy0Wbg47zaJm2+UWYNv4Opu0r\nMRWdh4AfhF/jieO8AvOL/1fM+hRDwM/iXvMvmIQaMFHPELA+7jW/ZXgCTbRPhX9ucvj//xsTmcUr\nxIMtXrptHm0i5sD7r3GPp3qwqc2da/NEdJxHjKXNN2GSy24ErgT+FpOQfUX4eR3nI8tGmyei4zxi\nLG1+E7APE1T0Y4Y5XsIsRAk5PM7THbaI1ofp+piN6U0YYPjS2/8/JqsTIot3xL/mlajXJLIr/N3u\nnTgGfCDuNZMx3WXHKGzptnm0VZiL2U/jHj/G8Gxdwo8di3qN2ty5Nk9Ex3lEum1+OfBJzJ3tc+Gf\n/e+Yk+pfhl+j43xk2WjzRHScR4zl3PJ0+PU+TLLl54DpmGEQyOFxnknwMAGoxQQF/Zgxlj+Je80c\nzFQdwt+PJHjN3KjXJHJN+LsdfGzHRLbRv/xSzNhPV4r77lXptnm0tZgo9kTc4zsw03jiE2wuwLQ1\nqM2dbvNEdJxHpNvm9nlsMO41Q0Sy0HWcjywbbZ6IjvOITM4tb2Kmci7GBBL2bApXHuffxoy9VId3\n5nFMl6w9B/WT4Y1/HhMZfQnTIIui3uNvwj+zMvyarwOniSSNLMR04VwdfuzPMFNI/inqPcZhpp48\nHX7dYuAgZp5qoXGizQk/N4g5QBL5JfAfxE7t+Zeo59Xmzra5jvNYmbZ5KeaO7QXMSbMGuAvT/rdE\nbUfHeUQu2rwBHefRnDi3rMEcuzXA7Zgei7a47bjuOO/AZImexRwAjzI8SloD7MV0x+wBViR4n7vD\nO3oK+BWxDXMNJnI6GX6PVzDjaPGrcs7ANPxpTON9l8IsKuJUmz/AyL07F2KKirwd/vopMCnuNWrz\niEzbXMd5LCfa/LLwzx3FnFt+w/BphDrOI3LR5jrOYznR5t/AtPdZzJDGnQm2o+NcRERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERE8ur/ANBpVY9jW9RvAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import sys\n", + "import getopt\n", + "sys.path.insert(1,\"/usr/local/science/clag/\")\n", + "import clag\n", + "%pylab inline\n", + "\n", + "from scipy.stats import norm\n", + "from scipy.stats import lognorm\n", + "\n", + "ref_file=\"lc/1367A.lc\"\n", + "echo_file=\"lc/6175A.lc\"\n", + "\n", + "\n", + "dt = 0.01\n", + "t1, l1, l1e = np.loadtxt(ref_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o')" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.00964867, 0.02886003, 0.0556922 , 0.08632291, 0.13380051,\n", + " 0.20739079, 0.32145572, 0.49825637])" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "\n", + "fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029, \n", + " 0.25819945, 0.40020915, 0.62032418])\n", + "# fqL = np.logspace(np.log10(0.0006),np.log10(1.2),11)\n", + "nfq = len(fqL) - 1\n", + "fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.)\n", + "\n", + "\n", + "fqd\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.337e-01 6.112e+01 inf -- -4.041e+02 -- 1 1 1 1 1 1 1\n", + " 2 7.647e-01 6.015e+01 6.901e+01 -- -3.351e+02 -- 0.65784 0.58285 0.5699 0.567505 0.56704 0.566344 0.573791\n", + " 3 3.242e+00 5.939e+01 6.602e+01 -- -2.691e+02 -- 0.42512 0.198095 0.146253 0.137492 0.135449 0.133237 0.150987\n", + " 4 1.563e+00 5.894e+01 6.233e+01 -- -2.067e+02 -- 0.328446 -0.100568 -0.261985 -0.286046 -0.293214 -0.298752 -0.270142\n", + " 5 6.151e-01 5.858e+01 5.845e+01 -- -1.483e+02 -- 0.300114 -0.231637 -0.637422 -0.692493 -0.715789 -0.728243 -0.692465\n", + " 6 3.834e-01 5.758e+01 5.397e+01 -- -9.432e+01 -- 0.288119 -0.218711 -0.948517 -1.05695 -1.12601 -1.152 -1.11841\n", + " 7 2.764e-01 5.488e+01 4.687e+01 -- -4.745e+01 -- 0.288807 -0.20359 -1.129 -1.33421 -1.50858 -1.56203 -1.54725\n", + " 8 2.123e-01 4.884e+01 3.703e+01 -- -1.042e+01 -- 0.290741 -0.199424 -1.16697 -1.47951 -1.82761 -1.93862 -1.97495\n", + " 9 1.660e-01 3.761e+01 2.500e+01 -- 1.458e+01 -- 0.297078 -0.192793 -1.17471 -1.51254 -2.03046 -2.24008 -2.39415\n", + " 10 1.251e-01 2.218e+01 1.352e+01 -- 2.810e+01 -- 0.304071 -0.185609 -1.18142 -1.51049 -2.10848 -2.41366 -2.79148\n", + " 11 8.256e-02 9.018e+00 5.492e+00 -- 3.359e+01 -- 0.305677 -0.180534 -1.18507 -1.51162 -2.12584 -2.46833 -3.14066\n", + " 12 4.067e-02 2.560e+00 1.439e+00 -- 3.503e+01 -- 0.30378 -0.178308 -1.18784 -1.51647 -2.12974 -2.48272 -3.39994\n", + " 13 1.216e-02 5.340e-01 2.063e-01 -- 3.524e+01 -- 0.301773 -0.177939 -1.18966 -1.52028 -2.13067 -2.48953 -3.5382\n", + " 14 2.104e-03 8.200e-02 1.337e-02 -- 3.525e+01 -- 0.30075 -0.178052 -1.19052 -1.52208 -2.13075 -2.49214 -3.58123\n", + " 15 2.833e-04 1.082e-02 3.730e-04 -- 3.525e+01 -- 0.300445 -0.178142 -1.19077 -1.52264 -2.13068 -2.4928 -3.58876\n", + " 16 3.684e-05 1.402e-03 6.992e-06 -- 3.525e+01 -- 0.300387 -0.178169 -1.19082 -1.52276 -2.13064 -2.4929 -3.58978\n", + "********************\n", + "0.300387 -0.178169 -1.19082 -1.52276 -2.13064 -2.4929 -3.58978\n", + "0.23893 0.202426 0.232625 0.177239 0.153017 0.132987 0.308424\n", + "-0.000180614 -0.000143998 -0.000174906 -0.000705814 0.000447101 -0.000873593 -0.00140183\n", + "********************\n" + ] + } + ], + "source": [ + "P1 = clag.clag('psd10r', [t1], [l1], [l1e], dt, fqL)\n", + "p1 = np.ones(nfq)\n", + "p1, p1e = clag.optimize(P1, p1)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 3.525e+01 3.481e+01 3.004e-01 5.393e-01 0.89 +++\n", + "+++ 3.525e+01 3.432e+01 3.004e-01 6.588e-01 1.87 +++\n", + "+++ 3.525e+01 3.458e+01 3.004e-01 5.990e-01 1.34 +++\n", + "+++ 3.525e+01 3.470e+01 3.004e-01 5.692e-01 1.11 +++\n", + "+++ 3.525e+01 3.475e+01 3.004e-01 5.543e-01 0.996 +++\n", + "\t### errors for param 1 ###\n", + "+++ 3.525e+01 3.476e+01 -1.782e-01 2.426e-02 0.974 +++\n", + "+++ 3.525e+01 3.422e+01 -1.782e-01 1.255e-01 2.07 +++\n", + "+++ 3.525e+01 3.451e+01 -1.782e-01 7.486e-02 1.48 +++\n", + "+++ 3.525e+01 3.464e+01 -1.782e-01 4.956e-02 1.21 +++\n", + "+++ 3.525e+01 3.471e+01 -1.782e-01 3.691e-02 1.09 +++\n", + "+++ 3.525e+01 3.474e+01 -1.782e-01 3.058e-02 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.782e-01 2.742e-02 1 +++\n", + "\t### errors for param 2 ###\n", + "+++ 3.525e+01 3.511e+01 -1.191e+00 -1.075e+00 0.275 +++\n", + "+++ 3.525e+01 3.495e+01 -1.191e+00 -1.016e+00 0.597 +++\n", + "+++ 3.525e+01 3.485e+01 -1.191e+00 -9.873e-01 0.798 +++\n", + "+++ 3.525e+01 3.480e+01 -1.191e+00 -9.727e-01 0.909 +++\n", + "+++ 3.525e+01 3.477e+01 -1.191e+00 -9.655e-01 0.966 +++\n", + "+++ 3.525e+01 3.475e+01 -1.191e+00 -9.618e-01 0.995 +++\n", + "\t### errors for param 3 ###\n", + "+++ 3.525e+01 3.482e+01 -1.523e+00 -1.346e+00 0.861 +++\n", + "+++ 3.525e+01 3.433e+01 -1.523e+00 -1.257e+00 1.85 +++\n", + "+++ 3.525e+01 3.459e+01 -1.523e+00 -1.301e+00 1.32 +++\n", + "+++ 3.525e+01 3.471e+01 -1.523e+00 -1.323e+00 1.08 +++\n", + "+++ 3.525e+01 3.477e+01 -1.523e+00 -1.334e+00 0.967 +++\n", + "+++ 3.525e+01 3.474e+01 -1.523e+00 -1.329e+00 1.02 +++\n", + "+++ 3.525e+01 3.475e+01 -1.523e+00 -1.332e+00 0.994 +++\n", + "\t### errors for param 4 ###\n", + "+++ 3.525e+01 3.482e+01 -2.131e+00 -1.978e+00 0.868 +++\n", + "+++ 3.525e+01 3.430e+01 -2.131e+00 -1.901e+00 1.9 +++\n", + "+++ 3.525e+01 3.458e+01 -2.131e+00 -1.939e+00 1.34 +++\n", + "+++ 3.525e+01 3.471e+01 -2.131e+00 -1.958e+00 1.09 +++\n", + "+++ 3.525e+01 3.476e+01 -2.131e+00 -1.968e+00 0.977 +++\n", + "+++ 3.525e+01 3.473e+01 -2.131e+00 -1.963e+00 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -2.131e+00 -1.966e+00 1.01 +++\n", + "\t### errors for param 5 ###\n", + "+++ 3.525e+01 3.476e+01 -2.493e+00 -2.360e+00 0.992 +++\n", + "\t### errors for param 6 ###\n", + "+++ 3.525e+01 3.511e+01 -3.590e+00 -3.436e+00 0.274 +++\n", + "+++ 3.525e+01 3.491e+01 -3.590e+00 -3.358e+00 0.68 +++\n", + "+++ 3.525e+01 3.477e+01 -3.590e+00 -3.320e+00 0.971 +++\n", + "+++ 3.525e+01 3.468e+01 -3.590e+00 -3.301e+00 1.14 +++\n", + "+++ 3.525e+01 3.472e+01 -3.590e+00 -3.310e+00 1.05 +++\n", + "+++ 3.525e+01 3.475e+01 -3.590e+00 -3.315e+00 1.01 +++\n", + "+++ 3.525e+01 3.476e+01 -3.590e+00 -3.317e+00 0.991 +++\n", + "********************\n", + "0.300387 -0.178169 -1.19082 -1.52276 -2.13064 -2.4929 -3.58978\n", + "0.253863 0.205589 0.22899 0.191086 0.164971 0.132987 0.27228\n", + "********************\n" + ] + } + ], + "source": [ + "p1, p1e = clag.errors(P1, p1, p1e)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAGqVJREFUeJzt3X9s4/d93/HnxZaj5dxWi12RZ+98bLhdaBhJDbLSHzrb\n5TIn2IY26dBOIbFsiLTCQdoOuHUrcMMgzZCAYS2G9uqu63BbD1kRjNQNaDYH2LXFUKW5UVqnilm7\nbmadUT+W5kxmTXvr6kSpVnt/UHeR1I9+8I7fL389HwAhivx8vp+3cJ+TXvx+P9/vFyRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvSA/gGwBvwh0AQ+A1zsakWSJKkn3AT+FvA08H7gs8AW\n8K4u1iRJknrQ48BbwHPdLkSSJJ3sHTGONbb39fdjHFOSJPW4M7QON/xatwuRJEmn83BM4/wz4BmO\nP9Rwbu8hSZLa88beo6PiCAk/A3wP8AJw+4g255544onbt28f9bYkSTrGl4EJOhwUogwJZ2gFhI8A\neWD7mLbnbt++zac//WmefvrpCEvqvMuXL3P16tW+HO9BttVu33ban6btSW2Oez/uf7NOca51vr1z\nLcy51vn2Uc611157jY997GNP0tob3zch4WeBIq2Q8CaQ3Hv9DrAT6vD000+TzWYjLKnzxsbGYq25\nk+M9yLba7dtO+9O0PanNce/H/W/WKc61zrd3roU51zrfPuq5FpWHItz2Z4F3AjPA39v3+CLwm4fa\nngM+8YlPfIJz5/pvWcL73ve+vh3vQbbVbt922p+m7Ultjnq/VCpRLBZPXUsvca51vr1zLcy51vn2\nUc21N954g2vXrgFco8N7Es50cmMPIAusr6+v92XqVn/58Ic/zKuvvtrtMjQEnGuKQ7VaJZfLAeSA\naie3Hed1EiRJUh8xJGjo9OvuX/Uf55r6nSFBQ8df3IqLc039zpAgSZKCDAmSJCnIkCBJkoIMCZIk\nKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnI\nkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAg\nSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmS\nggwJkiQpyJAgSZKCDAmSJCkoypDwAvBZ4MvAW8BHIhxLkiR1WJQh4V3AF4Af3vv+7QjHkiRJHfZw\nhNv+pb2HJEnqQ65JkCRJQYYESZIUZEiQJElBUa5JaNvly5cZGxs78FqxWKRYLHapIkmSekepVKJU\nKh147c6dO5GNdyayLR/0FvB9wKtHvJ8F1tfX18lmszGVJElS/6tWq+RyOYAcUO3ktqPck3AW+Av7\nvn8P8CzwVeBLEY4rSZI6IMqQMAH86t7zt4Gf3Hv+KWA2wnElSVIHRBkSPocLIyVJ6lv+EZckSUGG\nBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJ\nkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhT0cLcLkKJQKpUolUoA7OzssL29zYUL\nFxgdHQWgWCxSLBa7WaIk9TxDggbS/hBQrVbJ5XKUSiWy2WyXK5Ok/uHhBkmSFGRIkCRJQYYESZIU\nZEiQJElBhgQNrK2tLWZnZ5mengZgenqa2dlZtra2uluYJPUJz27QwGk2mxQKBWq1Go1G497r9Xqd\ner3OzZs3yWQylMtlEolEFyuVpN5mSNBAaTabTE1NsbGxcWSbRqNBo9Hg0qVLVCoVg4IkHcHDDRoo\nhULh2ICwX71ep1AoRFyRJPUvQ4IGxubmJrVara0+tVrNNQqSdARDggbG4uLigTUIp9FoNFhYWIio\nIknqb4YEDYy1tbVY+0nSoDMkaGDs7u7G2k+SBp0hQQNjZGQk1n6SNOgMCRoYExMT99VvcnKyw5VI\n0mAwJGhgzM/Pk0wm2+qTTCaZm5uLqCJJ6m+GBA2MVCpFJpNpq08mkyGVSkVTkCT1OUOCBkq5XCad\nTp+qbTqdZmlpKeKKJKl/GRI0UBKJBJVKhXw+f+Shh2QyST6fZ2VlhfHx8ZgrlKT+YUjQwEkkEiwv\nL7O6usrMzMy9PQvpdJqZmRlWV1dZXl42IEjSCbzBkwZWKpXi+vXrVKtVcrkcN27cIJvNdrssSeob\nUe9J+CFgE/g68BvAcxGPJ0mSOiTKkPBR4KeAReBZ4BZwEzgf4ZiSJKlDogwJPwr8K+A68DvA3wW+\nBHwywjElSVKHRBUSHgGywK8cev1XgKmIxpQkSR0U1cLFx4GHgOah178CtHdJPOk+lEolSqUSADs7\nO1y8eJErV64wOjoKQLFYpFgsdrNESep5nt2ggWQIOJ3DYWp7e5sLFy4YpiQBcCai7T4CvAn8APDv\n973+08D7gb94qH0WWH/++ecZGxs78Ia/pKR43D1VdH193VNFpR61P9jfdefOHW7dugWQA6qdHC+q\nPQl/DKwDH+JgSPgg8JmjOl29etVfTpIkHSH0wfluwI9ClGc3/CTwg8AM8DSt0yH/HPAvIhxTUpu2\ntraYnZ1lenoagOnpaWZnZ9na2upuYZK6Lso1CTeAx4B54Bzw34C/Sus0SEld1mw2KRQK1Go1Go3G\nvdfr9Tr1ep2bN2+SyWQol8skEokuViqpW6JeuPhzew9JPaTZbDI1NcXGxsaRbRqNBo1Gg0uXLlGp\nVAwK0hDyBk/SECoUCscGhP3q9TqFQiHiiiT1IkOCNGQ2Nzep1Wpt9anVaq5RkIaQIUEaMouLiwfW\nIJxGo9FgYWEhoook9SpDgjRk1tbWYu0nqX8ZEqQhs7u7G2s/Sf3LkCANmZGRkVj7SepfhgRpyExM\nTNxXv8nJyQ5XIqnXGRKkITM/P08y2d7NWJPJJHNzcxFVJKlXGRKkIZNKpchkMm31yWQypFKpaAqS\n1LMMCdIQKpfLpNPpU7VNp9MsLS1FXJGkXmRIkIZQIpGgUqmQz+ePPPSQTCbJ5/OsrKwwPj4ec4WS\neoEhQRpSiUSC5eVlVldXmZmZubdnIZ1OMzMzw+rqKsvLywYEaYhFfYMnST0ulUpx/fr1e/ekv3Hj\nBtlstttlSeoB7kmQJElBhgRJkhTk4QZpiJVKJUqlEgA7OztcvHiRK1euMDo6CkCxWKRYLHazREld\nZEiQhpghQNJxPNwgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ\nkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKC\nDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpKKqQ8A+BFeBrwB9ENIYkSYpQVCFhBFgC/nlE25ck\nSRF7OKLtvrz39eMRbV+SJEXMNQmSJCkoqj0JktRxpVKJUqkEwM7ODtvb21y4cIHR0VEAisUixWKx\nmyVKA6WdkPAyMH9Cm+8CqvddjSQdY38IqFar5HI5SqUS2Wy2y5VJg6mdkPAzwL85oc32A9TC5cuX\nGRsbO/CanwwkSWrZvzftrjt37kQ2Xjsh4at7j8hcvXrVTwSSJB0h9MH57l61KES1JuEp4N17Xx8C\nvhM4A3wReDOiMSVJUgdFdXbDAq21CS8DZ4EvAOtANFFH0tDY2tpidnaW6elpAKanp5mdnWVra6u7\nhUkDKKo9CR/HayRI6qBms0mhUKBWq9FoNO69Xq/Xqdfr3Lx5k0wmQ7lcJpFIdLFSaXB4CqSkntds\nNpmammJjY+PINo1Gg0ajwaVLl6hUKgYFqQO8mJKknlcoFI4NCPvV63UKhULEFUnDwZAgqadtbm5S\nq9Xa6lOr1VyjIHWAIUFST1tcXDywBuE0Go0GCwsLEVUkDQ9DgqSetra2Fms/Sd9kSJDU03Z3d2Pt\nJ+mbDAmSetrIyEis/SR9kyFBUk+bmJi4r36Tk5MdrkQaPoYEST1tfn6eZDLZVp9kMsnc3FxEFUnD\nw5AgqaelUikymUxbfTKZDKlUKpqCpCFiSJDU88rlMul0+lRt0+k0S0tLEVckDQdDgqSel0gkqFQq\n5PP5Iw89JJNJ8vk8KysrjI+Px1yhNJi8d4OkvpBIJFheXmZra4uFhQU+//nPU6/XSafTvPDCC8zP\nz0d2iKFUKlEqlQDY2dlhe3ubCxcuMDo6CkCxWKRYLEYyttRNZ7pdwJ4ssL6+vk42m+12LZL6QLVa\nJZfLEffvjW6NKx3l7pwEckC1k9v2cIMkSQoyJEjSKWxtbTE7O8v09DQA09PTzM7OeiMpDTTXJEjS\nMZrNJoVCgVqtduBGU/V6nXq9zs2bN8lkMpTLZRKJRBcrlTrPkCCpbxxeQHjx4kWuXLkS2QLCZrPJ\n1NQUGxsbR7ZpNBo0Gg0uXbpEpVIxKGigGBIk9Y24zyIoFArHBoT96vU6hUKB5eXliKuS4uOaBEkK\n2NzcpFartdWnVqu5RkEDxZAgSQGLi4sH1iCcRqPRYGFhIaKKpPgZEiQpYG1tLdZ+Ui8yJEhSwO7u\nbqz9pF5kSJCkgJGRkVj7Sb3IkCBJARMTE/fVb3JyssOVSN1jSJCkgPn5+SPvOHmUZDLJ3NxcRBVJ\n8TMkSFJAKpUik8m01SeTyUR2J0qpGwwJknSEcrlMOp0+Vdt0Os3S0lLEFUnxMiRI0hESiQSVSoV8\nPn/koYdkMkk+n2dlZYXx8fGYK5SiZUiQpGMkEgmWl5dZXV1lZmbm3p6FdDrNzMwMq6urLC8vGxA0\nkLx3gySdQiqV4vr161SrVXK5HDdu3CCbzXa7LClS7kmQJElB7kmQpBPEfYtqqVcYEiTpBIYADSsP\nN0iSpCBDgiRJCjIkSJKkIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpKCoQkIK+HlgA/ga8D+Bl4GRiMaT\nJEkdFtXFlN4LnAFeohUQ3gf8S+As8GMRjSlJkjooqpDwy3uPu7aAfwp8EkOCJEl9Ic41CWPAV2Mc\nT5IkPYC47t2QBn4E+NGYxpOkvnb4plLb29tcuHDBm0opVu3uSXgZeOuEx+EbrD8B/BJwA7j+ALVK\n0tAoFou88sorPP7442xsbPD666+zsbHB448/ziuvvGJAUCzOtNn+sb3HcbaBb+w9fwJYBlaBjx/T\nJwusP//884yNjR14w7Qsadg0m00KhQK1Wo1Go/Gn3k8mk2QyGcrlMolEogsVqlv272G6686dO9y6\ndQsgB1Q7OV67IaEdT9IKCGvAx4C3j2mbBdbX19fJZg/viJCk4dFsNpmammJjY+PEtul0mkqlYlAY\nctVqlVwuBxGEhKgWLj4JfI7WXoUfAxJAcu8hSTpCoVA4VUAAqNfrFAqFiCvSMItq4eIHaS1WfA/w\nu/tefxt4KKIxJamvbW5uUqvV2upTq9XY2toilUpFU5SGWlR7Ej61t+2H9r6+Y9/3kqSAxcXF4BqE\n4zQaDRYWFiKqSMPOezdIUo9YW1uLtZ90EkOCJPWI3d3dWPtJJzEkSFKPGBm5v3vg3W8/6SSGBEnq\nERMTE/fVb3JyssOVSC2GBEnqEfPz8yST7Z0pnkwmmZubi6giDTtDgiT1iFQqRSaTaatPJpPx9EdF\nxpAgST2kXC6TTqdP1TadTrO0tBRxRRpmhgRJ6iGJRIJKpUI+nz/y0EMymSSfz7OyssL4+HjMFWqY\nGBIkqcckEgmWl5dZXV1lZmbm3p6FdDrNzMwMq6urLC8vGxAUuaguyyxJekCpVIrr16/fu4HPjRs3\nvAmeYmVIkKQetP+WwDs7O1y8eJErV64wOjoKQLFYpFgsdrNEDQFDgiT1IEOAeoFrEiRJUpAhQZJ0\nT6lU4sUXX+Spp57i0Ucf5ZFHHuHRRx/lqaee4sUXX7x3CETDwcMNkiQAms0m165do1arHbhl9e7u\nLm+++Sa7u7tcu3aND3zgAyQSiS5WqrgYEiRJNJtNpqam2NjYOLJNo9Gg0Whw6dIlKpWKQWEIeLhB\nkkShUDg2IOxXr9cpFAoRV6ReYEiQpCG3ublJrVZrq0+tVmNrayuagtQzDAmSNOQWFxcPrEE4jUaj\nwcLCQkQVqVcYEiRpyK2trcXaT/3DkCBJQ253dzfWfuofhgRJGnIjIyOx9lP/MCRI0pCbmJi4r36T\nk5MdrkS9xpAgSUNufn6eZDLZVp9kMsnc3FxEFalXGBIkacilUikymUxbfTKZDKlUKpqC1DMMCZIk\nyuUy6XT6VG3T6TRLS0sRV6ReYEiQJJFIJKhUKuTz+SMPPSSTSfL5PCsrK4yPj8dcobrBkCBJAlpB\n4aWXXuKZZ57h/PnznD17lpGREc6ePcv58+d55plneOmllwwIQ8QbPEmS7ikWixSLxW6XoR7hngRJ\nkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIU\nFFVIeBXYBr4O3AZ+ATgX0ViSJCkCUYWEXwX+OnAR+H4gDfxiRGNJkqQIRHUXyKv7nn8J+HHgM8BD\nwJ9ENKYkSeqgONYkvBv4G8AyBgRJkvpGlCHhx4E/An4P+A7goxGOJUmSOqydkPAy8NYJj+y+9j8B\nPAt8CPgG8O+AMw9csSRJikU7f7Qf23scZ5tWIDjsSVprE54DVgLvZ4H1559/nrGxsQNvFItFisVi\nG2VKkjSYSqUSpVLpwGt37tzh1q1bADmg2snx4vpkf55WgPhu4Fbg/Sywvr6+TjabDbwtSZJCqtUq\nuVwOIggJUZzdMLn3+E/AHwDvARaALwKrEYwnSZIiEMXCxa8Bfw34j0AN+Hngt2jtRfh/EYwnSZIi\nEMWehN8G/lIE25UkSTHy3g2SJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ\nkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCorjBkyRJp1YqlSiVSgDs7Oywvb3NhQsXGB0dBaBYLFIs\nFrtZ4tAyJEiSump/CKhWq+RyOUqlEtlstsuVycMNkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQ\nIEnquq2tLWZnZ5mengZgenqa2dlZtra2ulvYkPMUSElS1zSbTQqFArVajUajce/1er1OvV7n5s2b\nZDIZyuUyiUSii5UOJ0OCJKkrms0mU1NTbGxsHNmm0WjQaDS4dOkSlUrFoBAzDzdIkrqiUCgcGxD2\nq9frFAqFiCvSYYYESVLsNjc3qdVqbfWp1WquUYiZIUGSFLvFxcUDaxBOo9FosLCwEFFFCjEkSJJi\nt7a2Fms/3R9DgiQpdru7u7H20/0xJEiSYjcyMhJrP90fQ4IkKXYTExP31W9ycrLDleg4hgRJUuzm\n5+dJJpNt9Ukmk8zNzUVUkUIMCZKk2KVSKTKZTFt9MpkMqVQqmoIUZEiQJHVFuVwmnU6fqm06nWZp\naSniinSYIUGS1BWJRIJKpUI+nz/y0EMymSSfz7OyssL4+HjMFcqQIEnqmkQiwfLyMqurq8zMzNzb\ns5BOp5mZmWF1dZXl5WUDQpd4gydJUtelUimuX79OtVoll8tx48YNstlst8saeu5JkCRJQYYESZIU\nZEiQJElBhgRJkhRkSJAkSUGe3SBJ6qpSqUSpVAJgZ2eHixcvcuXKFUZHRwEoFosUi8Vulji0og4J\n7wR+HXg/8CzwWxGPJ52oVCr5C0excK6djiGgd0V9uOEngC9HPIbUlrufWKSoOdfU76IMCX8FeBH4\n+xGOIUmSIhJVSEgA14C/CXw9ojF6QtyfFDo53oNsq92+7bQ/TduT2gziJzjnWufbO9fCnGudb9+v\ncy2KkHAG+BTwc0A1gu33FP8zdb59v/5nippzrfPtnWthzrXOt+/XudbOwsWXgfkT2kwAl4BHgX9y\n6L0zJw3w2muvtVFOb7hz5w7VanxZqJPjPci22u3bTvvTtD2pzXHvx/1v1inOtc63d66FOdc63z7K\nuRbl384T/3Dv89je4zjbQBn4XuDtfa8/BPwJ8GlgJtDvHLAGPNlGPZIkqeXLtD6ov9HJjbYTEk7r\nPPAt+75/Evhl4PtpnQ55+4h+5/YekiSpPW/Q4YAQlxTwFq1rJUiSpD4R12WZ3z65iSRJkiRJkiRJ\nkiRJUuy+BfgvwBeA3wZ+pLvlaICdBz4H/HfgN4Ef6Go1GnSfAX4f+LfdLkQD63uAGvA68Le7XEtk\n3gGM7j3/M8AG8O3dK0cDLMk3z8T5duBLtOacFIXvpvVL3JCgKDwM/A6tyws8SisovLudDcR1dsOD\negvY2Xv+LmB33/dSJzX45i3N/zetT3lt/aeS2vBrwB91uwgNrElae0XfoDXP/gPwoXY20C8hAeDb\naO3+/V/ATwP/t7vlaAh8F60Ljnm7c0n96AkO/v76Xdq8snE/hYT/A3wn8B3ADwN/vrvlaMA9Bvxr\n4KVuFyJJ9+mBr1EUVUh4AfgsrQTzFvCRQJsfAjZp3Ur6N4Dn9r33d2gtUqwCI4f6fYXWwrJnO1qx\n+lUUc+2dwC8C/xj4z5FUrX4U1e81LzanozzonLvNwT0H5+mRPaN/GVgAvo/WD/bhQ+9/FPgGMAu8\nF/gpWocPzh+xvXHgW/eefyutY8bv7WzJ6lOdnmtngBLwj6IoVn2t03PtrjwuXFTYg865h2ktVnyC\n1lmCrwN/NvKq2xT6wX4d+NlDr/0PWp/cQrK0Evh/3XuE7iQpdWKuPUfrjqVVWnPuC8AzHaxRg6ET\ncw1aN7/7CvAmrTNpcp0qUAPnfufc99I6w+GLwA9GVt0DOPyDPULr7ITDu02u0jqMIN0v55ri4lxT\n3Loy57qxcPFx4CGgeej1r9A6R13qFOea4uJcU9ximXP9dHaDJEmKUTdCwu/ROuabOPR6gtYFH6RO\nca4pLs41xS2WOdeNkPDHwDp/+qpPHwRW4i9HA8y5prg41xS3vp5zZ2ldx+BZWostLu89v3taxjSt\n0zZmgKdpnbbxh5x8qpB0mHNNcXGuKW4DO+fytH6gt2jtDrn7/Pq+Np+kdQGIHWCNgxeAkE4rj3NN\n8cjjXFO88jjnJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS+sD/BwX+\nn1ehj9IuAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-4,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"black\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl8VPeZ5/tPaUcSQmALgxEgIiyCMJjFkVkcO91isTsT\n4jhxYtGZdHGdsboT98TdmYHM7UmaTPd9zb3qxOlJJzfGEw+y23ElNt2TkKRtiJJggwET4zgmiFgg\nI0AyWGJHEqCSVPPH0SlVlWo7VadWfd+vV71sVMs5tZ7n/H7P73lARERERERERERERERERERERERE\nREREREREREREREREREREREREREREREREREQkZh3AcJDLd1K4TyIiIpLGbgKm+lzqMYKHe1K5UyIi\nIpI5/hFoS/VOiIiISGYoAM4BX0n1joiIiIh98hL42A8Ak4DmMLeZPnIRERERa86MXJLOkcDH3glc\nBz4e4vrpt95663vvvfdeAndBREQka3UBHyIFAUSiRh5mYyRLfiLMbaa/9957PPfcc8yfPz9BuyGB\nHn/8cf7xH/8x1bsxrug1Tz695smn1zy5jh49ymc/+9kZGKP3WRM8bATeB34e6Ybz589n6dKlCdoN\nCVReXq7XO8n0miefXvPk02s+vuQk6DE3As9gLNMUERGRLJKI4GE1UAn8rwQ8toiIiKRYIqYtdgG5\nCXhcERERSQOJGHmQNNbQ0JDqXRh39Jonn17z5NNrPr4kcqlmJEuBQ4cOHVKSjYiIiAVvvvkmy5Yt\nA1gGvJns7WvkQURERCxR8CAiIiKWKHgQERERSxQ8iIiIiCUKHkRERMQSBQ8iIiJiiYIHERERsUTB\ng4iIiFii4EFEREQsUfAgIiIilih4EBEREUsUPIiIiIglCh5ERETEEgUPIiIiYomCBxEREbEkL9U7\nICKSTVyHXbh+76LrShenrpzimvsahXmF3Bi8wYT8Ccwqm8WMshk03N5Aw8KGVO+uSEwUPIiI2Khh\nYQOrp61m05ZNnNt/jnNnznGDGwzmDXLzLTez6K5FNG1poqKiItW7KhIzBQ8iIjbq7u5m5f0raf9g\nO1wEPgqDlYPggJPDJ2nuambPfXvY//J+BRCSsZTzICJio81f30z7knboAOqBmYBj5Moc49/tS9rZ\ntGVTqnZRJG4KHkREbHTwrYNQCfRg/DeYGSO3E8lQCh5ERGw0iDFF4b0EkzNyO5EMpeBBRMRGeeSB\nh9FLMMMjtxPJUAoeRERsVLe4DjqBCoz/BtM1cjuRDKXgQUTERk1bmqj+bTVUAb8ETgPDI1cOG/+u\n/m01TVuaUrWLInFT8CAiYqOKigr2v7wfZ7mTWZNnwc8h76k8+D7M/vlsnIVOLdOUjKdJNxERG3kr\nTC7qor+qnxJ3ibfCZF9+H2+Xvc0jLY+owqRkNAUPIiI2aliooECyn6YtRERExBIFDyIiImKJggcR\nkQRyHXaxbus6Zt4/k9IFpRTUFlC6oJSZ989k3dZ1uA67Ur2LIpYp50FExCZmsiTA9cHrnLx8kumO\n6fzm27+h/8P9cBfgAPewm76uPgqfKmT1g6tTu9MiMdDIg4iITRoWNvD06qe5ae9NHP/Ocdr+qY1D\nTYeMwEENsiSLaORBRMQm3nbcS9rhfsABvc/1hm+Q1aIGWZJ5FDyIiNjE2457ps8fc1CDLMk6mrYQ\nEbGJtx23LzXIkiyk4EFExCbedty+1CBLspCCBxERm3jbcftahdEg6xRqkCVZQ8GDiIhNvO24fZUA\nDwGHoPSZUnge5rw8Rw2yJKMpeBARsYm3HXdgG+4LUHytmGX/eRk1f1nD3Mfmcv7u8zzS8oiKRElG\nSkSmzgzg/wPuAyYAbcAjwJsJ2JaISNpoOdtC9aPV3PjxDS7uv8iAZ4ACRwGTZ02m9q9rca50qmmW\nZAW7g4fJwGsYM3z3Ad1ANXDJ5u2IiKQdb0fNxlTviUhi2R08bAZOYow0mE7ZvA0RERFJIbtzHtYD\nh4AXgfcxpio+b/M2REREJIXsDh4+APwF8A6wFvge8G3gczZvR0RERFLE7mmLHOAg8F9H/v074Hbg\nz4Fng93h8ccfp7y83O9vDQ0NNDQoqUhERMTlcuFy+a/KuXQptamEoSqux6oD2AU86vO3vwD+hrFF\nW5cChw4dOsTSpUtt3g0RkfQSrF337EmzKcorAqDh9gatxJCovfnmmyxbtgxgGSlYzWj3yMNrwAcD\n/laDEVSIiIxbDQsbWD1tNZu2bOKVN17hxKUTuMvd3HvnvTRtaVKxKMkodgcP3wL2Af8FI2myDvgP\nIxcRkXErWLvuE8MnONF1gj337VG1SckodidMvgF8AmgADmNMV3wJUAk1ERnX/Np1mxPGOcBMaF/S\nzqYtm1K4dyLWJKLC5M9HLiIiMuLgWwdhTYgrZ8DBloNJ3R+ReKi3hYhIEgRt123KGbleJEMoeBAR\nSYKg7bpNwyPXi2QIBQ8iIkkQtF23qWvkepEMoeBBRCQJQrbrPg0TXp3Ae4veY71rvVp0S0ZQ8CAi\nkgQVFRXsf3k/zkIns346C56EvKfyYCdMLZvKrW/fytOrn1ahKMkImmQTEUkCs8LkjYU36PlFD3wU\nBiuNJMqTwydp7mpWvQfJGBp5EBFJgoaFDexo2MGth2/l2j3XVO9BMppGHkTioH4FYpXqPUg2UPAg\nEgf1KxCrVO9BsoGCB5E4qF+BWOWt9xAsgFC9B8kQynkQiYP6FYhVqvcg2UDBg0gcDr51ECpDXDlj\n5HoRH+HqPVT/tpqmLU0p3DuR6Ch4EImD5q8FjMTZdVvXMfP+mZQuKKWgtoDSBaXMvH8m67au8yv8\n1HK2hepHq6nsqqRkewn5P8qnZHsJlV2VVD9aTcvZlhQ+E5HoaHJNJA6avxaA+lvq+epTX6VzSSfc\nBTjAPeymr6uPwqcKWf3gau9tGxYaK3BcK10072um9cetXDx1kfdPvs/Fb1+k9cetND/QjHOlUyt1\nJG1p5EEkDpq/Fogt96X+lnran2qnc0YnfQ/14f6Mm75P9dE5o5P2p9pZPW31mPuIpAsFDyJx0Py1\nQGy5L0q2lUym4EEkDub89ZSOKeQ8lwNPYlx2wokrJ/hgwwfHzHlL9nAddrHetZ6TV05azn1Rsq1k\nMk3IiljgOuw/Tz3gGaDAUUDZLWUU5hRy7aPXjAOCA4aHh7nQdcEYgn5QQ9DZyCwSdtvf3GY590XJ\ntpLJNPIgYkGoeeozF85w7V71Kxhvuru7WXHfCi6XXbac++JNtg1GybaS5hQ8iETJddjF4g2Lg89T\n96Mh6HHIm7ewFvglY3NfToXOfYmUbHul7IqmuyRtKbQViVL9LfWcO3IO7g5ypQMNQY9D3iZXDuAh\n4DXg1ZF/D8Mk9yT2/yZ4ifKmLU3suW8P7dfa4QRwbuR+A1A6WMquXbuYP39+8p6MiAUaeRCJ0uav\nb8Zd7A4eJHjQEPQ45Je3UIIxAvGnwAbgszA4cZBHWh4JOoJQUVHBjn/ewcQ9E6F25D4bgM9B77pe\nPvbZj9HT05OkZyJijYIHkSgdfOsg5BI8SKhA9R7GoUh5C7PLZrOjYUfQYk+uwy7WfXkdV9deVa6M\nZBwFDyJRGmQwdJCwCtgJnEL1HnxYKducieIpEtawsIGyK2XKlZGMpOBBJEp55MFKgifGnYe8G3k8\nzMPMeXkOPA9zXp6Ds9A5rttyZ3sVxXiLhGm5pmQqTcSKRKlucR2tF1vHJsZ5gGLIrc6lra6NuR+Z\nS/7lfGZPms35vPM80vIIDbc3jMs+BX5VFE3msDzGsPy2725L1e7FzKz38caLb3Dp0iX4OUbQUAA5\nRTmUzy73NrlqqAj9vqs3imQqfTJFouTNjl/SDqsxDoLDQJdxlrl/x/gdYQjFuxohmBlwsCUzh+XN\nRlgXllwwVt+MrK6gC+b8dg77XdF9FuoW19Ha2eofXJmUKyNpTNMWIlGqqKhg/8v7cRY6Q05NZPsc\nv1XZOixvV18K9UaRTKWRB5EouQ67cP3eBXdDye0llFws4Wr+VX7Gz3jxf77IByZ/gOmO6ez91l76\nP9wfsTXzeJCtw/J2jaiYvVFu/PgGF/ePljufPGtyVNMeIqmSmd9ckRRoWOift9DT08OmLZt45Y1X\nOHfpHL3lvbzrftcIHLJsjj9W2Tosb9eIivcz1Wjfvokkg4IHkRh0d3ez8v6VxtD1/YADTgyfgGcJ\nv/QuQ+f4Y+XNE6EdZjAmT6Tp5cwcls/WERWRaCnnQSQGIee8C8jKOf5YRZMnkoniqe8gkg0UHovE\nIOSct1mmWmekgH+eyNzl2bOENVtHVESiNb5+yURsEnLO26xAmWVz/LEKzBPJFkp0lPFOwYNIDELO\nea8CXgT+GJgM7Ae6gWFw9DrYuXAn67auw7nSmZUH1fFCiY4y3il4EIlByFUEJcBKmPCrCVzvvY7n\n4x5vy2bPsIczXWcofqo465dseqcrgOuD1zl5+SSzJ82mKK8IIGOnKxLFrFjZ+uNWLp7yH8mofaBW\nwaaknVCpXcmwFDh06NAhli5dmsLdELGup6eHFfetMJImg8x5f2jxh/ih44fBpy9Og7PQmVZLNhNx\nsPddynri0gnmlM/h3jvvpWlLU8YmSiaK3+qdSvwqVlb/tjqjk0slMd58802WLVsGsAx4M9nb18iD\nSAwizXnveWoPfCzEndNwyWbDwgZWT1vtd7B3l7tjPtiHWsp6ousEe+7bo4NhgGztASLZS8GDSAwi\nzXnPe3ZeRi3ZtPtgr4OhNdnaA0Syl+o8iCSAN6EymDRasmn24pizao4tvRpMB986GL5Y1ls6GPrK\n1h4gkr3sDh62YMzU+V7es3kbImkvU4oI1d9ST/tT7fQP9vsf7PuAXcAPgD3wzL88Y6m515iDoe/j\n/RCOth8dt83CgsmUYFPElIhP5O8xGhabhhKwDZG0lilFhLzTC3sYPdj3AtuBevxWinR2dUbd3Mtv\nKasNj5cuErWKJFt7gEj2SsS0xRDGynbzcj4B2xBJa2ZCZWVXJSXbS8j/UT4l20uo7Kr0FhFKB97p\nBbMyZh9GnYp64prC8Bt52Rf/46WLhoUNPL36aW7aexPHv3Octn9q4/h3jnPT3pt4evXTMS+nVGtu\nyTSJGHm4DegCbgCvA/83cCIB2xFJW+laRMisJ/DGi29w+fRlhq4OGQf0CuAYxoHeQdzNvfxGXrrJ\nmmTARK0iUcVKyTR2Bw8HgH8PtAHTgP+K8XO0ALhg87ZExKL6W+r56lNf5cKSC7AEIwfBg1EZsxlY\nj/8URqAok/d8D4ZdfV14HCEm9ONIBkxFYaVErSJJ12BTJBS7g4eXff7/CEZx3nbgz4Bv2bwtkbSW\njlUDvQe/yRh5CFMZ7cVRhv8URhzNvXwPhgtWLaDV02o8Xh/wGtCDtxDSu33vWirZbb6uh390mLOH\nzxpVPO8yHs897Kavqy9huRRaUiliSHQKbz9wGJgb6gaPP/445eXlfn9raGigoUFDdJLZzLP8ziWd\nSTu4ReI9+P0CIw9hCqM5DrmMTmHY2NzLmwxoBiw+iZMMw2DXIO1PtUf9epiv65mhM/BxklpLQksq\nJRVcLhcul/+qpEuXLqVobwyJLk9diDHy8CTw9wHXqTy1ZLWNX9xI843mtCpRPW/VPNrWthnTFRvw\nHw04DvwFRshvBhS+K0U6ofot66WSvaW8h9rhTuJ+Pbyv66s+zyHQMNS21HLktSNR72c0FqxaQOua\n1qRuUySYVJentnu1xTeAe4A5GOda24FS4BmbtyOS9tKxUJLfEkrzAFgCrMUYH+wc+fdDwFHABTwP\nPAvFrxbHtFLEzH/IO59nvB6+NR+eH/lvK7z4yxejqvngfV19n0OgBI0CZEr9DpFEs3vaYgbGz83N\nGLOa+4HlGAuQRMaVdBvidh12cXHCRePgFyyvwbedeCVGQGFDcyYz/2Hes/No62sLOnVBFwz8bIDV\n0yJPXXhfVxtyM6zKlPodIolm98hDA8ZXqhDj5+ch4A82b0MkI6Rb1cD6W+op7C6EncAExp5BmyMO\nhyDv6Tzba1PkkWdMj4So+eD+qDuqmg/e19XMzQgmQaMAmVK/QyTRVPM0C6Vjlv94lG5VAzd/fTMd\ndR1GkuRu4CcYSzMrGT2DvgDVudXs/639XS/rFtfR+m+txohGMJXRrVbwvq7mSEmI3IxEjAJoSaWI\nIdEJk+EoYTJB/ArZmHPDNgw/izXeRMElwYe4k/0+jEn2C1g26bjsYMaSGQkLMHt6epixZAbu/+AO\neZuaXTW889o7ER/H+7qWY0yOdgPDkNObw83zbia3IJcrZ65wffg6ngGPMVKRC448B0U5RZYDaQXk\nkm5SnTCpkYcsFKmQzR0P30FuQa5+BBMs3aoGjsnBMBMlR9y26zbeeSn8gTseLWdbKCgrwO1xx5Wn\nYL6uF1+8yOXTlxl2DOPIcZAzLYfSu0q59JNLDNw7AHdjBEhmjsVIIN033Gd5uWw6LrsVSSWNPGSh\nsMvJrkL+c/m4/53bWHe/D+9Zm6PXwbSF01j40EIFEVkoHZYZJnr56pjH3wXMx77loWm07NakUZHx\nKdUjD4lojCUpFjbL/1VGA4ftGD+sfwp8Djx/7uFM1RmjYE8UWe+SWdJhmWG0DaBch12s27qOmffP\npHRBKQW1BZQuKI3YxnvM8tgebFkum47Lbk1mW/XOGZ30/Ukf7slu+gb66Gzr5Bdf+wVf/qsvq/W5\n2E7BQxYKmeXfC3Rg/AhmUadDiU46dG6MdrWC3wHxoT7cn3HT96k+Omd0hg1uxwTONtSCcB120XGp\nI62W3foaU3JcJwSSBMp5yEIhs/z3ARMxfgR7UI3+caaiooL9L+9n05ZNvPLyK5y4dII55XO49857\naXq5KSnJm9GuVoi1AZVfESywVAsi1PB/2S1lXOu5lvSaEtEaU3I8ieW6U0HTNOlBIw9ZKOQZ5nsY\n/QsCKwwGUo3+rOQ67OKRlkc4f/d55j42l5q/rGHuY3M5f/d5Hml5JK2Gta1ME/hOcbSdaPOfmrFQ\nCyLUaMeZC2fw3OoJ/Tidqa0s6R1tsWmKJt3FOiol9tLIQxYKleV/ffg6QxVDoSsMmoah73of67au\nU3Rvg3Q5U/Ke9WcAK9U5/VZC3I4xdG9WyQysmhmmImTI0Y5+jAZc5qqNgJoS+T/Pp+lw6ipLBi05\nHiiLTggS1RZdrFHwkIVCDQ0vWLWA1pWtxo/gJMJ2Trx70d288dQbWppmAy3zs857QOzHv4W3B7gZ\nui504TrsomFhw9iDyUMj99kDDEHu9VwKXy3Ek+fh2vC1kFM1IdttOzA69JiP+6rPvlRA/uT8pC+7\n9eWdpkxBue5UUFv09KBpi3GkbnEdXMT4ESzAqDB4iqDJc44cx+gPshIq4+J3cMuw1zLWVQ/xqltc\nB8cwRg3mY3TP3IBRAL8WcvpzvMPT3ikOs+HWj4FzwCAwBENDQ/Tn9nNj+AZ5U/O4fN9l3l709pip\nmpCjHeZB2ayL8acj+/KnwGqomlKV0hEd7zRlMSlfTZMM6dYzZrzKjlBUIurp6eH6tevk/1s+7o+6\n4X7gGrAX+BVwHYrLi5lSNYXqR6vZ89Qe+FiIB1N0b0kmnyklatQk0lTOg59+kO2f3U7vut6gw9NX\n1171Dk8PMuhfDGoNo/9ejbc41PDwMMNdw0z+2WRefvnlMQmiY5ItTWbeRJqUGQ9kTlP2v9DP2Z+c\nxbPeE3GKJpOFfJ8gq0ZY0p1GHrJcT08PKz6xgltqb+GHOT/E/e/dRquy54F/AY5D+axy1m5Zy/df\n+D6nXzrNzsadlBSVKLq3SaaeKbkOu1i8YXFCRk0iJb0BeCZ6okoADNpwK4alyCHrYKzCaCYWYpTO\nziWusYz0NCxsYGfjTr75j99kzd+vofK97G7alQ71SkQjD1ntyd1P8uXGL9M/od9I+DLPnHwbE52G\nBwofYO3KtTTva2bTpk1cPHWRvnN9oy2TAym6tyRTz5Tqb6nn3JFzRpnnYOIYNYmU9HbghQPMmDyD\nNkdb8AfwCbqCNtyKYSmyX7vtgJ4ZXIOcX+ZAvn9/DLvLjMcz0jNemnapLXp60MhDFnv9xdfp/3C/\nkXQW4Qwu8EyQuYy76D5R8/uZeqa0+eubcRf79KEwcwp+gDFy9c/Q+k4rubflkjc/z9JrFXYpZjk8\n97+f41j7sahamjdtaSLfnR93cShz+H/6u9NxPOPwK7bEF2F49TBzyuZw5tUz9B7p9Y7S2ZnvkMn5\nMcmitujpIT1PeSQmgfPIfef64C+I6od0zJlgqHbHWRzdj1nytw/c3W762vro+loXhxcepvmhZstL\nK1N9phTrUtGDbx0crQsSKqfgARiuHB5tOHW8jzNbzrC3fC9/5vizkNsJOZXTC/wLDP7JILQSVa5B\n0IZbMaw8MM/cN769keYPNKdkKWAm58cky3gZYUl3GnnIImNGD8oZXVIW4QxuzJlgCcaqjKMYZ5lb\nyfroPlFlflN9phRXqWczWTAwhyBYTkG/8fehjw7R/5n+sNsJWULd93HvBn5JxHLaDQsbeOiPHoq5\nOFSgVPaxSEZ+TKpW0KTbPkh8NPKQRcaMHphBQxTZ4vve2jf2R8unZXPNrhreeS1x7ZrTQaLK/Kb6\nTCmuUs8rMQIp8D8jDpZT4Hvgj7CdkCXUfR/XDGB9ais4LjuYsWTGmFyDMaM7FopDBUplgmsy8mPS\noe5IOuyDxEfBQxYZM+RpBg2hpiA6ofot44f0Iw98ZPRHqw//wjzD8G7fu6zbui6rK0v6lfnNoqHj\nWIfC6xbX0Xqx1TiAu4icU2DhdQs5lTMU8Lg+ASzAbbtu452XxgaxgVVVrw9fx5PjgV8DuUaSYx55\nUA6dhZ3MvGcmw45hChwFFE4vxLHEgee3Hm6cuTGaLByiQFUiF8eEDKrAtvyYoMHkNeAotF9o55Zl\nt1A8sTihFVBVJTLzKXjIImPOmHyDhk9iZI+/AgyDo9fBtIXTvGdw3h8tc8jenNseCR4GuwaNoecs\nPiPI1jK/sZ5Jew/wS9qhiMgNpyy8bqFKqN8YuMGgJ8T+hjnzjmZ0p7u7m5X3rzSez0jtB/ewm77j\nfeQ9k8fg+kFjquQXGAWqzJEUn+8BXdD+83a2vrKVxnvtH0qyIz8mMMfl+vB1PAMePMMePHjgKvCY\nzx168fvOexweI38lgaMAyu3IfMp5yBI9PT28f+Z9/3lk37yFnwAnoKSghMqaStb8tzV881vf9GaL\ne6vU+Q7Zj7Nsb++qiChyRDJJyPwCCPt8fHM18vryRnMI+oABxuYUWHjdzNoEp186Te+RXgZaB+g9\n0stn1382YStTQq5k6MAIHMy/ryLs92Doo0MceOFAzPsRjh35MfW31PPWd96ic0onfZP6GOofYvjS\nMJ6VI2/OJJ/n1MfoCUYSv/OZWvtERmXWr6AE5a3nUNY/NrfBHPY9Dc5CZ8ihQPNH6+Tfn2SwMsQX\nN8vPCLxnfcXtaV1R0KpYh8J9z+Z7enpYcd8K2q+1G2fkqzCSGX2nwm4m7tct3Jn31Nen0vFnHcy8\nf2ZMDcZCnu0GTreUAGWET5pM0PfAjvyYzV/fTPeibuN9WgkcBz6BcRJRj5E/4ruCxkHSn2um1j6R\nUXqHsoC3nsMUIuY2hGL+aM17dl5UhXmyUbaW+bVjKNx8bc584wz99f1GgDAD/0ZR18BxzIHn4564\ntxM4nTF51mSqP1dN6zOtdN/VHVOSXciz3WDTLblB/mZK0vcgriW2HozfgaMYwVAlxvu0htFcKDOY\n2EPSn6tfQBuYYzUAHXkdWZ9jlekUPGQB7xmVg7Gd/4Yhry+P6r+NrhLeeD4jMAMo10qfH+0DAQcw\nmysKJkPYA3KUz8d8bRY8u4DWylbjjwHJjAxD8Y+Kmdw1Oe7tBDvz3vjFjbxy1ysxJ9mF/GwHy99I\ncYdK12EXW1/eyt4n9jL00aExwdKVf7zCwNUBb0VY39f6wqUL4GY0YChgNEAyp2VeHNnQmtQ8V29A\na45kBeSW9Hf1Z32OVabL3iPBOOJ3RhX4gw58YNcH2Nm4M6rHSka2d7pL9dJKu9n5fMacvQecNfZf\n7mcyk1n1H1fZdtZonoH/asev4JEQN4pieD3kZzvYUuYUN8Oqv6WeR7/9qBE4BAmWriy9wqFvH+Lq\n2qtjAov8t/KNaRczWPAEXMxcKHMFTQqea9CRrIDnqFUX6U0Jk1kg1oS4YLyJkxEK88j45PdZ62VM\ny2xPoydi8Slf0RQLMotcDRbEl2Tn99m+ilFq+xmgDfhX/BtfrSBpzbCC2fz1zfTm9YbORThhdBYN\nluTovsVtJLSawYKZi+JbOKsEmDByvZm/EvidP5WY59rT08OuJ3fR+Wwng32Dlgpy9fT0sPGLG1mw\nagHzVs1jwaoFbPziRnp6emzdR4lMwUMWsLN3QmC2d+4Pc8l5LoecX+Vw4soJpt8zXZXgxjG/z1oM\nnSsDRVP90rtKwiyVHUwUQfKY3hVVI4/3cYwRDbPb7LPGpWBaAYVHCyl8oTDpVUEPvnVwdLohmHOE\nPuiuBscVx2jAMAcjOKjCP0gwgwnfVVkuvK9B8avFtj/XJ3c/SdXdVTTfaKZ1TSsDEweiDggD79u2\nto3W1a0032im6u4qtr6y1bb9lMg0bZEF7OydEDjEHWxtfKLXgEv68vusdRP3Wv1oigV5c3riHF4f\n07vCTBgM0W12Q+GGlA2ZDzIYPhchXE2NiVA0pYiBnw8w9EdDo6suTozc5+cYxbg8wDsYwVMlxvMf\n+d0o3lPME089YXstC29yd2AV3CjyLcbcF7yflf4P93PghQMJqb0hwSl4yAJ2JMSFokpw4sv3s9bV\n14XHEWIoIMosfb/lk0Eqmz7X9xwFkwv8E/2CrCYq3lvM8qeWR/UcvNs0Vx8Ek+JlyXnkhV/6ak5L\nhDjoTimbwoL/tIA3XnyDSzmXGP7VsPFaFUBOaQ7ls8u586E7efCDD3LghQMcbDnIIIPkkUfd4jqa\n9jZRUVFh+/MKWQU3ioBQhaXSi4KHLJDIBD99YcWX72dtwaoFtHpa48rS9yZgBlQ59K1s6vi5wz/R\nL2A10SQH3w35AAAgAElEQVT3JI795ljUBzvvNtO4kmjd4jpaL7WOraUxEizl9eYx2DkY8qC7Zvka\ntjVui+o3IZln62Gr4EYYNVVhqfSi4EHCGi9f2FjX1I9ndqzM8SZghmmq5b7FPXp2Gria6DR8ovAT\nls6SvdtM8XLMcJq2NPFvf/xvdK/sNlqTm8HSAORez6Xui3Uc/5fjdNOdkjbvsRqzXNY3IHwF6IOS\nySVBR03H8zLydKRXW8IaL19Ydfmzzo5cG28AEq6p1mpwPBO8+FTxnuinK8ZsM8XLMcNpOdvC4scW\nG8Hs5YsM5I0Esx8wgtmamTWUTi81rrdhqjJZwXPQgDPKKrhaRp5esuOXXxJmvHxhldthnR25Nt4A\nZKg9bALgnDlzuKfwHlvm5pd/ejkvPPoC/Xf2B58WiDEoCcblcuFyGSuSrl+/zsmTJ5k9ezZFRUUA\nNDQ00NAw9jXynR4KPLD/+n/8mtccr9l6YE9W8BxPwGlnYrjET8GDhDVevrDK7bDOjlwbv54qYbpp\nFuUX2Ra8Nd7byIN7H2TTlk3sq9jH2ZazXB+4TlFxEdNumsbKO1fGlTD4l3/5l7z4olHC0e12c+XK\nFXJychgcHGR4eJizZ8/y4IMP0tQU3TaScWBPVvAcT8CZyMRwsS5UrJ8MS4FDhw4dYunSpSncDQln\nvOQCzFs1j7a1IXp6ADW7anjntXeSuEfjy8YvbqT5RnPwEa4Iw9np6OjRo6xfv54TJ04wNDQU9DbV\n1dXs378/YgAR9LUxV6a8B44hB8UTi+P6Ti5YtYDWNaGTX2tbajny2hFLjymJ9eabb7Js2TKAZcCb\nyd6+ikRJWA0LG3CudFL7QC2TZ02mwFHAgGeAi6cu0vrjVpr3NWdFoSg7q3Smi2iqN9ol3sp/yz+9\nnOI9xUErmxbvKWb5p+OfQkiWI0eOsGjRIo4fPx4ycABob29n06bIhbQOvnXQvyCUb2XPPwPPI54x\nhbWsGi+J0WIfBQ8SUTRVADOdnVU600Wy3jc7Kv813ttIx94OnIVOaltqqdlVQ21LLc5CJx17OzKq\n+M8DDzzA4GB0B9vt27d7cyJCGXNgt6GyZ6BsDJ4lsRQ8SER+86E2/Vilm2zs6ZGs982v8l/AdszK\nf9GoqKhg23e3ceS1I7zz2jscee0I2767LSHFihLp1KlTUd926tSpQRMmffkd2PswKkVa6AcRjaDB\ncx9G/49n4ejpoykrS5/METSJnoKHDJasL9WYYVNfMf5YpZvAnh6J6GWQrPfL3M5zO55Lyvs2Hj4f\nVng8oU7hxzpx4gRbt4YfmfEe2M3pignYPsXgN210FfgZsA1bp0YiCTX1dUfuHVk/8pmJFDxksGQN\nS4+H+dCGhQ3sbNzJ6ZdO03ukl4HWAXqP9HL6pdPsbNxpS1Jost4vu7pQRms8fD6scDiiz0P3eDwc\nOBB+ZMY7KvYLjOmKOBuEBWNOGy0/v9xoGubG6HmRpNHGcFNfi+oXZf3IZyZS8JDBkjUsrflQeyTq\n/Qo8Y6upq7GlC2W09PkY5XK5yM3NtXSfffv2hb3eHBXLO59njPD4ttYOFEd+TkVFBR+89YNGMa5+\nkjqa5Df11Y8xXeIC9mAknWpkK+0kMnj4Csas8bcSuI1xLVnDxdmYTJgKiXi/gp2xXc6/nNCDTCB9\nPkbV19dz8803W7rP2bNnw15vjop9YNYHRhuE+bbWZuS/p+JfmeL9jPr2/TBzH36A0a7bBW0dbYmZ\nGvVdSbJh5DIZjWyloUSdEnwIeBR4m9DnJBKnZA0Xj5dCUYmWiPcrZJviCF0oq9+y733T58Pgcrn4\nwhe+wKVLlyzd7/r161HdzjvCY1ODsGC8n1Gz70cfIRuWtT/VblvlSe92g/U4SeMeJONZIkYeSoHn\ngM8DFxPw+DIiWcPFyUgmTJVkZnIn4v0KOpph/tiaB5mjGEPAzxuXvJfybH3fsvnzYUV9fT29vb2W\n72eWqo7Eb4TH7Afxpxhn5/fCJz5qrUFYMN7PqDlqlYBloWG324PxefYd7biKRrbSUCJCtu9i5Or+\nCvhaAh5fRiSr70QiW36nWjIbYiXi/Qo6muHb8ClIF8rPFn7WaNdsk2z+fFixefPmqOs7+BoaGmL9\n+vUh+1yYvD05PtyfsF4c3s+oOWoFSSnb7t2ug7GjHf0j+/LHGIHFOB3ZSjd2jzw8DCwG/svIvzVl\nkUDZVJUvVZJZwyIRtSTGjGb0YWTK/wQ4Zd92JLKDB2M7kE6fPp2nn346Yr2HZBTS8n5GLwCfBAZJ\n2tRo9W+rYQBjOsZ3tMMcQfsD8Cw4nnaMy5GtdGPnyMNM4H8AqzE+AuCfdhPU448/Tnl5ud/fIkXg\nYvBt8GNHt8HxKJkNsexq7OPbb+TsibOjowy9jJ6x3Ysx5PwqRuBwFcrnl6uBUALFMuoAcPz4caqq\nqvjQhz7EmTNnwnbdNAtpJUrgZ7RvoC8p+Qbmds984wz9Z/r9R8tgdARtGOa3zB93fTZ8u7OarObW\n2M3OxlgPAP8K+BZzNxeLDQGF+J8jqTGWpFymNcRyHXax9eWt7H1iL0MfHTIy0bdjDOkeBWrJmuZS\nmWbBggW0trbGfP/S0lJ6e3uZM2cO9957b9RdNxMp2Q3Lenp6mLFkBu7/4A55m3T7TqZKNjXGagFu\nB+4YuSwG3sBInlyMpjAkDWVSjYKenh5+8sRPePX/fdUIHGZipCebQ7rtaD18CtXVxZdjZCZbnjhx\ngubmZlasWBF1Y7FEGVN5chfGL/qz4Pipg3fOvmPrPracbaGgrCBjvpPjmZ3BQy/Q6nM5gpHqcmHk\n3yJpJ1NqFJj1HH702x/hKfP4BwnmkG45Wg+fQk1NTZZrPIQTbdfNRBpTeXI+xgqPz4Hnzz3sn7w/\n6uZn0WhY2MBDf/RQRnwnx7tEV5g0F42JpCU7khhdLhfr169n/fr1rF27lnnz5rF27Vrv3yJ1TYyG\nt55DP1BA8CAh3LdNZ2wJV1FRQWtrKw8//DClpaW2PGasSZh28qs8GWfzs2hkY5O6bJTo4OGPgL9O\n8DZEYmZHjYKGhgaefvppbrrpJo4fP05bWxvHjx/npptuiiqLPhp+lf+CBQl9GGnKOmNLGZfLxX33\n3cevf/1rioqKKC4utlyqOlCsSZh2S2bzM9UNyQx2JkxapYTJGPX09BgrLN4KWGGxJfUJVuNRd3c3\nK1eupL29fcx11dXV7N+/P+73xZvY+QPgZvwTI81VFisZLeoTpNLj/pfj3w+xpqenhxUrVgT9bESj\ntraWI0dSv7Ig0xKLx4NsSpiUJAjXfc7OucfxIFQLYKsJYJs3bw55cLBr3tqv8t8c/HsbmAFDDWMr\nSj4Lxa8U64wtRSoqKti/fz9Op5M5c+ZYvn+8SZh28X7+Avtc/ADYCV3nuyJWY01mNVdJPE2CZpCe\nnh6++dffDN7LwGfu0Y5iMeH2IRtGPZ7c/SRfbvyy8Vr61Oxv7Wrlhbtf4Imnnoj6dYw0L23HvPWY\nyn8rMdKQXwUuM1qrIrCi5DBUtVSxs3Fn3Psg1vmuzy8pKcHhcODxRJcGVl1dTVNTeszv1y2uo/VY\n62ig6vOdoQtyduVEbCmfzGqukngaecgQ5ojD8YvHU7YcL5tGPfwaSsWZAHbhwoWw17e3t8edNDmm\n8l8HRh8As6qKVlmkhMvlYt26dcycOZPS0lIKCgooLS1l5syZrFu3DoAdO3awY8cODh8+zG233Rbx\nMfPz83E6nbZMd9mlaUsTpa+WhuxzcXXt1YjVWJNZzVUST8FDhvAe7EJl2kPCDxR2HnBTzc4EsLKy\nsrDXz5gxI+6kSb8kspdKyL+YT0lBCZU1lZTcVKJVFilSX19Pe3s7nZ2d9PX14Xa76evro7Ozk/b2\ndlav9j+bzsuL/F643W6eeeYZpk+fzk033cS6detsWbETj5azLXgmeuL6zlj9zmmaI70peMgQ3i9e\nCpfjJTPjOtHsaI9tnnVGSoY7depUxDyKSD+UADsbd3L6pdP0HulloHWA3iO9nH7ptNbFp5DVfJdo\ncxg8Hg9DQ0NcuHAhaBCSbA0LG5gxecbodyYw98EFnV2dYT/nVr9z9bfU0/5UO50zOul7qA/3Z9z0\nfaqPzhmdRjvwCNMkklgKHjKE94tndkwMJsEHCjsOuOkinsqSZtDwhS98gV27djE0NBTytmAst4uU\nNBnPD6XWxaeO1XyXpqYmpk6damkb7e3t3HHHHSkfffB+Z3ox8m7mY7QD3wA0wJXVV8JOX1r9zmma\nI70peMgQ3i/eKvwz7Rn576nEHygyqZRzJPFUlqyvr+ett96y1JjmueeeCzv8HM8PpdbFp06kfJfA\n6ysqKvj973/vt/pi1qxZ5OSE/yk+d+5cykcfvN8ZM2nS4vSl1e9cNo10ZiMFDxnC+8Uz29MGLsd7\nNfHL8TKllHM04jlb37x5M93d3Za2Nzg4yJ49e7hy5UrQ6+P5oWxY2BBySmNn404aFqqDZqJEyncJ\nvN7lcvHII49w/vx55s6dS01NDW63m+Hh4RCPYHC73SkvVe3tc/EeMX1W/fpkBHznivcUs/zTy/1u\nn00jndkoc04Vx7mmLU3suW8P7bQbBYBG2tMmswDQmH0IKELU9HLmDI/H0x77F7/4RUzbvHbtGn/1\nV3/Fv/7rv+J0Ov2SKPVDmZkiHfQDrw9ssQ1GN84zZ85E3FaqS1U33tvIg3sfZO6KuVxxBA+Cw31W\nzftv2rKJgy0BS733jl3q7R3pTHA7cImNXv0MEc/BLpv2wS4NCxuMM3ILJTFcLhfNzc2cPXs25u1e\nu3aNPXv2sGbNGjZ+caO3XkbHiQ79UGagSNMNka6H6EtQp0Op6oqKCipvqaTV0xrTZ7WioiLqFt7e\n2ibB2oFn2EhnNtIvUoaI5WCXjfuQSvX19Xz1q1+NmCAZybVr1/jK17/C0GeGRovt7MSYEtIP5bgT\nzfJNK7dLtGQd1Jd/ejkvPPqCsTw8YKSzeE8xy59aHuERJJHS49MokkSxVskMtyzPqqEbQ/4/vndj\nZLD/McZ8cg5wFWgB3oN/nvzPvLjgRSbPmkztA7U4VzqVy5BkvtUir1+/zsmTJzl58mTY+/T19QV9\nnObmZlpbW7l48SL9/f1RbT9dSlUna/rS6jSHJJcaY8m44leW2uxS6XM2E64s9YIFC2htbbVnR3KB\nrwb8rQ/YCwUdBVTOqOT06dO4/50bJmNkuHcb++rodTBt4TQWPrRQQUSS9fT0sGnTJl555RVOnDhB\naWkpvb29IW/vdDrZts1/mD5cI7VQJk6cSHt7e1ocMF2HXTTva6b1x61cePcC165eg2HIKcyhqKSI\nZXcsY/u3t6fFvmYzNcaSiOxq4CTxVcm0dc45WEvt14Bz4Mn1cL7n/GjgsB1jTf2fAp8Dz597OFN1\nRoVykqy7u5sVK1bQ3NzMiRMnAMIGDlOnTg3am8LqCFZubi7Lli2jpSU9ltyaq3v+ZvPfAOD5Ew+e\nP/cw9H8N0fdQH6+WvJpx5erFOgUPaS5d+0kEBjTz6uZx29LbmHfXvLQOcOJZEhlqmWVM8n3+P6Do\njvvzbi7nXzb2M8ya+nQvlBOp70Oqix5ZZeWgX1payu7du4OefUezasLhcJCbm0tRURG1tbU8+uij\ncZc4t1s2lasX6xQ8pLl0/IKOCWhWttHW08bxpcdpu78tbQKcYOJZEllaWmrfjtzq8/+hAgQHRvOr\nDC2UY7XvQ7qzslSyt7eXtWvXBg2QIo1g1dTUMDw8zODgINeuXePtt99Ou8ABVMRpvFPwkObS8Qs6\nJqCJseJcKsRTJTOaZXdROwH8N+D/B95l7Hts9jBxkJH1H1wuF4sXLw7b96GqqiojRiDMEZR33nnH\n0v3KysqCHvQjrZpIl1UVkag2yfim4CHNpeMX1C+g6cM4EKZZgBOK1SqZLpeLRYsWUVRURFtbW1Tb\nyMvLi+4AMAyOiw4jYTPwPTZ7mKSwEVo86uvrOXfuXNjb9Pf3Z8QIhDmCYnWJbqgRhkirJtJlVUUk\nVgJx5W1lHwUPaS4d+0l4Axpzrn4CcXXbSyarZakvX77MsWPHuHHjRsTHrq2txePx4Ha7cbvdeDwe\nnE5n2Pt43B7y+/PHvsdmD5MJJK0kuJ05Cps3b8btdke8XSaMQMS6RDdUANnU1ER1dXXQ66qrq4Mm\nWaajaAPxdM3bkvgoeEhz6dhPwhvQmNMVucTVbS+ZrDaR2r17N9evX4/qsYOdMUYzT+52u8e+x2YP\nkyHgfwOniKofQDzC5Sjs2rWLz3/+81EHElbyA9JlBCJU8PTss8/G9HihRhBaWlqorq6msrKSkpIS\n8vPzKSkpobKykuLiYurr6zMiydQvEL+KcdLwHPAs5P00j917dzPvrnlsdm5Ou7wtiV96jnmKVzpW\nWfNWmOvBqJBoDrEfZTT3wRTwIxGqhkKyWK2S+fLLL0d1u+LiYpYvH/teRLW8sxhjlKEe//f4PBS7\ni/n6//o6R3YdSXihnEhn2P39/fT391NYWBjxQG91WWt7ezubNm0aUxMhnMBiSwMDAxQUFDB58mRq\na2vH9A+JxKwg2tk5GslFM3oSTLgRhGD9LUxmDYjAfejr64vqdU8mMxA//4PzXDp6CT6O8XvQB4Pb\nB+n4UIcxnfk84ac1W9JnWlOip+AhzaVjlTVvQDPUb5xJrMIYcQDjxyOYDP2RuHbtWsTb5Ofn09HR\nEfS9iCr3IQ9jlOE14FW8hasmuSdx7DfHjMf9uMUdj0G0owXRHOhjSfprbm5mx44d3HnnnVEd+EMd\n7GM90NpVQbS8vJzq6mpaWlosr5IItw+xBFiJZAbiG9/eSHNN8+hJg28CNWRs0q+Ep+AhA1hpJpMM\nZkBz2123cdlzeXSI3cW4/JFwOBwhg7i6urrIVSlvxXgN1/r/+ZZdtyQkOAx1xh7t9AxE7iwa1fMO\n4sKFC1FPYdh9oLWja+XDDz8c19RCpJGuaEfCkungWwdHTxrMBGrfkwjflUOB0jjpV8JTzoPEpKKi\ngk/c/4nRufoSjOS+NEvujNeECRMi3qaoqCjkdU1NTVRVVYW+swO4BBwO+HsCX69QuQ1WVhMUFhYG\n/buZN7Bz504cjtiq35sH/kgiHeytBgN2VBD92c9+FlfwEKnPxdmzZ7nppptizn9IROGusAnUMDqt\nGYyavmUsBQ8Ss+WfXk7xnuLRlQtZ9CNh/sgODAxEvO20adNCXtfS0sLEiRMpKCgIfgMPcA74QMDf\nE/h62TE8f+rUKdavXz/mYGMGJmfOnMHjCRVJRhbNgT/Swf7o0aOWDo521Fe49dZb4yroFM3oz4UL\nF9izZ09UFU97enrYuHEjCxYsYN68eWzZsoX9+/fbWrgrZAI1GCMRbuAnBE36DbbCSTKDggeJWeO9\njXTs7cBZ6KS2pZapvVNx/MSRlJUBiWYeBKPJeQgXPDQ0NPD222+zYcOG0A9gLm+FpLxedgzPOxwO\nnn766TEHSrvyBqIZBYh0sDeXzUZ7cLSjvkK8AUi4USxf165dY/fu3WFv8+STT1JVVeWdompra6Ot\nrY2rV68GvX17ezt33HGH5dEH74owsxqqeRJhjkQsApzAHzCSJ58Fvgflx8qDrnCSzJB548iSVgLz\nMbztrtMkuTNW0R4Ep06dyvbt2yPeLtIBu6CtgKpdVUl5vSIdmHNychgeHg57G7fbze23387vf/97\nv/20IzCB0Adh33yNs2fPWnrMSHkQTU1N7NmzJ67gJ94AZNq0aVH3UHnppZfCXv/6669H3e7bdO7c\nOcujDyETqCfhnzjpm9NzGh4ofIBtjemTyyWZYyngOXTokEfs9fzzz3vWrl3rqays9JSUlHjy8/M9\nJSUlnsrKSs/atWs9zz//fELum01qa2vNNK+QlylTpkT9mtTU1IR9rJqamiQ8K+P9LSkpCbsveXl5\nEZ+7eSkuLvb7nOTm5kZ933CX6dOne6ZMmeLJycnx+7vD4RjzN6uXwsJCz8KFC8e8b+ZnP9bHr66u\n9nR3d8f1/txzzz1Rby83NzfsY0XzGQ52mTRpksfpdFp6Lt3d3Z5JcyZ5+Fs8bMHDf8bDdEb/HXj5\nGp7albVxvVbj3aFDh8z3bGmog2wiadoiC8XTkCjbmhnFwuVy0dHREfY2+fn5/OEPf2Dnzp1RzXGn\nsp+Bb5Lc5z//efr6+sLe/lOf+lTUTcD6+/tjTroMZfbs2RQWFnLhwoUxIyAejyfiqEgkN27c4PDh\nw2zYsAGHw+G9bNiwgV27dll+/OLiYiorK73LM+Oxfft28vPzI98QGBoawuFwUFRUxKJFi8ZMN8Sa\nAHr58mWam5upqqpi69boCrsFTaCeyLhcfTVeKHjIQtEsYUvEfdOd67CLdVvXMfP+mZQuKKWgtoDS\nBaXMvH8m67auw3XYhcvl4u/+7u8iDve63W5Lr0Uq+xn4BoSRntfEiRP5yEc+wp133pmQfYmmudjp\n06cjBm/pwOFw0NraSl9fH6dPn446kAynpaWFm2++2dJ9bty4wdWrV8cE9vEGpP39/Rw4EH31xzEJ\n1AnqyxKYBLpgwQI2blSfjGRT8JCF4lnCZvfyt3RSf0s97U+10zmjk76H+nB/xk3fp/ronNFJ+1Pt\nXNl3hb/7u7/j6NGjUT2eldeiqamJqVOnBr0uNzeXjo6OhJUetpLEODw8TFlZGY8++ijFxcW27seE\nCROiWr4Z78hCsng8npBtt2PV0NDA7373O8vt3zs6Orj11lv9VpXYEZBa+YwHJlCXDZTZvvoqWBJo\na2ur5ZESiZ+ChywUabiyszN0o6pI97VjLXyqbP76ZtqXtAetsd++pJ1fH/g1J0+ejPrxrLwWLS0t\nzJ8/n9zc3DHXDQ0N0dramrApISsHgBkzZnjLJ4etT2HRhAkTWLx4sS3TGukkVNvteLS0tMS0zHVw\ncNBvejFcAy4rj2mFmUB95LUjHP/NcUtN6KIRLgnU6kiJxEfBQxaKNFx55cqVkFF6KufmE82vlXig\nGfDTf/mppex0K69FQ0MDc+bMCXnw7O7uTtiUkJUDgO9zsnMqZXBwkPPnz9v2eOkiEcF0Q0MDM2bM\niPn+7e3tzJ07lyVLltDf38/06dP9GnCVl5dHNX0E8X3frTahi0Y2j4xmGgUPWSiaH/1QUXoq5+YT\nzVsJL5gc602QrL4Wqfrhs3IA8H1O4aZarHK73ZaXVmaCY8eOJaTzZbxB+pUrV+jq6uLMmTNcvnyZ\nb37zmwwMDNDb28vFixc5e/YsTqeTSZMmhX2ceL7vDQsb2Nm4k9Mvnab3SC8DrQP0Hunl9EuncZY5\naf5PzZYrXWbzyGimUfCQhZYvXx7VfHWwg1W4oc5wnQJN0SQlpoq3El4wwzDkjn5IPVQXzXAuXLgQ\n1/WxivYAEPj+trS0sHjxYiorK20ZcQpVnCiTeSwWooqWnUF6sBOFiooKtm3bxrFjx+L6vscq1lVd\n2TwymmkUPGShxsZGOjo6KCsrC3u7YFF6S0sL1dXVVFZWUlJSQl5envdy5swZlixZEjazOVJS4upp\nqVvq6a2EF0wXoQOLAFVVVXR0dNDYaK29eKT3I9L1sYo09x1qqWFDQwM7d+7k9OnTvPfee3HPn6ea\nw+EgNzc36iH7WNi1IsnOUR8IPaoV+H03pzZ8Pw+JWN0Q66qubB4ZzTQKHrJURUUFlZWhJvgNwaJ0\n3wPGN77xDQoKChgcHGRwcJD+/n66urrCZjZHSkrctCV1Sz3HLCUDv3LQBUUh+k/4yMnJ4Stf+UpM\n1R8jrSJI1CqDcAeItWvX8v3vfz/iUkPzMeJZgeHxeJg4cWLM949HQUEBt99+O5MmTYqr50Y07Jh+\nMkd9pkyZYkuwE2o43/f73tvb653aMD8Ply9fTsjqhlin8MKNqsYyGiixU/CQxeKN0iNlNj/22GNj\n5igjJSUefCt1CU2BS8lqdtVQ21KLs9BJx94OZlXOivgY8+bNi3mEINJBIFFnxJEOEOFWC5gFpjZt\n2sRrr71mudxxoOHhYW8QE2zlSaIMDw9z9epVLly4EHPwkJeXR2VlZcQAyo55d/M9O3/+PENDQ9TU\n1MT1eLEO5ydqdUOk1+j48eNBRzfMUVWn00ltbS01NTXU1tbidDpjGg2UzKTy1AnW3d3tqa6ujrmU\nbrTlbX0fq2ZlzWgJ2v+Mh5V4uA0PNcZ/y2aXxV3CNxGef/55T3l5edjnWV5eHld57mnTpoV9/GnT\nptn4jOzx/vvvh/wMxXIJLMPd3d1tqRx2qi6+n/FI34vaWvvLLkfapsPhCHu90+lMyHZjfa7R/rYU\nFxd7nnzyyZi2ke1UnloSJpr5zHCiPYPynaP0JiWaHfXmAxtGLg1wZfUVqu6uYusr6VXMpb6+nvLy\n8pDXV1VV0dbWFtea/ilTpsR1fSrY1SXTFHgGHGtNA7vl5eVRWFjo9zeHw0FhYeGY70sq5t0jPeZd\nd92VkOH8RK1uiPY1Uu2G8eMvgN8Bl0cu+4D7QtxWIw9pzkpjHfMMxPkFp4dHRkYcHiF4U5xH8Di/\nENuZUKI4nc6wz2/69OlxNwWLtI1Yzw4TKdbmSlaeY0FBgS2PHensO9zFSmOyeEf0YhHNNru7uz1O\np9NTW1vrqamp8dTW1lpucBUoUSMPTz75pKe4uNjSb4v4y7aRh9PAZownswz4FbADWGDzdiQJrJxB\nmWcg3qTE90jb3IdgIiVwTZ48Oe5KgokqUe3b+KqoqMiv2VNOTg5FRUXMnDmTRYsWsWjRIktr6+1c\nNx+49M/M4o92G5FyDeJZrWIlJyDeEb1YRLNNc/nlkSNHeOeddzhy5Ajbtm2Lq7V7okZZfHMXCgrC\nJypfv35dvSzGqfPAxiB/18hDmgt3thN48T076O7u9pRVlwUfdRi51KxMTgvqaCWjZfbzzz/vmT9/\nfsht5OfnxzS/+/7773umTp0a8T0qKiryVFRUWDpjtmPkIS8vb0xL9+9973tRn3mal7KyspDPs7q6\n2q8OvmAAABinSURBVPPwww/HvI/pOOqTDsKNEDgcDs/06dMTProRakRpvOdDpHrkIZFygYcxZr/n\nBrlewUOae/755z1r1671VFZWRkxqKygo8Dz22GPe+9aurPXwtwRNmmQFnpoPpU/w8Nhjj3lycnKS\nMnT6mc98Jux2qqqqwg47P//8856PfOQjnuLi4riG6YNdgh1AI0215OXlefLz8z0lJSVjAoRwIj1u\nqPfAHJqfM2eOB/DMmTPH+xpZCXZ9L4maasgW5ms+bdq0hBzIY/kshPvMjhfZGDwsxAgY3MAV4E9C\n3E7BQwbp7u72VFZWhj2ItLa2em/v/ILTwwY8VGHkPvwtxqjD14x/507L9Ty5Oz3OGn7/+98nLFs9\n0KRJkyz/QObm5nqmT5/umTZtmic/P9/WgMH3EixAStT8fiwjGtOmTfN87GMf83zsYx/zrFmzxlNT\nU+NZs2aN92+PPfaYN9gtKSnx5OfnR3xf8/Lyog54xrtE5ezEGvSF+syOF6kOHhJRy/MPwCJgEvAQ\n8EPgI8CbwW78+OOPj8lyN7v6SfpoaWkJ29hocHCQ9evXc+zYMcDIffjnh/+ZoY8OGQWjTCMFo4Y+\nOsSBFw7QeG/q12U/8MADYTP+8/LybCvTe+3aNcv3GRoa4syZM7ZsP5xwFUdv3LjBxYsXGRgYoKCg\ngMmTJ3vn2mP5rsaSSzFlyhR27Nhh6T4LFiygtbU15PU1NTXs3LnT8r6MR4nqzRLsM+bxeKL6jIyX\nXhYul2tMTtKlS5dStDfJ8wvgfwb5u0YeMkykrHiHw+F3JlpTVzM64hB4+Rqe2pXpcdYQTba/XWem\ndq0sSMQlmWdxsYw8xHJmm4krXNJVMvKCTNF+PjTykLqRh2TUechJ0nYkwTwR1uN7PB7/krV5hO1i\nOUjqzxpcLlfEbpr5+fm2jYRNmDDBlsdJhGT2BbC6rVhrFaicsX2S2ZQq2hEF9bJIHbsP6v8d+DBQ\nhZH78P8A9wI/sHk7kgIOR6hIYJRvUZdIXSzzEjJrZk19fX3EoCia5x2t+++/37bHslOyD6ThmnWV\nlpZSU1NjS+lhlTO2TzKLY0UTiCj4Sy27f70rgGeB6RhFon4HrMOo9yAZbtasWRw/fjzi7cy5z7rF\ndbR2tvrnPJi6RrpcptiXvvSliLeZNStyz4tolZSU2PZY8SooKGDu3LnU1dXR1NQUVz0Aq8LlUpgH\nd7tGe8z6BxKf5cuX88ILLwTtdWH3gbyuri5srsrcuXPZt29fUj+zkj6U85BhNmzYENU8pDn3+eTu\nJz3FNcXGaouv4bfaorimOKWrLSLVXPC9bNiwwdZtp0veg+b7xapEVLEMtZ1kV/HMNKnOebBvPNa6\npcChQ4cOsXRp1ixTzXpHjx7ljjvuCJsnUFtby5EjRwCjiuCmLZs4+NZBBhkkjzzqFtfRtCW5Z7qB\nuru7qa6upre3N+ztZs+eTUdHh63bnjRpEleuXLH1Ma2qrq5m//79OnOTtORyubxtwBM9MpWp3nzz\nTZYtWwZGNeegqxkTKfWTzpJR5s+fzyc/+Ul++MMfhrzN6dOnmTdvHmDMXdbV1bH7x7vT6kD1pS99\nKWLgAImZZpg2bVpKg4e8vLy4llmKwMiJwaZNHDx4kMHBQe933Y4pMC3Xl3A0bZGBvve973kmTJhg\neYg81aVku7u7Pc4vOD21K2s9FXOCl2gOdknE0P4999yj6QrJaOHKi6f6uz5epHraQksoxZLXX389\npkJHqWyt++TuJ6m6u4rmG820rmmlpyy6hjoOhyMh2dwbNmyI2OQpXrm5uUH/rgx1iYbZtCxUM6rX\nX389aOIkGN/1zZs3q4mVJIxGHjJQPI2SUlXQxdsmfMvIpSK6/X3ggQcStk/d3d2eqqqqhI0u1NTU\nJCWxTbJPNKMKVn8HNBphv1SPPCjnQSyJpxxsd3e3jXsSvYNvHYQ1Pn8Yju5+Z8+eTcj+gLF88OLF\niwl7/CtXrmh5osQk0qjCgQMHLP8OmPdTXY3soWkLsSSeKnLnzp0brT6ZRIMM+q8rivJTn+ikxmim\nfyZMmBBT8llZWVksuyQSVQ+LWH4H9u3bF3YqRDKLggexJN4qcrt372bjFzeyYNUC5q2ax4JVC9j4\nxcT+gIypdHlrdPdLddMdh8PBt771LZYsWUJlZSUlJSXk5+dHlS8xPBzl8IpIgEif+8HBwZh+B44d\nO+ZdftnW1kZrayvNzc3+Je0lYyh4EEuWL18eV7nmH/3rj7yJi21r22hd3UrzjWaq7q5i6yuJ+QGp\nW1wHnT5/mAnkR76fnbX6g4nU56KsrIzGxkZ27tzJ6dOn6e3tZWBggO9///sUFBSEvW9fX5+duyrj\nSDQ9LML1DAnFE6IMfCqTqSV2Ch7EksbGRm677baY7+8p8hgHbzP+GGnR3f/hfg68kJgfkOWfXk7x\nnmI4jZHvMBuI4ncv0U135s+fH9P1DQ0NVFVVhb3vxIkTY90tGeduvvnmiNcH6xkSzwqiWNt5S+oo\neBDLVq5cGfudC0P8fcZIYmMCNN7bSMfeDpyFTiZ+dyJ8F6PzShjJWNLodDpDjj5MmDABp9MZ8r7J\n7HAo48v27dtDNi2rrq5m+/btwGjPkCNHjvDOO+/Q0dER8n6RpHqKUKxT8CCWxTJk6eWbb9AH7MLo\nufpDOH7ieMLyHyoqKtj23W3cMvmWsLfLz89PWsfFxsZGTp48GbTj48mTJ8NuP5kdDmV8qaioYP/+\n/UE/l+FKmgfeL9LUmi8Fu5lHvS0kJr6lac+dO0dPT0/k1tY5Djz3e+BDQC+wHagHKjE+icNAFxTv\nKeaJp56g8V77D96FhYUMDAyEvL6goIAbN27Yvl27bd26lb/+678O2eHwiSee0LI4SampU6dGfSLg\ndDq1tNgi9baQjBTY5tg3mLh+/Trnz58HjPnRwsJC6urquO64zg9zRnpi7MMIHHzbdQfkPyQieIgU\n4ES6Pl00Njby4IMPJqy3gEi8wgXpvlT1NDMpeBBbBAYTwWx9ZSs7Ht1B/4f7oRv/wk2+ZsDBlsTk\nP0RaKRLPSpJki+Y1F0lXOTk5fO5zn1Owm6GU8yBJ45u4WHC9IPSkWc5IYacEmDVrVlzXi0h0CgtD\nZUcbbr75ZrZt26bAIUMpeJCkMhMX586a61+4ydfwSGEnG/T09PgVpXr/0vthb69EQxF7RLPkUzKX\npi3Edi6XC5fLBcD169c5efIks2fPpqioCDDqFNQtrqO1s9U/58HUNVLYKU5P7n6SLzd+2ZgmWYMx\n0rEa+D3wU8jz5OFwOHA4HMyaNYsdO3ZErL0gItGpq6ujtbU17PWSuRQ8iO0aGhpoaGgARjOCXS6X\n36qaK7de4YVHXzAO7DMwxsB8Vlssfyr6BKqenh42bdnEwbcOGtMdbhgeHKb7fDf9a/rHJmUuAibD\nZws/y7bvKmdAJBGWL1/OCy+8EHJFkJIkM5uCB0mKLVu20N7e7rcq4I0fv0HTd5o42GIc9PPIo25x\nHU17o0+g6u7uZuX9K2lf0m6MLvRhLAFdCfwaYxloMAlMyhQRrQjKdqrzIAlhLt386U9/6l22GciO\negT3NtzLqyWvGqMLfcALwCqMpaA5wOd8bmwWpXoPGIaC/gI2fGaDfshEJOOkus6DEibFdt3d3axY\nsYLm5uaQgQPY0xDn3KlzxuhCL/AiRjh8AqOGRC6jSZm/Ab4F/A7oAc7DwLUBmpubmT17trr6iYhY\noOBBbLd582ba29ujuu2+fftibtHd09ND5/udRsBgFp0qAM5hBBQVjHbT/B2EWv157do1nnnmmaj2\nV0RElPMgCWClQ96Jkydou9E2uhpiGFq7Wtlz3x72vxy6jr53JcVQvzG60IPxGJ6Rx3FgTF+8iBFU\nRIhFwmWFi4iIP408iO2sdMhzT3AHbdHdvqSdT/3HT4W83+svvm6s1LgVY3TBDBgqgAGMIKIEeAg4\nCkRoV3Ht2rWo91lEZLxT8CC2s9Qhz4GRyBhoxkg+QwgH3zpoTE2sAn7JaMCwauTxzOmKEmBy9Lsj\nIiKRKXgQ21kq/nIR+Afg68B/x5hm6GNMiWrfSpHVddX84d0/GIGHObrgwQgYSoBPAz8DTmHUjugk\nogkTJkS/zyIi45yCB7FdU1MT1dXV1u7kwZhaOAJ8A/jNaInq7u5uVty3guYbzbSubOXdnncZLhoe\nXUlhBgy/BE4DN2Es0TwKPDvymBGosqSISPQUPIjtKioq2L9/P06nkzlz5gCQn58f/QN4gNbREtUP\nfekhowjUFEYTIM1cB5NvfsOzMOHFCdQ6anH+iZPq2ZEDGafTGf3+iYiMcwoeJCHMdtHbt28HYPr0\n6dYe4AQs/7RRvvbcqXNG3oJZx8E31+E0xtQEwATgg1A9pZqTB09y5LUjbPvuNnJzc8NuqqamJq5C\nVSIi442WaortAhtj1dTU0NXVZflxDrxwgAdrHzRyH8w6Dnvwz3V4DXh15G8eKBsoY/9vRpd4dnd3\n895774XdzsqVKy3vm4jIeKbgQWzn2xjLtHHjRpqbm6N/EAc032hmz317yM3LNRIrzToOZi2HEmCt\nz32GobKlkoqKCm957FCNeUw5OTlq0CMiYpGCB0mK5cuX84Mf/AC32x3dHTzAT6G9uJ2iG0XGlIRZ\nx6GTsa28RxpitXW24XBE37Ll5ptv1pSFiIhFynmQpGhsbOSTn/yktTtNBz4H1//oOlxitI5DYK7D\nVeDbwAkYdEdfoAqMaRUREbFGIw+SNG+//ba1O7yHEd7WYPSmMEccAnMdOjCKRMVAwYOIiHUaeZCk\nsVK22riDz//fB/k/yzdGHCZg5Do0AGXEHDgAFBUVxX5nEZFxSiMPkjSWylaDkST5BnAnMBFmzprJ\nPYX3cLDlIIMMcuXMFc52nI1rn0pKSuK6v4jIeKSRB0kaS2WrTadH/jsMRflFbPvuNnb/eDcra1bS\nf75/tMpkjNatWxffA4iIjEMKHiRpli9fTnFxsbU7mSUauoyKk//wD//A9OnTaW5u5sqVK7bsk4iI\nWBP9mjb7LQUOHTp0iKVLl6ZwNySZzPoLBw8e5NixY9Et3SwFrkMuuQwNDtm2LxMnTrQlABERSbY3\n33yTZcuWASwD3kz29u0eefgvwG+AK8D7wP/GyJUXAUbLVh85coTbbrstujv1AoPYGjiAUSBKRESs\ns/vX8x7gn4C7MOoB5gG7AItj1TIe3HzzzSndfmFhYUq3LyKSqexebXF/wL83At0YUxR7bd6WZLjt\n27czbdo0hoeHI984AVIdvIiIZKpEj9uWj/z3QoK3IxmooqKCuXPnJuSxoylRreBBRCQ2iQweHMC3\nMPogtiZwO5LBEtHR0uFw8L3vfY/u7m6qq6uD3qa6utrbLlxERKxJZPDwHWABRh1AkaBiWr4ZwW23\n3UZjYyMVFRXs378fp9NJbW0tNTU11NbW4nQ62b9/tG23iIhYk6ilmv8ErMdIoDwZ4jZLgUMf/vCH\nKS8v97siWEtnyV49PT2sX7+eAwcO2PJ4TqeTbdu22fJYIiKp5nK5cLlcfn+7dOkSe/bsgRQt1bQ7\neHBgBA4fBz4CtIe5reo8iJ/q6mrefffduB6juLiYJ554Qm22RSSrpbrOg92rLb6LMU3xcaAPmDby\n90uA2hdKWJWVlZaDh4KCAoqKipg2bRorV66kqalJ0xEiIglmd/Dw5xjdBnYH/N0JPGvztiTLbN++\nnRUrVtDeHm7AyjBz5kwOHTqkQEFEJAXsTpjMAXJH/ut7UeAgEfkmONbU1FBaWup3fU5ODmVlZTz8\n8MMKHEREUkgtuSWtmOWrRUQkfam4v4iIiFii4EFEREQsUfAgIiIilih4EBEREUsUPIiIiIglCh5E\nRETEEgUPIiIiYomCBxEREbFEwYOIiIhYouBBRERELFHwICIiIpYoeBARERFLFDyIiIiIJQoeRERE\nxBIFDyIiImKJggcRERGxRMGDiIiIWKLgQURERCxR8CAiIiKWKHgQERERSxQ8iIiIiCUKHkRERMQS\nBQ8iIiJiiYIHERERsUTBg4iIiFii4EFEREQsUfAgIiIilih4EBEREUsUPIiIiIglCh5ERETEEgUP\nIiIiYomCB/k/7d19iGV1Hcfxd2u5uhvpVm5ZGeqotaammLqjJMmgqBA+YkGCLOt/BqsECYpxe8CC\noicqwShoCycxEh+wUvEBRF2s2XzAyZ5cKp3JfBhzLTfdsT++v8v53bPHWc+ce8+dh/cLLjP3nN95\nuB++c+Z3f+eceyVJqsXOgyRJqsXOgyRJqsXOgyRJqsXOgyRJqsXOgyRJqsXOgyRJqsXOgyRJqsXO\nwzIzPj4+7F1Ydsy8fWbePjNfXgbReTgZuAV4CpgFzhrANjRP/oG3z8zbZ+btM/PlZRCdh1XAVuCS\n9Pz1AWxDkiQNyVsHsM5fp4ckSVqCvOZBkiTVMoiRh1omJyeHvQvLyszMDBMTE8PejWXFzNtn5u0z\n83YN+3/nWwa8/lngbODminn7Aw8B7x/wPkiStBQ9BRwHTLW94WGOPEwRL3r/Ie6DJEmL1RRD6DjA\n8E9bDO2FS5Kk+RlE52E1cGj2/GDgaOA54O8D2J4kSVrkPkFc6zAL7Mx+//EQ90mSJEmSJEmSJEmS\nJC1fHYrrF7qPp0tt1hGf6TAD/Bt4ADig1GYUuAvYDrwA3A3slc3fVrGdq0vr+CDx5VvbgX8B3wHe\nNs/XtZB1aJb5gRXLdx/nZetYA/w0rWMG2AzsU9qOmRf6kfm2ivnW+fyPLe8DrgOmibwm6M0brPNc\nh3Yy31axHet8/pmPADcCzwAvAtcDa0vrWHB13gEeSTvafbwrmz9C3FHxNeCjxEH0DGC/rM0o8WI+\nT4Q0ApwL7Jm1eRK4srSd1dn8PYBHgTvTdsaAfwDfbfoCF6AOzTJfUVp2LXAVUXSrsvX8CngYOAFY\nn7aZf7CXmRf6lbl1XujQ/NhyN/Ag8LE0/0rgNeJOry7rvNChncyt80KHZpmvBv4C/AL4CHAE0ZHY\nQu8HPi64Ou8Q35b5Rn4O/GQ363gQ+OJu2jwJbJpj/hlEgb43m/Yp4L/A23ez7sWmQ/PMy7YCP8ye\nryN6wMdl005I07q33Jp5oR+Zg3We69A885eAz5SmPQtsSL9b5706DD5zsM5zHZplfhqRVZ7LvkQN\nj6XnrdV53S/GOpT4OMy/AuPAQdl6zgT+BPwG+CfRUTgrW3YtcDwxRHI/MdR1D3BSxXYuJ4pwK3AF\nvcMpo0SvaTqbdjuwEji25utZDJpkXnYs0dP8UTZtlHhX/FA2bUuadmLWxsz7l3mXdV5omvmtwKeJ\nIdsV6fc9iWMMWOdVBp15l3VeaJL5SuB14H/ZtB1Ex6D7f3RB1vnpwDnEcMkYMWQ1BbyT6MHMEudP\nNgFHEQWzEzg5Lb8+tXkWuIg4oH4TeAU4JNvOpcDHiSGZjcS5nfxd27VUf+X3K0TvaSlpmnnZD4DH\nStOuAJ6oaPtEWh+Yeb8zB+s814/M9yaGYWeJg+sMxbsxsM7L2sgcrPNc08zfTWT8LSL71cD30nLX\npDaLos5XES/8MuL7KWaBn5Xa3ERcUAPR65kFvlJq8zC7XkCTOzcttyY9v5bomZUtxWIrq5t5bm+i\n8C4rTX+zxWbm/cu8inVemE/mvyQuLjsFOBL4AnFB9hFpvnU+t0FkXsU6L8wn81OBPxOdileJ0xy/\nBb6f5rdW53VPW+T+Qwx9HEKMJrwGPF5q8wfiqk4ovsOi3GYya1NlS/rZHZ2YBt5TarOGGC6bZmmr\nm3nufOKf2ebS9Gl2vVqXNG06a2Pm/cu8inVeqJv5OuLbezcS7+YeBb5EHFQvSW2s87kNIvMq1nlh\nPseWO1L7/YiLLS8CPkCcBoEW67xJ52ElcDjRKXiVOMfy4VKbw4hbdUg/n65o86GsTZVj0s9u5+N+\nomebv/jTiHM/v3uT+75Y1c08t5HoxT5Xmv4AcRtP+QKbfYiswcz7nXkV67xQN/PucWxnqc0sxVXo\n1vncBpF5Feu80OTY8jxxK+cY0ZHo3k2xIOv8G8S5l4PSztxCDMl270E9O238YqJn9FkikBOzdWxK\ny5yX2nwZeJniopH1xBDO0WnaBcQtJDdm61hB3HpyR2o3BvyNuE91qelH5qR5O4kCqXIb8Ht6b+25\nKZtv5v3N3Drv1TTzPYh3bPcSB80R4HNE/qdn27HOC21kPop1nuvHsWUDUbsjwIXEiMXXS9tZcHU+\nTlwluoMogBvYtZe0AfgjMRwzAXyyYj2Xpx3dDtxHbzDHED2nF9I6JonzaHuV1nEAEfzLRHjfZml+\nqEi/Mr+auUd39iU+VOTF9NgMvKPUxswLTTO3znv1I/OD03JTxLFlK7veRmidF9rI3Drv1Y/Mv0rk\nvYM4pXFpxXasc0mSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA3V/wH3ZI5B18zP\nyQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t2, l2, l2e = np.loadtxt(echo_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o', color=\"green\")\n", + "errorbar(t2, l2, yerr=l2e, fmt='o', color=\"black\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.366e-01 5.289e+01 inf -- -1.581e+02 -- 1 1 1 1 1 1 1\n", + " 2 7.741e-01 5.224e+01 6.092e+01 -- -9.716e+01 -- 0.64151 0.582988 0.567078 0.568391 0.566833 0.565789 0.56338\n", + " 3 3.418e+00 5.136e+01 5.853e+01 -- -3.863e+01 -- 0.388803 0.191096 0.136557 0.140188 0.135589 0.132301 0.127287\n", + " 4 1.555e+00 5.020e+01 5.546e+01 -- 1.684e+01 -- 0.278504 -0.141428 -0.288802 -0.28161 -0.292287 -0.300033 -0.307779\n", + " 5 5.853e-01 4.862e+01 5.209e+01 -- 6.893e+01 -- 0.251696 -0.361387 -0.704482 -0.692633 -0.715864 -0.730643 -0.741316\n", + " 6 3.638e-01 4.653e+01 4.847e+01 -- 1.174e+02 -- 0.242093 -0.451675 -1.10227 -1.08525 -1.13485 -1.15797 -1.17191\n", + " 7 2.636e-01 4.340e+01 4.346e+01 -- 1.609e+02 -- 0.240629 -0.481083 -1.4522 -1.44125 -1.54556 -1.57775 -1.59823\n", + " 8 2.061e-01 3.824e+01 3.545e+01 -- 1.963e+02 -- 0.243061 -0.504278 -1.67538 -1.722 -1.93248 -1.97969 -2.01957\n", + " 9 1.693e-01 3.015e+01 2.492e+01 -- 2.212e+02 -- 0.246578 -0.524331 -1.72708 -1.87967 -2.25718 -2.33983 -2.4357\n", + " 10 1.458e-01 1.978e+01 1.425e+01 -- 2.355e+02 -- 0.254622 -0.533743 -1.72985 -1.91821 -2.45669 -2.6121 -2.84811\n", + " 11 1.353e-01 1.021e+01 6.810e+00 -- 2.423e+02 -- 0.264297 -0.537479 -1.7301 -1.91543 -2.50815 -2.75364 -3.26334\n", + " 12 1.464e-01 3.997e+00 3.032e+00 -- 2.453e+02 -- 0.268248 -0.539862 -1.72642 -1.91378 -2.49097 -2.79169 -3.705\n", + " 13 2.296e-01 1.073e+00 1.223e+00 -- 2.465e+02 -- 0.268013 -0.541085 -1.72532 -1.91534 -2.4707 -2.79511 -4.24757\n", + " 14 1.191e+00 1.664e-01 4.032e-01 -- 2.469e+02 -- 0.266953 -0.541769 -1.72481 -1.91721 -2.45806 -2.793 -5.22266\n", + " 15 4.403e+02 2.073e-01 4.480e-02 -- 2.470e+02 -- 0.266181 -0.542036 -1.72478 -1.91832 -2.45194 -2.79147 -8\n", + " 16 4.405e+02 2.177e-01 9.908e-05 -- 2.470e+02 -- 0.265853 -0.542082 -1.72492 -1.91871 -2.45034 -2.79121 -8\n", + "********************\n", + "0.265853 -0.542082 -1.72492 -1.91871 -2.45034 -2.79121 -8\n", + "0.236507 0.210135 0.2567 0.193885 0.180857 0.168104 4543.34\n", + "-0.00248404 -0.00270298 -0.00703597 -0.020554 -0.0555367 -0.217652 -0.000171146\n", + "********************\n" + ] + } + ], + "source": [ + "P2 = clag.clag('psd10r', [t2], [l2], [l2e], dt, fqL)\n", + "p2 = np.ones(nfq)\n", + "p2, p2e = clag.optimize(P2, p2)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 2.470e+02 2.466e+02 2.658e-01 5.023e-01 0.854 +++\n", + "+++ 2.470e+02 2.461e+02 2.658e-01 6.205e-01 1.8 +++\n", + "+++ 2.470e+02 2.463e+02 2.658e-01 5.614e-01 1.29 +++\n", + "+++ 2.470e+02 2.465e+02 2.658e-01 5.318e-01 1.06 +++\n", + "+++ 2.470e+02 2.465e+02 2.658e-01 5.171e-01 0.956 +++\n", + "+++ 2.470e+02 2.465e+02 2.658e-01 5.244e-01 1.01 +++\n", + "\t### errors for param 1 ###\n", + "+++ 2.470e+02 2.465e+02 -5.421e-01 -3.320e-01 0.961 +++\n", + "+++ 2.470e+02 2.460e+02 -5.421e-01 -2.269e-01 2.03 +++\n", + "+++ 2.470e+02 2.463e+02 -5.421e-01 -2.794e-01 1.45 +++\n", + "+++ 2.470e+02 2.464e+02 -5.421e-01 -3.057e-01 1.2 +++\n", + "+++ 2.470e+02 2.465e+02 -5.421e-01 -3.188e-01 1.08 +++\n", + "+++ 2.470e+02 2.465e+02 -5.421e-01 -3.254e-01 1.02 +++\n", + "+++ 2.470e+02 2.465e+02 -5.421e-01 -3.287e-01 0.989 +++\n", + "+++ 2.470e+02 2.465e+02 -5.421e-01 -3.270e-01 1 +++\n", + "\t### errors for param 2 ###\n", + "+++ 2.470e+02 2.468e+02 -1.725e+00 -1.597e+00 0.298 +++\n", + "+++ 2.470e+02 2.467e+02 -1.725e+00 -1.532e+00 0.648 +++\n", + "+++ 2.470e+02 2.466e+02 -1.725e+00 -1.500e+00 0.867 +++\n", + "+++ 2.470e+02 2.465e+02 -1.725e+00 -1.484e+00 0.986 +++\n", + "+++ 2.470e+02 2.465e+02 -1.725e+00 -1.476e+00 1.05 +++\n", + "+++ 2.470e+02 2.465e+02 -1.725e+00 -1.480e+00 1.02 +++\n", + "+++ 2.470e+02 2.465e+02 -1.725e+00 -1.482e+00 1 +++\n", + "\t### errors for param 3 ###\n", + "+++ 2.470e+02 2.465e+02 -1.919e+00 -1.725e+00 0.916 +++\n", + "+++ 2.470e+02 2.460e+02 -1.919e+00 -1.628e+00 1.97 +++\n", + "+++ 2.470e+02 2.463e+02 -1.919e+00 -1.676e+00 1.4 +++\n", + "+++ 2.470e+02 2.464e+02 -1.919e+00 -1.701e+00 1.15 +++\n", + "+++ 2.470e+02 2.465e+02 -1.919e+00 -1.713e+00 1.03 +++\n", + "+++ 2.470e+02 2.465e+02 -1.919e+00 -1.719e+00 0.971 +++\n", + "+++ 2.470e+02 2.465e+02 -1.919e+00 -1.716e+00 0.999 +++\n", + "\t### errors for param 4 ###\n", + "+++ 2.470e+02 2.466e+02 -2.450e+00 -2.269e+00 0.84 +++\n", + "+++ 2.470e+02 2.461e+02 -2.450e+00 -2.179e+00 1.87 +++\n", + "+++ 2.470e+02 2.463e+02 -2.450e+00 -2.224e+00 1.3 +++\n", + "+++ 2.470e+02 2.465e+02 -2.450e+00 -2.247e+00 1.06 +++\n", + "+++ 2.470e+02 2.465e+02 -2.450e+00 -2.258e+00 0.947 +++\n", + "+++ 2.470e+02 2.465e+02 -2.450e+00 -2.252e+00 1 +++\n", + "\t### errors for param 5 ###\n", + "+++ 2.470e+02 2.465e+02 -2.791e+00 -2.623e+00 1.01 +++\n", + "+++ 2.470e+02 2.469e+02 -2.791e+00 -2.707e+00 0.27 +++\n", + "+++ 2.470e+02 2.467e+02 -2.791e+00 -2.665e+00 0.583 +++\n", + "+++ 2.470e+02 2.466e+02 -2.791e+00 -2.644e+00 0.784 +++\n", + "+++ 2.470e+02 2.465e+02 -2.791e+00 -2.634e+00 0.895 +++\n", + "+++ 2.470e+02 2.465e+02 -2.791e+00 -2.628e+00 0.954 +++\n", + "+++ 2.470e+02 2.465e+02 -2.791e+00 -2.626e+00 0.984 +++\n", + "+++ 2.470e+02 2.465e+02 -2.791e+00 -2.624e+00 0.999 +++\n", + "\t### errors for param 6 ###\n", + "+++ 2.470e+02 2.470e+02 -8.000e+00 -6.000e+00 0.0147 +++\n", + "+++ 2.470e+02 2.469e+02 -8.000e+00 -5.000e+00 0.151 +++\n", + "+++ 2.470e+02 2.467e+02 -8.000e+00 -4.500e+00 0.489 +++\n", + "+++ 2.470e+02 2.465e+02 -8.000e+00 -4.250e+00 0.891 +++\n", + "+++ 2.470e+02 2.464e+02 -8.000e+00 -4.125e+00 1.21 +++\n", + "+++ 2.470e+02 2.465e+02 -8.000e+00 -4.188e+00 1.04 +++\n", + "+++ 2.470e+02 2.465e+02 -8.000e+00 -4.219e+00 0.961 +++\n", + "+++ 2.470e+02 2.465e+02 -8.000e+00 -4.203e+00 0.998 +++\n", + "********************\n", + "0.265765 -0.5421 -1.72494 -1.9188 -2.45004 -2.79121 -8\n", + "0.258682 0.215059 0.242662 0.202981 0.197785 0.166791 3.79688\n", + "********************\n" + ] + } + ], + "source": [ + "p2, p2e = clag.errors(P2, p2, p2e)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X903XWd5/FnobUREUKR3gtWem3YmmILbkJqaaUT3OJq\nV4XFnZp7dPaYTldnhqGnsytjV0+znHSOK8pRZnB2PF2oOqvelD2KC+cUQWbSAdMfxFwG6LR3lDQJ\n1Da3U0qKUMKkP/aPbyJt+abJTe73/sh9Ps65J8m9n8/382n7afLK9/u9nzdIkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRpkv470Am8AmSBB4H5RZ2RJEkqCY8A/xlYAFwDPAz0AhcUcU6S\nJKkEvQs4CXyo2BORJEljO6+AY1UPfzxSwDElSVKJm0ZwueEfij0RSZI0PtMLNM63gfdz7ksNlw8/\nJElSbg4OP/KqECHhXuDjwHLgwChtLr/iiisOHDgw2suSJOkcfgM0kOegEGVImEYQEG4GGoG+c7S9\n/MCBA/zgBz9gwYIFEU4p/9atW8c999xTluNN5li59s2l/XjajtXmXK8X+t8sX1xr+W/vWgvnWst/\n+yjX2t69e/nsZz/7boKz8WUTEv4aSBKEhNeA+PDzA8BgWIcFCxZQV1cX4ZTyr7q6uqBzzud4kzlW\nrn1zaT+etmO1Odfrhf43yxfXWv7bu9bCudby3z7qtRaV8yM89sPATKAZ+G+nPX4NPHNW28uBL3zh\nC1/g8svL77aERYsWle14kzlWrn1zaT+etmO1Ge31VCpFMpkc91xKiWst/+1da+Fca/lvH9VaO3jw\nIJs2bQLYRJ7PJEzL58EmoQ7o6urqKsvUrfLyyU9+koceeqjY01AFcK2pENLpNPX19QD1QDqfxy7k\nPgmSJKmMGBJUccr19K/Kj2tN5c6QoIrjN24VimtN5c6QIEmSQhkSJElSKEOCJEkKZUiQJEmhDAmS\nJCmUIUGSJIUyJEiSpFCGBEmSFMqQIEmSQhkSJElSKEOCJEkKZUiQJEmhDAmSJCmUIUGSJIUyJEiS\npFCGBEmSFMqQIEmSQhkSJElSKEOCJEkKZUiQJEmhDAmSJCmUIUGSJIUyJEiSpFCGBEmSFMqQIEmS\nQkUZEpYDDwO/AU4CN0c4liRJyrMoQ8IFwNPAbcNfn4pwLEmSlGfTIzz2z4YfkiSpDHlPgiRJCmVI\nkCRJoQwJkiQpVJT3JORs3bp1VFdXn/FcMpkkmUwWaUaSJJWOVCpFKpU647mBgYHIxpsW2ZHPdBK4\nBXholNfrgK6uri7q6uoKNCVJkspfOp2mvr4eoB5I5/PYUZ5JeAfwb077eh7wAeAl4MUIx5UkSXkQ\nZUhoAP5++PNTwDeHP/8esDrCcSVJUh5EGRK24Y2RkiSVLX+IS5KkUIYESZIUypAgSZJCGRIkSVIo\nQ4IkSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCGRIkSVKoKAs8SUWTei5FancK\ngMHjg/Qd7WPuxXOpml4FQHJhkuSiZDGnKEklz5CgqWk3EGQEXjn6Cr/6p19xyfsvoeriICSQBBYV\na3KSVB4MCZqSkskkyWRwpuCHj/6QXR/dxe1fvp3P/PvPFHlmklQ+vCdBU1Zvby+rb1vN+i+th1mw\n/kvrWX3banp7e4s9NUkqC55J0JSTzWZpWtPE7gO7Ofzbw3AUmAb7D+7nuz//Lg/vfJiFVyyk7b42\nYrFYsacrSSXLkKApJZvNsvimxbzw0gvwCvDqWQ0OweELD7OtfxsfvOmD7Pr5LoOCJI3Cyw2aUm79\ng1t5oe8FOMBbA8KIV4ED0NfXx61/cGsBZydJ5cWQoCmjp6eHzl2dwRmE8XgFOnd1eo+CJI3CkKAp\n489b/pyhoaGc+gwNDXFHyx0RzUiSypshQVPG4489Dq/n2Ol1ePzRxyOZjySVO0OCpoxjvz1W0H6S\nNNUZEiRJUihDgqaMC95+wYT6vePt78jzTCRpajAkaMpY8eEVE+p304qb8jwTSZoaDAmaMr7xjW8w\nY+aMnPq8bebbuOuuuyKakSSVt6hDwp8APQT3nP8S+FDE46mCJRIJGuobcupzXf11JBKJaCYkSWUu\nypDwaeBbwEbgA8CTwCPAeyIcUxXuJz/5CXPnzh1X20QiwYMPPhjxjCSpfEUZEv4rcB+wGfhn4M+A\nF4E/jnBMVbhYLMauXbtobGzksssuC21z2WWX0djYyK5du5g9e3aBZyhJ5SOqkPA2oA547KznHwOW\nRjSmBARBob29naeeeorm5mbmJOYAMCcxh+bmZp566ina29sNCJI0hqhCwruA84HsWc8fAuIRjSmd\nIZFIsHnzZr72na8B8LXvfI3Nmzd7D4IkjZOlojUlpZ5LkdqdAuDQkUOQhHufv5ctR7YAkFyYJLko\nWcwploTT/54Gjw/Sd7SPuRfPpWp6FeDfk1TpogoJh4ETQOys52PAwdE6rVu3jurq6jOeSyaTJJN+\nk1KOdgPBzz4uGryI+X3zuejwRVA1/HoSWFSkuZWQ5KIk17/zelq/0coT6SfoPtLNiVknWF63nJY7\nWjzrIpWYVCpFKpU647mBgYHIxpsW2ZFhJ9AF3Hbac3uAB4GvnNW2Dujq6uqirq4uwilJGpHNZmla\n00TmSIb+q/thzmkv7of4nji1s2ppu6+NWOzsvC+pVKTTaerr6wHqgXQ+jx3l5YZvAv+HYH+EncDn\nCb4NfSfCMSWNQzabZenKpexbsg+uC2kwB/rn9NN/qJ9lK5fRsbXDoCBVoCjfAvkAsA5oAZ4m2Ehp\nJcHbICUVUdOapiAgjPUGj9nQvaSbpjVNBZmXpNIS9Y6LfwO8l+BKcAPwi4jHkzSGnp4eMkcyYweE\nEbMhcyRDb29vlNOSVIKs3SBVmI13bwzuQchB/4J+Wu9ujWhGkkqVIUGqMJ3Pdp55k+J4zIHOZzoj\nmY+k0mVIkCrM0Imh3DtNg6GTE+gnqawZEqQKM+P83MppA3AKZpw3gX6SypohQaowDdc0wP4cO+2H\nxdcujmQ+kkqXIUGqMC13tBDfk1sJlfjeOBu+uCGiGUkqVYYEqcIkEglqZ9UG5dbG4xDUzqp1i2ap\nAhkSpArUdl8bNTtrxg4Kh6BmZw1b7t9SkHlJKi1WgZQqUCwWo2NrBzd+7Eb29e7jjXe+8WbxK4BB\nmPnbmcxLzGPbz7Yxe/Z4d16SNJV4JkGqULFYjD3pPTz+0ONcdcFVTH9hOjwP01+YzlUXXMXjDz3O\nnvQeA4JUwQwJUoXKZrNc3XA1Kz6+guczz3N88DichOODx3k+8zwrPr6CqxuuJpvNFnuqkorEkCBV\noGw2y9KlS9n7y728cfSN0DZvHH2Dvb/cy7JlywwKUoUyJEgVqKmpiX379o2rbXd3N01NVoGUKpEh\nQaowPT09ZDKZnPpkMlaBlCqRIUGqMBs3bqS/P8cqkP39tLZaBVKqNIYEqcJ0dk6smuNE+0kqX4YE\nqcIMDU2smuNE+0kqX4YEqcLMmDGxao4T7SepfBkSpArT0NAwoX6LF1sFUqo0hgSpwrS0tBCP51gF\nMh5nwwarQEqVxpAgVZhEIkFtbW1OfWprrQIpVSJDglSB2traqKmpGVfbmpoatmyxCqRUiQwJUgWK\nxWJ0dHTQ2Ng46qWHeDxOY2Mj27dvt8iTVKEMCVKFisVitLe3s2PHDpqbm393ZqGmpobm5mZ27NhB\ne3u7AUGqYNOLPQFJxZVIJNi8eTPpdJr6+noeeOAB6urqij0tSSXAkCBVsFQqRSqVAmBwcJD58+ez\nfv16qqqqAEgmkySTyWJOUVIRGRKkCmYIkHQu3pMgSZJCRRUSvgJsB44BL0c0hiRJilBUIWEGsAX4\nXxEdX5IkRSyqexLuHP74uYiOL0mSIuY9CZIkKZQhQZIkhcrlcsOdQMsYba4D0hOejSSdQ+q5FKnd\nw/s6HB+k72gfcy+eS9X04X0dFiZJLvItnVK+5BIS7gV+NEabvknMhXXr1lFdXX3Gc76PW9KI5KIk\n17/zelq/0coT6SfoPtLNiVknWF63nJY7WqxUqSnv9A3QRgwMDEQ23rTIjhz4HPAt4JIx2tUBXV1d\nXW4HKylUNpulaU0TmSMZ+q/uhzmnvbgf4nvi1M6qpe2+NmKxWNHmKRXayJbqQD15Ppsf1bsbrgRm\nDX88H7iWIJD8GngtojElTVHZbJalK5eyb8m+4KLm2eZA/5x++g/1s2zlMjq2dhgUpDyI6sbFVoI0\ncyfwDuBpoIsg5UhSTprWNAUBYayClLOhe0k3TWuaCjIvaaqLKiR8bvjY5xGcSRj5+ERE40maonp6\nesgcyYwdEEbMhsyRDL29vVFOS6oIvgVSUknbePfG4B6EHPQv6Kf17taIZiRVDkOCpJLW+WznmTcp\njscc6HymM5L5SJXEkCCppA2dGMq90zQYOjmBfpLOYEiQVNJmnD8j906nYMZ5E+gn6QyGBEklreGa\nBtifY6f9sPjaxZHMR6okhgRJJa3ljhbie+I59YnvjbPhixsimpFUOQwJkkpaIpGgdlYtHBpnh0NQ\nO6vWLZqlPDAkSCp5bfe1UbOzZuygcAhqdtaw5f4tBZmXNNUZEiSVvFgsRsfWDhpfaCT+WBxeBE4N\nv3gKeBHij8VpfKGR7Y9sZ/bs8e68ND6p51Ks+KsVXPmxK7lw0YW87eq3ceGiC7nyY1ey4q9WkHou\nNfZBpDIUVe0GScqrWCxG+8Pt9Pb20np3K088GlSBrJlVw/L65bT8MJoqkNlslk1f3vRmYaklwfND\nDPHa/tcY2jLEpp9v4sP3fdh6EZpyDAmSykoikWDztzeTPpimflM9D3z+Aeouj6Z6rIWlVOkMCZLK\nRuq5FKndwan9weODzL90PusfX0/V9CoAkguTJBcl8zbeRApLtT/cnrfxpWIzJEgqG8lF+Q0B5/K7\nwlJhZxDCzIbMPwaFpXxnhaYKb1yUpBAWlpI8kyCpjKRSKVKp4csNg4P09fUxd+5cqqqGLzckkyST\n+TnT0PlsJ6zIsdMc6Pw7C0tp6jAkSCobp4eAdDpNfX09qVSKurr837hoYSnJyw2Sykxvby+rV69m\n1apVAKxatYrVq1fT29ub13EsLCV5JkFSmchmszQ1NZHJZOjvf/Nege7ubrq7u3nkkUeora2lra0t\nL29DbLimgd37d8OcHDpZWEpTjGcSJJW8bDbL0qVL2bZt2xkB4XT9/f1s27aNZcuWkc1mJz2mhaUk\nQ4KkMtDU1MS+ffvG1ba7u5umpqZJj2lhKcmQIKnE9fT0kMlkcuqTyWTyco+ChaVU6QwJkkraxo0b\nR73EMJr+/n5aWye/X0GxC0tJxeaNi5JKWmfnxPYdmGi/sxWrsJRUCjyTIKmkDQ1NbN+BifYLc/td\nt7PkU0vYumMrL7/+MjNOzODl119m646tLPnUEm6/6/a8jSWVEkOCpJI2Y8bE9h2YaL8w937pXnb+\neCcrr13JJa9ewlD3EJe8egkrr13Jzh/v5N4v3Zu3saRS4uUGSSWtoaGB3bt359xv8eL87FdQ6P0Z\npFLimQRJJa2lpYV4PMf9CuJxNmyY/H4FxdifQSolhgRJJS2RSFBbW5tTn9ra/OxXUIz9GaRSElVI\nSAD3A/uAY8DzwJ2Am5pLyllbWxs1NTXjaltTU8OWLZPfr6CY+zNIpSKqkPA+YBrweeBq4M+APwK+\nGtF4kqawWCxGR0cHjY2No156iMfjNDY2sn17fvYrKOb+DFKpiCokPAqsBh4HeoGHgbuBWyMaT9IU\nF4vFaG9vZ8eOHTQ3N//uzEJNTQ3Nzc3s2LGD9vb2vG1oVOz9GaRSUMh3N1QDLxVwPElTUCKRYPPm\nzaTTaerr63nggQeoq6vL+zilsD+DVGyFunGxBvhT4DsFGk+SJqUU9mfo7e1l9W2rWXTDImqX1rLo\nhkWsvm219z2oYHI9k3An0DJGm+uA9GlfXwH8DHgA2JzjeJL0O6lUilQqBcDg4CDz589n/fr1VFVV\nAZBMJkkmk3kZq5j7M2SzWW5supF9r+zjjbo3YMWbr+3ev5sffepHzLtoHu1t7e7NoEhNy7H9pcOP\nc+kD3hj+/AqgHdgBfO4cfeqArhtuuIHq6uozXsjnf3pJGq/e3l6uv/76nG5ejMfj7NixY1Jvv8xm\nsyxduZR9S/bBuW6vGK482bG1w6BQQU4PyiMGBgZ48sknAeo585f0Scs1JOTi3QQBoRP4LG/WTgtT\nB3R1dXVFcm1RkibixhtvZNu2beNu39jYSHt7++TG/MSNbLty27kDwohD0PhCI+0PT25MlbeR+3OI\nICREdU/Cu4FtBGcV7gBiQHz4IUllodD7M/T09JA5khlfQACYDZkj7s2g6EQVEm4iuFnxw8B+4MDw\n4zcRjSdJeVfo/Rk23r2R/qtz3JthQT+td7s3g6IRVUj43vCxzx/+eN5pX0tS2Sjk/gydz3bCnBw7\nzYHOZ9ybQdGwdoMkjSGVSrF27VoOHz7MvHnzmD9/PvPmzePw4cOsXbv2LTeSTdTQiQnssTANhk66\nN4OiYaloSRpDod5lNeP8CeyxcApmnGdZHEXDMwmSVCIarmkI7uLKxX5YfO3k92aQwhgSJKlEtNzR\nQnxPbm8Ci++Ns+GLGyKakSqdIUGSSkQikaB2Vi0cGmeHQ1A7q3ZSmzdJ5+I9CZJUQtrua2PZymV0\nX9oNzxOUxRsk2I5uGlBFsO/tVVDzUg1bHpnc3gzSuRgSJKmExGIxfvr9n/LBD32QY68dg+NnNfhX\n4BhccOQCfvqLn+atNLYUxssNklRCstksN998M8eOhgSEEcfh2NFj3HLLLWSz2bzPweqTGuGZBEkq\nIU1NTezbt29cbbu7u2lqapp0vYgR2WyWpjVNZI5kgp0fz6o++chnHqF2Vi1t97VZVKpCeCZBkkpE\nT08PmUwmpz6ZTH5qN4xUn9x25Tb6P9L/1p0f50D/R/rZduU2lq1cFskZDJUeQ4IklYiNGzfmVJoa\noL+/n9bWydduaFrTNHZ5aoDZ0L2km6Y1TZMeU6XPkCBJJaKzc2I1GCbab4TVJzUaQ4IklYihoYnV\nYJhovxFWn9RoDAmSVCJmzJhYDYaJ9hth9UmNxpAgSSWioaFhQv0WL55c7QarT2o0hgRJKhEtLS3E\n4znWbojH2bBhcrUbrD6p0RgSJKlEJBIJamtrc+pTWzv52g1Wn9RoDAmSVELa2tqoqakZV9uamhq2\nbJl87QarT2o0hgRJKiGxWIyOjg4aGxtHvfQQj8dpbGxk+/bteandYPVJjcZtmSWpxMRiMdrb2+nt\n7aW1tZUnnniC7u5uampqWL58OS0tLXn/AW31SYXxTIIklaBUKsXatWs5fPgw8+bNY/78+cybN4/D\nhw+zdu1aUqlUXscbqT55cfpiztt/HrxCUHFyaPjjK3De/vO4OH0xP/2+1ScrhWcSJKkEJZNJkslk\nwcYbqT559KWjo7Y5OXSSoy8d5ZZbbqGjo8MiTxXAMwmSpAlVn9TUZ0iQpApXzOqTKm2GBEmqcMWs\nPqnSZkiQpApXrOqTKn2GBEmqcMWqPqnSZ0iQpApXrOqTKn1RhYSHgD7gdeAA8LfA5RGNJUmahGJV\nn1Tpiyok/D3w+8B84FNADfCTiMaSJE1CsapPqvRFtZnSPad9/iJwF/AgcD5wIqIxJUkTMFJ9Mpd3\nOOSj+qRKXyHuSZgFfAZox4AgSSWpGNUnVfqiDAl3Aa8Ch4H3Ap+OcCxJ0iSMVJ9csGABM2fODG0z\nc+ZMFixYkLfqkyp9uYSEO4GTYzzqTmv/deADwEeAN4CfEtQSkySVoFgsxp49e8hkMjQ3N7Nw4ULe\n9773sXDhQpqbm8lkMuzZs8eAUEFy+aF96fDjXPoIAsHZ3k1wb8KHgO0hr9cBXTfccAPV1dVnvFDo\nIieSJJWqVCr1lgqgAwMDPPnkkwD1QDqf4xXqN/v3EASI3wOeDHm9Dujq6uqirq4u5GVJkhQmnU5T\nX18PEYSEKN7dsHj48QvgZWAe0Ar8GtgRwXiSJCkCUdy4eAz4j8DjQAa4H3iW4CzC8QjGkyRJEYji\nTMJu4N9FcFxJklRA1m6QJEmhDAmSJCmUIUGSJIUyJEiSpFCGBEmSFMqQIEmSQhkSJElSqCj2SZAk\nadxSz6VI7Q7qEQweH6TvaB9zL55L1fQqAJILkyQXWcOnGAwJkqSiSi56MwSkD6ap31RP6lMp6i63\nlk+xeblBkiSFMiRIkoqut7eX1betZtWtq+BHsOrWVay+bTW9vb3FnlpF83KDJKlostksTWuayBzJ\n0H91P3w0eL6bbrr3d/PIZx6hdlYtbfe1EYvFijvZCmRIkCQVRTabZenKpexbsg+uC2kwB/rn9NN/\nqJ9lK5fRsbXDoFBgXm6QJBVF05qmICDMHqPhbOhe0k3TmqaCzEtvMiRIkgqup6eHzJHM2AFhxGzI\nHMl4j0KBGRIkSQW38e6NwT0IOehf0E/r3a0RzUhhDAmSpILrfLYT5uTYaQ50PtMZyXwUzpAgSSq4\noRNDuXeaBkMnJ9BPE2ZIkCQV3IzzZ+Te6RTMOG8C/TRhhgRJUsE1XNMA+3PstB8WX7s4kvkonCFB\nklRwLXe0EN8Tz6lPfG+cDV/cENGMFMaQIEkquEQiQe2sWjg0zg6HoHZWLYlEIspp6SyGBElSUbTd\n10bNzpqxg8IhqNlZw5b7txRkXnqTIUGSVBSxWIyOrR00vtBI/LE4vAicGn7xFPAixB+L0/hCI9sf\n2c7s2ePdeUn5Yu0GSVLRxGIx2h9up7e3l9a7W3ni0SfoPtJNzawaltcvp+WHLV5iKCJDgiSp6BKJ\nBJu/vZn0wTT1m+p54PMPUHd5XbGnVfG83CBJkkIZEiRJUqioLzfMBHYB1wAfAJ6NeDxJUplJPZci\ntTsFwODxQeZfOp/1j6+nanoVAMmFSZKLksWcYsWKOiR8HfgNQUiQJOktkosMAaUqyssNHwNWAF+M\ncAxJkhSRqM4kxIBNwM3A6xGNIUmSIhTFmYRpwPeAvwHSERxfkiQVQC5nEu4EWsZo0wAsAy4EvnbW\na9PGGmDdunVUV1ef8VwymSSZ9FqVJEmpVIpUKnXGcwMDA5GNN+YP7tNcOvw4lz6gDfgEb26uCXA+\ncAL4AdAc0q8O6Orq6qKuzs0zJEkar3Q6TX19PUA9eT6Dn8uZhJeGH2NZC3zltK/fDTwKrCJ4O6Qk\nSSoDUdy4+OJZXx8b/tgNHIhgPEmSFIFC7bh4auwmkiSplBSiwFMvwT0JkiSpjFi7QZIkhTIkSJKk\nUIW43CBJ0qhOf+//4OAgfX19zJ07l6qq4QJP7pdTNIYESVJRnR4CRt7zn0ql3DenBHi5QZIkhTIk\nSJKkUIYESZIUypAgSZJCGRIkSVIoQ4IkSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIUypAg\nSZJCGRIkSVIoQ4IkSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCGRIkSVIoQ4Ik\nSQplSJAkSaGiCgm9wMmzHl+NaCxJkhSB6REd9xSwAfjfpz33WkRjSZKkCEQVEgBeBQ5FeHxJkhSh\nKO9J+BJwGHga+DIwI8KxJElSnkV1JuEvgS7gZeCDwP8E3gv8l4jGkyRJeZbLmYQ7eevNiGc/6obb\n3gM8CewG7gf+CPhD4JJ8TFqSJEUvlzMJ9wI/GqNN3yjP7xr+eBXQOVrndevWUV1dfcZzyWSSZDI5\n3jlKkjRlpVIpUqnUGc8NDAxENl4uIeGl4cdE/NvhjwfP1eiee+6hrq7uXE0kSapYYb84p9Np6uvr\nIxkvinsSlgDXA+3AUaAB+Cbw/4D9EYwnSZIiEEVIeANYBbQAMwkuQWwCvh7BWJIkKSJRhISnCc4k\nSJKkMmbtBkmSFMqQIEmSQhkSJElSKEOCJEkKZUiQJEmhDAmSJCmUIUGSJIUyJEiSpFCGBEmSFMqQ\nIEmSQhkSJElSKEOCJEkKZUiQJEmhDAmSJCmUIUGSJIUyJEiSpFCGBEmSFMqQIEmSQhkSJElSKEOC\nJEkKZUiQJEmhDAmSJCmUIUGSJIUyJEiSpFCGBEmSFMqQIEmSQhkSJElSKEOCJEkKFWVI+A/ALuAY\n8C/AjyMcSxq3VCpV7CmoQrjWVO6iCgmfAv4WuB+4BlgK/DCisaSc+I1bheJaU7mbHtEx/xL4IvDd\n057/dQRjSZKkiERxJqEOuAI4BTwNHAC2Au+PYKyiK/RvCvkcbzLHyrVvLu3H03asNlPxNzjXWv7b\nu9bCudby375c11oUIWHe8Mc7gVbg48DLwDbgkgjGKyr/M+W/fbn+Z4qaay3/7V1r4Vxr+W9frmst\nl8sNdwItY7Rp4M3g8RfAg8OfNwP7gd8HNo3Wee/evTlMpzQMDAyQTqfLcrzJHCvXvrm0H0/bsdqc\n6/VC/5vli2st/+1da+GKudZGfg5M9OdBJa61KH92Tsuh7aXDj3PpI7hJ8e+ADwHbT3ttJ/BzYENI\nv8uBTuDdOcxHkiQFfkPwi/rBfB40lzMJLw0/xtIFvAHU8mZImAEkCEJEmIMEf7jLc5iPJEkKHCTP\nASFK3wJeBG4C3gfcRzD5i4s5KUmSVHzTgW8A/cBR4FFgQVFnJEmSJEmSJEmSJEmS9FbvBJ4i2MFx\nN/CnxZ2OprD3EGz89U/AM8B/KupsNNU9CBwB/m+xJ6Ip6+NABvgV8IdFnktkzgOqhj9/O7APuKx4\n09EUFicoSgbBGnuRYM1JUfg9gm/ihgRFYTrwzwTbC1xIEBRm5XKAKEtF59NJYHD48wuAodO+lvKp\nH3h2+PN/IfgtL6f/VFIO/gF4tdiT0JS1mOCs6EGCdbYV+EguByiXkADBHgvPAC8QVJn8bXGnowpw\nHcGupL8p9kQkaQKu4MzvX/vJcWfjcgoJR4FrgfcCtwFXFXc6muIuBb4PfL7YE5GkCTo12QNEFRKW\nAw8TJJiTwM0hbf4E6AFeB35JUOthxO0ENymmCbZ0Pt0hghvLPpDXGatcRbHWZgI/Ab5KUHNEgui+\nr036G7lZwhLkAAABtklEQVSmrMmuuQOceebgPZTImdGPEpSJvoXgD/bJs17/NEF9h9UE2zZ/i+Dy\nwXtGOd5s4KLhzy8iuGb8vvxOWWUq32ttGpAC/kcUk1VZy/daG9GINy4q3GTX3HSCmxWvIHiX4K+A\nSyKfdY7C/mC7gL8+67k9BL+5hakjSOD/OPxozucENWXkY619CDhB8Nve08OP9+dxjpoa8rHWINiy\n/hDwGsE7aerzNUFNORNdc58geIfDr4E1kc1uEs7+g72N4N0JZ582uYfgMoI0Ua41FYprTYVWlDVX\njBsX3wWcD2TPev4QwXvUpXxxralQXGsqtIKsuXJ6d4MkSSqgYoSEwwTXfGNnPR8j2PBByhfXmgrF\ntaZCK8iaK0ZI+Fegi7fu+nQTsL3w09EU5lpTobjWVGhlvebeQbCPwQcIbrZYN/z5yNsyVhG8baMZ\nWEDwto1XGPutQtLZXGsqFNeaCm3KrrlGgj/QSYLTISOfbz6tzR8TbAAxCHRy5gYQ0ng14lpTYTTi\nWlNhNeKakyRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJKgP/H6eOhf1M\nP/5eAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-6,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"green\")\n", + "errorbar(fqd, p2, yerr=p2e, fmt='o', ms=10, color=\"black\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 2.269e+03 1.198e+01 inf -- 3.072e+02 -- -0.016924 -0.660135 -1.75788 -2.02078 -2.59034 -2.94206 -6.09489 0.1 0.1 0.1 0.1 0.1 0.1 0.1\n", + " 3 1.973e+01 1.431e+01 2.169e+00 -- 3.094e+02 -- 0.013775 -0.617135 -1.71294 -1.98677 -2.55944 -2.92003 -5.79489 0.0404501 0.0959497 0.114729 0.117623 0.0757218 0.113097 -2.34566\n", + " 5 1.376e+02 1.686e+01 2.089e+00 -- 3.115e+02 -- 0.040954 -0.582314 -1.67663 -1.9585 -2.5335 -2.90131 -6.09489 -0.00586333 0.0932507 0.124785 0.131208 0.0569706 0.123911 1.99582\n", + " 7 4.464e+02 1.966e+01 1.915e+00 -- 3.134e+02 -- 0.064849 -0.55355 -1.64669 -1.9347 -2.51145 -2.88524 -5.79489 -0.0424971 0.0914217 0.131924 0.142018 0.0422318 0.133023 -0.334542\n", + " 9 3.480e+01 2.272e+01 1.812e+00 -- 3.152e+02 -- 0.0858141 -0.529439 -1.62163 -1.91445 -2.49256 -2.87136 -5.49489 -0.0719278 0.0901783 0.137158 0.150801 0.0304433 0.140833 2.03211\n", + " 11 1.002e+01 2.607e+01 1.783e+00 -- 3.170e+02 -- 0.104218 -0.509001 -1.60042 -1.89706 -2.47621 -2.85932 -5.19489 -0.0958829 0.089339 0.141038 0.158083 0.0208371 0.147639 1.24275\n", + " 13 7.968e+03 2.974e+01 1.627e+00 -- 3.186e+02 -- 0.120402 -0.491519 -1.58231 -1.88202 -2.46198 -2.8488 -4.89489 -0.115613 0.088809 0.143973 0.164209 0.0130572 0.153636 -0.00200163\n", + " 15 7.700e+00 3.372e+01 1.748e+00 -- 3.204e+02 -- 0.134664 -0.476455 -1.56672 -1.86894 -2.44956 -2.83954 -4.59489 -0.132041 0.088517 0.146286 0.169375 0.00677842 0.158969 1.59295\n", + " 17 2.375e+01 3.806e+01 2.026e+00 -- 3.224e+02 -- 0.147265 -0.463405 -1.55325 -1.85749 -2.43853 -2.83144 -4.29489 -0.145779 0.0883846 0.147915 0.173914 0.00155918 0.163793 0.96984\n", + " 19 1.222e+01 4.277e+01 1.856e+00 -- 3.243e+02 -- 0.158428 -0.452038 -1.54155 -1.84743 -2.4288 -2.82406 -4.10712 -0.157385 0.0884563 0.149176 0.177908 -0.0021446 0.168153 0.95096\n", + " 21 3.757e+00 4.786e+01 1.686e+00 -- 3.260e+02 -- 0.168341 -0.442099 -1.53136 -1.83856 -2.42015 -2.81739 -3.99633 -0.167232 0.0886703 0.150095 0.181462 -0.00476573 0.172153 0.946458\n", + " 23 1.719e+00 5.335e+01 1.565e+00 -- 3.275e+02 -- 0.17716 -0.433379 -1.52245 -1.8307 -2.41246 -2.81134 -3.9178 -0.175626 0.0889884 0.150755 0.184625 -0.00655603 0.175857 0.945111\n", + " 25 7.670e-01 5.926e+01 1.462e+00 -- 3.290e+02 -- 0.185022 -0.425705 -1.51464 -1.82371 -2.40559 -2.80587 -3.85771 -0.18281 0.0893847 0.151217 0.187442 -0.00768333 0.179309 0.944998\n", + " 27 3.271e-01 6.558e+01 1.371e+00 -- 3.304e+02 -- 0.192044 -0.418936 -1.50777 -1.81749 -2.39945 -2.80089 -3.80967 -0.188981 0.0898403 0.151526 0.189953 -0.00827265 0.182546 0.945473\n", + " 29 2.839e-01 7.234e+01 1.288e+00 -- 3.316e+02 -- 0.198326 -0.412951 -1.50172 -1.81194 -2.39395 -2.79637 -3.77014 -0.194296 0.0903402 0.151717 0.192191 -0.0084207 0.185594 0.946256\n", + " 31 6.344e-01 7.952e+01 1.212e+00 -- 3.328e+02 -- 0.203957 -0.407649 -1.49638 -1.80697 -2.38902 -2.79224 -3.73694 -0.198885 0.0908733 0.151818 0.194187 -0.00820387 0.188473 0.9472\n", + " 33 1.008e+00 8.711e+01 1.140e+00 -- 3.340e+02 -- 0.20901 -0.402946 -1.49167 -1.80251 -2.38459 -2.78847 -3.70862 -0.202854 0.0914304 0.151849 0.195966 -0.00768338 0.1912 0.948221\n", + " 35 1.430e+00 9.512e+01 1.074e+00 -- 3.351e+02 -- 0.213553 -0.398767 -1.4875 -1.79849 -2.3806 -2.78502 -3.68416 -0.206293 0.0920046 0.151828 0.197549 -0.00690885 0.193787 0.949267\n", + " 37 1.972e+00 1.035e+02 1.010e+00 -- 3.361e+02 -- 0.217642 -0.395048 -1.48381 -1.79488 -2.37701 -2.78186 -3.66283 -0.209276 0.0925904 0.151767 0.198956 -0.00592089 0.196245 0.950302\n", + " 38 1.386e+01 2.586e+03 1.075e+01 -- 3.468e+02 -- 0.254492 -0.361933 -1.45115 -1.76223 -2.34466 -2.75279 -3.47522 -0.235177 0.0985198 0.150868 0.211428 0.00575786 0.2196 0.960307\n", + " 40 4.847e+00 1.291e+03 4.830e-01 -- 3.473e+02 -- 0.254339 -0.36196 -1.45129 -1.7616 -2.34565 -2.75065 -3.47325 -0.238184 0.0984132 0.154637 0.207337 0.0137373 0.221423 0.959887\n", + " 42 2.820e+00 7.911e+02 2.689e-01 -- 3.476e+02 -- 0.254314 -0.362014 -1.45138 -1.76102 -2.34642 -2.7488 -3.47177 -0.240479 0.0987825 0.157405 0.204131 0.0203959 0.222522 0.958597\n", + " 44 1.927e+00 5.366e+02 1.843e-01 -- 3.478e+02 -- 0.254352 -0.362079 -1.45146 -1.76045 -2.34705 -2.74718 -3.47058 -0.24227 0.0993579 0.159522 0.201533 0.0261467 0.223117 0.956931\n", + " 45 6.846e-01 2.491e+03 7.144e-01 -- 3.470e+02 -- 0.255087 -0.362762 -1.45206 -1.75508 -2.35235 -2.73284 -3.4608 -0.256273 0.106036 0.17597 0.180236 0.0765365 0.225273 0.938514\n", + " 47 3.859e-01 7.440e+02 1.045e+00 -- 3.481e+02 -- 0.255642 -0.362946 -1.45188 -1.75441 -2.35202 -2.735 -3.46127 -0.253243 0.107817 0.170909 0.185077 0.0713684 0.20985 0.938462\n", + " 49 2.428e-01 4.740e+02 3.238e-01 -- 3.484e+02 -- 0.255958 -0.36305 -1.45177 -1.75394 -2.35178 -2.73606 -3.46158 -0.25133 0.108819 0.167827 0.187945 0.0689457 0.201752 0.937949\n", + " 50 1.845e+00 3.237e+04 3.382e+00 -- 3.450e+02 -- 0.258014 -0.363678 -1.45096 -1.74999 -2.35001 -2.74182 -3.46363 -0.23749 0.114761 0.147522 0.2072 0.0566519 0.152758 0.930353\n", + " 52 5.341e-01 2.738e+03 3.310e+00 -- 3.483e+02 -- 0.256859 -0.363253 -1.45121 -1.74947 -2.35141 -2.73938 -3.46259 -0.241519 0.110174 0.1534 0.199686 0.0671039 0.167388 0.929964\n", + " 54 2.673e-01 4.258e+02 4.126e-01 -- 3.488e+02 -- 0.256513 -0.363117 -1.45131 -1.74933 -2.35166 -2.73828 -3.46219 -0.242924 0.108757 0.155979 0.197112 0.0706881 0.173906 0.929109\n", + " 56 1.484e-01 7.070e+02 1.233e-01 -- 3.489e+02 -- 0.256358 -0.363054 -1.45135 -1.74924 -2.35169 -2.73765 -3.46198 -0.243691 0.108123 0.157394 0.195813 0.0725777 0.177563 0.928277\n", + " 57 2.633e+00 1.761e+05 5.893e+00 -- 3.430e+02 -- 0.255689 -0.362752 -1.45153 -1.74846 -2.35114 -2.73373 -3.46071 -0.248243 0.105285 0.165654 0.188899 0.0833473 0.19847 0.920537\n", + " 59 5.986e-01 4.834e+03 6.298e+00 -- 3.493e+02 -- 0.25881 -0.363072 -1.45138 -1.74823 -2.34996 -2.73665 -3.46097 -0.236008 0.109215 0.161791 0.19747 0.0614059 0.167187 0.920664\n", + " 61 1.056e-01 1.057e+04 3.624e-01 -- 3.497e+02 -- 0.259231 -0.363167 -1.45134 -1.74818 -2.34961 -2.73738 -3.46105 -0.234491 0.110247 0.160667 0.199701 0.0577301 0.160365 0.920596\n", + " 63 9.832e-02 1.198e+04 8.624e-02 -- 3.497e+02 -- 0.259256 -0.363199 -1.45132 -1.74815 -2.34952 -2.73761 -3.46108 -0.234434 0.110544 0.160282 0.200426 0.0572685 0.158672 0.920487\n", + " 65 1.477e-01 1.320e+04 5.481e-02 -- 3.498e+02 -- 0.259155 -0.363209 -1.45131 -1.74812 -2.34952 -2.73767 -3.46109 -0.234836 0.110592 0.160145 0.20064 0.0578316 0.158622 0.920373\n", + " 66 5.254e-01 1.244e+05 1.134e+00 -- 3.509e+02 -- 0.257792 -0.363238 -1.45127 -1.74783 -2.34977 -2.73779 -3.46112 -0.240158 0.110293 0.159591 0.201062 0.0663719 0.163096 0.919291\n", + " 68 2.702e-02 4.790e+05 6.404e-01 -- 3.516e+02 -- 0.256458 -0.363212 -1.45128 -1.74783 -2.34996 -2.7376 -3.4611 -0.248024 0.109945 0.159825 0.200359 0.0698593 0.166007 0.919278\n", + " 70 7.753e-03 5.328e+05 5.502e-02 -- 3.516e+02 -- 0.256548 -0.363213 -1.45128 -1.74783 -2.34995 -2.73761 -3.4611 -0.247354 0.109964 0.159811 0.200397 0.0696895 0.165854 0.919275\n", + " 71 4.990e-02 5.349e+08 2.391e+00 -- 3.540e+02 -- 0.256515 -0.363211 -1.45128 -1.74782 -2.34996 -2.73759 -3.4611 -0.246413 0.109926 0.159825 0.200321 0.0702298 0.166204 0.919243\n", + " 73 1.883e-01 1.908e+08 7.849e-01 -- 3.548e+02 -- 0.256638 -0.363212 -1.45128 -1.74782 -2.34995 -2.7376 -3.4611 -0.245184 0.109938 0.159816 0.200349 0.0700951 0.166094 0.919244\n", + " 75 3.505e-01 1.280e+10 5.592e+00 -- 3.492e+02 -- 0.256429 -0.363212 -1.45128 -1.74782 -2.34996 -2.73759 -3.4611 -0.2498 0.109944 0.15982 0.200324 0.0701695 0.16617 0.919243\n", + " 76 7.399e-01 4.729e+08 1.154e+01 -- 3.377e+02 -- 0.255205 -0.363227 -1.45127 -1.74784 -2.34981 -2.73775 -3.46111 -0.162247 0.110105 0.15966 0.201149 0.0677482 0.164465 0.919251\n", + " 78 1.590e-01 5.754e+06 1.469e+01 -- 3.524e+02 -- 0.253232 -0.363205 -1.45128 -1.74785 -2.34999 -2.73758 -3.46109 -0.174252 0.109807 0.15986 0.200551 0.0708851 0.16699 0.919246\n", + " 80 5.807e-02 1.303e+07 7.214e-01 -- 3.531e+02 -- 0.253726 -0.36321 -1.45127 -1.74785 -2.34994 -2.73762 -3.4611 -0.171481 0.109878 0.159812 0.200693 0.0701441 0.166393 0.919247\n", + " 82 6.557e-03 1.579e+07 9.480e-02 -- 3.532e+02 -- 0.253613 -0.363209 -1.45127 -1.74785 -2.34995 -2.73761 -3.4611 -0.172477 0.109861 0.159824 0.200658 0.0703205 0.166534 0.919247\n", + " 84 6.675e-03 1.765e+07 5.646e-02 -- 3.532e+02 -- 0.253648 -0.363209 -1.45127 -1.74785 -2.34995 -2.73761 -3.4611 -0.172493 0.109866 0.15982 0.200667 0.0702744 0.166497 0.919247\n", + " 86 1.405e-02 1.962e+07 5.316e-02 -- 3.533e+02 -- 0.253645 -0.363209 -1.45127 -1.74785 -2.34995 -2.73761 -3.4611 -0.172608 0.109865 0.159821 0.200664 0.070284 0.166504 0.919247\n", + " 87 2.371e+00 3.577e+10 6.090e-01 -- 3.539e+02 -- 0.25362 -0.36321 -1.45127 -1.74785 -2.34995 -2.73762 -3.4611 -0.175034 0.10987 0.159819 0.200659 0.0702718 0.166492 0.919246\n", + " 91 6.875e-01 6.345e+10 1.055e+00 -- 3.528e+02 -- 0.253591 -0.36321 -1.45127 -1.74785 -2.34995 -2.73762 -3.4611 -0.174619 0.109871 0.159819 0.200661 0.0702715 0.166492 0.919246\n", + " 94 8.161e+00 6.043e+11 1.715e+01 -- 3.357e+02 -- 0.253529 -0.36321 -1.45127 -1.74785 -2.34995 -2.73762 -3.4611 -0.175819 0.109861 0.159819 0.200658 0.0702745 0.16649 0.919246\n", + " 96 2.611e-01 3.717e+08 9.546e+00 -- 3.452e+02 -- 0.257412 -0.363213 -1.45128 -1.74782 -2.34996 -2.73763 -3.4611 -0.319306 0.109793 0.159798 0.200183 0.0701731 0.16621 0.919236\n", + " 98 3.737e-02 1.435e+07 7.911e+00 -- 3.531e+02 -- 0.258178 -0.363226 -1.45127 -1.74781 -2.34985 -2.73772 -3.46111 -0.312069 0.109964 0.159681 0.20055 0.0683407 0.164732 0.919241\n", + " 100 4.006e-03 2.110e+07 1.702e-01 -- 3.533e+02 -- 0.25807 -0.363224 -1.45127 -1.74782 -2.34987 -2.73771 -3.46111 -0.312793 0.10994 0.159697 0.200499 0.0685961 0.164939 0.919241\n", + " 102 5.577e-03 2.351e+07 5.453e-02 -- 3.534e+02 -- 0.258084 -0.363224 -1.45127 -1.74782 -2.34987 -2.73771 -3.46111 -0.312702 0.109943 0.159695 0.200505 0.0685686 0.164916 0.919241\n", + " 104 6.916e-03 2.613e+07 5.344e-02 -- 3.534e+02 -- 0.258079 -0.363224 -1.45127 -1.74782 -2.34987 -2.73771 -3.46111 -0.312527 0.109942 0.159696 0.200505 0.0685733 0.16492 0.919241\n", + " 105 6.197e+00 8.850e+11 1.956e+01 -- 3.339e+02 -- 0.258065 -0.363224 -1.45127 -1.74782 -2.34987 -2.73771 -3.46111 -0.314689 0.109936 0.159698 0.200489 0.0686299 0.164957 0.91924\n", + " 106 2.457e+00 5.060e+05 4.423e+01 -- 2.896e+02 -- 0.25217 -0.363236 -1.45128 -1.74787 -2.35122 -2.73772 -3.46109 -2.26495 0.107765 0.159324 0.193074 0.0661005 0.165589 0.919229\n", + " 108 9.160e-01 1.076e+06 4.129e+01 -- 3.309e+02 -- 0.190213 -0.363421 -1.45121 -1.74789 -2.34962 -2.73898 -3.46119 -2.20299 0.109386 0.15792 0.199777 0.0502385 0.149847 0.919513\n", + " 110 7.545e-01 1.842e+06 3.241e+00 -- 3.342e+02 -- 0.172789 -0.363413 -1.45121 -1.7479 -2.34968 -2.73894 -3.46119 -2.16833 0.109263 0.157968 0.199848 0.0508925 0.150441 0.919501\n", + " 112 6.604e-01 2.413e+06 1.815e+00 -- 3.360e+02 -- 0.159752 -0.363413 -1.45121 -1.74791 -2.34967 -2.73895 -3.46119 -2.14156 0.109248 0.157963 0.200007 0.0508058 0.150387 0.9195\n", + " 114 5.952e-01 3.001e+06 1.236e+00 -- 3.372e+02 -- 0.149202 -0.363414 -1.45121 -1.74791 -2.34966 -2.73896 -3.46119 -2.11865 0.10925 0.157953 0.20014 0.0506565 0.150272 0.9195\n", + " 116 5.401e-01 3.623e+06 9.191e-01 -- 3.381e+02 -- 0.140322 -0.363414 -1.4512 -1.74792 -2.34964 -2.73897 -3.46119 -2.09844 0.109254 0.157944 0.200248 0.0505214 0.150164 0.9195\n", + " 118 4.946e-01 4.287e+06 7.180e-01 -- 3.389e+02 -- 0.132742 -0.363415 -1.4512 -1.74792 -2.34963 -2.73898 -3.46119 -2.08012 0.10926 0.157935 0.200335 0.0504064 0.150071 0.919501\n", + " 120 4.554e-01 5.002e+06 5.840e-01 -- 3.394e+02 -- 0.126177 -0.363416 -1.4512 -1.74792 -2.34962 -2.73898 -3.46119 -2.06319 0.109265 0.157928 0.200408 0.0503087 0.14999 0.919501\n", + " 122 4.163e-01 5.781e+06 4.883e-01 -- 3.399e+02 -- 0.120431 -0.363416 -1.4512 -1.74792 -2.34961 -2.73899 -3.46119 -2.04749 0.10927 0.157922 0.200469 0.0502247 0.14992 0.919501\n", + " 124 3.856e-01 6.633e+06 4.091e-01 -- 3.403e+02 -- 0.115418 -0.363417 -1.4512 -1.74793 -2.34961 -2.739 -3.46119 -2.03366 0.109275 0.157917 0.200521 0.0501519 0.149858 0.919501\n", + " 126 3.459e-01 7.569e+06 3.539e-01 -- 3.407e+02 -- 0.110968 -0.363417 -1.4512 -1.74793 -2.3496 -2.739 -3.46119 -2.02099 0.109279 0.157912 0.200566 0.0500901 0.149806 0.919501\n", + " 128 3.257e-01 8.604e+06 2.868e-01 -- 3.410e+02 -- 0.10713 -0.363417 -1.4512 -1.74793 -2.34959 -2.739 -3.4612 -2.01203 0.109283 0.157908 0.200604 0.0500359 0.14976 0.919502\n", + " 130 2.677e-01 9.741e+06 2.645e-01 -- 3.412e+02 -- 0.10364 -0.363418 -1.4512 -1.74793 -2.34959 -2.73901 -3.4612 -2.00265 0.109286 0.157905 0.200636 0.0499941 0.149724 0.919502\n", + " 132 2.564e-01 1.094e+07 2.420e-01 -- 3.415e+02 -- 0.100866 -0.363418 -1.4512 -1.74793 -2.34959 -2.73901 -3.4612 -1.991 0.109289 0.157902 0.200663 0.0499572 0.14969 0.919502\n", + " 134 2.658e-01 1.231e+07 2.111e-01 -- 3.417e+02 -- 0.0982797 -0.363418 -1.4512 -1.74793 -2.34958 -2.73901 -3.4612 -1.98223 0.109291 0.157899 0.200689 0.0499203 0.149658 0.919502\n", + " 136 2.061e-01 1.381e+07 2.284e-01 -- 3.419e+02 -- 0.095667 -0.363418 -1.4512 -1.74793 -2.34958 -2.73901 -3.4612 -1.97018 0.109293 0.157897 0.200713 0.0498902 0.149631 0.919502\n", + " 138 2.448e-01 1.549e+07 1.683e-01 -- 3.421e+02 -- 0.0936952 -0.363418 -1.4512 -1.74793 -2.34958 -2.73902 -3.4612 -1.96336 0.109297 0.157894 0.200734 0.0498553 0.1496 0.919502\n", + " 140 1.932e-01 1.745e+07 1.492e-01 -- 3.422e+02 -- 0.0914011 -0.363419 -1.4512 -1.74793 -2.34957 -2.73902 -3.4612 -1.96101 0.109298 0.157892 0.200752 0.0498304 0.14958 0.919502\n", + " 142 1.543e-01 1.951e+07 1.616e-01 -- 3.424e+02 -- 0.0896351 -0.363419 -1.4512 -1.74793 -2.34957 -2.73902 -3.4612 -1.95324 0.109299 0.157891 0.200767 0.0498145 0.149565 0.919502\n", + " 144 1.977e-01 2.183e+07 1.088e-01 -- 3.425e+02 -- 0.0882519 -0.363419 -1.4512 -1.74793 -2.34957 -2.73902 -3.4612 -1.95169 0.109301 0.157889 0.200779 0.0497925 0.149546 0.919502\n", + " 146 2.223e-01 2.449e+07 1.198e-01 -- 3.426e+02 -- 0.0865074 -0.363419 -1.4512 -1.74793 -2.34957 -2.73902 -3.4612 -1.95019 0.109302 0.157888 0.200791 0.0497808 0.149537 0.919502\n", + " 148 1.483e-01 2.753e+07 1.474e-01 -- 3.428e+02 -- 0.084584 -0.363419 -1.4512 -1.74793 -2.34956 -2.73902 -3.4612 -1.94508 0.109302 0.157888 0.200805 0.0497691 0.149528 0.919502\n", + " 150 1.690e-01 3.082e+07 8.624e-02 -- 3.429e+02 -- 0.0833299 -0.363419 -1.4512 -1.74793 -2.34956 -2.73902 -3.4612 -1.9461 0.109303 0.157886 0.200815 0.0497502 0.149512 0.919502\n", + " 152 1.762e-01 3.449e+07 1.188e-01 -- 3.430e+02 -- 0.0819216 -0.363419 -1.4512 -1.74793 -2.34956 -2.73902 -3.4612 -1.94249 0.109303 0.157886 0.200824 0.049743 0.149507 0.919502\n", + " 154 1.238e-01 3.866e+07 1.240e-01 -- 3.431e+02 -- 0.0804781 -0.363419 -1.4512 -1.74793 -2.34956 -2.73902 -3.4612 -1.93818 0.109303 0.157885 0.200835 0.0497304 0.149497 0.919502\n", + " 156 1.139e-01 4.323e+07 8.517e-02 -- 3.432e+02 -- 0.079482 -0.363419 -1.4512 -1.74793 -2.34956 -2.73902 -3.4612 -1.93786 0.109305 0.157884 0.200843 0.049715 0.149485 0.919503\n", + " 157 4.942e-02 2.466e+07 9.311e-01 -- 3.441e+02 -- 0.0704267 -0.363418 -1.4512 -1.74794 -2.34957 -2.73903 -3.4612 -1.77759 0.1093 0.15788 0.200952 0.0496793 0.149428 0.919498\n", + " 159 8.388e-02 3.418e+07 1.894e-01 -- 3.443e+02 -- 0.0700786 -0.36342 -1.4512 -1.74794 -2.34955 -2.73904 -3.4612 -1.77245 0.109321 0.157867 0.200998 0.0494922 0.149273 0.9195\n", + " 160 4.666e-01 2.671e+08 9.403e-01 -- 3.453e+02 -- 0.0642006 -0.363422 -1.4512 -1.74794 -2.34953 -2.73906 -3.4612 -1.69928 0.109349 0.157846 0.201123 0.0492057 0.149018 0.9195\n", + " 161 6.172e+00 9.031e+05 6.135e+00 -- 3.391e+02 -- 0.0572531 -0.363415 -1.4512 -1.74794 -2.34959 -2.73898 -3.46119 -2.49218 0.1092 0.157938 0.20046 0.0506396 0.150192 0.919509\n", + " 163 1.463e+01 1.084e+06 1.303e+00 -- 3.404e+02 -- 0.0219138 -0.363415 -1.4512 -1.74794 -2.34957 -2.739 -3.46119 -2.43778 0.109224 0.15792 0.200646 0.0504673 0.149985 0.919507\n", + " 165 2.912e+01 1.297e+06 9.553e-01 -- 3.414e+02 -- -0.0101463 -0.363418 -1.4512 -1.74794 -2.34954 -2.73902 -3.4612 -2.38182 0.109267 0.157892 0.200829 0.0501465 0.149663 0.919507\n", + " 167 6.809e+00 1.524e+06 7.449e-01 -- 3.421e+02 -- -0.0396938 -0.36342 -1.4512 -1.74795 -2.34952 -2.73904 -3.4612 -2.32367 0.109303 0.15787 0.200977 0.0498882 0.1494 0.919507\n", + " 169 3.698e+00 1.765e+06 5.996e-01 -- 3.427e+02 -- -0.0667198 -0.363421 -1.4512 -1.74795 -2.3495 -2.73905 -3.4612 -2.26425 0.109332 0.157852 0.201095 0.0496903 0.149192 0.919507\n", + " 171 2.425e+00 2.021e+06 4.993e-01 -- 3.432e+02 -- -0.0913899 -0.363422 -1.4512 -1.74795 -2.34949 -2.73907 -3.4612 -2.20346 0.109355 0.157838 0.201191 0.0495391 0.149027 0.919507\n", + " 173 1.738e+00 2.292e+06 4.250e-01 -- 3.436e+02 -- -0.113555 -0.363423 -1.4512 -1.74795 -2.34948 -2.73908 -3.4612 -2.14116 0.109374 0.157827 0.20127 0.0494225 0.148895 0.919506\n", + " 175 1.307e+00 2.583e+06 3.649e-01 -- 3.440e+02 -- -0.133292 -0.363424 -1.4512 -1.74795 -2.34947 -2.73908 -3.4612 -2.0796 0.10939 0.157817 0.201335 0.049332 0.148788 0.919506\n", + " 177 1.047e+00 2.895e+06 3.223e-01 -- 3.443e+02 -- -0.150718 -0.363424 -1.4512 -1.74795 -2.34946 -2.73909 -3.4612 -2.01741 0.109403 0.15781 0.201391 0.0492627 0.148701 0.919505\n", + " 179 8.090e-01 3.236e+06 2.859e-01 -- 3.446e+02 -- -0.166497 -0.363425 -1.4512 -1.74795 -2.34945 -2.73909 -3.4612 -1.95757 0.109414 0.157804 0.201439 0.0492083 0.14863 0.919505\n", + " 181 6.080e-01 3.601e+06 2.585e-01 -- 3.449e+02 -- -0.179967 -0.363425 -1.4512 -1.74795 -2.34945 -2.7391 -3.4612 -1.89744 0.109423 0.157799 0.20148 0.0491661 0.148572 0.919504\n", + " 182 2.539e-01 3.660e+07 2.576e+00 -- 3.475e+02 -- -0.289393 -0.363427 -1.45119 -1.74796 -2.34941 -2.73913 -3.46121 -1.30909 0.109498 0.157756 0.201827 0.0488447 0.148088 0.919499\n", + " 184 4.016e-01 5.855e+07 2.221e-01 -- 3.477e+02 -- -0.282045 -0.363425 -1.45119 -1.74796 -2.34943 -2.73912 -3.46121 -1.30097 0.10948 0.157768 0.201786 0.0490279 0.148229 0.919497\n", + " 186 3.091e-01 6.932e+07 2.593e-03 -- 3.477e+02 -- -0.27144 -0.363425 -1.45119 -1.74796 -2.34943 -2.73912 -3.46121 -1.35322 0.10948 0.15777 0.201757 0.0490685 0.148251 0.919497\n", + " 187 2.851e-01 7.479e+06 1.835e+00 -- 3.458e+02 -- -0.321756 -0.363424 -1.4512 -1.74796 -2.34944 -2.73911 -3.46121 -1.77155 0.109467 0.157782 0.201631 0.0492586 0.148401 0.919498\n", + " 188 2.336e-01 2.433e+07 2.960e-01 -- 3.455e+02 -- -0.374916 -0.363436 -1.45119 -1.74795 -2.34932 -2.73919 -3.46121 -1.26642 0.109638 0.157681 0.202071 0.0478576 0.147162 0.919505\n", + " 190 1.438e-01 1.271e+07 1.388e+00 -- 3.469e+02 -- -0.381149 -0.363427 -1.45119 -1.74796 -2.3494 -2.73914 -3.46121 -1.23684 0.109523 0.157749 0.201855 0.0489144 0.148006 0.919497\n", + " 192 1.187e-01 1.489e+07 1.009e-01 -- 3.470e+02 -- -0.380686 -0.363426 -1.45119 -1.74796 -2.34942 -2.73913 -3.46121 -1.21905 0.109507 0.157758 0.201826 0.049072 0.148126 0.919496\n", + " 193 2.616e+00 1.803e+07 9.241e-01 -- 3.480e+02 -- -0.385652 -0.363423 -1.45119 -1.74796 -2.34943 -2.73912 -3.46121 -1.07438 0.109491 0.157771 0.201807 0.0493538 0.148299 0.919493\n", + " 194 5.869e-01 1.719e+09 1.149e+01 -- 3.365e+02 -- -0.106959 -0.363434 -1.45119 -1.74797 -2.34929 -2.73922 -3.46122 1.73606 0.109587 0.15766 0.202786 0.047551 0.147005 0.919497\n", + " 196 1.130e-01 9.258e+07 9.800e+00 -- 3.463e+02 -- -0.113236 -0.363424 -1.45119 -1.74797 -2.34939 -2.73916 -3.46121 1.65362 0.109461 0.157728 0.202605 0.0485995 0.147848 0.919488\n", + " 198 2.772e+00 1.481e+08 2.691e-01 -- 3.465e+02 -- -0.11407 -0.363423 -1.45119 -1.74797 -2.3494 -2.73915 -3.46121 1.63494 0.109445 0.157735 0.20259 0.0487043 0.147935 0.919487\n", + " 199 2.169e+00 1.764e+06 2.451e+00 -- 3.441e+02 -- -0.430263 -0.363426 -1.45119 -1.74795 -2.34941 -2.73915 -3.46121 -3.05269 0.109524 0.157742 0.201897 0.0488874 0.147882 0.919492\n", + " 201 1.913e+00 2.072e+06 3.862e-01 -- 3.445e+02 -- -0.523586 -0.363424 -1.45119 -1.74795 -2.34943 -2.73914 -3.46121 -3.00172 0.109506 0.157754 0.201892 0.049131 0.148027 0.919488\n", + " 203 1.779e+00 2.384e+06 3.220e-01 -- 3.448e+02 -- -0.623769 -0.363423 -1.45119 -1.74795 -2.34943 -2.73914 -3.46121 -2.9345 0.109515 0.15775 0.20193 0.0491329 0.147982 0.919486\n", + " 205 1.694e+00 2.724e+06 2.804e-01 -- 3.451e+02 -- -0.734739 -0.363423 -1.45119 -1.74795 -2.34943 -2.73915 -3.46121 -2.8405 0.109525 0.157746 0.201967 0.0491169 0.147929 0.919485\n", + " 207 1.635e+00 3.084e+06 2.445e-01 -- 3.453e+02 -- -0.85919 -0.363423 -1.45119 -1.74795 -2.34943 -2.73915 -3.46121 -2.70669 0.109533 0.157742 0.201998 0.0491085 0.147887 0.919483\n", + " 209 1.600e+00 3.438e+06 2.122e-01 -- 3.455e+02 -- -0.999683 -0.363423 -1.45119 -1.74795 -2.34943 -2.73915 -3.46121 -2.50076 0.109539 0.157739 0.202024 0.0491084 0.147855 0.919482\n", + " 211 2.671e+00 3.755e+06 1.835e-01 -- 3.457e+02 -- -1.15968 -0.363423 -1.45119 -1.74795 -2.34943 -2.73915 -3.46121 -2.16708 0.109544 0.157737 0.202047 0.0491139 0.147832 0.919481\n", + " 213 5.748e+00 3.882e+06 1.403e-01 -- 3.459e+02 -- -1.29788 -0.363423 -1.45119 -1.74795 -2.34944 -2.73915 -3.46121 -1.58825 0.109548 0.157736 0.202067 0.0491226 0.147813 0.91948\n", + " 215 6.833e+00 3.560e+06 8.682e-02 -- 3.459e+02 -- -1.27817 -0.363423 -1.45119 -1.74795 -2.34944 -2.73916 -3.46121 -0.6754 0.109551 0.157734 0.202086 0.0491335 0.147798 0.919479\n", + " 217 2.427e+00 3.223e+06 1.398e-01 -- 3.461e+02 -- -0.980173 -0.363423 -1.45119 -1.74795 -2.34944 -2.73916 -3.46121 -0.213922 0.109556 0.157733 0.202103 0.0491447 0.14778 0.919478\n", + " 219 1.487e+00 3.453e+06 2.184e-01 -- 3.463e+02 -- -0.786827 -0.363422 -1.45119 -1.74795 -2.34944 -2.73916 -3.46121 -0.162012 0.109559 0.157732 0.202119 0.0491691 0.147769 0.919477\n", + " 221 1.150e+00 3.793e+06 2.018e-01 -- 3.465e+02 -- -0.669794 -0.363422 -1.45119 -1.74795 -2.34944 -2.73916 -3.46121 -0.139676 0.109561 0.157732 0.202129 0.0492111 0.147775 0.919475\n", + " 223 1.019e+00 4.201e+06 1.765e-01 -- 3.467e+02 -- -0.592793 -0.363422 -1.45119 -1.74795 -2.34945 -2.73916 -3.46121 -0.12627 0.109561 0.157733 0.202135 0.0492592 0.147788 0.919474\n", + " 225 8.538e-01 4.676e+06 1.677e-01 -- 3.468e+02 -- -0.532414 -0.363421 -1.45119 -1.74795 -2.34945 -2.73915 -3.46121 -0.119629 0.10956 0.157734 0.202139 0.0493085 0.147804 0.919473\n", + " 227 8.801e-01 5.212e+06 1.505e-01 -- 3.470e+02 -- -0.486958 -0.363421 -1.45119 -1.74795 -2.34945 -2.73915 -3.46121 -0.114455 0.10956 0.157736 0.202142 0.0493586 0.147824 0.919472\n", + " 229 6.974e-01 5.828e+06 1.558e-01 -- 3.472e+02 -- -0.444102 -0.36342 -1.45119 -1.74795 -2.34946 -2.73915 -3.46121 -0.111906 0.109558 0.157737 0.202144 0.0494072 0.147843 0.919471\n", + " 231 7.119e-01 6.497e+06 1.325e-01 -- 3.473e+02 -- -0.41313 -0.36342 -1.45119 -1.74795 -2.34946 -2.73915 -3.46121 -0.105843 0.109556 0.157739 0.202144 0.0494579 0.147868 0.91947\n", + " 233 5.442e-01 7.244e+06 1.335e-01 -- 3.474e+02 -- -0.383719 -0.36342 -1.45119 -1.74795 -2.34946 -2.73915 -3.46121 -0.0984818 0.109554 0.157741 0.202145 0.0495033 0.147889 0.919469\n", + " 235 1.131e+00 8.076e+06 1.137e-01 -- 3.475e+02 -- -0.362839 -0.363419 -1.45119 -1.74795 -2.34947 -2.73915 -3.46121 -0.0938439 0.109552 0.157743 0.202143 0.0495491 0.147913 0.919469\n", + " 237 3.653e-01 8.999e+06 1.361e-01 -- 3.477e+02 -- -0.335364 -0.363419 -1.45119 -1.74795 -2.34947 -2.73915 -3.46121 -0.0832267 0.10955 0.157744 0.202146 0.0495886 0.147933 0.919468\n", + " 239 3.363e-01 1.004e+07 9.350e-02 -- 3.478e+02 -- -0.323113 -0.363418 -1.45119 -1.74795 -2.34947 -2.73914 -3.46121 -0.0832685 0.109547 0.157747 0.202141 0.0496366 0.147961 0.919467\n", + " 241 1.247e+00 1.121e+07 8.989e-02 -- 3.478e+02 -- -0.312392 -0.363418 -1.45119 -1.74795 -2.34947 -2.73914 -3.46121 -0.0860685 0.109546 0.157748 0.202138 0.0496699 0.147977 0.919467\n", + " 243 4.749e-01 1.245e+07 1.061e-01 -- 3.480e+02 -- -0.295953 -0.363418 -1.45119 -1.74795 -2.34948 -2.73914 -3.46121 -0.0753345 0.109544 0.157749 0.202141 0.049698 0.147993 0.919466\n", + " 245 6.925e-01 1.386e+07 8.248e-02 -- 3.480e+02 -- -0.287411 -0.363418 -1.45119 -1.74795 -2.34948 -2.73914 -3.46121 -0.0717567 0.109542 0.157751 0.202138 0.0497334 0.148014 0.919466\n", + " 247 2.983e+00 1.541e+07 5.421e-02 -- 3.481e+02 -- -0.28685 -0.363417 -1.45119 -1.74795 -2.34948 -2.73914 -3.46121 -0.0667875 0.109541 0.157752 0.202135 0.0497581 0.148028 0.919466\n", + " 248 1.312e+00 2.319e+07 5.164e-01 -- 3.486e+02 -- -0.185228 -0.363417 -1.45119 -1.74795 -2.34947 -2.73914 -3.46121 0.132449 0.109541 0.157752 0.202202 0.0498364 0.148059 0.919464\n", + " 250 1.351e+00 2.829e+07 1.424e-01 -- 3.488e+02 -- -0.170989 -0.363415 -1.45119 -1.74795 -2.34949 -2.73913 -3.46121 0.149822 0.109523 0.157762 0.202181 0.0499928 0.148185 0.919463\n", + " 251 4.563e+00 1.588e+08 1.471e+00 -- 3.473e+02 -- -0.220484 -0.36341 -1.4512 -1.74795 -2.34955 -2.7391 -3.46121 -0.0525833 0.109471 0.157803 0.201972 0.0506843 0.148669 0.919457\n", + " 253 4.464e+00 5.169e+07 1.638e+00 -- 3.489e+02 -- -0.228996 -0.363414 -1.45119 -1.74795 -2.34951 -2.73913 -3.46121 -0.0765774 0.109532 0.157768 0.202077 0.050136 0.148227 0.91946\n", + " 254 1.174e+00 1.462e+08 2.584e+00 -- 3.463e+02 -- -0.165269 -0.363424 -1.45119 -1.74795 -2.3494 -2.73918 -3.46121 0.26524 0.109648 0.157698 0.202403 0.0490414 0.147404 0.919469\n", + " 256 3.140e-01 3.210e+07 2.338e+00 -- 3.487e+02 -- -0.184679 -0.363416 -1.45119 -1.74795 -2.34947 -2.73913 -3.46121 0.254255 0.109557 0.157753 0.202214 0.0499032 0.148084 0.919464\n", + " 258 1.020e+00 3.780e+07 5.449e-02 -- 3.487e+02 -- -0.189584 -0.363416 -1.45119 -1.74795 -2.34948 -2.73913 -3.46121 0.262239 0.109548 0.157759 0.202195 0.049992 0.148154 0.919463\n", + " 259 9.690e-01 1.442e+07 3.727e-01 -- 3.484e+02 -- -0.0646749 -0.363416 -1.45119 -1.74796 -2.34945 -2.73913 -3.46121 0.529609 0.109531 0.157755 0.202322 0.0499443 0.148158 0.919466\n", + " 261 5.802e-01 2.148e+07 2.027e-01 -- 3.486e+02 -- -0.0584081 -0.363414 -1.45119 -1.74796 -2.34947 -2.73911 -3.46121 0.526988 0.109501 0.157773 0.202272 0.0502225 0.148376 0.919464\n", + " 263 2.171e+00 2.442e+07 8.307e-02 -- 3.486e+02 -- -0.0550193 -0.363413 -1.45119 -1.74796 -2.34948 -2.73911 -3.46121 0.523608 0.109493 0.157777 0.202259 0.0503048 0.148438 0.919463\n", + " 265 1.244e+00 2.695e+07 7.115e-02 -- 3.487e+02 -- -0.0430724 -0.363413 -1.45119 -1.74796 -2.34948 -2.73911 -3.46121 0.533686 0.109488 0.157779 0.202264 0.0503385 0.148465 0.919463\n", + " 267 5.411e-01 3.028e+07 6.665e-02 -- 3.488e+02 -- -0.037713 -0.363412 -1.45119 -1.74796 -2.34948 -2.7391 -3.46121 0.538519 0.109482 0.157783 0.202258 0.0503975 0.148511 0.919463\n", + " 269 5.807e-01 3.469e+07 1.242e-01 -- 3.489e+02 -- -0.0397535 -0.363412 -1.45119 -1.74796 -2.34949 -2.7391 -3.46121 0.509938 0.109479 0.157785 0.202246 0.0504397 0.148535 0.919462\n", + " 271 9.263e-01 3.892e+07 8.342e-02 -- 3.490e+02 -- -0.0420622 -0.363411 -1.45119 -1.74796 -2.34949 -2.7391 -3.46121 0.49377 0.109477 0.157787 0.202237 0.0504718 0.148554 0.919461\n", + " 273 1.045e+00 4.354e+07 8.479e-02 -- 3.491e+02 -- -0.0381661 -0.363411 -1.45119 -1.74796 -2.3495 -2.7391 -3.46121 0.48762 0.109476 0.157788 0.202238 0.0504836 0.14856 0.919461\n", + " 275 6.628e-01 4.858e+07 4.584e-02 -- 3.491e+02 -- -0.0341795 -0.363411 -1.45119 -1.74796 -2.3495 -2.7391 -3.46121 0.498943 0.109473 0.15779 0.202236 0.0505139 0.148586 0.919461\n", + " 277 3.138e+00 5.585e+07 1.196e-01 -- 3.492e+02 -- -0.031914 -0.363411 -1.45119 -1.74796 -2.3495 -2.7391 -3.46121 0.48038 0.10947 0.157791 0.202233 0.0505361 0.148596 0.91946\n", + " 278 1.106e+00 3.818e+07 1.331e+00 -- 3.479e+02 -- -0.132049 -0.363407 -1.4512 -1.74796 -2.34957 -2.73908 -3.46121 0.209795 0.109439 0.157817 0.202029 0.0510012 0.148874 0.919453\n", + " 280 3.299e-01 3.189e+07 1.021e+00 -- 3.489e+02 -- -0.138042 -0.363412 -1.45119 -1.74795 -2.34952 -2.73911 -3.46121 0.186601 0.109503 0.15778 0.202137 0.0504273 0.148408 0.919456\n", + " 282 1.357e+00 3.797e+07 6.512e-02 -- 3.490e+02 -- -0.142597 -0.363412 -1.45119 -1.74795 -2.34951 -2.73912 -3.46121 0.187456 0.109515 0.157773 0.202156 0.0503221 0.148322 0.919457\n", + " 284 3.374e-01 4.168e+07 2.378e-02 -- 3.490e+02 -- -0.16194 -0.363413 -1.45119 -1.74795 -2.34951 -2.73912 -3.46121 0.171472 0.109522 0.157771 0.202147 0.0502934 0.148293 0.919457\n", + " 286 1.284e+00 4.784e+07 8.469e-02 -- 3.491e+02 -- -0.157165 -0.363413 -1.45119 -1.74795 -2.34951 -2.73912 -3.46121 0.177257 0.109529 0.157766 0.202164 0.0502281 0.14824 0.919457\n", + " 287 5.863e+00 2.746e+07 7.569e-01 -- 3.483e+02 -- -0.0125226 -0.363413 -1.45119 -1.74795 -2.34949 -2.73912 -3.46121 0.404916 0.109511 0.157767 0.202299 0.0502314 0.148274 0.919458\n", + " 289 1.630e+00 3.365e+07 9.013e-01 -- 3.492e+02 -- -0.0198645 -0.363408 -1.4512 -1.74796 -2.34953 -2.73909 -3.46121 0.404159 0.109451 0.157802 0.202181 0.0507898 0.148716 0.919454\n", + " 291 6.748e+00 3.775e+07 7.961e-02 -- 3.493e+02 -- -0.0166256 -0.363408 -1.4512 -1.74796 -2.34954 -2.73909 -3.46121 0.400832 0.109447 0.157805 0.202176 0.0508312 0.148746 0.919454\n", + " 293 2.863e+00 4.073e+07 4.445e-02 -- 3.493e+02 -- -0.00540687 -0.363408 -1.4512 -1.74796 -2.34953 -2.73909 -3.46121 0.422946 0.109441 0.157807 0.202184 0.050862 0.148775 0.919454\n", + " 295 1.589e+01 4.688e+07 9.607e-02 -- 3.494e+02 -- -0.00385862 -0.363407 -1.4512 -1.74796 -2.34954 -2.73908 -3.46121 0.414394 0.109434 0.157811 0.202171 0.0509315 0.148827 0.919453\n", + " 297 9.102e+01 5.176e+07 5.621e-02 -- 3.495e+02 -- 0.00227262 -0.363407 -1.4512 -1.74796 -2.34954 -2.73908 -3.46121 0.424492 0.109429 0.157813 0.202172 0.0509648 0.148855 0.919453\n", + " 298 1.218e+00 1.223e+06 2.212e+00 -- 3.473e+02 -- -0.204579 -0.363401 -1.4512 -1.74795 -2.34966 -2.73907 -3.4612 -0.153771 0.109419 0.157847 0.201763 0.0516137 0.149147 0.91944\n", + " 300 7.366e-01 5.541e+06 7.566e-01 -- 3.480e+02 -- -0.179665 -0.363411 -1.4512 -1.74794 -2.34957 -2.73913 -3.46121 -0.141308 0.109542 0.157774 0.202006 0.0505035 0.148242 0.919447\n", + " 302 6.563e-01 6.257e+06 1.223e-01 -- 3.481e+02 -- -0.166432 -0.363412 -1.4512 -1.74794 -2.34956 -2.73913 -3.46121 -0.136129 0.109556 0.157767 0.202034 0.0504092 0.14815 0.919447\n", + " 304 6.204e-01 6.962e+06 1.049e-01 -- 3.482e+02 -- -0.155509 -0.363411 -1.4512 -1.74794 -2.34956 -2.73913 -3.46121 -0.128246 0.109555 0.157768 0.202033 0.0504491 0.148168 0.919446\n", + " 306 6.510e-01 7.764e+06 1.013e-01 -- 3.483e+02 -- -0.14586 -0.363411 -1.4512 -1.74794 -2.34956 -2.73913 -3.46121 -0.123823 0.109552 0.157771 0.202028 0.050505 0.1482 0.919446\n", + " 308 3.481e-01 8.654e+06 1.011e-01 -- 3.484e+02 -- -0.136364 -0.36341 -1.4512 -1.74794 -2.34957 -2.73913 -3.46121 -0.117368 0.109549 0.157773 0.202024 0.0505599 0.148233 0.919445\n", + " 310 4.054e-01 9.652e+06 7.879e-02 -- 3.485e+02 -- -0.131618 -0.36341 -1.4512 -1.74794 -2.34957 -2.73912 -3.46121 -0.117155 0.109545 0.157776 0.202015 0.0506154 0.148266 0.919444\n", + " 312 5.584e-01 1.075e+07 8.122e-02 -- 3.486e+02 -- -0.126283 -0.36341 -1.4512 -1.74794 -2.34957 -2.73912 -3.46121 -0.115499 0.109544 0.157777 0.202011 0.0506528 0.148287 0.919444\n", + " 314 4.952e-01 1.200e+07 9.239e-02 -- 3.487e+02 -- -0.119231 -0.363409 -1.4512 -1.74794 -2.34958 -2.73912 -3.46121 -0.115658 0.109542 0.157779 0.202007 0.0506895 0.148307 0.919443\n", + " 316 5.287e-01 1.338e+07 8.527e-02 -- 3.488e+02 -- -0.113326 -0.363409 -1.4512 -1.74794 -2.34958 -2.73912 -3.46121 -0.111769 0.109538 0.157781 0.202002 0.0507334 0.148335 0.919443\n", + " 318 8.017e-01 1.491e+07 8.643e-02 -- 3.489e+02 -- -0.107335 -0.363409 -1.4512 -1.74794 -2.34958 -2.73912 -3.46121 -0.108356 0.109536 0.157783 0.201998 0.0507734 0.14836 0.919442\n", + " 319 2.149e+01 1.344e+08 1.285e+00 -- 3.502e+02 -- -0.0771257 -0.363406 -1.4512 -1.74794 -2.3496 -2.7391 -3.46121 -0.0214826 0.109506 0.157804 0.20197 0.0511631 0.148633 0.91944\n", + " 322 5.016e+01 1.083e+08 7.733e-02 -- 3.501e+02 -- -0.0812549 -0.363406 -1.4512 -1.74794 -2.3496 -2.7391 -3.46121 -0.0261001 0.109507 0.157803 0.201968 0.0511544 0.148625 0.91944\n", + " 325 1.441e+01 1.887e+08 2.246e-01 -- 3.503e+02 -- -0.0735921 -0.363406 -1.4512 -1.74794 -2.3496 -2.7391 -3.46121 -0.0130075 0.109508 0.157802 0.201979 0.0511409 0.148617 0.91944\n", + " 328 7.901e+01 1.536e+08 9.576e-02 -- 3.502e+02 -- -0.0797361 -0.363406 -1.4512 -1.74794 -2.3496 -2.7391 -3.46121 -0.0148821 0.109509 0.157802 0.201976 0.0511349 0.148612 0.91944\n", + " 331 1.082e+01 1.784e+08 6.179e-02 -- 3.503e+02 -- -0.0795032 -0.363406 -1.4512 -1.74794 -2.3496 -2.7391 -3.46121 -0.0266401 0.10951 0.157801 0.201974 0.0511287 0.148603 0.91944\n", + " 333 4.675e+01 2.786e+08 1.995e-01 -- 3.505e+02 -- -0.0809661 -0.363407 -1.4512 -1.74794 -2.3496 -2.7391 -3.46121 -0.0554529 0.109514 0.157797 0.201978 0.0510476 0.148535 0.91944\n", + " 334 5.032e+00 2.430e+05 6.301e+00 -- 3.442e+02 -- -0.985862 -0.363409 -1.4512 -1.74792 -2.3498 -2.73912 -3.4612 -2.64765 0.109732 0.157802 0.200524 0.0514617 0.148271 0.919427\n", + " 336 1.413e+01 2.950e+05 3.625e-01 -- 3.445e+02 -- -1.28586 -0.363418 -1.4512 -1.74791 -2.3497 -2.73918 -3.46121 -1.84183 0.109927 0.157714 0.2008 0.0506701 0.147252 0.919428\n", + " 338 4.005e+01 3.176e+05 1.360e-01 -- 3.447e+02 -- -1.46152 -0.363418 -1.4512 -1.74791 -2.34969 -2.73919 -3.46121 0.760727 0.109999 0.157695 0.200857 0.0507901 0.147055 0.919422\n", + " 340 6.766e+00 4.153e+05 6.549e-02 -- 3.446e+02 -- -1.16152 -0.363417 -1.4512 -1.74791 -2.34969 -2.7392 -3.46121 -2.28614 0.110051 0.157686 0.200882 0.0510196 0.146972 0.919414\n", + " 342 2.742e+01 4.570e+05 2.707e-01 -- 3.449e+02 -- -1.46152 -0.363415 -1.4512 -1.7479 -2.3497 -2.73919 -3.46121 -0.739337 0.110077 0.157687 0.200893 0.0513039 0.146999 0.919408\n", + " 344 1.369e+01 4.823e+05 3.346e-02 -- 3.448e+02 -- -1.16152 -0.363414 -1.4512 -1.7479 -2.3497 -2.73919 -3.46121 1.28787 0.110109 0.157683 0.200916 0.0514964 0.146967 0.919402\n", + " 346 9.597e+00 6.439e+05 3.666e-01 -- 3.452e+02 -- -1.08009 -0.363413 -1.45119 -1.7479 -2.3497 -2.73919 -3.46121 -0.475334 0.110141 0.157677 0.200944 0.051654 0.146914 0.919397\n", + " 348 3.843e+01 6.683e+05 2.895e-01 -- 3.455e+02 -- -0.780091 -0.363412 -1.45119 -1.7479 -2.34971 -2.73919 -3.46121 -0.0191557 0.110155 0.157679 0.200954 0.051853 0.146942 0.919392\n", + " 350 2.431e+00 7.534e+05 4.815e-01 -- 3.460e+02 -- -0.516668 -0.363411 -1.45119 -1.7479 -2.34971 -2.73919 -3.46121 -0.0927694 0.110174 0.157677 0.20097 0.0519999 0.146932 0.919388\n", + " 352 2.128e+00 8.462e+05 3.602e-01 -- 3.463e+02 -- -0.391053 -0.363409 -1.4512 -1.7479 -2.34972 -2.73919 -3.46121 -0.102471 0.110182 0.15768 0.200966 0.0522036 0.146984 0.919383\n", + " 354 1.958e+00 9.507e+05 3.104e-01 -- 3.466e+02 -- -0.307832 -0.363408 -1.4512 -1.7479 -2.34973 -2.73918 -3.46121 -0.105727 0.110186 0.157686 0.200953 0.0524185 0.147058 0.919379\n", + " 356 1.882e+00 1.068e+06 2.733e-01 -- 3.469e+02 -- -0.247561 -0.363406 -1.4512 -1.7479 -2.34974 -2.73917 -3.46121 -0.106268 0.110186 0.157693 0.200935 0.0526364 0.147146 0.919376\n", + " 358 1.839e+00 1.199e+06 2.470e-01 -- 3.472e+02 -- -0.200962 -0.363405 -1.4512 -1.7479 -2.34976 -2.73916 -3.46121 -0.105856 0.110183 0.1577 0.200914 0.0528519 0.147243 0.919372\n", + " 360 1.795e+00 1.346e+06 2.241e-01 -- 3.474e+02 -- -0.164003 -0.363403 -1.4512 -1.7479 -2.34977 -2.73916 -3.46121 -0.105114 0.110179 0.157708 0.20089 0.053063 0.147344 0.919369\n", + " 362 1.817e+00 1.511e+06 2.017e-01 -- 3.476e+02 -- -0.134568 -0.363402 -1.4512 -1.7479 -2.34978 -2.73915 -3.46121 -0.103975 0.110173 0.157716 0.200865 0.053267 0.147448 0.919366\n", + " 364 1.856e+00 1.694e+06 1.860e-01 -- 3.478e+02 -- -0.110116 -0.3634 -1.4512 -1.7479 -2.34979 -2.73914 -3.46121 -0.103075 0.110167 0.157724 0.200841 0.0534605 0.14755 0.919364\n", + " 366 1.880e+00 1.899e+06 1.714e-01 -- 3.479e+02 -- -0.089674 -0.363399 -1.4512 -1.7479 -2.3498 -2.73913 -3.46121 -0.101649 0.110159 0.157732 0.200816 0.0536444 0.14765 0.919361\n", + " 368 1.968e+00 2.128e+06 1.562e-01 -- 3.481e+02 -- -0.0728171 -0.363398 -1.4512 -1.74789 -2.34981 -2.73912 -3.46121 -0.100506 0.110152 0.157739 0.200792 0.053818 0.147747 0.919359\n", + " 370 2.101e+00 2.382e+06 1.448e-01 -- 3.483e+02 -- -0.0584857 -0.363396 -1.4512 -1.74789 -2.34982 -2.73912 -3.46121 -0.099281 0.110145 0.157747 0.200769 0.0539785 0.147839 0.919357\n", + " 372 2.314e+00 2.665e+06 1.350e-01 -- 3.484e+02 -- -0.0461955 -0.363395 -1.4512 -1.74789 -2.34983 -2.73911 -3.46121 -0.0980682 0.110138 0.157753 0.200747 0.0541276 0.147925 0.919355\n", + " 374 2.560e+00 2.981e+06 1.272e-01 -- 3.485e+02 -- -0.0355074 -0.363394 -1.4512 -1.74789 -2.34984 -2.7391 -3.46121 -0.0975489 0.110131 0.15776 0.200727 0.0542661 0.148006 0.919354\n", + " 376 2.984e+00 3.332e+06 1.180e-01 -- 3.486e+02 -- -0.0264176 -0.363393 -1.4512 -1.74789 -2.34985 -2.7391 -3.46121 -0.0966277 0.110124 0.157766 0.200707 0.0543948 0.148083 0.919352\n", + " 378 3.745e+00 3.724e+06 1.111e-01 -- 3.487e+02 -- -0.0185355 -0.363392 -1.4512 -1.74789 -2.34985 -2.73909 -3.46121 -0.0961985 0.110118 0.157771 0.200689 0.0545125 0.148154 0.919351\n", + " 380 5.245e+00 4.158e+06 1.050e-01 -- 3.488e+02 -- -0.0115937 -0.363392 -1.4512 -1.74789 -2.34986 -2.73909 -3.46121 -0.0949656 0.110112 0.157777 0.200673 0.0546199 0.148219 0.919349\n", + " 382 9.697e+00 4.642e+06 9.994e-02 -- 3.489e+02 -- -0.00551311 -0.363391 -1.4512 -1.74789 -2.34987 -2.73908 -3.46121 -0.0945279 0.110106 0.157781 0.200657 0.0547192 0.148279 0.919348\n", + " 384 2.565e+02 5.180e+06 9.454e-02 -- 3.490e+02 -- -0.000167303 -0.36339 -1.4512 -1.74789 -2.34987 -2.73908 -3.46121 -0.0931954 0.110101 0.157786 0.200644 0.0548099 0.148335 0.919347\n", + " 386 9.880e+00 5.780e+06 8.805e-02 -- 3.491e+02 -- 0.00412335 -0.36339 -1.4512 -1.74789 -2.34988 -2.73907 -3.46121 -0.093928 0.110096 0.15779 0.20063 0.0548933 0.148386 0.919346\n", + " 388 4.224e+00 6.439e+06 8.467e-02 -- 3.492e+02 -- 0.00819704 -0.363389 -1.4512 -1.74789 -2.34988 -2.73907 -3.46121 -0.0916356 0.110092 0.157793 0.20062 0.054964 0.14843 0.919346\n", + " 390 2.907e+00 7.178e+06 8.143e-02 -- 3.493e+02 -- 0.0116595 -0.363389 -1.4512 -1.74789 -2.34988 -2.73907 -3.46121 -0.0913694 0.110088 0.157797 0.200609 0.0550314 0.148472 0.919345\n", + " 392 1.516e+00 7.995e+06 8.031e-02 -- 3.494e+02 -- 0.0150489 -0.363388 -1.4512 -1.74789 -2.34989 -2.73907 -3.46121 -0.0900351 0.110084 0.1578 0.2006 0.0550912 0.148509 0.919344\n", + " 394 2.049e+00 8.907e+06 7.170e-02 -- 3.494e+02 -- 0.0173306 -0.363388 -1.4512 -1.74789 -2.34989 -2.73906 -3.46121 -0.0887767 0.11008 0.157802 0.200591 0.0551488 0.148546 0.919344\n", + " 396 8.714e-01 9.911e+06 8.151e-02 -- 3.495e+02 -- 0.020882 -0.363387 -1.4512 -1.74789 -2.34989 -2.73906 -3.46121 -0.0870916 0.110078 0.157805 0.200585 0.0551934 0.148573 0.919343\n", + " 398 9.679e-01 1.107e+07 7.197e-02 -- 3.496e+02 -- 0.0227018 -0.363387 -1.4512 -1.74789 -2.3499 -2.73906 -3.46121 -0.0909551 0.110074 0.157808 0.200573 0.0552522 0.14861 0.919343\n", + " 400 1.270e+00 1.232e+07 7.128e-02 -- 3.497e+02 -- 0.024899 -0.363387 -1.4512 -1.74789 -2.3499 -2.73906 -3.46121 -0.0902504 0.110072 0.15781 0.200567 0.0552904 0.148634 0.919342\n", + " 402 6.361e-01 1.367e+07 7.507e-02 -- 3.497e+02 -- 0.0280603 -0.363386 -1.4512 -1.74789 -2.3499 -2.73905 -3.46121 -0.0837997 0.110068 0.157811 0.200565 0.0553281 0.14866 0.919342\n", + " 404 8.794e-01 1.528e+07 6.816e-02 -- 3.498e+02 -- 0.0292014 -0.363386 -1.4512 -1.74789 -2.34991 -2.73905 -3.46121 -0.0891302 0.110065 0.157814 0.200552 0.0553829 0.148695 0.919341\n", + " 406 3.784e-01 1.697e+07 7.227e-02 -- 3.499e+02 -- 0.0317693 -0.363386 -1.4512 -1.74789 -2.34991 -2.73905 -3.46121 -0.0855337 0.110063 0.157816 0.200551 0.0554098 0.148713 0.919341\n", + " 408 8.584e-01 1.892e+07 6.373e-02 -- 3.500e+02 -- 0.0329715 -0.363385 -1.4512 -1.74789 -2.34991 -2.73905 -3.46121 -0.0840924 0.110059 0.157818 0.200544 0.0554524 0.148743 0.919341\n", + " 410 2.281e-01 2.102e+07 7.585e-02 -- 3.500e+02 -- 0.0358016 -0.363385 -1.4512 -1.74789 -2.34991 -2.73905 -3.46121 -0.0818116 0.110057 0.15782 0.200541 0.0554798 0.148761 0.91934\n", + " 412 2.994e-01 2.352e+07 5.761e-02 -- 3.501e+02 -- 0.0358705 -0.363385 -1.4512 -1.74789 -2.34991 -2.73904 -3.46121 -0.0836779 0.110053 0.157822 0.200531 0.0555267 0.148795 0.91934\n", + " 414 7.158e-01 2.615e+07 5.648e-02 -- 3.501e+02 -- 0.0361137 -0.363385 -1.4512 -1.74789 -2.34991 -2.73904 -3.46121 -0.086183 0.110053 0.157823 0.200528 0.0555391 0.148801 0.91934\n", + " 415 4.481e+00 7.672e+07 5.225e-01 -- 3.507e+02 -- 0.027996 -0.363384 -1.4512 -1.74789 -2.34993 -2.73904 -3.46121 -0.147877 0.110054 0.157826 0.200473 0.0556367 0.148828 0.919338\n", + " 418 2.687e+00 9.990e+07 3.995e-02 -- 3.506e+02 -- 0.0267416 -0.363384 -1.4512 -1.74789 -2.34993 -2.73904 -3.46121 -0.148469 0.110055 0.157825 0.200475 0.0556202 0.148816 0.919338\n", + " 421 9.609e+00 8.090e+07 3.507e-02 -- 3.507e+02 -- 0.026023 -0.363384 -1.4512 -1.74789 -2.34992 -2.73904 -3.46121 -0.144961 0.110057 0.157824 0.200481 0.0556034 0.148804 0.919338\n", + " 423 8.329e+00 2.967e+08 1.085e+00 -- 3.496e+02 -- 0.0510295 -0.363386 -1.4512 -1.74789 -2.3499 -2.73905 -3.46121 -0.0496008 0.110067 0.157813 0.200579 0.0554229 0.148684 0.91934\n", + " 425 9.815e-01 4.106e+07 1.153e+00 -- 3.507e+02 -- 0.0367336 -0.363383 -1.4512 -1.74789 -2.34993 -2.73903 -3.4612 -0.0909145 0.110038 0.157835 0.200479 0.055778 0.148952 0.919338\n", + " 427 1.774e+00 2.140e+08 4.961e-01 -- 3.512e+02 -- 0.03879 -0.363384 -1.4512 -1.74789 -2.34992 -2.73904 -3.46121 -0.0998381 0.110055 0.157825 0.200503 0.0556283 0.14883 0.919338\n", + " 428 1.829e+01 3.065e+08 7.322e-02 -- 3.513e+02 -- 0.0449577 -0.363384 -1.4512 -1.74789 -2.3499 -2.73904 -3.46121 0.0772391 0.11003 0.157827 0.200623 0.0555725 0.148873 0.919341\n", + " 430 2.067e+00 2.772e+09 7.286e+00 -- 3.440e+02 -- 0.0871111 -0.363384 -1.4512 -1.74789 -2.34988 -2.73904 -3.46121 0.218532 0.110015 0.157828 0.200722 0.0555747 0.148913 0.919342\n", + " 433 9.668e-01 1.632e+09 2.268e+00 -- 3.463e+02 -- 0.0853101 -0.363384 -1.4512 -1.74789 -2.34989 -2.73903 -3.46121 0.215536 0.110009 0.157832 0.200707 0.0556372 0.148962 0.919342\n", + " 435 2.233e+00 5.145e+08 3.823e+00 -- 3.501e+02 -- 0.0895547 -0.363379 -1.4512 -1.74789 -2.34993 -2.739 -3.4612 0.194698 0.109954 0.157866 0.200601 0.0561718 0.149374 0.919338\n", + " 437 8.471e-01 1.114e+08 8.833e-01 -- 3.510e+02 -- 0.0957779 -0.363377 -1.4512 -1.74789 -2.34994 -2.73899 -3.4612 0.238181 0.109929 0.15788 0.200589 0.0563701 0.149554 0.919338\n", + " 440 2.255e+00 1.662e+08 1.147e-01 -- 3.511e+02 -- 0.0949666 -0.363377 -1.4512 -1.7479 -2.34994 -2.73899 -3.4612 0.239067 0.109928 0.15788 0.200586 0.0563808 0.149563 0.919338\n", + " 443 2.186e+00 2.435e+08 1.498e-01 -- 3.512e+02 -- 0.0928252 -0.363377 -1.4512 -1.7479 -2.34994 -2.73899 -3.4612 0.239188 0.109928 0.157881 0.200582 0.0563891 0.14957 0.919338\n", + " 445 3.207e+00 4.072e+07 7.106e-01 -- 3.505e+02 -- 0.104422 -0.363377 -1.4512 -1.7479 -2.34993 -2.73899 -3.4612 0.291471 0.109923 0.157882 0.200614 0.0563947 0.149592 0.919339\n", + " 446 3.453e+00 3.733e+06 4.698e+00 -- 3.458e+02 -- -0.0763908 -0.363361 -1.45121 -1.74788 -2.35021 -2.73891 -3.46119 -0.643341 0.10981 0.158001 0.199689 0.0585065 0.150869 0.919317\n", + " 448 2.985e+00 1.422e+06 1.924e+00 -- 3.478e+02 -- -0.0500124 -0.36339 -1.4512 -1.74786 -2.34993 -2.7391 -3.46121 -0.583889 0.110183 0.157776 0.200426 0.0551411 0.148099 0.919337\n", + " 450 3.389e+00 1.653e+06 2.223e-01 -- 3.480e+02 -- -0.0350817 -0.363393 -1.4512 -1.74786 -2.34989 -2.73912 -3.46121 -0.545114 0.110235 0.157748 0.200523 0.0547811 0.147759 0.919338\n", + " 452 4.450e+00 1.833e+06 1.695e-01 -- 3.482e+02 -- -0.0231916 -0.363393 -1.4512 -1.74786 -2.34989 -2.73912 -3.46121 -0.515006 0.110238 0.15775 0.200522 0.0548683 0.147787 0.919337\n", + " 454 7.001e+00 2.038e+06 1.566e-01 -- 3.483e+02 -- -0.0128712 -0.363392 -1.4512 -1.74786 -2.3499 -2.73911 -3.46121 -0.489289 0.110232 0.157756 0.200508 0.0550141 0.147866 0.919335\n", + " 456 2.133e+01 2.270e+06 1.442e-01 -- 3.485e+02 -- -0.00386017 -0.36339 -1.4512 -1.74786 -2.34991 -2.7391 -3.46121 -0.467919 0.110226 0.157762 0.200491 0.0551616 0.14795 0.919333\n", + " 458 1.676e+01 2.528e+06 1.371e-01 -- 3.486e+02 -- 0.00437402 -0.363389 -1.4512 -1.74786 -2.34991 -2.7391 -3.46121 -0.449042 0.11022 0.157769 0.200474 0.0553006 0.148032 0.919331\n", + " 460 5.489e+00 2.814e+06 1.297e-01 -- 3.487e+02 -- 0.0117036 -0.363388 -1.4512 -1.74786 -2.34992 -2.73909 -3.46121 -0.431565 0.110213 0.157775 0.200459 0.0554329 0.148111 0.91933\n", + " 462 3.102e+00 3.136e+06 1.197e-01 -- 3.488e+02 -- 0.018128 -0.363387 -1.4512 -1.74786 -2.34993 -2.73908 -3.46121 -0.41801 0.110206 0.157781 0.200442 0.0555588 0.148188 0.919329\n", + " 464 2.085e+00 3.494e+06 1.125e-01 -- 3.490e+02 -- 0.0237512 -0.363387 -1.4512 -1.74786 -2.34993 -2.73908 -3.46121 -0.405779 0.1102 0.157786 0.200427 0.0556737 0.148258 0.919327\n", + " 466 1.578e+00 3.891e+06 1.061e-01 -- 3.491e+02 -- 0.0287038 -0.363386 -1.4512 -1.74786 -2.34994 -2.73907 -3.46121 -0.394935 0.110194 0.157791 0.200413 0.0557793 0.148323 0.919326\n", + " 468 1.215e+00 4.333e+06 1.019e-01 -- 3.492e+02 -- 0.0332333 -0.363385 -1.4512 -1.74786 -2.34994 -2.73907 -3.46121 -0.385103 0.110188 0.157796 0.2004 0.0558765 0.148384 0.919325\n", + " 470 8.728e-01 4.825e+06 9.728e-02 -- 3.493e+02 -- 0.0372705 -0.363384 -1.4512 -1.74786 -2.34995 -2.73906 -3.46121 -0.376014 0.110183 0.1578 0.200388 0.0559674 0.148442 0.919324\n", + " 472 7.791e-01 5.374e+06 8.909e-02 -- 3.494e+02 -- 0.0405235 -0.363384 -1.4512 -1.74786 -2.34995 -2.73906 -3.46121 -0.368803 0.110178 0.157805 0.200376 0.0560518 0.148496 0.919323\n", + " 474 6.891e-01 5.981e+06 8.746e-02 -- 3.494e+02 -- 0.0436808 -0.363383 -1.4512 -1.74786 -2.34996 -2.73906 -3.46121 -0.362446 0.110173 0.157808 0.200366 0.0561246 0.148541 0.919323\n", + " 476 5.921e-01 6.661e+06 8.541e-02 -- 3.495e+02 -- 0.0466909 -0.363383 -1.4512 -1.74786 -2.34996 -2.73905 -3.46121 -0.357513 0.110169 0.157812 0.200356 0.0561939 0.148585 0.919322\n", + " 478 3.144e-01 7.415e+06 8.354e-02 -- 3.496e+02 -- 0.0494557 -0.363382 -1.4512 -1.74786 -2.34996 -2.73905 -3.46121 -0.352194 0.110165 0.157815 0.200346 0.0562588 0.148627 0.919321\n", + " 480 4.451e-01 8.264e+06 7.056e-02 -- 3.497e+02 -- 0.0510106 -0.363382 -1.4512 -1.74786 -2.34997 -2.73905 -3.46121 -0.349714 0.110161 0.157818 0.200336 0.0563208 0.148667 0.919321\n", + " 482 2.834e-01 9.191e+06 7.707e-02 -- 3.498e+02 -- 0.0532813 -0.363381 -1.4512 -1.74786 -2.34997 -2.73905 -3.46121 -0.346633 0.110159 0.15782 0.20033 0.0563633 0.148692 0.91932\n", + " 484 3.966e-01 1.023e+07 7.072e-02 -- 3.498e+02 -- 0.0547914 -0.363381 -1.4512 -1.74786 -2.34997 -2.73904 -3.46121 -0.342721 0.110156 0.157823 0.200323 0.0564112 0.148724 0.91932\n", + " 486 2.514e-01 1.136e+07 7.734e-02 -- 3.499e+02 -- 0.0569644 -0.363381 -1.4512 -1.74786 -2.34997 -2.73904 -3.46121 -0.337696 0.110153 0.157824 0.200319 0.056451 0.148749 0.919319\n", + " 488 2.119e-01 1.266e+07 6.951e-02 -- 3.500e+02 -- 0.0583964 -0.36338 -1.4512 -1.74786 -2.34998 -2.73904 -3.46121 -0.335476 0.11015 0.157827 0.20031 0.0565002 0.148783 0.919319\n", + " 490 1.907e-01 1.409e+07 6.640e-02 -- 3.500e+02 -- 0.0596337 -0.36338 -1.4512 -1.74786 -2.34998 -2.73904 -3.46121 -0.33443 0.110147 0.157829 0.200304 0.0565377 0.148807 0.919318\n", + " 492 2.838e-01 1.566e+07 6.668e-02 -- 3.501e+02 -- 0.060771 -0.36338 -1.4512 -1.74786 -2.34998 -2.73904 -3.46121 -0.330323 0.110145 0.157831 0.200301 0.0565667 0.148826 0.919318\n", + " 494 2.169e-01 1.737e+07 7.289e-02 -- 3.502e+02 -- 0.062496 -0.36338 -1.4512 -1.74786 -2.34998 -2.73903 -3.46121 -0.324585 0.110142 0.157832 0.200299 0.056597 0.148846 0.919318\n", + " 496 1.775e-01 1.940e+07 6.791e-02 -- 3.502e+02 -- 0.0638514 -0.363379 -1.4512 -1.74786 -2.34998 -2.73903 -3.46121 -0.32577 0.11014 0.157835 0.200289 0.0566408 0.148875 0.919317\n", + " 497 4.848e-01 6.026e+09 5.483e+00 -- 3.448e+02 -- 0.0541459 -0.363377 -1.4512 -1.74786 -2.35001 -2.73902 -3.4612 -0.383591 0.110125 0.157851 0.200189 0.056956 0.149081 0.919315\n", + " 499 3.946e+00 2.201e+08 6.636e+00 -- 3.514e+02 -- 0.0518619 -0.36338 -1.4512 -1.74786 -2.34998 -2.73904 -3.46121 -0.364994 0.110159 0.157825 0.200285 0.0565514 0.14877 0.919318\n", + "********************\n", + "0.071793 -0.363381 -1.4512 -1.74785 -2.35 -2.73904 -3.46121 -0.509038 0.110198 0.157822 0.200171 0.0565592 0.148673 0.919314\n", + "0.00680549 6.76709e-06 1.61276e-06 5.24533e-05 0.000285416 0.000268179 6.23129e-06 0.028847 0.000202035 7.49946e-05 0.000565924 0.00181438 0.00135023 0.000137249\n", + "-78607.4 133.971 0.348338 -0.642816 -0.163519 -0.0095348 0.0102973 -2654.2 38.5323 -4.2263 0.532549 -0.374281 -0.0618559 0.00134632\n", + "********************\n" + ] + } + ], + "source": [ + "Cx = clag.clag('cxd10r', [[t1,t2]], [[l1,l2]], [[l1e,l2e]], dt, fqL, p1, p2)\n", + "p = np.concatenate( ((p1+p2)*0.5-0.3,p1*0+0.1) ) # a good starting point generally\n", + "p, pe = clag.optimize(Cx, p)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "ERROR:root:Line magic function `%autoreload` not found.\n" + ] + }, + { + "ename": "NameError", + "evalue": "name 'clag' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mget_ipython\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmagic\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mu'autoreload'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mp\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpe\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mclag\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mCx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mp\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpe\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'clag' is not defined" + ] + } + ], + "source": [ + "%autoreload\n", + "p, pe = clag.errors(Cx, p, pe)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "phi, phie = p[nfq:], pe[nfq:]\n", + "lag, lage = phi/(2*np.pi*fqd), phie/(2*np.pi*fqd) \n", + "cx, cxe = p[:nfq], pe[:nfq]" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'fqd' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m----------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mxscale\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'log'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m;\u001b[0m \u001b[0mylim\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0merrorbar\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfqd\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlag\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0myerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfmt\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'o'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mms\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mcolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"black\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mlag\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'fqd' is not defined" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAFrCAYAAABrOgsVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAEM5JREFUeJzt3X2MZXdZB/DvQmmhRZhSYLuUktTQkJWgdaYN5SVljdAQ\nNK2JpDBJDWACDaBm1CgKWuobJhTp8odKqiEYG68vREIbRYoRG0KpwkzBQhujUrDsbltaOiAUWu3i\nH+dudvYyszvnPPfMmTv7+SQ3c8/vnHvukye/mf3uueecmwAAAAAAAAAAAAAAAAAAAAAAAAAAAADA\nSemSJDclOZDkcJLL19nmmvH6h5N8IskPbVVxAMB0PK7HfZ+e5PYkbx0vf29i/duSLI3XX5Tk3iQf\nT/LkHmsCAGbU4SSXrVneleRQkl9ZM3ZqkoeSvGkL6wIAivo8MnE85yXZneTmNWOPJrklyYsHqQgA\n6GSoMHH2+Od9E+P3r1kHAMyAU4YuYB2T51YcsWf8AADaOTR+9GKoMHHv+OfuNc/XWz5iz7Oe9ayD\nBw8e7L0wANiBDqS52KGXQDFUmLg7TWi4NMnnx2OnJnlZjj0p84g9Bw8ezA033JC9e/f2UtDS0lL2\n79/fy2tOtN1G69cbnxxruzxNXfc9jb5Verbe2NrlPnvWdf/mmrnWhbnW3k6ca3fddVeuvPLKc9Ic\n3Z+5MHFGkvPXLP9gkguSPJjkniT7k7w9yX8k+c/x828l+YuNdrh3797Mz8/3Uuzc3FzrfW/2NSfa\nbqP1641PjrVdnqau+55G3yo9W29s7XKfPeu6f3PNXOvCXGtvp861vj2+x32/JMmtSa5Kcx7EK8fP\nz0zykSSfSvLEJO9M8gtJvpFkMcl6n2XsSXLVVVddlT17+jtt4gUveEFvrznRdhutX298cux4y6PR\nKIuLi5uqsYsuPWvzuuNtV+nZemNHlvvu2Ub1TOs15lq315lr7V9jrnV73VbPtUOHDuX6669PkuvT\n05GJXX3stAfzSZaXl5e3LGXtFJdddlluvPHGocuYKXrWjb61p2fd6Fs7KysrWVhYSJKFJCt9vMdQ\nl4YCADuEMLHD9X0IdSfSs270rT0960bfth8fcwDADuZjDgBg2xMmAIASYQIAKBEmAIASYQIAKBEm\nAIASYQIAKBEmAIASYQIAKBEmAIASYQIAKBEmAIASYQIAKBEmAIASYQIAKBEmAIASYQIAKBEmAIAS\nYQIAKBEmAIASYQIAKBEmAIASYQIAKBEmAIASYQIAKBEmAIASYQIAKBEmAIASYQIAKBEmAIASYQIA\nKBEmAIASYQIAKBEmAIASYQIAKBEmAIASYQIAKBEmAIASYQIAKBEmAIASYQIAKBEmAIASYQIAKBEm\nAIASYQIAKBEmAIASYQIAKBEmAIASYQIAKBEmAIASYQIAKBEmAIASYQIAKBEmAIASYQIAKBEmAIAS\nYQIAKBEmAIASYQIAKBEmAIASYQIAKBEmAIASYQIAKBkyTFyT5PDE4+CA9QAAHZwy8Pt/IcnL1yw/\nNlQhAEA3Q4eJx5LcP3ANAEDB0OdMnJ/kQJIvJRklOW/YcgCAtoYME7cl+ZkklyZ5Y5Kzk9ya5GkD\n1gQAtDTkxxz/sOb5F5N8Osl/JXldkusGqQgAaG3ocybWejjJHUmeu9EGS0tLmZubO2ZscXExi4uL\nPZcGANvfaDTKaDQ6Zmx1dbX3993V+zts3mlpjky8P8nvTqybT7K8vLyc+fn5LS8MAGbVyspKFhYW\nkmQhyUof7zHkORPvSXJJmpMuX5jkQ0menOTPBqwJAGhpyI85zklzBcfTk3wtzTkTFye5Z8CaAICW\nhgwTTnQAgB1g6PtMAAAzTpgAAEqECQCgRJgAAEqECQCgRJgAAEqECQCgRJgAAEqECQCgRJgAAEqE\nCQCgRJgAAEqECQCgRJgAAEqECQCgRJgAAEqECQCgRJgAAEqECQCgRJgAAEqECQCgRJgAAEqECQCg\nRJgAAEqECQCgRJgAAEqECQCgRJgAAEqECQCgRJgAAEqECQCgRJgAAEqECQCgRJgAAEqECQCgRJgA\nAEqECQCgRJgAAEqECQCgRJgAAEqECQCgRJgAAEqECQCgRJgAAEqECQCgRJgAAEqECQCgRJgAAEqE\nCQCgRJgAAEqECQCgRJgAAEqECQCgRJgAAEqECQCgRJgAAEqECQCgRJgAAEqECQCgRJgAAEqECQCg\nRJgAAEqECQCgRJgAAEqECQCgRJgAAEqECQCgZDuEibckuTvJd5J8NslLhy0HAGhj6DDxmiTXJfmd\nJBck+WSSjyY5d8iiAIDNGzpM/FKSP03ygST/nuQXk9yT5M1DFgUAbN6QYeLUJPNJbp4YvznJi7e+\nHACgiyHDxNOTPD7JfRPj9yc5e+vLAQC6GPpjDgBgxp0y4Hs/kOSxJLsnxncnObTeC5aWljI3N3fM\n2OLiYhYXF3spEABmyWg0ymg0OmZsdXW19/fd1fs7HN9tSZaTvHXN2J1JPpzkHWvG5pMsLy8vZ35+\nfgvLA4DZtrKykoWFhSRZSLLSx3sMeWQiSd6b5M/T3F/itiRvSvLsJO8fsigAYPOGDhN/neSsJFcn\n2ZPkjiSvSnN5KAAwA4YOE0nyx+MHADCDXM0BAJQIEwBAiTABAJQIEwBAiTABAJQIEwBAiTABAJQI\nEwBAiTABAJQIEwBAiTABAJQIEwBAiTABAJQIEwBAiTABAJQIEwBAiTABAJQIEwBAiTABAJQIEwBA\niTABAJQIEwBAiTABAJQIEwBAiTABAJQIEwBAiTABAJQIEwBAiTABAJQIEwBAiTABAJQIEwBAiTAB\nAJQIEwBAiTABAJQIEwBAiTABAJQIEwBAiTABAJQIEwBAiTABAJQIEwBAiTABAJQIEwBAiTABAJQI\nEwBAiTABAJQIEwBAiTABAJQIEwBAiTABAJQIEwBAiTABAJQIEwBAiTABAJQIEwBAiTABAJQIEwBA\niTABAJQIEwBAiTABAJQIEwBAiTABAJQIEwBAiTABAJQIEwBAiTABAJQMGSa+nOTwxONdA9YDAHRw\nyoDv/b0kv5nkT9aMfXugWgCAjoYME0nyrST3D1wDAFAw9DkTb0vyQJLbk7w9yROGLQcAaGvIIxPv\nS7Kc5KEkL0zy+0nOS/LGAWsCAFqadpi4JsnVJ9jmwiQrSfavGftCmlDxoSS/On7+fZaWljI3N3fM\n2OLiYhYXFzuWCwA7x2g0ymg0OmZsdXW19/fdNeX9nTV+HM9Xkjyyzvg5Se5Jc5TiMxPr5pMsLy8v\nZ35+vlwkAJwsVlZWsrCwkCQLaf4zP3XTPjLx4PjRxY+Ofx6aUi0AwBYY6pyJi5O8KMknknwjyUVJ\n3pvkI0m+OlBNAEAHQ4WJR5Jckeb8itPSfPRxfZJ3D1QPANDRUGHi9jRHJgCAGTf0fSYAgBknTAAA\nJcIEAFAiTAAAJcIEAFAiTAAAJcIEAFAiTAAAJcIEAFAiTAAAJcIEAFAiTAAAJcIEAFAiTAAAJcIE\nAFAiTAAAJcIEAFAiTAAAJcIEAFAiTAAAJcIEAFAiTAAAJcIEAFAiTAAAJcIEAFAiTAAAJcIEAFAi\nTAAAJcIEAFAiTAAAJcIEAFAiTAAAJcIEAFAiTAAAJcIEAFAiTAAAJcIEAFAiTAAAJcIEAFAiTAAA\nJcIEAFAiTAAAJcIEAFAiTAAAJcIEAFAiTAAAJcIEAFAiTAAAJcIEAFAiTAAAJcIEAFAiTAAAJcIE\nAFAiTAAAJcIEAFAiTAAAJcIEAFAiTAAAJcIEAFAiTAAAJcIEAFAiTAAAJcIEAFAiTAAAJcIEAFAi\nTAAAJX2FiXckuTXJw0ke2mCb5yS5Kcm3knwtyfuSPKGnek5ao9Fo6BJmjp51o2/t6Vk3+rb99BUm\nnpDkr5L80QbrH5/k75I8KclLkrw2yU8n+YOe6jlp+aVrT8+60bf29Kwbfdt+Tulpv9eMf75+g/WX\nJtmb5BVJ7h2P/XKSDyZ5e5qjFQDADBjqnIkXJbkjR4NEktyc5LQkC0MU1CXpbvY1J9puo/XrjU+O\nnWi5T13faxp9q/RsvbHt3jdzzVzrwlxrz1zrZqgwcXaS+ybGHkry6HjdlvNL155fum7MtfbMtW7M\ntfbMtW7afMxxTZKrT7DNhUlWNrm/XS3eO0ly1113tX3Jpq2urmZlZbOlt3vNibbbaP1645NjbZen\nqeu+p9G3Ss/WG1u73GfPuu7fXDPXujDX2tuJc63PfzuPaPMP+lnjx/F8Jckja5Zfn+S6JGdObPdb\nSS5PcsGasTOTPJjkx5LcMrH9niSfSXJOi3oBgMaBJBclOdTHztscmXhw/JiGT6e5fHR3jn7ccWma\nILK8zvaH0jRhz5TeHwBOJofSU5Do03PSHHW4Osk3k/zIePmM8frHJfm3JB8fj/94kv9Oc68JAIB8\nMMnh8eOxNT8vWbPNuWluWvXtJA8k2R83rQIAAAAAAAAAaOt5SW5f83g4yWWDVjQ7zkvyiSRfTHNi\n7OnDljMT/i9H59r1A9cya05Pcxn5tUMXMgN+IMm/pplnX0jyc8OWMzPOTfLPaf6mfT7JqwetZnZ8\nOMnXk/zN0IVsF2ek+SbSJw1dyIy4Jc0XriXJXJovYuP4vjZ0ATPs95L8ZZJ3D13IDHhckieOnz8p\nyZeSPGO4cmbG2Ul+ePz8GUnuiX8PNuNlSX4yHcLEULfT7tvlSf4xyXeGLmQGPD/Nbcw/NV5eTXPl\nDfTh/DRHET+aDnfBPQkdTvLd8fPTk/zvmmU2dm+ao6xJE/y/nuRpw5UzM25Jxy/a3Klh4oo0X4HO\niZ2fZvLcmOaGYb8+bDkz4ylpbh3/yTRpns25NsmvDV3EjHlqmkP1R+7F8z/DljNzLkwTXA8MXQiz\n5Slp7qp56tCFzIhXp7nPxzlpevZPSV4+aEWz4cgX0j0/yZfTzDuO7/Ic/Wjj9XHORFvPTHMOwHOH\nLmSGnJWmZxcPXcgM2ZcZ+5jjkjQ3rTqQ5lDe5ets85Ykd6f5uOKzSV66Zt3PpzkpaSXH3uzq8iQf\nS3Pofieadt++Ot7mQJqe/X2O/c6UnaCPuXbv+OcXk9yZnfkHftp9e2GS1463vzbJG5P8Rk+1D6Wv\nv2tJcn+akwp32u9n0k/fTkvyt0neleS2XqoeVl9z7Xt9FNunVyb57SQ/laYRk1devCbNd3X8bJrP\nWK9Lc3jv3BPs96YkPzHVSreXafftlDSTaS5NuLwxyaumXvWwpt2zuTR/qJLk2WmOTMxNteLtoa/f\n0SR5XXbmkYlp9+yZOXrU6ylpzgN43nRL3ham3bddSUZJ3tlHsdtEX7+f+zLDV3Os14h/SfKHE2N3\npkmZG3lqmi8yafMFZrNsWn17ZZo/Unckec/UqtueptGzF6Xp1+fSJPuT4RLkac21I16XnX81xzR6\nNp9mjn1u/HjDNAvcpqbRt5emOZF8JUcv4X7+FGvcbqb1+/mxNEfAvp3mCpiFaRW4VSYbcWqas5Yn\nD9vsT3OYj4a+tadn3ehbe3rWjb61N3jPtuvVHE9Pc6+D+ybG78/RE9/4fvrWnp51o2/t6Vk3+tbe\nlvdsu4YJAGBGbNcw8UCaz7t2T4zvTnNOBOvTt/b0rBt9a0/PutG39ra8Z9s1TDya5gZKl06MvyLJ\nrVtfzszQt/b0rBt9a0/PutG39k6qnp2R5nrpC9KcPLI0fn7kspUr0lzW8oYke9Nc1vLNbO6ys51M\n39rTs270rT0960bf2tOzsX1pGnA4zeGYI88/sGabN6e54cZ3k3wmx95w42S1L/rW1r7oWRf7om9t\n7YuedbEv+tbWvugZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOxg/w/1Lr8Zj/zKcgAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "\n", + "xscale('log'); ylim(-10,10)\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=10,color=\"black\")\n", + "\n", + "lag" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "mu,sigma = norm.fit(lag,loc=12e-2)\n", + "xscale('log'); ylim(-10,10)\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=10,color=\"black\")\n", + "plot(fqd,norm.pdf(fqd,mu,sigma))\n", + "mu,sigma\n", + "\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lag/data/clag_analysis.ipynb b/lag/data/clag_analysis.ipynb new file mode 100644 index 0000000..26d4ab9 --- /dev/null +++ b/lag/data/clag_analysis.ipynb @@ -0,0 +1,195 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import sys\n", + "import getopt\n", + "sys.path.insert(1,\"/usr/local/science/clag/\")\n", + "import clag\n", + "%pylab inline\n", + "\n", + "ref_file=\"lc/1367A.lc\"\n", + "echo_file=\"lc/3465A.lc\"\n", + "\n", + "dt=0.01\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "fqL = np.logspace(np.log10(0.0049999999),np.log10(0.62032418),9)\n", + "fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227,\n", + " 0.10747115, 0.16658029, 0.25819945, 0.40020915,\n", + " 0.62032418])\n", + "nfq = len(fqL) - 1\n", + "fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.)\n", + "\n", + "\n", + "## load the first light curve\n", + "ref_time, ref_strength, ref_strength_err = np.loadtxt(ref_file,\n", + " skiprows=1).T" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "## initialize the psd class for multiple light curves ##\n", + "P1 = clag.clag('psd10r',\n", + " [ref_time], [ref_strength], [ref_strength_err],\n", + " dt, fqL)\n", + "ref_psd = np.ones(nfq)\n", + "ref_psd, ref_psd_err = clag.optimize(P1, ref_psd)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "ref_psd, ref_psd_err = clag.errors(P1, ref_psd, ref_psd_err)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "xscale('log'); ylim(-4,2)\n", + "errorbar(fqd, ref_psd, yerr=ref_psd_err, fmt='o', ms=10)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Load second light curve\n", + "echo_time, echo_strength, echo_strength_err = np.loadtxt(echo_file,skiprows=1).T\n", + "P2 = clag.clag('psd10r', [echo_time], [echo_strength], [echo_strength_err], dt, fqL)\n", + "echo_psd = np.ones(nfq)\n", + "echo_psd, echo_psd_err = clag.optimize(P2, echo_psd)\n", + "echo_psd, echo_psd_err = clag.errors(P2, echo_psd, echo_psd_err)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "xscale('log'); ylim(-4,2)\n", + "errorbar(fqd, echo_psd, yerr=echo_psd_err, fmt='o', ms=10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "Cx = clag.clag('cxd10r',\n", + "\t\t\t\t[[ref_time,echo_time]], \n", + " \t[[ref_strength,echo_strength]],\n", + " \t[[ref_strength_err,echo_strength_err]], \n", + " dt, fqL, ref_psd, echo_psd)\n", + "\n", + "Cx_vals = np.concatenate( (ref_psd*0.7+echo_psd*0.4-0.3,ref_psd*0+0.1) )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "Cx_vals, Cx_err = clag.optimize(Cx, Cx_vals)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "xscale('log'); ylim(-4,2)\n", + "# errorbar(fqd, Cx_vals, yerr=Cx_err, fmt='o', ms=10)\n", + "Cx_vals" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "Cx_vals, Cx_err = clag.errors(Cx,Cx_vals,Cx_err)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lag/data/complete_clag_analysis-3471_origbins.ipynb b/lag/data/complete_clag_analysis-3471_origbins.ipynb new file mode 100644 index 0000000..2440f93 --- /dev/null +++ b/lag/data/complete_clag_analysis-3471_origbins.ipynb @@ -0,0 +1,734 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X18VPWd9/9XSAKSRBRwbFEoxFBYg1pNKhD6s+qCqFBy\n1UI35PGzbbjorle73V2vSzK22u7P31W07aRre117tbXXlpL21zWmWnYXoevderNU7mro9sb4kxID\nyO2MiDcQhNyc64/vHOcmM8lM5szMOTPv5+ORR2BmMufkmzPnfM73+/l+viAiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjJm+4GhBF//K4/7JCIiIi42Fbg46msxJnj4\neD53SkRERLzju8DefO+EiIiIeMN44A3gy/neEREREXFOWRbf+5PABUD7CK+ZFv4SERGR9BwNf+Vc\nSRbf+0ngPeA/JXl+2iWXXHLkyJEjWdwFERGRgnUYuJY8BBDZ6nmYiUmWvG2E10w7cuQIP/vZz7j8\n8suztBsS78477+S73/1uvnejqKjNc09tnntq89x65ZVXuP322y/F9N4XTPCwBjgObB3thZdffjl1\ndXVZ2g2Jd+GFF6q9c0xtnntq89xTmxeXcVl6zzXATzDTNEVERKSAZCN4WAJMB36chfcWERGRPMvG\nsMVTQGkW3ldERERcIBs9D+Jizc3N+d6FoqM2zz21ee6pzYtLNqdqjqYO6Orq6lKSjYiISBr27NlD\nfX09QD2wJ9fbV8+DiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiI\npEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIik\nRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpKUs3zsgIlJIOjrMF8B778GBAzBzJpx3nnmsudl8\niXiZeh5ERBzU3AybN5vvZ8/C3r3wzjvw6qsmmOjogMbGSIAh4kXqeRARcVgoFOKppwK8/no3UMqh\nQ4McPlzL97/vZ/FiX753TyRj6nkQEXFQMBikoaGJ9vaV9PZuBOZy+LAF/Ae33HIDzc1/RSgUyvdu\nimREwYOIiIPuvruNnp4HgMuA1cBKYCvwNAMDv+eRR5ppaGhSACGepuBBRMRBu3d3AwuANuABYCFQ\nEn52HLCInp778fsDedpDkcwpeBARcdDAQCkmWLCDiEQWhIMMEW9S8CAi4qCyskHAAuwgIpFx4SBD\nxJsUPIiIOGj+/FpgF2AHEYkMhYMMEW9S8CAi4qBAwE9NzT3ARcDOJK/aFQ4yRLxJwYOIiIN8Ph87\ndnSyenUVZWX/GXgRGAo/OwTsoKbmXgIBf/52UiRDCh5ERBzm8/no6PgeTzzx78A/c+mlK4BGqqtX\n0NKyiR07OvH5VCxKvEsVJkVEHBS7toWPOXPamDwZDh+GGTNg6VJQ3CBep54HEREHRa9tcd55MHcu\nTJoEc+bAhAla20IKg3oeRESyQKtnSiFTz4OIiIikRcGDiIiIpEXDFiIiWRSbQAkHDsDMmSYfAjS8\nId6k4EFExCGjBQo33AD33mteU1eXt90UyZiCBxERh0T3IuzZA/X1JlCYMSOE3x/gRz/qBkpZtWqQ\n66+vJRDwq96DeJKCBxERB4VCJlB44QUTKNx2Wx8nT4Z4990fAgGghN7eIXp7d7NtW5MKRoknKWFS\nRMQhwWCQhoYm2ttX0tu7BdjMwYNX8+67DwELiayyOQ5YSE/P/fj9gbztr8hYKXgQEXHI3Xe30dPz\nALGBwivh/yeygN27u3OybyJOUvAgIuIQEwgsiHu0lEggEW8cAwOl2d0pkSxQ8CAi4hATCMQHCoOA\nleQnhigrG8zuTolkgYIHERGHmEAgPlCoBXYl+YldzJ9fm92dEskCBQ8iIg4xgUB8oOAH7gG2A0Ph\nx4aAHdTU3Esg4M/hHoo4Q8GDiIhDAgE/NTX3ADuIBApTgXVUVd3BzJm3Ao1UV6+gpWWTpmmKZ6nO\ng4iIQ3w+Hzt2dIbrPKynt7eU6mq7INSzvP66j/p6eOwxVZgUb1PwICLiIJ/Px8aNbe9XmPz852Hn\nTli71pSsnjMHvvxlrW0h3paN4OFS4FvALcBEYC+wFtiThW2JiLhG/NoWc+bA889HAoU1axQoSGFw\nOniYDLwI/BsmeAgCNcBbDm9HRMR11IsgxcLp4OFu4ACmp8F20OFtiIiISB45PduiEegCHgWOY4Yq\nPu/wNkRERCSPnA4eLgO+ALwKLAV+APxP4LMOb0dERETyxOlhi3HAbuCr4f//FrgC+C/ATxP9wJ13\n3smFF14Y81hzczPNGjgUERGho6ODDjsTN+ytt/KbSphstZax2g88BfxF1GNfAO4Fpse9tg7o6urq\nok4TnkVERFK2Z88e6uvrAerJw2xGp3seXgT+JO6xOZigQkSkaMVP4zxwAGbOVL0H8Sang4fvYAq4\nfwWTNDkf+PPwl4hI0WpuhiVLQuHqk9309pbS329Xn/SrTLV4itPBw0vAbcA3gL8FXgP+BugY6YdE\nRApdMBhk0aLV9PQ8AASAEnp7h+jt3c22bU1a50I8JRsLY20FrsJUl5wHbMjCNkREPOXuu9vCgcNC\nIulm44CF9PTcj98fyN/OiaRJq2qKiOTA7t3dwIIkzy4IPy/iDQoeRERyYGCglOQT3MaFnxfxBgUP\nIiI5UFY2CFhJnh0KPy/iDQoeRERyYP78WmBXkmd3hZ8X8QYFDyIiORAI+KmpuQfYAQyFHx0CdlBT\ncy+BgD9/OyeSJgUPIiI54PP52LGjk49/fBMVFSuARiZOXMGkSZuYPr2TtWt9NDZGCkmJuJnTdR5E\nRCQJn8/HCy+0sWcP1NfDP/wD3H47PPggqEq/eImCBxGRHIguT/3OOyEmTQrw53/eDZRy3XWDfPSj\ntTz2mCpNijdo2EJEJAeam2HzZvjRj4IcOtTEO++s5MyZLcBm+voe59//fSUNDU2EQqF876rIqBQ8\niIjkkCpNSiHQsIVIBrRSoqTLVJJMFiAsYPfu9bncHZExUfAgkoHo4MBOguvoUPKbJKdKk1IINGwh\nkqFQKMSaNa2sWrUcaGTVquWsWdOqsWtJSJUmpRCo50EkA1pmWdI1f34t3d27MDkP8VRpUrxBPQ8i\nGVDym6RLlSalEKjnQSQDSn4TSC9x1q406fcHeOGF9fT2llJdPcj119cSCKinSrxBwYNIBpT8JpBe\n4qwJNHxAG7NnQ3m5CTROnIC1azVDR7xBwxYiGVDym9hSTZy1i0U1N5ueiblzzeOvvmp6LTo60BoX\n4nrqeRDJgJLfBMaWONvcDEuWhMLDF9309pbS328PX6hMtbibeh5EMqDkN4GxJc4Gg0EaGppob19J\nb68pU93b+zjt7SpTLe6n4EEkA1pmWcBOnF2Q5NkF4edjaaaOeJmGLUTSEJ9V//vfw8CAj9LSNioq\nYNIkk/y2axdYlpLfCp19PBw4kH7irGbqiJcpeBBJQ6Ks+q4uk1UfCkXGr6GU118f5KmnalmyROPX\nhcrOW/jwh49gEmcTBRCJE2c1U0e8TMGDSJrig4RVqwaZP38mu3a9zP7930KVJouHnSj59tvzgJ1A\nQ4JXJU6cjczUST3gEHEL5TyIpKijA26+OcisWcOT3Do7T7N//zfQ+HVxieQtfBu4l+GJsy8mTZw1\nAcWuJO+smTribgoeRFLU3AxTpnydvr71DA8S3iDxXSckS5gT74skSvqATmATYBJn4RNccMFfJu11\nCgT8XHxx4pk6FRX3cuSIX4m24loKHkRSFAwG+cUvniVxkKDx62IUm7dgqkbCVmAz8EsGBj7E2rW+\nhEGAz+fjD3/oZPXqn1FVVQdcCXyUqqq/orFxHj/7mZJtxb2U8yCSorvvbqO//xISBwkavy5Go+Ut\nzJw5yObNyX/esix+/etXOHXqIUwPRgmnTg3xyCO7+fWvlSsj7qWeB5EUmS7q8SQuR12LSZhLROPX\nhSqTvIWODqivV60H8SYFDyIpMl3UyS4WfuAu4EVUaTLCXqehsRGWLjXrOCxdGnnM62P6mVQYbW6G\nSZPSLy4l4gYKHkRSZLqoW4FEF4s/UlYWYvXqR6iuNglz1dUraGnZVNRdz83NsGFDiKlTW9m3bzl7\n9zayb99ypk5tZcOGkOfH9O0Koy0tm8b0d1etB/Eq5TyIpMgsgvUaJqs+AKzHJEoOAhfh8y3l9Om/\n1zLLUcayYJQXxFYa9XHgQBsXXwy9vTBjhuldSeXXUq0H8SoFDyIpCgT8/PKXTQSD9wPfwnTcDQG7\nqKi4lyuv7CzaICGZ2PUbbLFj+hs3tuVp78bOriy5alWAl17qpq+vlIkTB5k0qZaSEj8dHWaGxWjH\ng1ZlFa9S8CCSIntqnakuuZ7e3lKqq+0llL15B51thbp+Q6IelTNnhjhzZjeHDqXeoxII+Nm2rYme\nnvsxuQ+RgNTkTHRm9fcQGSsFDyJp8Pl8bNzY9v66Fo89Zta1sMUvnHXggBm+OO8881ix9UwU6pi+\nUz0qds6EAlLxGgUPIimKDgx6e6GyEm6+2fz/zBm47DKYNQvOng3x3nsBXn+9m97eUvr77YtB8S2Q\nVahj+k71qJhjyhSXUq6MeImCB5EUJTuR270Q7e0wfXphJgiOVaGO6TvVo6LgQLxKUzVFxigUCrFm\nTSurVi0HGlm1ajkf+9ifhcevVfQHMquD4GaRHpVEvNujIpIqBQ8iYxAMBmloGL665r59JlBIrPiK\n/mRaB8GttCKmFDsNW4iMQfKEuSoKMUEwE6MlmXqRZklIsVPwIDIGyRPmCjNBcKziZ5/MmQNf/rL3\nZ59oloQUOwUPImOQPGHO7s4urATBsfJqcJCKQuxREUmVggeRMUg+BdEPNAFfBxqI7s6eOPFejhzp\npLGxsC+qxaBQe1REUqXgQWQMkk9B9AHrmD37Xs6dK+PgwROUlQ0wMFDFxRdP4pJLAkVZ76HQOB0c\nqLiYeI2CB5ExGClhrqLi21x66ffZvftLwA8YGFgAlHDgwBDt7cVR70EXw/TYa2WYHAoVFxP3S5YW\nngt1QFdXVxd1GigUDwqFYk/2kYQ5P35/gPb2lSTOfdhBS8smVy0IlY2L/Ujto4thrNi1MkywaYLR\n3dTU3FPwwaakb8+ePdTX1wPUA3tyvX0FDyJjMNrFds+e5Rw+vIVksy5qa1fw8stbc7W7KXHyYq+L\nYXrWrGn1VLAp+Zfv4EHDFiJjMNqd+Ny53loQKtEqkZmU1S7UpbizpVBXH5XCpQqTIlnglfLFHR3Q\n2Aj19dEX+8zLapuL4YIkzxZfpc3RFOrqo1K4FDyIZIFXyhc3N8OGDSHeffc5RrrYP/poN42NJtCw\nh2tGMtrFcP/+0rTer9B5JdgUsSl4EMkCrywIZa/R8fbbk4m92IeAVmA58EnOnj3I1KmtbNgQSilx\ncvjFMPr9Gunv703r/QqdV4JNEZvTwcN9mDNk9NcRh7ch4npeWRAqkpswnsjFPogpdLUSMIt+DQz8\nlvb2lTQ0NBEKhUZ939iL4fD36+9P7/3cwh7maWyEpUth7lzzPdNeFK8EmyI2p2db3Ad8ClgS9dgg\ncCLBazXbQgqWV+oczJu3nO7uLZjKmCuBGuDTwAPAogQ/kVrmfygUoqHBroPxC2AVhTKTIFtTUDW1\nVdJRiLMtBjG3GiJFyy3BQbz4oOaPf7RzE/zAbZi73fMwpbUTSS3zP3rhqH/8xyfp708WHHhrJoHT\ns1Js5u/iA9qYPRvKy02weeIErF3r3uNJilc2gocPA4eBs5h+y3uA3ixsR0TSZFcyXLUqwEsvddPf\nfxAzXOEDrgGagW+SaeZ/9MWwvPxV+vsLYyZBtqagKjgQr3E6eNgJfAbYC3wQ+CqwHZgHvOnwtkRc\nzY1DF7F3zq3An2HG2RcBr2F6HDJfVjz6d5s3b5Du7uTvd+TIYFqLhdntevgwHDwIZ87AhAlw9ixM\nnAgf+hBceml22lf1GEQMp4OHJ6L+/TLmrNQDfA74TqIfuPPOO7nwwgtjHmtubqZZYbh4nBvXK4jc\nOV8GrAbuxsT49wP2EIazy4rHLiIWwlx8u8Pbe5cPftBiw4ZQyu0R3a5vvPEb3njjBGfPmsXHLrpo\nEldddVXW2lf1GCQfOjo66IjLxn3rrbfytDe58xTwvQSP1wFWV1eXJVKIjh8/btXU3GjBDguGLLAs\nGLRgh1VTc6MVDAZzvk+1tcvC+7IuvF+WBcHw/68IPxe04EYLtof3197vX41pv4PBYLgdtoTfN749\ntqf1vpF23erI+6Uj0n5Wgq9Bq7Z2mePbFEmkq6vLwnQR5mXGQbbrPEzA3MYczfJ2RFwndnw886qN\nTojcOUdXgDS5CXALpsfBB3QCmwAzzRQWM3v2vWNKCLSTJ2fPbgPWM7w9GtJqj0i7PoeZFZLZ+6VD\n9RhEDKeDh28DHweqMWemx4Aq4CcOb0fE9dxYojlSvClR97sfk9+8A5iKCSgeB77CxIklXHbZo6xd\n60u7lkFHB6xd6+PYsUpGmsXx2GPdKb13pF1z376qxyBiOJ3zcCnQAVyEGdzcgbkteN3h7Yi4nhvH\nxyP5B4mSIu0eh29RXv4X9PdXR9UaGHthKztxce7cUvbuLWF43sMgUMvFFw+klOAYadfct2/0FNQX\nXlgfV4/BPcW/RLLN6eBBWY4iYZG7/LHPWnBSRwccOeKnoqKJvr4ZmMlR8T0BPmAlF11Uwvnntzla\na8D8vscxp4lInQRz576L11/fQig0euJkpF1z376qxyBiaEnuAuTGKYLFKHaWQbzcj4+bWQrw1399\nOY8//gKnT38GM6LYgBnBNBfxmho7t8HZ7Zv28BPJU7CZPIX+/h+lVCch0q7OzgpJhT47IobT5anT\nofLUWaRSt/kXW6J5AYkv0Ln7WwSDQa68cjXB4APh/XkD+Bamsu1JJk68mGuvvYrHHsvOMRIKhbj0\n0hvo7/8DyXoLamtX8PLLW0d9H9Ou6zBpVvHtu5OKiq9y7bWdHD3qcyRwVkAubpPv8tQKHgpQbCGg\nBUS6hndTU3OPqxZmKnRuCuLWrGmlvX0lydaYmDZtEx/9qLnrz9bFcPbs5fT0JA8O5sxp5NVXN4/6\nPna7Pvvsbzh48ARlZabOw8yZk2homA2MY9eu1+jtLaWiYpApU2qpqfFnFEy46W8pku/gQcMWBShb\nJXQlPW4bHx+tOuLkyevZPPp1e8w6OuD4ccg0T8Fu18OH2+jrg8rKSIXJd98NsmnTas6diwTOfX3H\n6evzc+zYDQwMzKK/n7Qv+tla00JE0qciUVkyWiGbysrF1vTp66zKymVWefkKq7JymTV9+jpr6dKg\n9fDD+d57yZY5c1YkOSbM15w5K7K+Dy0t0cWp4r+2Wy0t6xx+/+NJCkmlV6gr2/udiYcftqwVK8zX\nTTdZ1pw55rv9mD7ThanQi0RJHow8RfAN+voOc+jQSk6f3kJ//2ZOn36cQ4dW8vzzTbS3h2hsJO25\n/OJ+kVkKieRm9ke26yQMr63RRuJCUukV6nJjzQ5bczNs2BBi6tRW9u1bzt69jezbt5ypU1vZsCGk\nXAzJCg1bFKCRpwj+dyxrA4nWGTh3zuK11z7N9u2Pqgu2ALlh9keqdRLGmqA4PHB2ZiErN9bssI00\npNLZ2cR113UyYYJPSZ3iKAUPBSj5RSIIPAv8ffjfq4mfb79v304aGjSGW4gCAT/btiWf/REIdGZ9\nH1LNAxnromLDA+fML/qmPoa7anZEi81xir0hOHNGNwSSHQoeClDyi0QrpghoCbHdubZxwCIlVRYo\nN1RHTPXud6wJisMD59Qv+iP1dpx//mWcOmUvXR4vv2taRBJhi+OGQNNm3UE5DwXIvki0tGyiutos\nbFRdvYILLngZGI85mbp3DFeyw15j4sSJNmbP3sqcOZuZPXsrJ060jWnNimxKZ1Gxjg5obDRfvb1+\nysujcypqMZU0E4m96CfLHaio+CJlZS8B64DtxOZqvMisWV/O65oWkSGVZPkdi/K2EFs2KMfDHdTz\nUICSdQ1v394IzMVU5Ru5O/fNN0tpbDT/U3SfGbfcKXnpbzbatNLoXIXoIY4//KGb/v5yqqq+AJRx\n6tSFlJVtYWDgRySqpBk9VJO8t2MN8HfAh8OP309kTY6LWLjwirze0UeGapzJ73A7TZsVTdXMMTOF\n0566dsOI0zlra5dZwWDQamlZZ1VXL7NghVVdvcxqaVmX8vQ2iVBbpiedaaXHjx+3amoST8csL7/R\namjotqZPX2dVVIzc9smnY4489bmqallep0NG9jv/U3Fzwc3TZnMp31M180nBQ45FPnRBC6634MWk\nH8Cmpi8kPSGnMz9eRr64ub0t81VDYLRaJdEX7NEuJhMmrLMqKy1ryhTLqqy0rIsusqy6uuH7n3yb\n7r4oB4PB8PE1+g1BIRjt2CiU33M0+Q4elPNQRAIBPxdffA+wD7P08lcZPoZr5tuXlJSmPOYsI0tn\n/N5t8jW+bHIRdmFmD7QCy4HG8Pc1fOITs97fdvIaDCHgF5w79wSnTzdywQXL+fSnW+nuDtHVBZs3\nxw7jJJ+Omf/6GCOxc5xmz7YwuR6J5Dep00lunjZbTJTzUER8Ph9/+IPJtt+6tZtQqJzS0i9SUlIG\nfIAJE2Dy5FpqajrZtq2FkRMqC2P8NBfSGb93m2yNL4+WB7J8uZ/nnruNAweGgAeJXb57Jzt3fuX9\n5bsjF5PoaYoDwEFgI5bVltJ+J6+PYiddxi9fDm64KNs5Tpdd9iiHDzdx5kz+puLmgtuWupfc07BF\njjz8sGUtXRq0pkxZZ5WWLrNKSlZY48Yts8rK1llTpgQTduG6oZRxofBqWz78sGVNm/alEYe3Mhlf\nHikPJJ1tm27sY1ZsGep1FmxPa7+TD38ELWiw4Ffh4SZ72Gm748NOmQ4TFUNujXIejHwPW+STgocs\ns4OGadO+YJWU/MmIY+7xJ63x4zWu6BSvjtEeP37cKi+vzcq+p5IHkmq7mYvJZ+MuKOm3eSR3YPuw\nIOG88z5mTZv2pVGTLp0w1gCgWNa4GOnv5PYcIiflO3jQsEUBW7w4yNe+tpqjR2cAP2a0VTajK/qd\nO3cEM37qvqI4XuOGstBjcffdbfT3X8JI48sHDpSydGn6009HW/m1ri7Am2+mNrYdCPj5x3+8gf7+\n6GG29MfFn3nGR01NJ2fPBnjzza9x5swJYADLquLcuUmcPXse117b/v6y3tlYHTWTYSIvTcXNRPTf\n6eTJ9Zw7V8r48YPvD7k+84yvKNqhmKnnIcsi3Xuj34UNvxMMhruBXyya6D5bd25evVMyd/4jHTvH\nrLKyj4zpbnzkXoVj1gUXfMQqL78ipd6Dhx+2wvsQ/fzYe3vyOTtGXfKSKvU8iGPik9BeeMFO1Bv9\nLmz4naAPMyMjANwLvEd19ZScljLONbvY0KpVAV56qZu+vlJef32Q8vJarrnGT0eHqcKY7h1evstC\nZ7bIlF1ULH7dhAFgPwMDP2FgYAHRd8g//3kT117b+f4deqLtJM+YDwLNvP32Q8BjUduOF+mxaW6G\n9euhu9uKes/alH42kdF6RbJZuj0XybVuKVomMlbqeciC2PHSupTvwkYbXx4/fllBjp9Gi73jPG6Z\npLtbLVhilZXVWqtXf2lMd51uGIseyzh6bFGxLVZqCYlBCz5rVVXVj7id5Mdb9PvavV+j99gMv2NP\n/WcT/975yVHJVXJtvhMr3fCZ8Lp89zzkk4IHhw3vbrVPgqN3hXp1RoCTIhcg+4IZ3239oquHGZIZ\nazf8yEXFEl1gk7Xb8O2kXs0xGD5+zUWupOQKa/r0ddbSpcGYC0zioaFjFnzWKiurtWBZyhfIfH4W\nchG4uKVoWb4DGK9T8KDgwTHDT8jRJ/9Ed2G/SjuzvZBF2qCwxp3HOo4eDAatiy+2j5tb446PRBfY\n1LeTPA9kyZgv3PEXo4qKZdb06eus668PWnPmWNYVV1jWBz5gvq68MnK3W1dnHqury/9Mo1zkPLgh\nr8ItAYyX5Tt4UIXJAjK80p4fsCtKdgCbgE8AN1FWdiWrVz/yfvZ2pKIfDK/qt5j9+09z880hV628\n6LTIOHxhrTiavAIjjPT72EXFWlo2UVZ2jNgchURVF1Pfjp0xP336JiorV1Be3khl5QrKyk4meF9b\n8gJAiVYM/djHtnLNNW1MmuTjvvvg97+H3/8+xK23tnLqVKRa5lVXtfLcc69w1VWmimZkplEiu3jn\nndqsfQ4CAT81NdGrgkJ05VcnVu9MfDzYn/mv097+b1RVLWfGjNasfea9XHVV8k89Dw5L3N0a3e1b\nZ02cuMyaNMncjUWPL0buBOPHtlMfK/a6SM9DYQ3hjLUbPnpcurIy/m480d1r5u2Wzbvi5He7W62y\nsrlRj9s9dVssuMuyh0zgBquq6gqru7t7zPuQiky78+36LtOnr7MqK5dZpaUrrNLSZVZ5+TqrvDyY\n4O+U+nCTU9TTmbl89zzkk4IHh9gn+aqqsSc92iecior4sW1vd9mnI52prV7ixIk6tYTE+KGN9LeT\nzWmtyQOTRMmfL1twVYILanaDaCcSCY8fPx4ebored5P/AXMsmBv1+OiL5GXjM68cq8wpeFDw4Ihg\nMGjNnp35SaCY7wgiF67PJriYeDeAcuJuPvaifix8wf1TC64MX5DmW5WVVzlyEUp25/3QQ8GYO+ry\n8hVWZeWyhAmUiSQ/thM9nv+8gLGKTXRdZ8F1Fsy2YKtlAj77+LZ7HG7M+We+mM8zTlHwoOAhY5Hu\n2F9aiRMjU58lUMx3BJFy3l8Ml/PO/loGueDE3Xwqpc7PO+9j1sSJH894O8nuvJcuTXRHnXr3evJj\nO9Hj+b+4jbUXInatj60WXBH+m8QnUNtBRO4/825I2vQ6BQ8KHjIW+0GMndoGN1gVFdendGdmWboj\nsBXSNLL4MfB079ijjXbSnzbti45sZyzbHu2Ck17PgzuC6JF6YZIFFpWVK6IChXVWpGch+vcMWlCf\n4PHcfOar2oiKAAAgAElEQVQT92SZmiolJbXWtGlfcuSYKWT5Dh5UYbIAxFal8wHR1e+GmDVrBU8+\nmVoVQ6+uw+Ake4ljaGP2bCgvJ2trGeSC2d/442JsRquAOHnyel5+eWvG24lmV0R87rnMqi8mP7YT\nLbmd32WfOzrghz/s5le/amZw8IfErnOxi1/+sonnn/8egcCPeeGFbnp7S+nvN1VLL730LHv32m31\ndaAq/HtEV/X0Afa6JWOvxjlW9mybvr7/h2PHnsOyNr7/O1rWEEeP7qaiooklSzrD+yoSoZ4Hhzg5\n1ODVdRgkN0Y71ioqVmSlSmAwGLQmTVqY0XGe/Njeapkkwuh1XO6y8pn3cvz4cauq6ooR9mGLdf75\niRI6d4R/zq6XsSKqZyG+h8H+/+h1YLJFwxdjp54HyZi5C3LmLinf6zCIuw0/1qLXuyilv7+XqVNb\nCQT8KR0rqayzsHixWWnynXcmkslxHn1sP/vs1zh48ASlpe8xOGi/3+cpKRkHnM95553HuXNPMzj4\nA8wd+ThMvYVd4XoLnaP+bpm4++42Tp3ykbg3AOA53n33ByRaf+PUqW8xbtx/Y2jIwvSgXI7pWYjv\nYYj+v72OzXpMD8W7zJ5tsX37o45+5pOvv5NIbG+S1uRwFxWJKgCxBZ7ipdftGF9s54Mf3Mzbb7fz\nyCMwbVoLZWWNWS8gI+4Ve6wFgSZgJbAF2Ex//29pb19JQ0MToVBo1PdrboYNG0JMnWoKNNmFm6ZO\nbWXDhhDNzdEFherJ5Di3j+0jR1oJhYaA+xkcnIZZrv4VoBvL+h2W9SDnn1/Cddc9wvTp/xRTxGr6\n9E3vL/ucTWZ4yB5uSOQVYodZot1CVdV4TKGpWmAxpljcjeHvdgEqu4jcdmAqZljrceArTJxYwmWX\nPcratT5HP+Pxf+9z5+KLj0WLXTo9lWNFioOGLRySzaEGlZGVaLHH2l0ZdzmncnxFEh2d6V6PdJW7\nt8vcDA+NlMg42vDRUquiwp5tYX+/y4LFFlxtQa0FV1olJddZ48dfb02cuNTKRWJw8vV3Rk/W1Lko\nVr6HLfJJwYODsjU7QGOSEi165kZJyRUpn/iTGe34MjM3oi+U8bOJllmTJl2d1nEeCUbcO7PI7ONI\nwdkNI+77pZcus5YuDVpTpqyzxo2zA4YrLFhojRu31JoyZZ115ZVBq64utytbJl9/Z/Tzi85FsfId\nPCjnoQBkc3bAaNn1o2W4S2GJnrkxd+6r7N2bWpdzMrHHV2z+BAzw7rtHuPTSD7B3r4Xp3h4+m2ho\naAVr1/pSPs4ja5hEzz4Y2/5ni5kZ8qeYYYX7MWtR2HkXOykrO8zAQPwMEdsubrqplo0bnZlh46Th\n5xM/Zugr/nccnluic5G7KHgoANlMFIqcaBPJ7wlW8suJRN3I8RUEVgMPYE/ZgyHefnsng4N3MHwq\npW0Xq1bVsnHjWPY7v9MxRxII+Nm2rYmennXAL4hOZKyqeoMnntjI5z53Lz09o1903WT4+cRHbLLm\nMaqrP5gwQVvnIndRwqSMKHKiTSS/J1gndXTAzTeHmDGjlaqq5Ywfr8TQ0TiRqBs5vtowgUP8KouL\nOHXqW5x//n/BqZUmI/vtXKKx03w+H62tnUyf/hwVFa8ApZSVDTJt2kdZtOhZ/vqvP0ZFxfBVSXOV\n0DlWic8ndg/J44wf/0Fmz97KiRNtw5I1i+VcJKNTzoMHFMs4o5Kx0udEom6qi5FVVi52rHJlZL/t\nZMKxl3PPFicWyEp3e05VIR1JJueTYjkXpSrfOQ/5pODBA4qlaJROTOlz4oITOb6WJGl78+V0OWg7\nwfhDHzLJhGVlJplw5sylritDnotAIlfBcybnk2I5F6VKwYOCB9crpHUektGaHvlhByBlZfU5a3/7\nYlxXZ1kXXWRZlZWWNWWK+X7RRdb7MxDctK5Ctj+DuQyeM/ldiuFclKp8Bw/Jsk9yoQ7o6urqoq6u\n6AInzyiWqm5z5zayd+/mpM/PmdPIq68mf14ys2ZNK+3tK0lcUXEHLS2b2LjRXTMHciUYNBU2TaGs\nBdjJpLCbiRPvYdq0TmpqfBl9JufNW0539xaSJY/W1q5wZM2STM4nxXIuStWePXuor68HUz1tT663\nr9kWMqJi+UA6WeJb0heZXeCt2QO5EKmwGR1YnQB+wZkzFq+91ohlTQnPUEitLHi8XM1kyOR8Uizn\nIq9Q8CCjKoaIvxBXE/XS381eZfHs2QAnT67n3LlSxo8fZPLk2vdnD7hlX3NteH2D4dNazWqbu9m2\nrYkdO9Jfg0bBs3iJch48pNDHGgs1GSsXf7dcZeoXq+ErmTqfn6CEYe/Jd85DPil48IhimcZYaAFS\nrv5uxXJ85MvwZF7nk3sLNXguZPkOHlQkysM6OqCx0XwtXQpz55rv9mNOFTaKHXONLuCzkJ6e+/H7\nk5WM9Y741UTnzNmctFiNV+Tq71YMx0c+xRbjCgFv4nR+gr1ceUvLJqqrVwCNTJy4lIqKr3D0aDmX\nXro2b0XTVMBN4qnnwQG5uFvWNEZn5Kp7P9fTH3V8ZFekV2CLZYpa3eh4e0dPX50yJWiVln7Bgj/J\nWW/SSLUsli49bl18sXq24qnnQcYsGAzS0NBEe/tKenu3AJvp7X2c9vaVNDQ0EQqFHNmOaso7Y/Hi\nID09TRw6tJLTp7fQ37+Z06cf59ChlfT0NLFkiTN/L3s7AwOTycXfTcdHdtnJpBUVbZj1H+pxuqx2\nczNs3gz/+q9BJk9uYnDwNPBjctWb1NwMGzaEmDq1lX37lrN3byP79i1n6tRWpkz5OsGgerYkQj0P\nGcpVkpPuLJ2Rjb9Xoju2adNSK/msngdvibRz0EpcVvtXGd+Jp1ou3Om/6Uh5MyUltTq+ElDPg4yZ\nmcK1IMmzC8LPZ86JBZAkO3+vRHdsb7zxRHg7ufm76fjIjUgPj70S5SbA5CfACsrKvpTxoliRYzS6\nNykEtALL39/W3r1HHM03iM2beSO8vRXAA1jWeNSzVVy+jKny8p0kz6vnIUPDp3BlZz0AZWI7Ixt/\nr8R3bPZ2sneHGk3HR27koocncoza2zoePobiewScXTws8rsl2t6t6nlIoFB7Hq4F/gL4HSRdQ1Uy\nlKslau0xV68t/+s22fh7JZ7pYG8n0R3qJygr+0tH/26JMvWrq1fQ0rJpTAWLJLFc9PBEjlF7W8mX\nSncy3yDSq5Joe/NQz5b7ZKPCZBXwM+DzwNey8P4SlquqiKYSoQ/zwS4sHR3Q3h6iuzvAyZPdMZUN\na2v9tLQ4V9kwG3+v4dUHIXLiX4gJIKL/bju4/fZNbNzo3AXdVLI025k9G8rLTSXLEydg7Vp3VbL0\nslyU8I4co36gCRNIJAsQFrB79/qMtwnRQYt9PIfC37uBAWAL8COgAZUuL1w/Af4u/O/ngQeTvE7D\nFhlSd3HmclngKBt/r8RDIcmGK3RceFkupvrGHqPHLFiYk6HRSKLmiiRDF8cs+KwFc6yysmWqYGrl\nf9jC6Z6H1cDVmGEL0JBFVmk9gMwlXnQodhqYU6s5ZuPvlXhNAnu44luUlPwFllVNRcUgH/1oLY89\npmEEr8pFD6A9BOX3B3jhhW56e08x/PiyOTc0GulVsXs64j+TH8Dcl77I7bf/c9GusOomTgYPM4D/\nASwBzoUfK2GUZb/vvPNOLrzwwpjHmpubadZVb1SFPJyQK4m7/W3OdcuCc3+v6AWvTp6MHqKA2O7e\nc4wbN4HKyrlcc42fSZN8GkaQEcUPQZ040co772R/aNQOrI8e/TR9fV0k/4w0sHv3A45s00s6Ojro\niJva8tZbb+Vpb5z3ScxAVH/U1xAme+scw4MIDVtI3uVqxorT7MqiH/rQYstUAvyVBUeTZMYXdyU+\nGbtcD40Gg0GrvPxqT34mcy3fwxZOzrZ4BrgC+Ej462rgJUzy5NVoCENcKFczVpzS0QE33NDNtGlL\naG9fycGDTwP/DvwTptNvParEJ07J9UyaZ57xMX78xXjpM1msnAweTmH6Su2vl4E+zCouzlQrEnGY\nVwoc2YsD3XXXF3nhhUYGBx8iEiT4gG8DMzHZ6Ik4VzRMioe9YNzvftfG22+3U1Y2lwMH4Cc/eZVp\n01qYOtXZxamam+HTn74KL3wmi122K0za3SoirhQI+KmpuQfYgRllI/x9R3gamD9/OxfFXq/i6NHT\nmPSiRGPQWmNCnBW/5sXAwEqGhrZgWZsZHHycN990dl0W8M5nsthlO3i4EfhvWd6GyJh5pQBWZFbI\nG8D5JA4SvDUEI96Ry2XXVXTMG7JRJErEM7wyYyUyK6SUSJAQH0DUAjtJPHSh7l4Zu1zOSlLRMW9Q\n8CDiAZHyvYPA5cROzwQzRbMPaMEspaxKfOKcXC67ruDAG7SqpsfYiXMzZrRSVbWc8eMbqapazowZ\nziYuibvErjmwGIgeEw5iSgl/BtgG/DPwCeAmSkquZNq0h101BCPe47VZSZJ96nnwmMWLg3zta6s5\ndOgBTDdiCf39Q5w+vZsJE5pYsqQTk30vI4kutPTee3DggOkaPe8885jb7n6GrzmwDvgFZmrmEeB7\nRHoiIkMwlrWDm292di0LKT6R46+GSBEyewjtIk6enEVHx8ifmVyuIyOFTUWi0vDww5a1YoVlTZ9u\n14BPVEBlu9XSsi7fu+oZdqGl6uplFqywqquXWS0t61xZTGn4mgPrwksVL7FgjpYslqwKBoPWzJkf\ns6AhQRGyF61Zsz4+6ucml+vIFINCKhIlWdTcDBs2hHj33ecwK+olkt25/IU0ZBIMBmloaKK9fSW9\nvVuAzfT2Pk57+0oaGpoIhZybeuaE2Az0/wy8SnV1CS0tV1NTMxtN0ZRs8vl8NDRcg6knMnx57v37\nvznqjItcztiQ7NOwhUcEg0EWLVrN229PJl8XikIaMsnlglhOGCkD/fjx5eRi8SIpXh0dsGXLa4xc\nhGzkGRfpztjw2tBisVHPg0dELnbjyVfiUiHdOZgTWX56cBIZrVcHTLGezZvhqafg1VfN982bYdUq\nb1TJFO9qboZLLslsxkW6Mzbs3tapU1vZt285e/c2sm/fcqZObWXDhpAChzxT8OARkYtd/i4Ubrvg\nZiKXU89SYVeQPHRoJadPb6G/fzOnTz/OoUOjV/BTRT7JhdgZFyGgFVgONALLeO21gyMOX6Y7Y8Nr\nQ4vFRsGDR0Qudn5ip+kR/v5i1i8UbrvgZsJtU88y6dXxSpVM8bbIOjD21OCVgLmowxYGBr4/YqCb\n7joyhdTTKc7SbIs01NYui8pQDoaz7c0sAbjVKiv7iLV0adB6+OFc7YO3s/pbWtw1a6WQ2lYKU2TG\nz2fDs37S++yku7y3PhMj02wLSUls1G6XU96Kifq/xu2338STT2Z3nrRXVqBMhdu6+gupV0cKk93D\nVVb2MokXZoORhi/T7SHTZ8LdNNvCIwIBP9u2NdHTcz8m7yD3pYfdsA9OsU9kZ88GOHlyfUzBGvtE\nlsuErMgwimZMiDvZ68DMnXsJe/emf1FPdx0ZfSbcTcGDR7jhYueGfXCK2xbEilTwS3RH561eHSls\nubqo6zPhbgoePMINFzs37EMhSFSmt7y8j9LSpxgc/AHmZOndXh0pbLm6qBdST2chUs6DSI4lmpbZ\n1/cUg4PfpKrqDmbOvBVopLp6BS0tm9ixoxOfTzMmxB1ylS+kWUTulmzgKhfqgK6uri7q6vKSLCqS\nF2vWtNLevpLEd247mDZtE5bVxrlzIfr6AvT3m0WIzjtPiwiJO4RCIfz+AC+80E1vbynV1YNcf30t\ngYBfgW6O7Nmzh/r6eoB6YE+ut6+eBykqblifY7RiW5Mnd/Pb3waZPLmJ995byeDgRgYH53L6tMWh\nQ//B00/fwF13/ZXn1hORwtDRAWvX+jhxoo3Zs7cyZ85mZs/eyokTbaxd69MxWSSU8yBFxQ3rc6Qy\nBS1SIOcyYDUQ2V/LGuLo0Z1UVHhrPREpDPaaEnbuTl9fgO3bI0ts/+Y3tbS3q3es0KnnweXccKdc\nSNxQtS5xdUu73O8y9u49xE9+8gSmd6INEzgMX8lQVfYknzIpqS7ep+DB5dz4AY0PaMrKGiktXUJp\n6Q2Ult5MWZl7Axw3rM8xvNhWdLnfrcAeLKsaEyzkf39FEnFDIC75o+DB5dz4AY0PaAYHf8TQ0BBD\nQ99kaOgJBgfzH+Ak44aqdcOz1duA+4n9G9u9E/nfX5FE3BCIS/4oeHA5N35Ahwc0ybrW3XcH4oYF\nseKnoMETDJ95YfdO5H9/RRJxQyAu+aPgweXc+AGNDWhCwHO4LcBJxg3rczQ3w5NP+nj99TZOndrK\nnDn2EEU0e/XUi4CdSd5JVfYkf9wQiEv+KHhwOTd+QCMBjT1WPxm3BTjJuG1BLEj2N/YBnUAl8Bng\nRdyyvyKQeiCupO/CpODB5dxwpxwvcrGzhyvGE7n42bMGlgONwDJee+2ga04SbqpaZ59U9+8/jQlm\n4vmAzzBt2s1Mn/7Ped9fkWipBuJuTPoWb6sDrK6urnwvi+5qwWDQqqm50YLtFgy+v5Y9bLdqam60\ngsFgzveppWWdBTssWGbBkAX2/49bcGP430NR+/pi3vbVzY4fPx7+2/4y3G7xf2O1m7jXww9b1tKl\nQWvKlHXWuHGLLbjagissWGjBDVZJyfXWuHFLw4+/GD6u47+2Wy0t6/L9q3hSV1eXhblry0uJZvU8\nuJyb7pRtkTuOc5jhCnt8vpXhswZUkyCZSOLprZghik3ACkyPzWIqKu5R74K4lp2788orrVRXDwE/\nAH4H/AummJmZfQWXAA1J3sVdOVGSOlWYdDk3rmRpBzQHDtzKwIBFZHz+VhKv1wDmJLE+Z/voBeak\naQdU8X/jIWbNWsGTTypwEHeLnX0FsbOvQNONC5N6HiRt9h3H7bffSCQfw4e5w9BJIlVunEkjkq7R\nZ1+5L+lbMqfgQcZseMKUThLpcONMGpF0jT77yn1J35I5BQ8yZvH5GCUlR0g8awB0khjOjTNpRNI1\n8uwriOREuWd6tGROwYOMWXyxo+PHn6Km5qvoJJEaN9acEElXJAi2hy+ig+IQJq9nHPBF4ErgGsaN\nu5UpUzTd2MuUMCmOsXsizp4NcPLk+veX6J08ufb9k4SW6I1Qe0khCAT8bNvWRE+PPXzhxwxf3AX8\nHdHLyZvgeBfV1feyY4cfn0+Bg1cly9bKhTqgq6uri7q6vExTFRGRDHV0QHt7iGefvZWBgV9jLish\n4NOYwGFRgp/aQUvLJjZudM8sMq/Zs2cP9fX1APXAnlxvX8MWIiIyZslnX1Wi+g6FS8GDiIhkbHgO\nj6YiFzIFD1JUQqEQa9a0Mm/ecubObWTevOWsWdNKKKT6+iKZGL7UfC+aily4FDxI0XjooSCzZjXR\n3r6S7u4t7N27me7ux2lvX8msWU388IcKIETGKn72VUvLLWgqcuFS8CBFY9euNvr67LK50WtvLKSv\n73527tTaGyJO0VTkwqbgQYpGbBndeErgEnGSGxf1E+eozoMUDa0lIZI7blzUT5yjngcpGlpLQkTE\nGQoexHFundGgtSRERJyh4EEc5eYZDUrgEhFxhoIHcZSbZzQogUtExBlKmBRHmRkLyQKEBezevT6X\nuxNDCVwiIs5Qz4M4SjMaREQKn4IHcZRmNIiIFD4FD+Ko2BkNIaAVWA40AovZv/80N98coqMjX3so\nIiKZUvAgjorMaNgKNAErgS3AZuDf6Ov7Bj09TSxZonUkRES8yung4QvAb4G3w1/bgVsc3oa4mD2j\noaKiDVjP8FkXDfT03I/fr3UkRES8yung4XXgbqAOqAeexdxyznN4O+JS9sp6s2ZVAg1JXqV1JERE\nvMzpqZpb4v7/VUxvxHzgZYe3JS6mWRciIoUrm3UeSoFPAxOAbVncjrhQZNZFogBCsy5ERLwsG8HD\nlZj6vxOAM8CfAfuysB1xsfnza+nu3gXUYIpGdWPiyUHgIk6enEVHhxnmEBERb0nWr5yJcmAGcAGm\n5+FLwA3AnrjX1QFd1113HRdeeGHME83NzTTrquJpoVCIa6+9jQMHhoAHgQWYw20I2MmsWV9h9+7H\n8PlUElpEZCQdHR10xM1vf+utt9i2bRuY/ML462vWZSN4iPc0sB/487jH64Curq4u6urqcrAbkksd\nHXDXXX/F0aPNwKIEr9hBS8smNm5UqWgRkXTt2bOH+vp6yFPwkIs6D+NytB1xkeZmmDz5NTTjQkSk\n8Did8/AN4JeYKZvnA6uB64H7Hd6OeIBmXIiIFCangwcf8FNgGqZI1G+BmzH1HqTIaMaFiEhhcjp4\n+LzD7yceFplxsTDBs7vC62CIiIjXKBdBsmbhQj8VFfdgZu4OhR8dAnZQUXEvCxf687dzIiIyZtks\nEiVF7o47fHzqU534/QF2717PwEApZWWDzJ9fSyDQqWmaIiIepeBBssrn82k6pohIgdGwhYiIiKRF\nwYOIiIikRcMWUhRCoVA496I7LvfCr9wLEZE0KXiQgvfQQ0Huums1fX0PYBbpMmtsdHfv5uc/b+LB\nBzu54w4FECIiqdKwhRS8XbvawoHDQiIFq8YBC+nru5+dOwP52zkREQ9S8CAFz6yhsSDJs1pjQ0Qk\nXQoepOBpjQ0REWcpeJCCF1ljIxGtsSEiki4FD5IzHR1w880hZsxopapqOePHN1JVtZwZM1q5+eYQ\nHR3Z2a5ZQ2NXkme1xoaISLoUPEjOLF4cpKeniUOHVnL69Bb6+zdz+vTjHDq0kp6eJpYsCWVlu4GA\nn5qaxGts1NTcSyCgNTZERNKh4EFy5u672+jpSTzroafnfvz+7Mx6eOYZHzU1nUyfvonKyhWUlzdS\nWbmC6dM3UVPTyTPPaJqmiEg6VOdBcsbMakgWICxg9+71WdluczM0N/sArbEhIuIE9TxIzgyf9RAC\nWoHlwCfZt+8ga9a0EgplZ/hCREScoeBBciZ21kMQaAJWAluAzZw791va21cya1YTP/yhAggREbdS\n8CA5EzvroQ1Q1UcRES9S8CA5s3Chn4oKe9bDy6jqo4iINyl4kJy54w4f+/d30tKyifHjj6GqjyIi\n3qTgQXLK5/OxcWMbs2dPQ1UfRUS8ScGD5IWqPoqIeJeCB8mLXFR9zFc5bBGRQqciUZIXdtXHs2cD\nnDy5nnPnShk/fpDJk2vfr/rY3Dy29w6FQvj9AbZv/w29vYfp79+IKU5VQn//EKdP72bChCaWLOkE\nVF1SRCRdCh4kL5ys+mgHC7t3dxMKDfDGGwexrI2YnIr1mOmgtthy2Bs3quqkiEi6NGwhnvbQQ0Fm\nzWqivX0l3d1bCIWuwrJ+DNQAz6PpoCIizlPwIJ62a1cbfX12sak3gOeAyzDVKyej6aAiIs5T8CCe\nZnoPFhApdz0Z+DameuV4NB1URMR5Ch7Es0KhEIcOvYnpXbDLXY8H7IBC00FFRLJBwYPkVSgUYs2a\nVubNW87cuY3Mm7c8pZU17VyHd96ZiOldiA4YzmECCj+QaDroi1RU3MvChZlPBxURKUaabSF589BD\nQe66a3U4Z8FMpYQhurt38/OfN/Hgg53ccUfiqZSRXIdfYHoX7OW+/cANmIDCB3SG33t9+DUDXHDB\nEf74x6fx+TRNU0RkLNTzIHkTm+yY3sqakVwHu3fhXSIBw59iehsI/78N2ApsBr7GbbfdpMBBRCQD\nCh4kbyIBQCIjT6U0MyVKiPQuWEQChr8Fvko2q1eKiBQzBQ+SN5EAIJHkUylDoRDHjx8hMpPCBzxK\nJGCYigkofgEsBq6houJWpk/f9H71ShERGTvlPEjemKmSFokDiNiplHYVySee+A3Hjx/GsuYDO4GG\n8Cui8xvuoaTkPSoqpjB58keprfXT0jL2ctciIhJLwYPkzfz5tXR37yK2fLQtMpUyNrHSLjldg6nr\ncD9m6GMcpsfhk1RUdPHgg5uTJluKiEhmFDxI3ixc6OfnP2+iry86ABgCdoWnUnYC0YmVdsnpNkxv\nhWZSiIjkg4IHyZs77vDxqU91hhe1Ws/AQCllZYPMn19LIND5fgBgEifXMbzk9PCFtT7wgUYFDiIi\nWaaESckrn8/Hxo1tPP98O4sWzQVg+/ZXueGGlveLRZnESZWcFhFxC/U8SN6NVizqggvKMRUkA0RK\nTo+cJyEiItmjngfJu9GKRVVWniWVktOq4SAikhvqeZC8MzkNdjXJUPjf3dhJkIcPv0FJiYVlJS85\nXVZ2hJqap3nmGU3JFBHJNgUPkneRYlFBYDUmtyEyfHHmzE5KSz/P4OAOYBHDEyV3cPvtm9i4UYmS\nIiK5oGELybtIsSh7We344YtFDA5+m9LSL5Co5LRWyBQRyS31PEjeRYpFRQ9fxLuFmpoHWbRo04jT\nOkVEJPsUPEjeBQJ+tm1roqdn5LUuoIKNG9uSPC8iIrmiYQvJu2ee8VFT00lZ2UlUw0FExP0UPEje\nNTfDk0/6uP32GzE1HBJRDQcREbdQ8CCusXChn4qKRDUclBQpIuImynkQ10h1rQsREckv9TwUmY6O\njnzvwojstS5efnkrr766mZdf3srGjW2eDhzc3uaFSG2ee2rz4uJ08PAV4NfAO8Bx4J+AOQ5vQzKg\nD3juqc1zT22ee2rz4uJ08PBx4O+BBcBNmGGRp4AKh7cjIiIieeJ0zsOtcf9fg6k5XAf8yuFtiYiI\nSB5kO+fhwvD3N7O8HREREcmRbM62KAG+A2zD1B1O6JVXXsniLki8t956iz179uR7N4qK2jz31Oa5\npzbPrXxfO5PVAnbC9zDDGP8XcCTB89MwyZWXZnEfRERECtVh4FrgaK43nK3g4e+BRkwC5YERXjct\n/CUiIiLpOUoeAodsKAH+F/A6UJPnfREREREP+D5wEtPj8MGor/PyuVMiIiLiXkPAYPh79Ndn87lT\nIiIiIiIiIiIiIiIiIiIiUtTuY3guQ3z9hsuBzcBbmMWxdgAz4l7TADwLnMIkVz5HbELl/gTbeSDu\nPaAc+f8AAAV6SURBVD4EPB5+jxDwP4DyMf5ebnYfmbX5rAQ/b3+tjHqPycD/F36Pt4CfAhfEbUdt\nHuFEm+9P8LyO87GfWy4BHgaOYdprD7HtDTrOo91Hbtp8f4Lt6Dgfe5vXYBacDAJvA53AxXHv4brj\n/D7gd+Edtb+mRj1fA5wAvgl8BHMSvRWIXku5AfPL+DGNVAN8Chgf9Zpe4N647VRGPV8K/B54Jryd\nxcAh4H9m+gu60H1k1ubj4n72YuBrmIMuerGyfwV+i1nQbGF4m5ujnlebRzjV5jrOI+4j83PLc8BO\n4KPh5+8FBoCro16j4zziPnLT5jrOI+4jszavBHqAx4B5wBWYQGIXsTWbXHec3wf8ZoTnHwF+Msp7\n7AT+31Fe0wv8zQjP34o5QD8Y9VgTcAaoGuW9veY+Mm/zeL8B/iHq/5djIuBrox5bEH7sw+H/q80j\nnGhz0HEe7T4yb/N3gf877rE3MIvzgY7zePeR/TYHHefR7iOzNl+KaavodrkQcwwvDv8/Z8d5ugtj\nfRhTDvM1oAOojnqfZcAfgSeB45hA4T9F/ezFwHxMF8l2TFfX88DHEmznbsxB+BvgHmK7UxowUdOx\nqMeeAiYA9Wn+Pl6QSZvHq8dEmhuiHmvA3BX/OuqxXeHHFkW9Rm3uXJvbdJxHZNrmW4DVmC7bceF/\nj8ecY0DHeSLZbnObjvOITNp8AmAB56IeO4sJDOzrqCuP81uA2zDdJYsxXVZHgSmYCGYIM37yN8BV\nmANmEFMwCkz3yRDmIPoc5oT6IPAeMDtqO3cC12G6ZNZixnai79r+N/BEgv17DxM9FZJM2zze94E/\nxD12D/Bqgte+Gn4/UJs73eag4zyaE20+EdMNO4Q5ub5F5G4MdJzHy0Wbg47zaJm2+UWYNv4Opu0r\nMRWdh4AfhF/jieO8AvOL/1fM+hRDwM/iXvMvmIQaMFHPELA+7jW/ZXgCTbRPhX9ucvj//xsTmcUr\nxIMtXrptHm0i5sD7r3GPp3qwqc2da/NEdJxHjKXNN2GSy24ErgT+FpOQfUX4eR3nI8tGmyei4zxi\nLG1+E7APE1T0Y4Y5XsIsRAk5PM7THbaI1ofp+piN6U0YYPjS2/8/JqsTIot3xL/mlajXJLIr/N3u\nnTgGfCDuNZMx3WXHKGzptnm0VZiL2U/jHj/G8Gxdwo8di3qN2ty5Nk9Ex3lEum1+OfBJzJ3tc+Gf\n/e+Yk+pfhl+j43xk2WjzRHScR4zl3PJ0+PU+TLLl54DpmGEQyOFxnknwMAGoxQQF/Zgxlj+Je80c\nzFQdwt+PJHjN3KjXJHJN+LsdfGzHRLbRv/xSzNhPV4r77lXptnm0tZgo9kTc4zsw03jiE2wuwLQ1\nqM2dbvNEdJxHpNvm9nlsMO41Q0Sy0HWcjywbbZ6IjvOITM4tb2Kmci7GBBL2bApXHuffxoy9VId3\n5nFMl6w9B/WT4Y1/HhMZfQnTIIui3uNvwj+zMvyarwOniSSNLMR04VwdfuzPMFNI/inqPcZhpp48\nHX7dYuAgZp5qoXGizQk/N4g5QBL5JfAfxE7t+Zeo59Xmzra5jvNYmbZ5KeaO7QXMSbMGuAvT/rdE\nbUfHeUQu2rwBHefRnDi3rMEcuzXA7Zgei7a47bjuOO/AZImexRwAjzI8SloD7MV0x+wBViR4n7vD\nO3oK+BWxDXMNJnI6GX6PVzDjaPGrcs7ANPxpTON9l8IsKuJUmz/AyL07F2KKirwd/vopMCnuNWrz\niEzbXMd5LCfa/LLwzx3FnFt+w/BphDrOI3LR5jrOYznR5t/AtPdZzJDGnQm2o+NcRERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERE8ur/ANBpVY9jW9RvAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import sys\n", + "import getopt\n", + "sys.path.insert(1,\"/usr/local/science/clag/\")\n", + "import clag\n", + "%pylab inline\n", + "\n", + "ref_file=\"lc/1367A.lc\"\n", + "echo_file=\"lc/3471A.lc\"\n", + "\n", + "\n", + "dt = 0.01\n", + "t1, l1, l1e = np.loadtxt(ref_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.005 , 0.01861938, 0.04473305, 0.06933623, 0.10747115,\n", + " 0.16658029, 0.25819945, 0.40020915, 0.62032418])" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "\n", + "fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029, \n", + " 0.25819945, 0.40020915, 0.62032418])\n", + "# fqL = np.logspace(np.log10(0.0006),np.log10(1.2),11)\n", + "nfq = len(fqL) - 1\n", + "fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.)\n", + "\n", + "\n", + "fqL\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.342e-01 5.077e+01 inf -- -5.530e+02 -- 1 1 1 1 1 1 1 1\n", + " 2 7.674e-01 5.065e+01 8.300e+01 -- -4.700e+02 -- 0.653018 0.587019 0.568277 0.567457 0.566281 0.566085 0.565773 0.566163\n", + " 3 3.298e+00 5.043e+01 8.075e+01 -- -3.893e+02 -- 0.414806 0.209135 0.141159 0.13784 0.133393 0.132728 0.131612 0.132761\n", + " 4 1.572e+00 5.010e+01 7.754e+01 -- -3.117e+02 -- 0.322539 -0.0834456 -0.273066 -0.284295 -0.297612 -0.299435 -0.302479 -0.300412\n", + " 5 5.908e-01 4.964e+01 7.386e+01 -- -2.379e+02 -- 0.302357 -0.214604 -0.654658 -0.688754 -0.723838 -0.729279 -0.736418 -0.733888\n", + " 6 3.713e-01 4.877e+01 6.953e+01 -- -1.683e+02 -- 0.284419 -0.200357 -0.96379 -1.05472 -1.13798 -1.15477 -1.17031 -1.16748\n", + " 7 2.709e-01 4.671e+01 6.269e+01 -- -1.056e+02 -- 0.277768 -0.185001 -1.13047 -1.34026 -1.52128 -1.56845 -1.6043 -1.60101\n", + " 8 2.135e-01 4.361e+01 5.281e+01 -- -5.282e+01 -- 0.277012 -0.185189 -1.16375 -1.49463 -1.83211 -1.9477 -2.03737 -2.03476\n", + " 9 1.764e-01 3.767e+01 4.019e+01 -- -1.264e+01 -- 0.282161 -0.184207 -1.17891 -1.53049 -2.01851 -2.24569 -2.46562 -2.46922\n", + " 10 1.508e-01 2.738e+01 2.645e+01 -- 1.382e+01 -- 0.289545 -0.182463 -1.18795 -1.52893 -2.08812 -2.41103 -2.87498 -2.90486\n", + " 11 1.349e-01 1.468e+01 1.390e+01 -- 2.772e+01 -- 0.293547 -0.180898 -1.1897 -1.52803 -2.10944 -2.46526 -3.22702 -3.34288\n", + " 12 1.358e-01 5.365e+00 5.378e+00 -- 3.309e+01 -- 0.295456 -0.179941 -1.19052 -1.52801 -2.11928 -2.48294 -3.46233 -3.79368\n", + " 13 1.868e-01 1.338e+00 1.633e+00 -- 3.473e+01 -- 0.297315 -0.17923 -1.19104 -1.52666 -2.12491 -2.48975 -3.55567 -4.30889\n", + " 14 6.248e-01 2.604e-01 4.517e-01 -- 3.518e+01 -- 0.299091 -0.178645 -1.191 -1.52463 -2.12805 -2.4915 -3.5672 -5.11363\n", + " 15 2.744e+02 2.611e-01 7.022e-02 -- 3.525e+01 -- 0.300248 -0.178286 -1.19075 -1.52307 -2.12961 -2.49161 -3.56337 -8\n", + " 16 2.745e+02 2.782e-01 4.368e-04 -- 3.525e+01 -- 0.300566 -0.178158 -1.19062 -1.52252 -2.13009 -2.49151 -3.5617 -8\n", + " 17 2.745e+02 2.805e-01 6.410e-05 -- 3.525e+01 -- 0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n", + "********************\n", + "0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n", + "0.238931 0.202434 0.232634 0.177249 0.153039 0.132988 0.297259 3285.23\n", + "-0.000915535 -0.00131061 -0.00195128 -0.00497899 -0.0226059 -0.0776175 -0.280541 -0.000206646\n", + "********************\n" + ] + } + ], + "source": [ + "P1 = clag.clag('psd10r', [t1], [l1], [l1e], dt, fqL)\n", + "p1 = np.ones(nfq)\n", + "p1, p1e = clag.optimize(P1, p1)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 3.525e+01 3.480e+01 3.006e-01 5.395e-01 0.891 +++\n", + "+++ 3.525e+01 3.431e+01 3.006e-01 6.590e-01 1.87 +++\n", + "+++ 3.525e+01 3.458e+01 3.006e-01 5.993e-01 1.34 +++\n", + "+++ 3.525e+01 3.469e+01 3.006e-01 5.694e-01 1.11 +++\n", + "+++ 3.525e+01 3.475e+01 3.006e-01 5.545e-01 0.997 +++\n", + "\t### errors for param 1 ###\n", + "+++ 3.525e+01 3.476e+01 -1.781e-01 2.430e-02 0.973 +++\n", + "+++ 3.525e+01 3.421e+01 -1.781e-01 1.255e-01 2.07 +++\n", + "+++ 3.525e+01 3.451e+01 -1.781e-01 7.491e-02 1.48 +++\n", + "+++ 3.525e+01 3.464e+01 -1.781e-01 4.961e-02 1.21 +++\n", + "+++ 3.525e+01 3.470e+01 -1.781e-01 3.696e-02 1.09 +++\n", + "+++ 3.525e+01 3.473e+01 -1.781e-01 3.063e-02 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.781e-01 2.747e-02 1 +++\n", + "\t### errors for param 2 ###\n", + "+++ 3.525e+01 3.511e+01 -1.191e+00 -1.074e+00 0.276 +++\n", + "+++ 3.525e+01 3.495e+01 -1.191e+00 -1.016e+00 0.598 +++\n", + "+++ 3.525e+01 3.485e+01 -1.191e+00 -9.870e-01 0.8 +++\n", + "+++ 3.525e+01 3.479e+01 -1.191e+00 -9.725e-01 0.91 +++\n", + "+++ 3.525e+01 3.476e+01 -1.191e+00 -9.652e-01 0.968 +++\n", + "+++ 3.525e+01 3.475e+01 -1.191e+00 -9.616e-01 0.997 +++\n", + "\t### errors for param 3 ###\n", + "+++ 3.525e+01 3.482e+01 -1.522e+00 -1.345e+00 0.865 +++\n", + "+++ 3.525e+01 3.432e+01 -1.522e+00 -1.257e+00 1.86 +++\n", + "+++ 3.525e+01 3.459e+01 -1.522e+00 -1.301e+00 1.32 +++\n", + "+++ 3.525e+01 3.471e+01 -1.522e+00 -1.323e+00 1.08 +++\n", + "+++ 3.525e+01 3.476e+01 -1.522e+00 -1.334e+00 0.97 +++\n", + "+++ 3.525e+01 3.473e+01 -1.522e+00 -1.329e+00 1.03 +++\n", + "+++ 3.525e+01 3.475e+01 -1.522e+00 -1.331e+00 0.998 +++\n", + "\t### errors for param 4 ###\n", + "+++ 3.525e+01 3.481e+01 -2.130e+00 -1.977e+00 0.874 +++\n", + "+++ 3.525e+01 3.429e+01 -2.130e+00 -1.901e+00 1.91 +++\n", + "+++ 3.525e+01 3.457e+01 -2.130e+00 -1.939e+00 1.35 +++\n", + "+++ 3.525e+01 3.470e+01 -2.130e+00 -1.958e+00 1.1 +++\n", + "+++ 3.525e+01 3.476e+01 -2.130e+00 -1.968e+00 0.983 +++\n", + "+++ 3.525e+01 3.473e+01 -2.130e+00 -1.963e+00 1.04 +++\n", + "+++ 3.525e+01 3.474e+01 -2.130e+00 -1.965e+00 1.01 +++\n", + "+++ 3.525e+01 3.475e+01 -2.130e+00 -1.966e+00 0.997 +++\n", + "\t### errors for param 5 ###\n", + "+++ 3.525e+01 3.474e+01 -2.491e+00 -2.358e+00 1.01 +++\n", + "+++ 3.525e+01 3.512e+01 -2.491e+00 -2.425e+00 0.263 +++\n", + "+++ 3.525e+01 3.496e+01 -2.491e+00 -2.392e+00 0.579 +++\n", + "+++ 3.525e+01 3.486e+01 -2.491e+00 -2.375e+00 0.781 +++\n", + "+++ 3.525e+01 3.480e+01 -2.491e+00 -2.367e+00 0.893 +++\n", + "+++ 3.525e+01 3.477e+01 -2.491e+00 -2.363e+00 0.952 +++\n", + "+++ 3.525e+01 3.476e+01 -2.491e+00 -2.361e+00 0.982 +++\n", + "+++ 3.525e+01 3.475e+01 -2.491e+00 -2.360e+00 0.997 +++\n", + "\t### errors for param 6 ###\n", + "+++ 3.525e+01 3.507e+01 -3.561e+00 -3.413e+00 0.363 +++\n", + "+++ 3.525e+01 3.484e+01 -3.561e+00 -3.339e+00 0.814 +++\n", + "+++ 3.525e+01 3.468e+01 -3.561e+00 -3.301e+00 1.13 +++\n", + "+++ 3.525e+01 3.477e+01 -3.561e+00 -3.320e+00 0.962 +++\n", + "+++ 3.525e+01 3.473e+01 -3.561e+00 -3.311e+00 1.04 +++\n", + "+++ 3.525e+01 3.475e+01 -3.561e+00 -3.315e+00 1 +++\n", + "\t### errors for param 7 ###\n", + "+++ 3.525e+01 3.524e+01 -8.000e+00 -6.000e+00 0.0178 +++\n", + "+++ 3.525e+01 3.515e+01 -8.000e+00 -5.000e+00 0.187 +++\n", + "+++ 3.525e+01 3.494e+01 -8.000e+00 -4.500e+00 0.618 +++\n", + "+++ 3.525e+01 3.466e+01 -8.000e+00 -4.250e+00 1.18 +++\n", + "+++ 3.525e+01 3.482e+01 -8.000e+00 -4.375e+00 0.851 +++\n", + "+++ 3.525e+01 3.475e+01 -8.000e+00 -4.312e+00 1 +++\n", + "********************\n", + "0.300605 -0.178131 -1.19059 -1.52241 -2.13019 -2.49148 -3.56144 -8\n", + "0.253864 0.205597 0.228999 0.191096 0.1638 0.131949 0.246154 3.6875\n", + "********************\n" + ] + } + ], + "source": [ + "p1, p1e = clag.errors(P1, p1, p1e)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAG7FJREFUeJzt3X9s3Pd93/GnYtHRErfTbJd3tufomtuUo4y0wV0lAlKs\ncm1abEOVdOim8LCoSJQhQUwb4LoJ8FCIM0h5WI2hpWOLHbxFyLZgR2lAMyTA1BZDlcqjKo7lpe1K\n6ZrsxNPS2HdZkmpdkyihY+6P7zGluI9IHnXf+/l8AF/w+L3P5/t5C/qIevG+n+/3C5IkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSbpH/wxYAP4cqAGfBfa3tSJJktQRLgK/CAwBPwZ8HqgA\nb2tjTZIkqQM9DLwJvLfdhUiSpK29pYVj7a1//WYLx5QkSR1uF9Hpht9tdyGSJGl7drdonJeBJ9j8\nVMMj9U2SJDXm9frWVK0ICS8BPwccBV67S5tHHn300ddee+1ub0uSpE18FThIk4NCnCFhF1FA+AAw\nAtzcpO0jr732Gp/5zGcYGhqKsaTmGx8fZ3p6uivHu5djNdq3kfbbabtVm83eb/XfWbM415rf3rkW\n5lxrfvs459r169f50Ic+9BjRp/FdExLOAnmikPAtIFnffwu4HeowNDRENpuNsaTm27t3b0trbuZ4\n93KsRvs20n47bbdqs9n7rf47axbnWvPbO9fCnGvNbx/3XIvLfTEe+/PAW4GPAP9k3fZl4A83tH0E\n+PjHP/5xHnmk+5YlvPvd7+7a8e7lWI32baT9dtpu1eZu7xcKBfL5/LZr6STOtea3d66FOdea3z6u\nufb666/zyiuvALxCkz9J2NXMg92DLLC4uLjYlalb3eX9738/n/vc59pdhvqAc02tUCwWyeVyADmg\n2Mxjt/I+CZIkqYsYEtR3uvXjX3Uf55q6nSFBfccf3GoV55q6nSFBkiQFGRIkSVKQIUGSJAUZEiRJ\nUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQ\nIUGSJAUZEiRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUpAhQZIkBRkSJElSkCFB\nkiQFGRIkSVKQIUGSJAUZEiRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUpAhQZIk\nBRkSJElSkCFBkiQFGRIkSVJQnCHhKPB54KvAm8AHYhxLkiQ1WZwh4W3AF4Gx+verMY4lSZKabHeM\nx/7N+iZJkrqQaxIkSVKQIUGSJAUZEiRJUlCcaxIaNj4+zt69e+/Yl8/nyefzbapIkqTOUSgUKBQK\nd+y7detWbOPtiu3Id3oT+Hngc3d5PwssLi4uks1mW1SSJEndr1gsksvlAHJAsZnHjvOThLcDf3Pd\n9+8E3gN8A/hKjONKkqQmiDMkHAR+p/56FfjV+utPAydjHFeSJDVBnCHhC7gwUpKkruV/4pIkKciQ\nIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ\nkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoJ2t7sAKQ6FQrQB3L4NN2/Cvn2wZ0+0\nL5+PNknS3RkS1JPWh4BiEXK5KDRks+2tS5K6iacbJElSkCFBkiQFGRIkSVKQIUGSJAUZEtSzKpUK\nJ0+e4vjxY8Axjh8/xsmTp6hUKu0uTZK6glc3qOfUajVGR8cplQaoVseAYQDKZSiX57l4cYJMZoXZ\n2WkSiUR7i5WkDmZIUE+p1WocPpznxo2XgQOBFsNUq8NUq9c4ciTP3FzBoCBJd+HpBvWU0dHxTQLC\negcol19idHS8FWVJUlcyJKhnLC8vUyoNsHVAWPMEpdJu1yhI0l0YEtQzpqZm6msQtq9aHWNyciam\niiSpuxkS1DMWFkqsLVLcvmEWFq7HUY4kdT1DgnrGyspOeu3aYT9J6n2GBPWMgYGd9FrdYT9J6n2G\nBPWMgwczwHyDveY5dGgojnIkqesZEtQzJibGSCbPNtQnmTzL6dNPxVSRJHU3Q4J6RiqVIpNZAa5t\ns8cSmcwbpFKpGKuSpO5lSFBPmZ2dJp1+GljaouUS6fQznD//YivKkqSuZEhQT0kkEszNFRgZOUMy\neQK4CqzW310FrpJMnmBk5AxXrswyODjYvmIlqcP57Ab1nEQiwaVLBSqVCpOTM1y+/DzlMqTTcPTo\nEBMTU55ikKRtMCSoZ6VSKc6de4FiEXI5uHABstl2VyVJ3SPu0w1PAcvAd4DfB94b83iSJKlJ4gwJ\nHwR+DZgC3gO8ClwEHo9xTEmS1CRxhoRfAv4tcA74E+AfA18BPhHjmJIkqUniCgn3A1ngtzfs/23g\ncExjSpKkJopr4eLDwH1AbcP+rwHJmMaUfqBQiDaA27dh/3549lnYsyfal89HmyTp7ry6QT3JELA9\nG8PUzZuwb59hSlIkrpDwdeD7QGLD/gTw+t06jY+Ps3fv3jv25fN58v6UkmKxPgSsXSpaKHipqNSp\nCoUChbVkX3fr1q3YxtsV25GjW90tAmPr9l0DPgv88oa2WWBxcXGRrD+dpLZYCwmLi4YEqZsUi0Vy\nuRxADig289hxnm74VeA/EN0f4SrwMeCvA/86xjElNSi6M+VZLl8uAXD8OBw9mmFiYsw7U0p9Ls6Q\ncAF4CJgAHgH+B/B3iS6DlNRmtVqN0dFxSqUBqtUxYBiAchnK5XkuXpwgk1lhdnaaRGLjmUNJ/SDu\nhYu/Xt8kdZBarcbhw3lu3HgZOBBoMUy1Oky1eo0jR/LMzRUMClIf8imQUh8aHR3fJCCsd4By+SVG\nR8dbUZakDmNIkPrM8vIypdIAWweENU9QKu2mUqnEWJWkTmRIkPrM1NRMfQ3C9lWrY0xOzsRUkaRO\nZUiQ+szCQom1RYrbN8zCwvU4ypHUwQwJUp9ZWdlJr1077CepmxkSpD4zMLCTXqs77CepmxkSpD5z\n8GAGmG+w1zyHDg3FUY6kDmZIkPrMxMQYyeTZhvokk2c5ffqpmCqS1KkMCVKfSaVSZDIrRI9S2Y4l\nMpk3vEWz1IcMCVIfmp2dJp1+GljaouUS6fQznD//YivKktRhDAlSH0okEszNFRgZOUMyeYLoGWyr\n9XdXgaskkycYGTnDlSuzDA4Otq9YSW0T97MbJHWoRCLBpUuF+lMgZ7h8+XnKZUin4ejRISYmpjzF\nIPU5Q4LU51KpFOfOvUCxCLkcXLgA2Wy7q5LUCTzdIEmSggwJkiQpyNMNUh8rFKIN4PZt2L8fnn0W\n9uyJ9uXz0SapPxkSpD5mCJC0GU83SJKkIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpCBDgiRJCjIkSJKk\nIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpCBD\ngiRJCjIkSJKkIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpCBDgiRJCoorJPwycAX4NvBnMY0hSZJiFFdI\nGADOAzMxHV+SJMVsd0zHfa7+9cMxHV+SJMXMNQmSJCkork8SJKnpCoVoA7h9G27ehH37YM+eaF8+\nH22SmqORkPAcMLFFm58AijuuRpI2sT4EFIuQy0WhIZttb11Sr2okJLwE/Mct2ty8h1oYHx9n7969\nd+zL5/Pk/dVAkiQKhQKFtY/T6m7duhXbeI2EhG/Ut9hMT0+T9VcCSZKCQr84F4tFcrlcLOPFtSbh\nHcCD9a/3AT8O7AK+DHwrpjElSVITxRUSJoFfrL9eBb5Y//q3gMsxjSmpD1QqFSYnz3L5cgmA48fh\n6NEMExNjpFKp9hYn9Zi4QsKH8R4JkpqoVqsxOjpOqTRAtToGDANQLkO5PM/FixNkMivMzk6TSCTa\nW6zUI7wEUlLHq9VqHD6c58aNl4EDgRbDVKvDVKvXOHIkz9xcwaAgNYE3U5LU8UZHxzcJCOsdoFx+\nidHR8VaUJfU8Q4Kkjra8vEypNMDWAWHNE5RKu6lUKjFWJfUHQ4KkjjY1NVNfg7B91eoYk5M+X066\nV4YESR1tYaHE2iLF7RtmYeF6HOVIfcWQIKmjrazspNeuHfaTtJ4hQVJHGxjYSa/VHfaTtJ4hQVJH\nO3gwA8w32GueQ4eG4ihH6iuGBEkdbWJijGTybEN9ksmznD79VEwVSf3DkCCpo6VSKTKZFeDaNnss\nkcm84S2apSYwJEjqeLOz06TTTwNLW7RcIp1+hvPnX2xFWVLPMyRI6niJRIK5uQIjI2dIJk8AV4me\nGUf961WSyROMjJzhypVZBgcH21es1EN8doOkrpBIJLh0qVB/CuQMly8/T7kM6TQcPTrExMRUbKcY\nCoVoA7h9G27ehH37YM+eaF8+H21Sr9nV7gLqssDi4uIi2Wy23bVI6gLFIuRysLgIrfyx0a5xpbsp\nFovkcjmAHFBs5rE93SBJkoIMCZK0DZVKhZMnT3H8+DHgGMePH+PkyVM+SEo9zTUJkrSJWq3G6Og4\npdJA/UFT0XMkymUol+e5eHGCTGaF2dlpEolEe4uVmsyQIKlrbFxAuH8/PPtsfAsIa7Uahw/nuXHj\nZcKPqh6mWh2mWr3GkSN55uYKBgX1FEOCpK7R6qsIRkfHNwkI6x2gXH6J0dFxLl0qtKI0qSVckyBJ\nAcvLy5RKA2wdENY8Qam02zUK6imGBEkKmJqaqa9B2L5qdYzJyZmYKpJaz5AgSQELCyXWFilu3zAL\nC9fjKEdqC0OCJAWsrOyk164d9pM6kyFBkgIGBnbSa3WH/aTOZEiQpICDBzPAfIO95jl0aCiOcqS2\nMCRIUsDExBjJ5NmG+iSTZzl9+qmYKpJaz5AgSQGpVIpMZgW4ts0eS2Qyb8T2JEqpHQwJknQXs7PT\npNNPA0tbtFwinX6G8+dfbEVZUssYEiTpLhKJBHNzBUZGzpBMngCuAqv1d1eBqySTJxgZOcOVK7MM\nDg62r1gpBt6WWZI2kUgkuHSpQKVSYXJyhsuXn6dchnQajh4dYmJiylMM6lmGBEnahlQqxblzL1As\nQi4HFy5ANtvuqqR4ebpBkiQF+UmCJG2h1Y+oljqFIUGStmAIUL/ydIMkSQoyJEiSpCBDgiRJCjIk\nSJKkIEOCJEkKMiRIkqQgQ4IkSQqKKySkgE8BN4BvA/8TeA4YiGk8SZLUZHHdTOldwC7gY0QB4d3A\nvwHeDpyKaUxJktREcYWE36pvayrAvwI+gSFBkqSu0Mo1CXuBb7RwPEmSdA9a9eyGNPA08EstGk+S\nutrGh0rdvAn79vlQKbVWo58kPAe8ucW28QnrjwK/CVwAzt1DrZLUN/J5+OQnKzz88Clu3DjGl750\njBs3jvHww6f45CcrBgS1xK4G2z9U3zZzE/hu/fWjwCXg94APb9InCyw++eST7N2794438vk8ef81\nSOojtVqN0dFxSqUBqtUxYHjdu/Mkk2fJZFaYnZ0mkUi0q0y1QaFQoLD2EVPdrVu3ePXVVwFyQLGZ\n4zUaEhrxGFFAWAA+BKxu0jYLLC4uLpLNbvwgQpL6R61W4/DhPDduvAwc2KTlNdLpp5mbKxgU+lyx\nWCSXy0EMISGuhYuPAV8g+lThFJAAkvVNknQXo6Pj2wgIAAcol19idHS8FWWpT8W1cPFniBYrvhP4\n03X7V4H7YhpTkrra8vIypdIAWweENU9QKu2mUqmQSqVirEz9Kq5PEj5dP/Z99a9vWfe9JClgamqm\nvgZh+6rVMSYnZ2KqSP3OZzdIUodYWChx5yLF7RhmYeF6HOVIhgRJ6hQrKzvptWuH/aStGRIkqUMM\n7OgReKs77CdtzZAgSR3i4MEMMN9gr3kOHRqKoxzJkCBJnWJiYoxk8mxDfZLJs5w+/VRMFanfGRIk\nqUOkUikymRXg2jZ7LJHJvOHlj4qNIUGSOsjs7DTp9NPA0hYtl0inn+H8+RdbUZb6lCFBkjpIIpFg\nbq7AyMgZkskTwFX+8q72q8BVkskTjIyc4cqVWQYHB9tXrHpeqx4VLUnapkQiwaVLBSqVCpOTM1y+\n/DzlMqTTcPToEBMTU55iUEsYEiSpQ6VSKc6de4FiEXI5uHABfAaeWsmQIEkdqFCINoDbt2H/fnj2\nWdizJ9qXz0ebFCdDgiR1IEOAOoELFyVJUpAhQZL0A4UCvO99Fd7xjlM88MAx7r//GA88cIx3vOMU\n73tf5QenQNQfPN0gSQKgVqvxyivjlEoD9UdWR0+kXFmBb31rnpWVCV55ZYWf+qlpEolEe4tVSxgS\nJEnUajUOH85z48bLwIFAi2Gq1WGq1WscOZJnbq5gUOgDnm6QJDE6Or5JQFjvAOXyS4yOjreiLLWZ\nIUGS+tzy8jKl0gBbB4Q1T1Aq7aZSqcRYlTqBIUGS+tzU1Ex9DcL2VatjTE7OxFSROoUhQZL63MJC\nibVFits3zMLC9TjKUQcxJEhSn1tZ2UmvXTvsp25iSJCkPjcwsJNeqzvsp25iSJCkPnfwYAaYb7DX\nPIcODcVRjjqIIUGS+tzExBjJ5NmG+iSTZzl9+qmYKlKnMCRIUp9LpVJkMivAtW32WCKTeYNUKhVj\nVeoEhgRJErOz06TTTwNLW7RcIp1+hvPnX2xFWWozQ4IkiUQiwdxcgZGRMySTJ4CrwGr93VXgKsnk\nCUZGznDlyiyDg4PtK1Yt47MbJElAFBQ+9rECn/pUhYGBGb75zef53vfg/vvhwQeH2L9/io9+NIX5\noH8YEiRJP5DPQz6fAl5odynqAJ5ukCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJ\nQYYESZIUZEiQJElBhgRJkhRkSJAkSUFxhYTPATeB7wCvAf8eeCSmsSRJUgziCgm/A/wDYD/wC0Aa\n+I2YxpIkSTGI6ymQ0+tefwX4FeCzwH3A92MaU5IkNVEr1iQ8CPxD4BIGBEmSukacIeFXgL8Avg78\nKPDBGMeSJElN1khIeA54c4stu679C8B7gJ8Fvgv8Z2DXPVcsSZJaopH/tB+qb5u5SRQINnqMaG3C\ne4ErgfezwOKTTz7J3r1773gjn8+Tz+cbKFOSpN5UKBQoFAp37Lt16xavvvoqQA4oNnO8Vv1m/zhR\ngPhJ4NXA+1lgcXFxkWw2G3hbkiSFFItFcrkcxBAS4ri64VB9+2/AnwHvBCaBLwO/F8N4kiQpBnEs\nXPw28PeA/wqUgE8Bf0T0KcIbMYwnSZJiEMcnCX8M/HQMx5UkSS3ksxskSVKQIUGSJAUZEiRJUpAh\nQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUpAhQZIkBRkSJElSUBzPbpAkadsKhWgDuH0b\nbt6Efftgz55oXz4fbWo9Q4Ikqa3Wh4BiEXK5KDRks+2tS55ukCRJd2FIkCRJQYYESZIUZEiQJElB\nhgRJUttVKhVOnjzF8ePHgGMcP36MkydPUalU2l1aX/PqBklS29RqNUZHxymVBqhWx4BhAMplKJfn\nuXhxgkxmhdnZaRKJRHuL7UOGBElSW9RqNQ4fznPjxsvAgUCLYarVYarVaxw5kmdurmBQaDFPN0iS\n2mJ0dHyTgLDeAcrllxgdHW9FWVrHkCBJarnl5WVKpQG2DghrnqBU2u0ahRYzJEiSWm5qaqa+BmH7\nqtUxJidnYqpIIYYESVLLLSyUWFukuH3DLCxcj6Mc3YUhQZLUcisrO+m1a4f9tFOGBElSyw0M7KTX\n6g77aacMCZKkljt4MAPMN9hrnkOHhuIoR3dhSJAktdzExBjJ5NmG+iSTZzl9+qmYKlKIIUGS1HKp\nVIpMZgW4ts0eS2Qyb5BKpWKsShsZEiRJbTE7O006/TSwtEXLJdLpZzh//sVWlKV1DAmSpLZIJBLM\nzRUYGTlDMnkCuAqs1t9dBa6STJ5gZOQMV67MMjg42L5i+5TPbpAktU0ikeDSpQKVSoXJyRkuX36e\nchnSaTh6dIiJiSlPMbSRIUGS1HapVIpz516gWIRcDi5cgGy23VXJ0w2SJCnIkCBJkoIMCZIkKciQ\nIEmSgly4KElqq0Ih2gBu34b9++HZZ2HPnmhfPh9taj1DgiSprQwBncvTDZIkKciQIEmSguIOCW8F\n/gB4E/ixmMeStqWwdvJTiplzTd0u7pDwAvDVmMeQGuIPbrWKc03dLs6Q8HeA9wH/NMYxJElSTOIK\nCQngFeAE8J2YxugIrf5NoZnj3cuxGu3bSPvttN2qTS/+Budca35751qYc6357bt1rsUREnYBnwZ+\nHSjGcPyO4j+m5rfv1n9McXOuNb+9cy3Mudb89t061xq5T8JzwMQWbQ4CR4AHgH+54b1dWw1w/fr1\nBsrpDLdu3aJYbF0WauZ493KsRvs20n47bbdqs9n7rf47axbnWvPbO9fCnGvNbx/nXIvz/84t/+Ne\n56H6tpmbwCxwDFhdt/8+4PvAZ4CPBPo9AiwAjzVQjyRJinyV6Bf115t50EZCwnY9DvzQuu8fA34L\n+AVgHnjtLv0eqW+SJKkxr9PkgNAqKbxPgiRJXadVd1xc3bqJJEmSJEmSJEmSJElSy/0Q8N+BLwJ/\nDDzd3nLUwx4HvgAsAX8I/P22VqNe91ngm8B/anch6lk/B5SALwEfbXMtsXkLsKf++q8AN4AfaV85\n6mFJ/vJKnB8BvkI056Q4/CTRD3FDguKwG/gTotsLPEAUFB5s5ACturrhXr0J3K6/fhuwsu57qZmq\nwB/VX/9vot/yGvpHJTXgd4G/aHcR6lmHiD4VfZ1onv0X4GcbOUC3hASAv0r08e//Al4E/m97y1Ef\n+AmiG475uHNJ3ehR7vz59ac0eGfjbgoJ/wf4ceBHgTHgb7S3HPW4h4B/B3ys3YVI0g7d8z2K4goJ\nR4HPEyWYN4EPBNo8BSwTPUr694H3rnvvGaJFikVgYEO/rxEtLHtPUytWt4pjrr0V+A3gXwBXY6la\n3Siun2vebE53c69z7jXu/OTgcTrkk9G/DUwCP0/0B3v/hvc/CHwXOAm8C/g1otMHj9/leIPAD9df\n/zDROeN3Nbdkdalmz7VdQAH453EUq67W7Lm2ZgQXLirsXufcbqLFio8SXSX4JeCvxV51g0J/sHng\n7IZ914h+cwvJEiXwP6hvoSdJSs2Ya+8lemJpkWjOfRF4ook1qjc0Y65B9PC7rwHfIrqSJtesAtVz\ndjrnjhFd4fBl4B/FVt092PgHu5/o6oSNH5tME51GkHbKuaZWca6p1doy59qxcPFh4D6gtmH/14iu\nUZeaxbmmVnGuqdVaMue66eoGSZLUQu0ICV8nOueb2LA/QXTDB6lZnGtqFeeaWq0lc64dIeF7wCL/\n/12ffga40vpy1MOca2oV55paravn3NuJ7mPwHqLFFuP112uXZRwnumzjI8AQ0WUbf87WlwpJGznX\n1CrONbVaz865EaI/0JtEH4esvT63rs0niG4AcRtY4M4bQEjbNYJzTa0xgnNNrTWCc06SJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJKkL/D+FHZgKBWUWhAAAAABJRU5ErkJg\ngg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-4,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXt8VPWd//+cXCEJ4eaAQFAwCBK8FSzXrojcVJpURQvZ\n1X7D2i3bdrt1q4S2tt+1v6JbQ7vd7m5/an91SbfWiBdquVRuXhAhEA21WmKNxARJQGa4kwTI7fz+\n+MzJOTNzJpnJnLnm/Xw88oBkLufMmXPO5/15f17v1xsEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAE\nQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEoc80AF0WP/8dw30SBEEQ\nBCGOGQ6MMP3MRwUPN8dypwRBEARBSBz+A6iN9U4IgiAIgpAYZAAngO/GekcEQRAEQbCPtAi+953A\nYKC8h+eM8vwIgiAIghAaxzw/UccRwffeBlwEvhTg8VGjR48+evTo0QjugiAIgiAkLU3A54lBABGp\nzMOVKLHkXT08Z9TRo0d59tlnmTx5coR2Q/DlwQcf5D/+4z9ivRv9Cjnm0UeOefSRYx5dPvzwQ+67\n774xqOx90gQPK4DjwJbenjh58mSmTp0aod0QfBkyZIgc7ygjxzz6yDGPPnLM+xcpEXrPFcBvUGWa\ngiAIgiAkEZEIHhYAecD/ROC9BUEQBEGIMZFYttgOpEbgfQVBEARBiAMikXkQ4pji4uJY70K/Q455\n9JFjHn3kmPcvIlmq2RtTgerq6moR2QiCIAhCCBw4cIBp06YBTAMORHv7knkQBEEQBCEkJHgQBEEQ\nBCEkJHgQBEEQBCEkJHgQBEEQBCEkJHgQBEEQBCEkJHgQBEEQBCEkJHgQBEEQBCEkJHgQBEEQBCEk\nJHgQBEEQBCEkJHgQBEEQBCEkJHgQBEEQBCEkJHgQBEEQBCEkJHgQBEEQBCEkJHgQBEEQBCEkJHgQ\nBEEQBCEk0mK9A4IgCMlERYX6aWqCTz+FCxcgMxMuXYKBA+GKK2DMGCguVj+CkIhI8CAIgmAjxcWw\nYIGb0tIyTpz4EydOnOTSpQ46OnK47LJcrr/+esrKSnE6nbHeVUHoMxI8CIIg2IjL5WL27OXU1T0M\nVANP0tExA3Bw+HAX5eX72b17GZWV6yWAEBIW0TwIgiDYyOrVa6mrexx4A3gcmAk4PI+mALOoq3uM\n0tKyWO2iIISNBA+CIAg2UlVVA8wA9H+tmOF5niAkJhI8CIIg2EhHRyoq06D/a0WK53mCkJhI8CAI\ngmAjaWmdgAbo/1rR5XmeICQmEjwIgiDYyPTpBcB+QP/Xiv2e5wlCYiLBgyAIgo2UlZWSn/99YB7w\nfaAS6PI82gXsJT//EcrKSmO1i4IQNhI8CIIg2IjT6aSycj0lJW9wxRUpwDdIS7sBmMWVV95OScnv\npUxTSHjE50EQBMFGlMOkk6amtbS2Qna24TDZ0gLvvw8PPCAOk0JiI8GDIAiCjUhQIPQHZNlCEARB\nEISQkOBBEARBEISQkOBBEAQhglRUwOLFbsaOXUVOzhIyMorIyVnC2LGrWLzYTUVFrPdQEEJHNA+C\nIAg2obfjBrh4EQ4fhlGjXLzzznJaWx8HygAH7e1dtLRUkZm5jAUL1gNSeSEkFpJ5EARBsIniYnjm\nGTfDh6/i0KEl1NYWUV29iNbWNfg3yJopDbKEhEUyD4IgCDZhtOM2sgzNzXcAswK8YgZVVWuit4OC\nYBMSPAiCINiE0Y57pumvaUiDLCHZkGULQRAEmzDacZuRBllC8iHBgyAIgk0Y7bjNSIMsIfmQ4EEQ\nBMEmjHbcZkpRDbL24t0gq1IaZAkJiwQPgiAINmG04zbjBNYDT5OTMx0oYvz4QkpKNkiDLCFhkeBB\nEATBJox23L5tuA+RlXWEadNeZeLEjUyYsIWTJ9fywANOMYkSEpJIVFuMAZ4AbgMGArXAA8CBCGxL\nEAQhbti500l+/nouXSrj9Ok1tLWlkpHRydChBRQUrKekxClNs4SkwO7gYSiwB3gNFTy4gHzgjM3b\nEQRBiDtUR00nsDbWuyIIEcXu4GE1cBiVadD51OZtCIIgCIIQQ+zWPBQB1cCLwHHUUsVXbd6GIAiC\nIAgxxO7g4Srg68BHwCLgSeA/ga/YvB1BEARBEGKE3csWKUAV8APP738GrgX+Efhfqxc8+OCDDBky\nxOtvxcXFFIuqSBAEQRCoqKigwqcs58yZ2EoJAxmu95UGYDvwNdPfvg48AuT5PHcqUF1dXc3UqVNt\n3g1BEIT4wqpd95VXwoAB6m9KbBm7/RMSiwMHDjBt2jSAacSgmtHuzMMe4Bqfv01EBRWCIAj9luJi\nWLDATWlpGbt21VBfn0p7eydz5xZQVlYqZlFCQmF38PBzlAfr91CiyenAP3h+BEEQ+i1W7brr67uo\nr69i9+5l4jYpJBR2CybfBe4CioEPUMsV3wbEQ00QhH6Nd7tufcU4BZhJXd1jlJaWxW7nBCFEImFP\nvQW4HuUuOQV4JgLbEARBSCis23XrzPA8LgiJgfS2EARBiALW7bp1UjyPC0JiIMGDIAhCFLBu163T\n5XlcEBIDCR4EQRCigHW7bp39nscFITGQ4EEQBCEKBG7XXcnAgY9w9GgpRUVIi24hIZDgQRAEIQo4\nnU4qK9dTUrKBK65YBHyOtLQbgO8wYkQ6o0eX8cwzbjGKEhICCR4EQRCiQEUFPPCAk6NHV+F2dwFP\n0tHxPlDJ4cOvUl6+lFmzluF2u2O9q4LQKxI8CIIgRIHiYti4EUaPXsuFC+L3ICQ2djtMCkK/QvoV\nCKGi/BwCBQgzqKpaE83dEYQ+IcGDIISB9CsQQkX8HoRkQIIHQQgD6VcghIrh92AVQIjfg5AYiOZB\nEMJA+hUIoSJ+D0IyIMGDIISB9CsQQqUnv4f8/EcoKyuN3c4JQpBI8CAIYSDr1wIo0ezixW7Gjl1F\nTs4SMjKKyMlZwtixq1i82O1l/LRzp5P8/PXk5W0gO7uQ9PQisrMLycvbQH7+enbulGUuIf6R4EEQ\nwkD6FQgA8+e7qKtbRmPjUlpaNtPevpGWlk00Ni6lrm4ZCxYY3g3FxbBtm5OysrXMmVPOyJGTADh+\n/CP27CmhtNQ/4BCEeEOCB0EIA1m/FqBv2pdQAg5BiDckeBCEMJD1awH6pn0Rsa2QyEjwIAhhoK9f\nDxu2gZQU1a8AVL+C+vp0rrmmTFLQSUxFBRQVweHDoWtfRGwrJDLi8yAIIVBRAeXlbmpqyjh9uoa2\ntlQyMjrJzb2SzMx2Llx4EjUgOOjq6uLUqSpPCno9IEK4ZEM3Cbv66qOE6t0gYlshkZHMgyCEQKB1\n6mPHWrhw4d+QFHT/wuVyMWvWMs6enQLsC/Asa+2LiG2FREaCB0EIkooKuPHGH1NXtwb/IOEEMCvA\nKyUFnawYuoWfAo/gr33ZE1D70pvY9ty5AlnuEuIWWbYQhCCZP9/FiROvA/9p8aikoPsjRpMrB7De\n8/81qPOhg8GDj1JZucPSorysrJTdu5dRV/cw8Drwoed158nJOcH27S8weXK0PokghIZkHgQhSFav\nXkt7+2isgwRJQfdHvHULTmAtsAXYCPyRjo4reOABp2UGwel0snHjfzNo0PeAe4DNnte9RnPzrygs\n/CZut5RrCvGJBA+CECRqlpmBdZBQQKhr3kLi05tu4corO9m40botu3KlXMf580/jvww2S7QyQlwj\nwYMgBImaZQZapy4FHgL2IH4PBqHYNici4ZiEFRdDbq6UawqJiQQPghAkapa5CrAyhfqYtDQ3y5c/\nz/jxhUAR48cXUlKyoV+35U52F8VwTcKkXFNIVCR4EIQgUbPIT1DCuA2AChLUv0+TmrqI2tr/YsKE\nLUycuJEJE7Zw8uTagGve/YFkdVHUMyrXXFNGfX0K8A2UOdgsUlJuZ9iw4JpcSbmmkKhItYUgBImh\njn8MeAI1CHYB+8nPf8STYYjtPsYbRjWCFTOoqloTzd2xjfnzXfzwh8s5depxjGqLLqCK8eO/T2Vl\naVDZpunTC6ip2Y8KrnwRrYwQv0jmQRCCxOl0Ulm5npKSDQGXJpJ9jT9UkjUtb1dGRXqjCImKZB4E\nIUgqKqCiQpXjZWdDdjacPw+bN8OLL8JVV8GoUS7efns5ra3GjLS9vYuWlioyM/ufTbWRlg/etjkR\nsCujovdGuXSpjNOn13TbnQ8dWtC97GFVqSEIsUaCB0EIkuJi75I7t9tNaWkZu3bVcOJEKs3NnXzy\nSQutrbpNtY73jHTdurVR3vPYkaxpebsyKuqc0v0hBCFxkOBBEPqAy+Vi9uzlntS1yjDU13cBC7Ae\nKCGR1/j7irdOZAa+OpGysvWx3cE+kqwZFUEIFtE8CEIfCLzmnUMyrvH3lWB0IolIOP4OgpAMSOZB\nEPpA4DVvmZGaMetEJkyA9HS48ko4eRIeeMB/KShRSNaMiiAEiwQPgtAHAq956zPS5Frj7yuJGhz0\nhggdhf6OBA+C0AcCr3mXAsuAHwMTUK2aDwLtOBxH2bbtVhYvdlNSIoNLIiNCR6G/I8GDIPSBwFUE\nTuBhBg5cxcWLp9G0deiCSk3r4tixKrKykr9kUy1XqP9fvAiHD6vligED1N+SNSPRVyoqoLzcTU1N\nGadP13hlMgoKSiXYFOKOQMquaDAVqK6urmbq1Kkx3A1BCB23282sWYHXvD//+Sk8//zfYb18UUlJ\nyYa4KtmMxGBvLmWtr09l/PhO5s4toKwsOPfF/oR39c4MzI6V+fnfT2hxqRAZDhw4wLRp0wCmAQei\nvX2pthCEPqCveeflbSA7u5D09CKyswvJy1M9DXbv/oRE6pZYXAzPPONm+PBVHDq0hNraIg4dWsLw\n4at45hl3yIGDy+Vi1qxllJcvpb5+M7CR+vpNlJcvZdasZbjdid0Qy26StQeIkLzIsoUg9IHe1rwn\nTUosW+ZAvhX19VXs3r0s5Jmv92Co03/NsnojWXuACMmLZB4EIQIkSrdEvRfH+PFfpq5uDXbNfNVg\nmDiZl1iTrD1AhOTF7uDhUdRCnfnnqM3bEIS4J1FMhObPd1FXt4zW1hRglukRN7AKWAL8G7/5zdaQ\nmnv5D4bm97uTDz/8tN82C7MiUYJNQdCJxLLFX1AevTpy1gv9jkQxETKWFx7HGOxdwHLP34xKkcbG\n4Jt7eZeyhv9+8UKkqkiStQeIkLxEYtmiE3W30H9ORmAbghDX9Cao3LkzPgZLY3lBH+zdwJeB8JYw\nvDMva1GBQ+KLAe0WlupIa24h0YhE5uFqoAm4hLp7fB+oj8B2BCFuiVcTId1P4N13yzh7tobOzs9Q\nA3oB8CrK1Mp3CcNMcOI978zLQZJFDGi3sFRHHCuFRMPu4GEfcD9QC1wO/ADYC0wBTtm8LUEQQmT+\nfBc//OFyTp16HKVBuAOVcSgFbgV+Bfwb4Yr3zINhU9NnaJr9YsBYGCtFqookXoNNQQiE3cHDVtP/\nD6JycHXA/wF+bvO2BCGuiUfXQGPwuwqlQ5iCivlnAaNRg2L4zb3Mg+GUKUuoqdHfz42asdcAqUAH\nn3xyNCTLbv24fvDBv/LZZ294uXi2t3fR0hI5LYWUVAqCItI+D63AByiTf0sefPBBhgwZ4vW34uJi\niiVHJyQ4+iy/sdFIcUd6cOsNY/ArRekQ8lG9OB4DMjGWMOwT7xliQD1gMY4HdNHRsY+6uuCPh35c\njx0bC/wP0fSSkJJKIRZUVFRQ4VOWdObMmRjtTXTIBBpRyxe+TAW06upqTRCSkZKShzWo1ECz+Nmr\nlZQ8HPV9mjix0LP9OzTo8vzfpcHDGlzr+ZtLg3ka7NWg0/OcTg3e1vLz52kulyukbbpcLi0/f54G\nX/G8Z3jHwziu5s/g+9OpFRTc0ZdD1CMFBdHfpiBYUV1draFShDHp72B3tcVPgZuB8SgJ90tADvAb\nm7cjCHFPPBolGSWU5hm0vtZ+Gyrj4ATWAxuAQqAImE9W1iN9qhTR9Q9paQdRWQKz50OR59+XefHF\nPwXl+WAc1+hnARLFv0MQIo3dwcMYoAL4K/AycBF1tzhi83YEIe6JtxR3RQWcPn0VSopkZUpUiiqO\n2gsMRwUUm4DvkZ/voKHhRbZtC12nUVwM27Y5ueqq0ajAYRmwFFA9L9Q27qGtrYkFC3rveWEc1+gb\nK0lJpSAo7A4eilEBRCaQB9yLCiQEod8Rb66B8+e7yMz8E/AwcBlKKGlGzzg8TVradNu9KdTnLSOQ\n50N7+6+D8nwwjmv0swCJ4t8hCJFGGmMlIfGo8u+PxJtr4OrVa2lo+ClKJPko8PfAr1GVFroD5iHy\n849QWfmq7S2g1fGoJnA54iyqqh4P8n32ozIlutjT7OJZSX7+DyPi4ikllYKgkMZYSYjer6CxcSkt\nLZtpb99IS8smGhuXelTt0g45GsRbitvQCjiBXwJvAa+g6xocjhsiOoMuKyslPf004S7lGMf1EGqV\ndAPwRWAhKSnXMWLEOlpbpzB+fAlpaUWkpi4gNfUWUlMXk5ZWRE7OkpD7augNxMaOXUVOzhIyMvr2\nPoKQLEjmIQnpzcjmhhseJTU1S7ISESbeXAP9NRjeM+irry7io48iN6PeudNJRsYI2tvD85DQj+vp\n08ols6srFYfDQUrKjeTk/IIzZ/6JtrbHUYGSG1Ue+hPP7w5aWkIvl43HsltB6K9IqWaE6Lmc7JiW\nnn6Np9TtuKdE73YNFmgOR4E2atQ/aYsWubTnnov1pxDsJh7KDCNdvur//vZsLx7LbnWee07TFi1y\naXl5D2vZ2Xdo6emFWnb2HVpe3sNyLScxyVaqKcQBPav8H6O9/RkMw56lwBZgB5r2AceOFcvSRpIS\nD2WGwS7l9HWZwL881p5y2Xgsu9XxXqZcR3v7JFpaNBob32PHjlt46KFvydKKYDsSPCQhgVX+LuB1\nlEAuUKfD2QnX6VAIjnjQYARbrdBX3Y5/4Bx+uWxFBTQ0EPb7RAp/y3GZEAiRRzQPSUhglf9aVP8C\nB2pGJh79/Qmn00ll5XpKS8vYtWsN9fWpjB/fydy5BZSV9a0bZKgEW63Q1wZURuCsD/TB9+kIVKWU\nm3slFy40BP0+0cbfctz3mM2OmF13LJBqsvhAMg9JSOAZ5rtABv4Og76IR38yUlEBDzzg5OTJtUyY\nsIWJEzcyYcIWTp5cywMPOOMqrR3KMoF5iaO2tgl13usEv1QTKNtx7FgLmnZTD+9TGVNnSSPbEr9L\nK3Yi1WSCCCYjRCABVWrqTJOArGfx3Jgxd4gIyyZE0BY6Rg8O65+JEwu7n3v8+HFP7wxdBDxPgz2e\nfhwun9/1Ph17/fp0BBZF3mF6X99+H3u09PRrQu73YSeGEDb4Y5bIxLN4NZrEWjApyxZJSKDUsGqN\nvAq1LjoWoxWzL/v5wheu5N13l0lpmg1ImV/oGMsPJ/Bu4d0JTKapqZWKCnWu+y9xrPe85jGgjdTU\nk2Rmfh9Ny+TChcyASzWB222nAiNM77vGtC8FpKdfEfWyWzPGMmX4rdQTAWmLHh/IskU/QqVWP0Hd\nBHNQDoN7sBLPORypphuyt42wCCpDw3twS6xjGStzJHWuvop1H4ylpKS4u9PTxhKH3nCrBPgIuAS0\n09nZQWtrLpcupZGWNomzZ8t5/33/pZrAVUr6oKwH5Fs8+7IFeIJx49JiusZuLFNaWY7rJE/Trnjr\nGdNfkeChn+B2u7l4sZX09BVALfBfKIfB3wPzgc+RlXV7t+p99+5P6A/rp9Egnsv8eiNS68u9BSUz\nZ5aSk7MalT3wDbpmcf78k91BlxosfBtu/RoVDP8E+Auwka6uTXR0LGXo0GVs3epm40a8Bv3AVUoF\nxPOgrFewjBqVg8MReEKQLE274q1nTH9Fgockx+12M2vWNxg58maef/5+2tt3oSyJvwj8LfAqQ4Zc\ny6JF2/n1r7dx5Mhatm1zkp0t0b1dJOpMqaICbrzxx9TVrcHurElvQQmApo3Gui8IwMzuoMu64Vag\nUuTA+x3YB6MUeIhoDMp9yfToXUt/9rNfsnDhW+TlvZLUTbviwa9EiC0imIwwTz55XMvKmqfBVzxC\nr8ACI19RH1wbczfCZCEenB37wvHjx7X09IKI7HswordgRZPqveb57Gfox9zlcnmEl3s1+Ewzu6/C\nRC0l5QtaSsoiLTU1coJXb/FnV/f+QqWfwLO/4v099SyCTWZiLZiUzEMSs3//WlpbH0eJzgLN4FTa\n3HcmCLcRz6naSBCp9f1EnSmtXr2W9nbdFwQMTcESoAhYRE3Nx31qONXzUs5VPPvsDj7+uJ5g0tPW\nDbdCz/YY6f/f4nDcgtlsCT6kq2st48e3c+zYMzQ3b+nO0tmpd0hkfUy0kLbogmQebCZw9qD3GZz/\nTFAvces/0b1/yZ89fT9iPVPqa6moypjoM3i9VLEywO/6Z/qjlpp6rZaVtajH7QTOKpjf96FesxP6\n58vOXhR25kEnlqWAiZqlEqJPrDMPsUSCB5vxT3kWBn0jtb5puUwD6OeS3pvAGDQCDYx7+jTYx9rn\noa+pcDXA68ckmIZTgY6b/3YCD5IPa8YSW/ABrJ0NsWI5gIfib9FXYn0+xss+JDoSPEjwYBv+N1D9\nJmjf+nIyYwwayWVC09eZtDoeekBwi9b7zD747fRsyGR+Xz2AvUODQs3huNZygPHP7gRvDuVLLK+F\naAQu8aCriId9SHRiHTyI5iGJ8F9H1tfaSwEru+o93Wpx7/In37XtO/jkk0+TvjNfstr89rVU1NsX\n5CK9awqC305gC/U2n/f19la4+urxlloD33Xw1NQHSElJISXl+6Sk3E5qahGZmYVkZj5LY+MUxo4t\n6da0DB++issu+5Dhw5XWpba2HnUt+F4HS4CHgdYAnzF8oqGPsdZVnARepq5OY+TIyHt5iLZDCAfJ\nPNiM/4zJnPb1Vo/7ruFHKmWfSCSrzW9fZ9Les/nbg8g8BL+dQGnrtLRpEZt5B57tbtHS0iaZ/v6w\nBpsDXAd7tdTU67WnnorMdWCHPsb32KamFmopKfM1h2OupjJI1/gc4+CXm+xCtB3hI5kHwRbcbjfH\njx8FL3W6EzVr3ACsAF4jO9tBXt6NLFz4Jj/72X91z+CMmeAqrI15kr9VtzHrSy4Tmr6a6phn82lp\nRzEaTrmBFtPvOsFvR/cmOHJkLc3NW2hr20hz8xbuu28ekZp5B57tvkFHxzrT30uB7xLIoKqz80n2\n7YvMdWBHJcH8+S7ee28ZjY230tIymc7OM3R1HUbTSj2fJQ/vCpovoyy3o5cFSFTvEyE+kMyDTYTi\n5xAIfbYSyZlfvGPM+vp+HOMRO6oHjGOjz8j/qPmLGR8K+7j1NPMeMWKedsstNX0W2QWe7Vr93bd6\nI3GuA/V9b/F8P1s0VXW1V/NviqdnHHw9MiL/WSXzED6xzjzEEgkebMIYHAKp098OOv3Yn4WTegA1\natQ3NIfjGg3e9hvAEnHpxs5UeFbWXE2JEP3FjDBbczgman0RKfpuxypAmDv3oDZiRN/T64HPbau/\nx/46CK/EVi9zNRto+QqC9X+j/1m9A1rf8+gWLStrrlRd9IIEDxI8hI13FO97Id6upaXdEPSFKDOC\n5Csjs/Pz9HZ+ZGfPj9hxCzeDElrmIbbXwXPPadrcuQe11NTrLYKlvVpubuAsTFaW2Z9Dvw+YAyJ9\nknGL5h1URO+z+mey/D9jIgbq0USCBwkewsbObEEsDXKE+MdalNt7KWU42LWkFvjcNntLmP8Wu+vg\n+PHjWk7OtRb7pf9s1gYNsgosKj2W4uaAwRxImCcZM2P2Wa0zWXK/CQUJHiR4CBs7swWxdkMU4hvv\ncy18lX4wWRGjSmJBWEGyde+KWzWYrEG+5r1M9ZkGs7RYLV1Z9+sw/zzUw6D7Fc07q2BewrDygQl/\nuTMUXC6XVlLysFZQcIeWkRFaDx3zaydOLNQKCu7QSkoe7pf3pVgHD1JtkQTYWRvuXy9fRErKIlJS\nvkd9fTqjRj0Q8RpwIX7xPtdC71zpSzAtv40qiQwIowrGv3fFPM/7/Q+wF6Pb7ELgVjIyCsjMfJ7M\nzOj3T1CeGDkErkj4EJgV4LEyHI4jqN40BcB8lM/LPLz9XvRW4+aqrEKUp8V8srIesf2zPvWUi3Hj\nllFevpSams20tY0n2KoL39fW1m6kpmYT5eVLGTduGU8/3bf28ELiIZkHm4hktkCc4AQzPXs/hJ7x\nCmaZzG7nT2Ob8btEp5aHesoo9rxUOXDgLR69xCbNqLp4SIP5GtyoQYEn4zLJMruSlTUvIl4WgV1w\nez+HZEnVG8k8CGETyS5z4gQnmDGfaw7HZ4Rbq+/tfunr6Phjnn12Bw0NYPgvWDulZmU9wsyZpUF9\nBmOb8eskqrIokwmcUTxPT1mYYcOymD9/J8OG7SIlJQV4BNgGtJCSMoJhw+5g0aJdPPXUbkpKXqGg\noJCJE4soKCikpGQDDQ3rWbnS/uxKYBdcK7yzpn11ShUiQ1qsd0AIn+JiKC7WbXztRV2QgQKEGVRV\nrbF9m0L8Yj7XpkxZQk2NhnUAEZyZlmEW5AKWo5ZByjx/66KjYx8Oxz+gBko9vV6GMjVKBToYPPgo\nH3+8A6czuMHO2Gb8GhVNn15ATc2tqGDpMdSgmYIKlvaRltZER8c+rJcu9rNwYQHr1gV3T1i50v77\nRiD8zaFKgWX4f8b9Huv89T281owYS0UbyTwIPdJfLtiKCli82M3Ysaq/gd73QLQdgbFDa2O4XwbS\nT8ymvf0mDDdL714X8EPuumth0IGD9zbj10m0rKyUESPWonppvIxZi5CaupLp09cxYsQj+GdhKrv7\n1cQj/m6nZr3FF4GpAbOmfXVKFSKDBA9Cj/SXCzYY4Z7gTeDmVsEPYEYA0lNKugyH4wHL7YSyXOG/\nzcg3oeorO3c6ufHG9eTlvUF29oekp6eSnd1JXt5NzJ//OlOnzvE8bs9SZbSCZ+uAUw8If0hJyXya\nm7dYNj+LRtMwITEQwWQC0F9ESv3lc9qJHeZThgCz5zLMq65aZFuJ3lNPuTx27rqFs6/QeE/EBIN9\nIRqmZdHqtqBAAAAgAElEQVQSRocj7pYycm9iLZiMJRI8JAD95YIVZ83YEKueKrpfwMSJ87Xc3Bu1\njIxrtdzcmdrEiYvizjcgGgN7tILncAKhZHN+DZdYBw8imBR6RFfXX7pUxunTa2hrSyUjo5OhQwu6\n06Pm1GKi0l+0HfGGLsBcsWIe5eX7UZoHX+xPSTudTtati55QMBy8K550TgIvU1enMXJkEVlZwxg6\ntICCglJKSkK/JqMljA5H3B1JYbgQOqJ5EHqkuBhKSpwUFJQydGgBGRmdtLWlcvp0DTU1ZZSXJ4eY\nMBm1HdEUgbrdblasWMWUKUuYNKmIKVOWsGLFKtzu4LQiM2eWkpVlrZ/oi64hmfAvUXShKhSWAq+j\naZVh63MkeBYSCVm2SBD6g1FUMmoeovW9GS3h/bcTinZArIet8e8nYv+5Kst2iUesly1iiQQPCUIy\nDqy+JKO2I1rfW384P2KJf9dc+/Uh1t+h3vTsFs3hmBkzfYFoHayJdfAgyxYJTLTS0v3B2S2SLp06\n0fq+9O08++wbRON76w/nRywxShT15Yqh2L3E4L1sdBz4BnAzdi6N9Eagpa8bbqiRMmrBC8k8hEm0\n0tJ2tvzuz0Tr+7KrC2WwyPkRWYys2Fc8mbHILDG4XC5t5syvaw7HNaZtRSeb1NPSV2pqT63J+29m\nSzIPQp+JVt+JZBQTxoJIfV++M7aJExdRV7eGcLtQBoucH5FFz4qlpR1EnTuRMUtyOp1cc002mrYO\nOIF15QtEIpu0f/9aWlv1a+MEqsdJIfA4nZ1dUd0XITgiGTx8FyWX/nkEt9GviVa6WJzd7CES35dV\nm+KzZ0ejeh5E53uT8yOyFBfDtm1OrrpqNHY2CLPCOEfN1Re+DcsKqa09GqGlUXMlyWaUBXk+UgkS\nf0QqePg88DXgfQJPSYQwiVZ5lR02xEJkvi/vGZv+3mn0NsjY+b3J+REdjAyPuR+E3vPiiwwe/M2w\nu2Ea56i+LavBfBMdHb+0VW9gbNeqx4lktuKRSAQPOcCzwFeB0xF4f8FDtNLF0RATxopoeiFE4vuy\nzmb0PMikpX3T1u8tmc+PeMI7wxN+gzArjHNU31bghmWRWRrVz2dztuMoRmM0XySzlUz8BviZ5/9v\nAv8e4HkimAwTKZELn2h6WETi+7IWK8p5kYwYPTn8y4nt6sVhnKMuTfX9uCUi4szA2y3U4Lhn2/o1\nqe/LHr/Pnahl1HYQa8Gk3SwH/oxSagG8gQQPESMaN5NkJ5oBWCS8JPzNfVwafEODazR4W262SUak\njbS8z9HPNJgZ4Nqwt5LG2O4tGjxkcU3Gh+dEPBHr4MHO3hZjgV8AC4A2z98cBF7kBeDBBx9kyJAh\nXn8rLi6mOBkaJkSYlSud3H33ekpLy6iqWkNHRyppaZ1Mn15AWdn6sFOY/YFoefqDfX1CKiqgvNxN\nTU0Zn33WhErpzkatTy9HpZn/FZVyfgxoB44yZMitSdWPpD8S6Z4c3udoDS0tzajxyeo2bv/S6LFj\n99LaWo1//wp9maaLyZMLOXhwiy3bTRQqKiqo8FlDPXPmTIz2xn7uRKmk2k0/XagF2Db8zz7JPAgx\nJ9E8Cp57TtPmzj2opaZe75md6SnePQFmbLJcIfSdaC+NulwuLT39xoS6JmNFrDMPdgomdwLXAjd4\nfm4E3kWJJ29Eqi6EOCSRPArcbjd/+MM3eOutIjo7n0KJ2EagRJG/B7YhTo+Cnfg7T64C7gAW4nB8\nlY8+uhh087Ng2LnTSUbGCBLlmuzP2Bk8NKOksvrPQaAVOOX5XRDijkTxKND9HNavb0HTxuJtmqOn\ndMcj9fCCnaxc6aShYT0zZ/4Wh+MWVMnmFmAHmvYBlZV/x7hxy3j6aXsCiOJiuPfe60mEa7K/E2mH\nST2tIghxSaJ4FBh+DieAQVgHCYmTRRESB2/nSX931NbWx9i3z56STUica7K/E+ngYR7wnQhvQxD6\nTKJ4FHg7/1kFCW6gBamHFyJBNJufJco12d+xs9pCiBJut9tTYVHjU2FRKhUWIVJcDMXFeto/fvF2\n/puMSuvqSxd6lcVq4AeoCosZqLlBF7CP/PwfUFa2Ptq7LSQJ0XKzhcS5Jvs7EjwkGE895eKhh5Z7\nUthlqAu6i5qaKl54YRn//u/h2dP2JxIpCPN2/rsVZTutBwl6SeYs4CbUebEGlaU4T1aWRn7+i1Ki\nKfQZ4/w7gTq/ajCyYJNpamqlooIezy9zifHp0zVepcoFBaWUlMj5KQSHlGqGiMvl0iZMmOspy4tN\nOV6kTWqiRU8tgOPRYMvf+W+LpzTzDg2u1aLhAij0X9T5t0Xzdn40zMcGDbq+13tANN1c+wOxLtWM\nJRI8hIAx2M2L2UCRaANuTySatbe/89/DGtyuwQJP8CB18ULkcLlcWk7OtZ7zz+o829PrNZNo11y8\nE+vgIdKCScEmDLV9DrEqx7Pu4BgZxXWkiaYAzA68RWR/T3r6R2RnO8jLu5Hs7NFIlYUQSXbudKJp\no/EuETYzs9drJtRrLppN64TQkeAhQTAuvNiV4yXagNsT0RSABUNvN0qAbducHDmylubmLbS1baS5\neQtHjqyVungh4hQXw5gxmRjXjLnrZRFQSGPj0R4No0K95ubPd1FXt4zGxqW0tGymvX0jLS2baGxc\nams7cKFvSPCQIBgXXuxMjeJtwA2HeHOWDOdGKXXxQjQwrhkXsAxlGLUZ1RJ8E+fO/bJHw6hQr7nV\nq9dSV2ed6bSzHbjQNyR4SBCMC68UpbT3HSj2RHygiLcBNxzizVkynBul1MUL0cC4Ztaimq/5nquz\ne1y+DPWaS6ZMZzIiwUOCYFx4TlQvgw1AISplOJ+srEciPlDE24AbDvE2Ww/nRllcHHhJY9s2KX8T\n7MHoc/EufTlXvftkeF9zWVmPMHOm9zWXTJnOZESChwTBe7Abjor+NwHfIz/fQUPDixEfKOJtwA2H\neJuty41SiHf0Phe5uRfpy7mqv76kZAMFBYVMnFhEQUEhJSUbaGjw96dJpkxnMiImUQmCPthdulTG\n6dNrvAxW9MEu0jPMeNgHu4i1i52vQVVDQz3qRml1U5YbpRAfOJ1O8vKGUVPTt3PV6XSybl1w19z0\n6QXU1JidVM0kVqYzGZHgIUGI9WAXL/uQDFi7hD4M7EO5RPoiN0ohfojWoD5zZikvvLCM1lZfu/X9\nnmUOsVuPJYFyT9FgKlBdXV3N1Kn9ziBLiCGxtqVesWIV5eVL8b75ulEK9jWev6cAx1EC2XdJTR3H\ngAGIla8Qc9xuN7NmLaOuzn9Qz89/hMrK9bZdR7G+VuOZAwcOMG3aNIBpwIFob1+CB6Ff4T3rn4He\nGwSqyMr6flR6g0yZsoSams34X35u4AkyMraRlzeaI0c+pb19HXAVKttzEGjH4TjK5ZffynXX/V8J\nIoSoY+5RcerUn7hw4STQQUpKDgMG5DJt2vW89JIM7pEm1sGDCCYTALfbzYoVq5gyZQmTJhUxZcoS\nVqxY1aMhi2BNPLhkWosj3agljA/RtAxOnjxOe/szqMBhOaqmfguwA037gGPHisUoR4gJenXPI4+s\nArrQtCfRtPfp7KykpeVV3npraY9+D0JyIMFDnPPUUy7GjVtGeflSamo2U1u7kZqaTZSXx/YC9Q1o\nJk1awNVX38KkSYvjOsCJh9pxfxW5t+lOe3s1Z8+ORukfAtfUi1GOEEviIRAXYocED3FOPF6g/gHN\nr6mt7eLQoZ9QW7s1bgIcK+KhJNLfL8MqQEjz/D/2wY4gWBEPgbgQOyR4iHPi8QL1D2gCzY7jbwYS\nD7Xj/n4ZVt+xvp+xD3YEwYp4CMSF2CHBQ5wTjxeod0DjBt4g3gKcQMSDS6avQRV8hv93rO9n7IMd\nQbAilEBcdFvJhwQPcU48zJR9MQIafa1+KOF024sm8eCSabaTrq8vZ/BgB/7fsd7D5DKU/4MV4v8g\nxI5gA/F41W0J4SHBQ5wTDzNlX4yARl+uyCCcbnvRJJ5sqfWb6tmzU/APEPQeJheB/wPsIZh+AIIQ\nLbwD8eOoScMdwELS0kp48819TJq0mNWrF9PaqvuXxPeyphA84jAZ58Sjy5rhMFeDKi/UA5yXMbQP\nOt7d9laujK07ZTy5ZBrakXxU0OX7HdeSleXmRz/6AwcP/g9VVY/7GOXYZ8YjCKGiB+InT/4rZ868\nAaxD3Q/cdHQsp6FB91L5ItbOqaCWNddEaY8FO5HgIc5ZudLJ3Xev97isrYmLwcMIaPTli1LU4Keh\nbh5WyE3CF6UF0e2p13v+vwYlkuxg8OCjfPzxDs93HPtgRxDM6IH4ihXZlJevw5g0mAXUIKLf5ESC\nhwQglGYy0UAPaK6++nbOntUwUuxFyE0ieLzFsP4BwsiRRZJZEOIeIwgGQ0BtnkToy5zS9C2ZEM2D\n0CecTid33TUPQ4/hBIYRb+LOeCYexbCCECo9C6jBWNa0QkS/iYoED0KfmTmzlKwsc+VCAVIZEDzx\nKIYVhFAJLKAGlYloBVZgJfqNVoWTYD8SPAh9ZuVKJw0N6ykp2UBBQSEjRryPw/H3SGVAcPgHXyDH\nS0g0jCBY93/Rf9czEfcDu4BXUOLJhcB1DBnyXNQrnAT7kK6agq1IC93QkOMlJDpPP+3mO9/RBdQ7\nMNrLjwX+EetKi0pKSjbElZYr0Yh1V00JHgRBEISwcLvdHgH1O6hhxQ3cDui/+9JFQUEhBw9uieZu\nJhWxDh5k2UIQBEEIC2sB9Wik+ip5keBB6DdUVMDixW7Gjl1FTs4SMjKKyMlZwtixq1i82E1FRaz3\nUBASF38Nj1QTJTMSPAj9hvnzXdTVLaOxcSktLZtpb99IS8smGhuXUle3jAULYm+fLQiJiq+AOjf3\nKCqQsEKqiRIdCR6EfsPq1Wupq7NuHV5X9xilpeKxLwjhoBvaHTy4hUOHtpOf/wNi2YROiBwSPAj9\nBu9W4r7EV+twQUh04qkJnWA/Yk8t9Bu87aB9EQGXINhJPDWhE+xHMg+CrcSzKFHsoAVBEOxBggfB\nVuJZlCh20IIgCPYgwYNgK/EsShQ7aEEQBHsQzYNgK97teX2ZQVXVmmjujhd6K3FlB73Gxw56vdhB\nC4IgBIkED4KteIsS3ahAogZIBTppbDyK2+2O2UCtl5IJgiAIfUeWLQRbMUSJeke9pcBmYCOwiXPn\nfsm4cct4+mkxZBIEQUhU7A4evg78GTjr+dkL3GbzNoQ4xhAlrgWstA+zaW19jH37xJBJEAQhUbE7\neDgCrEZ1zJwGvI6ack6xeTtCnGKIEt9FDJkEQRCSE7uDh83AVqAOOAT8ADgPTLd5O0Kcovvb5+Ze\nRAyZBEEQkpNICiZTgXuBTGB3BLcjxBlOp5O8vGHU1GjACXxFkzAZaI3hHgqCIAjhEAnB5HVAM3AR\n+BXwZVQWQuhHKO3Dq1iJJmEpdXVuEU0KgiAkKJHIPPwVuB4YjMo8PA/cAhywevKDDz7IkCFDvP5W\nXFxMcXFxBHZNiBYzZ5by29/eSmfnr1CiSZ0UYBadnU+yb18ZK1dK2aQgCEJPVFRUUOHj7X/mzJkY\n7Y0i0KK0newAGoB/8Pn7VKC6urqaqVOnRmE3hGgzadJiamu3Yn2adVFQUMjBg1uivVuCIAgJz4ED\nB5g2bRqo4gTLyXkkiYbPQ0qUtiPEHZmIaFIQBCH5sHvZ4t+AP6JKNgcBy4G5wGM2b0dIAAzDKOvM\ng3SxFARBSEzszgg4gf9F6R52Ap8HFqP8HoR+hnSxFARBSE7sDh6+CowHBgAjgUXAazZvQ0gQpIul\nIAhCciKNsYSIIV0sBUEQkhMJHoSIIl0sBUEQkg8JHoR+gdvt9mRAanwyIKWSAREEQQgRCR6EpOep\np1w89NByWlsfR1llO4AuamqqeOGFZfz7v69n5UoJIARBEIJF/BeEpGf//rWewMG3PfhMaQ8uCILQ\nByR4EJIe1f5b2oMLgiDYhQQPQtKjnCzF6VKILm63mxXfXMGUOVOYNGcSU+ZMYcU3V+B2+zeEC+W5\nghAPiOZBiCqxEC6K06UQbVwuF7Nvn03d5+pgIbrMhpqmGnbftpvKrZUAlD5ayt6qvdQfqaf9i+0B\nnyuiXiHekOBB6Kbigwoq/qI6t13suMjhs4e5cvCVDEgbAEDxtcUUX9f3bqexEi5On15ATc1+vLt7\n6ojTpWA/q3+0WgUOY01/TAHGQt2FOqbfOp0md5MKGNKBL2L9XOoofbSUdb9cF83dF4RekeBB6Kb4\nOiM4OHDsANN+NY2KpRVMHWVP11Nv4aKOt3AxEi26Z84s5YUXltHa+hhK+5CCcrrc73G6XG/7NoX+\nTdV7VSqL4EszsBcaBjcYAcNbQF6ANxoDVTurIrSXgtB3JHgQvHC73ZQ+Wsqud3fBGbjnj/cw96a5\nlD1aFnbqVAkTA1U2zKCqak1Y7x8IcboMjkhnnvoLbrebjxs/tl4l2wvMxztgcNCTJIdDJw4x9vax\nnP70NG1aGxmODIZeMZSCOwsomV0i34kQEyR4ELrxWqe9HXBAfVc99U31tqy9+gsX3ahgogZI5dCh\nT1mxYlVE9A/idNk7kc489Qf0a6g9pd1aZuPG0DXoj2kEluSch87TnTSOaVRJMwe0d7XT0tRC5q8y\nWXD3gkh9FEHoEam2ELrxWqc12yGMhbrPqbXXcDCEiwAuYBmwFNgMbKSt7c+Uly9l3LhlPP20qMyF\nxKP7GhoNNFo8QQ8a9IABVC9iq+cC7ITOos6IXZOC0Fck8yB0E3CdFmxZe/UWLq4Foq9/sBNJ8wu+\ndF9Dw4AXUUsUYzBkNm2ooEEPGMYCcwI8twnSj6fTntduvTHRQwgxRIKHfkrFBxX8dO9PaTrfRKfW\nSWt7KxdOXuhx7bWDjrC26S1cPEgs9A92Iml+wZejzUfVNZQN3AvsQekbPNkGR7MDrVHzDxjuBd4G\ntoPjgoP0tHQGZA/gQmpkr0lB6CsSPPQzzLPl4VnDaW5vZuiAoexv2q9mO4HtEEgL83QxCxefe+4z\n2toS37gpFIGp/tyq96rooIM00ph+43RbxKhCfDBiwAjOaGeMAGKR6cEuuPrVq+n8U6da2lgKVAK7\n1GNp59MYkDmA5i8105bXRpujDX5LRK9JQegrcub1M6xmy8/e/Sz7N+z3TqX60gTTb5we9vZ14WJV\n1RJqaiJv3BRJU6pQBKbBmAZJAJHYuFwujh492uM1NPvzsyl7tEwFkZWeIHKECiIvXrzI847n1Wtb\ngDeAU0T8mhSEviDBQz/m9MnTsAW+9uuvqbVYwPGRA+1LmiojM6295v8pn7Kt9jWQioZxU6RNqXo0\nAqKOqV+ZyuS/nczhs4c5v/k8xz53LCmMgETrYaBnk/a+s5f6hnraF7bDa/jrFxph0I5BlFWrLJPV\ndz1lzhQVWDYDLwGDUUFpL+8nCLFAgod+isvl4v5l98M5aF3cqoIFB2jnNdgJaVvS6MjtYPzQ8SoN\nv9Xe1Lqdxk2+2QVopaurA5frNK2tT2KXKNN30Nz1+i5VMGLFGMj9MJefLPgJ0341Dedxp7EbLai1\ncDfdGYgXLr6QMMsX5uzV47sf55HXH+Hy7MsBOHz2MOveW9d9nJIlkPBdcqId2i600eRqon1Bu/ou\ns4GrUYO8j9aByyB7SHaP32/juUb1fLMXhP5+b6KKkjTUKewAR5rDct9kOUyIBoEWnaPBVKC6urqa\nqVNFYBZtVnxzBeV7yuEmrFOin0JufS4zVsyI2IzSjiUFl8vF7NnLqat7HBWEuIHlwCrgh8A7BFoa\nKSgo5ODBLcHvq+kG3d7RTv3RevhqgBe0QO4LuQwfOZz6M/WkNqfS+bVOY1Y5n+6AzZzd2fTsJsr+\nuyxmA4FZw1F/pp7xQ8b3aBKmL31Vf60aoPv/ySQa9VpyykMFf3pm4CbgQ2AysBv428Dvc/mmyzn2\n7rGAj2dfmU3rilZ4zvM+FZ5/zefMUFRw4QLagbPgSHWg3al5P9YF6a3pLL1jKf/5k/+UICIJOXDg\nANOmTQOYBhyI9vYl89APcbvd/P7V36tvP5Atbh7k/TWP7fdvj9h+2GHcdO+9az2Bw0xU4PBlVOCw\nFnU3DV+U6TV4zEbdoE8Bl7AWs3lu9ucWnONc3jlwQOezneq5+qwyQM+DGYtncH7ReT9dxPo56xm1\nYhT5efkRC+ZcLhczFs2g4aYGbw3HoXpe/NyLjBwxkhOnTnCx7SIDsgZwWe5ltHW2QQvc9ce7SCUV\n0uD00tMwSr1nMsyKvZanWlBVEgswXCLfQn1fPZk9dcGwzGE9bifdka70Db5eEPo5MxQjiJjt+f+V\noN2k+T+2F9pd7Tz/5vO8fP3LAYOIZPh+hNggwUM/Qx8IzzrO9mqLmwhlYCdO6JbXLlTGIQWlNHsc\n+DF2dNPsHjzMN+iFwA6sxWxWAcIIz3N1h0Er6lGBg0VgceHmC3yy+RNefOnFiM3q//m7/6wCB32Q\n3AMcA85Dy6IWPtn7iRo0M6FtYxvnGs7B3UAefOr4tDuDUnJfCdsrtvOjsh+x4dUNCd8tcse+HVCI\nkQFwYGSNzD9hCo6HjxjO2dfOql/MXhD6ObMD47zajrfNtf6Y7znqcaR8vul53rntHRHxCrYhwUM/\no3sgfIteZ0rRKAMLZ+nC7XbT2HgK9QF006nHUXnkGUABEL4os9v4x3zzhsDmPkfxDxD053rWqy05\nQY8NknjL+0/hCBf1GeeOfTs403YGh+agxdUC38A7Ta4Bt6IO6XwgA1gPXA4sxjvQ8Gg4Gi80cv3c\n6+kY3WE0f/J5Tl1bHbMXz2bvtr19GqCCnTGHMrM2ix8/c33GhQsX0DSNDkeHtxZhN96ZAf0n0PnQ\nCPnv9S44HpA+AO7xvEcj/ueMOfD0tbm2CjB0AghzexP8JpKIV4g+Ejz0M7oHQifqhh5optQI53LP\nsei3iyKmpvfWK3hXQ+zevYzKysBNq4xKioGoO7eegegE9B4apShFo68os5KsrB8GLcrsNv5xo1LC\n2zHEjg5gJ+pKaoHxV4znZOpJzjnOeb+Jbhr0LIEDNqtMkHnQbYZ77jR8JPpqUuU147wVY51c3745\nc+Kbmi9HBQ07PH83Bxr6YLYNOgo6jNdaPacLDjUdYtZts0Ke4VrOmM9Dzc4afnf977jiiitI1VIN\nQWNh75mP7ve8pk4d6zmoIEFDfbcaxgCtBwt6ZsCccfA1hmqDCUMnBBUkTb9xOjWna9TKmx6ELEVp\nIPRzRj8/fJc2fIMIK3wcKSPtKCskNxI8JBHBzEQ78Myi5gDPA9tQRjbm0sxGGLBrAEP/cSjVx6o5\ndeEUQwcM7X6/ir+o7YQbRHjrFXRUNURd3WPcc08Zu3ZZayKM9t4vo7ILesBQAFRj3N3Xo4KKNZ7n\ndDB48FE+/nhH0APW6JzRyvinE8tBkCZUOV0WvPTKS9x/z/3UaDX+gUA2MI7AAZtuXay/zmLQ9fWR\nAELughpwGeZJvAdJ8E/NXwDqgUH4Bxo6egbFKhixIQPhN2NuRp0G86F9aDt1b9ZBA2r2X4j/zHoY\n1HXWcfWMqxk5aiRppNF2oY26qXVGhuVD9bxuQaRZi6AHC3pmYDbe5ZSL8BLB7t0a3Geb+eWZvPC1\nF2j9m1bDQMqFOu8a8Q4UfAMY3yDCihQ40XyCFd9cQdV7Vfy14a89Bqt/bfkrU+ZMEQ2EYIkED0mE\n30z059OY5J5EXW0dHXSwhjUcP3Zc3WSyURKBN4EtqBtUF+pmMgBGXj6SafXT+PnXf86ClxfwrRnf\n4r4N99lqv2zoFayYwYkTgS2qjfbe+ajsgn73LEVNp/cBs1B3V3MAspe77vp9SDfC6TdOp6axRt1Y\n9TS8jifNy63AH+G7O7/LudxzgQOE8TBo+yClbfDpY5DTkUNzY7Pxup7EldTxrdJv8e7774bcBTXg\nMowD70ES/FPzqajgIBX/QAPT+5gHOP05NmUg/GbMvoLCwcCX8G577aPh4EtwNu+s0v50Af+Ld4ZF\nXyLKw+hToR8P8/KEPsg7gE1AJwwaPIhRl41i9k2zQypxXjl3JXe/fbefgdT1f3M9+97dR0NWg3Fe\n+QYwg/EPInw5DyePnaT8Urn6jM/RY7Da5eii5nyNV0YnMy1TggkBkOAhaTl14hQ8D5uGbYJWVHDQ\ngirv0m9A2cASLMsHD3cdprypnJ337fS22LUR/xbdZryrIczaiIsXO2hoOIYxDVyPyhdXoqaBL6Ai\no/8XFUDoI/Q+srJ+EJKHBEDZo2Xsvm03ddT1WJ0yeOBgtt+/HfdtbqYunEojjX4BQv5f89m0TZVj\n7n1Vra3r1QsDBg/gwpYLdC7pVK/rJQW99TdbObvgbEhr1m63W5WYWqW4r0BlovQ0vXmWrf/b6fn7\nZfgHGjq+s2KrDESQ+6vvs1m3UNdQ59/Z3RwM6UGDvl0rDYd5Hy4AHabn+y4P6EtOL+C/PKEvX2kw\nYUxwyxM9EchAyu1288+r/5mXN79M+5J2dVq/7PksSz2f+Q8Y3TytAldzh07wF3j6fj/mjE5eO3WO\nOhFUCt1I8JCEuN1u7l16r7pR3oQSuW1AzZr12dmtGEsVewh4U2+kUT1+v/GQ1fJIRmoG7hbVRntE\n9ggudV7qVSdhtOjuuRrCWxvxMFCMGr3MI9yLeOsbdgJPAD/A4TjD5ZePYPHi6ykrC6yjMB8/fbC6\n2H6Rk66TdGldOHCgOTTrF6XA0GFDu1+bkpICW5TotCOtgytHXsm8GfO6Z6JP/OsTzL59NucWnIM8\naHO0ca7rHByCnG05jB49mvoL9bQ7AnRUTIELbRd6FFia16zdbjffKv2Wqn4Y2G6d4r4FtZRlDjB9\nU/PpqOUVvVQQ/L9C31mx/pxegqEdm3f4/dmvTPZN/Etkfdf7A5U6mjUcOnpgkYZ/lsX82bLx1iKE\nsTzRF5xOJxX/U2Gcm5VVXHRe5ORrJyEFLnNeRur4VNovtNO4qVFVuPi4xPp16PQVePp+P30M9oT+\ngYL+4kIAAB5eSURBVAQPSYZ+sz1z5gwUoYKF36D+r98E7sVYrujy/PhmF8xp3rNQsqgE0uDuTXcz\nb8Y8nnn0GZxOp5dJkL6cEax4L1iLakMbke/Z+ceB3+NdSWHWN3yfgQMvMn78MKZPvykk06mn3nyK\nh1Y+pNadb8AIuvKAX9Fjdcrxz44z67ZZaqArUs/r6OqAJuh8t9Mr1RtQ6T4Rmgc2MztzNmnvpVlr\nJzzbo+fETXepbfcA3FmnPou+hq8Pkq0Ys+h0VFr/98Cdns+td3zUs1cAp/Gfjevog5I+K36JwFkK\n0/52OvxLZ/30GYM9+2Tepu96v2/mw0rDoaMPkPoxMWdafAXF5k6Zr0Fuai55I/NUGt9mB9ZABMpM\nmOkOMHZ6V5jsvmK3yh7o+Hb+PId1RseKAMGe0H+Q4CHJ+Pb3vq1uto0Y9d/ZeM+29FmgPihW4H3T\n0Gdjs1Flh3dBR16H13LG72b9jtn/MhstS03Rth7aGrIWIliLaqWNeBiVWUhB5Wyvxr+SYjhwJ/n5\n1VRWbuzTzXz/i/tV4GAVdHnEpIGqUzraOgKWvjXS6DVT6/YOsMJzY144c6HSWgTwDRiYPpA2ra3X\nUluv8lzzGv5g4GOMAdQsAj0EvAJXjr+SzMxM0hxpTC9Ua921tbXcctctdCzoUIPsHzzHSZ/pDgRm\nQ852lUHpGNHBkc1HvDMeFvtrZaLUfZzMSxJfwliGGIO/aNA382Euj/XVBOgDpH5M9AzLbFS1ha+g\neCBwDYxrGUfVjqq4TNsHCjDypuX5H3+982cXpP0qjQ6twz+jY0WAYE/oP6TEegcE+6ipqeGFjS8Y\nNzo9lZuB9WxrLN4zNd/HG3yeB92DYfst7fz1D3/tfsnT1U+z6LeLKKoo4l+2/ktQ+7typZOGhvWU\nlGxg4sRF5OZ+joyMG8jN/Q55eens21eG2+32aB9+iso45OCtddiAGl2KgEJyc/+pxxLP3qh6r0od\nv734B13ZqIHlCGqAxfPvEeB1VCagh2WEl3a9RFFFERUfVKgbby835rJHy8j/U77l9rJ2Z5F1VZYa\nJHVaUGWkvwOehdpPaxl7+1he2fWKtwZAn3FmAK9i/R1PBO6E66+7no/2fMTBPQdZ98t1OJ1O5syZ\nw5/f/DOD3h6ksjMlwF9RArz/hbSn01g+YDmfHPiEj/Z/RF1VHU0fNDFh6ATv/TUTwESp+zi5MT5D\njmf/P0QFvp+hApiBGEHDaygX0KUoTYN+fuuBhY7vMWnw/P6653XN4HjFQcqTKaT/f+kM/u1glrM8\nbgOHnlg4c2GPx3/cqHHej/veF8zn13Nw6ugpVnxzBW6329b9dLvdrPjmCqbMmcKkOZOYMmeK13Z6\ne1yIDpJ5SBJcLhczFs+gK7fLO33rWwvegiq1M6cjfYVT+mzsLazTli3An8H1iYuTH5wElMPgNbdc\nwzO/eIYjHUeY9qtpQe230+nkiSdWMXv2cs6dexKYQVubg3PnuqitVX4PqanpePs4mLUO5kqKLvLy\nCsO6qXt5OvgGXakoR8W9eDc9cgJLoev5rh4DgtGDR7OxeCMAazLX8Jn2mfeSgf5+l0FuSi5Op5PK\nrZWqFHOrT6+Jt1WVSrcwcwjd4jY9g9DR1UFjUyOp76f6nwe6WPa39CgC/cvWv1g+tPaXa73dME3L\nXh1HOhiQOcDre3A6nezdtlct61DnLyQN0LV1WOYwdZx8lyT0GbOO3sJaX26xKnU0azj0rIXvMTG/\nZxeM2TyGxupAI25i4SX8tTj+G3+3kcL7Co3HzfcFi0qZtq42ypvKwxJP+jUca4Njx49ZWrTvvm03\nG3+7kaL7i8QVMw6Q4CFJWP2j1TSnNRsldPq6sGcwohFj3Xgg3oOc7w3VSnUOxg36EyALtNs0Ouo7\nVOmeA7a/vZ3RBaO5PO9yaA3OcwCs+lOUoYKFVOrqNAYMaEI1S9B9HCLXyrvb08F3sAV1Mz2NdfXJ\nEcjJyOGsdrbXZQTwlH9+XKMCkdkoEeIRz/bOQ21bLZfPvZwf/T8/Yt0v13XrSF762kvdy0Nut5uC\nyQU0bm5UIse7sFwy6czo9E7nm5/Ti26iE+vUdF8MhszBkO96fCDNQHeZrO+ShO9STjZwAyy/bjkD\nBgywLnWkQZ3fuobjNXA0O9AatYBLQwtnBvqQiUcwx9/8+MX2i2q5aUm74X9ho3jS0uxLXyay2s6F\nOmYunsn5xdYW7iLijC4SPCQovhUBDQ0NKjjQA4VbUGK2wcB4VBp3MMa6sXlQNAundqEGSLPq3Fzu\nNhh14U5BrQnry9QdwAXo+FIHjXmNQXsOgFV/Cm/HyYsXXwW+g+HjEL5rZCC8Biv9WPZmR+2ZuX1+\n3ud5vvH5oHoblD1axktTX6L55mbDyVDXoHhmU8ebjvOTb/+Eu3fc3f260ydPs2LNCvZW7aX+SL1S\n1f8jaskgUAZhFN4aAN/970GHkIp187BuszEreuiLEozgz0z3bDmrrufP4LGA/s+t1h0k/USEjjSm\n3zGd0n8q9Z5tB5ENSWR6O/6+j+vH7bmG52hb1Gb9oj66UfqJhltQy0ZWwXkzsBfOp53vcWlQRJzR\nQ4KHBMTLSrcNdcHlogYBvYRuPson/y3UOuVCVIVFHtazNz1lewTS30invbHd+3m6DkI3z6nFKAXV\nhZnz6NOMwPB70PtT+DpOLkH5Ous+Dr6ukecZOVLjgw9eDDtl6TVY6UGXPlBlo9LhO8DxBwfaUI3x\nQz3LCJ5B5p3b3glqIHI6nYwePZra+lrDydDi2DVoDUz9ylQm/+1krsq4isK7C7lw8wVVFeFrWBVo\nMP8CpJSn0FXUZaTzd6l9c5zpeeZ9bcG1fn+u+KCCo2ePRqUvij4b9vI48PkM3a2nAwQO+vsEOv9C\nzYb0J/Tj9srbr9DmCBA8pHiW+0LESzSsT058s6Lg3cl0t8Xjpv0QEWf0EMFkArL6R6tV4LAXla7+\nEmoMvQyjhO5DYCNwFmUl/BaGg6QuKPMV4n2qBrk/b/6zEuqNMz3Phbfo7ghGYySzoM2KMZ40dwAM\nv4caVDbBiv8gPf0B1KgxHBVobAK+R36+w5bAAYzBavnU5aRuT4UsYDPwlOfnWcg+kc2LL78If6fs\nqHUhof7akswSxm8dD8/B+K3jKcksscy8uC661JJPKz3qDnLP5bL9/u3c3HizChzGYnwfoG68Z/AW\nt5kZCBPGTaAks4SCygImMpGCEQWU3FbCwbcPBhRl8hp8+6Fv+71d8XXF3DP3nh7Fd+dyz3WLQ8NF\n9zho+qCJkgH+n6Hp/SYqnqno8/evD5AH9xz0E4cKitE5owOfX12ex0PESzSsT070ZVedZlTg4ECd\n774iTp/96K3tuWAfknlIQKreq1IXkNlNz4kx2M9HRemmlO6gHYMYdeUoarVa//puT5p8cPtgKt+p\n9Fr7fH3o63y65VNv8SUYugoz+o3Ap38BGnx66VPcbrf1una330NPC/AjGTv2Cm6+eQNVVWt8OnD2\nvbrCCqfTyS9+8gt2vbOLYzOOeS0l0ATOd50MGTYk4GsDaRR8GZ0zmjMXz6hfephNnbp0CjDpDJpR\nx9h84+3JWbARZn9+dq8z7y0bt+BudZOVlsXgsYMZ+LWBPPGnJ/jFB78AvI2+ehPfRUK4FuqSh2Af\n3ct5QSzJBYuXGFYXaQdyvdQzDoE0L2Hsh9A3JHhIQI42H1VlZOZMgNkJsAavrn45HTns376fsv8u\no7ax1rCmNq8tHoG7Mu/qvuH7DoJjNo6hSWsyzHPO4+8NoXkes+hf0NzUHLB/geH30JMxfxcDBqSx\nbp11oyw7cbvdzLltjgocrJYSaOD+h+9n4hcn8t2d3+1zt9HpN06n5o81agmiJ92BpnQHpy6dMmye\nB5he48bf+8AUOKZvSafsg8Br977f9e6v7e7Vs6PHShBJ9ycdvQWLfdGGeAUkvvcxX9dL/dYQZttz\nwT4keEhAumesvqVrejbBU/1AF+R05fDJgU9wOp1h3QCumngVTY1NRjfOdrwHPN1AqQ+q7JUrndx9\n93pmz76XQ4d0XYMv4VdSBEO3nuR0D30sxsDQD4dy8J8OhrWtskfLeGnjSzQPbu4xa6Ar/lO1VMPg\nSxdB6jde3fvAnE3yVCeMvWJsRAbzULIsQmLTl0qZ3vC6H+nCXd+saDP+GYcw2p4L9iGahwRk+o3T\njfbNZtMbPZvwd8DfAnNh3q3zvLIJ+pp8wc4CJm6fSMHOgoBr8hUfVHQbPrVMbyH9zXRlvPNl1MzX\nvOatGygdpU/aB6fTycMPv0hW1g9QugbzAnylx3GyNLgDFCJm05mrp1+tFOC+Hg9meqgmCAWn00nV\n9iqy3dmqRO1T/DQo46rHUfaoCuq6TX4cwBfw1q2YvQ/07//vgAUwIH1A2PsqCHZrQ8z3o8Htg/3v\nY3d6ftczDvr5PtDzeDHwBcgfli+BQwywO/PwPZSNziRUYn0vsBqlzRdsonvG2tjcYxqP1+Hbm7wF\nb8GsG5sbX2WmZTJx+ESGDx7OvFXzqHmlhkvVl3BnuknbmEZHYYcKFnQDpefpcdCtPV1LUUWRZYpf\nz0Co7pmR1TXo+NWa6yWPPa+gWFYT+DYMmzi892WN9zreY87/ncMHL3yA+1U3HZ0dOFIdpKam4pzk\n5Lu/+G735+6eqbXVKSGnPgM7j6wDCwmJfj8qe7TM20CsFbUMNwLJOMQpdgcPNwP/BbyDWsl9DFUo\nWIA6HQQb0GesMxbP4PzC85ala/PmzWP7vdsZOnxoyO9ffF0Pa/crjcZXW5du5Rc/+wWbKjapAew0\nalZgdrN8EzWj1oAU6OrsIntnNgsWLAj42aKha9DxqzXX1177IMzq8bgFoPs1K3t/rj5Tm714Noca\nD6l9W4RRyhbAf0LWgYV4x3dZpLGpUXWc1XuO+HYy9WgcItnJVOiZQHNEu7gMVVR2M8rTzcxUoLq6\nupqpU2WdtC/4Wru2XGzBMcJBwZ0FaFkah88e7rUtdl8wd9IElBV1C+Rtz1NWyTehDKvWo4KGxfhV\nLIx7Nz4aC02ZM4WahabOlb9Dpfxb6VGYFUsbXLfbbXTv1PftPLAT0j5LoyO3w/Cf6MXd06q9ejDn\nTF9fJwjBkDctj6bCJmMSYq7e6oKsi1k0HGiI+f0jlhw4cIBp06YBTAMORHv7kQ4eJqCWLK5F1QCY\nkeAhgTAPFvVn6qk/Xc/A9IEAtLS1cKHjAjOHzOTwxsMc/+A4XaM8fR58zY90PoWSASUxKb3TP8ul\nc5fYsWYH2ldNhePbgcmoffa9acVRmlQPHHe9613pcN/X72PBywu8WqQLQqIx6qZRfFb4WcDHL990\nOcfePRbFPYo/Yh08RLLawgH8HFWh6xs4CAmGb0reauY5aPAgbvrqTbhdbvY9sU9VAOjiSYvZw+/b\nf9/rzDhSn+WG1BuYedtMtDTNW9vgqyHR06RNkPduXlwEDhC40uHAsajfQwTBdrw8IHwRM6i4IJLB\nw3+jOiB8IYLbEGJET8HEoGGDSB+STntnu3dfDB/vh7NNZwN6P0QSvQNp8+JmVVpq1jaYS8VeAzpg\nzIgxNA1oovzZ8rgIHAQh2YmEKZVgL5FatvgvoAildTgc4DlTgeq/+f/bu/vYquo7juPvlpZii/Kg\nl6lUA1a7FZ+pImB0MyjBh4lPcXS6WYIxS3zOEjGaLddtccYtk5npEpYpA8PFjImKcSg4H1CRKgXH\nUnRTSkSgtioFiyKl7f74nsM59/S05fbee3p7+3klDe05v3vOvd/8uPd7f48XXMDo0cmr9dXU1FBT\no/7SwezU80+loaXBxg+sxusKCNoOtSXRdl/MvXUui15cBDfR69iG8g3lfDrzU576yVPc+MyNOdkV\n4LY8XHjihYwaMUrjDyQvhI7ryfIKprkskUiQSCQv9d7a2sratWshT7otCrDEYTa2r2NPicMhCxYs\n0JiHPDTlrCk0vNVg3+rdVeL83G6MZljyzRLqNtXZgjMRdGO8/d7b3joOYUt1d9mMlUWrFnHxP8Jn\nhQyksCmhJUUlAIwoGkH8+3ElCzKoZWNRqsEs7Au1b8zDgMh0y8Pj2NIds0le26EV2B8oqwGTeayl\npYUpM6awbfc2+6D+qXNiH/AqthPobLrNwsj2t4rm5mbKJ5fTXtpurSI99KmOf2E8FbdV8MYnb3De\n+PPYvX+3vs2LSM7ItwGTP8OGn70WOF4LLM7wvSSHxWIx6l6p4475d/D0C0/T1dXl7XsxCksc+rF9\nd7rmPzCf9uJ2m0Tcx5LQt8+6neqF1Tx++eM5110hIjKQMr08dSG21mBh4EeJwxDkbqV8xeVX2Ae1\nu0Neb1tQ97F9d7pWv7Pa9oWYSI/bkh+5+shDS0KLiEh32hhLssLfL7/3nL0UP+LMvnBnW/SyhPXO\ntp1Ze14dBR02/6eHHUjZC+vfXE8sFmP7ru1Zex4iIoOZkgfJiuBUzpbrWxh/znjaC9r73Dfi+JHH\nZ+15jS0ZS1NpU/cdSLuA46AyVklVVVXW7i8ikg+UPEgkYrEYp5SfQkNXQ7/2jciExOYEe4/a6917\nZqDAdpheErYduIiI+GlLbonMlLOm2Ae3f3vdwHiDio0VWRtvUHN6DfWL6xm3flz3e2+H0rWl7Dxj\nJ4nNiV6uIiIi2d7bojeaqjnEJC38MhrbCbQZ2+K6rYjyY8sZPmI4FOHN6c7Cug8tLS3Mu2ceK99a\nyYljTmRk0chD91rTtEYbPolIzsu3qZoivTr3zHP5bPVntO1vo6i4iLLhZVw09SI2NWxi2znbktZ9\naNjRwNpZaw9r3YdUdnmMxWLEH4yzcuFKVtyyImkaZk1MyYGISF+UPEgkmpubmX7pdGt1mAsUwMHO\ng+zZsYc1L62xfSbGYktZu5tndcHHpR9zx/w7SDzRe1dCzek1XHzsxUk7TbaPbj+sbalFRCQ1Sh4k\nEvMfmG+JQ8jCUG1FbTAGb4+J6diaEM3AV7Ds+WUwDx596NEek4CGhgamzprKVzO/gkuBAmjsbKTx\no0aWnLGEktEltBe0U9xRDJ3YbpqdcN2L1ynBEBFJkZIHiUTdprru+1u4huMtIDWG0B04l+1Yxruz\n3j3UhdHS0mLr3m+qY/+B/TRubaTr6q7k5ORz4BXouKKDr8u/hn3Qvrzdru10jzR2NtK4o/Gwu0dE\nRESzLSQiBznY8/DcLqyrohwviTgBr7y7dPXZtnR1c3Mz02ZNY9G3i2i4pIGtw7fSdVRX8qqVzcAy\n4ArftQ7j2iIi0jclDxKJIoosSQhzDNCBfaC7SYTfPuBl4HVY+vxSKqdUel0gXwONeLtkArRhXSBH\nBa4Vdm1XlpfFFhHJJ0oeJBKH1ngIMxEK9xZ6q076WyjcRKAKuAEO3HyAPcV7LAlwzx2Bt2olWAtD\nGckJBSHX9it0WkdERKRPSh4kEg/HH6ZiY0Xo4kwVH1Rw5cwrLbnwJwHQc1eDvxtiGN4umWAtDMND\nrhX826/TaR0REZE+KXmQSMRiMdatWkdtSS0TV02EpTBx1URqS2pZt2odCxcstOSilOQWirCuBjcJ\ncM/FSN4l092rwp9QgLcsdpgsLostIpJvlDxIZGKxGE8+9iTLn10OP4blzy7nyceeJBaLHUou5kye\nQ/ELxfAJ1jIR1tXgJgHuufOxVgh3l8xWLHEIbrvtLovtXhu81o8sLostIpJvlDxIzojFYiSeSLBj\n8w5qR9Qyac0khu0d1r2rwU0CDmDnyrBdMrdh0zMLscTBn1AkgOeADihYUUD58+XdWj80TVNE5PCo\nk1dyjttCATD31rks+nRR8voNbrKwFG+HzDK8XTL3YcnCBdhMDHfb7QMwsmskdW/V8c3ob6heWM3y\nW5YnLU8tIiJ9U8uD5LQeB1p+CRPGTmDCexPCz42ZwJwj5jCpYBKVsUomHTOJ2stq2Vq/laqqqgF4\nJSIi+UMtD5LT3LEQ98TvoW5NHQc56O24+YqNUejpnLohRESyQ8mD5Dx/N0aY3s6JiEjmKXmQSAS3\nzK48upJ719wbumV2Pj8HEZF80NN6e1GYDGzYsGEDkydrwJqIiMjhqq+vp7q6GqAaqI/6/howKSIi\nIilR8iAiIiIpUfIgIiIiKVHyICIiIilR8iAiIiIpUfIgIiIiKVHyICIiIilR8iAiIiIpUfIgIiIi\nKVHyICIiIilR8iAiIiIpUfIgIiIiKVHyICIiIilR8iAiIiIpUfIgIiIiKVHyICIiIilR8iAiIiIp\nUfIgIiIiKVHyMMQkEomBfgpDjmIePcU8eor50JKN5OFCYCWwA+gEZmfhHtJP+g8ePcU8eop59BTz\noSUbyUMpsBG41fm7Kwv3EBERkQFSlIVrrnJ+REREJA9pzIOIiIikJBstDynZsmXLQD+FIaW1tZX6\n+vqBfhpDimIePcU8eop5tAb6s7Mgy9fvBK4Cng85dxzwLjA+y89BREQkH+0AzgV2RX3jgWx52IW9\n6OMG8DmIiIgMVrsYgMQBBr7bYsBeuIiIiPRPNpKHMuAU398nAWcBXwDbs3A/ERERGeR+gI116AQ6\nfL8/MYDPSURERERERERERERERERERIauON74BfdnZ6BMFbamQyuwF1gHnBAoMw34F9AG7AZeBUb4\nzm8Luc+DgWuciG2+1Qa0AH8Eivv5unJZnPRiPiHk8e7Ptb5rjAGWONdoBRYDowL3Ucw9mYj5tpDz\nquf9f285HlgKNGHxqic53qB67hcnmphvC7mP6nn/Y14BrACagT3A08C4wDVyrp7HgX87T9T9Odp3\nvgKbUfEQcCb2JnopEPOVmYa9mHuwIFUA1wDDfWUagfsD9ynznR8GbAbWOPeZAXwKPJruC8xBcdKL\neWHgseOAX2CVrtR3nX8C7wPnAVOde/oX9lLMPZmKueq5J0767y2vAu8A5zjn7wcOYjO9XKrnnjjR\nxFz13BMnvZiXAR8Dy4FTgdOwRGI9yQs+5lw9j2O7ZfZkGfC3Pq7xDvBAH2UagTt7OX8pVkGP9R37\nEfANMLKPaw82cdKPedBG4C++v6uwDPhc37HznGPulFvF3JOJmIPquV+c9GP+FXBD4NjnwFznd9Xz\nZHGyH3NQPfeLk17MZ2Kx8sdlNFaHZzh/R1bPU90Y6xRsOcytQAKY6LvOZcD/gJeAz7BEYbbvseOA\nKVgTydtYU9drwPkh95mPVcKNwH0kN6dMw7KmJt+xl4ESoDrF1zMYpBPzoGos0/yr79g07Fvxu75j\n651j031lFPPMxdyleu5JN+YvAHOwJttC5/fh2HsMqJ6HyXbMXarnnnRiXgJ0AQd8x77FEgP3czQn\n6/ks4GqsuWQG1mS1CxiLZTCdWP/JncAZWIXpAC50Hj/VKfM5cBP2hvoHYD9wsu8+dwEXYE0y87C+\nHf+3toWEb/m9H8ue8km6MQ96HPhP4Nh9wIchZT90rgeKeaZjDqrnfpmI+RFYM2wn9ubaivdtDFTP\ng6KIOaie+6Ub82OwGD+Cxb4M+JPzuD87ZQZFPS/FXvjd2P4UncBTgTLPYQNqwLKeTuA3gTLv030A\njd81zuPGOH8vxDKzoHysbEGpxtzvCKzi3R04friVTTHPXMzDqJ57+hPzZ7DBZRcBpwO/xAZkn+ac\nVz3vXTZiHkb13NOfmF8CfIQlFe1YN8d7wGPO+cjqeardFn5fY00fJ2OtCQeBhkCZD7BRneDtYREs\ns8VXJsx651+3daIJ+E6gzBisuayJ/JZqzP2uwz7MFgeON9F9tC7OsSZfGcU8czEPo3ruSTXmVdju\nvfOwb3ObgV9hb6q3OmVUz3uXjZiHUT339Oe9ZbVTPoYNtrwJKMe6QSDCep5O8lACTMKSgnasj+V7\ngTKV2FQdnH93hpT5rq9MmLOdf93k420ss/W/+JlY38+Gw3zug1WqMfebh2WxXwSOr8Om8QQH2IzC\nYg2KeaZjHkb13JNqzN33sY5AmU68Ueiq573LRszDqJ570nlv+RKbyjkDSyTc2RQ5Wc9/j/W9THSe\nzEqsSdadg3qVc/ObsczoNiwg033XuNN5zLVOmV8D+/AGjUzFmnDOco5dj00hWeG7RiE29WS1U24G\n8Ak2TzXfZCLmOOc6sAoS5kVgE8lTe57znVfMMxtz1fNk6cZ8GPaN7XXsTbMC+DkW/1m++6iee6KI\n+TRUz/0y8d4yF6u7FcCNWIvF7wL3ybl6nsBGiX6LVYC/0z1Lmgv8F2uOqQd+GHKd+c4TbQPeJDkw\nZ2OZ027nGluwfrQRgWucgAV+Hxa8BeTnoiKZivmD9N66MxpbVGSP87MYOCpQRjH3pBtz1fNkmYj5\nSc7jdmHvLRvpPo1Q9dwTRcxVz5NlIua/xeL9LdalcVfIfVTPRURERERERERERERERERERERERERE\nREREREREREREREREREREREREREREREREREREZED9H0ARXMzHIkhcAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t2, l2, l2e = np.loadtxt(echo_file).T\n", + "errorbar(t1, l1, yerr=l1e, fmt='o')\n", + "errorbar(t2, l2, yerr=l2e, fmt='o')" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.362e-01 5.425e+01 inf -- -3.468e+02 -- 1 1 1 1 1 1 1 1\n", + " 2 7.747e-01 5.347e+01 7.019e+01 -- -2.766e+02 -- 0.58045 0.569962 0.564602 0.563764 0.567626 0.565054 0.565279 0.564008\n", + " 3 3.447e+00 5.213e+01 6.905e+01 -- -2.076e+02 -- 0.198681 0.140203 0.130333 0.127063 0.134237 0.12998 0.131082 0.127044\n", + " 4 1.448e+00 4.998e+01 6.682e+01 -- -1.408e+02 -- -0.0825582 -0.283347 -0.300715 -0.310826 -0.299703 -0.304649 -0.30132 -0.310849\n", + " 5 5.884e-01 4.684e+01 6.330e+01 -- -7.746e+01 -- -0.194194 -0.676998 -0.726162 -0.750752 -0.733583 -0.738758 -0.729946 -0.74976\n", + " 6 3.739e-01 4.258e+01 5.850e+01 -- -1.895e+01 -- -0.203226 -0.953186 -1.14229 -1.19152 -1.16459 -1.17342 -1.15279 -1.19094\n", + " 7 2.741e-01 3.740e+01 5.292e+01 -- 3.397e+01 -- -0.205901 -0.9956 -1.54459 -1.63073 -1.58521 -1.61127 -1.5669 -1.63629\n", + " 8 2.128e-01 3.180e+01 4.679e+01 -- 8.076e+01 -- -0.180502 -0.943953 -1.92935 -2.06126 -1.98071 -2.05288 -1.97074 -2.08385\n", + " 9 1.675e-01 2.595e+01 3.791e+01 -- 1.187e+02 -- -0.15428 -0.934563 -2.26437 -2.45352 -2.31988 -2.48374 -2.35707 -2.52729\n", + " 10 1.286e-01 2.002e+01 2.537e+01 -- 1.440e+02 -- -0.13956 -0.939381 -2.49352 -2.71726 -2.56371 -2.84902 -2.70919 -2.95055\n", + " 11 9.197e-02 1.277e+01 1.299e+01 -- 1.570e+02 -- -0.130332 -0.946187 -2.57446 -2.74449 -2.69402 -3.05697 -3.00449 -3.33007\n", + " 12 5.076e-02 6.047e+00 5.021e+00 -- 1.621e+02 -- -0.124515 -0.945944 -2.55165 -2.71422 -2.73704 -3.10737 -3.209 -3.63633\n", + " 13 1.434e-02 1.485e+00 1.060e+00 -- 1.631e+02 -- -0.12047 -0.945369 -2.54157 -2.70197 -2.76441 -3.10602 -3.30159 -3.8209\n", + " 14 4.769e-03 3.557e-01 7.280e-02 -- 1.632e+02 -- -0.119516 -0.946002 -2.53635 -2.69518 -2.78858 -3.10381 -3.32152 -3.8757\n", + " 15 2.150e-03 1.530e-01 4.222e-03 -- 1.632e+02 -- -0.119506 -0.945491 -2.53265 -2.69429 -2.80187 -3.10094 -3.32488 -3.87969\n", + " 16 1.017e-03 7.109e-02 8.430e-04 -- 1.632e+02 -- -0.119394 -0.945124 -2.53033 -2.69448 -2.8079 -3.09858 -3.32603 -3.87983\n", + " 17 4.817e-04 3.356e-02 1.918e-04 -- 1.632e+02 -- -0.119311 -0.944963 -2.52941 -2.69447 -2.81076 -3.09727 -3.32654 -3.87984\n", + " 18 2.335e-04 1.618e-02 4.417e-05 -- 1.632e+02 -- -0.119282 -0.944891 -2.52886 -2.69454 -2.81211 -3.09664 -3.32676 -3.87987\n", + "********************\n", + "-0.119282 -0.944891 -2.52886 -2.69454 -2.81211 -3.09664 -3.32676 -3.87987\n", + "0.233661 0.204163 0.319993 0.254151 0.198248 0.179386 0.161786 0.221522\n", + "0.000372164 0.000983332 0.00164575 -0.000696472 -0.0161795 0.00744155 -0.00415795 -0.000828998\n", + "********************\n" + ] + } + ], + "source": [ + "P2 = clag.clag('psd10r', [t2], [l2], [l2e], dt, fqL)\n", + "p2 = np.ones(nfq)\n", + "p2, p2e = clag.optimize(P2, p2)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X9w3OVh5/G3sQVuIMExOe9CDN5aPboyMclI2AYruCJH\ncwkX0l7Sc7RDuKkdjlwRYXQtTLl0rDIySa8p05iC6Y0LTtoLrMxNL3NhBpf0h6g5+UcViV/+sZfc\nSmvswK5LHJOGxEQY3x9fCWTztaWV9rs/36+Z70jafZ7v83h40H70/T7f5wFJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiTN0n8FBoGfAAXg28DlFe2RJEmqCtuB/wi0AFcCTwA54D0V7JMk\nSapCHwDeAj5a6Y5IkqSpnVPGthaMfz1axjYlSVKVm0Nwu+EfK90RSZI0PfPK1M6DwBWc/VbDxeOH\nJEkqzivjR0mVIyQ8AHwKWAO8fIYyF19yySUvv/zymd6WJEln8UNgBSUOClGGhDkEAeE3gA7g4FnK\nXvzyyy/zrW99i5aWlgi7VHrd3d1s2rSpJtubzbmKrVtM+emUnarM2d4v93+zUnGslb68Yy2cY630\n5aMcawcOHODzn//8BwmuxtdMSNgMpAhCwutAfPz1Y8DxsAotLS20trZG2KXSW7BgQVn7XMr2ZnOu\nYusWU346Zacqc7b3y/3frFQca6Uv71gL51grffmox1pU5kZ47ieA84B1wO9NOn4APH9a2YuBL37x\ni1/k4otrb1rC8uXLa7a92Zyr2LrFlJ9O2anKnOn9dDpNKpWadl+qiWOt9OUda+Eca6UvH9VYe+WV\nV9iyZQvAFkp8JWFOKU82C63A0NDQUE2mbtWWT3/603znO9+pdDfUABxrKofh4WHa2toA2oDhUp67\nnOskSJKkGmJIUMOp1cu/qj2ONdU6Q4Iajr+4VS6ONdU6Q4IkSQplSJAkSaEMCZIkKZQhQZIkhTIk\nSJKkUIYESZIUypAgSZJCGRIkSVIoQ4IkSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIUypAg\nSZJCGRIkSVIoQ4IkSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCGRIkSVIoQ4Ik\nSQoVZUhYAzwB/BB4C/iNCNuSJEklFmVIeA/wLNA1/vPJCNuSJEklNi/Cc//N+CFJkmqQcxIkSVIo\nQ4IkSQplSJAkSaGinJNQtO7ubhYsWHDKa6lUilQqVaEeSZJUPdLpNOl0+pTXjh07Fll7cyI786ne\nAn4T+M4Z3m8FhoaGhmhtbS1TlyRJqn3Dw8O0tbUBtAHDpTx3lFcSzgf+9aSflwIfAX4EHIqwXUmS\nVAJRhoQVwD+Mf38S+NPx778JrI+wXUmSVAJRhoSncWKkJEk1yw9xSZIUypAgSZJCGRIkSVIoQ4Ik\nSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCGRIkSVIoQ4IkSQoV5QZPUsWk08EB\ncPw4HDwIS5bA/PnBa6lUcEiSzsyQoLo0OQQMD0NbWxAaWlsr2y9JqiXebpAkSaEMCapbuVyO9evv\nYu3aG4EbWbv2Rtavv4tcLlfprklSTfB2g+pOoVCgs7ObTKaJfL4LWAVANgvZ7B62b+8hmRyjr28T\nsVissp2VpCpmSFBdKRQKrF6dYmTkQWBZSIlV5POryOf3096eYmAgbVCQpDPwdoPqSmdn91kCwmTL\nyGYfoLOzuxzdkqSaZEhQ3RgdHSWTaWLqgDDhCjKZec5RkKQzMCSobmzc+ND4HITpy+e76O19KKIe\nSVJtMySobgwOZpiYpDh9qxgcPBBFdySp5hkSVDfGxmZSa84M60lS/TMkqG40Nc2k1skZ1pOk+mdI\nUN1YsSIJ7Cmy1h5WrmyJojuSVPMMCaobPT1dxOObi6oTj29mw4bbIuqRJNU2Q4LqRiKRIJkcA/ZP\ns8Y+ksk3SSQSEfZKkmpX1CHhNmAU+DnwPeCjEbenBtfXt4nm5tuBfVOU3Edz85fYtu3+cnRLkmpS\nlCHhc8DXgY3AR4BngO3ApRG2qQYXi8UYGEjT0XEv8fjNwG7g5Pi7J4HdxOM309FxLzt39rFo0aLK\ndVaSqlyUezf8LvAwsHX85/8C/Fvgd4AvR9iuGlwsFuPWP/s0j/zTIzR9//O8+qOf8PPjb/JL8+fx\ngYvex+WXJ/jCyi8YECRpClGFhHOBVuCrp73+XWB1RG1Kb0stT5FangLg0X8Y5vPPtPEX1w5x08da\nK9wzSaodUd1u+AAwFyic9voRIB5Rm9Ipcrkc67vWc/fvrYXH4O7fW8v6rvXu1SBJ0+RW0ao7hUKB\n627sZOSnGd5oz8NvBq8fJss3Dmd57IbtLL0gSf8TfQ2/TXQ6HRwAx4/DwYOwZAnMnx+8lkoFh6TG\nFFVIeBU4AZz+GzgGvHKmSt3d3SxYsOCU11KpFCl/S2maCoUCq29YzcjVIxA25WAxvPG5PAeO5Gm/\noZ2BJwcaOiikUnDNNTl6ezezY0eGbBZOnIA1a5L09HT5eKhUZdLpNOmJZD/u2LFjkbU3J7IzB9PK\nh4DJ2/LtB74N/MFpZVuBoaGhIVpbvWesmbvuxut4+rKnwwPC6Y5Ax0sd9D/RH3GvqlOhUKCzs5tM\npml898zJm2PtIR7fTDI5Rl/fpoYOUlK1Gx4epq2tDaANGC7luaO83fCnwP8gWB9hN3ArsBj47xG2\nqQY2OjpK5mgGrppmhUWQeS5DLpdruL+YC4UCq1enGBl5EFgWUmIV+fwq8vn9tLenGBhIGxSkBhTl\nOgmPA91AD/AswUJKNwCHImxTDWzjfRvJL8sXVSffkqf3vt6IelS9Oju7zxIQJltGNvsAnZ3d5eiW\npCoT9YqLfw78MjAfWAH8n4jbUwMbfGEwuFZVjMUw+PxgJP2pVqOjo2QyTUwdECZcQSYzz6dCpAbk\n3g2qG2MnxoqvNAfG3ppBvRq2ceND43MQpi+f76K396GIeiSpWhkSVDea5jYVX+kkNJ0zg3o1bHAw\nw6mTFKdjFYODB6LojqQqZkhQ3Vhx5Qo4XGSlw7Dywysj6U+1GpvRhZM5M6wnqZYZElQ3eu7qIb6/\nuAU94wfibLhzQ0Q9qk5NM7pwcnKG9STVMkOC6kYikSC5MBks/j0dRyC5MNlwjz+uWJEE9hRZaw8r\nV7ZE0R1JVcyQoLrS93Afzbubpw4KR6B5dzPbHtlWln5Vk56eLuLxzUXVicc3s2HDbRH1SFK1MiSo\nrsRiMQaeHKDjpQ7i340Hq3KcHH/zJHAI4t+N0/FSBzu372zI7aITiQTJ5BjBAqjTsY9k8s2Gu+Ii\nyZCgOhSLxeh/op9dj+5i3fx1ND/VDI9B81PNrJu/jl2P7qL/if6GDAgT+vo20dx8O7BvipL7aG7+\nEtu23V+ObkmqMu4CqbqVSCTY+uBWhl8Zpm1LG4/f+jitF7s3CIxfcRlIj+/dMG/S3g1zCC65TOzd\n8CbbtvU1dKCSGpkhQXUp/WKa9N5gp7Tjbx7n8osu5+6/u5v584I9kFMfSpFa3ti7i8ZiMfr70+Ry\nOXp7H2LHjq+QzUJzM6xZ00JPz0ZvMUgNLspdIIvhLpBSBaTTwQFw/DgcPAhLlsD8IEuRSgWHpOpV\nq7tASqpyhgBJZ+PERUmSFMqQIEmSQhkSJElSKEOCJEkKZUiQJEmhDAmSJCmUIUGSJIUyJEiSpFCG\nBEmSFMqQIEmSQhkSJElSKEOCJEkK5QZPUgM7fUvtg68dZMmFS9xSWxJgSJAaWmp5imveew29f9LL\njuEdZI9mObHwBGta19BzVw+JRKLSXZRUQYYEqUEVCgU6b+kkczRDflkePhG8niVL9nCW7TdtJ7kw\nSd/DfcRiscp2VlJFGBKkBlQoFFh9w2pGrh6Bq0IKLIb84jz5I3nab2hn4MkBg4LUgKKauPgHwE7g\nZ8CPI2pD0gx13tIZBIRFUxRcBNmrs3Te0lmWfkmqLlGFhCZgG/BQROeXNEOjo6NkjmamDggTFkHm\naIZcLhdltyRVoahCwj3A/cDeiM4vaYY23rcxmINQhHxLnt77eiPqkaRq5ToJUoMZfGEQFhdZaTEM\nPj8YSX8kVS9DgtRgxk6MFV9pDoy9NYN6kmpaMU833AP0TFHmKmB4xr2RFLmmuU3FVzoJTefMoF6J\npdPBAXD8OBw8CEuWwPxg7SdSqeCQVBrFhIQHgMemKHNwFn2hu7ubBQsWnPJaKpUi5f/1UsmsuHIF\new/vLe6Ww2FY+eGVkfVpulIpuOaaHL29m9mxI0M2CydOwJo1SXp6ulz8SXUvnU6TnkjK444dOxZZ\ne3MiO3Pgt4GvA++folwrMDQ0NERra2vEXZIaWy6X45qbriH/8elPXox/N86uR3dV9EO4UCjQ2dlN\nJtNEPt8FrJr07h7i8c0kk2P09W1yTQc1lOHhYdra2gDaKPHV/KgWU7oMWDj+dS7wYYJA8gPg9Yja\nlDQNiUSC5MIk+SP56T0GeQSSC5MVDwirV6cYGXkQWBZSYhX5/Cry+f20t6cYGEgbFKQSiGriYi9B\nmrkHOB94FhgiSDmSKqzv4T6adzfDkSkKHoHm3c1se2RbWfp1Jp2d3WcJCJMtI5t9gM7O7nJ0S6p7\nUYWE3x4/9zkEVxImvu6IqD1JRYjFYgw8OUDHSx3EvxuHQ8DJ8TdPAoeCWwwdL3Wwc/tOFi2a7spL\npTc6Okom08TUAWHCFWQy81z8SSoBH4GUGlQsFqP/iX52PbqLdfPX0fxUMzwGzU81s27+OnY9uov+\nJ/orGhAANm58aHwOwvTl81309rrgqzRbbvAkNbD0i2nSe9PQDktXLWXua3NZcuESXp33KnfsuoPU\nv6RILa/s00WDgxlOnaQ4HasYHPxKFN2RGoohQWpgqeWVDwFTGZvRGk5zZlhP0mTebpBU1ZpmtIbT\nyRnWkzSZIUFSVVuxIgnsKbLWHlaubImiO1JDMSRIqmo9PV3E45uLqhOPb2bDhtsi6pHUOAwJkqpa\nIpEgmRwD9k+zxj6SyTddolkqAUOCpKrX17eJ5ubbgX1TlNxHc/OX2Lbt/nJ0S6p7hgRJVS8WizEw\nkKaj417i8ZuB3Zy6+tNu4vGb6ei4l507+0q+tkM6Dddfn+Oyy+7iggtu5Nxzb+SCC27kssvu4vrr\nc5y2345UN3wEUlJNiMVi9PenyeVy9PY+xI4dXyGbheZmWLOmhZ6ejZHcYigUCmzZ8u6NpcbG4PXX\n9zA21sOWLWN87GNuLKX6Y0iQVFMSiQRbt36N4WFoa4PHH4eoNo91Yyk1OkOCpJqRTvP2pf3jx+Hy\ny+Huu2H+/OC1VCo4SmUmG0v193vvQfXDkCCpZpQ6BJzNbDaW8skK1QsnLkpSCDeWkgwJkhRq5htL\nHYiiO1JFGBIkKYQbS0mGBEkK5cZSkiFBkkK5sZRkSJCkUG4sJRkSJCmUG0tJhgRJOiM3llKjMyRI\n0hlUemMpqdJccVGSzqJSG0tJ1cCQIElTCPaMSABfY+lSmDsXliyBV1+FO+4o73LRUjkZEiRpCoYA\nNSrnJEiSpFCGBEmSFMqQIEmSQkUVEhLAI8AI8DPg/wH3AK5qLklSjYhq4uKvAnOAWwkCwnLgL4Dz\ngbsialOSJJVQVCHhqfFjQg64D/gdDAmSJNWEcs5JWAD8qIztSZKkWSjXOgnNwO3A75apPUmqecEq\nj5sZHMwwNgZNTcEW1j09Xa7yqLIoNiTcA/RMUeYqYHjSz5cAfwM8Dmwtsj1JajiFQoHrrutmZKSJ\nN97oAla9/d7evXt47LEeli4do79/E7FYrHIdVd2bU2T5i8aPszkIvDH+/SVAP7AL+O2z1GkFhq69\n9loWLFhwyhupVIqUS51JahCFQoHVq1OMjDwILDtLyf00N9/OwEDaoNBA0uk06XT6lNeOHTvGM888\nA9DGqX+kz1qxIaEYHyQICIPA53ln67QwrcDQ0NAQra2tEXZJkqrbddelePrpDZw9IEzYR0fHvfT3\np6cuqro1PDxMW1sbRBASopq4+EHgaYKrCncBMSA+fkiSQoyOjpLJNDG9gABwBZnMPHK5XIS9UiOL\nKiT8OsFkxY8Bh4GXx48fRtSeJNW8jRsfIp/vKqpOPt9Fb+9DEfVIjS6qkPDN8XPPHf96zqSfJUkh\nBgczTJ6kOD2rGBw8EEV3JPdukKRqMTY2k1pzZlhPmpohQZKqRNOMdrc5OcN60tQMCZJUJVasSAJ7\niqy1h5UrW6LojlS2FRcladbSL6ZJ7w0e9zv+5nEOvnaQJRcuYf68+QCkPpQitbx211Xp6eli+/Ye\n8vnpz0uIxzezYcPGCHulRmZIkFQzUsvfCQHDrwzTtqWN9GfTtF5cH+urJBIJkskx8vn9THedhGTy\nTZdoVmS83SBJVaSvbxPNzbcD+6YouY/m5i+xbdv95eiWGpQhQZKqSCwWY2AgTUvLvZx33s3Abt5Z\nsPYksJvzzruZlpZ72bmzj0WLFlWus6p73m6QpCoTi8XYvz89vgvkQwwOfmXSLpAt9PRsjPQWg7tP\naoIhQVJNyeVy9P5JLzuGd8BRWPs3a1nTuoaeu3rq7gMskUiwdevXytZeoVCgs7ObTKZpfOXHU3ef\n3L69h2RyjL4+d59sFIYESTWhUCjQeUsnmaMZ8svy8Ing9SxZsoezbL9pO8mFSfoe7vMDbAam3n1y\nFfn8KvL5/bS3p9x9skE4J0FS1SsUCqy+YTVPX/Y0+Y/nYfFpBRZD/uN5nr7sadpvaKdQKFSkn7Ws\ns7N7GttTAywjm32Azs7ucnRLFWZIkFT1Om/pZOTqEZhqjt4iyF6dpfOWzrL0q164+6TOxNsNkqra\n6OgomaMZuGqaFRZB5rkMuVyuZHMU6n0Rp9nsPlnOORMqP0OCpKq28b6NwRyEIuRb8vTe18vWB7eW\npA/1vojTzHef/EoU3VEV8XaDpKo2+MLgu+cgTGUxDD4/GEl/6pG7T+pMDAmSqtrYiRl8Es2BsbdK\n+wmWy+VY37WetZ9ZC4/B2s+sZX3X+rq4L+/ukzoTbzdIqmpNc2fwSXQSms4pzSdYIzx6uWJFkr17\n91DcLQd3n2wEXkmQVNVWXLkCDhdZ6TCs/PDKWbfdKI9e9vR0EY9vLqpOsPvkbRH1SNXCkCCpqvXc\n1UN8f7yoOvEDcTbcuWHWbTfKo5cTu0/C/mnWcPfJRmFIkFTVEokEyYVJODLNCkcguTA56w+wtx+9\nnO7+SYsgczRTsjkK6RfTXP9n13PZJy/jguUXcO6yc7lg+QVc9snLuP7Prif9Yrok7Uxw90mFMSRI\nqnp9D/fRvLt56qBwBJp3N7PtkW2zbnM2j17OVqFQYMuXt7Bv2z4OLT7E67/1OmOfG+P133qdQ4sP\nsW/bPrZ8eUtJb29M7D7Z0XEv8Xj47pPx+M10dLj7ZCNx4qKkqheLxRh4ciCYQPhchnzL+PyAOQSf\nX4eDWwzJhUm2bd9Wkg+wwRcG4foiKy2Gwb+f3aOXE/MgRq4eCV9AajHkF+fJH8nTfkM7A08OlGzC\nZCwWo7+/crtPqvoYEiTVhFgsRv8T/cEH2H297HhqB9mjWZoXNrOmbQ09j5Z2F8hKPXo5k3kQ/U/0\nz6rN05V790lVL0OCpJqSSCTY+uDWt1c+fPzWxyNZ+bASj15WwxLU0mTOSZCkEJV49LKS8yCkMIYE\nSQpRiUcvXYJa1caQIEkhKvHoZbUsQS1NMCRI0hmU+9HLSi9BLZ0uqomL3wE+TDA/98fA3wG/D7wS\nUXuSGkD6xTTpvcEiQsffPM7lF13O3X93N/PnzQcg9aF3tnQuhXI/erniyhXsPby3uFsOJVqCWgoz\nJ6LzdgM7CULBYuA+gqsW15yhfCswNDQ0RGtrfezPLqm+vP3o5dBpj17eWbpHL3O5HNfcdE2wT8Q0\nxb8bZ9eju3y6oYENDw/T1tYG0AYMl/LcUV1J2DTp+0PAHwPfBuYCJyJqU5IiU45HLyfmQeSP5Ke3\nHHSJlqCeLP1imkf6H+H727/P0cNH+cWJX3Du3HNZuHghl3/ycr5w3RdKerVG1a0c6yQsBG4C+jEg\nSNJZ9T3cR/sN7WSvzp49KEzMg9g++yWoJ0wsB/32tthXB6+PMcbrh19nbNsYW/52Cx97+GM1uy22\nihNlSPhjoAt4D/A94JMRtiVJkSnnXIhKLEENlV0OWtWrmDkJ9wA9U5S5infuh1wEvB9IAH84/toa\n3tkxZDLnJEjSacoxD2LCdTdex9OXPT3t2xwdL3WUfDlozUyUcxKKCQkXjR9ncxB4I+T1DxLMTfgo\nwYTG07UCQ9deey0LFiw45Y1UKkUq5f0vSY3l9KsXB187yJILl0Ry9WJ0dJTVn1/thMkakE6nSadP\n3Sb82LFjPPPMM1DhkDAblxIEiF8Dngl53ysJklQh67vW841ffKO4Ry8Pwbr569j64NbI+qXpifJK\nQhSLKa0Ebgc+AiwBrgMeA34A7IqgPUnSLLgctM4kipDwM+DfEyyglAEeAV4guIrwZgTtSZJmweWg\ndSZRPN2wF/g3EZxXkhQBl4PWmbh3gyQ1uEpsi326XC7H+q71LL92OcnVSZZfu5z1XevJ5XIla0PF\nK8diSpKkKtZzVw/bb9pOfnERTzcciLPh0Zlviz2hUChwXed1jPxkhDda34Dr33lv7+G9PPbZx1j6\nvqX09/W7LkMFeCVBkhpcJbbFhncWcDqw7ABvfPqNd0+eXAxvfPoNDiw7QPsN7RQKhVm1p+IZEiRJ\nZd8WG6Dzls5ghcepFnBaBNmrs3Te0jnrNlUcQ4Ik6e3loDte6iD+3Xiw/N3E+rgngUPBAkodL3Ww\nc/vOWS8HPTo6SuZoZnorPAIsgszRjHMUysyQIEkCgqBw61dv5YrPXcGlL1/K+X99Pk3bmjj/r8/n\n0pcv5YrPXcGtX721JPtFbLxvY7CJVBHyLXl67+uddduaPicuSpLello+vtzzHdG2M/jC4CmTFKdl\nMQz+vQs4lZNXEiRJZecCTrXBkCBJKjsXcKoNhgRJUtlVwwJOmpohQZJUdj139RDfHy+qTvxAnA13\nzn4BJ02fIUGSVHaJRIKlFywtagGnpRcsnfUCTiqOIUGSVBk/XQSPXjqtBZx49NKgvMrKkCBJKrvR\n0VFGRt4Lrw3CX3XAX4Yv4MRfxoP3X/seIyMXuJhSmRkSJEllt3HjQ+TzXUAMErfCh66A3ZfCN98L\n3zw/+Lr70uD1xK3AIvL5Lnp7H6p01xuKiylJkspucDADrAp+2JsKjjD7Jv+wisHBr0TcM03mlQRJ\nUtmNzWhNpDkzrKeZMiRIksquaUZrIp2cYT3NlCFBklR2K1YkgT1F1trDypUtUXRHZ2BIkCSVXU9P\nF/H45qLqxOOb2bDhtoh6pDBOXJQklV0ikSCZHCOf3w8sm0aNfSSTb5Z0MaX0i2nSe9MAHH/zOAdf\nO8iSC5cwf958AFIfGt8Rs4EZEiRJFdHXt4n29hTZ7APAFWcpuY/m5i+xbVtfSdt/e1tsYPiVYdq2\ntJH+bJrWi1tL2k4t83aDJKkiYrEYAwNpOjruJR6/GdjNqasp7SYev5mOjnvZubOPRYtKv+JiLpdj\nfdd61n5mLTwGaz+zlvVd6120aZxXEiRJFROLxejvT5PL5ejtfYgdO75CNgvNzbBmTQs9PRsj2a+h\nUCjQeUsnmaMZ8svy8Ing9SxZsoezbL9pO8mFSfoe7iMWi5W8/VphSJAkVVwikWDr1q8xPAxtbfD4\n49Aa0VX/QqHA6htWM3L1CFwVUmAx5BfnyR/J035DOwNPDjRsUPB2gySpoXTe0hkEhKnuXiyC7NVZ\nOm/pLEu/qpFXEiRJFZVOBwfA8eNw+eVw990wP3jIgFQqOEphdHSUzNFM+BWEMIsg81yGXC7XkNtU\nGxIkSRVVyhAwlY33bQzmIBQh35Kn975etj64NaJeVa+obzecBzwHvAVcGXFbkiSd1eALg7C4yEqL\nYfD5wUj6U+2iDglfA34YcRuSJE3L2IkZ7BA1B8beasydpaIMCZ8ErgfujLANSZKmrWnuDHaIOglN\n5zTmzlJRhYQYsAW4Gfh5RG1IklSUFVeugMNFVjoMKz+8MpL+VLsoQsIc4JvAnwPDEZxfkqQZ6bmr\nh/j+eFF14gfibLhzQ0Q9qm7FPN1wD9AzRZkVQDtwAfDfTntvzlQNdHd3s2DBglNeS6VSpMo17VWS\nVNcSiQTJhUnyR/JTr5MAcASSC5NV8/hjOp0mPfG86Lhjx45F1t6UH9yTXDR+nM1BoA+4kXcW4AaY\nC5wAvgWsC6nXCgwNDQ3RGtUSW5IkEay42H5DO9mrs2cPCkegeXczO7fvjGTfiFIZHh6mra0NoI0S\nX8Ev5krCj8aPqdwB/MGknz8IPAWsBfYU0Z4kSSUXi8UYeHIg2LvhuQz5lnzwWOQcgj9vDwe3GJIL\nk2zbvq2qA0LUolhM6dBpP/9s/GsWeDmC9iRJKkosFqP/if5gY6n7etnx1A6yR7M0L2xmTdsaeh7t\nqZpbDJVUrhUXT05dRJKk8km/mCa9Nw3tsHTVUua+NpclFy7h1XmvcseuO0j9S4rU8saeE1eOkJAj\nmJMgSVLVSC03BEzFXSAlSVIoQ4IkSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUOVaJ0GSpKqSTgcH\nwPHjcPAgLFkC8+cHr6VSwdHIDAmSpIY0OQQMD0NbWxAa3ELoHd5ukCRJoQwJkiQplCFBkiSFMiRI\nkqRQhgRJkhTKkCBJkkIZEiRJUihDgiRJCmVIkCRJoQwJkiQplCFBkiSFMiRIkqRQhgRJkhTKkCBJ\nkkIZEiRJUihDgiRJCmVIkCRJoQwJkiQplCFBkiSFiiok5IC3Tju+GlFbkiQpAvMiOu9JYAPwF5Ne\nez2itiRJUgSiCgkAPwWORHh+SZIUoSjnJPw+8CrwLPBloCnCtiRJUolFdSXhfmAI+DGwCvgj4JeB\n/xRRe5IkqcSKuZJwD++ejHj60TpedhPwDLAXeAT4z8AXgPeXotOSJCl6xVxJeAB4bIoyB8/w+p7x\nr78CDJ4u5T2IAAAFn0lEQVSpcnd3NwsWLDjltVQqRSqVmm4fJUmqW+l0mnQ6fcprx44di6y9OZGd\n+VSfAr4DXAYcDnm/FRgaGhqitbU15G1JkqIzPAxtbTA0BLX2MTQ8PExbWxtAGzBcynNHMSfhauAa\noB94DVgB/CnwvwkPCJIkqQpFERLeANYCPcB5BLcgtgBfi6AtSZIUkShCwrMEVxIkSVINc+8GSZIU\nypAgSZJCGRIkSVIoQ4IkSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCGRIkSVIo\nQ4IkSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCGRIkSVIoQ4IkSQplSJAkSaEM\nCZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCGRIkSVIoQ4IkSQoVZUj4d8Ae4GfAPwN/HWFb0rSl\n0+lKd0ENwrGmWhdVSPgs8FfAI8CVwGrg0YjakoriL26Vi2NNtW5eROe8H7gT+Mak138QQVuSJCki\nUVxJaAUuAU4CzwIvA08CV0TQVsWV+y+FUrY3m3MVW7eY8tMpO1WZevwLzrFW+vKOtXCNOtbAsXa6\nKELC0vGv9wC9wKeAHwNPA++PoL2KatT/mfzFXX6OtdKXd6yFa9SxZkh4t2JuN9wD9ExRZgXvBI97\ngW+Pf78OOAz8B2DLmSofOHCgiO5Uh2PHjjE8PFyT7c3mXMXWLab8dMpOVeZs75f7v1mpONZKX96x\nFq4Rx1rw8XOMAwdqb6xF+dk5p4iyF40fZ3OQYJLi3wMfBXZOem838LfAhpB6FwODwAeL6I8kSQr8\nkOAP9VdKedJiriT8aPyYyhDwBpDknZDQBCQIQkSYVwj+cRcX0R9JkhR4hRIHhCh9HTgE/Drwq8DD\nBJ2/sJKdkiRJlTcP+BMgD7wGPAW0VLRHkiRJkiRJkiRJkiRJ7/Ze4J8IVnDcC9xe2e6ojl1KsPDX\nPuB54Lcq2hvVu28DR4H/WemOqG59CsgA3we+UOG+ROYcYP74978EjAD/qnLdUR2LE2xKBsEYO0Qw\n5qQo/BrBL3FDgqIwD/i/BMsLXEAQFBYWc4Iot4oupbeA4+PfvwcYm/SzVEp54IXx7/+Z4K+8ov6n\nkorwj8BPK90J1a2VBFdFXyEYZ08CHy/mBLUSEiBYY+F54CWCXSb/pbLdUQO4imBV0h9WuiOSNAOX\ncOrvr8MUubJxLYWE14APA78MdAG/UtnuqM5dBPwlcGulOyJJM3RytieIKiSsAZ4gSDBvAb8RUuY2\nYBT4OfA9gr0eJnyJYJLiMMGSzpMdIZhY9pGS9li1Koqxdh7wv4CvEuw5IkF0v9dm/YtcdWu2Y+5l\nTr1ycClVcmX0EwTbRP8mwT/s06e9/zmC/R3WEyzb/HWC2weXnuF8i4D3jX//PoJ7xr9a2i6rRpV6\nrM0h2C/2D6PorGpaqcfahA6cuKhwsx1z8wgmK15C8JTg94H3R97rIoX9w/YAm097bT/BX25hWgkS\n+HPjx7pSdlB1oxRj7aPACYK/9p4dP64oYR9VH0ox1iBYsv4I8DrBkzRtpeqg6s5Mx9yNBE84/AC4\nJbLezcLp/7BzCZ5OOP2yySaC2wjSTDnWVC6ONZVbRcZcJSYufgCYCxROe/0IwTPqUqk41lQujjWV\nW1nGXC093SBJksqoEiHhVYJ7vrHTXo8RLPgglYpjTeXiWFO5lWXMVSIk/AIY4t2rPv06sLP83VEd\nc6ypXBxrKreaHnPnE6xj8BGCyRbd499PPJaxluCxjXVAC8FjGz9h6keFpNM51lQujjWVW92OuQ6C\nf9BbBJdDJr7fOqnM7xAsAHEcGOTUBSCk6erAsaby6MCxpvLqwDEnSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZJUA/4/AHZYvEaTdS0AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log'); ylim(-6,2)\n", + "errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10)\n", + "errorbar(fqd, p2, yerr=p2e, fmt='o', ms=10)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 1.632e+02 1.627e+02 -1.193e-01 1.144e-01 0.905 +++\n", + "+++ 1.632e+02 1.622e+02 -1.193e-01 2.312e-01 1.9 +++\n", + "+++ 1.632e+02 1.625e+02 -1.193e-01 1.728e-01 1.37 +++\n", + "+++ 1.632e+02 1.626e+02 -1.193e-01 1.436e-01 1.13 +++\n", + "+++ 1.632e+02 1.627e+02 -1.193e-01 1.290e-01 1.01 +++\n", + "+++ 1.632e+02 1.627e+02 -1.193e-01 1.217e-01 0.958 +++\n", + "+++ 1.632e+02 1.627e+02 -1.193e-01 1.254e-01 0.985 +++\n", + "+++ 1.632e+02 1.627e+02 -1.193e-01 1.272e-01 0.999 +++\n", + "\t### errors for param 1 ###\n", + "+++ 1.632e+02 1.627e+02 -9.449e-01 -7.407e-01 0.961 +++\n", + "+++ 1.632e+02 1.622e+02 -9.449e-01 -6.386e-01 2.04 +++\n", + "+++ 1.632e+02 1.625e+02 -9.449e-01 -6.897e-01 1.46 +++\n", + "+++ 1.632e+02 1.626e+02 -9.449e-01 -7.152e-01 1.2 +++\n", + "+++ 1.632e+02 1.627e+02 -9.449e-01 -7.279e-01 1.08 +++\n", + "+++ 1.632e+02 1.627e+02 -9.449e-01 -7.343e-01 1.02 +++\n", + "+++ 1.632e+02 1.627e+02 -9.449e-01 -7.375e-01 0.989 +++\n", + "+++ 1.632e+02 1.627e+02 -9.449e-01 -7.359e-01 1 +++\n", + "\t### errors for param 2 ###\n", + "+++ 1.632e+02 1.630e+02 -2.529e+00 -2.369e+00 0.307 +++\n", + "+++ 1.632e+02 1.629e+02 -2.529e+00 -2.289e+00 0.681 +++\n", + "+++ 1.632e+02 1.627e+02 -2.529e+00 -2.249e+00 0.919 +++\n", + "+++ 1.632e+02 1.627e+02 -2.529e+00 -2.229e+00 1.05 +++\n", + "+++ 1.632e+02 1.627e+02 -2.529e+00 -2.239e+00 0.984 +++\n", + "+++ 1.632e+02 1.627e+02 -2.529e+00 -2.234e+00 1.02 +++\n", + "+++ 1.632e+02 1.627e+02 -2.529e+00 -2.236e+00 1 +++\n", + "\t### errors for param 3 ###\n", + "+++ 1.632e+02 1.630e+02 -2.695e+00 -2.567e+00 0.306 +++\n", + "+++ 1.632e+02 1.629e+02 -2.695e+00 -2.504e+00 0.681 +++\n", + "+++ 1.632e+02 1.627e+02 -2.695e+00 -2.472e+00 0.922 +++\n", + "+++ 1.632e+02 1.627e+02 -2.695e+00 -2.456e+00 1.05 +++\n", + "+++ 1.632e+02 1.627e+02 -2.695e+00 -2.464e+00 0.988 +++\n", + "+++ 1.632e+02 1.627e+02 -2.695e+00 -2.460e+00 1.02 +++\n", + "+++ 1.632e+02 1.627e+02 -2.695e+00 -2.462e+00 1 +++\n", + "\t### errors for param 4 ###\n", + "+++ 1.632e+02 1.629e+02 -2.813e+00 -2.614e+00 0.665 +++\n", + "+++ 1.632e+02 1.624e+02 -2.813e+00 -2.515e+00 1.57 +++\n", + "+++ 1.632e+02 1.627e+02 -2.813e+00 -2.565e+00 1.07 +++\n", + "+++ 1.632e+02 1.628e+02 -2.813e+00 -2.590e+00 0.853 +++\n", + "+++ 1.632e+02 1.627e+02 -2.813e+00 -2.577e+00 0.956 +++\n", + "+++ 1.632e+02 1.627e+02 -2.813e+00 -2.571e+00 1.01 +++\n", + "+++ 1.632e+02 1.627e+02 -2.813e+00 -2.574e+00 0.983 +++\n", + "+++ 1.632e+02 1.627e+02 -2.813e+00 -2.573e+00 0.997 +++\n", + "\t### errors for param 5 ###\n", + "+++ 1.632e+02 1.628e+02 -3.096e+00 -2.917e+00 0.837 +++\n", + "+++ 1.632e+02 1.623e+02 -3.096e+00 -2.827e+00 1.87 +++\n", + "+++ 1.632e+02 1.625e+02 -3.096e+00 -2.872e+00 1.29 +++\n", + "+++ 1.632e+02 1.627e+02 -3.096e+00 -2.895e+00 1.06 +++\n", + "+++ 1.632e+02 1.627e+02 -3.096e+00 -2.906e+00 0.947 +++\n", + "+++ 1.632e+02 1.627e+02 -3.096e+00 -2.900e+00 1 +++\n", + "\t### errors for param 6 ###\n", + "+++ 1.632e+02 1.627e+02 -3.327e+00 -3.165e+00 0.992 +++\n", + "\t### errors for param 7 ###\n", + "+++ 1.632e+02 1.631e+02 -3.880e+00 -3.769e+00 0.278 +++\n", + "+++ 1.632e+02 1.629e+02 -3.880e+00 -3.714e+00 0.631 +++\n", + "+++ 1.632e+02 1.628e+02 -3.880e+00 -3.686e+00 0.862 +++\n", + "+++ 1.632e+02 1.627e+02 -3.880e+00 -3.672e+00 0.991 +++\n", + "********************\n", + "-0.119263 -0.944854 -2.52866 -2.69453 -2.81277 -3.09632 -3.32687 -3.87987\n", + "0.246439 0.208948 0.29245 0.232296 0.24017 0.196142 0.161799 0.207668\n", + "********************\n" + ] + } + ], + "source": [ + "p2, p2e = clag.errors(P2, p2, p2e)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 2.664e+02 1.060e+01 inf -- 2.187e+02 -- -0.209329 -0.861493 -2.15962 -2.40847 -2.77148 -3.0939 -3.74416 -6.23993 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1\n", + " 3 2.987e+01 1.264e+01 2.257e+00 -- 2.210e+02 -- -0.16831 -0.824919 -2.12464 -2.39488 -2.7608 -3.0706 -3.74724 -5.93993 0.0804747 0.16472 0.155918 0.19816 0.150032 0.148466 -0.0426696 2.76354\n", + " 5 3.330e+01 1.479e+01 2.062e+00 -- 2.230e+02 -- -0.134691 -0.793404 -2.09481 -2.37915 -2.74942 -3.04926 -3.74185 -6.23993 0.0666414 0.2131 0.199386 0.281712 0.193626 0.185727 -0.170109 -2.41599\n", + " 7 4.032e+02 1.707e+01 1.889e+00 -- 2.249e+02 -- -0.106698 -0.766368 -2.06929 -2.36269 -2.73774 -3.02999 -3.73105 -6.53993 0.0565128 0.250258 0.234434 0.352126 0.231411 0.214451 -0.279352 -0.654819\n", + " 9 1.006e+02 1.948e+01 1.734e+00 -- 2.267e+02 -- -0.0831017 -0.743148 -2.04735 -2.34643 -2.7261 -3.0127 -3.71739 -6.23993 0.0489265 0.27947 0.263536 0.411371 0.264011 0.236678 -0.370557 0.617417\n", + " 11 5.264e+01 2.201e+01 1.603e+00 -- 2.283e+02 -- -0.0630157 -0.723142 -2.02838 -2.33091 -2.71472 -2.99725 -3.70277 -5.93993 0.0431576 0.302888 0.288287 0.46139 0.292059 0.253914 -0.445773 0.691506\n", + " 13 3.251e+00 2.467e+01 1.448e+00 -- 2.297e+02 -- -0.0457823 -0.705838 -2.0119 -2.31642 -2.70374 -2.98344 -3.68838 -5.63993 0.0387303 0.321962 0.309779 0.503862 0.316158 0.267284 -0.507655 -2.9489\n", + " 15 5.697e+00 2.744e+01 1.389e+00 -- 2.311e+02 -- -0.0308979 -0.690819 -1.99751 -2.30307 -2.6933 -2.97112 -3.67473 -5.93993 0.0353185 0.337702 0.32866 0.540271 0.336854 0.27759 -0.559235 -3.12456\n", + " 17 9.962e+01 3.030e+01 1.295e+00 -- 2.324e+02 -- -0.0179753 -0.677732 -1.9849 -2.29088 -2.68339 -2.9601 -3.66228 -6.23993 0.0326949 0.350836 0.34562 0.571642 0.354613 0.285527 -0.602072 1.49229\n", + " 19 8.259e+01 3.325e+01 1.196e+00 -- 2.336e+02 -- -0.00670527 -0.666291 -1.97381 -2.2798 -2.67406 -2.95025 -3.6511 -5.93993 0.0306947 0.361894 0.361049 0.598897 0.369841 0.291591 -0.63793 -0.807155\n", + " 21 5.466e+01 3.625e+01 1.126e+00 -- 2.347e+02 -- 0.00316205 -0.65626 -1.96403 -2.26977 -2.6653 -2.94143 -3.64118 -5.63993 0.0291917 0.371274 0.375204 0.622756 0.382913 0.296138 -0.668602 -0.4239\n", + " 23 9.811e+00 3.926e+01 1.030e+00 -- 2.358e+02 -- 0.0118288 -0.647441 -1.95537 -2.26071 -2.65711 -2.93352 -3.63242 -5.33993 0.0280965 0.379279 0.388328 0.643807 0.394112 0.29949 -0.69488 1.89304\n", + " 24 1.540e+02 1.799e+03 6.966e+00 -- 2.427e+02 -- 0.0881649 -0.569745 -1.87911 -2.17878 -2.58105 -2.86227 -3.55241 -6.66644 0.0206511 0.447973 0.510379 0.832388 0.489337 0.32364 -0.914155 2.17049\n", + " 25 6.954e+03 5.225e+01 3.722e+00 -- 2.464e+02 -- 0.0820074 -0.577455 -1.8985 -2.17524 -2.54532 -2.85023 -3.57378 -8 0.0966827 0.412543 0.647274 0.885367 0.477195 0.280838 -0.833819 0.980251\n", + " 26 6.093e+00 2.044e+01 2.548e-01 -- 2.467e+02 -- 0.0836413 -0.576897 -1.8864 -2.18141 -2.55069 -2.85268 -3.54966 -5 0.0710854 0.434328 0.591545 0.904499 0.417485 0.266475 -0.938934 1.34469\n", + " 27 1.995e+00 5.009e+00 1.592e-01 -- 2.469e+02 -- 0.0831948 -0.576805 -1.88848 -2.17663 -2.54734 -2.85305 -3.5567 -4.22205 0.0761925 0.426631 0.625953 0.910649 0.424127 0.266244 -0.891405 -0.565813\n", + " 28 1.248e+00 1.375e+01 4.599e-02 -- 2.469e+02 -- 0.0833105 -0.576655 -1.88396 -2.17799 -2.5475 -2.85314 -3.57374 -4.03476 0.0730522 0.429262 0.625062 0.905512 0.418149 0.264942 -0.967314 0.563133\n", + " 29 2.171e+00 9.396e+00 3.382e-01 -- 2.472e+02 -- 0.0829995 -0.576375 -1.88776 -2.17599 -2.54493 -2.85329 -3.58608 -4.02931 0.0763743 0.428086 0.638377 0.920493 0.411594 0.274496 -0.815157 -0.139608\n", + " 30 9.841e-01 1.149e+01 1.388e-01 -- 2.474e+02 -- 0.0832295 -0.57636 -1.88467 -2.17976 -2.54698 -2.8543 -3.58978 -3.89975 0.0738415 0.429686 0.629413 0.910992 0.412336 0.271501 -0.957932 0.163421\n", + " 31 2.338e+01 3.752e+00 6.030e-02 -- 2.474e+02 -- 0.0829583 -0.576172 -1.88634 -2.17783 -2.54432 -2.85466 -3.60447 -3.874 0.0761271 0.428633 0.633503 0.910755 0.410289 0.277401 -0.858061 0.00260138\n", + " 32 3.920e-01 3.182e+00 1.581e-02 -- 2.475e+02 -- 0.0830523 -0.576117 -1.88559 -2.18042 -2.54532 -2.85537 -3.60659 -3.85372 0.0749087 0.429912 0.628364 0.908088 0.410987 0.278401 -0.917876 0.0634286\n", + " 33 3.181e-01 1.292e+00 4.081e-03 -- 2.475e+02 -- 0.0829733 -0.576083 -1.88614 -2.17987 -2.54423 -2.85554 -3.60968 -3.84594 0.0757541 0.429324 0.627903 0.906455 0.410964 0.280705 -0.882158 0.0385634\n", + " 34 9.740e-02 4.768e-01 1.118e-03 -- 2.475e+02 -- 0.0830058 -0.576059 -1.88614 -2.18078 -2.54437 -2.85582 -3.61078 -3.84115 0.0755814 0.429797 0.625777 0.906066 0.411713 0.281667 -0.897167 0.0508303\n", + " 35 6.139e-02 4.667e-01 3.378e-04 -- 2.475e+02 -- 0.0829936 -0.576051 -1.88632 -2.18077 -2.54398 -2.85585 -3.61168 -3.83901 0.0759106 0.429622 0.624827 0.905205 0.411841 0.282606 -0.888007 0.0458794\n", + " 36 2.074e-02 6.100e-02 1.146e-04 -- 2.475e+02 -- 0.0830052 -0.576043 -1.8864 -2.18106 -2.54393 -2.85595 -3.61204 -3.83759 0.0759487 0.42976 0.623936 0.905027 0.412248 0.283153 -0.891435 0.0486959\n", + " 37 1.454e-02 1.834e-01 4.331e-05 -- 2.475e+02 -- 0.0830055 -0.57604 -1.88647 -2.18112 -2.54378 -2.85597 -3.61236 -3.83689 0.0760799 0.429719 0.623352 0.904662 0.412343 0.283555 -0.889115 0.047686\n", + "********************\n", + "0.0830055 -0.57604 -1.88647 -2.18112 -2.54378 -2.85597 -3.61236 -3.83689 0.0760799 0.429719 0.623352 0.904662 0.412343 0.283555 -0.889115 0.047686\n", + "0.00496524 0.0080639 0.0332817 0.053869 0.0497847 0.0510814 0.188809 0.22006 0.0806462 0.0938084 0.215752 0.243886 0.211727 0.201233 0.481882 0.380625\n", + "0.183432 0.0383088 -0.0465819 -0.037514 0.0169821 -0.0145299 -0.00365015 0.00975964 0.0073746 0.00371696 -0.00866648 -0.0017458 0.00395749 0.0070437 -0.00320102 0.00463012\n", + "********************\n" + ] + } + ], + "source": [ + "Cx = clag.clag('cxd10r', [[t1,t2]], [[l1,l2]], [[l1e,l2e]], dt, fqL, p1, p2)\n", + "p = np.concatenate( ((p1+p2)*0.5-0.3,p1*0+0.1) ) # a good starting point generally\n", + "p, pe = clag.optimize(Cx, p)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\t### errors for param 0 ###\n", + "+++ 2.475e+02 2.473e+02 8.301e-02 8.549e-02 0.306 +++\n", + "+++ 2.475e+02 2.470e+02 8.301e-02 8.673e-02 0.912 +++\n", + "+++ 2.475e+02 2.467e+02 8.301e-02 8.735e-02 1.46 +++\n", + "+++ 2.475e+02 2.469e+02 8.301e-02 8.704e-02 1.16 +++\n", + "+++ 2.475e+02 2.469e+02 8.301e-02 8.689e-02 1.03 +++\n", + "+++ 2.475e+02 2.470e+02 8.301e-02 8.681e-02 0.969 +++\n", + "+++ 2.475e+02 2.470e+02 8.301e-02 8.685e-02 0.999 +++\n", + "\t### errors for param 1 ###\n", + "+++ 2.475e+02 2.473e+02 -5.760e-01 -5.720e-01 0.399 +++\n", + "+++ 2.475e+02 2.469e+02 -5.760e-01 -5.700e-01 1.13 +++\n", + "+++ 2.475e+02 2.471e+02 -5.760e-01 -5.710e-01 0.698 +++\n", + "+++ 2.475e+02 2.470e+02 -5.760e-01 -5.705e-01 0.897 +++\n", + "+++ 2.475e+02 2.470e+02 -5.760e-01 -5.702e-01 1.01 +++\n", + "\t### errors for param 2 ###\n", + "+++ 2.475e+02 2.473e+02 -1.887e+00 -1.870e+00 0.291 +++\n", + "+++ 2.475e+02 2.470e+02 -1.887e+00 -1.862e+00 0.915 +++\n", + "+++ 2.475e+02 2.467e+02 -1.887e+00 -1.857e+00 1.53 +++\n", + "+++ 2.475e+02 2.469e+02 -1.887e+00 -1.859e+00 1.18 +++\n", + "+++ 2.475e+02 2.469e+02 -1.887e+00 -1.860e+00 1.04 +++\n", + "+++ 2.475e+02 2.470e+02 -1.887e+00 -1.861e+00 0.971 +++\n", + "+++ 2.475e+02 2.470e+02 -1.887e+00 -1.861e+00 1 +++\n", + "\t### errors for param 3 ###\n", + "+++ 2.475e+02 2.473e+02 -2.181e+00 -2.154e+00 0.29 +++\n", + "+++ 2.475e+02 2.471e+02 -2.181e+00 -2.141e+00 0.808 +++\n", + "+++ 2.475e+02 2.468e+02 -2.181e+00 -2.134e+00 1.25 +++\n", + "+++ 2.475e+02 2.470e+02 -2.181e+00 -2.137e+00 1.01 +++\n", + "+++ 2.475e+02 2.470e+02 -2.181e+00 -2.139e+00 0.905 +++\n", + "+++ 2.475e+02 2.470e+02 -2.181e+00 -2.138e+00 0.957 +++\n", + "+++ 2.475e+02 2.470e+02 -2.181e+00 -2.138e+00 0.984 +++\n", + "+++ 2.475e+02 2.470e+02 -2.181e+00 -2.138e+00 0.997 +++\n", + "\t### errors for param 4 ###\n", + "+++ 2.475e+02 2.470e+02 -2.544e+00 -2.494e+00 0.973 +++\n", + "+++ 2.475e+02 2.459e+02 -2.544e+00 -2.469e+00 3.08 +++\n", + "+++ 2.475e+02 2.466e+02 -2.544e+00 -2.482e+00 1.78 +++\n", + "+++ 2.475e+02 2.468e+02 -2.544e+00 -2.488e+00 1.32 +++\n", + "+++ 2.475e+02 2.469e+02 -2.544e+00 -2.491e+00 1.14 +++\n", + "+++ 2.475e+02 2.469e+02 -2.544e+00 -2.492e+00 1.05 +++\n", + "+++ 2.475e+02 2.470e+02 -2.544e+00 -2.493e+00 1.01 +++\n", + "+++ 2.475e+02 2.470e+02 -2.544e+00 -2.494e+00 0.993 +++\n", + "\t### errors for param 5 ###\n", + "+++ 2.475e+02 2.473e+02 -2.856e+00 -2.830e+00 0.277 +++\n", + "+++ 2.475e+02 2.471e+02 -2.856e+00 -2.818e+00 0.713 +++\n", + "+++ 2.475e+02 2.469e+02 -2.856e+00 -2.811e+00 1.04 +++\n", + "+++ 2.475e+02 2.470e+02 -2.856e+00 -2.814e+00 0.867 +++\n", + "+++ 2.475e+02 2.470e+02 -2.856e+00 -2.813e+00 0.953 +++\n", + "+++ 2.475e+02 2.470e+02 -2.856e+00 -2.812e+00 0.993 +++\n", + "\t### errors for param 6 ###\n", + "+++ 2.475e+02 2.473e+02 -3.612e+00 -3.518e+00 0.392 +++\n", + "+++ 2.475e+02 2.469e+02 -3.612e+00 -3.471e+00 1.06 +++\n", + "+++ 2.475e+02 2.471e+02 -3.612e+00 -3.494e+00 0.67 +++\n", + "+++ 2.475e+02 2.470e+02 -3.612e+00 -3.483e+00 0.845 +++\n", + "+++ 2.475e+02 2.470e+02 -3.612e+00 -3.477e+00 0.947 +++\n", + "+++ 2.475e+02 2.470e+02 -3.612e+00 -3.474e+00 1 +++\n", + "\t### errors for param 7 ###\n", + "+++ 2.475e+02 2.474e+02 -3.836e+00 -3.727e+00 0.218 +++\n", + "+++ 2.475e+02 2.471e+02 -3.836e+00 -3.672e+00 0.684 +++\n", + "+++ 2.475e+02 2.469e+02 -3.836e+00 -3.644e+00 1.16 +++\n", + "+++ 2.475e+02 2.470e+02 -3.836e+00 -3.658e+00 0.894 +++\n", + "+++ 2.475e+02 2.470e+02 -3.836e+00 -3.651e+00 1.02 +++\n", + "+++ 2.475e+02 2.470e+02 -3.836e+00 -3.654e+00 0.955 +++\n", + "+++ 2.475e+02 2.470e+02 -3.836e+00 -3.653e+00 0.988 +++\n", + "+++ 2.475e+02 2.470e+02 -3.836e+00 -3.652e+00 1 +++\n", + "\t### errors for param 8 ###\n", + "+++ 2.475e+02 2.470e+02 7.613e-02 1.568e-01 0.869 +++\n", + "+++ 2.475e+02 2.465e+02 7.613e-02 1.971e-01 1.9 +++\n", + "+++ 2.475e+02 2.468e+02 7.613e-02 1.769e-01 1.35 +++\n", + "+++ 2.475e+02 2.469e+02 7.613e-02 1.668e-01 1.1 +++\n", + "+++ 2.475e+02 2.470e+02 7.613e-02 1.618e-01 0.98 +++\n", + "+++ 2.475e+02 2.469e+02 7.613e-02 1.643e-01 1.04 +++\n", + "+++ 2.475e+02 2.470e+02 7.613e-02 1.630e-01 1.01 +++\n", + "\t### errors for param 9 ###\n", + "+++ 2.475e+02 2.473e+02 4.298e-01 4.767e-01 0.29 +++\n", + "+++ 2.475e+02 2.471e+02 4.298e-01 5.001e-01 0.641 +++\n", + "+++ 2.475e+02 2.470e+02 4.298e-01 5.118e-01 0.863 +++\n", + "+++ 2.475e+02 2.470e+02 4.298e-01 5.177e-01 0.985 +++\n", + "+++ 2.475e+02 2.469e+02 4.298e-01 5.206e-01 1.05 +++\n", + "+++ 2.475e+02 2.470e+02 4.298e-01 5.192e-01 1.02 +++\n", + "+++ 2.475e+02 2.470e+02 4.298e-01 5.184e-01 1 +++\n", + "\t### errors for param 10 ###\n", + "+++ 2.475e+02 2.471e+02 6.230e-01 8.388e-01 0.802 +++\n", + "+++ 2.475e+02 2.466e+02 6.230e-01 9.467e-01 1.77 +++\n", + "+++ 2.475e+02 2.468e+02 6.230e-01 8.928e-01 1.25 +++\n", + "+++ 2.475e+02 2.470e+02 6.230e-01 8.658e-01 1.02 +++\n", + "+++ 2.475e+02 2.470e+02 6.230e-01 8.523e-01 0.906 +++\n", + "+++ 2.475e+02 2.470e+02 6.230e-01 8.591e-01 0.96 +++\n", + "+++ 2.475e+02 2.470e+02 6.230e-01 8.624e-01 0.988 +++\n", + "+++ 2.475e+02 2.470e+02 6.230e-01 8.641e-01 1 +++\n", + "\t### errors for param 11 ###\n", + "+++ 2.475e+02 2.470e+02 9.046e-01 1.149e+00 0.88 +++\n", + "+++ 2.475e+02 2.465e+02 9.046e-01 1.271e+00 1.88 +++\n", + "+++ 2.475e+02 2.468e+02 9.046e-01 1.210e+00 1.35 +++\n", + "+++ 2.475e+02 2.469e+02 9.046e-01 1.179e+00 1.1 +++\n", + "+++ 2.475e+02 2.470e+02 9.046e-01 1.164e+00 0.989 +++\n", + "+++ 2.475e+02 2.469e+02 9.046e-01 1.171e+00 1.05 +++\n", + "+++ 2.475e+02 2.470e+02 9.046e-01 1.168e+00 1.02 +++\n", + "+++ 2.475e+02 2.470e+02 9.046e-01 1.166e+00 1 +++\n", + "\t### errors for param 12 ###\n", + "+++ 2.475e+02 2.471e+02 4.125e-01 6.242e-01 0.737 +++\n", + "+++ 2.475e+02 2.467e+02 4.125e-01 7.300e-01 1.59 +++\n", + "+++ 2.475e+02 2.469e+02 4.125e-01 6.771e-01 1.13 +++\n", + "+++ 2.475e+02 2.470e+02 4.125e-01 6.507e-01 0.924 +++\n", + "+++ 2.475e+02 2.469e+02 4.125e-01 6.639e-01 1.02 +++\n", + "+++ 2.475e+02 2.470e+02 4.125e-01 6.573e-01 0.974 +++\n", + "+++ 2.475e+02 2.470e+02 4.125e-01 6.606e-01 0.999 +++\n", + "\t### errors for param 13 ###\n", + "+++ 2.475e+02 2.470e+02 2.838e-01 4.851e-01 0.854 +++\n", + "+++ 2.475e+02 2.465e+02 2.838e-01 5.857e-01 1.84 +++\n", + "+++ 2.475e+02 2.468e+02 2.838e-01 5.354e-01 1.31 +++\n", + "+++ 2.475e+02 2.469e+02 2.838e-01 5.103e-01 1.07 +++\n", + "+++ 2.475e+02 2.470e+02 2.838e-01 4.977e-01 0.96 +++\n", + "+++ 2.475e+02 2.470e+02 2.838e-01 5.040e-01 1.01 +++\n", + "+++ 2.475e+02 2.470e+02 2.838e-01 5.008e-01 0.987 +++\n", + "+++ 2.475e+02 2.470e+02 2.838e-01 5.024e-01 1 +++\n", + "\t### errors for param 14 ###\n", + "+++ 2.475e+02 2.470e+02 -8.899e-01 -4.078e-01 0.957 +++\n", + "+++ 2.475e+02 2.465e+02 -8.899e-01 -1.668e-01 1.91 +++\n", + "+++ 2.475e+02 2.468e+02 -8.899e-01 -2.873e-01 1.41 +++\n", + "+++ 2.475e+02 2.469e+02 -8.899e-01 -3.476e-01 1.18 +++\n", + "+++ 2.475e+02 2.469e+02 -8.899e-01 -3.777e-01 1.07 +++\n", + "+++ 2.475e+02 2.470e+02 -8.899e-01 -3.928e-01 1.01 +++\n", + "+++ 2.475e+02 2.470e+02 -8.899e-01 -4.003e-01 0.984 +++\n", + "+++ 2.475e+02 2.470e+02 -8.899e-01 -3.965e-01 0.998 +++\n", + "\t### errors for param 15 ###\n", + "+++ 2.475e+02 2.471e+02 4.838e-02 4.285e-01 0.661 +++\n", + "+++ 2.475e+02 2.470e+02 4.838e-02 6.186e-01 0.961 +++\n", + "+++ 2.475e+02 2.469e+02 4.838e-02 7.136e-01 1.07 +++\n", + "+++ 2.475e+02 2.470e+02 4.838e-02 6.661e-01 1.02 +++\n", + "+++ 2.475e+02 2.470e+02 4.838e-02 6.424e-01 0.991 +++\n", + "********************\n", + "0.0830101 -0.576037 -1.88651 -2.18123 -2.54372 -2.856 -3.61248 -3.8364 0.0761257 0.429759 0.622953 0.90456 0.412522 0.283831 -0.889856 0.0483793\n", + "0.00383825 0.00579502 0.025767 0.0436043 0.050153 0.0439107 0.138708 0.1845 0.086924 0.0886716 0.241158 0.261188 0.248061 0.218563 0.493323 0.593987\n", + "********************\n" + ] + } + ], + "source": [ + "p, pe = clag.errors(Cx, p, pe)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "phi, phie = p[nfq:], pe[nfq:]\n", + "lag, lage = phi/(2*np.pi*fqd), phie/(2*np.pi*fqd) \n", + "cx, cxe = p[:nfq], pe[:nfq]" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAFrCAYAAACE+GArAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAFitJREFUeJzt3W9sXed9H/CvYslxG69V/jSknMVRotalEnj1yCiqo8CV\nO8foi8oZMMM1gRir7dVGrTbQVrgtUpj1LLsDgq1R0NkrtMZp06DXbosUibFpS19I6eY/mkp6XSRL\nSatYnmrp0nEcpY1Sx0rsvTjkQpGUxPvw3nvu5f18gAtenvvcc36UHpJfPuc5z0kAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAYMW4JsljSZ5P8mqSDy3S5t6Z17+dZG+Sd3erOABg+V7XwX3/YJKnk2yf+fy1\nea//WpIdM69vStJM8udJLu1gTQBAH3o1yQ1zPl+V5GSSu+dsuzjJN5Lc0cW6AIBl6OSIxPm8M8lQ\nki/M2fZKki8meX8tFQEALasrSAzPfJyet/2FOa8BAD1udd0FLGL+XIpZ62YeAEBrTs482q6uINGc\n+Tg05/lin89ad9lll504ceJExwsDgBXo+VQXNrQ9TNQVJJ5NFRiuT/JXM9suTvJTOXsC5qx1J06c\nyGc+85ls3LixSyW2z44dO7Jr166+PNZy9tfqe5fafintLtTmfK938/+r3fS19rbX185NX2tv+072\ntcOHD+fDH/7w21KN6vdVkHhDkh+b8/m7klyV5OtJjifZleSjSf46yd/MPP9Wkj861w43btyY0dHR\nTtXbMWvXru1a3e0+1nL21+p7l9p+Ke0u1OZ8r3fz/6vd9LX2ttfXzk1fa2/7Tve1Trqog/vekuSJ\nJHemmvfwMzPP35jkc0keT3JJkt9M8pEk30wynmSx8xfrktx55513Zt26/pwmceWVV/btsZazv1bf\nu9T2S2l3oTbner3RaGR8fHxJdfQifa297fW1c9PX2tu+U33t5MmT2b17d5LsTgdGJFa1e4cdMppk\ncnJysm/TO/3jhhtuyOc///m6y2AA6Gt0w9TUVMbGxpJkLMlUu/df1+WfAMAKIEjAPP081Ex/0ddY\nCQQJmMcPd7pFX2MlECQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQA\nUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADF\nBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQ\nAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkA\noJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACK\nCRIAQDFBAgAoJkgAAMUECQCgWJ1B4t4kr857nKixHgCgRatrPv7BJNfN+fx7dRUCALSu7iDxvSQv\n1FwDAFCo7jkSP5bk+SRfTdJI8s56ywEAWlFnkHgqyS1Jrk/yC0mGkzyR5E011gQAtKDOUxv/bc7z\nQ0meTHI0yb9M8vFaKgIAWlL3HIm5vp3kS0l+9FwNduzYkbVr1561bXx8POPj4x0uDQB6X6PRSKPR\nOGvbqVOnOnrMVR3de2ten2pE4neT3D/vtdEkk5OTkxkdHe16YQDQr6ampjI2NpYkY0mm2r3/OudI\n/Psk16SaYLk5yZ8muTTJH9RYEwDQgjpPbbwt1ZUab0nytVRzJH4yyfEaawIAWlBnkDCxAQD6XN3r\nSAAAfUyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZI\nAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQA\nUEyQAACKCRIAQDFBAgAoJkgAAMUECeC8Go3kuuuO5fLL786ll27LxRdvy6WXbsvll9+d6647lkaj\n7gqBOq2uuwCgd01PT2f37h05cmRNms3tSTYnSc6cSU6f3p8zZyaye/eZ/PRP78rQ0FC9xQK1ECQY\nWI1G/v9f0y+/nDz3XPKOdySXXFJtGx+vHoNqeno673//eL761f+Y5N2LtNicZnNzms1nsmXLeB5/\nvCFMwAASJBhYc4PC1FQyNlYFi9HReuvqFTffvOM8IWKud+fo0d/JzTfvyN69znPAoDFHAljg2Wef\nzZEja3LhEDHrPTlyZHWOHTvWwaqAXiRIAAvs3PnQzJyIpWs2t+e++x7qUEVAr3JqA1jgwIEjmZ1Y\nuXSbc+DAA50opyXmvkB3CRLAAmfOlLxrVeH72svcF+gupzaABdasKXnXa4XvA/qZIAEssGnTSJL9\nLb5rf973vo2dKKdlx44dy2233Z2bbtqWZFtuumlbbrvtbpNBoQOc2gAWmJjYnj17JtJsLn2exPDw\ng7nnnp0drOrCpqenc/PNCxfQOno0OXp0f/bsmcjIyJk88ogFtKBdBAlggfXr12dk5EyazWeytEtA\nD2Vk5LtZv359hys7t7oX0Go0kk9+8li+8pUH89JLR/LKK8nFFydvetNIrrhie26/fb1JnqxITm0A\ni3rkkV3ZsOGXkhy6QMtD2bDhl/Poo5/oRlnnVLKAVrtUS4mP59ChiRw/fmNOn34sZ848ltOnH8vx\n4zfm0KGJ7N49nunp6bYdE3qFEQlgUUNDQ3n88cbMqYLVc04VrEryWpL9GR5+MCMj382jjz6St771\nrbXVupwFtJY7ilL3SAjUzYgEcE5DQ0PZu7eRJ5/cmVtv/Ww2bLghybZs2HBDbr31s3nyyZ3Zu7dR\na4hI6l1Aq86REOgFRiSA86oWeFqf5GN517uSiy6qFnh68cXkIx/pjQWe6lpAq86REOgVggRwXr0Q\nFC6krgW0ljMS8vDDH1vewaFHOLXBQLPewMpQ1wJa5SMhh5d3YOghRiQYSNYbWFk2bRrJwYP709ov\n9eUvoNXPS4lDuxiRYODMzrLft++eNJufzsJfPpvTbH46+/bdky1bXLLXDyYmtmd4+MGW3lMtoHXX\nso5rKXEQJBhAZtmvPLMLaCXPLPEd7VlAq9+XEod2ECQYKMuZZU9vq2MBrbpGQqCXCBIMlDrXG6Cz\nZhfQ2rr1/gwP35LkqVQLZ2Xm41MZHr4lW7fenyeeaM8CWnWNhEAvESQYKGbZr2x1LKDVb0uJQ7u5\naoOBYpb9YFi/fn0efvhjmZpKxsaSP/7jZHS0M8fqp6XEoRMECQaKWfZ0wtDQUO64o5FPfvJY1qx5\nKC+99MCcu39uzBVX7Mztt6+PDMFKJEgwUOpab4CVr1oBdH0SK1YyWAQJBsrExPbs2TORZnPpQaKa\nZb+zg1XRTtW9QarnL7+cXHFF8uu/nlxySbWtH5b8hn4iSDBQZmfZN5vPZGmXgJpl328EBeguV20w\ncMyyZyWZvV/MlVduy8jItlx5pfvF0F1GJBg4ZtmzEpzrfjFJcvCg+8XQPYIEA2l2vYFjx47lvvse\nyl/8xQM5ejTZsCG55pqNmZjY6XQGPWv2fjHnXup9c5rNzWk2n8mWLeN5/PGGMEHHCBIMtG6uNwDt\nUnK/mL17G90ojQFkjgRAH+mV+8WYm8EsIxIAfWQ594t5+OHlr3FhbgbzCRIAfaT8fjEPLPvY5maw\nGKc2APpInfeLKZmbwconSAD0kbruF9MrczPqYD7I+fVCkLgrybNJ/iHJXyb5QL3lAPSuTZtGkuxv\n8V3Lv1/McuZm9Kvp6elce+14rr56Ip/61I05ePCxfPnLj+XgwcfyqU/dmKuvnsi1145nenq67lJr\nVXeQ+LkkH0+yM8lVSf5Hkj1J3l5nUQC9amJie4aHH2zpPdX9Yu5a1nHL52YcXtZx6zI7H2TfvnvS\nbH46C7/2zWk2P519++7Jli2DHSbqDhL/JsnvJXk4yZeT/Oskx5P8Yp1FAfSq2fvFJM8s8R3tuV9M\nnXMz6mA+yNLVGSQuTjKa5Avztn8hyfu7Xw5Af6jjfjF1zc2owyDPBylRZ5B4S5KLkswfD3ohyXD3\nywHoD7P3i9m69f4MD9+S5KlU94nJzMenMjx8S7ZuvT9PPNGe+8XUNTejDoM4H2Q5rCMB0Ifm3y/m\nwIEHcuZMNXKwaVP77xczMbE9e/ZMpNlc+jyJam7GzrbV0C11rtXRj+oMEi8m+V6S+auVDCU5udgb\nduzYkbVr1561bXx8POPj4x0pEKDXzd4vphvHGRk5k2bzmSxtyL89czPmqkLTgzlw4Mic0DSSiYnt\nbT1OP88HaTQaaTTOvq/KqVOnOnrMOoPEK0kmk1yf5HNztn8wyZ8t9oZdu3Zl1B2VAGrxyCO7smXL\neI4e/Z0k7zlPy9m5GY+05bjdXpa7n+eDLPbH9dTUVMbGxjp2zLpPbfx2kj9MtX7EU0nuSPKPk/xu\nnUUBsNDs3Izql/rqOb/UV6Wam7E/w8MPZmTku3n00fbMzahjWe5Nm0Zy8OD+tHZ6oz/ng7TDqroL\nSHWp568mWZfkS6kuAf2f89qMJpmcnJw0IkHbNBrVI0lefjl57rnkHe9ILrmk2jY+Xj2Ahb4/N+Pw\nvLkZd7X1NMO111ZrOSz1dMrWrfcv+5bpx44dy9VXT8ysH7E0w8O35Mkn2zsvpV3mjEiMJZlq9/7r\nHpFIkv8084CuEhSgXDfmZiznMszl/ELvhfkg/aTuBakAYFF1XoZZx1od/UqQAKAn1bksdx1rdfSr\nXji1AQAL1H0ZZrfX6uhXggQAPalXLsPs1lod/cqpDQB60iAty93PBAkAelJdt0ynNYIEAD2prlum\n0xpBAoCe5TLM3idIANCzXIbZ+1y1AUBPcxlmbxMkAOgLLsPsTU5tAADFBAkAoJggAQAUEyQAgGKC\nBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgA\nAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQ\nTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUE\nCQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAA\nAIoJEgBAMUECAChWZ5A4luTVeY/fqrEeAKBFq2s89mtJ7knyn+dsO11TLQBAgTqDRJJ8K8kLNdcA\nABSqe47EryV5McnTST6aZE295QAArahzROITSSaTfCPJ5iT/Lsk7k/xCjTUBAC1od5C4N8nEBdq8\nN8lUkl1zth1MFSj+NMmvzjxfYMeOHVm7du1Z28bHxzM+Pl5YLgCsHI1GI41G46xtp06d6ugxV7V5\nf2+eeZzPc0m+s8j2tyU5nmp04sC810aTTE5OTmZ0dHTZRQLAoJiamsrY2FiSjKX6Q76t2j0i8fWZ\nR4l/OvPxZJtqAQA6rK45Ej+Z5Ooke5N8M8mmJL+d5HNJ/rammgCAFtUVJL6T5KZU8ylen+p0x+4k\nH6upHgCgQF1B4ulUIxIAQB+rex0JAKCPCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBM\nkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJ\nAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAA\nigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCY\nIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkS\nAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAsU4Fid9I8kSSbyf5xjnaXJ7k\nsSTfSvK1JJ9IsqZD9cCSNRqNuktgQOhrrASdChJrkjya5KFzvH5Rkv+S5AeSbElyc5J/keQ/dKge\nWDI/3OkWfY2VYHWH9nvvzMefP8fr1yfZmOSDSZoz234lye8n+WiqUQoAoMfVNUfi6iRfyvdDRJJ8\nIcnrk4zVUlEHdfOvjnYfazn7a/W9S22/lHYXarNS/xLU19rbXl87N32tve37ua/VFSSGk0zP2/aN\nJK/MvLai+IZrb/t+/obrNH2tve31tXPT19rbvp/7WiunNu5NMnGBNu9NMrXE/a1q4dhJksOHD7f6\nlp5w6tSpTE0t9Z+lt461nP21+t6ltl9Kuwu1Od/r3fz/ajd9rb3t9bVz09fa276Tfa3Tvztb+WX+\n5pnH+TyX5DtzPv/5JB9P8sZ57f5tkg8luWrOtjcm+XqSa5N8cV77dUkOJHlbC/UCAJXnk2xKcrLd\nO25lROLrM492eDLVJaJD+f4pjutThZDJRdqfTPUPsK5NxweAQXIyHQgRnXR5qtGGiSR/l+QnZj5/\nw8zrr0vyf5L8+cz2f5bk/6ZaSwIAGHC/n+TVmcf35ny8Zk6bt6dakOp0kheT7IoFqQAAAAAAAAAA\nLuQfJflfSZ5OcjDJL9VbDivY25PsS3IoyV8lubHWaljp/izJS0n+pO5CWLF+NsmRJF9JcnvNtdTq\ndUkumXn+A0m+muRH6iuHFWw4yT+Zef4jSY6n6nPQCT+V6ge9IEEnrE7y5VTLK1yaKky8qZUd1LVE\ndie8muTlmec/mOTMnM+hnZqpLl9Okq+l+muxpW88aMEX40aGdM77Uo2unkzVz/5rqnWdlmwlBYkk\n+eFUQ82za1L8fb3lMADem2qF2OfrLgSgwGU5++fX36bFVaRXWpD4ZqrFr96ZZHuSH623HFa4Nyf5\ngyR31F0IQKHXlruDOoPENakWpHo+1WmJDy3S5q4kzyb5hyR/meQDc1775VQTK6eycCGrF1JNhrsq\n0Jm+9vokn03yW0me6kjV9KNO/Vxb9g97Vqzl9rkTOXsE4u3poxHWn0lyX5J/nuqLv2He6z+X6t4b\ntyX58VQ3//r7VF/kYt6a5Idmnv9QqnPYP97ekulT7e5rq5I0kvxmJ4qlr7W7r83aGpMtWdxy+9zq\nVBMsL0t19eNXsvBGm31hsS9+f5IH5217JtVfgIsZTZXk//fM49Z2FsiK0Y6+9oFUS75PpepzTyd5\nTxtrZGVoR19Lkv+eapT1dKorhMbaVSArTmmf25bqyo2/TvKvOlZdh83/4i9OddXF/CGaXalOWUAp\nfY1u0dfotlr6XK9OtnxLkovy/VuMz3oh1TX80C76Gt2ir9FtXelzvRokAIA+0KtB4sVU56CH5m0f\nSrVoBrSLvka36Gt0W1f6XK8GiVeSTGbh6lofTPJE98thBdPX6BZ9jW5b8X3uDanWebgq1QSRHTPP\nZy9JuSnVJSu3JtmY6pKVv8uFL5OC+fQ1ukVfo9sGus9tTfVFv5pq6GX2+cNz2vxiqkU0Xk5yIGcv\nogFLtTX6Gt2xNfoa3bU1+hwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9Kj/B9TGynPkrh4w\nAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "\n", + "xscale('log'); ylim(-10,10)\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=10)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1.43381244, 0.4889989 , 0.68917289, 0.48155621, 0.29506678,\n", + " 0.16772896, 0.24424756, 0.18973346])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lage" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lag/data/lc/1158A.lc b/lag/data/lc/1158A.lc new file mode 100644 index 0000000..d831d22 --- /dev/null +++ b/lag/data/lc/1158A.lc @@ -0,0 +1,170 @@ +56691.54 3.48 0.092 +56692.39 3.75 0.095 +56693.32 3.91 0.098 +56695.27 4.11 0.099 +56696.25 4.59 0.105 +56697.31 4.87 0.108 +56698.30 5.25 0.113 +56699.23 4.93 0.11 +56700.23 4.83 0.108 +56701.36 4.9 0.108 +56702.16 5.11 0.111 +56703.15 5.28 0.113 +56705.34 4.9 0.109 +56706.21 4.68 0.106 +56707.20 4.92 0.108 +56708.26 4.34 0.102 +56709.26 4.07 0.099 +56710.26 3.51 0.092 +56711.12 3.1 0.088 +56712.18 3.27 0.09 +56713.18 3.24 0.089 +56714.24 3.15 0.088 +56715.04 2.83 0.084 +56715.90 2.75 0.083 +56716.84 2.52 0.081 +56718.83 2.32 0.077 +56720.15 2.15 0.076 +56721.02 1.94 0.073 +56722.09 1.87 0.072 +56723.14 1.78 0.072 +56726.06 2.05 0.074 +56727.06 1.82 0.071 +56727.79 1.94 0.073 +56728.92 1.98 0.074 +56729.78 2.12 0.075 +56730.85 2.11 0.075 +56731.97 2.07 0.075 +56732.91 2.02 0.074 +56733.85 2.21 0.076 +56734.84 2.54 0.081 +56735.85 3.2 0.089 +56736.44 3.69 0.094 +56737.69 3.85 0.096 +56738.50 4.02 0.098 +56739.68 4.63 0.105 +56740.36 5 0.111 +56741.35 4.64 0.106 +56744.40 5.9 0.12 +56745.25 5.77 0.119 +56746.25 5.71 0.118 +56747.18 5.98 0.121 +56748.24 6.01 0.121 +56749.17 5.59 0.116 +56750.30 5.34 0.113 +56751.16 5.05 0.11 +56752.02 4.98 0.11 +56753.02 3.93 0.097 +56753.97 3.28 0.089 +56755.21 3.2 0.089 +56756.14 3.34 0.09 +56757.14 3.48 0.092 +56759.26 3.3 0.09 +56760.12 3.4 0.091 +56761.05 3.76 0.096 +56762.12 3.84 0.096 +56763.05 3.94 0.097 +56764.24 4 0.099 +56765.17 3.7 0.095 +56765.97 3.89 0.097 +56767.03 4.12 0.099 +56768.09 4.31 0.102 +56769.15 4.92 0.109 +56770.08 5.12 0.112 +56771.08 5.29 0.113 +56772.01 5.67 0.117 +56773.07 5.57 0.116 +56774.0 5.49 0.115 +56774.60 5.57 0.116 +56775.59 5.29 0.114 +56776.72 4.81 0.108 +56777.45 5.08 0.11 +56778.46 4.73 0.107 +56779.44 4.72 0.107 +56780.46 4.68 0.106 +56781.36 4.54 0.105 +56782.37 4.24 0.101 +56783.36 4.91 0.108 +56784.76 5.57 0.116 +56785.75 6 0.121 +56786.69 5.5 0.115 +56787.29 5.33 0.114 +56788.28 5.22 0.112 +56789.28 4.65 0.105 +56790.27 4.27 0.101 +56791.27 4.22 0.101 +56792.27 4.95 0.109 +56793.20 5.05 0.111 +56794.19 4.79 0.107 +56795.25 4.49 0.103 +56796.11 4.51 0.104 +56797.08 5.21 0.112 +56798.11 5.04 0.11 +56799.16 4.9 0.109 +56800.02 5.03 0.11 +56801.03 4.96 0.109 +56802.02 4.91 0.109 +56803.01 4.86 0.108 +56805.0 4.52 0.105 +56805.99 4.54 0.104 +56807.12 4.43 0.103 +56808.05 4.61 0.105 +56809.11 4.78 0.107 +56809.91 4.66 0.106 +56810.84 4.53 0.105 +56812.03 4.95 0.109 +56812.96 5.14 0.111 +56814.09 5.21 0.112 +56814.89 5.57 0.116 +56816.08 5.72 0.118 +56816.94 6.2 0.124 +56817.93 6.86 0.131 +56818.93 7.25 0.134 +56819.74 7.14 0.134 +56820.99 6.75 0.129 +56821.85 6.44 0.126 +56822.79 6.06 0.122 +56823.85 5.98 0.12 +56824.64 5.81 0.118 +56825.65 5.39 0.114 +56826.90 4.4 0.103 +56827.77 4.38 0.103 +56828.49 4.23 0.102 +56829.62 3.86 0.096 +56830.48 3.89 0.096 +56831.68 4.28 0.101 +56832.27 4.33 0.102 +56833.80 4.92 0.109 +56834.80 5.03 0.111 +56835.79 4.52 0.104 +56836.21 4.55 0.104 +56837.65 4.59 0.105 +56838.18 4.53 0.104 +56839.20 4.65 0.106 +56840.13 4.79 0.108 +56841.19 4.51 0.104 +56842.19 4.54 0.104 +56843.12 4.31 0.102 +56844.18 3.97 0.098 +56845.02 3.98 0.098 +56846.11 4.02 0.099 +56847.04 3.82 0.096 +56848.03 3.79 0.095 +56849.09 3.71 0.095 +56850.0 3.31 0.09 +56850.93 3.16 0.088 +56851.92 3.16 0.089 +56852.92 3.28 0.09 +56854.05 3.07 0.087 +56855.05 3.32 0.09 +56856.17 3.75 0.095 +56857.17 4.38 0.103 +56858.09 4.75 0.108 +56858.89 4.4 0.102 +56860.08 4.14 0.1 +56860.95 4.1 0.1 +56861.81 3.84 0.096 +56862.87 3.7 0.095 +56863.87 4.18 0.101 +56864.86 4.32 0.102 +56865.92 5.06 0.11 diff --git a/lag/data/lc/1367A.lc b/lag/data/lc/1367A.lc new file mode 100644 index 0000000..eec3226 --- /dev/null +++ b/lag/data/lc/1367A.lc @@ -0,0 +1,170 @@ +56691.54 3.545 0.065 +56692.39 3.771 0.067 +56693.32 3.814 0.068 +56695.27 4.094 0.071 +56696.25 4.425 0.075 +56697.31 4.53 0.075 +56698.30 4.827 0.079 +56699.23 4.58 0.076 +56700.23 4.6 0.076 +56701.36 4.746 0.078 +56702.16 4.774 0.078 +56703.15 4.756 0.078 +56705.34 4.577 0.076 +56706.21 4.47 0.075 +56707.20 4.665 0.077 +56708.26 4.324 0.074 +56709.26 4.143 0.071 +56710.26 3.769 0.068 +56711.12 3.522 0.065 +56712.18 3.476 0.064 +56713.18 3.518 0.065 +56714.24 3.445 0.064 +56715.04 3.146 0.061 +56715.90 3.058 0.06 +56716.84 2.964 0.059 +56718.83 2.675 0.056 +56720.15 2.601 0.055 +56721.02 2.376 0.053 +56722.09 2.225 0.051 +56723.14 2.187 0.051 +56726.06 2.296 0.052 +56727.06 2.272 0.051 +56727.79 2.307 0.052 +56728.92 2.391 0.053 +56729.78 2.454 0.054 +56730.85 2.422 0.053 +56731.97 2.469 0.054 +56732.91 2.439 0.053 +56733.85 2.494 0.054 +56734.84 2.763 0.057 +56735.85 3.243 0.062 +56736.44 3.578 0.065 +56737.69 3.788 0.068 +56738.50 3.991 0.07 +56739.68 4.246 0.073 +56740.36 4.544 0.076 +56741.35 4.523 0.076 +56744.40 5.435 0.085 +56745.25 5.479 0.086 +56746.25 5.254 0.084 +56747.18 5.659 0.088 +56748.24 5.497 0.086 +56749.17 5.283 0.084 +56750.30 5.155 0.082 +56751.16 4.937 0.08 +56752.02 4.672 0.077 +56753.02 4.089 0.071 +56753.97 3.619 0.066 +56755.21 3.446 0.064 +56756.14 3.546 0.065 +56757.14 3.726 0.067 +56759.26 3.586 0.066 +56760.12 3.568 0.065 +56761.05 3.888 0.069 +56762.12 3.911 0.069 +56763.05 3.932 0.069 +56764.24 4.043 0.071 +56765.17 3.83 0.068 +56765.97 3.949 0.069 +56767.03 4.083 0.071 +56768.09 4.142 0.072 +56769.15 4.528 0.076 +56770.08 4.851 0.079 +56771.08 4.979 0.081 +56772.01 4.965 0.08 +56773.07 5.055 0.082 +56774.0 5.102 0.082 +56774.60 5.004 0.081 +56775.59 5.033 0.081 +56776.72 4.596 0.077 +56777.45 4.632 0.077 +56778.46 4.545 0.076 +56779.44 4.431 0.075 +56780.46 4.556 0.076 +56781.36 4.353 0.074 +56782.37 4.135 0.072 +56783.36 4.528 0.076 +56784.76 5.118 0.082 +56785.75 5.355 0.085 +56786.69 5.037 0.081 +56787.29 4.937 0.08 +56788.28 4.882 0.08 +56789.28 4.609 0.076 +56790.27 4.335 0.074 +56791.27 4.289 0.073 +56792.27 4.553 0.076 +56793.20 4.741 0.078 +56794.19 4.643 0.077 +56795.25 4.364 0.074 +56796.11 4.423 0.075 +56797.08 4.936 0.08 +56798.11 4.948 0.08 +56799.16 4.692 0.078 +56800.02 4.622 0.077 +56801.03 4.809 0.079 +56802.02 4.633 0.077 +56803.01 4.794 0.079 +56805.0 4.473 0.075 +56805.99 4.346 0.074 +56807.12 4.345 0.074 +56808.05 4.478 0.075 +56809.11 4.707 0.078 +56809.91 4.573 0.076 +56810.84 4.465 0.075 +56812.03 4.719 0.078 +56812.96 4.809 0.079 +56814.09 5.004 0.081 +56814.89 5.324 0.084 +56816.08 5.486 0.086 +56816.94 5.576 0.087 +56817.93 6.186 0.094 +56818.93 6.474 0.097 +56819.74 6.463 0.097 +56820.99 6.206 0.094 +56821.85 5.888 0.091 +56822.79 5.736 0.089 +56823.85 5.553 0.087 +56824.64 5.425 0.085 +56825.65 5.133 0.083 +56826.90 4.588 0.077 +56827.77 4.371 0.074 +56828.49 4.394 0.075 +56829.62 4.204 0.073 +56830.48 4.11 0.071 +56831.68 4.171 0.072 +56832.27 4.38 0.074 +56833.80 4.765 0.079 +56834.80 4.738 0.078 +56835.79 4.455 0.075 +56836.21 4.434 0.075 +56837.65 4.431 0.075 +56838.18 4.449 0.075 +56839.20 4.45 0.075 +56840.13 4.52 0.076 +56841.19 4.442 0.075 +56842.19 4.469 0.075 +56843.12 4.231 0.073 +56844.18 4.082 0.071 +56845.02 4.105 0.071 +56846.11 4.033 0.071 +56847.04 3.887 0.069 +56848.03 3.796 0.068 +56849.09 3.71 0.067 +56850.0 3.554 0.066 +56850.93 3.426 0.064 +56851.92 3.377 0.064 +56852.92 3.419 0.064 +56854.05 3.324 0.063 +56855.05 3.457 0.065 +56856.17 3.8 0.068 +56857.17 4.33 0.074 +56858.09 4.513 0.076 +56858.89 4.389 0.075 +56860.08 4.079 0.071 +56860.95 4.043 0.071 +56861.81 3.986 0.07 +56862.87 3.741 0.068 +56863.87 4.104 0.072 +56864.86 4.331 0.074 +56865.92 4.708 0.078 diff --git a/lag/data/lc/1367A_shifted.lc b/lag/data/lc/1367A_shifted.lc new file mode 100644 index 0000000..0fc5866 --- /dev/null +++ b/lag/data/lc/1367A_shifted.lc @@ -0,0 +1,170 @@ +56691.54 3.545 0.065 +56707.39 3.771 0.067 +56708.32 3.814 0.068 +56710.27 4.094 0.071 +56711.25 4.425 0.075 +56712.31 4.53 0.075 +56713.3 4.827 0.079 +56714.23 4.58 0.076 +56715.23 4.6 0.076 +56716.36 4.746 0.078 +56717.16 4.774 0.078 +56718.15 4.756 0.078 +56720.34 4.577 0.076 +56721.21 4.47 0.075 +56722.20 4.665 0.077 +56723.26 4.324 0.074 +56724.26 4.143 0.071 +56725.26 3.769 0.068 +56726.12 3.522 0.065 +56727.18 3.476 0.064 +56728.18 3.518 0.065 +56729.24 3.445 0.064 +56730.04 3.146 0.061 +56730.90 3.058 0.06 +56731.84 2.964 0.059 +56733.83 2.675 0.056 +56735.15 2.601 0.055 +56736.02 2.376 0.053 +56737.09 2.225 0.051 +56738.14 2.187 0.051 +56741.06 2.296 0.052 +56742.06 2.272 0.051 +56742.79 2.307 0.052 +56743.92 2.391 0.053 +56744.78 2.454 0.054 +56745.85 2.422 0.053 +56746.97 2.469 0.054 +56747.91 2.439 0.053 +56748.85 2.494 0.054 +56749.84 2.763 0.057 +56750.85 3.243 0.062 +56751.44 3.578 0.065 +56752.69 3.788 0.068 +56753.50 3.991 0.07 +56754.68 4.246 0.073 +56755.36 4.544 0.076 +56756.35 4.523 0.076 +56759.40 5.435 0.085 +56760.25 5.479 0.086 +56761.25 5.254 0.084 +56762.18 5.659 0.088 +56763.24 5.497 0.086 +56764.17 5.283 0.084 +56765.30 5.155 0.082 +56766.16 4.937 0.08 +56767.02 4.672 0.077 +56768.02 4.089 0.071 +56768.97 3.619 0.066 +56770.21 3.446 0.064 +56771.14 3.546 0.065 +56772.14 3.726 0.067 +56774.26 3.586 0.066 +56775.12 3.568 0.065 +56776.05 3.888 0.069 +56777.12 3.911 0.069 +56778.05 3.932 0.069 +56779.24 4.043 0.071 +56780.17 3.83 0.068 +56780.97 3.949 0.069 +56782.03 4.083 0.071 +56783.09 4.142 0.072 +56784.15 4.528 0.076 +56785.08 4.851 0.079 +56786.08 4.979 0.081 +56787.01 4.965 0.08 +56788.07 5.055 0.082 +56789.00 5.102 0.082 +56789.60 5.004 0.081 +56790.59 5.033 0.081 +56791.72 4.596 0.077 +56792.45 4.632 0.077 +56793.46 4.545 0.076 +56794.44 4.431 0.075 +56795.46 4.556 0.076 +56796.36 4.353 0.074 +56797.37 4.135 0.072 +56798.36 4.528 0.076 +56799.76 5.118 0.082 +56800.75 5.355 0.085 +56801.69 5.037 0.081 +56802.29 4.937 0.08 +56803.28 4.882 0.08 +56804.28 4.609 0.076 +56805.27 4.335 0.074 +56806.27 4.289 0.073 +56807.27 4.553 0.076 +56808.20 4.741 0.078 +56809.19 4.643 0.077 +56810.25 4.364 0.074 +56811.11 4.423 0.075 +56812.08 4.936 0.08 +56813.11 4.948 0.08 +56814.16 4.692 0.078 +56815.02 4.622 0.077 +56816.03 4.809 0.079 +56817.02 4.633 0.077 +56818.01 4.794 0.079 +56820.00 4.473 0.075 +56820.99 4.346 0.074 +56822.12 4.345 0.074 +56823.05 4.478 0.075 +56824.11 4.707 0.078 +56824.91 4.573 0.076 +56825.84 4.465 0.075 +56827.03 4.719 0.078 +56827.96 4.809 0.079 +56829.09 5.004 0.081 +56829.89 5.324 0.084 +56831.08 5.486 0.086 +56831.94 5.576 0.087 +56832.93 6.186 0.094 +56833.93 6.474 0.097 +56834.74 6.463 0.097 +56835.99 6.206 0.094 +56836.85 5.888 0.091 +56837.79 5.736 0.089 +56838.85 5.553 0.087 +56839.64 5.425 0.085 +56840.65 5.133 0.083 +56841.90 4.588 0.077 +56842.77 4.371 0.074 +56843.49 4.394 0.075 +56844.62 4.204 0.073 +56845.48 4.11 0.071 +56846.68 4.171 0.072 +56847.27 4.38 0.074 +56848.80 4.765 0.079 +56849.80 4.738 0.078 +56850.79 4.455 0.075 +56851.21 4.434 0.075 +56852.65 4.431 0.075 +56853.18 4.449 0.075 +56854.20 4.45 0.075 +56855.13 4.52 0.076 +56856.19 4.442 0.075 +56857.19 4.469 0.075 +56858.12 4.231 0.073 +56859.18 4.082 0.071 +56860.02 4.105 0.071 +56861.11 4.033 0.071 +56862.04 3.887 0.069 +56863.03 3.796 0.068 +56864.09 3.71 0.067 +56865.00 3.554 0.066 +56865.93 3.426 0.064 +56866.92 3.377 0.064 +56867.92 3.419 0.064 +56869.05 3.324 0.063 +56870.05 3.457 0.065 +56871.17 3.8 0.068 +56872.17 4.33 0.074 +56873.09 4.513 0.076 +56873.89 4.389 0.075 +56875.08 4.079 0.071 +56875.95 4.043 0.071 +56876.81 3.986 0.07 +56877.87 3.741 0.068 +56878.87 4.104 0.072 +56879.86 4.331 0.074 +56880.92 4.708 0.078 \ No newline at end of file diff --git a/lag/data/lc/1479A.lc b/lag/data/lc/1479A.lc new file mode 100644 index 0000000..ee2cfdd --- /dev/null +++ b/lag/data/lc/1479A.lc @@ -0,0 +1,170 @@ +56691.58 3.16 0.051 +56692.41 3.3 0.052 +56693.34 3.3 0.052 +56695.31 3.54 0.056 +56696.26 3.87 0.06 +56697.32 4 0.062 +56698.32 4.11 0.063 +56699.25 4.03 0.062 +56700.24 4.01 0.062 +56701.37 4.08 0.063 +56702.17 4.1 0.063 +56703.17 4.2 0.065 +56705.36 3.95 0.061 +56706.22 3.86 0.06 +56707.22 4.03 0.062 +56708.28 3.68 0.058 +56709.28 3.52 0.055 +56710.27 3.21 0.051 +56711.13 2.98 0.048 +56712.20 3.03 0.049 +56713.19 3.07 0.049 +56714.25 2.99 0.048 +56715.08 2.81 0.046 +56715.93 2.66 0.044 +56716.89 2.5 0.041 +56718.89 2.36 0.04 +56720.16 2.26 0.038 +56721.05 2.07 0.036 +56722.12 1.94 0.034 +56723.15 1.86 0.032 +56726.07 1.96 0.034 +56727.07 1.91 0.033 +56727.85 2 0.035 +56728.95 2.1 0.036 +56729.84 2.15 0.036 +56730.91 2.17 0.037 +56731.99 2.16 0.037 +56732.97 2.12 0.036 +56733.90 2.17 0.037 +56734.89 2.46 0.041 +56735.89 2.85 0.046 +56736.47 3.18 0.051 +56737.73 3.41 0.054 +56738.56 3.59 0.056 +56739.72 3.88 0.06 +56740.42 4.08 0.063 +56741.38 4.08 0.063 +56744.44 4.87 0.074 +56745.27 4.91 0.074 +56746.26 4.85 0.074 +56747.19 5.1 0.077 +56748.26 5.11 0.077 +56749.18 4.8 0.073 +56750.32 4.71 0.072 +56751.18 4.45 0.068 +56752.04 4.26 0.066 +56753.03 3.7 0.058 +56754.01 3.19 0.051 +56755.23 2.98 0.048 +56756.15 3.12 0.05 +56757.15 3.21 0.051 +56759.28 3.26 0.052 +56760.14 3.22 0.051 +56761.07 3.41 0.054 +56762.13 3.53 0.056 +56763.06 3.54 0.056 +56764.25 3.53 0.056 +56765.18 3.47 0.055 +56765.98 3.55 0.056 +56767.04 3.62 0.057 +56768.10 3.75 0.058 +56769.17 4.09 0.063 +56770.10 4.26 0.066 +56771.09 4.42 0.068 +56772.02 4.55 0.07 +56773.08 4.53 0.07 +56774.01 4.61 0.07 +56774.66 4.51 0.069 +56775.65 4.45 0.068 +56776.78 4.14 0.064 +56777.46 4.2 0.065 +56778.48 4.13 0.064 +56779.45 4 0.062 +56780.51 4.12 0.064 +56781.38 4.04 0.063 +56782.41 3.95 0.061 +56783.37 4.17 0.064 +56784.82 4.65 0.071 +56785.81 4.83 0.074 +56786.74 4.58 0.07 +56787.32 4.55 0.07 +56788.32 4.44 0.068 +56789.32 4.3 0.066 +56790.31 4.02 0.062 +56791.31 4.07 0.063 +56792.30 4.34 0.067 +56793.23 4.51 0.069 +56794.22 4.31 0.066 +56795.29 4.06 0.063 +56796.12 4.1 0.063 +56797.11 4.43 0.068 +56798.14 4.46 0.068 +56799.17 4.31 0.066 +56800.04 4.3 0.066 +56801.06 4.37 0.067 +56802.05 4.33 0.067 +56803.02 4.26 0.066 +56805.01 4.08 0.063 +56806.01 4 0.062 +56807.14 3.96 0.061 +56808.07 4.09 0.063 +56809.13 4.22 0.065 +56809.92 4.12 0.064 +56810.85 4.08 0.063 +56812.05 4.23 0.065 +56812.98 4.3 0.066 +56814.11 4.4 0.067 +56814.90 4.68 0.071 +56816.10 4.8 0.073 +56816.96 5.02 0.076 +56817.95 5.61 0.084 +56818.95 5.83 0.088 +56819.77 5.88 0.088 +56821.01 5.5 0.083 +56821.87 5.38 0.081 +56822.82 5.15 0.078 +56823.86 5.12 0.078 +56824.68 5.02 0.076 +56825.70 4.79 0.073 +56826.91 4.23 0.065 +56827.80 3.96 0.062 +56828.56 3.94 0.061 +56829.68 3.74 0.058 +56830.55 3.63 0.057 +56831.71 3.82 0.06 +56832.29 3.87 0.06 +56833.81 4.23 0.065 +56834.81 4.24 0.065 +56835.81 3.92 0.061 +56836.26 3.87 0.06 +56837.69 3.95 0.061 +56838.20 3.86 0.06 +56839.26 4 0.062 +56840.18 3.98 0.062 +56841.25 3.97 0.061 +56842.25 3.96 0.062 +56843.17 3.77 0.059 +56844.24 3.65 0.057 +56845.04 3.53 0.055 +56846.16 3.56 0.056 +56847.08 3.48 0.055 +56848.08 3.4 0.054 +56849.14 3.23 0.051 +56850.01 3.17 0.051 +56850.94 3.05 0.049 +56851.94 2.96 0.048 +56852.93 3.08 0.049 +56854.06 2.92 0.047 +56855.06 3.01 0.049 +56856.19 3.4 0.054 +56857.18 3.85 0.06 +56858.11 4.05 0.063 +56858.91 3.95 0.061 +56860.10 3.7 0.058 +56860.96 3.73 0.058 +56861.82 3.52 0.056 +56862.89 3.32 0.053 +56863.88 3.67 0.058 +56864.88 3.82 0.06 +56865.94 4.24 0.065 diff --git a/lag/data/lc/1746A.lc b/lag/data/lc/1746A.lc new file mode 100644 index 0000000..284cd59 --- /dev/null +++ b/lag/data/lc/1746A.lc @@ -0,0 +1,170 @@ +56691.58 2.79 0.064 +56692.41 3.04 0.068 +56693.34 3.04 0.067 +56695.31 3.19 0.071 +56696.26 3.42 0.074 +56697.32 3.5 0.074 +56698.32 3.6 0.075 +56699.25 3.51 0.074 +56700.24 3.65 0.077 +56701.37 3.6 0.076 +56702.17 3.6 0.075 +56703.17 3.63 0.076 +56705.36 3.59 0.076 +56706.22 3.49 0.074 +56707.22 3.6 0.075 +56708.28 3.33 0.073 +56709.28 3.32 0.072 +56710.27 2.89 0.066 +56711.13 2.7 0.063 +56712.20 2.81 0.066 +56713.19 2.81 0.065 +56714.25 2.7 0.063 +56715.08 2.61 0.063 +56715.93 2.52 0.062 +56716.89 2.33 0.059 +56718.89 2.16 0.057 +56720.16 2.09 0.056 +56721.05 1.9 0.053 +56722.12 1.85 0.052 +56723.15 1.74 0.051 +56726.07 1.91 0.054 +56727.07 1.81 0.052 +56727.85 1.86 0.052 +56728.95 1.94 0.053 +56729.84 1.97 0.054 +56730.91 2.01 0.054 +56731.99 1.99 0.054 +56732.97 1.99 0.055 +56733.90 2 0.054 +56734.89 2.27 0.058 +56735.89 2.56 0.063 +56736.47 2.85 0.065 +56737.73 2.98 0.067 +56738.56 3.23 0.071 +56739.72 3.36 0.073 +56740.42 3.59 0.075 +56741.38 3.57 0.075 +56744.44 4.16 0.083 +56745.27 4.15 0.083 +56746.26 4.23 0.084 +56747.19 4.37 0.087 +56748.26 4.24 0.084 +56749.18 4.09 0.082 +56750.32 4.08 0.081 +56751.18 3.84 0.079 +56752.04 3.74 0.077 +56753.03 3.42 0.074 +56754.01 2.96 0.067 +56755.23 2.69 0.064 +56756.15 2.85 0.066 +56757.15 2.98 0.068 +56759.28 2.96 0.067 +56760.14 2.84 0.066 +56761.07 3.11 0.07 +56762.13 3.09 0.069 +56763.06 3.2 0.071 +56764.25 3.19 0.071 +56765.18 3.11 0.069 +56765.98 3.19 0.07 +56767.04 3.37 0.074 +56768.10 3.26 0.071 +56769.17 3.52 0.075 +56770.10 3.68 0.077 +56771.09 3.8 0.079 +56772.02 3.95 0.08 +56773.08 3.88 0.08 +56774.01 3.94 0.081 +56774.66 3.92 0.08 +56775.65 3.84 0.079 +56776.78 3.73 0.078 +56777.46 3.74 0.078 +56778.48 3.68 0.078 +56779.45 3.49 0.075 +56780.51 3.56 0.075 +56781.38 3.57 0.075 +56782.41 3.44 0.074 +56783.37 3.51 0.075 +56784.82 3.92 0.081 +56785.81 4.16 0.083 +56786.74 4.04 0.082 +56787.32 3.91 0.081 +56788.32 3.84 0.08 +56789.32 3.69 0.077 +56790.31 3.49 0.074 +56791.31 3.45 0.074 +56792.30 3.52 0.075 +56793.23 3.76 0.079 +56794.22 3.66 0.077 +56795.29 3.42 0.074 +56796.12 3.48 0.075 +56797.11 3.84 0.079 +56798.14 3.76 0.078 +56799.17 3.66 0.078 +56800.04 3.63 0.078 +56801.06 3.69 0.077 +56802.05 3.65 0.077 +56803.02 3.67 0.078 +56805.01 3.51 0.075 +56806.01 3.55 0.076 +56807.14 3.57 0.076 +56808.07 3.62 0.076 +56809.13 3.76 0.078 +56809.92 3.71 0.077 +56810.85 3.59 0.077 +56812.05 3.75 0.079 +56812.98 3.79 0.079 +56814.11 3.97 0.082 +56814.90 4.09 0.083 +56816.10 4.3 0.085 +56816.96 4.46 0.088 +56817.95 4.81 0.093 +56818.95 4.96 0.094 +56819.77 5.08 0.096 +56821.01 4.79 0.093 +56821.87 4.69 0.091 +56822.82 4.48 0.087 +56823.86 4.4 0.088 +56824.68 4.42 0.087 +56825.70 4.24 0.085 +56826.91 3.83 0.079 +56827.80 3.64 0.077 +56828.56 3.52 0.075 +56829.68 3.36 0.074 +56830.55 3.3 0.073 +56831.71 3.48 0.075 +56832.29 3.46 0.074 +56833.81 3.75 0.079 +56834.81 3.78 0.079 +56835.81 3.62 0.077 +56836.26 3.59 0.076 +56837.69 3.62 0.076 +56838.20 3.52 0.076 +56839.26 3.55 0.077 +56840.18 3.65 0.077 +56841.25 3.64 0.078 +56842.25 3.63 0.077 +56843.17 3.46 0.076 +56844.24 3.36 0.073 +56845.04 3.25 0.073 +56846.16 3.24 0.072 +56847.08 3.18 0.072 +56848.08 3.16 0.071 +56849.14 3.12 0.07 +56850.01 2.92 0.068 +56850.94 2.84 0.066 +56851.94 2.8 0.066 +56852.93 2.75 0.066 +56854.06 2.74 0.065 +56855.06 2.81 0.066 +56856.19 3.01 0.068 +56857.18 3.27 0.073 +56858.11 3.5 0.075 +56858.91 3.5 0.076 +56860.10 3.32 0.072 +56860.96 3.35 0.074 +56861.82 3.12 0.07 +56862.89 3.02 0.069 +56863.88 3.29 0.073 +56864.88 3.42 0.075 +56865.94 3.76 0.078 diff --git a/lag/data/lc/1928A.lc b/lag/data/lc/1928A.lc new file mode 100644 index 0000000..275c907 --- /dev/null +++ b/lag/data/lc/1928A.lc @@ -0,0 +1,283 @@ +56698.37 3.28 0.0698 +56699.57 3.19 0.0715 +56706.49 3.27 0.071 +56708.23 3.11 0.0678 +56709.57 3.08 0.0768 +56710.11 2.97 0.0692 +56710.17 2.97 0.0699 +56710.64 2.79 0.0648 +56711.03 2.9 0.0688 +56711.36 2.74 0.0674 +56712.10 2.79 0.0645 +56713.23 2.71 0.0648 +56713.51 2.76 0.0648 +56713.96 2.73 0.0655 +56714.23 2.78 0.0654 +56714.51 2.73 0.0653 +56715.04 2.71 0.0646 +56715.64 2.43 0.134 +56717.04 2.44 0.0586 +56718.37 2.32 0.0539 +56718.64 2.21 0.054 +56719.71 2.31 0.0545 +56720.10 2.3 0.0572 +56720.38 2.28 0.053 +56720.64 2.14 0.0527 +56720.97 2.21 0.0523 +56721.38 2.13 0.0501 +56721.57 2.07 0.0512 +56722.37 2.05 0.049 +56722.85 2 0.0496 +56723.11 2.04 0.0495 +56723.45 2.05 0.049 +56723.90 1.99 0.0488 +56724.45 2.03 0.0488 +56724.57 2 0.0493 +56724.83 2.03 0.0505 +56725.17 2.02 0.0491 +56725.30 2 0.0488 +56725.64 2.06 0.0504 +56726.03 2.06 0.0527 +56726.31 2.03 0.0475 +56727.03 2.0476 0.035696 +56727.31 2.03 0.0473 +56727.51 2.08 0.0518 +56727.85 2.1 0.0508 +56728.58 2.03 0.0487 +56728.85 2.09 0.0493 +56729.65 2.13 0.0511 +56730.04 2.15 0.0523 +56730.38 2.18 0.051 +56730.64 2.14 0.0503 +56730.97 2.19 0.0512 +56731.37 2.14 0.0492 +56731.63 2.19 0.0514 +56732.05 2.18 0.0518 +56732.37 2.15 0.0498 +56732.72 2.2 0.0515 +56732.98 2.14 0.0501 +56733.23 2.14 0.0492 +56733.58 2.1 0.0497 +56733.97 2.15 0.0502 +56734.24 2.24 0.0507 +56734.51 2.21 0.0524 +56734.90 2.35 0.0556 +56735.30 2.4 0.0542 +56735.64 2.42 0.0565 +56736.30 2.64 0.0599 +56736.57 2.64 0.0618 +56736.90 2.79 0.065 +56737.51 2.83 0.0673 +56737.90 2.76 0.066 +56738.23 2.85 0.0649 +56738.52 2.89 0.0692 +56738.90 2.97 0.0692 +56739.23 2.97 0.0674 +56739.59 3.06 0.0725 +56739.98 3.18 0.0721 +56740.32 3.22 0.0729 +56740.52 3.23 0.0739 +56740.92 3.21 0.0739 +56741.32 3.23 0.0735 +56741.51 3.25 0.0763 +56741.90 3.34 0.0763 +56742.23 3.28 0.0739 +56742.72 3.45 0.0804 +56742.97 3.46 0.0782 +56743.37 3.46 0.077 +56743.51 3.43 0.0784 +56744.44 3.5505 0.055079 +56744.51 3.62 0.0815 +56745.38 3.63 0.0838 +56745.58 3.69 0.0845 +56745.91 3.67 0.0842 +56746.24 3.62 0.0817 +56746.58 3.69 0.0848 +56746.90 3.72 0.0843 +56747.70 3.84 0.087 +56748.03 3.75 0.0852 +56748.51 3.74 0.0878 +56749.10 3.63 0.0815 +56749.38 3.66 0.0825 +56749.51 3.68 0.0852 +56750.45 3.62 0.0817 +56750.58 3.64 0.083 +56751.57 3.49 0.0809 +56752.04 3.48 0.0804 +56752.63 3.35 0.0789 +56753.04 3.22 0.0742 +56753.37 3.14 0.0723 +56753.70 3 0.0714 +56753.91 2.99 0.0677 +56754.17 2.92 0.0668 +56754.37 2.89 0.0644 +56755.05 2.76 0.0649 +56755.37 2.92 0.0676 +56755.52 2.77 0.0643 +56756.10 2.83 0.0662 +56756.31 2.87 0.0661 +56756.77 2.96 0.0693 +56757.30 2.92 0.0675 +56757.52 2.92 0.0666 +56757.98 2.92 0.0666 +56758.31 2.87 0.0654 +56758.52 2.86 0.0652 +56758.97 2.87 0.0653 +56759.24 2.87 0.0651 +56759.84 2.94 0.0665 +56759.97 2.88 0.0655 +56760.30 2.82 0.0642 +56761.04 2.93 0.0667 +56761.84 2.95 0.0661 +56762.04 2.96 0.067 +56762.31 2.97 0.0667 +56762.84 2.8 0.0667 +56763.05 2.94 0.068 +56763.38 2.79 0.0639 +56763.52 2.72 0.0623 +56764.04 2.94 0.0662 +56764.39 2.92 0.0662 +56764.77 2.96 0.0681 +56765.12 3.01 0.0707 +56765.70 2.98 0.0712 +56766.10 2.98 0.0699 +56766.39 2.98 0.0718 +56766.72 3.01 0.0716 +56767.38 2.89 0.0677 +56768.45 2.94 0.0698 +56769.39 3.25 0.0741 +56770.51 3.01 0.0701 +56770.85 3.27 0.0746 +56771.18 3.37 0.0759 +56774.72 3.44 0.0816 +56775.58 3.38 0.0766 +56776.04 3.42 0.0773 +56776.24 3.37 0.0747 +56776.98 3.29 0.078 +56777.38 3.32 0.0837 +56777.52 3.08 0.0719 +56778.59 3.26 0.0755 +56779.38 3.13 0.0735 +56779.85 3.25 0.0743 +56780.25 3.11 0.0717 +56780.52 3.27 0.0778 +56780.59 3.26 0.0768 +56782.10 3.14 0.0721 +56782.31 3.13 0.0706 +56782.71 3.17 0.0735 +56782.98 3.24 0.0751 +56783.37 3.19 0.0745 +56783.57 3.14 0.073 +56783.97 3.36 0.077 +56785.04 3.48 0.0808 +56785.57 3.53 0.081 +56786.37 3.48 0.0779 +56786.97 3.41 0.0782 +56787.31 3.44 0.0776 +56787.71 3.23 0.0755 +56787.98 3.39 0.0783 +56788.31 3.3 0.0762 +56789.05 3.39 0.0762 +56789.31 3 0.068 +56789.65 3.23 0.0761 +56789.97 3.2 0.073 +56790.64 3.12 0.0724 +56791.04 3.08 0.0712 +56791.64 3.14 0.0733 +56791.97 3.03 0.0691 +56792.37 3.17 0.0735 +56792.51 3.14 0.0755 +56792.85 3.27 0.0735 +56793.85 3.27 0.0738 +56794.25 3.24 0.0753 +56794.70 3.21 0.0768 +56795.36 3.2 0.0765 +56795.89 3.11 0.0794 +56796.89 3.29 0.0752 +56798.51 3.41 0.0797 +56798.89 3.2 0.0728 +56799.23 3.3 0.0732 +56799.56 3.26 0.0728 +56800.03 3.17 0.0703 +56800.36 3.1 0.0718 +56800.83 3.28 0.0734 +56801.10 3.34 0.0752 +56802.10 3.27 0.0719 +56802.63 3.28 0.0722 +56802.89 3.03 0.0726 +56804.23 3.1 0.0705 +56805.09 3.26 0.0756 +56805.97 3.25 0.0731 +56806.37 3.22 0.0725 +56806.89 3.26 0.0739 +56807.22 3.2 0.0721 +56807.89 3.24 0.0736 +56808.56 3.26 0.074 +56808.89 3.43 0.0778 +56809.22 3.19 0.0737 +56809.89 3.35 0.0763 +56810.22 3.28 0.0754 +56810.56 3.24 0.0738 +56810.89 3.3 0.0752 +56811.22 3.33 0.0794 +56811.76 3.25 0.0749 +56812.02 3.38 0.078 +56812.37 3.49 0.0802 +56812.55 3.42 0.0784 +56813.23 3.57 0.0829 +56813.97 3.41 0.0764 +56814.37 3.16 0.0715 +56814.55 3.52 0.083 +56814.62 3.55 0.0786 +56815.70 3.54 0.0811 +56815.96 3.67 0.085 +56816.23 3.75 0.0855 +56817.62 4 0.0881 +56818.09 4 0.0848 +56818.24 4.04 0.0916 +56818.70 4.16 0.0951 +56818.96 4.17 0.0929 +56819.70 4.03 0.0917 +56820.23 4.19 0.0942 +56820.57 3.95 0.0901 +56820.64 4.07 0.0927 +56820.69 4.11 0.093 +56821.90 3.95 0.0884 +56822.36 3.83 0.0869 +56823.16 3.86 0.0889 +56823.29 3.58 0.0808 +56824.62 3.91 0.09 +56825.36 3.69 0.0839 +56825.55 3.74 0.0839 +56825.96 3.67 0.0763 +56826.43 3.7 0.085 +56826.76 3.43 0.0788 +56827.04 3.38 0.0767 +56827.43 3.35 0.077 +56827.88 3.26 0.0744 +56828.15 3.28 0.0755 +56828.43 3.33 0.0768 +56828.55 3.35 0.0708 +56829.02 3.25 0.0749 +56829.81 3.16 0.0744 +56830.15 3.26 0.0743 +56830.42 3.25 0.0747 +56832.02 3.22 0.0649 +56834.09 3.18 0.0639 +56837.22 3.33 0.067 +56839.61 3.35 0.0689 +56840.28 3.32 0.0689 +56841.96 3.27 0.0658 +56844.28 2.76 0.0557 +56846.28 3.12 0.0628 +56847.74 2.98 0.0608 +56849.61 2.79 0.0565 +56852.08 2.76 0.0557 +56854.29 2.65 0.054 +56854.36 2.6 0.0594 +56855.95 2.69 0.0543 +56858.08 3.165 0.06373 +56859.75 3.073 0.06191 +56862.08 2.954 0.05924 +56863.60 2.999 0.06035 +56865.61 3.237 0.06498 diff --git a/lag/data/lc/2246A.lc b/lag/data/lc/2246A.lc new file mode 100644 index 0000000..0f11d4a --- /dev/null +++ b/lag/data/lc/2246A.lc @@ -0,0 +1,255 @@ +56698.37 3.06 0.0745 +56706.49 2.99 0.0735 +56708.24 3.05 0.0742 +56710.11 2.82 0.0764 +56710.17 2.8 0.0776 +56710.64 2.57 0.0707 +56711.03 2.68 0.0743 +56711.36 2.63 0.0774 +56712.10 2.62 0.0707 +56713.23 2.59 0.0718 +56713.52 2.59 0.0715 +56713.96 2.57 0.0739 +56714.23 2.69 0.0737 +56714.52 2.59 0.0709 +56715.05 2.55 0.07 +56717.04 2.35 0.0654 +56718.37 2.28 0.0609 +56718.64 2.25 0.0636 +56719.72 2.28 0.0622 +56720.10 2.25 0.0656 +56720.38 2.21 0.059 +56720.64 2.18 0.0619 +56720.97 2.06 0.0565 +56721.39 2.12 0.0575 +56721.57 2.06 0.0596 +56722.38 2.01 0.0564 +56722.85 1.99 0.0574 +56723.12 1.97 0.0557 +56723.45 2.02 0.0556 +56723.90 1.98 0.0568 +56724.45 1.95 0.0552 +56724.57 1.99 0.0589 +56724.83 1.91 0.0567 +56725.17 1.95 0.0557 +56725.30 1.91 0.0558 +56725.64 1.97 0.0577 +56726.03 2.05 0.0638 +56726.32 1.99 0.0539 +56727.03 1.9994 0.042021 +56727.32 2.09 0.0552 +56727.52 2.01 0.0557 +56727.85 2 0.0572 +56728.59 2.02 0.0603 +56728.85 2.05 0.0616 +56729.65 2.07 0.0582 +56730.04 2.03 0.0578 +56730.38 2.21 0.0598 +56730.64 2.16 0.0581 +56730.97 2.06 0.056 +56731.64 2.1 0.0571 +56732.05 2.11 0.0583 +56732.38 2.12 0.0564 +56732.72 2.12 0.0582 +56732.99 2.08 0.058 +56733.24 2.11 0.0558 +56733.58 2.12 0.0576 +56733.98 2.14 0.0573 +56734.24 2.15 0.0556 +56734.90 2.23 0.0616 +56735.30 2.24 0.0565 +56735.64 2.28 0.0615 +56735.98 2.23 0.0586 +56736.30 2.49 0.065 +56736.57 2.58 0.0699 +56736.90 2.61 0.0701 +56737.52 2.68 0.0705 +56737.90 2.67 0.0722 +56738.24 2.71 0.0715 +56738.52 2.79 0.0799 +56738.90 2.89 0.0788 +56739.24 2.89 0.076 +56739.59 2.95 0.0813 +56739.99 3.01 0.0781 +56740.32 2.96 0.0766 +56740.52 3.07 0.0804 +56740.92 3.09 0.0831 +56741.32 3.05 0.0803 +56741.52 3.07 0.0818 +56741.90 3.12 0.0814 +56742.24 3.05 0.0783 +56742.72 3.29 0.0887 +56742.97 3.26 0.0844 +56743.38 3.4 0.0848 +56743.52 3.25 0.0832 +56744.44 3.4026 0.060424 +56744.52 3.3 0.0818 +56745.38 3.49 0.0954 +56745.59 3.5 0.0915 +56745.91 3.52 0.092 +56746.25 3.45 0.0887 +56746.58 3.38 0.0881 +56746.90 3.41 0.088 +56747.70 3.65 0.0933 +56748.04 3.46 0.0892 +56748.52 3.57 0.0937 +56749.10 3.36 0.0865 +56749.38 3.37 0.0855 +56749.52 3.4 0.0867 +56750.46 3.5 0.0922 +56750.58 3.51 0.0926 +56751.57 3.26 0.0863 +56752.04 3.2 0.0907 +56752.64 3.13 0.0925 +56753.04 3.07 0.0814 +56753.37 3.02 0.0802 +56753.71 2.95 0.0879 +56753.92 2.85 0.0755 +56754.17 2.8 0.0751 +56754.37 2.85 0.0723 +56755.05 2.72 0.0741 +56755.37 2.77 0.0736 +56755.52 2.66 0.0712 +56756.10 2.71 0.073 +56756.31 2.7 0.0725 +56756.77 2.86 0.0758 +56757.30 2.83 0.0744 +56757.52 2.83 0.0728 +56757.98 2.83 0.0721 +56758.32 2.79 0.0724 +56758.52 2.8 0.0744 +56758.97 2.76 0.0711 +56759.24 2.75 0.0715 +56759.84 2.71 0.0699 +56759.97 2.75 0.0708 +56760.31 2.76 0.071 +56761.05 2.76 0.0723 +56761.84 2.9 0.0732 +56762.05 2.9 0.0761 +56762.31 2.94 0.0786 +56762.84 2.77 0.0818 +56763.05 2.9 0.0759 +56763.38 2.64 0.0693 +56763.52 2.62 0.0718 +56764.04 2.92 0.0746 +56764.39 2.9 0.0748 +56764.77 2.87 0.0761 +56765.12 2.75 0.0718 +56765.70 2.79 0.077 +56766.11 2.87 0.0768 +56766.39 2.96 0.083 +56766.73 2.86 0.0811 +56767.39 2.81 0.078 +56769.39 3 0.0779 +56770.52 2.98 0.0859 +56770.85 3.14 0.082 +56771.18 3.14 0.079 +56774.73 3.21 0.0886 +56775.58 3.16 0.0806 +56776.04 3.25 0.0949 +56776.24 3.16 0.0788 +56777.52 2.95 0.0787 +56778.59 3.08 0.0822 +56779.38 3.08 0.0828 +56779.86 3.12 0.0817 +56780.26 2.91 0.0777 +56780.52 3.09 0.0836 +56780.59 3.15 0.0844 +56782.10 2.99 0.0801 +56782.31 2.93 0.0748 +56782.71 2.97 0.0788 +56782.98 3.07 0.0815 +56783.37 3.1 0.079 +56783.57 3.01 0.0822 +56783.97 3.14 0.0813 +56785.04 3.29 0.102 +56785.57 3.32 0.0869 +56786.37 3.28 0.0834 +56786.98 3.41 0.111 +56787.31 3.33 0.0843 +56787.72 3.08 0.0811 +56787.98 3.24 0.0861 +56788.31 3.12 0.0853 +56789.05 3.12 0.0803 +56789.31 2.95 0.0754 +56789.65 3.05 0.0827 +56789.97 3.07 0.0909 +56790.64 2.92 0.108 +56791.64 3.24 0.182 +56791.97 2.94 0.0757 +56792.37 3.07 0.0848 +56792.51 2.99 0.0762 +56792.85 3.2 0.0816 +56793.85 3.15 0.0801 +56794.25 3.1 0.0842 +56794.70 2.98 0.0916 +56795.36 3.04 0.0928 +56796.90 3.17 0.0826 +56798.51 3.11 0.0799 +56798.90 3.04 0.0793 +56799.23 3.04 0.0775 +56799.57 3.21 0.0811 +56800.03 2.95 0.0742 +56800.36 3.05 0.0811 +56800.83 3.09 0.0782 +56801.10 3.13 0.0793 +56802.10 3.18 0.078 +56802.63 3.13 0.077 +56804.23 2.96 0.0763 +56805.09 3.08 0.0814 +56805.98 3.17 0.082 +56806.37 3.1 0.0805 +56806.89 3.12 0.0882 +56807.23 3.13 0.0861 +56807.89 3.15 0.0816 +56808.56 3.17 0.0811 +56808.89 3.24 0.0833 +56809.22 3.09 0.081 +56809.89 3.27 0.084 +56810.23 3.17 0.0866 +56810.56 3.08 0.0809 +56810.89 3.19 0.0822 +56811.22 3.11 0.0854 +56811.76 3.22 0.0938 +56812.03 3.22 0.0825 +56812.37 3.25 0.0859 +56812.56 3.23 0.0845 +56812.89 3.14 0.0831 +56813.23 3.27 0.0833 +56813.98 3.35 0.0893 +56814.37 3.17 0.081 +56814.56 3.39 0.0908 +56814.63 3.32 0.0841 +56815.70 3.34 0.0893 +56815.96 3.44 0.0953 +56816.23 3.58 0.0969 +56817.63 3.73 0.0932 +56818.10 3.79 0.0899 +56818.24 3.77 0.0969 +56818.71 3.93 0.101 +56818.96 4.04 0.11 +56819.70 3.7 0.0984 +56820.23 4 0.106 +56820.58 3.69 0.0947 +56820.64 3.74 0.121 +56820.69 3.74 0.096 +56821.91 3.72 0.0965 +56822.37 3.67 0.103 +56823.16 3.74 0.101 +56823.30 3.45 0.0942 +56824.62 3.6 0.0994 +56825.36 3.39 0.0894 +56825.55 3.54 0.0907 +56825.96 3.56 0.114 +56826.43 3.34 0.0885 +56826.76 3.25 0.0869 +56827.04 3.27 0.0918 +56827.43 3.17 0.0905 +56827.89 3.15 0.0811 +56828.15 3.2 0.0846 +56828.43 3.11 0.0819 +56828.56 3.17 0.0768 +56829.02 3.13 0.0836 +56829.82 3.07 0.0867 +56830.15 2.99 0.0851 +56830.42 2.97 0.0807 diff --git a/lag/data/lc/2600A.lc b/lag/data/lc/2600A.lc new file mode 100644 index 0000000..19f778f --- /dev/null +++ b/lag/data/lc/2600A.lc @@ -0,0 +1,269 @@ +56698.36 2.86 0.0637 +56699.56 2.76 0.0639 +56702.42 2.79 0.063 +56706.49 2.77 0.064 +56708.23 2.72 0.0623 +56710.11 2.6 0.0661 +56710.17 2.65 0.068 +56710.64 2.49 0.0628 +56711.02 2.48 0.0647 +56711.36 2.54 0.0691 +56712.09 2.43 0.0611 +56713.23 2.5 0.0654 +56713.51 2.52 0.0642 +56713.96 2.49 0.0655 +56714.23 2.36 0.0607 +56714.51 2.42 0.0636 +56715.04 2.44 0.0635 +56715.64 2.42 0.0631 +56717.04 2.34 0.061 +56718.37 2.17 0.0544 +56718.64 2.06 0.055 +56719.71 2.17 0.0553 +56720.10 2.07 0.0574 +56720.38 2.11 0.0527 +56720.64 2.11 0.0563 +56720.97 1.98 0.051 +56721.38 2.04 0.0516 +56721.57 1.99 0.0536 +56722.37 1.97 0.0509 +56722.84 1.88 0.0512 +56723.11 1.92 0.0508 +56723.44 1.97 0.0507 +56723.89 1.87 0.0502 +56724.45 1.92 0.0501 +56724.57 1.88 0.0507 +56725.17 1.89 0.0505 +56725.30 1.92 0.0512 +56725.64 2 0.0531 +56726.03 1.94 0.055 +56726.31 1.96 0.0491 +56727.03 1.9546 0.037145 +56727.31 1.93 0.0481 +56727.51 1.95 0.0531 +56727.85 1.97 0.0521 +56728.58 1.94 0.0505 +56728.84 1.95 0.0496 +56729.64 2 0.0521 +56730.04 2.02 0.0535 +56730.37 2.09 0.0525 +56730.63 2.08 0.0523 +56730.96 2.02 0.0509 +56731.37 2 0.0492 +56731.63 2.04 0.0516 +56732.05 2.04 0.0524 +56732.37 2 0.0498 +56732.72 2.07 0.0522 +56732.98 2.05 0.0516 +56733.23 2.03 0.05 +56733.57 2.01 0.0512 +56733.97 2.03 0.0511 +56734.24 2.06 0.0497 +56734.51 2.11 0.0539 +56734.90 2.18 0.0559 +56735.30 2.17 0.0526 +56735.64 2.27 0.0572 +56736.30 2.33 0.0567 +56736.56 2.38 0.0606 +56736.90 2.45 0.062 +56737.51 2.45 0.0644 +56737.90 2.44 0.0643 +56738.23 2.6 0.0635 +56738.51 2.58 0.0679 +56738.90 2.56 0.0651 +56739.23 2.58 0.0631 +56739.58 2.74 0.0712 +56739.98 2.7 0.0664 +56740.32 2.66 0.0651 +56740.52 2.75 0.0686 +56740.91 2.77 0.0695 +56741.32 2.82 0.0694 +56741.51 2.73 0.0705 +56741.90 2.78 0.069 +56742.23 2.71 0.0661 +56742.72 2.87 0.0738 +56742.96 2.91 0.0713 +56743.37 3.01 0.072 +56743.51 2.9 0.0724 +56744.44 3.044 0.050228 +56744.51 3.06 0.0746 +56745.38 3.03 0.0769 +56745.58 3.11 0.0778 +56745.90 3.13 0.0783 +56746.24 3.08 0.0753 +56746.57 3.09 0.0778 +56746.90 3.11 0.0767 +56747.30 3.05 0.077 +56747.70 3.15 0.0776 +56748.03 3.17 0.0782 +56748.51 3.08 0.0803 +56749.10 3.14 0.0761 +56749.37 3.08 0.0749 +56750.45 3.08 0.075 +56750.58 3.02 0.0754 +56751.56 3.06 0.0772 +56752.04 2.92 0.0736 +56752.63 2.89 0.0748 +56753.03 2.86 0.0713 +56753.36 2.75 0.0689 +56753.70 2.67 0.07 +56753.91 2.73 0.0662 +56754.17 2.66 0.0658 +56754.36 2.59 0.0614 +56755.04 2.64 0.0671 +56755.37 2.61 0.0658 +56755.52 2.49 0.063 +56756.10 2.51 0.0641 +56756.30 2.58 0.064 +56756.77 2.45 0.0632 +56757.30 2.57 0.0642 +56757.51 2.67 0.0652 +56757.98 2.63 0.0647 +56758.31 2.56 0.063 +56758.51 2.61 0.0637 +56758.97 2.55 0.0622 +56759.23 2.57 0.0626 +56759.83 2.6 0.0633 +56760.30 2.55 0.0623 +56761.04 2.57 0.0628 +56761.83 2.67 0.0639 +56762.04 2.62 0.0637 +56762.30 2.57 0.0618 +56762.83 2.55 0.0666 +56763.04 2.58 0.0649 +56763.38 2.57 0.0634 +56763.51 2.53 0.0621 +56764.03 2.58 0.0624 +56764.38 2.65 0.0643 +56764.77 2.68 0.067 +56765.12 2.56 0.066 +56765.70 2.72 0.0712 +56766.10 2.57 0.0661 +56766.38 2.67 0.0709 +56766.72 2.61 0.0682 +56767.38 2.51 0.0643 +56768.45 2.54 0.0634 +56769.38 2.78 0.0686 +56770.51 2.7 0.0682 +56770.84 2.72 0.0677 +56771.18 2.81 0.0686 +56774.72 2.96 0.0776 +56774.92 2.87 0.073 +56775.58 2.96 0.072 +56776.04 2.84 0.0696 +56776.24 2.87 0.0677 +56776.97 2.85 0.0691 +56777.37 2.86 0.0695 +56777.52 2.79 0.0707 +56778.58 2.82 0.0712 +56779.85 2.85 0.0704 +56780.25 2.81 0.0699 +56780.52 2.79 0.0732 +56780.59 2.76 0.0719 +56781.12 2.71 0.0672 +56782.10 2.86 0.0709 +56782.31 2.74 0.0664 +56782.70 2.71 0.0687 +56782.98 2.83 0.0716 +56783.37 2.85 0.0727 +56783.56 2.83 0.0716 +56783.96 2.87 0.0714 +56784.44 2.91 0.0833 +56785.04 2.98 0.0755 +56785.56 3.01 0.0754 +56786.36 3 0.0725 +56786.97 2.97 0.074 +56787.30 2.85 0.0694 +56787.71 2.78 0.0711 +56787.98 2.92 0.0736 +56788.30 2.92 0.0736 +56789.04 2.84 0.0693 +56789.30 2.73 0.0665 +56789.65 2.74 0.071 +56789.96 2.85 0.0703 +56790.63 2.68 0.068 +56791.03 2.72 0.0685 +56791.96 2.71 0.0666 +56792.36 2.72 0.0687 +56792.51 2.76 0.0732 +56792.84 2.9 0.07 +56793.84 2.82 0.0682 +56794.69 2.79 0.0738 +56795.36 2.67 0.0711 +56795.89 2.69 0.0658 +56796.89 2.81 0.0696 +56797.22 2.74 0.0657 +56797.51 2.68 0.0694 +56797.89 2.63 0.0663 +56798.22 2.81 0.0689 +56798.51 2.79 0.0717 +56798.89 2.77 0.0684 +56799.22 2.84 0.0671 +56799.56 2.83 0.0676 +56800.02 2.7 0.064 +56800.36 2.69 0.0682 +56800.82 2.87 0.069 +56801.09 2.82 0.0682 +56802.09 2.84 0.0662 +56802.62 2.91 0.0678 +56802.89 2.79 0.0727 +56804.23 2.74 0.067 +56805.09 2.75 0.0698 +56805.97 2.82 0.068 +56806.37 2.8 0.0678 +56806.89 2.8 0.0688 +56807.22 2.83 0.0683 +56807.77 2.99 0.118 +56807.89 2.8 0.0691 +56808.22 2.84 0.0728 +56808.89 2.88 0.0707 +56809.22 2.9 0.0725 +56809.55 2.92 0.0716 +56809.89 2.9 0.0712 +56810.22 2.81 0.0707 +56810.55 2.78 0.0685 +56810.89 2.86 0.0703 +56811.22 2.82 0.0746 +56812.37 2.78 0.0703 +56812.88 2.89 0.0723 +56813.22 2.94 0.075 +56813.55 2.83 0.0714 +56813.97 2.97 0.0714 +56814.37 2.86 0.0694 +56814.55 3.06 0.0793 +56814.62 2.97 0.0705 +56814.95 2.82 0.0699 +56815.69 3 0.0749 +56815.95 3.18 0.0804 +56816.23 3.02 0.0751 +56817.62 3.23 0.0758 +56818.09 3.34 0.074 +56818.24 3.36 0.083 +56818.70 3.26 0.0821 +56818.96 3.35 0.0809 +56819.69 3.24 0.0808 +56820.22 3.49 0.0853 +56820.63 3.22 0.08 +56820.69 3.27 0.0808 +56821.90 3.27 0.0793 +56822.36 3.22 0.0795 +56822.97 3.31 0.0883 +56823.15 3.29 0.0829 +56823.29 3.01 0.0736 +56824.62 3.22 0.0813 +56825.36 3.17 0.0779 +56825.55 3.1 0.0755 +56825.95 3.1 0.0662 +56826.43 3.08 0.0774 +56826.76 3 0.0748 +56827.03 2.98 0.073 +56827.43 2.84 0.0713 +56827.88 2.91 0.0714 +56828.15 2.87 0.0719 +56828.42 2.91 0.0728 +56828.55 2.89 0.0638 +56829.01 2.85 0.0715 +56829.29 2.87 0.0723 +56829.81 2.78 0.0718 +56830.15 2.8 0.0693 +56830.42 2.78 0.0695 diff --git a/lag/data/lc/3465A.lc b/lag/data/lc/3465A.lc new file mode 100644 index 0000000..f67dda8 --- /dev/null +++ b/lag/data/lc/3465A.lc @@ -0,0 +1,269 @@ +56698.36 2.19 0.0556 +56699.56 2.2 0.0581 +56702.42 2.26 0.0578 +56706.49 2.18 0.0576 +56708.23 2.19 0.057 +56709.57 2.19 0.0711 +56710.11 2.15 0.0624 +56710.17 2.19 0.0643 +56710.64 2.12 0.0606 +56711.02 2.01 0.06 +56711.36 2.03 0.0634 +56712.09 2.07 0.0589 +56713.23 2.1 0.0626 +56713.51 1.93 0.0563 +56713.96 2.03 0.0609 +56714.23 2.04 0.0591 +56714.51 1.98 0.0593 +56715.04 1.98 0.0588 +56715.64 1.94 0.0575 +56717.04 1.89 0.0556 +56718.37 1.78 0.0501 +56718.64 1.74 0.0521 +56719.71 1.78 0.051 +56720.10 1.69 0.0526 +56720.38 1.79 0.0501 +56720.64 1.73 0.0519 +56720.97 1.67 0.0478 +56721.38 1.72 0.0484 +56721.57 1.71 0.0515 +56722.37 1.64 0.0472 +56722.84 1.59 0.0482 +56723.11 1.55 0.0458 +56723.44 1.55 0.0447 +56723.90 1.63 0.0482 +56724.45 1.55 0.045 +56724.57 1.6 0.0477 +56724.83 1.6 0.0486 +56725.17 1.55 0.0461 +56725.30 1.65 0.0487 +56725.64 1.66 0.0495 +56726.03 1.56 0.0498 +56726.31 1.64 0.0457 +56727.03 1.6 0.033932 +56727.31 1.6 0.0443 +56727.51 1.63 0.0496 +56727.85 1.63 0.0478 +56728.58 1.59 0.0462 +56728.85 1.63 0.0463 +56729.64 1.61 0.047 +56730.04 1.58 0.0472 +56730.37 1.64 0.0467 +56730.63 1.63 0.0462 +56730.96 1.69 0.0474 +56731.37 1.65 0.0454 +56731.63 1.66 0.047 +56732.05 1.65 0.0474 +56732.37 1.66 0.046 +56732.72 1.65 0.0468 +56732.98 1.65 0.0466 +56733.23 1.63 0.0452 +56733.58 1.63 0.0464 +56733.97 1.62 0.0459 +56734.24 1.7 0.0459 +56734.51 1.65 0.0476 +56734.90 1.77 0.0513 +56735.30 1.77 0.048 +56735.64 1.68 0.0483 +56736.30 1.81 0.05 +56736.56 1.83 0.0527 +56736.90 1.86 0.0537 +56737.51 1.83 0.055 +56737.90 1.93 0.0581 +56738.23 1.96 0.0546 +56738.51 2.11 0.0639 +56738.90 2.01 0.0585 +56739.23 2.03 0.0566 +56739.59 2.1 0.0628 +56739.98 2.11 0.0595 +56740.32 2.14 0.0598 +56740.52 2.16 0.0617 +56740.91 2.14 0.0618 +56741.32 2.1 0.0596 +56741.51 2.23 0.0661 +56741.90 2.22 0.0633 +56742.23 2.17 0.0606 +56742.72 2.19 0.0655 +56742.96 2.26 0.064 +56743.37 2.35 0.0648 +56743.51 2.33 0.0674 +56744.44 2.3453 0.04459 +56744.51 2.47 0.0696 +56745.38 2.43 0.072 +56745.58 2.41 0.0701 +56745.90 2.48 0.0722 +56746.24 2.47 0.0698 +56746.57 2.46 0.072 +56746.90 2.4 0.069 +56747.70 2.48 0.0712 +56748.03 2.43 0.0698 +56748.51 2.48 0.0756 +56749.10 2.48 0.0697 +56749.38 2.48 0.0698 +56749.51 2.47 0.0732 +56750.45 2.47 0.0698 +56750.58 2.43 0.0705 +56751.57 2.45 0.0717 +56752.04 2.34 0.0683 +56752.63 2.43 0.0728 +56753.04 2.35 0.0676 +56753.36 2.31 0.0665 +56753.70 2.31 0.0692 +56753.91 2.23 0.0618 +56754.17 2.26 0.0636 +56754.37 2.2 0.0592 +56755.05 2.11 0.0616 +56755.37 2.12 0.0608 +56755.52 2.13 0.0611 +56756.10 2.12 0.0614 +56756.30 2.14 0.0605 +56757.30 2.18 0.0621 +56757.52 2.23 0.0621 +56757.98 2.19 0.0614 +56758.31 2.16 0.0604 +56758.52 2.18 0.0607 +56758.97 2.16 0.0597 +56759.23 2.11 0.0586 +56759.83 2.06 0.0572 +56759.97 1.96 0.0546 +56760.30 2.05 0.0569 +56761.04 2.04 0.057 +56761.83 2.15 0.0586 +56762.04 2.06 0.0574 +56762.30 2.16 0.0591 +56762.84 2.16 0.0643 +56763.05 2.05 0.0588 +56763.38 2.1 0.0588 +56763.52 2.01 0.0562 +56764.03 2.17 0.0596 +56764.38 2.1 0.0584 +56764.77 2.11 0.0604 +56765.12 2.1 0.0619 +56765.70 2.15 0.0647 +56766.10 2.13 0.0624 +56766.38 2.06 0.0629 +56766.72 2.08 0.0625 +56767.38 2.1 0.0611 +56768.45 2.23 0.0632 +56769.38 2.17 0.0614 +56770.51 2.12 0.0614 +56770.84 2.26 0.0641 +56771.18 2.25 0.0628 +56774.72 2.33 0.0713 +56774.92 2.36 0.0696 +56775.58 2.35 0.0661 +56776.04 2.28 0.0641 +56776.24 2.34 0.063 +56776.97 2.32 0.0645 +56777.37 2.25 0.0629 +56777.52 2.19 0.0641 +56778.59 2.26 0.0656 +56779.38 2.24 0.0665 +56779.78 2.2 0.0614 +56779.85 2.24 0.0635 +56780.25 2.27 0.0646 +56780.52 2.19 0.0667 +56780.59 2.25 0.0672 +56782.10 2.26 0.0646 +56782.31 2.16 0.0599 +56782.70 2.22 0.0646 +56782.98 2.22 0.0646 +56783.37 2.25 0.0665 +56783.56 2.2 0.0643 +56783.96 2.27 0.065 +56785.04 2.22 0.0657 +56785.56 2.34 0.0678 +56786.36 2.31 0.0643 +56786.97 2.19 0.0634 +56787.31 2.28 0.0637 +56787.71 2.31 0.0682 +56787.98 2.26 0.0656 +56788.30 2.35 0.0683 +56789.04 2.28 0.064 +56789.31 2.14 0.0597 +56789.65 2.22 0.0663 +56789.96 2.25 0.064 +56790.63 2.16 0.0626 +56791.03 2.25 0.065 +56791.63 2.08 0.0612 +56791.96 2.1 0.0591 +56792.37 2.22 0.0645 +56792.84 2.2 0.0614 +56793.84 2.2 0.0614 +56794.25 2.31 0.0679 +56794.69 2.21 0.0676 +56795.36 2.21 0.0678 +56795.89 2.24 0.0624 +56796.89 2.2 0.0625 +56797.22 2.26 0.0619 +56798.22 2.28 0.0642 +56798.51 2.31 0.0684 +56798.89 2.21 0.0627 +56799.22 2.23 0.0603 +56799.56 2.32 0.0635 +56800.02 2.21 0.0597 +56800.36 2.25 0.0655 +56800.82 2.18 0.0603 +56801.09 2.19 0.0611 +56802.09 2.2 0.0585 +56802.63 2.22 0.0592 +56802.89 2.2 0.0663 +56803.63 2.17 0.0614 +56804.23 2.18 0.0614 +56805.09 2.22 0.0648 +56805.97 2.22 0.0614 +56806.37 2.26 0.0625 +56806.89 2.29 0.0645 +56807.22 2.23 0.0618 +56807.89 2.27 0.0642 +56808.55 2.29 0.0645 +56808.89 2.39 0.0674 +56809.22 2.21 0.0653 +56809.89 2.25 0.0638 +56810.22 2.35 0.0679 +56810.55 2.3 0.0651 +56810.89 2.28 0.0645 +56811.22 2.28 0.07 +56812.02 2.28 0.0662 +56812.37 2.31 0.067 +56812.55 2.28 0.0655 +56812.89 2.22 0.0643 +56813.22 2.28 0.0675 +56813.55 2.28 0.0662 +56813.97 2.3 0.0639 +56814.37 2.26 0.0629 +56814.55 2.39 0.0725 +56814.62 2.3 0.0629 +56815.69 2.38 0.0691 +56815.95 2.45 0.0726 +56816.23 2.49 0.0717 +56817.62 2.54 0.0691 +56818.09 2.53 0.0644 +56818.24 2.44 0.0706 +56818.70 2.66 0.0787 +56818.96 2.66 0.0749 +56819.69 2.61 0.0758 +56820.22 2.63 0.0759 +56820.57 2.53 0.0737 +56820.63 2.59 0.0753 +56820.69 2.59 0.0745 +56821.90 2.57 0.0724 +56822.36 2.64 0.076 +56823.15 2.65 0.0784 +56823.29 2.56 0.0721 +56824.62 2.52 0.0746 +56825.36 2.5 0.0718 +56825.55 2.51 0.0707 +56825.95 2.53 0.0611 +56826.43 2.4 0.0704 +56826.76 2.43 0.0702 +56827.03 2.33 0.0659 +56827.43 2.35 0.0679 +56827.88 2.36 0.0666 +56828.15 2.43 0.0701 +56828.42 2.33 0.0674 +56828.55 2.36 0.0589 +56829.01 2.35 0.0679 +56829.81 2.17 0.0647 +56830.15 2.3 0.0653 +56830.42 2.29 0.0657 diff --git a/lag/data/lc/3471A.lc b/lag/data/lc/3471A.lc new file mode 100644 index 0000000..4955aa7 --- /dev/null +++ b/lag/data/lc/3471A.lc @@ -0,0 +1,144 @@ +56693.79 2.1677 0.0044078 +56694.77 2.1599 0.0079945 +56695.71 2.1757 0.0051169 +56696.73 2.2242 0.0042376 +56696.98 2.2452 0.18008 +56697.76 2.2883 0.0053977 +56698.61 2.3247 0.030894 +56698.72 2.3002 0.0047639 +56699.72 2.2876 0.0094453 +56700.69 2.3071 0.0088749 +56701.57 2.2122 0.0059464 +56701.82 2.4225 0.1715 +56702.64 2.2726 0.017574 +56703.02 2.4725 0.15059 +56703.93 2.4755 0.13439 +56704.84 2.3187 0.097634 +56705.95 2.6157 0.10671 +56706.98 2.2716 0.16374 +56708.02 2.2756 0.13991 +56709.83 2.1826 0.13644 +56710.66 2.2075 0.0044816 +56711.02 2.2089 0.15052 +56711.69 2.1863 0.016895 +56711.84 2.1701 0.1367 +56713.73 2.134 0.0078413 +56713.83 2.1865 0.17049 +56714.73 2.109 0.0037531 +56715.91 2.0072 0.10519 +56716.66 2.0167 0.0057836 +56717.73 1.9664 0.0067365 +56717.96 1.723 0.20304 +56718.67 1.8798 0.0059857 +56719.71 1.9024 0.004336 +56721.71 1.7383 0.006951 +56722.73 1.713 0.0071469 +56723.57 1.6783 0.0059301 +56725.53 1.6218 0.0042657 +56728.57 1.6711 0.0056352 +56729.49 1.6266 0.005288 +56730.53 1.6813 0.0052699 +56730.83 1.7027 0.102 +56732.49 1.6453 0.0071457 +56733.48 1.6586 0.0069863 +56733.80 1.6871 0.067761 +56735.86 1.6879 0.16934 +56736.50 1.9048 0.006132 +56736.78 1.9526 0.10602 +56737.48 1.978 0.005661 +56738.60 2.0516 0.0070037 +56740.61 2.285 0.0069839 +56740.85 2.0833 0.25729 +56741.61 2.2579 0.007974 +56741.71 2.133 0.18256 +56742.65 2.2899 0.0096003 +56743.59 2.4381 0.00661 +56744.53 2.4168 0.0077558 +56744.55 2.315 0.035924 +56744.69 2.3546 0.17893 +56746.75 2.5167 0.12237 +56748.74 2.2943 0.17386 +56749.75 2.436 0.12729 +56752.58 2.5269 0.0064085 +56753.57 2.4566 0.006318 +56754.55 2.3137 0.0060686 +56755.56 2.2095 0.0073075 +56755.98 2.1882 0.074327 +56756.51 2.1821 0.0080689 +56757.48 2.4341 0.049831 +56759.80 2.365 0.13506 +56761.60 2.1636 0.0062522 +56762.82 2.1329 0.16439 +56763.50 2.1888 0.028338 +56763.75 2.3439 0.11814 +56764.81 2.1482 0.14967 +56765.58 2.2252 0.0053543 +56769.51 2.2955 0.0055734 +56770.52 2.3121 0.0060531 +56771.51 2.3754 0.0061272 +56772.49 2.3681 0.0074879 +56772.82 2.2652 0.19586 +56774.67 2.413 0.0054395 +56774.76 2.438 0.24643 +56775.54 2.4081 0.0074272 +56777.53 2.4293 0.0062355 +56778.49 2.4166 0.0062293 +56779.40 2.4066 0.044166 +56779.48 2.4009 0.0065195 +56779.82 2.3922 0.16181 +56780.49 2.4177 0.0061525 +56780.81 2.2426 0.17734 +56781.77 2.3784 0.16667 +56784.44 2.3946 0.006084 +56785.47 2.4275 0.0062609 +56786.48 2.3891 0.0068493 +56787.40 2.3515 0.0066317 +56794.46 2.3095 0.0058448 +56795.44 2.2944 0.0058571 +56796.44 2.2966 0.0063198 +56797.45 2.3738 0.006068 +56799.44 2.3687 0.0057405 +56800.44 2.3444 0.0057183 +56801.42 2.3554 0.0058702 +56802.43 2.3802 0.0062708 +56803.44 2.325 0.0062057 +56805.46 2.3441 0.0056428 +56807.43 2.3017 0.0064661 +56808.41 2.3826 0.0059285 +56809.42 2.3862 0.0062312 +56810.43 2.3786 0.0059799 +56811.41 2.3895 0.0058996 +56812.42 2.4643 0.0059413 +56813.40 2.4209 0.0058353 +56814.45 2.4687 0.0059653 +56815.40 2.4779 0.0061047 +56816.41 2.4829 0.0065244 +56817.41 2.5263 0.0064339 +56818.41 2.6172 0.0060593 +56819.41 2.6952 0.0062181 +56822.39 2.6553 0.006463 +56823.40 2.6752 0.0065362 +56825.41 2.6878 0.0066918 +56826.28 2.4821 0.058906 +56826.39 2.5315 0.0069938 +56827.39 2.498 0.0064606 +56828.39 2.521 0.0059082 +56829.21 2.6081 0.080286 +56829.40 2.4573 0.0061493 +56830.40 2.4421 0.0059538 +56832.43 2.4431 0.0060309 +56833.39 2.4515 0.0060598 +56834.39 2.4471 0.0061341 +56835.39 2.4178 0.0063638 +56839.32 2.3537 0.035948 +56841.41 2.4217 0.0064234 +56843.39 2.3533 0.0063614 +56845.41 2.3291 0.0062597 +56847.40 2.2276 0.0067848 +56858.38 2.2153 0.0065436 +56860.38 2.1712 0.0070403 +56861.38 2.2287 0.0061222 +56862.38 2.0584 0.0060925 +56863.38 2.1421 0.0059222 +56864.38 2.1867 0.0068518 +56865.38 2.2342 0.0068264 diff --git a/lag/data/lc/4368A.lc b/lag/data/lc/4368A.lc new file mode 100644 index 0000000..aa4c2c3 --- /dev/null +++ b/lag/data/lc/4368A.lc @@ -0,0 +1,147 @@ +56692.59 1.3947 0.033651 +56693.60 1.3947 0.041356 +56694.65 1.4068 0.024268 +56695.65 1.3933 0.050304 +56698.48 1.4342 0.0048547 +56699.49 1.4362 0.0042612 +56700.52 1.4354 0.0040935 +56701.58 1.4512 0.0031488 +56705.99 1.4578 0.0070934 +56707.0 1.4669 0.0051915 +56707.99 1.4616 0.0089918 +56708.58 1.4615 0.0043311 +56709.57 1.4465 0.0050586 +56710.54 1.4305 0.016089 +56710.60 1.3984 0.0043451 +56711.60 1.3934 0.02163 +56716.50 1.3108 0.0097109 +56721.02 1.2438 0.014317 +56721.49 1.2196 0.0087975 +56722.0 1.188 0.019795 +56722.49 1.1725 0.036041 +56723.47 1.1728 0.0076944 +56723.49 1.1683 0.036284 +56724.49 1.1447 0.035984 +56724.63 1.1488 0.02245 +56725.83 1.1225 0.021278 +56726.63 1.1462 0.021898 +56727.47 1.1691 0.0052306 +56727.50 1.1664 0.03653 +56727.60 1.1797 0.018761 +56728.62 1.1524 0.017815 +56729.61 1.1991 0.024086 +56730.57 1.141 0.016762 +56730.92 1.1838 0.017908 +56731.55 1.1688 0.044052 +56731.57 1.1694 0.022647 +56732.47 1.2054 0.021497 +56733.49 1.2236 0.023509 +56733.93 1.1974 0.015581 +56733.96 1.2041 0.016543 +56734.46 1.229 0.033607 +56735.48 1.2275 0.033157 +56735.56 1.2448 0.011814 +56736.93 1.3123 0.010324 +56736.96 1.3169 0.010201 +56737.46 1.3222 0.0025479 +56737.47 1.3289 0.029127 +56737.61 1.3191 0.012808 +56737.93 1.4122 0.038688 +56737.96 1.3381 0.0075688 +56738.47 1.3848 0.030241 +56738.58 1.3759 0.017609 +56739.33 1.3754 0.0071087 +56739.59 1.4194 0.020642 +56739.92 1.41215 0.00866015 +56740.58 1.4382 0.021553 +56741.53 1.4789 0.02885 +56741.91 1.4784 0.012176 +56742.47 1.4723 0.0070039 +56742.91 1.4635 0.01591 +56744.46 1.5363 0.0072214 +56745.86 1.529 0.014132 +56746.43 1.5839 0.029556 +56748.49 1.5921 0.0067385 +56750.36 1.5726 0.0087387 +56750.60 1.58 0.023698 +56751.54 1.5808 0.03789 +56752.43 1.5575 0.0067568 +56753.93 1.4857 0.010478 +56754.39 1.4565 0.0049408 +56755.44 1.4296 0.0051836 +56756.48 1.4459 0.026981 +56756.92 1.4666 0.0098597 +56757.36 1.4404 0.0027667 +56758.53 1.4621 0.021318 +56760.89 1.4062 0.0063377 +56762.45 1.4043 0.012021 +56763.85 1.4059 0.0059986 +56764.91 1.4103 0.0061889 +56765.32 1.4025 0.0033265 +56765.51 1.4241 0.010891 +56766.31 1.4166 0.0078491 +56769.85 1.4676 0.0098557 +56771.80 1.4916 0.0094539 +56772.81 1.5011 0.010391 +56778.46 1.5328 0.04788 +56780.78 1.4852 0.0099827 +56784.47 1.5248 0.034706 +56786.76 1.4982 0.0051841 +56787.82 1.4976 0.0051772 +56788.47 1.5172 0.012923 +56788.82 1.4932 0.0074413 +56792.49 1.4459 0.044731 +56793.50 1.499 0.024843 +56793.84 1.4805 0.0044748 +56795.50 1.4534 0.013504 +56795.77 1.4806 0.0099961 +56797.48 1.4879 0.013194 +56797.80 1.5104 0.012052 +56798.78 1.4916 0.012547 +56799.36 1.5146 0.05153 +56799.76 1.486 0.0099486 +56800.34 1.4926 0.0087852 +56800.45 1.4974 0.06266 +56801.41 1.4846 0.0071092 +56801.83 1.4789 0.011757 +56802.34 1.4922 0.00983 +56802.36 1.4952 0.032345 +56803.36 1.4992 0.010426 +56804.39 1.4939 0.0055301 +56804.76 1.4852 0.010283 +56805.78 1.4854 0.0091643 +56811.35 1.5102 0.006698 +56815.39 1.5515 0.0030784 +56817.39 1.5853 0.009272 +56817.42 1.5658 0.015331 +56818.37 1.5961 0.015792 +56819.43 1.5868 0.015267 +56820.33 1.6437 0.0041742 +56822.32 1.6245 0.0025825 +56823.36 1.6319 0.0032016 +56824.37 1.62635 0.0109763 +56825.40 1.608 0.0028948 +56825.43 1.6004 0.015385 +56827.39 1.5485 0.0052088 +56829.33 1.5125 0.0084753 +56831.30 1.4877 0.010661 +56832.30 1.4858 0.011003 +56834.35 1.5109 0.011089 +56834.40 1.5174 0.036405 +56835.40 1.4935 0.0054792 +56835.41 1.5018 0.032152 +56836.34 1.489 0.0075678 +56837.34 1.5005 0.0074576 +56837.41 1.5118 0.029164 +56839.36 1.491 0.005197 +56844.36 1.4689 0.0031776 +56845.28 1.4537 0.0047387 +56846.35 1.4406 0.0051653 +56848.29 1.4209 0.002773 +56850.33 1.4039 0.0047049 +56851.31 1.3763 0.0017419 +56852.29 1.3853 0.0027831 +56853.30 1.3591 0.003454 +56854.29 1.3416 0.0029901 +56857.27 1.3984 0.0074255 +56858.29 1.4287 0.0036334 diff --git a/lag/data/lc/4392A.lc b/lag/data/lc/4392A.lc new file mode 100644 index 0000000..f471dd7 --- /dev/null +++ b/lag/data/lc/4392A.lc @@ -0,0 +1,270 @@ +56698.36 1.49 0.0347 +56699.56 1.51 0.0369 +56702.42 1.5 0.0373 +56706.49 1.46 0.0359 +56708.23 1.46 0.0354 +56709.57 1.4 0.0447 +56710.11 1.47 0.0408 +56710.17 1.4 0.0398 +56710.64 1.42 0.0388 +56711.02 1.47 0.0419 +56711.36 1.4 0.0425 +56712.09 1.36 0.0371 +56713.23 1.41 0.0403 +56713.51 1.36 0.0382 +56713.96 1.36 0.0396 +56714.23 1.44 0.0399 +56714.51 1.41 0.0406 +56715.04 1.38 0.0396 +56715.64 1.35 0.0386 +56717.04 1.33 0.0378 +56718.37 1.28 0.0341 +56718.64 1.24 0.0359 +56719.71 1.32 0.0359 +56720.10 1.29 0.0387 +56720.38 1.29 0.0342 +56720.64 1.27 0.0369 +56720.97 1.28 0.0349 +56721.38 1.21 0.0327 +56721.57 1.23 0.0357 +56722.37 1.21 0.0332 +56722.84 1.21 0.0354 +56723.11 1.19 0.0338 +56723.44 1.25 0.0343 +56723.90 1.16 0.0332 +56724.45 1.19 0.033 +56724.57 1.21 0.0347 +56724.83 1.16 0.0343 +56725.17 1.17 0.0336 +56725.30 1.17 0.0333 +56725.64 1.19 0.0342 +56726.03 1.18 0.0367 +56726.31 1.18 0.0313 +56727.03 1.2342 0.025186 +56727.31 1.21 0.0315 +56727.51 1.16 0.0343 +56727.85 1.23 0.0346 +56728.58 1.26 0.0346 +56728.85 1.26 0.0338 +56729.64 1.2 0.0336 +56730.04 1.18 0.034 +56730.37 1.22 0.0329 +56730.63 1.22 0.0326 +56730.96 1.21 0.0325 +56731.37 1.22 0.0317 +56731.63 1.18 0.0321 +56732.05 1.22 0.0335 +56732.37 1.24 0.0324 +56732.72 1.3 0.0348 +56732.98 1.22 0.0327 +56733.23 1.26 0.0328 +56733.58 1.23 0.0333 +56733.97 1.24 0.0332 +56734.24 1.22 0.031 +56734.51 1.27 0.0349 +56734.90 1.25 0.0348 +56735.30 1.32 0.0337 +56735.64 1.24 0.034 +56736.30 1.33 0.0347 +56736.56 1.34 0.0368 +56736.90 1.29 0.0357 +56737.51 1.38 0.0397 +56737.90 1.34 0.0389 +56738.23 1.35 0.0356 +56738.51 1.38 0.0405 +56738.90 1.43 0.0398 +56739.23 1.43 0.0376 +56739.59 1.41 0.0406 +56739.98 1.48 0.0396 +56740.32 1.49 0.0394 +56740.52 1.44 0.0393 +56740.91 1.49 0.0408 +56741.32 1.44 0.0389 +56741.51 1.45 0.0414 +56741.90 1.53 0.0414 +56742.23 1.52 0.0399 +56742.72 1.5 0.0429 +56742.97 1.52 0.0408 +56743.37 1.53 0.0399 +56743.51 1.51 0.0416 +56744.44 1.5908 0.028132 +56744.51 1.55 0.0414 +56745.38 1.65 0.0464 +56745.58 1.6 0.0443 +56745.90 1.61 0.0446 +56746.24 1.57 0.0421 +56746.57 1.56 0.0436 +56746.90 1.6 0.0435 +56747.70 1.62 0.044 +56748.03 1.64 0.0445 +56748.51 1.59 0.0466 +56749.10 1.61 0.0426 +56749.38 1.58 0.0422 +56749.51 1.65 0.0466 +56750.45 1.66 0.0441 +56750.58 1.63 0.0448 +56751.57 1.6 0.0446 +56752.04 1.58 0.0437 +56752.63 1.57 0.0451 +56753.04 1.57 0.0427 +56753.37 1.5 0.041 +56753.70 1.47 0.0425 +56753.91 1.52 0.0398 +56754.17 1.49 0.0398 +56754.37 1.53 0.0384 +56755.05 1.45 0.0404 +56755.37 1.47 0.0402 +56755.52 1.45 0.0396 +56756.10 1.41 0.0393 +56756.30 1.44 0.0387 +56756.77 1.46 0.041 +56757.30 1.46 0.0394 +56757.52 1.43 0.0378 +56757.98 1.51 0.0401 +56758.31 1.46 0.0387 +56758.52 1.49 0.0391 +56758.97 1.4 0.0367 +56759.23 1.43 0.0376 +56759.83 1.49 0.0389 +56759.97 1.4 0.0369 +56760.30 1.43 0.0374 +56761.04 1.42 0.0375 +56761.83 1.5 0.0383 +56762.04 1.48 0.0388 +56762.30 1.45 0.0374 +56762.84 1.43 0.0409 +56763.05 1.43 0.0391 +56763.38 1.42 0.0379 +56763.52 1.41 0.0374 +56764.04 1.47 0.038 +56764.38 1.49 0.0389 +56764.77 1.42 0.0386 +56765.12 1.44 0.0406 +56765.70 1.49 0.0431 +56766.10 1.45 0.0406 +56766.38 1.41 0.0418 +56766.72 1.46 0.042 +56767.38 1.49 0.0414 +56768.45 1.45 0.039 +56769.38 1.47 0.0395 +56770.51 1.47 0.0408 +56770.85 1.51 0.0407 +56771.18 1.5 0.0397 +56774.72 1.56 0.0458 +56774.92 1.51 0.0822 +56775.58 1.52 0.0406 +56776.04 1.53 0.0407 +56776.24 1.53 0.0387 +56776.97 1.58 0.0414 +56777.37 1.56 0.0412 +56777.52 1.5 0.0419 +56778.59 1.52 0.042 +56779.38 1.56 0.0442 +56779.85 1.48 0.0401 +56780.25 1.51 0.0409 +56780.52 1.58 0.046 +56780.59 1.57 0.0447 +56782.10 1.46 0.0397 +56782.31 1.54 0.0402 +56782.71 1.52 0.042 +56782.98 1.49 0.0413 +56783.37 1.49 0.0423 +56783.56 1.48 0.0414 +56783.96 1.57 0.0425 +56785.04 1.49 0.0422 +56785.56 1.51 0.0418 +56786.36 1.56 0.0409 +56786.97 1.54 0.0424 +56787.31 1.53 0.0403 +56787.71 1.5 0.0423 +56787.98 1.54 0.0425 +56788.30 1.53 0.0424 +56789.04 1.52 0.0403 +56789.31 1.52 0.04 +56789.65 1.48 0.0426 +56789.97 1.53 0.0413 +56790.63 1.46 0.0403 +56791.04 1.52 0.0419 +56791.63 1.48 0.0416 +56791.96 1.53 0.0406 +56792.37 1.55 0.0427 +56792.51 1.47 0.0437 +56792.84 1.63 0.0425 +56793.84 1.53 0.0401 +56794.25 1.49 0.0419 +56794.69 1.51 0.0447 +56795.36 1.48 0.044 +56795.89 1.5 0.0396 +56796.89 1.52 0.0411 +56797.23 1.49 0.0503 +56798.51 1.57 0.0444 +56798.89 1.47 0.0396 +56799.22 1.5 0.038 +56799.56 1.61 0.0412 +56800.02 1.48 0.0376 +56800.36 1.52 0.0422 +56800.83 1.53 0.04 +56801.10 1.52 0.0401 +56802.09 1.54 0.0381 +56802.63 1.55 0.0385 +56802.89 1.56 0.0449 +56803.63 1.49 0.04 +56804.23 1.57 0.0416 +56805.09 1.52 0.0425 +56805.97 1.54 0.0401 +56806.37 1.52 0.0396 +56806.89 1.54 0.041 +56807.22 1.56 0.0406 +56807.89 1.53 0.041 +56808.55 1.47 0.0393 +56808.89 1.55 0.0415 +56809.22 1.52 0.0426 +56809.89 1.59 0.0425 +56810.22 1.58 0.0435 +56810.55 1.49 0.0402 +56810.89 1.58 0.0423 +56811.22 1.52 0.0449 +56811.75 1.52 0.0417 +56812.02 1.63 0.0449 +56812.37 1.58 0.0436 +56812.55 1.55 0.0423 +56812.89 1.6 0.0439 +56813.22 1.56 0.0443 +56813.55 1.56 0.0432 +56813.97 1.59 0.0414 +56814.37 1.61 0.042 +56814.55 1.58 0.046 +56814.62 1.61 0.0411 +56815.69 1.6 0.0442 +56815.95 1.62 0.0458 +56816.23 1.61 0.0439 +56817.62 1.67 0.0425 +56818.09 1.71 0.0398 +56818.24 1.72 0.0471 +56818.70 1.78 0.0498 +56818.96 1.66 0.044 +56819.69 1.65 0.0457 +56820.23 1.72 0.0468 +56820.57 1.79 0.049 +56820.64 1.69 0.0467 +56820.69 1.73 0.047 +56821.90 1.71 0.0453 +56822.36 1.67 0.0455 +56823.15 1.66 0.0468 +56823.29 1.67 0.0444 +56824.62 1.73 0.0486 +56825.36 1.65 0.0449 +56825.55 1.78 0.0469 +56825.95 1.59 0.0348 +56826.43 1.65 0.0459 +56826.76 1.64 0.0448 +56827.04 1.59 0.0423 +56827.43 1.58 0.0434 +56827.88 1.57 0.0421 +56828.15 1.59 0.0435 +56828.43 1.57 0.0431 +56828.55 1.61 0.0368 +56829.02 1.61 0.044 +56829.81 1.56 0.0445 +56830.15 1.54 0.0416 +56830.42 1.55 0.0423 diff --git a/lag/data/lc/4775A.lc b/lag/data/lc/4775A.lc new file mode 100644 index 0000000..061cf8d --- /dev/null +++ b/lag/data/lc/4775A.lc @@ -0,0 +1,171 @@ +56693.79 1.3556 0.0018012 +56694.77 1.3742 0.0027779 +56695.71 1.3882 0.0047708 +56696.25 1.3844 0.032561 +56696.73 1.3912 0.0020569 +56696.98 1.4217 0.018527 +56697.27 1.4114 0.023255 +56697.76 1.4082 0.0014072 +56698.25 1.4228 0.031321 +56698.61 1.4162 0.0086627 +56698.72 1.416 0.0016121 +56699.71 1.4234 0.0015308 +56700.69 1.4274 0.0087576 +56701.28 1.392 0.039884 +56701.57 1.4389 0.0016379 +56701.83 1.4246 0.01769 +56702.64 1.4293 0.0015642 +56703.01 1.4306 0.018669 +56703.88 1.4434 0.016975 +56704.84 1.4445 0.017139 +56705.95 1.4395 0.017397 +56706.98 1.4586 0.017364 +56708.02 1.4447 0.018355 +56709.25 1.3975 0.025656 +56709.83 1.4248 0.018702 +56710.66 1.3859 0.0053184 +56711.69 1.3688 0.001846 +56711.92 1.3312 0.022319 +56712.27 1.3782 0.045865 +56713.27 1.376 0.039367 +56713.72 1.3613 0.0014292 +56713.92 1.4009 0.018904 +56714.73 1.3515 0.0027151 +56715.28 1.3844 0.038556 +56715.83 1.3836 0.021491 +56716.66 1.3199 0.0065605 +56717.73 1.2958 0.0021769 +56717.95 1.2649 0.026928 +56718.67 1.293 0.0023803 +56719.60 1.2674 0.021553 +56720.69 1.2655 0.0022636 +56721.71 1.2395 0.0020276 +56722.74 1.2039 0.0023331 +56723.57 1.2086 0.0021431 +56724.53 1.2153 0.0020434 +56725.53 1.1918 0.001573 +56726.17 1.2 0.052623 +56727.15 1.1863 0.06233 +56728.58 1.2158 0.0018774 +56729.49 1.2158 0.0018336 +56730.54 1.2266 0.0017298 +56730.83 1.1981 0.044497 +56733.80 1.184 0.035437 +56734.48 1.255 0.0020904 +56735.50 1.2837 0.0021313 +56735.86 1.3019 0.053416 +56736.50 1.3646 0.0020129 +56736.77 1.2761 0.032299 +56740.86 1.4375 0.023473 +56741.61 1.415 0.0022229 +56741.71 1.4343 0.022541 +56743.59 1.4792 0.0022983 +56744.70 1.4929 0.020653 +56746.83 1.5082 0.021297 +56747.97 1.5504 0.02266 +56748.75 1.4933 0.019786 +56749.75 1.5101 0.017202 +56751.98 1.4874 0.018864 +56752.58 1.5141 0.0033156 +56753.58 1.4791 0.0030625 +56754.55 1.4521 0.0027433 +56755.56 1.4049 0.002122 +56755.98 1.4117 0.01964 +56756.48 1.4193 0.015837 +56757.14 1.4389 0.048528 +56757.47 1.4304 0.0092279 +56758.74 1.434 0.018826 +56759.88 1.4032 0.019818 +56760.20 1.3704 0.053731 +56761.60 1.3948 0.0020177 +56762.47 1.4264 0.0023044 +56762.78 1.4077 0.018136 +56763.56 1.4296 0.0021244 +56763.75 1.4258 0.017724 +56764.82 1.4209 0.017879 +56765.04 1.4136 0.041984 +56765.58 1.4012 0.0021774 +56765.87 1.4106 0.018453 +56770.53 1.4266 0.0029852 +56770.78 1.4534 0.017933 +56771.51 1.4615 0.0030284 +56772.08 1.4842 0.037162 +56772.50 1.4555 0.0023008 +56772.82 1.4586 0.01994 +56773.83 1.4698 0.01858 +56774.76 1.4682 0.023826 +56775.55 1.4881 0.0021703 +56776.07 1.5082 0.026499 +56777.02 1.4913 0.048642 +56777.53 1.4646 0.0028533 +56778.50 1.4665 0.002608 +56779.40 1.4657 0.011854 +56779.49 1.465 0.0025238 +56779.85 1.4536 0.01926 +56780.49 1.4625 0.0029884 +56780.82 1.4588 0.019312 +56781.49 1.4633 0.0030656 +56782.45 1.4378 0.002792 +56782.74 1.4478 0.020494 +56783.45 1.4521 0.0028214 +56784.44 1.4749 0.0032331 +56785.47 1.4874 0.0029764 +56786.48 1.4684 0.0028576 +56787.40 1.4572 0.002205 +56790.46 1.4528 0.0020048 +56793.46 1.4617 0.002066 +56794.46 1.4552 0.0028249 +56795.44 1.4342 0.0035353 +56796.45 1.4478 0.0037027 +56797.45 1.4572 0.0038895 +56798.44 1.4722 0.0034131 +56799.44 1.4602 0.0032299 +56800.44 1.4572 0.0032292 +56801.43 1.4536 0.0034059 +56802.44 1.4516 0.0021506 +56803.44 1.4539 0.0029914 +56805.46 1.4516 0.0032424 +56806.43 1.4541 0.0023379 +56807.43 1.4455 0.0022998 +56808.41 1.4658 0.0029973 +56809.43 1.4679 0.0030522 +56810.43 1.4644 0.0036251 +56813.40 1.4582 0.0032039 +56814.45 1.4841 0.0028946 +56815.40 1.5082 0.0031475 +56816.41 1.5101 0.0032889 +56816.64 1.4827 0.017415 +56817.41 1.5363 0.0028181 +56817.83 1.5248 0.023106 +56818.41 1.5298 0.0025621 +56819.41 1.5733 0.0025888 +56822.39 1.574 0.0029131 +56823.41 1.5714 0.0033928 +56824.40 1.5753 0.0032094 +56825.41 1.5723 0.003941 +56826.29 1.538 0.012682 +56826.39 1.5305 0.003586 +56827.40 1.5166 0.0034523 +56828.40 1.5059 0.0031421 +56829.41 1.4761 0.0033231 +56830.40 1.4707 0.0036825 +56831.39 1.4668 0.0033127 +56832.44 1.4649 0.0030247 +56833.40 1.4757 0.002763 +56834.39 1.4909 0.0027646 +56835.39 1.4627 0.0028351 +56837.23 1.4685 0.012595 +56839.33 1.4648 0.010757 +56841.41 1.4786 0.0030831 +56843.39 1.4545 0.0030295 +56845.41 1.4491 0.0031735 +56847.40 1.4168 0.0022144 +56848.85 1.3626 0.057652 +56858.39 1.4099 0.0033488 +56860.39 1.4178 0.0033028 +56861.38 1.4088 0.0027736 +56862.39 1.4014 0.0035174 +56863.38 1.3759 0.0026065 +56864.38 1.3922 0.0034208 +56864.69 1.3747 0.024862 +56865.38 1.4296 0.0033445 diff --git a/lag/data/lc/5404A.lc b/lag/data/lc/5404A.lc new file mode 100644 index 0000000..63b9355 --- /dev/null +++ b/lag/data/lc/5404A.lc @@ -0,0 +1,419 @@ +56692.87 1.3015 0.011448 +56693.83 1.2926 0.0049648 +56693.89 1.3128 0.0078165 +56697.55 1.334 0.0068248 +56697.82 1.3304 0.0050462 +56697.83 1.3275 0.0081106 +56698.53 1.3372 0.0039742 +56699.47 1.348 0.0031266 +56700.50 1.3461 0.0033659 +56701.0 1.3684 0.02324 +56701.03 1.3498 0.0055328 +56701.56 1.3462 0.0023048 +56701.82 1.3487 0.0035889 +56701.83 1.3423 0.0053838 +56701.98 1.3657 0.02688 +56702.53 1.3479 0.0028322 +56702.81 1.3469 0.003563 +56703.86 1.3542 0.0069003 +56704.80 1.3734 0.0043926 +56705.86 1.3553 0.0049159 +56706.85 1.362 0.0048569 +56707.01 1.3484 0.003506 +56707.88 1.3807 0.0057964 +56708.00 1.3554 0.0032078 +56708.62 1.3492 0.0035231 +56708.89 1.3725 0.027551 +56708.92 1.3251 0.0089579 +56709.00 1.348 0.0030869 +56709.59 1.3372 0.0026157 +56709.81 1.3395 0.0036601 +56709.86 1.3528 0.0054787 +56709.96 1.3615 0.0051558 +56710.01 1.3274 0.0032491 +56710.47 1.3308 0.0037517 +56710.93 1.3328 0.022782 +56711.01 1.3038 0.00582 +56711.80 1.3381 0.0081593 +56711.89 1.3472 0.034579 +56712.00 1.3301 0.0052106 +56712.21 1.3331 0.0072942 +56712.91 1.3439 0.030065 +56713.20 1.3173 0.0068688 +56713.82 1.3168 0.0058476 +56714.21 1.3016 0.011241 +56714.46 1.2988 0.0035496 +56715.03 1.3066 0.004806 +56715.54 1.3198 0.0076388 +56715.82 1.2902 0.007993 +56715.89 1.262 0.0064742 +56716.01 1.2929 0.0050264 +56716.85 1.2957 0.0089603 +56716.92 1.2496 0.0058402 +56717.90 1.2463 0.0065271 +56718.47 1.2464 0.004673 +56722.94 1.1669 0.0097179 +56723.45 1.1586 0.0041934 +56723.88 1.155 0.010313 +56725.86 1.1526 0.0093364 +56727.45 1.1572 0.0037123 +56729.83 1.187 0.01018 +56730.87 1.1873 0.0090512 +56730.92 1.193 0.0095081 +56731.88 1.1849 0.02929 +56731.89 1.2099 0.01134 +56732.50 1.2056 0.0025845 +56733.04 1.1503 0.025934 +56733.81 1.1726 0.0091736 +56734.87 1.2002 0.00905 +56734.94 1.2279 0.011022 +56735.78 1.266 0.0048115 +56735.94 1.2559 0.0033219 +56737.43 1.263 0.0019183 +56738.44 1.2825 0.0027635 +56738.99 1.3007 0.0036749 +56739.92 1.3332 0.0086062 +56739.93 1.334 0.0039549 +56739.95 1.3337 0.029216 +56740.97 1.3431 0.0058499 +56741.74 1.366 0.0054316 +56741.88 1.3491 0.0083328 +56741.92 1.3509 0.0049037 +56741.95 1.3447 0.0080607 +56742.44 1.366 0.0043412 +56742.92 1.3529 0.0065057 +56743.0 1.3745 0.0068076 +56744.44 1.3954 0.0042349 +56744.51 1.3805 0.0074291 +56744.94 1.3925 0.0052984 +56745.0 1.401 0.0065568 +56745.80 1.4134 0.0065152 +56745.87 1.4079 0.0047798 +56746.70 1.4183 0.0083507 +56748.47 1.4361 0.0037938 +56750.38 1.4405 0.0034363 +56752.41 1.4113 0.0040726 +56753.32 1.3975 0.0028203 +56753.50 1.3775 0.010844 +56753.94 1.38 0.0052644 +56753.99 1.3695 0.016217 +56754.37 1.3593 0.0030401 +56754.98 1.3435 0.025901 +56755.42 1.3508 0.0033019 +56755.53 1.3526 0.0089639 +56755.88 1.3509 0.0088153 +56756.73 1.3723 0.0053865 +56756.93 1.3581 0.0048345 +56756.98 1.3783 0.035785 +56757.34 1.3458 0.0017746 +56757.43 1.3627 0.0086038 +56757.96 1.3677 0.020351 +56758.47 1.3423 0.0072538 +56758.51 1.334 0.0059941 +56758.89 1.3447 0.008403 +56758.98 1.3535 0.010164 +56759.92 1.3569 0.023958 +56760.58 1.3436 0.0097197 +56760.94 1.3262 0.035314 +56761.52 1.3501 0.0090655 +56762.80 1.3461 0.0060227 +56765.94 1.3461 0.033987 +56766.38 1.3284 0.0018817 +56766.80 1.3143 0.0092455 +56766.94 1.3743 0.050313 +56767.01 1.3149 0.0080411 +56767.87 1.3192 0.00717 +56767.89 1.3304 0.0052311 +56767.94 1.315 0.021638 +56767.98 1.332 0.005041 +56768.33 1.3282 0.0040176 +56768.84 1.3465 0.0060648 +56768.96 1.3596 0.033962 +56769.26 1.3387 0.0049062 +56769.86 1.3582 0.0045895 +56769.95 1.3541 0.0085384 +56770.28 1.3525 0.0085955 +56770.68 1.3663 0.0062835 +56770.94 1.3552 0.008135 +56771.81 1.3759 0.0047685 +56772.46 1.3663 0.0089764 +56772.92 1.3807 0.010976 +56773.24 1.3796 0.0041614 +56773.69 1.393 0.0058436 +56774.27 1.3847 0.0046729 +56774.66 1.3935 0.0062883 +56775.28 1.3905 0.0054211 +56775.29 1.3945 0.01167 +56776.0 1.3863 0.010846 +56776.26 1.3858 0.0046827 +56777.25 1.38 0.0045377 +56777.70 1.3743 0.0058751 +56777.94 1.3753 0.007741 +56778.25 1.3797 0.005077 +56779.28 1.377 0.0047289 +56779.79 1.3711 0.014531 +56779.92 1.3627 0.01627685 +56780.23 1.3885 0.0097672 +56780.27 1.3756 0.0048822 +56780.66 1.3867 0.0058075 +56780.79 1.3784 0.0050084 +56780.83 1.3809 0.0086531 +56780.95 1.3817 0.0095931 +56781.25 1.374 0.0042705 +56781.70 1.3836 0.0058812 +56781.73 1.3764 0.00559 +56781.95 1.3693 0.013448 +56782.40 1.3729 0.0058877 +56782.70 1.3773 0.0053601 +56783.28 1.3675 0.0078533 +56783.64 1.3724 0.0057689 +56783.66 1.3691 0.0050301 +56783.89 1.3707 0.012399 +56784.64 1.3824 0.0054921 +56784.88 1.3779 0.0066715 +56785.64 1.3996 0.0065604 +56785.87 1.3928 0.0066786 +56785.93 1.3911 0.0093857 +56786.77 1.3852 0.0035248 +56786.94 1.356 0.0069573 +56787.27 1.3832 0.0057162 +56787.83 1.3766 0.0032015 +56787.92 1.3724 0.013669 +56788.26 1.3829 0.0061468 +56788.67 1.3824 0.0054235 +56788.83 1.3783 0.0030632 +56789.21 1.3636 0.006561 +56789.44 1.3774 0.008889 +56789.70 1.3707 0.0049077 +56789.83 1.375 0.026838 +56789.94 1.3681 0.0048667 +56790.28 1.3509 0.0044785 +56790.35 1.3611 0.0070892 +56791.77 1.3676 0.0082408 +56791.92 1.3482 0.0049296 +56792.67 1.3531 0.0050591 +56792.92 1.3594 0.0062627 +56793.57 1.3627 0.015681 +56793.66 1.3738 0.0053303 +56793.77 1.3749 0.0046879 +56793.85 1.3775 0.0026903 +56793.88 1.3728 0.018634 +56794.67 1.3723 0.0053666 +56794.88 1.3841 0.027585 +56795.31 1.3745 0.0078112 +56795.33 1.3616 0.0027357 +56795.63 1.3674 0.0061207 +56795.78 1.3711 0.0034213 +56795.88 1.3394 0.028858 +56795.92 1.36 0.0042821 +56796.31 1.361 0.0064659 +56796.67 1.3681 0.0061379 +56796.90 1.3624 0.0048217 +56797.55 1.3694 0.016301 +56797.72 1.379 0.005442 +56797.78 1.3628 0.0086234 +56797.81 1.377 0.0053755 +56798.64 1.3794 0.0059747 +56798.77 1.3784 0.0091392 +56798.79 1.36855 0.0062715 +56799.65 1.3753 0.0065277 +56799.67 1.3681 0.0050932 +56799.68 1.3752 0.009157 +56799.77 1.3756 0.0050314 +56799.79 1.3703 0.0053244 +56799.85 1.3758 0.022116 +56800.24 1.3715 0.0073715 +56800.38 1.3665 0.0033111 +56800.65 1.3722 0.00519 +56800.75 1.3744 0.0088254 +56800.87 1.3597 0.0157418 +56800.94 1.3792 0.012511 +56801.26 1.3591 0.0089859 +56801.42 1.3724 0.00348 +56801.71 1.3691 0.0059547 +56801.84 1.3795 0.0049688 +56801.95 1.3801 0.015074 +56802.30 1.3554 0.0093418 +56802.35 1.3722 0.0045033 +56802.85 1.3428 0.021998 +56802.88 1.3812 0.010211 +56803.33 1.3758 0.0073988 +56803.37 1.3674 0.0046999 +56803.74 1.3764 0.0050049 +56803.84 1.3644 0.029975 +56803.89 1.3792 0.012749 +56804.26 1.3611 0.0069258 +56804.39 1.37 0.0029551 +56804.77 1.3782 0.0072889 +56804.84 1.3662 0.019254 +56805.20 1.3772 0.0094701 +56805.54 1.3634 0.015812 +56805.79 1.3739 0.0044032 +56805.86 1.3639 0.029407 +56806.68 1.3728 0.006829 +56806.84 1.372 0.030215 +56806.88 1.3747 0.009996 +56807.69 1.3779 0.0068201 +56807.86 1.3631 0.01794 +56808.83 1.3696 0.023198 +56809.66 1.3907 0.0059947 +56809.84 1.3467 0.02882 +56810.33 1.3789 0.0070161 +56810.54 1.3849 0.017907 +56810.64 1.3913 0.0059442 +56810.80 1.3816 0.02084 +56811.33 1.3809 0.0042115 +56811.70 1.3891 0.006435 +56812.65 1.3849 0.0062972 +56812.71 1.384 0.0063394 +56812.89 1.3829 0.0085367 +56813.71 1.391 0.0059256 +56813.73 1.3868 0.0068236 +56813.76 1.386 0.0083673 +56814.67 1.3928 0.0063221 +56814.72 1.3947 0.0085586 +56814.77 1.3818 0.0087613 +56815.40 1.4064 0.0039732 +56815.65 1.4091 0.0060221 +56815.81 1.4064 0.0087731 +56816.68 1.4255 0.0087506 +56816.73 1.4043 0.0054766 +56817.33 1.4303 0.0086781 +56817.39 1.428 0.0031016 +56818.29 1.4372 0.0083655 +56818.31 1.4593 0.0027926 +56818.63 1.4522 0.0071968 +56818.81 1.4665 0.0098153 +56819.27 1.4654 0.013555 +56819.29 1.4906 0.010717 +56819.71 1.4803 0.010064 +56819.82 1.4911 0.0071611 +56820.74 1.4901 0.0090174 +56820.78 1.5003 0.030815 +56820.80 1.4904 0.0087232 +56821.32 1.4987 0.011388 +56821.35 1.4895 0.0025167 +56821.75 1.4662 0.026224 +56822.31 1.4688 0.0046507 +56822.68 1.4814 0.010671 +56823.35 1.473 0.0037618 +56823.75 1.4734 0.029445 +56824.40 1.4702 0.0030449 +56824.74 1.4709 0.027305 +56825.37 1.4637 0.0033362 +56825.75 1.448 0.0093566 +56826.65 1.418 0.0090934 +56826.66 1.4233 0.020881 +56826.68 1.4147 0.0067612 +56827.40 1.4199 0.0043768 +56827.61 1.409 0.019646 +56827.67 1.427 0.011259 +56827.77 1.4092 0.0088231 +56828.30 1.415 0.0121 +56828.78 1.4112 0.0084499 +56829.28 1.3952 0.019085 +56829.30 1.4059 0.0061908 +56829.75 1.3858 0.0093359 +56830.24 1.3956 0.013842 +56830.30 1.4003 0.010476 +56830.77 1.3954 0.0052657 +56831.27 1.4004 0.012263 +56831.28 1.3797 0.0070548 +56831.62 1.3797 0.017446 +56832.27 1.37815 0.0090954 +56832.48 1.3874 0.018162 +56832.82 1.3973 0.0083418 +56833.48 1.3831 0.017626 +56833.74 1.3906 0.021709 +56833.82 1.3821 0.0084434 +56834.32 1.3824 0.0074214 +56834.66 1.3851 0.0056076 +56835.38 1.3768 0.0035494 +56835.71 1.3733 0.027463 +56836.31 1.3756 0.004897 +56836.62 1.3788 0.017179 +56836.70 1.3605 0.0055677 +56836.72 1.3916 0.021277 +56836.81 1.3778 0.012697 +56837.31 1.3739 0.004824 +56837.62 1.3859 0.017927 +56837.65 1.3744 0.0056353 +56837.72 1.368 0.018514 +56837.77 1.3859 0.0096745 +56838.30 1.3979 0.012039 +56838.62 1.3857 0.0058049 +56838.75 1.361 0.021287 +56838.77 1.3808 0.0087214 +56839.34 1.3789 0.0033839 +56839.48 1.3825 0.01754 +56839.62 1.3799 0.0054273 +56839.69 1.387 0.0051112 +56839.72 1.3744 0.042714 +56839.75 1.3801 0.0093899 +56840.26 1.3708 0.010112 +56840.61 1.4005 0.02501 +56840.66 1.3846 0.0060476 +56840.70 1.3875 0.0057907 +56840.71 1.3753 0.026081 +56840.78 1.3917 0.008624 +56841.66 1.3786 0.0053893 +56841.72 1.3807 0.018952 +56841.83 1.3866 0.0086008 +56842.47 1.3824 0.017307 +56844.36 1.3669 0.0020477 +56844.69 1.3672 0.0054906 +56844.72 1.3902 0.018153 +56845.27 1.3633 0.0074113 +56845.28 1.3557 0.0020551 +56845.60 1.3446 0.025227 +56845.73 1.3597 0.020087 +56846.22 1.3734 0.0081665 +56846.24 1.3542 0.0082663 +56846.34 1.3607 0.001455 +56846.64 1.3618 0.0054481 +56846.79 1.3526 0.0083406 +56847.25 1.3568 0.0062722 +56847.66 1.3426 0.0054332 +56848.29 1.3465 0.0038539 +56848.63 1.3404 0.0057355 +56848.72 1.3505 0.030105 +56850.29 1.3339 0.0030655 +56850.33 1.3216 0.0077773 +56850.59 1.3275 0.025331 +56850.63 1.319 0.0074333 +56850.72 1.3237 0.033135 +56851.58 1.3061 0.025924 +56851.63 1.313 0.0052846 +56852.28 1.299 0.0019276 +56852.63 1.3141 0.0056779 +56853.31 1.2907 0.0017353 +56854.32 1.277 0.0021893 +56854.71 1.2509 0.032587 +56855.54 1.2734 0.028172 +56855.72 1.283 0.034354 +56855.76 1.2864 0.012566 +56856.70 1.2863 0.0192756 +56856.75 1.2787 0.0083519 +56857.27 1.3185 0.0074665 +56857.56 1.2979 0.027271 +56857.72 1.3241 0.028554 +56858.29 1.3301 0.0038614 +56858.71 1.3294 0.062865 +56859.30 1.3426 0.011231 +56860.63 1.3308 0.008094 +56860.73 1.3337 0.042759 +56861.20 1.3069 0.0078444 +56861.62 1.3213 0.0053736 +56861.67 1.2989 0.015693 +56861.69 1.2997 0.090132 +56862.69 1.2907 0.015882 +56862.70 1.3267 0.027009 +56863.24 1.2746 0.011061 +56863.63 1.3195 0.0088272 +56863.71 1.3322 0.021077 +56863.74 1.3161 0.025621 +56864.51 1.317 0.026839 +56864.63 1.311 0.0084238 +56864.70 1.3381 0.05612 +56865.63 1.3474 0.0089977 +56865.69 1.3945 0.028168 diff --git a/lag/data/lc/5468A.lc b/lag/data/lc/5468A.lc new file mode 100644 index 0000000..a68eb3f --- /dev/null +++ b/lag/data/lc/5468A.lc @@ -0,0 +1,259 @@ +56698.37 1.22 0.0344 +56706.49 1.24 0.0369 +56708.23 1.22 0.0358 +56709.57 1.23 0.0483 +56710.11 1.22 0.0416 +56710.17 1.18 0.0421 +56710.64 1.21 0.0404 +56711.03 1.11 0.04 +56711.36 1.15 0.0434 +56712.10 1.15 0.0387 +56713.23 1.21 0.0425 +56713.51 1.15 0.04 +56713.96 1.18 0.042 +56714.23 1.24 0.0418 +56714.51 1.15 0.0414 +56715.05 1.2 0.0423 +56717.04 1.15 0.04 +56718.37 1.1 0.0361 +56718.64 1.1 0.0391 +56719.71 1.18 0.0392 +56720.10 1.08 0.0404 +56720.38 1.14 0.037 +56720.64 1.06 0.0384 +56720.97 1.16 0.0384 +56721.38 1.04 0.035 +56721.57 1.12 0.0399 +56722.37 1.08 0.0365 +56722.85 1.08 0.0389 +56723.12 1.08 0.0375 +56723.45 1.03 0.035 +56723.90 1.04 0.0368 +56724.45 1.06 0.0364 +56724.57 1.11 0.0389 +56724.83 1.09 0.0395 +56725.17 1.04 0.0367 +56725.30 1.05 0.0371 +56725.64 1.07 0.0379 +56726.03 1.12 0.0425 +56726.32 1.08 0.0349 +56727.03 1.0764 0.027175 +56727.31 1.07 0.0342 +56727.51 1.07 0.0388 +56727.85 1.11 0.0383 +56728.58 1.08 0.0367 +56728.85 1.05 0.0348 +56729.65 1.13 0.0384 +56730.04 1.1 0.0385 +56730.38 1.07 0.0354 +56730.64 1.09 0.0358 +56730.97 1.08 0.0354 +56731.37 1.06 0.038 +56731.64 1.13 0.0372 +56732.05 1.08 0.0364 +56732.38 1.11 0.0354 +56732.72 1.07 0.0355 +56732.98 1.09 0.0357 +56733.24 1.1 0.0351 +56733.58 1.04 0.035 +56733.98 1.08 0.0355 +56734.24 1.06 0.0329 +56734.52 1.1 0.0372 +56734.90 1.13 0.0383 +56735.30 1.13 0.035 +56735.64 1.07 0.0363 +56735.98 1.03 0.0337 +56736.30 1.15 0.0365 +56736.57 1.1 0.0375 +56736.90 1.08 0.0371 +56737.52 1.2 0.0424 +56737.90 1.11 0.0401 +56738.24 1.14 0.037 +56738.52 1.19 0.043 +56738.90 1.19 0.0407 +56739.24 1.15 0.0374 +56739.59 1.17 0.0419 +56739.99 1.17 0.0386 +56740.32 1.25 0.0404 +56740.52 1.25 0.0415 +56740.92 1.23 0.0414 +56741.32 1.25 0.0407 +56741.52 1.24 0.0433 +56741.90 1.21 0.0403 +56742.24 1.21 0.0392 +56742.72 1.26 0.0441 +56742.97 1.27 0.0414 +56743.38 1.27 0.0402 +56743.52 1.29 0.0432 +56744.44 1.3054 0.027995 +56744.52 1.29 0.0421 +56745.38 1.28 0.0442 +56745.59 1.32 0.0445 +56745.91 1.32 0.0445 +56746.24 1.3 0.0423 +56746.58 1.28 0.0438 +56746.90 1.32 0.0438 +56747.70 1.33 0.0439 +56748.03 1.31 0.0434 +56748.51 1.28 0.0463 +56749.10 1.27 0.0414 +56749.38 1.31 0.0425 +56749.52 1.3 0.0452 +56750.45 1.33 0.043 +56750.58 1.24 0.0421 +56751.57 1.27 0.0436 +56752.04 1.25 0.0428 +56752.64 1.31 0.0461 +56753.04 1.27 0.0425 +56753.37 1.34 0.0442 +56753.70 1.28 0.0452 +56753.92 1.24 0.0397 +56754.17 1.25 0.0407 +56754.37 1.23 0.0378 +56755.05 1.29 0.0437 +56755.37 1.28 0.0424 +56755.52 1.2 0.0405 +56756.10 1.17 0.0401 +56756.31 1.15 0.0384 +56756.77 1.2 0.0414 +56757.30 1.28 0.042 +56757.52 1.16 0.0378 +56757.98 1.2 0.0393 +56758.31 1.26 0.0405 +56758.52 1.22 0.0391 +56758.97 1.21 0.0386 +56759.24 1.2 0.0384 +56759.84 1.23 0.0392 +56759.97 1.2 0.0385 +56760.30 1.24 0.0395 +56761.04 1.19 0.0384 +56761.84 1.22 0.0381 +56762.05 1.21 0.0389 +56762.31 1.16 0.0368 +56762.84 1.22 0.0429 +56763.05 1.22 0.0408 +56763.38 1.19 0.0389 +56763.52 1.22 0.0395 +56764.04 1.24 0.0392 +56764.39 1.19 0.0383 +56764.77 1.25 0.0414 +56765.12 1.21 0.042 +56765.70 1.22 0.0435 +56766.10 1.26 0.043 +56766.39 1.17 0.043 +56766.73 1.2 0.0428 +56767.39 1.22 0.0417 +56769.39 1.23 0.0405 +56770.51 1.19 0.0407 +56770.85 1.25 0.0413 +56771.18 1.3 0.0416 +56774.72 1.3 0.0469 +56775.58 1.21 0.0398 +56776.04 1.27 0.0412 +56776.24 1.28 0.0392 +56777.52 1.23 0.0422 +56778.59 1.24 0.0423 +56779.38 1.26 0.044 +56779.85 1.27 0.0417 +56780.25 1.26 0.0417 +56780.52 1.33 0.0473 +56780.59 1.27 0.0446 +56782.10 1.22 0.0409 +56782.31 1.23 0.0394 +56782.71 1.28 0.0432 +56782.98 1.24 0.0423 +56783.37 1.27 0.044 +56783.57 1.26 0.043 +56783.97 1.26 0.0419 +56785.04 1.26 0.0437 +56785.57 1.25 0.0426 +56786.37 1.25 0.0402 +56786.98 1.2 0.0409 +56787.31 1.26 0.0405 +56787.71 1.22 0.0428 +56787.98 1.26 0.0429 +56788.31 1.27 0.0431 +56789.05 1.28 0.0412 +56789.31 1.23 0.0397 +56789.65 1.29 0.045 +56789.97 1.25 0.0412 +56790.64 1.24 0.0419 +56791.64 1.21 0.0421 +56791.97 1.24 0.0403 +56792.37 1.24 0.0425 +56792.51 1.23 0.0451 +56792.85 1.3 0.0415 +56793.85 1.3 0.0413 +56794.25 1.24 0.0428 +56794.70 1.24 0.0453 +56795.36 1.3 0.0469 +56796.89 1.26 0.0416 +56798.51 1.28 0.0446 +56798.89 1.25 0.041 +56799.23 1.27 0.0391 +56799.56 1.24 0.039 +56800.03 1.23 0.0379 +56800.36 1.25 0.0426 +56800.83 1.23 0.0393 +56801.10 1.23 0.0396 +56802.10 1.22 0.037 +56802.63 1.29 0.0386 +56804.23 1.24 0.0403 +56805.09 1.25 0.0427 +56805.36 1.24 0.0409 +56805.98 1.25 0.0397 +56806.37 1.22 0.039 +56806.89 1.3 0.0421 +56807.23 1.28 0.0405 +56807.89 1.26 0.0414 +56808.56 1.2 0.0396 +56808.89 1.25 0.0411 +56809.22 1.31 0.044 +56809.89 1.33 0.043 +56810.22 1.27 0.0429 +56810.56 1.29 0.0421 +56810.89 1.29 0.042 +56811.22 1.24 0.0452 +56811.76 1.28 0.0428 +56812.02 1.31 0.044 +56812.37 1.27 0.0431 +56812.56 1.26 0.0424 +56813.23 1.24 0.0435 +56813.56 1.32 0.0443 +56813.97 1.29 0.0411 +56814.37 1.23 0.0397 +56814.56 1.32 0.047 +56814.63 1.34 0.0412 +56815.70 1.29 0.0436 +56815.96 1.3 0.0451 +56816.23 1.29 0.0433 +56817.63 1.31 0.0405 +56818.09 1.34 0.0376 +56818.24 1.31 0.0441 +56818.71 1.3 0.045 +56818.96 1.36 0.044 +56819.70 1.37 0.0459 +56820.23 1.42 0.0466 +56820.57 1.33 0.045 +56820.64 1.37 0.0459 +56820.69 1.35 0.0448 +56821.91 1.33 0.0431 +56822.37 1.33 0.0443 +56823.16 1.35 0.0465 +56823.30 1.31 0.0425 +56824.62 1.37 0.047 +56825.36 1.32 0.0439 +56825.55 1.36 0.0439 +56825.96 1.33 0.0346 +56826.43 1.36 0.046 +56826.76 1.29 0.0434 +56827.04 1.29 0.0422 +56827.43 1.33 0.0443 +56827.88 1.28 0.0417 +56828.15 1.32 0.044 +56828.43 1.28 0.0432 +56828.56 1.31 0.0357 +56829.02 1.31 0.0438 +56829.82 1.25 0.0439 +56830.15 1.25 0.0413 +56830.42 1.26 0.0421 diff --git a/lag/data/lc/6175A.lc b/lag/data/lc/6175A.lc new file mode 100644 index 0000000..803c2c7 --- /dev/null +++ b/lag/data/lc/6175A.lc @@ -0,0 +1,171 @@ +56693.79 1.5304 0.0010731 +56694.77 1.542 0.0023399 +56695.71 1.5483 0.0032219 +56696.73 1.5625 0.0012458 +56696.98 1.5768 0.008727 +56697.76 1.5663 0.0021267 +56698.25 1.5354 0.061018 +56698.61 1.5654 0.040809 +56698.72 1.5598 0.0067738 +56699.71 1.5659 0.0015572 +56700.60 1.5875 0.0085348 +56700.69 1.5835 0.0015467 +56701.57 1.5919 0.0028327 +56701.60 1.5744 0.0088521 +56701.83 1.5886 0.0082288 +56702.64 1.5818 0.0044214 +56703.02 1.5814 0.01016 +56704.84 1.5908 0.0085542 +56705.61 1.5918 0.0069049 +56705.95 1.5806 0.010258 +56706.98 1.6095 0.0087265 +56708.02 1.5907 0.010073 +56709.83 1.5854 0.0099859 +56710.66 1.5756 0.00092644 +56711.02 1.5831 0.012148 +56711.69 1.5626 0.0044413 +56711.92 1.5708 0.0088005 +56712.27 1.5731 0.039074 +56713.72 1.5518 0.003107 +56713.92 1.5678 0.0088717 +56714.73 1.5488 0.0038702 +56715.91 1.5459 0.014546 +56716.64 1.5424 0.010387 +56716.66 1.5293 0.0021776 +56717.73 1.5075 0.0022704 +56717.95 1.5415 0.021901 +56718.56 1.5165 0.023539 +56718.67 1.5025 0.0018707 +56719.60 1.4275 0.098168 +56721.71 1.4499 0.0013701 +56722.74 1.4419 0.001259 +56723.57 1.4425 0.0015329 +56728.58 1.416 0.0014365 +56729.49 1.4353 0.0014823 +56730.54 1.4283 0.0014335 +56730.83 1.4268 0.011391 +56732.49 1.4292 0.0010591 +56733.48 1.4443 0.00089428 +56733.80 1.4226 0.011349 +56734.48 1.4444 0.0010519 +56735.50 1.4529 0.0010809 +56735.86 1.4505 0.010589 +56736.50 1.4627 0.0012419 +56736.77 1.4674 0.010202 +56737.49 1.4839 0.0014325 +56740.86 1.5865 0.014744 +56741.61 1.5566 0.0013468 +56741.72 1.5858 0.01384 +56742.65 1.6059 0.0012955 +56743.58 1.5969 0.019854 +56743.60 1.6147 0.0019892 +56744.54 1.628 0.0020369 +56744.57 1.6281 0.070945 +56744.70 1.6036 0.013328 +56746.80 1.6134 0.0096335 +56747.96 1.6145 0.010659 +56748.76 1.6156 0.012206 +56749.75 1.6185 0.010001 +56751.98 1.6167 0.011392 +56752.16 1.6624 0.053472 +56755.56 1.5836 0.0016449 +56755.98 1.5916 0.010162 +56756.49 1.6135 0.076601 +56756.51 1.5956 0.0015297 +56757.14 1.5944 0.033012 +56758.75 1.5749 0.010607 +56759.89 1.5721 0.0096926 +56760.20 1.5828 0.028724 +56761.60 1.5567 0.0015441 +56762.78 1.5615 0.012026 +56763.76 1.5439 0.0096355 +56764.79 1.5523 0.013817 +56765.54 1.5505 0.0088584 +56765.58 1.5581 0.0018934 +56765.88 1.5456 0.024446 +56766.40 1.5875 0.011878 +56770.53 1.583 0.0024533 +56770.78 1.5873 0.0097424 +56771.51 1.5914 0.0024341 +56772.50 1.5963 0.0014657 +56772.83 1.5957 0.012014 +56773.39 1.5844 0.01686 +56773.83 1.5962 0.01037 +56774.76 1.6011 0.017435 +56775.41 1.5971 0.015511 +56775.55 1.6173 0.001634 +56776.08 1.6292 0.017462 +56777.53 1.623 0.0023679 +56778.50 1.6277 0.0025071 +56779.40 1.5975 0.059869 +56779.49 1.6049 0.0019692 +56779.85 1.6001 0.011646 +56780.49 1.6195 0.0025443 +56780.81 1.5992 0.011237 +56781.49 1.6092 0.0024733 +56782.45 1.5954 0.0022719 +56782.74 1.5929 0.012836 +56783.45 1.6069 0.0023223 +56784.44 1.6067 0.0023882 +56785.48 1.6031 0.0019389 +56786.48 1.6077 0.0018238 +56787.40 1.5971 0.0014984 +56790.46 1.5832 0.0014121 +56791.43 1.5833 0.0010205 +56794.46 1.5879 0.0023947 +56795.44 1.5825 0.0029154 +56796.45 1.5777 0.0030174 +56800.44 1.6182 0.0025827 +56801.43 1.5996 0.0021498 +56803.44 1.6003 0.0027713 +56805.46 1.5892 0.0024104 +56806.43 1.5932 0.0020715 +56807.43 1.5852 0.0016338 +56808.41 1.6037 0.0028909 +56809.43 1.6159 0.0022402 +56810.43 1.6153 0.0031418 +56811.42 1.6112 0.0029053 +56813.40 1.61 0.0029761 +56814.46 1.62 0.0027937 +56815.40 1.6261 0.0029174 +56816.27 1.6278 0.0073748 +56816.41 1.6279 0.0026668 +56816.64 1.6063 0.0094249 +56817.41 1.6348 0.0026817 +56817.83 1.6135 0.0087746 +56818.41 1.6427 0.0021216 +56819.41 1.6454 0.0020875 +56820.48 1.6782 0.0019164 +56821.24 1.7066 0.010637 +56822.40 1.6807 0.0025122 +56823.41 1.6921 0.0031519 +56824.40 1.6799 0.0032749 +56825.41 1.692 0.0031822 +56826.29 1.6503 0.053443 +56826.39 1.6573 0.0032291 +56827.40 1.6531 0.0031585 +56828.40 1.6394 0.0032611 +56829.41 1.628 0.0030643 +56830.40 1.6201 0.0034631 +56831.39 1.6149 0.003147 +56832.44 1.6239 0.0033012 +56833.40 1.6098 0.0027225 +56834.39 1.6105 0.0027488 +56835.39 1.6067 0.0031663 +56837.23 1.6185 0.053256 +56839.34 1.6228 0.046269 +56841.41 1.6193 0.0025718 +56842.25 1.6181 0.012388 +56843.22 1.6074 0.011288 +56843.39 1.6195 0.0030966 +56845.41 1.6098 0.0028955 +56848.85 1.5512 0.054319 +56858.39 1.5696 0.0032211 +56860.39 1.5604 0.0032847 +56861.39 1.5824 0.0027557 +56862.39 1.5644 0.0027052 +56863.38 1.5653 0.0028026 +56864.38 1.5683 0.0032917 +56864.69 1.5906 0.014082 +56865.38 1.5703 0.003081 +56865.63 1.5934 0.014295 diff --git a/lag/data/lc/6439A.lc b/lag/data/lc/6439A.lc new file mode 100644 index 0000000..c0635cc --- /dev/null +++ b/lag/data/lc/6439A.lc @@ -0,0 +1,133 @@ +56691.63 1.2688 0.0019957 +56692.59 1.3017 0.023046 +56693.60 1.2992 0.020369 +56696.60 1.2726 0.021202 +56697.56 1.3003 0.0042606 +56698.54 1.3226 0.0034718 +56699.47 1.3201 0.002499 +56700.50 1.3069 0.0024999 +56701.56 1.3122 0.0081561 +56702.54 1.3244 0.002033 +56708.57 1.3378 0.0018252 +56709.55 1.3261 0.0027637 +56710.48 1.3216 0.0025764 +56710.54 1.3145 0.015827 +56716.48 1.258 0.0035746 +56721.47 1.2182 0.002851 +56723.46 1.1805 0.0018707 +56725.87 1.1738 0.0072591 +56727.45 1.1726 0.0027081 +56730.92 1.2004 0.0062157 +56737.44 1.2511 0.0028873 +56737.61 1.2281 0.019671 +56738.45 1.2735 0.001935 +56738.58 1.2461 0.020741 +56739.31 1.2807 0.0024071 +56739.92 1.2798 0.0064744 +56740.58 1.2562 0.022429 +56741.53 1.3351 0.022079 +56741.82 1.301 0.0041112 +56742.45 1.3194 0.0030607 +56744.44 1.3461 0.0026464 +56746.43 1.4111 0.02069 +56748.47 1.3902 0.0021973 +56748.54 1.4042 0.019608 +56750.35 1.398 0.0031287 +56750.60 1.4055 0.02164 +56751.54 1.3973 0.02789 +56752.41 1.3878 0.0042333 +56753.36 1.3772 0.0033446 +56754.37 1.3561 0.0030466 +56755.43 1.3402 0.0022522 +56755.88 1.335 0.0044227 +56757.34 1.3503 0.0023647 +56758.44 1.317 0.0027139 +56758.53 1.3227 0.019807 +56758.88 1.3163 0.0038922 +56763.43 1.2829 0.014517 +56765.51 1.3025 0.013861 +56766.29 1.3115 0.002751 +56774.53 1.3661 0.02031 +56778.81 1.3226 0.0042003 +56779.79 1.3366 0.0046196 +56780.83 1.339 0.004003 +56784.47 1.3433 0.024146 +56788.47 1.3389 0.013393 +56791.77 1.3306 0.0034794 +56792.80 1.3046 0.0042505 +56795.50 1.2926 0.01458 +56797.30 1.3426 0.009419 +56797.47 1.2947 0.021245 +56797.78 1.3269 0.0041007 +56798.77 1.3371 0.0041468 +56799.36 1.3553 0.027743 +56799.68 1.3374 0.0041311 +56800.46 1.3468 0.025034 +56800.77 1.3392 0.0038458 +56801.43 1.3423 0.0021901 +56802.36 1.3567 0.023771 +56802.40 1.3327 0.0086631 +56803.22 1.3405 0.0091857 +56803.34 1.3438 0.0042479 +56804.40 1.3411 0.0026984 +56804.79 1.3373 0.0038581 +56805.44 1.3355 0.027686 +56806.41 1.3165 0.018669 +56807.37 1.32 0.016693 +56808.74 1.3216 0.0054774 +56810.34 1.3344 0.0044912 +56811.34 1.3467 0.0035194 +56812.80 1.3474 0.0039135 +56813.79 1.3489 0.0039439 +56814.72 1.3446 0.0042879 +56815.41 1.3513 0.0076174 +56817.39 1.3814 0.0026763 +56817.42 1.3508 0.015537 +56818.37 1.4322 0.01803 +56818.81 1.4003 0.0052857 +56819.43 1.3783 0.014352 +56820.81 1.4233 0.0070262 +56821.73 1.4386 0.0064871 +56822.31 1.4059 0.0040318 +56822.40 1.4163 0.016233 +56823.35 1.4074 0.0017815 +56824.37 1.4177 0.01035085 +56825.41 1.4158 0.0046769 +56825.43 1.4293 0.02846 +56827.38 1.3926 0.0027796 +56827.77 1.3716 0.0049506 +56828.80 1.3712 0.0060794 +56829.31 1.3782 0.0038435 +56831.29 1.3351 0.0046522 +56831.47 1.3606 0.019864 +56832.28 1.3442 0.0044328 +56832.80 1.356 0.0042153 +56833.82 1.3595 0.0042187 +56834.33 1.346 0.0049128 +56835.36 1.3611 0.0030915 +56836.32 1.3521 0.0029733 +56836.81 1.3378 0.0078432 +56837.32 1.3501 0.0030099 +56837.79 1.3576 0.0050405 +56838.77 1.3577 0.0046788 +56839.32 1.356 0.0029911 +56839.75 1.349 0.0043343 +56840.78 1.364 0.0046477 +56841.83 1.3634 0.0085268 +56844.36 1.353 0.0033987 +56845.28 1.3433 0.0014186 +56846.34 1.3384 0.0018309 +56846.78 1.3473 0.0052071 +56848.29 1.3091 0.0012573 +56850.30 1.3133 0.0014752 +56852.28 1.299 0.0025985 +56853.31 1.2927 0.0016604 +56854.31 1.2791 0.001436 +56855.76 1.2647 0.0044586 +56856.24 1.2705 0.0079139 +56856.75 1.2803 0.0054792 +56857.26 1.2788 0.0026603 +56858.29 1.298 0.0024266 +56859.32 1.3162 0.0036186 +56861.74 1.3241 0.0040494 +56863.74 1.3262 0.0034804 diff --git a/lag/data/lc/7647A.lc b/lag/data/lc/7647A.lc new file mode 100644 index 0000000..0a69e2d --- /dev/null +++ b/lag/data/lc/7647A.lc @@ -0,0 +1,177 @@ +56693.79 0.99818 0.0010832 +56694.77 1.0013 0.0011449 +56695.71 1.0108 0.0010735 +56696.73 1.0136 0.0013874 +56696.98 1.0183 0.0036828 +56697.76 1.0152 0.0015205 +56698.72 1.0214 0.003556 +56699.71 1.0193 0.0039285 +56700.69 1.0248 0.00057142 +56701.56 1.0255 0.0013993 +56701.83 1.0204 0.0057308 +56702.64 1.0327 0.001377 +56703.02 1.0295 0.0058458 +56703.88 1.0341 0.0028286 +56704.84 1.0351 0.0033558 +56705.61 1.0381 0.0025162 +56705.95 1.0396 0.0033394 +56706.98 1.0394 0.0041289 +56708.02 1.0421 0.004911 +56709.83 1.0268 0.0044325 +56710.66 1.0238 0.0021402 +56711.02 1.0269 0.0057723 +56711.69 1.0219 0.0010382 +56711.92 1.0224 0.0033551 +56713.72 1.0099 0.0038844 +56713.92 1.0189 0.0036202 +56714.73 1.011 0.00047881 +56715.91 1.0075 0.0042615 +56716.66 1.0073 0.0011921 +56717.73 0.99781 0.0010252 +56717.96 1.0032 0.0090012 +56718.56 1.0009 0.0087718 +56718.67 0.98788 0.0009763 +56719.60 0.97784 0.010423 +56720.69 0.97176 0.001192 +56721.71 0.96021 0.00086336 +56722.74 0.94266 0.00073112 +56723.57 0.9498 0.0011062 +56724.52 0.92922 0.0082206 +56727.61 0.94276 0.0092891 +56728.58 0.94829 0.00078424 +56729.50 0.93688 0.00098926 +56730.54 0.94341 0.00084999 +56730.83 0.93824 0.0053844 +56731.49 0.94652 0.000662 +56732.49 0.94518 0.00059886 +56733.49 0.9465 0.00060471 +56733.79 0.94379 0.0041796 +56734.48 0.95518 0.00072721 +56735.50 0.95214 0.00063674 +56735.86 0.95989 0.0042691 +56736.50 0.96861 0.00078904 +56736.77 0.97435 0.0044905 +56737.49 0.98445 0.00084149 +56740.86 1.0188 0.0098614 +56741.61 1.0135 0.00092777 +56741.72 1.0185 0.0087678 +56743.58 1.0336 0.006135 +56744.54 1.0438 0.0011527 +56744.70 1.0422 0.007808 +56746.80 1.0507 0.0046892 +56747.97 1.0586 0.011607 +56748.76 1.0573 0.0073935 +56749.75 1.0654 0.0053101 +56751.98 1.0668 0.0065078 +56752.58 1.071 0.0013997 +56753.58 1.0614 0.0013847 +56754.55 1.0533 0.0014189 +56755.98 1.0354 0.0098934 +56756.51 1.0333 0.00084616 +56757.14 1.0437 0.011788 +56757.46 1.0327 0.0039728 +56757.55 1.0455 0.0074823 +56758.75 1.0349 0.0055304 +56759.89 1.0302 0.0031799 +56760.21 1.0226 0.0077373 +56762.79 1.0162 0.0031825 +56763.75 1.0142 0.0031806 +56764.79 1.0157 0.0039904 +56765.54 1.0193 0.002708 +56765.58 1.0163 0.0010884 +56765.88 1.013 0.0037752 +56766.40 1.0072 0.0035624 +56770.53 1.0251 0.0013306 +56770.78 1.0251 0.004742 +56771.51 1.0229 0.0013331 +56772.50 1.0284 0.00074432 +56772.83 1.0347 0.0068808 +56773.39 1.0354 0.0055093 +56773.86 1.0367 0.0065486 +56774.76 1.0403 0.011588 +56775.41 1.0443 0.0052589 +56775.55 1.0462 0.0008261 +56776.08 1.0515 0.010514 +56776.46 1.0469 0.00075634 +56777.53 1.0468 0.0012233 +56778.50 1.0451 0.001329 +56779.40 1.045 0.0045924 +56779.49 1.0426 0.0010962 +56779.85 1.0364 0.0064996 +56780.49 1.0415 0.0013409 +56780.81 1.0399 0.0060786 +56781.49 1.0414 0.0013411 +56782.45 1.0339 0.0013211 +56782.74 1.0358 0.007572 +56783.45 1.0321 0.0012952 +56784.44 1.0343 0.0013026 +56785.48 1.0354 0.0011273 +56786.48 1.0373 0.0010105 +56787.40 1.0346 0.0008086 +56790.46 1.0298 0.00089144 +56792.40 1.0234 0.00064158 +56793.47 1.0263 0.0011514 +56794.46 1.0327 0.0013893 +56795.45 1.0266 0.0013657 +56796.45 1.0299 0.0016216 +56797.45 1.0342 0.0015733 +56798.44 1.0344 0.0016566 +56799.44 1.0388 0.0015688 +56800.44 1.0346 0.0012622 +56801.43 1.0319 0.00112 +56802.44 1.0336 0.00097995 +56803.44 1.0358 0.0014131 +56805.46 1.0323 0.0016691 +56806.43 1.0272 0.0010286 +56807.44 1.0338 0.0012573 +56808.42 1.0356 0.0014605 +56809.43 1.0365 0.0013149 +56810.43 1.0381 0.0014683 +56811.42 1.0372 0.001497 +56812.43 1.0398 0.001338 +56813.40 1.0392 0.0017247 +56815.40 1.0443 0.0016613 +56816.28 1.0523 0.0027328 +56816.41 1.0476 0.0014594 +56816.64 1.0492 0.0056383 +56817.41 1.0489 0.001355 +56817.84 1.0501 0.00461 +56818.42 1.0635 0.0012342 +56819.28 1.0607 0.0025741 +56819.42 1.0671 0.0013257 +56820.48 1.0676 0.0010707 +56821.25 1.073 0.0031384 +56822.40 1.0768 0.0011759 +56823.41 1.0863 0.0016316 +56824.40 1.0826 0.0017377 +56825.31 1.0887 0.0053436 +56825.41 1.0888 0.0018402 +56826.39 1.0736 0.0018112 +56827.40 1.0696 0.0016159 +56828.40 1.0676 0.0016659 +56829.41 1.0648 0.0015916 +56830.40 1.0616 0.0018272 +56831.39 1.0419 0.0016339 +56832.44 1.0473 0.0015363 +56833.40 1.0512 0.0016127 +56834.39 1.0565 0.0014259 +56835.39 1.0492 0.0015334 +56839.34 1.0496 0.0039668 +56841.41 1.0514 0.0014987 +56842.25 1.0486 0.004392 +56843.22 1.0442 0.0041289 +56843.39 1.0488 0.0015184 +56845.41 1.0415 0.0016418 +56847.40 1.0284 0.0012048 +56848.39 1.0219 0.00083962 +56848.86 1.0252 0.0065753 +56850.26 1.0311 0.0029486 +56858.39 1.0166 0.0016626 +56860.39 1.0135 0.0019027 +56861.39 1.0197 0.0013262 +56862.39 1.0128 0.0017233 +56863.39 1.0119 0.0015518 +56864.39 1.0245 0.0018702 +56864.69 1.0165 0.0086684 +56865.38 1.0165 0.0016406 +56865.63 1.0161 0.0088544 diff --git a/lag/data/lc/8560A.lc b/lag/data/lc/8560A.lc new file mode 100644 index 0000000..e63bbd5 --- /dev/null +++ b/lag/data/lc/8560A.lc @@ -0,0 +1,97 @@ +56691.60 0.87317 0.0026959 +56692.59 0.88029 0.012202 +56693.60 0.86513 0.012546 +56697.56 0.89278 0.0027706 +56698.55 0.89709 0.0025896 +56699.48 0.88364 0.0020513 +56700.51 0.88091 0.002057 +56701.57 0.88869 0.0024809 +56702.54 0.89436 0.0017635 +56708.57 0.9057 0.0044293 +56709.55 0.90211 0.0021009 +56710.48 0.89276 0.001945 +56711.60 0.87975 0.011322 +56714.47 0.88213 0.001859 +56716.48 0.87184 0.0024774 +56721.48 0.83886 0.0021876 +56723.46 0.81715 0.0019344 +56724.63 0.81366 0.012583 +56726.63 0.82353 0.021025 +56727.46 0.81925 0.0021967 +56727.61 0.82072 0.017771 +56728.63 0.8203 0.016299 +56729.62 0.8227 0.014817 +56730.57 0.81727 0.013813 +56732.51 0.81692 0.0015562 +56737.52 0.85637 0.0014633 +56738.45 0.86607 0.0014293 +56738.58 0.84869 0.01423 +56739.32 0.8564 0.001926 +56739.60 0.84919 0.011904 +56740.58 0.87901 0.0091033 +56741.53 0.89782 0.0108 +56742.46 0.8915 0.0019131 +56744.45 0.90916 0.0018332 +56746.43 0.92889 0.011265 +56747.45 0.92676 0.0085321 +56748.48 0.92453 0.0015179 +56748.54 0.91905 0.0088823 +56750.35 0.93011 0.0020754 +56752.42 0.93049 0.0026117 +56753.37 0.92474 0.0024158 +56754.38 0.9176 0.00157 +56755.43 0.90675 0.0036559 +56757.35 0.91152 0.0022711 +56758.44 0.89878 0.0021865 +56762.45 0.86906 0.013725 +56763.43 0.8785 0.016176 +56765.31 0.88668 0.0014039 +56765.51 0.87722 0.0089637 +56766.30 0.88558 0.0020045 +56774.53 0.91516 0.011342 +56784.47 0.91553 0.010877 +56793.50 0.8998 0.014907 +56799.36 0.9084 0.0095921 +56800.41 0.91075 0.0059837 +56800.46 0.91848 0.012066 +56801.43 0.89689 0.001218 +56802.37 0.89536 0.0016556 +56803.35 0.90135 0.0023623 +56804.41 0.89891 0.0010679 +56810.34 0.90305 0.0027017 +56811.34 0.90377 0.0018143 +56815.37 0.90767 0.0014549 +56817.37 0.9143 0.0021517 +56817.42 0.90437 0.010494 +56818.37 0.93889 0.015805 +56819.43 0.91493 0.012155 +56820.33 0.9252 0.0012369 +56822.32 0.92788 0.0018752 +56822.40 0.93468 0.0094074 +56823.36 0.92709 0.00093553 +56823.40 0.92605 0.014112 +56824.37 0.92278 0.0079565 +56824.38 0.93354 0.0009564 +56825.36 0.9337 0.0010273 +56827.38 0.92479 0.0017244 +56829.32 0.92087 0.0022199 +56831.29 0.9019 0.002926 +56832.29 0.90169 0.0025419 +56834.34 0.90397 0.0031968 +56834.40 0.92469 0.0096736 +56835.42 0.91293 0.013811 +56836.32 0.90264 0.0017885 +56837.32 0.90328 0.001761 +56837.41 0.91002 0.01468 +56839.33 0.90474 0.0018228 +56844.37 0.90582 0.0017204 +56845.28 0.89892 0.0010768 +56846.34 0.8972 0.00075842 +56848.29 0.87447 0.0054227 +56850.30 0.88867 0.0015854 +56852.29 0.88324 0.0010476 +56853.32 0.87353 0.00303 +56854.31 0.86959 0.0024919 +56857.26 0.87292 0.0016967 +56858.30 0.87835 0.001482 +56859.34 0.88252 0.0014181 diff --git a/lag/data/lc/9157A.lc b/lag/data/lc/9157A.lc new file mode 100644 index 0000000..a751a0d --- /dev/null +++ b/lag/data/lc/9157A.lc @@ -0,0 +1,185 @@ +56693.62 0.92243 0.0088403 +56693.79 0.91997 0.0007179 +56694.77 0.92227 0.0015231 +56695.71 0.92849 0.0011644 +56696.25 0.93547 0.0082542 +56696.73 0.92685 0.002241 +56696.99 0.93519 0.006603 +56697.76 0.92937 0.00079993 +56698.61 0.93296 0.018661 +56698.72 0.9281 0.0011176 +56699.28 0.93444 0.0084341 +56699.71 0.93387 0.0032265 +56700.60 0.9483 0.0058924 +56700.69 0.93917 0.00074591 +56701.56 0.93415 0.0021153 +56701.61 0.93711 0.012326 +56701.83 0.93332 0.0052709 +56702.64 0.93589 0.00080304 +56703.02 0.93627 0.0078421 +56703.88 0.94014 0.0042069 +56704.84 0.94314 0.0052537 +56705.61 0.94912 0.0059547 +56705.95 0.94135 0.0054783 +56706.98 0.95181 0.0058115 +56708.03 0.94026 0.007787 +56709.83 0.93931 0.0074527 +56710.66 0.937 0.0013689 +56711.02 0.94054 0.0084577 +56711.68 0.93353 0.0011514 +56711.93 0.93897 0.0045735 +56713.27 0.92114 0.0082319 +56713.72 0.92876 0.00088797 +56713.92 0.9262 0.004933 +56714.73 0.92795 0.0011482 +56715.28 0.92284 0.013389 +56715.91 0.93218 0.0059838 +56716.64 0.91745 0.0087617 +56716.67 0.92189 0.001062 +56717.73 0.91761 0.0010295 +56717.96 0.91675 0.0094107 +56718.57 0.90982 0.0097522 +56718.67 0.91318 0.0010625 +56719.61 0.88319 0.059595 +56720.69 0.90444 0.0011842 +56721.71 0.89802 0.0010162 +56722.74 0.89121 0.0011464 +56723.57 0.88897 0.0011197 +56726.17 0.88643 0.0086172 +56727.15 0.88556 0.010663 +56727.62 0.87806 0.0096178 +56728.58 0.89119 0.001001 +56729.50 0.88292 0.00094379 +56730.54 0.88198 0.00093497 +56730.83 0.87772 0.0080025 +56732.50 0.89109 0.0010713 +56733.49 0.89315 0.0010281 +56733.80 0.88256 0.0069804 +56734.48 0.88854 0.00095568 +56735.50 0.89542 0.00099082 +56735.86 0.90394 0.010869 +56736.51 0.89966 0.00099182 +56736.77 0.90315 0.0075066 +56737.49 0.90435 0.00097654 +56740.62 0.92149 0.0010833 +56740.86 0.93118 0.010863 +56741.61 0.92427 0.0010812 +56741.72 0.93448 0.0091251 +56743.60 0.94699 0.0012479 +56744.54 0.95105 0.0012477 +56744.70 0.95164 0.0081884 +56746.82 0.95486 0.005594 +56748.76 0.96146 0.0073677 +56749.76 0.96225 0.0055027 +56751.99 0.95725 0.0062168 +56752.58 0.97096 0.0014163 +56753.58 0.96788 0.0014138 +56754.56 0.95786 0.001496 +56755.57 0.95203 0.0010734 +56755.98 0.94737 0.010428 +56756.51 0.95404 0.0010893 +56758.75 0.94571 0.0072118 +56759.89 0.94253 0.0040218 +56762.79 0.93001 0.0047008 +56763.76 0.92523 0.0048843 +56764.54 0.94457 0.0082901 +56764.79 0.93346 0.0054751 +56765.53 0.92924 0.0086284 +56765.58 0.9296 0.0010925 +56765.87 0.93744 0.0075983 +56768.07 0.91989 0.0078078 +56770.53 0.94039 0.0013889 +56770.78 0.93796 0.0054887 +56771.18 0.94294 0.012459 +56771.51 0.93576 0.0014185 +56772.17 0.94459 0.010315 +56772.50 0.93926 0.0011692 +56772.83 0.94191 0.0072979 +56773.39 0.9419 0.0099593 +56773.86 0.94308 0.0073039 +56774.76 0.94423 0.01157 +56775.41 0.94651 0.0095025 +56775.55 0.95143 0.0010393 +56777.53 0.94941 0.0012739 +56778.50 0.94573 0.0013876 +56779.40 0.94133 0.020644 +56779.49 0.94793 0.0013195 +56779.85 0.94202 0.0062056 +56780.50 0.94598 0.0012671 +56780.81 0.94527 0.0064972 +56781.49 0.94549 0.001364 +56782.45 0.93323 0.0012145 +56782.74 0.94342 0.008012 +56783.45 0.94113 0.0012489 +56784.44 0.93849 0.0014474 +56785.48 0.94683 0.0010173 +56786.48 0.93995 0.00096365 +56787.40 0.9321 0.0011008 +56790.46 0.93759 0.00094167 +56792.40 0.94213 0.0011596 +56793.47 0.93843 0.0011304 +56794.46 0.93416 0.0013987 +56795.45 0.93589 0.0012746 +56796.45 0.93882 0.0014749 +56797.45 0.9374 0.0014896 +56798.44 0.94144 0.0015629 +56799.44 0.94507 0.0013971 +56800.44 0.94239 0.0012396 +56801.43 0.94086 0.0012398 +56802.44 0.94191 0.0010651 +56803.44 0.93911 0.0013572 +56805.46 0.9379 0.0013814 +56806.43 0.93465 0.0015162 +56807.44 0.93667 0.0013304 +56808.42 0.94057 0.0012888 +56809.43 0.93919 0.0013445 +56810.43 0.93999 0.0014715 +56811.42 0.9457 0.0013701 +56812.43 0.94513 0.0013596 +56813.40 0.93901 0.0016499 +56814.46 0.94019 0.0013535 +56815.40 0.94604 0.0016489 +56816.28 0.95324 0.0088622 +56816.41 0.94812 0.0014709 +56816.65 0.94722 0.0070849 +56817.41 0.94202 0.0016533 +56817.84 0.9538 0.0058725 +56818.42 0.95529 0.00143 +56819.28 0.95522 0.0057349 +56819.42 0.95899 0.001311 +56820.49 0.96675 0.0013287 +56821.25 0.9647 0.0065794 +56822.40 0.9684 0.0014717 +56823.41 0.9762 0.0016835 +56824.40 0.97451 0.0016661 +56825.31 0.96372 0.0091574 +56825.42 0.97583 0.0015407 +56826.30 0.96842 0.020209 +56826.39 0.96636 0.0016682 +56827.40 0.96331 0.001762 +56828.40 0.96249 0.0015249 +56829.41 0.9588 0.001358 +56830.40 0.9562 0.0014686 +56831.39 0.94967 0.0015451 +56832.44 0.9477 0.001454 +56833.40 0.95207 0.0013537 +56835.39 0.94231 0.0015401 +56837.24 0.94664 0.023788 +56837.76 0.94491 0.0086448 +56839.34 0.95025 0.014174 +56841.41 0.94424 0.0013421 +56842.25 0.95093 0.0095213 +56843.22 0.94775 0.008541 +56843.39 0.95532 0.0015505 +56845.41 0.94557 0.001623 +56848.39 0.9418 0.001509 +56850.26 0.9349 0.019399 +56858.39 0.92652 0.0016419 +56860.39 0.93598 0.0018796 +56861.39 0.93412 0.0014486 +56862.39 0.93544 0.0018848 +56863.39 0.93719 0.0017521 +56864.39 0.92316 0.0017688 +56864.70 0.92761 0.0090122 +56865.39 0.93475 0.0016411 +56865.64 0.92891 0.0096014 diff --git a/lag/data/lcshort/1158A.lc b/lag/data/lcshort/1158A.lc new file mode 100644 index 0000000..9ec52b5 --- /dev/null +++ b/lag/data/lcshort/1158A.lc @@ -0,0 +1,171 @@ +# 0.1 1 +56691.5 3.48 0.092 +56692.4 3.75 0.095 +56693.3 3.91 0.098 +56695.3 4.11 0.099 +56696.2 4.59 0.105 +56697.3 4.87 0.108 +56698.3 5.25 0.113 +56699.2 4.93 0.11 +56700.2 4.83 0.108 +56701.4 4.9 0.108 +56702.2 5.11 0.111 +56703.2 5.28 0.113 +56705.3 4.9 0.109 +56706.2 4.68 0.106 +56707.2 4.92 0.108 +56708.3 4.34 0.102 +56709.3 4.07 0.099 +56710.3 3.51 0.092 +56711.1 3.1 0.088 +56712.2 3.27 0.09 +56713.2 3.24 0.089 +56714.2 3.15 0.088 +56715.0 2.83 0.084 +56715.9 2.75 0.083 +56716.8 2.52 0.081 +56718.8 2.32 0.077 +56720.1 2.15 0.076 +56721.0 1.94 0.073 +56722.1 1.87 0.072 +56723.1 1.78 0.072 +56726.1 2.05 0.074 +56727.1 1.82 0.071 +56727.8 1.94 0.073 +56728.9 1.98 0.074 +56729.8 2.12 0.075 +56730.8 2.11 0.075 +56732.0 2.07 0.075 +56732.9 2.02 0.074 +56733.8 2.21 0.076 +56734.8 2.54 0.081 +56735.8 3.2 0.089 +56736.4 3.69 0.094 +56737.7 3.85 0.096 +56738.5 4.02 0.098 +56739.7 4.63 0.105 +56740.4 5 0.111 +56741.3 4.64 0.106 +56744.4 5.9 0.12 +56745.3 5.77 0.119 +56746.2 5.71 0.118 +56747.2 5.98 0.121 +56748.2 6.01 0.121 +56749.2 5.59 0.116 +56750.3 5.34 0.113 +56751.2 5.05 0.11 +56752.0 4.98 0.11 +56753.0 3.93 0.097 +56754.0 3.28 0.089 +56755.2 3.2 0.089 +56756.1 3.34 0.09 +56757.1 3.48 0.092 +56759.3 3.3 0.09 +56760.1 3.4 0.091 +56761.1 3.76 0.096 +56762.1 3.84 0.096 +56763.0 3.94 0.097 +56764.2 4 0.099 +56765.2 3.7 0.095 +56766.0 3.89 0.097 +56767.0 4.12 0.099 +56768.1 4.31 0.102 +56769.2 4.92 0.109 +56770.1 5.12 0.112 +56771.1 5.29 0.113 +56772.0 5.67 0.117 +56773.1 5.57 0.116 +56774.0 5.49 0.115 +56774.6 5.57 0.116 +56775.6 5.29 0.114 +56776.7 4.81 0.108 +56777.4 5.08 0.11 +56778.5 4.73 0.107 +56779.4 4.72 0.107 +56780.5 4.68 0.106 +56781.4 4.54 0.105 +56782.4 4.24 0.101 +56783.4 4.91 0.108 +56784.8 5.57 0.116 +56785.8 6 0.121 +56786.7 5.5 0.115 +56787.3 5.33 0.114 +56788.3 5.22 0.112 +56789.3 4.65 0.105 +56790.3 4.27 0.101 +56791.3 4.22 0.101 +56792.3 4.95 0.109 +56793.2 5.05 0.111 +56794.2 4.79 0.107 +56795.3 4.49 0.103 +56796.1 4.51 0.104 +56797.1 5.21 0.112 +56798.1 5.04 0.11 +56799.2 4.9 0.109 +56800.0 5.03 0.11 +56801.0 4.96 0.109 +56802.0 4.91 0.109 +56803.0 4.86 0.108 +56805.0 4.52 0.105 +56806.0 4.54 0.104 +56807.1 4.43 0.103 +56808.1 4.61 0.105 +56809.1 4.78 0.107 +56809.9 4.66 0.106 +56810.8 4.53 0.105 +56812.0 4.95 0.109 +56813.0 5.14 0.111 +56814.1 5.21 0.112 +56814.9 5.57 0.116 +56816.1 5.72 0.118 +56816.9 6.2 0.124 +56817.9 6.86 0.131 +56818.9 7.25 0.134 +56819.7 7.14 0.134 +56821.0 6.75 0.129 +56821.9 6.44 0.126 +56822.8 6.06 0.122 +56823.8 5.98 0.12 +56824.6 5.81 0.118 +56825.6 5.39 0.114 +56826.9 4.4 0.103 +56827.8 4.38 0.103 +56828.5 4.23 0.102 +56829.6 3.86 0.096 +56830.5 3.89 0.096 +56831.7 4.28 0.101 +56832.3 4.33 0.102 +56833.8 4.92 0.109 +56834.8 5.03 0.111 +56835.8 4.52 0.104 +56836.2 4.55 0.104 +56837.6 4.59 0.105 +56838.2 4.53 0.104 +56839.2 4.65 0.106 +56840.1 4.79 0.108 +56841.2 4.51 0.104 +56842.2 4.54 0.104 +56843.1 4.31 0.102 +56844.2 3.97 0.098 +56845.0 3.98 0.098 +56846.1 4.02 0.099 +56847.0 3.82 0.096 +56848.0 3.79 0.095 +56849.1 3.71 0.095 +56850.0 3.31 0.09 +56850.9 3.16 0.088 +56851.9 3.16 0.089 +56852.9 3.28 0.09 +56854.0 3.07 0.087 +56855.0 3.32 0.09 +56856.2 3.75 0.095 +56857.2 4.38 0.103 +56858.1 4.75 0.108 +56858.9 4.4 0.102 +56860.1 4.14 0.1 +56860.9 4.1 0.1 +56861.8 3.84 0.096 +56862.9 3.7 0.095 +56863.9 4.18 0.101 +56864.9 4.32 0.102 +56865.9 5.06 0.11 diff --git a/lag/data/lcshort/1367A.lc b/lag/data/lcshort/1367A.lc new file mode 100644 index 0000000..cd486dc --- /dev/null +++ b/lag/data/lcshort/1367A.lc @@ -0,0 +1,171 @@ +# 0.1 1 +56691.5 3.545 0.065 +56692.4 3.771 0.067 +56693.3 3.814 0.068 +56695.3 4.094 0.071 +56696.2 4.425 0.075 +56697.3 4.53 0.075 +56698.3 4.827 0.079 +56699.2 4.58 0.076 +56700.2 4.6 0.076 +56701.4 4.746 0.078 +56702.2 4.774 0.078 +56703.2 4.756 0.078 +56705.3 4.577 0.076 +56706.2 4.47 0.075 +56707.2 4.665 0.077 +56708.3 4.324 0.074 +56709.3 4.143 0.071 +56710.3 3.769 0.068 +56711.1 3.522 0.065 +56712.2 3.476 0.064 +56713.2 3.518 0.065 +56714.2 3.445 0.064 +56715.0 3.146 0.061 +56715.9 3.058 0.06 +56716.8 2.964 0.059 +56718.8 2.675 0.056 +56720.1 2.601 0.055 +56721.0 2.376 0.053 +56722.1 2.225 0.051 +56723.1 2.187 0.051 +56726.1 2.296 0.052 +56727.1 2.272 0.051 +56727.8 2.307 0.052 +56728.9 2.391 0.053 +56729.8 2.454 0.054 +56730.8 2.422 0.053 +56732.0 2.469 0.054 +56732.9 2.439 0.053 +56733.8 2.494 0.054 +56734.8 2.763 0.057 +56735.8 3.243 0.062 +56736.4 3.578 0.065 +56737.7 3.788 0.068 +56738.5 3.991 0.07 +56739.7 4.246 0.073 +56740.4 4.544 0.076 +56741.3 4.523 0.076 +56744.4 5.435 0.085 +56745.3 5.479 0.086 +56746.2 5.254 0.084 +56747.2 5.659 0.088 +56748.2 5.497 0.086 +56749.2 5.283 0.084 +56750.3 5.155 0.082 +56751.2 4.937 0.08 +56752.0 4.672 0.077 +56753.0 4.089 0.071 +56754.0 3.619 0.066 +56755.2 3.446 0.064 +56756.1 3.546 0.065 +56757.1 3.726 0.067 +56759.3 3.586 0.066 +56760.1 3.568 0.065 +56761.1 3.888 0.069 +56762.1 3.911 0.069 +56763.0 3.932 0.069 +56764.2 4.043 0.071 +56765.2 3.83 0.068 +56766.0 3.949 0.069 +56767.0 4.083 0.071 +56768.1 4.142 0.072 +56769.2 4.528 0.076 +56770.1 4.851 0.079 +56771.1 4.979 0.081 +56772.0 4.965 0.08 +56773.1 5.055 0.082 +56774.0 5.102 0.082 +56774.6 5.004 0.081 +56775.6 5.033 0.081 +56776.7 4.596 0.077 +56777.4 4.632 0.077 +56778.5 4.545 0.076 +56779.4 4.431 0.075 +56780.5 4.556 0.076 +56781.4 4.353 0.074 +56782.4 4.135 0.072 +56783.4 4.528 0.076 +56784.8 5.118 0.082 +56785.8 5.355 0.085 +56786.7 5.037 0.081 +56787.3 4.937 0.08 +56788.3 4.882 0.08 +56789.3 4.609 0.076 +56790.3 4.335 0.074 +56791.3 4.289 0.073 +56792.3 4.553 0.076 +56793.2 4.741 0.078 +56794.2 4.643 0.077 +56795.3 4.364 0.074 +56796.1 4.423 0.075 +56797.1 4.936 0.08 +56798.1 4.948 0.08 +56799.2 4.692 0.078 +56800.0 4.622 0.077 +56801.0 4.809 0.079 +56802.0 4.633 0.077 +56803.0 4.794 0.079 +56805.0 4.473 0.075 +56806.0 4.346 0.074 +56807.1 4.345 0.074 +56808.1 4.478 0.075 +56809.1 4.707 0.078 +56809.9 4.573 0.076 +56810.8 4.465 0.075 +56812.0 4.719 0.078 +56813.0 4.809 0.079 +56814.1 5.004 0.081 +56814.9 5.324 0.084 +56816.1 5.486 0.086 +56816.9 5.576 0.087 +56817.9 6.186 0.094 +56818.9 6.474 0.097 +56819.7 6.463 0.097 +56821.0 6.206 0.094 +56821.9 5.888 0.091 +56822.8 5.736 0.089 +56823.8 5.553 0.087 +56824.6 5.425 0.085 +56825.6 5.133 0.083 +56826.9 4.588 0.077 +56827.8 4.371 0.074 +56828.5 4.394 0.075 +56829.6 4.204 0.073 +56830.5 4.11 0.071 +56831.7 4.171 0.072 +56832.3 4.38 0.074 +56833.8 4.765 0.079 +56834.8 4.738 0.078 +56835.8 4.455 0.075 +56836.2 4.434 0.075 +56837.6 4.431 0.075 +56838.2 4.449 0.075 +56839.2 4.45 0.075 +56840.1 4.52 0.076 +56841.2 4.442 0.075 +56842.2 4.469 0.075 +56843.1 4.231 0.073 +56844.2 4.082 0.071 +56845.0 4.105 0.071 +56846.1 4.033 0.071 +56847.0 3.887 0.069 +56848.0 3.796 0.068 +56849.1 3.71 0.067 +56850.0 3.554 0.066 +56850.9 3.426 0.064 +56851.9 3.377 0.064 +56852.9 3.419 0.064 +56854.0 3.324 0.063 +56855.0 3.457 0.065 +56856.2 3.8 0.068 +56857.2 4.33 0.074 +56858.1 4.513 0.076 +56858.9 4.389 0.075 +56860.1 4.079 0.071 +56860.9 4.043 0.071 +56861.8 3.986 0.07 +56862.9 3.741 0.068 +56863.9 4.104 0.072 +56864.9 4.331 0.074 +56865.9 4.708 0.078 diff --git a/lag/data/lcshort/1479A.lc b/lag/data/lcshort/1479A.lc new file mode 100644 index 0000000..43f1300 --- /dev/null +++ b/lag/data/lcshort/1479A.lc @@ -0,0 +1,171 @@ +# 0.1 1 +56691.6 3.16 0.051 +56692.4 3.3 0.052 +56693.3 3.3 0.052 +56695.3 3.54 0.056 +56696.3 3.87 0.06 +56697.3 4 0.062 +56698.3 4.11 0.063 +56699.2 4.03 0.062 +56700.2 4.01 0.062 +56701.4 4.08 0.063 +56702.2 4.1 0.063 +56703.2 4.2 0.065 +56705.4 3.95 0.061 +56706.2 3.86 0.06 +56707.2 4.03 0.062 +56708.3 3.68 0.058 +56709.3 3.52 0.055 +56710.3 3.21 0.051 +56711.1 2.98 0.048 +56712.2 3.03 0.049 +56713.2 3.07 0.049 +56714.3 2.99 0.048 +56715.1 2.81 0.046 +56715.9 2.66 0.044 +56716.9 2.5 0.041 +56718.9 2.36 0.04 +56720.2 2.26 0.038 +56721.1 2.07 0.036 +56722.1 1.94 0.034 +56723.2 1.86 0.032 +56726.1 1.96 0.034 +56727.1 1.91 0.033 +56727.8 2 0.035 +56728.9 2.1 0.036 +56729.8 2.15 0.036 +56730.9 2.17 0.037 +56732.0 2.16 0.037 +56733.0 2.12 0.036 +56733.9 2.17 0.037 +56734.9 2.46 0.041 +56735.9 2.85 0.046 +56736.5 3.18 0.051 +56737.7 3.41 0.054 +56738.6 3.59 0.056 +56739.7 3.88 0.06 +56740.4 4.08 0.063 +56741.4 4.08 0.063 +56744.4 4.87 0.074 +56745.3 4.91 0.074 +56746.3 4.85 0.074 +56747.2 5.1 0.077 +56748.3 5.11 0.077 +56749.2 4.8 0.073 +56750.3 4.71 0.072 +56751.2 4.45 0.068 +56752.0 4.26 0.066 +56753.0 3.7 0.058 +56754.0 3.19 0.051 +56755.2 2.98 0.048 +56756.2 3.12 0.05 +56757.2 3.21 0.051 +56759.3 3.26 0.052 +56760.1 3.22 0.051 +56761.1 3.41 0.054 +56762.1 3.53 0.056 +56763.1 3.54 0.056 +56764.3 3.53 0.056 +56765.2 3.47 0.055 +56766.0 3.55 0.056 +56767.0 3.62 0.057 +56768.1 3.75 0.058 +56769.2 4.09 0.063 +56770.1 4.26 0.066 +56771.1 4.42 0.068 +56772.0 4.55 0.07 +56773.1 4.53 0.07 +56774.0 4.61 0.07 +56774.7 4.51 0.069 +56775.7 4.45 0.068 +56776.8 4.14 0.064 +56777.5 4.2 0.065 +56778.5 4.13 0.064 +56779.5 4 0.062 +56780.5 4.12 0.064 +56781.4 4.04 0.063 +56782.4 3.95 0.061 +56783.4 4.17 0.064 +56784.8 4.65 0.071 +56785.8 4.83 0.074 +56786.7 4.58 0.07 +56787.3 4.55 0.07 +56788.3 4.44 0.068 +56789.3 4.3 0.066 +56790.3 4.02 0.062 +56791.3 4.07 0.063 +56792.3 4.34 0.067 +56793.2 4.51 0.069 +56794.2 4.31 0.066 +56795.3 4.06 0.063 +56796.1 4.1 0.063 +56797.1 4.43 0.068 +56798.1 4.46 0.068 +56799.2 4.31 0.066 +56800.0 4.3 0.066 +56801.1 4.37 0.067 +56802.1 4.33 0.067 +56803.0 4.26 0.066 +56805.0 4.08 0.063 +56806.0 4 0.062 +56807.1 3.96 0.061 +56808.1 4.09 0.063 +56809.1 4.22 0.065 +56809.9 4.12 0.064 +56810.9 4.08 0.063 +56812.0 4.23 0.065 +56813.0 4.3 0.066 +56814.1 4.4 0.067 +56814.9 4.68 0.071 +56816.1 4.8 0.073 +56817.0 5.02 0.076 +56817.9 5.61 0.084 +56818.9 5.83 0.088 +56819.8 5.88 0.088 +56821.0 5.5 0.083 +56821.9 5.38 0.081 +56822.8 5.15 0.078 +56823.9 5.12 0.078 +56824.7 5.02 0.076 +56825.7 4.79 0.073 +56826.9 4.23 0.065 +56827.8 3.96 0.062 +56828.6 3.94 0.061 +56829.7 3.74 0.058 +56830.5 3.63 0.057 +56831.7 3.82 0.06 +56832.3 3.87 0.06 +56833.8 4.23 0.065 +56834.8 4.24 0.065 +56835.8 3.92 0.061 +56836.3 3.87 0.06 +56837.7 3.95 0.061 +56838.2 3.86 0.06 +56839.3 4 0.062 +56840.2 3.98 0.062 +56841.3 3.97 0.061 +56842.2 3.96 0.062 +56843.2 3.77 0.059 +56844.2 3.65 0.057 +56845.0 3.53 0.055 +56846.2 3.56 0.056 +56847.1 3.48 0.055 +56848.1 3.4 0.054 +56849.1 3.23 0.051 +56850.0 3.17 0.051 +56850.9 3.05 0.049 +56851.9 2.96 0.048 +56852.9 3.08 0.049 +56854.1 2.92 0.047 +56855.1 3.01 0.049 +56856.2 3.4 0.054 +56857.2 3.85 0.06 +56858.1 4.05 0.063 +56858.9 3.95 0.061 +56860.1 3.7 0.058 +56861.0 3.73 0.058 +56861.8 3.52 0.056 +56862.9 3.32 0.053 +56863.9 3.67 0.058 +56864.9 3.82 0.06 +56865.9 4.24 0.065 diff --git a/lag/data/lcshort/1746A.lc b/lag/data/lcshort/1746A.lc new file mode 100644 index 0000000..3371502 --- /dev/null +++ b/lag/data/lcshort/1746A.lc @@ -0,0 +1,171 @@ +# 0.1 1 +56691.6 2.79 0.064 +56692.4 3.04 0.068 +56693.3 3.04 0.067 +56695.3 3.19 0.071 +56696.3 3.42 0.074 +56697.3 3.5 0.074 +56698.3 3.6 0.075 +56699.2 3.51 0.074 +56700.2 3.65 0.077 +56701.4 3.6 0.076 +56702.2 3.6 0.075 +56703.2 3.63 0.076 +56705.4 3.59 0.076 +56706.2 3.49 0.074 +56707.2 3.6 0.075 +56708.3 3.33 0.073 +56709.3 3.32 0.072 +56710.3 2.89 0.066 +56711.1 2.7 0.063 +56712.2 2.81 0.066 +56713.2 2.81 0.065 +56714.3 2.7 0.063 +56715.1 2.61 0.063 +56715.9 2.52 0.062 +56716.9 2.33 0.059 +56718.9 2.16 0.057 +56720.2 2.09 0.056 +56721.1 1.9 0.053 +56722.1 1.85 0.052 +56723.2 1.74 0.051 +56726.1 1.91 0.054 +56727.1 1.81 0.052 +56727.8 1.86 0.052 +56728.9 1.94 0.053 +56729.8 1.97 0.054 +56730.9 2.01 0.054 +56732.0 1.99 0.054 +56733.0 1.99 0.055 +56733.9 2 0.054 +56734.9 2.27 0.058 +56735.9 2.56 0.063 +56736.5 2.85 0.065 +56737.7 2.98 0.067 +56738.6 3.23 0.071 +56739.7 3.36 0.073 +56740.4 3.59 0.075 +56741.4 3.57 0.075 +56744.4 4.16 0.083 +56745.3 4.15 0.083 +56746.3 4.23 0.084 +56747.2 4.37 0.087 +56748.3 4.24 0.084 +56749.2 4.09 0.082 +56750.3 4.08 0.081 +56751.2 3.84 0.079 +56752.0 3.74 0.077 +56753.0 3.42 0.074 +56754.0 2.96 0.067 +56755.2 2.69 0.064 +56756.2 2.85 0.066 +56757.2 2.98 0.068 +56759.3 2.96 0.067 +56760.1 2.84 0.066 +56761.1 3.11 0.07 +56762.1 3.09 0.069 +56763.1 3.2 0.071 +56764.3 3.19 0.071 +56765.2 3.11 0.069 +56766.0 3.19 0.07 +56767.0 3.37 0.074 +56768.1 3.26 0.071 +56769.2 3.52 0.075 +56770.1 3.68 0.077 +56771.1 3.8 0.079 +56772.0 3.95 0.08 +56773.1 3.88 0.08 +56774.0 3.94 0.081 +56774.7 3.92 0.08 +56775.7 3.84 0.079 +56776.8 3.73 0.078 +56777.5 3.74 0.078 +56778.5 3.68 0.078 +56779.5 3.49 0.075 +56780.5 3.56 0.075 +56781.4 3.57 0.075 +56782.4 3.44 0.074 +56783.4 3.51 0.075 +56784.8 3.92 0.081 +56785.8 4.16 0.083 +56786.7 4.04 0.082 +56787.3 3.91 0.081 +56788.3 3.84 0.08 +56789.3 3.69 0.077 +56790.3 3.49 0.074 +56791.3 3.45 0.074 +56792.3 3.52 0.075 +56793.2 3.76 0.079 +56794.2 3.66 0.077 +56795.3 3.42 0.074 +56796.1 3.48 0.075 +56797.1 3.84 0.079 +56798.1 3.76 0.078 +56799.2 3.66 0.078 +56800.0 3.63 0.078 +56801.1 3.69 0.077 +56802.1 3.65 0.077 +56803.0 3.67 0.078 +56805.0 3.51 0.075 +56806.0 3.55 0.076 +56807.1 3.57 0.076 +56808.1 3.62 0.076 +56809.1 3.76 0.078 +56809.9 3.71 0.077 +56810.9 3.59 0.077 +56812.0 3.75 0.079 +56813.0 3.79 0.079 +56814.1 3.97 0.082 +56814.9 4.09 0.083 +56816.1 4.3 0.085 +56817.0 4.46 0.088 +56817.9 4.81 0.093 +56818.9 4.96 0.094 +56819.8 5.08 0.096 +56821.0 4.79 0.093 +56821.9 4.69 0.091 +56822.8 4.48 0.087 +56823.9 4.4 0.088 +56824.7 4.42 0.087 +56825.7 4.24 0.085 +56826.9 3.83 0.079 +56827.8 3.64 0.077 +56828.6 3.52 0.075 +56829.7 3.36 0.074 +56830.5 3.3 0.073 +56831.7 3.48 0.075 +56832.3 3.46 0.074 +56833.8 3.75 0.079 +56834.8 3.78 0.079 +56835.8 3.62 0.077 +56836.3 3.59 0.076 +56837.7 3.62 0.076 +56838.2 3.52 0.076 +56839.3 3.55 0.077 +56840.2 3.65 0.077 +56841.3 3.64 0.078 +56842.2 3.63 0.077 +56843.2 3.46 0.076 +56844.2 3.36 0.073 +56845.0 3.25 0.073 +56846.2 3.24 0.072 +56847.1 3.18 0.072 +56848.1 3.16 0.071 +56849.1 3.12 0.07 +56850.0 2.92 0.068 +56850.9 2.84 0.066 +56851.9 2.8 0.066 +56852.9 2.75 0.066 +56854.1 2.74 0.065 +56855.1 2.81 0.066 +56856.2 3.01 0.068 +56857.2 3.27 0.073 +56858.1 3.5 0.075 +56858.9 3.5 0.076 +56860.1 3.32 0.072 +56861.0 3.35 0.074 +56861.8 3.12 0.07 +56862.9 3.02 0.069 +56863.9 3.29 0.073 +56864.9 3.42 0.075 +56865.9 3.76 0.078 diff --git a/lag/data/lcshort/1928A.lc b/lag/data/lcshort/1928A.lc new file mode 100644 index 0000000..3249028 --- /dev/null +++ b/lag/data/lcshort/1928A.lc @@ -0,0 +1,282 @@ +# 0.1 1 +56698.4 3.28 0.0698 +56699.6 3.19 0.0715 +56706.5 3.27 0.071 +56708.2 3.11 0.0678 +56709.6 3.08 0.0768 +56710.1 2.97 0.0692 +56710.2 2.97 0.0699 +56710.6 2.79 0.0648 +56711.0 2.9 0.0688 +56711.4 2.74 0.0674 +56712.1 2.79 0.0645 +56713.2 2.71 0.0648 +56713.5 2.76 0.0648 +56714.0 2.73 0.0655 +56714.2 2.78 0.0654 +56714.5 2.73 0.0653 +56715.0 2.71 0.0646 +56715.6 2.43 0.134 +56717.0 2.44 0.0586 +56718.4 2.32 0.0539 +56718.6 2.21 0.054 +56719.7 2.31 0.0545 +56720.1 2.3 0.0572 +56720.4 2.28 0.053 +56720.6 2.14 0.0527 +56721.0 2.21 0.0523 +56721.4 2.13 0.0501 +56721.6 2.07 0.0512 +56722.4 2.05 0.049 +56722.8 2 0.0496 +56723.1 2.04 0.0495 +56723.4 2.05 0.049 +56723.9 1.99 0.0488 +56724.5 2.03 0.0488 +56724.6 2 0.0493 +56724.8 2.03 0.0505 +56725.2 2.02 0.0491 +56725.3 2 0.0488 +56725.6 2.06 0.0504 +56726.0 2.06 0.0527 +56726.3 2.03 0.0475 +56727.0 2.0476 0.035696 +56727.3 2.03 0.0473 +56727.5 2.08 0.0518 +56727.8 2.1 0.0508 +56728.6 2.03 0.0487 +56728.8 2.09 0.0493 +56729.6 2.13 0.0511 +56730.0 2.15 0.0523 +56730.4 2.18 0.051 +56730.6 2.14 0.0503 +56731.0 2.19 0.0512 +56731.4 2.14 0.0492 +56731.6 2.19 0.0514 +56732.0 2.18 0.0518 +56732.4 2.15 0.0498 +56732.7 2.2 0.0515 +56733.0 2.14 0.0501 +56733.2 2.14 0.0492 +56733.6 2.1 0.0497 +56734.0 2.15 0.0502 +56734.2 2.24 0.0507 +56734.5 2.21 0.0524 +56734.9 2.35 0.0556 +56735.3 2.4 0.0542 +56735.6 2.42 0.0565 +56736.3 2.64 0.0599 +56736.6 2.64 0.0618 +56736.9 2.79 0.065 +56737.5 2.83 0.0673 +56737.9 2.76 0.066 +56738.2 2.85 0.0649 +56738.5 2.89 0.0692 +56738.9 2.97 0.0692 +56739.2 2.97 0.0674 +56739.6 3.06 0.0725 +56740.0 3.18 0.0721 +56740.3 3.22 0.0729 +56740.5 3.23 0.0739 +56740.9 3.21 0.0739 +56741.3 3.23 0.0735 +56741.5 3.25 0.0763 +56741.9 3.34 0.0763 +56742.2 3.28 0.0739 +56742.7 3.45 0.0804 +56743.0 3.46 0.0782 +56743.4 3.46 0.077 +56743.5 3.43 0.0784 +56744.4 3.5505 0.055079 +56744.5 3.62 0.0815 +56745.4 3.63 0.0838 +56745.6 3.69 0.0845 +56745.9 3.67 0.0842 +56746.2 3.62 0.0817 +56746.6 3.69 0.0848 +56746.9 3.72 0.0843 +56747.7 3.84 0.087 +56748.0 3.75 0.0852 +56748.5 3.74 0.0878 +56749.1 3.63 0.0815 +56749.4 3.66 0.0825 +56749.5 3.68 0.0852 +56750.5 3.62 0.0817 +56750.6 3.64 0.083 +56751.6 3.49 0.0809 +56752.0 3.48 0.0804 +56752.6 3.35 0.0789 +56753.0 3.22 0.0742 +56753.4 3.14 0.0723 +56753.7 3 0.0714 +56753.9 2.99 0.0677 +56754.2 2.92 0.0668 +56754.4 2.89 0.0644 +56755.0 2.76 0.0649 +56755.4 2.92 0.0676 +56755.5 2.77 0.0643 +56756.1 2.83 0.0662 +56756.3 2.87 0.0661 +56756.8 2.96 0.0693 +56757.3 2.92 0.0675 +56757.5 2.92 0.0666 +56758.0 2.92 0.0666 +56758.3 2.87 0.0654 +56758.5 2.86 0.0652 +56759.0 2.87 0.0653 +56759.2 2.87 0.0651 +56759.8 2.94 0.0665 +56760.0 2.88 0.0655 +56760.3 2.82 0.0642 +56761.0 2.93 0.0667 +56761.8 2.95 0.0661 +56762.0 2.96 0.067 +56762.3 2.97 0.0667 +56762.8 2.8 0.0667 +56763.0 2.94 0.068 +56763.4 2.79 0.0639 +56763.5 2.72 0.0623 +56764.0 2.94 0.0662 +56764.4 2.92 0.0662 +56764.8 2.96 0.0681 +56765.1 3.01 0.0707 +56765.7 2.98 0.0712 +56766.1 2.98 0.0699 +56766.4 2.98 0.0718 +56766.7 3.01 0.0716 +56767.4 2.89 0.0677 +56768.4 2.94 0.0698 +56769.4 3.25 0.0741 +56770.5 3.01 0.0701 +56770.8 3.27 0.0746 +56771.2 3.37 0.0759 +56774.7 3.44 0.0816 +56775.6 3.38 0.0766 +56776.0 3.42 0.0773 +56776.2 3.37 0.0747 +56777.0 3.29 0.078 +56777.4 3.32 0.0837 +56777.5 3.08 0.0719 +56778.6 3.26 0.0755 +56779.4 3.13 0.0735 +56779.9 3.25 0.0743 +56780.3 3.11 0.0717 +56780.5 3.27 0.0778 +56780.6 3.26 0.0768 +56782.1 3.14 0.0721 +56782.3 3.13 0.0706 +56782.7 3.17 0.0735 +56783.0 3.24 0.0751 +56783.4 3.19 0.0745 +56783.6 3.14 0.073 +56784.0 3.36 0.077 +56785.0 3.48 0.0808 +56785.6 3.53 0.081 +56786.4 3.48 0.0779 +56787.0 3.41 0.0782 +56787.3 3.44 0.0776 +56787.7 3.23 0.0755 +56788.0 3.39 0.0783 +56788.3 3.3 0.0762 +56789.0 3.39 0.0762 +56789.3 3 0.068 +56789.6 3.23 0.0761 +56790.0 3.2 0.073 +56790.6 3.12 0.0724 +56791.0 3.08 0.0712 +56791.6 3.14 0.0733 +56792.0 3.03 0.0691 +56792.4 3.17 0.0735 +56792.5 3.14 0.0755 +56792.8 3.27 0.0735 +56793.8 3.27 0.0738 +56794.2 3.24 0.0753 +56794.7 3.21 0.0768 +56795.4 3.2 0.0765 +56795.9 3.11 0.0794 +56796.9 3.29 0.0752 +56798.5 3.41 0.0797 +56798.9 3.2 0.0728 +56799.2 3.3 0.0732 +56799.6 3.26 0.0728 +56800.0 3.17 0.0703 +56800.4 3.1 0.0718 +56800.8 3.28 0.0734 +56801.1 3.34 0.0752 +56802.1 3.27 0.0719 +56802.6 3.28 0.0722 +56802.9 3.03 0.0726 +56804.2 3.1 0.0705 +56805.1 3.26 0.0756 +56806.0 3.25 0.0731 +56806.4 3.22 0.0725 +56806.9 3.26 0.0739 +56807.2 3.2 0.0721 +56807.9 3.24 0.0736 +56808.6 3.26 0.074 +56808.9 3.43 0.0778 +56809.2 3.19 0.0737 +56809.9 3.35 0.0763 +56810.2 3.28 0.0754 +56810.6 3.24 0.0738 +56810.9 3.3 0.0752 +56811.2 3.33 0.0794 +56811.8 3.25 0.0749 +56812.0 3.38 0.078 +56812.4 3.49 0.0802 +56812.6 3.42 0.0784 +56813.2 3.57 0.0829 +56814.0 3.41 0.0764 +56814.4 3.16 0.0715 +56814.6 3.52 0.083 +56815.7 3.54 0.0811 +56816.0 3.67 0.085 +56816.2 3.75 0.0855 +56817.6 4 0.0881 +56818.1 4 0.0848 +56818.2 4.04 0.0916 +56818.7 4.16 0.0951 +56819.0 4.17 0.0929 +56819.7 4.03 0.0917 +56820.2 4.19 0.0942 +56820.6 4.01 0.0914 +56820.7 4.11 0.093 +56821.9 3.95 0.0884 +56822.4 3.83 0.0869 +56823.2 3.86 0.0889 +56823.3 3.58 0.0808 +56824.6 3.91 0.09 +56825.4 3.69 0.0839 +56825.6 3.74 0.0839 +56826.0 3.67 0.0763 +56826.4 3.7 0.085 +56826.8 3.43 0.0788 +56827.0 3.38 0.0767 +56827.4 3.35 0.077 +56827.9 3.26 0.0744 +56828.2 3.28 0.0755 +56828.4 3.33 0.0768 +56828.6 3.35 0.0708 +56829.0 3.25 0.0749 +56829.8 3.16 0.0744 +56830.1 3.26 0.0743 +56830.4 3.25 0.0747 +56832.0 3.22 0.0649 +56834.1 3.18 0.0639 +56837.2 3.33 0.067 +56839.6 3.35 0.0689 +56840.3 3.32 0.0689 +56842.0 3.27 0.0658 +56844.3 2.76 0.0557 +56846.3 3.12 0.0628 +56847.7 2.98 0.0608 +56849.6 2.79 0.0565 +56852.1 2.76 0.0557 +56854.3 2.65 0.054 +56854.4 2.6 0.0594 +56855.9 2.69 0.0543 +56858.1 3.165 0.06373 +56859.7 3.073 0.06191 +56862.1 2.954 0.05924 +56863.6 2.999 0.06035 +56865.6 3.237 0.06498 diff --git a/lag/data/lcshort/2246A.lc b/lag/data/lcshort/2246A.lc new file mode 100644 index 0000000..c7da794 --- /dev/null +++ b/lag/data/lcshort/2246A.lc @@ -0,0 +1,254 @@ +# 0.1 1 +56698.4 3.06 0.0745 +56706.5 2.99 0.0735 +56708.2 3.05 0.0742 +56710.1 2.82 0.0764 +56710.2 2.8 0.0776 +56710.6 2.57 0.0707 +56711.0 2.68 0.0743 +56711.4 2.63 0.0774 +56712.1 2.62 0.0707 +56713.2 2.59 0.0718 +56713.5 2.59 0.0715 +56714.0 2.57 0.0739 +56714.2 2.69 0.0737 +56714.5 2.59 0.0709 +56715.0 2.55 0.07 +56717.0 2.35 0.0654 +56718.4 2.28 0.0609 +56718.6 2.25 0.0636 +56719.7 2.28 0.0622 +56720.1 2.25 0.0656 +56720.4 2.21 0.059 +56720.6 2.18 0.0619 +56721.0 2.06 0.0565 +56721.4 2.12 0.0575 +56721.6 2.06 0.0596 +56722.4 2.01 0.0564 +56722.8 1.99 0.0574 +56723.1 1.97 0.0557 +56723.4 2.02 0.0556 +56723.9 1.98 0.0568 +56724.5 1.95 0.0552 +56724.6 1.99 0.0589 +56724.8 1.91 0.0567 +56725.2 1.95 0.0557 +56725.3 1.91 0.0558 +56725.6 1.97 0.0577 +56726.0 2.05 0.0638 +56726.3 1.99 0.0539 +56727.0 1.9994 0.042021 +56727.3 2.09 0.0552 +56727.5 2.01 0.0557 +56727.8 2 0.0572 +56728.6 2.02 0.0603 +56728.8 2.05 0.0616 +56729.6 2.07 0.0582 +56730.0 2.03 0.0578 +56730.4 2.21 0.0598 +56730.6 2.16 0.0581 +56731.0 2.06 0.056 +56731.6 2.1 0.0571 +56732.1 2.11 0.0583 +56732.4 2.12 0.0564 +56732.7 2.12 0.0582 +56733.0 2.08 0.058 +56733.2 2.11 0.0558 +56733.6 2.12 0.0576 +56734.0 2.14 0.0573 +56734.2 2.15 0.0556 +56734.9 2.23 0.0616 +56735.3 2.24 0.0565 +56735.6 2.28 0.0615 +56736.0 2.23 0.0586 +56736.3 2.49 0.065 +56736.6 2.58 0.0699 +56736.9 2.61 0.0701 +56737.5 2.68 0.0705 +56737.9 2.67 0.0722 +56738.2 2.71 0.0715 +56738.5 2.79 0.0799 +56738.9 2.89 0.0788 +56739.2 2.89 0.076 +56739.6 2.95 0.0813 +56740.0 3.01 0.0781 +56740.3 2.96 0.0766 +56740.5 3.07 0.0804 +56740.9 3.09 0.0831 +56741.3 3.05 0.0803 +56741.5 3.07 0.0818 +56741.9 3.12 0.0814 +56742.2 3.05 0.0783 +56742.7 3.29 0.0887 +56743.0 3.26 0.0844 +56743.4 3.4 0.0848 +56743.5 3.25 0.0832 +56744.4 3.4026 0.060424 +56744.5 3.3 0.0818 +56745.4 3.49 0.0954 +56745.6 3.5 0.0915 +56745.9 3.52 0.092 +56746.2 3.45 0.0887 +56746.6 3.38 0.0881 +56746.9 3.41 0.088 +56747.7 3.65 0.0933 +56748.0 3.46 0.0892 +56748.5 3.57 0.0937 +56749.1 3.36 0.0865 +56749.4 3.37 0.0855 +56749.5 3.4 0.0867 +56750.5 3.5 0.0922 +56750.6 3.51 0.0926 +56751.6 3.26 0.0863 +56752.0 3.2 0.0907 +56752.6 3.13 0.0925 +56753.0 3.07 0.0814 +56753.4 3.02 0.0802 +56753.7 2.95 0.0879 +56753.9 2.85 0.0755 +56754.2 2.8 0.0751 +56754.4 2.85 0.0723 +56755.0 2.72 0.0741 +56755.4 2.77 0.0736 +56755.5 2.66 0.0712 +56756.1 2.71 0.073 +56756.3 2.7 0.0725 +56756.8 2.86 0.0758 +56757.3 2.83 0.0744 +56757.5 2.83 0.0728 +56758.0 2.83 0.0721 +56758.3 2.79 0.0724 +56758.5 2.8 0.0744 +56759.0 2.76 0.0711 +56759.2 2.75 0.0715 +56759.8 2.71 0.0699 +56760.0 2.75 0.0708 +56760.3 2.76 0.071 +56761.0 2.76 0.0723 +56761.8 2.9 0.0732 +56762.0 2.9 0.0761 +56762.3 2.94 0.0786 +56762.8 2.77 0.0818 +56763.0 2.9 0.0759 +56763.4 2.64 0.0693 +56763.5 2.62 0.0718 +56764.0 2.92 0.0746 +56764.4 2.9 0.0748 +56764.8 2.87 0.0761 +56765.1 2.75 0.0718 +56765.7 2.79 0.077 +56766.1 2.87 0.0768 +56766.4 2.96 0.083 +56766.7 2.86 0.0811 +56767.4 2.81 0.078 +56769.4 3 0.0779 +56770.5 2.98 0.0859 +56770.8 3.14 0.082 +56771.2 3.14 0.079 +56774.7 3.21 0.0886 +56775.6 3.16 0.0806 +56776.0 3.25 0.0949 +56776.2 3.16 0.0788 +56777.5 2.95 0.0787 +56778.6 3.08 0.0822 +56779.4 3.08 0.0828 +56779.9 3.12 0.0817 +56780.3 2.91 0.0777 +56780.5 3.09 0.0836 +56780.6 3.15 0.0844 +56782.1 2.99 0.0801 +56782.3 2.93 0.0748 +56782.7 2.97 0.0788 +56783.0 3.07 0.0815 +56783.4 3.1 0.079 +56783.6 3.01 0.0822 +56784.0 3.14 0.0813 +56785.0 3.29 0.102 +56785.6 3.32 0.0869 +56786.4 3.28 0.0834 +56787.0 3.41 0.111 +56787.3 3.33 0.0843 +56787.7 3.08 0.0811 +56788.0 3.24 0.0861 +56788.3 3.12 0.0853 +56789.0 3.12 0.0803 +56789.3 2.95 0.0754 +56789.6 3.05 0.0827 +56790.0 3.07 0.0909 +56790.6 2.92 0.108 +56791.6 3.24 0.182 +56792.0 2.94 0.0757 +56792.4 3.07 0.0848 +56792.5 2.99 0.0762 +56792.8 3.2 0.0816 +56793.8 3.15 0.0801 +56794.2 3.1 0.0842 +56794.7 2.98 0.0916 +56795.4 3.04 0.0928 +56796.9 3.17 0.0826 +56798.5 3.11 0.0799 +56798.9 3.04 0.0793 +56799.2 3.04 0.0775 +56799.6 3.21 0.0811 +56800.0 2.95 0.0742 +56800.4 3.05 0.0811 +56800.8 3.09 0.0782 +56801.1 3.13 0.0793 +56802.1 3.18 0.078 +56802.6 3.13 0.077 +56804.2 2.96 0.0763 +56805.1 3.08 0.0814 +56806.0 3.17 0.082 +56806.4 3.1 0.0805 +56806.9 3.12 0.0882 +56807.2 3.13 0.0861 +56807.9 3.15 0.0816 +56808.6 3.17 0.0811 +56808.9 3.24 0.0833 +56809.2 3.09 0.081 +56809.9 3.27 0.084 +56810.2 3.17 0.0866 +56810.6 3.08 0.0809 +56810.9 3.19 0.0822 +56811.2 3.11 0.0854 +56811.8 3.22 0.0938 +56812.0 3.22 0.0825 +56812.4 3.25 0.0859 +56812.6 3.23 0.0845 +56812.9 3.14 0.0831 +56813.2 3.27 0.0833 +56814.0 3.35 0.0893 +56814.4 3.17 0.081 +56814.6 3.39 0.0908 +56815.7 3.34 0.0893 +56816.0 3.44 0.0953 +56816.2 3.58 0.0969 +56817.6 3.73 0.0932 +56818.1 3.79 0.0899 +56818.2 3.77 0.0969 +56818.7 3.93 0.101 +56819.0 4.04 0.11 +56819.7 3.7 0.0984 +56820.2 4 0.106 +56820.6 3.715 0.10785 +56820.7 3.74 0.096 +56821.9 3.72 0.0965 +56822.4 3.67 0.103 +56823.2 3.74 0.101 +56823.3 3.45 0.0942 +56824.6 3.6 0.0994 +56825.4 3.39 0.0894 +56825.6 3.54 0.0907 +56826.0 3.56 0.114 +56826.4 3.34 0.0885 +56826.8 3.25 0.0869 +56827.0 3.27 0.0918 +56827.4 3.17 0.0905 +56827.9 3.15 0.0811 +56828.2 3.2 0.0846 +56828.4 3.11 0.0819 +56828.6 3.17 0.0768 +56829.0 3.13 0.0836 +56829.8 3.07 0.0867 +56830.2 2.99 0.0851 +56830.4 2.97 0.0807 diff --git a/lag/data/lcshort/2600A.lc b/lag/data/lcshort/2600A.lc new file mode 100644 index 0000000..cba17d9 --- /dev/null +++ b/lag/data/lcshort/2600A.lc @@ -0,0 +1,269 @@ +# 0.1 1 +56698.4 2.86 0.0637 +56699.6 2.76 0.0639 +56702.4 2.79 0.063 +56706.5 2.77 0.064 +56708.2 2.72 0.0623 +56710.1 2.6 0.0661 +56710.2 2.65 0.068 +56710.6 2.49 0.0628 +56711.0 2.48 0.0647 +56711.4 2.54 0.0691 +56712.1 2.43 0.0611 +56713.2 2.5 0.0654 +56713.5 2.52 0.0642 +56714.0 2.49 0.0655 +56714.2 2.36 0.0607 +56714.5 2.42 0.0636 +56715.0 2.44 0.0635 +56715.6 2.42 0.0631 +56717.0 2.34 0.061 +56718.4 2.17 0.0544 +56718.6 2.06 0.055 +56719.7 2.17 0.0553 +56720.1 2.07 0.0574 +56720.4 2.11 0.0527 +56720.6 2.11 0.0563 +56721.0 1.98 0.051 +56721.4 2.04 0.0516 +56721.6 1.99 0.0536 +56722.4 1.97 0.0509 +56722.8 1.88 0.0512 +56723.1 1.92 0.0508 +56723.4 1.97 0.0507 +56723.9 1.87 0.0502 +56724.4 1.92 0.0501 +56724.6 1.88 0.0507 +56725.2 1.89 0.0505 +56725.3 1.92 0.0512 +56725.6 2 0.0531 +56726.0 1.94 0.055 +56726.3 1.96 0.0491 +56727.0 1.9546 0.037145 +56727.3 1.93 0.0481 +56727.5 1.95 0.0531 +56727.8 1.97 0.0521 +56728.6 1.94 0.0505 +56728.8 1.95 0.0496 +56729.6 2 0.0521 +56730.0 2.02 0.0535 +56730.4 2.09 0.0525 +56730.6 2.08 0.0523 +56731.0 2.02 0.0509 +56731.4 2 0.0492 +56731.6 2.04 0.0516 +56732.0 2.04 0.0524 +56732.4 2 0.0498 +56732.7 2.07 0.0522 +56733.0 2.05 0.0516 +56733.2 2.03 0.05 +56733.6 2.01 0.0512 +56734.0 2.03 0.0511 +56734.2 2.06 0.0497 +56734.5 2.11 0.0539 +56734.9 2.18 0.0559 +56735.3 2.17 0.0526 +56735.6 2.27 0.0572 +56736.3 2.33 0.0567 +56736.6 2.38 0.0606 +56736.9 2.45 0.062 +56737.5 2.45 0.0644 +56737.9 2.44 0.0643 +56738.2 2.6 0.0635 +56738.5 2.58 0.0679 +56738.9 2.56 0.0651 +56739.2 2.58 0.0631 +56739.6 2.74 0.0712 +56740.0 2.7 0.0664 +56740.3 2.66 0.0651 +56740.5 2.75 0.0686 +56740.9 2.77 0.0695 +56741.3 2.82 0.0694 +56741.5 2.73 0.0705 +56741.9 2.78 0.069 +56742.2 2.71 0.0661 +56742.7 2.87 0.0738 +56743.0 2.91 0.0713 +56743.4 3.01 0.072 +56743.5 2.9 0.0724 +56744.4 3.044 0.050228 +56744.5 3.06 0.0746 +56745.4 3.03 0.0769 +56745.6 3.11 0.0778 +56745.9 3.13 0.0783 +56746.2 3.08 0.0753 +56746.6 3.09 0.0778 +56746.9 3.11 0.0767 +56747.3 3.05 0.077 +56747.7 3.15 0.0776 +56748.0 3.17 0.0782 +56748.5 3.08 0.0803 +56749.1 3.14 0.0761 +56749.4 3.08 0.0749 +56750.5 3.08 0.075 +56750.6 3.02 0.0754 +56751.6 3.06 0.0772 +56752.0 2.92 0.0736 +56752.6 2.89 0.0748 +56753.0 2.86 0.0713 +56753.4 2.75 0.0689 +56753.7 2.67 0.07 +56753.9 2.73 0.0662 +56754.2 2.66 0.0658 +56754.4 2.59 0.0614 +56755.0 2.64 0.0671 +56755.4 2.61 0.0658 +56755.5 2.49 0.063 +56756.1 2.51 0.0641 +56756.3 2.58 0.064 +56756.8 2.45 0.0632 +56757.3 2.57 0.0642 +56757.5 2.67 0.0652 +56758.0 2.63 0.0647 +56758.3 2.56 0.063 +56758.5 2.61 0.0637 +56759.0 2.55 0.0622 +56759.2 2.57 0.0626 +56759.8 2.6 0.0633 +56760.3 2.55 0.0623 +56761.0 2.57 0.0628 +56761.8 2.67 0.0639 +56762.0 2.62 0.0637 +56762.3 2.57 0.0618 +56762.8 2.55 0.0666 +56763.0 2.58 0.0649 +56763.4 2.57 0.0634 +56763.5 2.53 0.0621 +56764.0 2.58 0.0624 +56764.4 2.65 0.0643 +56764.8 2.68 0.067 +56765.1 2.56 0.066 +56765.7 2.72 0.0712 +56766.1 2.57 0.0661 +56766.4 2.67 0.0709 +56766.7 2.61 0.0682 +56767.4 2.51 0.0643 +56768.4 2.54 0.0634 +56769.4 2.78 0.0686 +56770.5 2.7 0.0682 +56770.8 2.72 0.0677 +56771.2 2.81 0.0686 +56774.7 2.96 0.0776 +56774.9 2.87 0.073 +56775.6 2.96 0.072 +56776.0 2.84 0.0696 +56776.2 2.87 0.0677 +56777.0 2.85 0.0691 +56777.4 2.86 0.0695 +56777.5 2.79 0.0707 +56778.6 2.82 0.0712 +56779.8 2.85 0.0704 +56780.2 2.81 0.0699 +56780.5 2.79 0.0732 +56780.6 2.76 0.0719 +56781.1 2.71 0.0672 +56782.1 2.86 0.0709 +56782.3 2.74 0.0664 +56782.7 2.71 0.0687 +56783.0 2.83 0.0716 +56783.4 2.85 0.0727 +56783.6 2.83 0.0716 +56784.0 2.87 0.0714 +56784.4 2.91 0.0833 +56785.0 2.98 0.0755 +56785.6 3.01 0.0754 +56786.4 3 0.0725 +56787.0 2.97 0.074 +56787.3 2.85 0.0694 +56787.7 2.78 0.0711 +56788.0 2.92 0.0736 +56788.3 2.92 0.0736 +56789.0 2.84 0.0693 +56789.3 2.73 0.0665 +56789.6 2.74 0.071 +56790.0 2.85 0.0703 +56790.6 2.68 0.068 +56791.0 2.72 0.0685 +56792.0 2.71 0.0666 +56792.4 2.72 0.0687 +56792.5 2.76 0.0732 +56792.8 2.9 0.07 +56793.8 2.82 0.0682 +56794.7 2.79 0.0738 +56795.4 2.67 0.0711 +56795.9 2.69 0.0658 +56796.9 2.81 0.0696 +56797.2 2.74 0.0657 +56797.5 2.68 0.0694 +56797.9 2.63 0.0663 +56798.2 2.81 0.0689 +56798.5 2.79 0.0717 +56798.9 2.77 0.0684 +56799.2 2.84 0.0671 +56799.6 2.83 0.0676 +56800.0 2.7 0.064 +56800.4 2.69 0.0682 +56800.8 2.87 0.069 +56801.1 2.82 0.0682 +56802.1 2.84 0.0662 +56802.6 2.91 0.0678 +56802.9 2.79 0.0727 +56804.2 2.74 0.067 +56805.1 2.75 0.0698 +56806.0 2.82 0.068 +56806.4 2.8 0.0678 +56806.9 2.8 0.0688 +56807.2 2.83 0.0683 +56807.8 2.99 0.118 +56807.9 2.8 0.0691 +56808.2 2.84 0.0728 +56808.9 2.88 0.0707 +56809.2 2.9 0.0725 +56809.6 2.92 0.0716 +56809.9 2.9 0.0712 +56810.2 2.81 0.0707 +56810.6 2.78 0.0685 +56810.9 2.86 0.0703 +56811.2 2.82 0.0746 +56812.4 2.78 0.0703 +56812.9 2.89 0.0723 +56813.2 2.94 0.075 +56813.6 2.83 0.0714 +56814.0 2.97 0.0714 +56814.4 2.86 0.0694 +56814.6 3.06 0.0793 +56815.0 2.82 0.0699 +56815.7 3 0.0749 +56816.0 3.18 0.0804 +56816.2 3.02 0.0751 +56817.6 3.23 0.0758 +56818.1 3.34 0.074 +56818.2 3.36 0.083 +56818.7 3.26 0.0821 +56819.0 3.35 0.0809 +56819.7 3.24 0.0808 +56820.2 3.49 0.0853 +56820.6 3.22 0.08 +56820.7 3.27 0.0808 +56821.9 3.27 0.0793 +56822.4 3.22 0.0795 +56823.0 3.31 0.0883 +56823.2 3.29 0.0829 +56823.3 3.01 0.0736 +56824.6 3.22 0.0813 +56825.4 3.17 0.0779 +56825.5 3.1 0.0755 +56825.9 3.1 0.0662 +56826.4 3.08 0.0774 +56826.8 3 0.0748 +56827.0 2.98 0.073 +56827.4 2.84 0.0713 +56827.9 2.91 0.0714 +56828.1 2.87 0.0719 +56828.4 2.91 0.0728 +56828.5 2.89 0.0638 +56829.0 2.85 0.0715 +56829.3 2.87 0.0723 +56829.8 2.78 0.0718 +56830.1 2.8 0.0693 +56830.4 2.78 0.0695 diff --git a/lag/data/lcshort/3465A.lc b/lag/data/lcshort/3465A.lc new file mode 100644 index 0000000..2caa876 --- /dev/null +++ b/lag/data/lcshort/3465A.lc @@ -0,0 +1,267 @@ +# 0.1 1 +56698.4 2.19 0.0556 +56699.6 2.2 0.0581 +56702.4 2.26 0.0578 +56706.5 2.18 0.0576 +56708.2 2.19 0.057 +56709.6 2.19 0.0711 +56710.1 2.15 0.0624 +56710.2 2.19 0.0643 +56710.6 2.12 0.0606 +56711.0 2.01 0.06 +56711.4 2.03 0.0634 +56712.1 2.07 0.0589 +56713.2 2.1 0.0626 +56713.5 1.93 0.0563 +56714.0 2.03 0.0609 +56714.2 2.04 0.0591 +56714.5 1.98 0.0593 +56715.0 1.98 0.0588 +56715.6 1.94 0.0575 +56717.0 1.89 0.0556 +56718.4 1.78 0.0501 +56718.6 1.74 0.0521 +56719.7 1.78 0.051 +56720.1 1.69 0.0526 +56720.4 1.79 0.0501 +56720.6 1.73 0.0519 +56721.0 1.67 0.0478 +56721.4 1.72 0.0484 +56721.6 1.71 0.0515 +56722.4 1.64 0.0472 +56722.8 1.59 0.0482 +56723.1 1.55 0.0458 +56723.4 1.55 0.0447 +56723.9 1.63 0.0482 +56724.4 1.55 0.045 +56724.6 1.6 0.0477 +56724.8 1.6 0.0486 +56725.2 1.55 0.0461 +56725.3 1.65 0.0487 +56725.6 1.66 0.0495 +56726.0 1.56 0.0498 +56726.3 1.64 0.0457 +56727.0 1.6 0.033932 +56727.3 1.6 0.0443 +56727.5 1.63 0.0496 +56727.8 1.63 0.0478 +56728.6 1.59 0.0462 +56728.8 1.63 0.0463 +56729.6 1.61 0.047 +56730.0 1.58 0.0472 +56730.4 1.64 0.0467 +56730.6 1.63 0.0462 +56731.0 1.69 0.0474 +56731.4 1.65 0.0454 +56731.6 1.66 0.047 +56732.0 1.65 0.0474 +56732.4 1.66 0.046 +56732.7 1.65 0.0468 +56733.0 1.65 0.0466 +56733.2 1.63 0.0452 +56733.6 1.63 0.0464 +56734.0 1.62 0.0459 +56734.2 1.7 0.0459 +56734.5 1.65 0.0476 +56734.9 1.77 0.0513 +56735.3 1.77 0.048 +56735.6 1.68 0.0483 +56736.3 1.81 0.05 +56736.6 1.83 0.0527 +56736.9 1.86 0.0537 +56737.5 1.83 0.055 +56737.9 1.93 0.0581 +56738.2 1.96 0.0546 +56738.5 2.11 0.0639 +56738.9 2.01 0.0585 +56739.2 2.03 0.0566 +56739.6 2.1 0.0628 +56740.0 2.11 0.0595 +56740.3 2.14 0.0598 +56740.5 2.16 0.0617 +56740.9 2.14 0.0618 +56741.3 2.1 0.0596 +56741.5 2.23 0.0661 +56741.9 2.22 0.0633 +56742.2 2.17 0.0606 +56742.7 2.19 0.0655 +56743.0 2.26 0.064 +56743.4 2.35 0.0648 +56743.5 2.33 0.0674 +56744.4 2.3453 0.04459 +56744.5 2.47 0.0696 +56745.4 2.43 0.072 +56745.6 2.41 0.0701 +56745.9 2.48 0.0722 +56746.2 2.47 0.0698 +56746.6 2.46 0.072 +56746.9 2.4 0.069 +56747.7 2.48 0.0712 +56748.0 2.43 0.0698 +56748.5 2.48 0.0756 +56749.1 2.48 0.0697 +56749.4 2.48 0.0698 +56749.5 2.47 0.0732 +56750.5 2.47 0.0698 +56750.6 2.43 0.0705 +56751.6 2.45 0.0717 +56752.0 2.34 0.0683 +56752.6 2.43 0.0728 +56753.0 2.35 0.0676 +56753.4 2.31 0.0665 +56753.7 2.31 0.0692 +56753.9 2.23 0.0618 +56754.2 2.26 0.0636 +56754.4 2.2 0.0592 +56755.0 2.11 0.0616 +56755.4 2.12 0.0608 +56755.5 2.13 0.0611 +56756.1 2.12 0.0614 +56756.3 2.14 0.0605 +56757.3 2.18 0.0621 +56757.5 2.23 0.0621 +56758.0 2.19 0.0614 +56758.3 2.16 0.0604 +56758.5 2.18 0.0607 +56759.0 2.16 0.0597 +56759.2 2.11 0.0586 +56759.8 2.06 0.0572 +56760.0 1.96 0.0546 +56760.3 2.05 0.0569 +56761.0 2.04 0.057 +56761.8 2.15 0.0586 +56762.0 2.06 0.0574 +56762.3 2.16 0.0591 +56762.8 2.16 0.0643 +56763.0 2.05 0.0588 +56763.4 2.1 0.0588 +56763.5 2.01 0.0562 +56764.0 2.17 0.0596 +56764.4 2.1 0.0584 +56764.8 2.11 0.0604 +56765.1 2.1 0.0619 +56765.7 2.15 0.0647 +56766.1 2.13 0.0624 +56766.4 2.06 0.0629 +56766.7 2.08 0.0625 +56767.4 2.1 0.0611 +56768.4 2.23 0.0632 +56769.4 2.17 0.0614 +56770.5 2.12 0.0614 +56770.8 2.26 0.0641 +56771.2 2.25 0.0628 +56774.7 2.33 0.0713 +56774.9 2.36 0.0696 +56775.6 2.35 0.0661 +56776.0 2.28 0.0641 +56776.2 2.34 0.063 +56777.0 2.32 0.0645 +56777.4 2.25 0.0629 +56777.5 2.19 0.0641 +56778.6 2.26 0.0656 +56779.4 2.24 0.0665 +56779.8 2.2 0.0614 +56780.2 2.27 0.0646 +56780.5 2.19 0.0667 +56780.6 2.25 0.0672 +56782.1 2.26 0.0646 +56782.3 2.16 0.0599 +56782.7 2.22 0.0646 +56783.0 2.22 0.0646 +56783.4 2.25 0.0665 +56783.6 2.2 0.0643 +56784.0 2.27 0.065 +56785.0 2.22 0.0657 +56785.6 2.34 0.0678 +56786.4 2.31 0.0643 +56787.0 2.19 0.0634 +56787.3 2.28 0.0637 +56787.7 2.31 0.0682 +56788.0 2.26 0.0656 +56788.3 2.35 0.0683 +56789.0 2.28 0.064 +56789.3 2.14 0.0597 +56789.6 2.22 0.0663 +56790.0 2.25 0.064 +56790.6 2.16 0.0626 +56791.0 2.25 0.065 +56791.6 2.08 0.0612 +56792.0 2.1 0.0591 +56792.4 2.22 0.0645 +56792.8 2.2 0.0614 +56793.8 2.2 0.0614 +56794.2 2.31 0.0679 +56794.7 2.21 0.0676 +56795.4 2.21 0.0678 +56795.9 2.24 0.0624 +56796.9 2.2 0.0625 +56797.2 2.26 0.0619 +56798.2 2.28 0.0642 +56798.5 2.31 0.0684 +56798.9 2.21 0.0627 +56799.2 2.23 0.0603 +56799.6 2.32 0.0635 +56800.0 2.21 0.0597 +56800.4 2.25 0.0655 +56800.8 2.18 0.0603 +56801.1 2.19 0.0611 +56802.1 2.2 0.0585 +56802.6 2.22 0.0592 +56802.9 2.2 0.0663 +56803.6 2.17 0.0614 +56804.2 2.18 0.0614 +56805.1 2.22 0.0648 +56806.0 2.22 0.0614 +56806.4 2.26 0.0625 +56806.9 2.29 0.0645 +56807.2 2.23 0.0618 +56807.9 2.27 0.0642 +56808.6 2.29 0.0645 +56808.9 2.39 0.0674 +56809.2 2.21 0.0653 +56809.9 2.25 0.0638 +56810.2 2.35 0.0679 +56810.6 2.3 0.0651 +56810.9 2.28 0.0645 +56811.2 2.28 0.07 +56812.0 2.28 0.0662 +56812.4 2.31 0.067 +56812.6 2.28 0.0655 +56812.9 2.22 0.0643 +56813.2 2.28 0.0675 +56813.6 2.28 0.0662 +56814.0 2.3 0.0639 +56814.4 2.26 0.0629 +56814.6 2.345 0.0677 +56815.7 2.38 0.0691 +56816.0 2.45 0.0726 +56816.2 2.49 0.0717 +56817.6 2.54 0.0691 +56818.1 2.53 0.0644 +56818.2 2.44 0.0706 +56818.7 2.66 0.0787 +56819.0 2.66 0.0749 +56819.7 2.61 0.0758 +56820.2 2.63 0.0759 +56820.6 2.56 0.0745 +56820.7 2.59 0.0745 +56821.9 2.57 0.0724 +56822.4 2.64 0.076 +56823.2 2.65 0.0784 +56823.3 2.56 0.0721 +56824.6 2.52 0.0746 +56825.4 2.5 0.0718 +56825.5 2.51 0.0707 +56826.0 2.53 0.0611 +56826.4 2.4 0.0704 +56826.8 2.43 0.0702 +56827.0 2.33 0.0659 +56827.4 2.35 0.0679 +56827.9 2.36 0.0666 +56828.1 2.43 0.0701 +56828.4 2.33 0.0674 +56828.5 2.36 0.0589 +56829.0 2.35 0.0679 +56829.8 2.17 0.0647 +56830.1 2.3 0.0653 +56830.4 2.29 0.0657 diff --git a/lag/data/lcshort/3471A.lc b/lag/data/lcshort/3471A.lc new file mode 100644 index 0000000..b4dc324 --- /dev/null +++ b/lag/data/lcshort/3471A.lc @@ -0,0 +1,144 @@ +# 0.1 1 +56693.8 2.1677 0.0044078 +56694.8 2.1599 0.0079945 +56695.7 2.1757 0.0051169 +56696.7 2.2242 0.0042376 +56697.0 2.2452 0.18008 +56697.8 2.2883 0.0053977 +56698.6 2.3247 0.030894 +56698.7 2.3002 0.0047639 +56699.7 2.2876 0.0094453 +56700.7 2.3071 0.0088749 +56701.6 2.2122 0.0059464 +56701.8 2.4225 0.1715 +56702.6 2.2726 0.017574 +56703.0 2.4725 0.15059 +56703.9 2.4755 0.13439 +56704.8 2.3187 0.097634 +56706.0 2.6157 0.10671 +56707.0 2.2716 0.16374 +56708.0 2.2756 0.13991 +56709.8 2.1826 0.13644 +56710.7 2.2075 0.0044816 +56711.0 2.2089 0.15052 +56711.7 2.1863 0.016895 +56711.8 2.1701 0.1367 +56713.7 2.134 0.0078413 +56713.8 2.1865 0.17049 +56714.7 2.109 0.0037531 +56715.9 2.0072 0.10519 +56716.7 2.0167 0.0057836 +56717.7 1.9664 0.0067365 +56718.0 1.723 0.20304 +56718.7 1.8798 0.0059857 +56719.7 1.9024 0.004336 +56721.7 1.7383 0.006951 +56722.7 1.713 0.0071469 +56723.6 1.6783 0.0059301 +56725.5 1.6218 0.0042657 +56728.6 1.6711 0.0056352 +56729.5 1.6266 0.005288 +56730.5 1.6813 0.0052699 +56730.8 1.7027 0.102 +56732.5 1.6453 0.0071457 +56733.5 1.6586 0.0069863 +56733.8 1.6871 0.067761 +56735.9 1.6879 0.16934 +56736.5 1.9048 0.006132 +56736.8 1.9526 0.10602 +56737.5 1.978 0.005661 +56738.6 2.0516 0.0070037 +56740.6 2.285 0.0069839 +56740.9 2.0833 0.25729 +56741.6 2.2579 0.007974 +56741.7 2.133 0.18256 +56742.6 2.2899 0.0096003 +56743.6 2.4381 0.00661 +56744.5 2.4168 0.0077558 +56744.7 2.3546 0.17893 +56746.8 2.5167 0.12237 +56748.7 2.2943 0.17386 +56749.7 2.436 0.12729 +56752.6 2.5269 0.0064085 +56753.6 2.4566 0.006318 +56754.5 2.3137 0.0060686 +56755.6 2.2095 0.0073075 +56756.0 2.1882 0.074327 +56756.5 2.1821 0.0080689 +56757.5 2.4341 0.049831 +56759.8 2.365 0.13506 +56761.6 2.1636 0.0062522 +56762.8 2.1329 0.16439 +56763.5 2.1888 0.028338 +56763.7 2.3439 0.11814 +56764.8 2.1482 0.14967 +56765.6 2.2252 0.0053543 +56769.5 2.2955 0.0055734 +56770.5 2.3121 0.0060531 +56771.5 2.3754 0.0061272 +56772.5 2.3681 0.0074879 +56772.8 2.2652 0.19586 +56774.7 2.413 0.0054395 +56774.8 2.438 0.24643 +56775.5 2.4081 0.0074272 +56777.5 2.4293 0.0062355 +56778.5 2.4166 0.0062293 +56779.4 2.4066 0.044166 +56779.5 2.4009 0.0065195 +56779.8 2.3922 0.16181 +56780.5 2.4177 0.0061525 +56780.8 2.2426 0.17734 +56781.8 2.3784 0.16667 +56784.4 2.3946 0.006084 +56785.5 2.4275 0.0062609 +56786.5 2.3891 0.0068493 +56787.4 2.3515 0.0066317 +56794.5 2.3095 0.0058448 +56795.4 2.2944 0.0058571 +56796.4 2.2966 0.0063198 +56797.4 2.3738 0.006068 +56799.4 2.3687 0.0057405 +56800.4 2.3444 0.0057183 +56801.4 2.3554 0.0058702 +56802.4 2.3802 0.0062708 +56803.4 2.325 0.0062057 +56805.5 2.3441 0.0056428 +56807.4 2.3017 0.0064661 +56808.4 2.3826 0.0059285 +56809.4 2.3862 0.0062312 +56810.4 2.3786 0.0059799 +56811.4 2.3895 0.0058996 +56812.4 2.4643 0.0059413 +56813.4 2.4209 0.0058353 +56814.5 2.4687 0.0059653 +56815.4 2.4779 0.0061047 +56816.4 2.4829 0.0065244 +56817.4 2.5263 0.0064339 +56818.4 2.6172 0.0060593 +56819.4 2.6952 0.0062181 +56822.4 2.6553 0.006463 +56823.4 2.6752 0.0065362 +56825.4 2.6878 0.0066918 +56826.3 2.4821 0.058906 +56826.4 2.5315 0.0069938 +56827.4 2.498 0.0064606 +56828.4 2.521 0.0059082 +56829.2 2.6081 0.080286 +56829.4 2.4573 0.0061493 +56830.4 2.4421 0.0059538 +56832.4 2.4431 0.0060309 +56833.4 2.4515 0.0060598 +56834.4 2.4471 0.0061341 +56835.4 2.4178 0.0063638 +56839.3 2.3537 0.035948 +56841.4 2.4217 0.0064234 +56843.4 2.3533 0.0063614 +56845.4 2.3291 0.0062597 +56847.4 2.2276 0.0067848 +56858.4 2.2153 0.0065436 +56860.4 2.1712 0.0070403 +56861.4 2.2287 0.0061222 +56862.4 2.0584 0.0060925 +56863.4 2.1421 0.0059222 +56864.4 2.1867 0.0068518 +56865.4 2.2342 0.0068264 diff --git a/lag/data/lcshort/4368A.lc b/lag/data/lcshort/4368A.lc new file mode 100644 index 0000000..65ff421 --- /dev/null +++ b/lag/data/lcshort/4368A.lc @@ -0,0 +1,141 @@ +# 0.1 1 +56692.6 1.3947 0.033651 +56693.6 1.3947 0.041356 +56694.7 1.4068 0.024268 +56695.7 1.3933 0.050304 +56698.5 1.4342 0.0048547 +56699.5 1.4362 0.0042612 +56700.5 1.4354 0.0040935 +56701.6 1.4512 0.0031488 +56706.0 1.4578 0.0070934 +56707.0 1.4669 0.0051915 +56708.0 1.4616 0.0089918 +56708.6 1.4615 0.0043311 +56709.6 1.4465 0.0050586 +56710.5 1.4305 0.016089 +56710.6 1.3984 0.0043451 +56711.6 1.3934 0.02163 +56716.5 1.3108 0.0097109 +56721.0 1.2438 0.014317 +56721.5 1.2196 0.0087975 +56722.0 1.188 0.019795 +56722.5 1.1725 0.036041 +56723.5 1.1728 0.0076944 +56724.5 1.1447 0.035984 +56724.6 1.1488 0.02245 +56725.8 1.1225 0.021278 +56726.6 1.1462 0.021898 +56727.5 1.16775 0.0208803 +56727.6 1.1797 0.018761 +56728.6 1.1524 0.017815 +56729.6 1.1991 0.024086 +56730.6 1.141 0.016762 +56730.9 1.1838 0.017908 +56731.6 1.1691 0.0333495 +56732.5 1.2054 0.021497 +56733.5 1.2236 0.023509 +56733.9 1.1974 0.015581 +56734.0 1.2041 0.016543 +56734.5 1.229 0.033607 +56735.5 1.2275 0.033157 +56735.6 1.2448 0.011814 +56736.9 1.3123 0.010324 +56737.0 1.3169 0.010201 +56737.5 1.32555 0.01583745 +56737.6 1.3191 0.012808 +56737.9 1.4122 0.038688 +56738.0 1.3381 0.0075688 +56738.5 1.3737 0.01784475 +56738.6 1.3759 0.017609 +56739.3 1.3754 0.0071087 +56739.6 1.4194 0.020642 +56739.9 1.41215 0.00866015 +56740.6 1.4382 0.021553 +56741.5 1.4789 0.02885 +56741.9 1.4784 0.012176 +56742.5 1.4723 0.0070039 +56742.9 1.4635 0.01591 +56744.5 1.5363 0.0072214 +56745.9 1.529 0.014132 +56746.4 1.5839 0.029556 +56748.5 1.5921 0.0067385 +56750.4 1.5726 0.0087387 +56750.6 1.58 0.023698 +56751.5 1.5808 0.03789 +56752.4 1.5575 0.0067568 +56753.9 1.4857 0.010478 +56754.4 1.4565 0.0049408 +56755.4 1.4296 0.0051836 +56756.5 1.4459 0.026981 +56756.9 1.4666 0.0098597 +56757.4 1.4404 0.0027667 +56758.5 1.4621 0.021318 +56760.9 1.4062 0.0063377 +56762.4 1.4043 0.012021 +56763.8 1.4059 0.0059986 +56764.9 1.4103 0.0061889 +56765.3 1.4025 0.0033265 +56765.5 1.4241 0.010891 +56766.3 1.4166 0.0078491 +56769.9 1.4676 0.0098557 +56771.8 1.4916 0.0094539 +56772.8 1.5011 0.010391 +56778.5 1.5328 0.04788 +56780.8 1.4852 0.0099827 +56784.5 1.5248 0.034706 +56786.8 1.4982 0.0051841 +56787.8 1.4976 0.0051772 +56788.5 1.5172 0.012923 +56788.8 1.4932 0.0074413 +56792.5 1.4459 0.044731 +56793.5 1.499 0.024843 +56793.8 1.4805 0.0044748 +56795.5 1.4534 0.013504 +56795.8 1.4806 0.0099961 +56797.5 1.4879 0.013194 +56797.8 1.5104 0.012052 +56798.8 1.4916 0.012547 +56799.4 1.5146 0.05153 +56799.8 1.486 0.0099486 +56800.3 1.4926 0.0087852 +56800.5 1.4974 0.06266 +56801.4 1.4846 0.0071092 +56801.8 1.4789 0.011757 +56802.3 1.4922 0.00983 +56802.4 1.4952 0.032345 +56803.4 1.4992 0.010426 +56804.4 1.4939 0.0055301 +56804.8 1.4852 0.010283 +56805.8 1.4854 0.0091643 +56811.4 1.5102 0.006698 +56815.4 1.5515 0.0030784 +56817.4 1.57555 0.0123015 +56818.4 1.5961 0.015792 +56819.4 1.5868 0.015267 +56820.3 1.6437 0.0041742 +56822.3 1.6245 0.0025825 +56823.4 1.6319 0.0032016 +56824.4 1.62635 0.0109763 +56825.4 1.6042 0.0091399 +56827.4 1.5485 0.0052088 +56829.3 1.5125 0.0084753 +56831.3 1.4877 0.010661 +56832.3 1.4858 0.011003 +56834.3 1.5109 0.011089 +56834.4 1.5174 0.036405 +56835.4 1.49765 0.0188156 +56836.3 1.489 0.0075678 +56837.3 1.5005 0.0074576 +56837.4 1.5118 0.029164 +56839.4 1.491 0.005197 +56844.4 1.4689 0.0031776 +56845.3 1.4537 0.0047387 +56846.3 1.4406 0.0051653 +56848.3 1.4209 0.002773 +56850.3 1.4039 0.0047049 +56851.3 1.3763 0.0017419 +56852.3 1.3853 0.0027831 +56853.3 1.3591 0.003454 +56854.3 1.3416 0.0029901 +56857.3 1.3984 0.0074255 +56858.3 1.4287 0.0036334 diff --git a/lag/data/lcshort/4392A.lc b/lag/data/lcshort/4392A.lc new file mode 100644 index 0000000..a9ff5ee --- /dev/null +++ b/lag/data/lcshort/4392A.lc @@ -0,0 +1,269 @@ +# 0.1 1 +56698.4 1.49 0.0347 +56699.6 1.51 0.0369 +56702.4 1.5 0.0373 +56706.5 1.46 0.0359 +56708.2 1.46 0.0354 +56709.6 1.4 0.0447 +56710.1 1.47 0.0408 +56710.2 1.4 0.0398 +56710.6 1.42 0.0388 +56711.0 1.47 0.0419 +56711.4 1.4 0.0425 +56712.1 1.36 0.0371 +56713.2 1.41 0.0403 +56713.5 1.36 0.0382 +56714.0 1.36 0.0396 +56714.2 1.44 0.0399 +56714.5 1.41 0.0406 +56715.0 1.38 0.0396 +56715.6 1.35 0.0386 +56717.0 1.33 0.0378 +56718.4 1.28 0.0341 +56718.6 1.24 0.0359 +56719.7 1.32 0.0359 +56720.1 1.29 0.0387 +56720.4 1.29 0.0342 +56720.6 1.27 0.0369 +56721.0 1.28 0.0349 +56721.4 1.21 0.0327 +56721.6 1.23 0.0357 +56722.4 1.21 0.0332 +56722.8 1.21 0.0354 +56723.1 1.19 0.0338 +56723.4 1.25 0.0343 +56723.9 1.16 0.0332 +56724.4 1.19 0.033 +56724.6 1.21 0.0347 +56724.8 1.16 0.0343 +56725.2 1.17 0.0336 +56725.3 1.17 0.0333 +56725.6 1.19 0.0342 +56726.0 1.18 0.0367 +56726.3 1.18 0.0313 +56727.0 1.2342 0.025186 +56727.3 1.21 0.0315 +56727.5 1.16 0.0343 +56727.8 1.23 0.0346 +56728.6 1.26 0.0346 +56728.8 1.26 0.0338 +56729.6 1.2 0.0336 +56730.0 1.18 0.034 +56730.4 1.22 0.0329 +56730.6 1.22 0.0326 +56731.0 1.21 0.0325 +56731.4 1.22 0.0317 +56731.6 1.18 0.0321 +56732.0 1.22 0.0335 +56732.4 1.24 0.0324 +56732.7 1.3 0.0348 +56733.0 1.22 0.0327 +56733.2 1.26 0.0328 +56733.6 1.23 0.0333 +56734.0 1.24 0.0332 +56734.2 1.22 0.031 +56734.5 1.27 0.0349 +56734.9 1.25 0.0348 +56735.3 1.32 0.0337 +56735.6 1.24 0.034 +56736.3 1.33 0.0347 +56736.6 1.34 0.0368 +56736.9 1.29 0.0357 +56737.5 1.38 0.0397 +56737.9 1.34 0.0389 +56738.2 1.35 0.0356 +56738.5 1.38 0.0405 +56738.9 1.43 0.0398 +56739.2 1.43 0.0376 +56739.6 1.41 0.0406 +56740.0 1.48 0.0396 +56740.3 1.49 0.0394 +56740.5 1.44 0.0393 +56740.9 1.49 0.0408 +56741.3 1.44 0.0389 +56741.5 1.45 0.0414 +56741.9 1.53 0.0414 +56742.2 1.52 0.0399 +56742.7 1.5 0.0429 +56743.0 1.52 0.0408 +56743.4 1.53 0.0399 +56743.5 1.51 0.0416 +56744.4 1.5908 0.028132 +56744.5 1.55 0.0414 +56745.4 1.65 0.0464 +56745.6 1.6 0.0443 +56745.9 1.61 0.0446 +56746.2 1.57 0.0421 +56746.6 1.56 0.0436 +56746.9 1.6 0.0435 +56747.7 1.62 0.044 +56748.0 1.64 0.0445 +56748.5 1.59 0.0466 +56749.1 1.61 0.0426 +56749.4 1.58 0.0422 +56749.5 1.65 0.0466 +56750.5 1.66 0.0441 +56750.6 1.63 0.0448 +56751.6 1.6 0.0446 +56752.0 1.58 0.0437 +56752.6 1.57 0.0451 +56753.0 1.57 0.0427 +56753.4 1.5 0.041 +56753.7 1.47 0.0425 +56753.9 1.52 0.0398 +56754.2 1.49 0.0398 +56754.4 1.53 0.0384 +56755.0 1.45 0.0404 +56755.4 1.47 0.0402 +56755.5 1.45 0.0396 +56756.1 1.41 0.0393 +56756.3 1.44 0.0387 +56756.8 1.46 0.041 +56757.3 1.46 0.0394 +56757.5 1.43 0.0378 +56758.0 1.51 0.0401 +56758.3 1.46 0.0387 +56758.5 1.49 0.0391 +56759.0 1.4 0.0367 +56759.2 1.43 0.0376 +56759.8 1.49 0.0389 +56760.0 1.4 0.0369 +56760.3 1.43 0.0374 +56761.0 1.42 0.0375 +56761.8 1.5 0.0383 +56762.0 1.48 0.0388 +56762.3 1.45 0.0374 +56762.8 1.43 0.0409 +56763.0 1.43 0.0391 +56763.4 1.42 0.0379 +56763.5 1.41 0.0374 +56764.0 1.47 0.038 +56764.4 1.49 0.0389 +56764.8 1.42 0.0386 +56765.1 1.44 0.0406 +56765.7 1.49 0.0431 +56766.1 1.45 0.0406 +56766.4 1.41 0.0418 +56766.7 1.46 0.042 +56767.4 1.49 0.0414 +56768.4 1.45 0.039 +56769.4 1.47 0.0395 +56770.5 1.47 0.0408 +56770.8 1.51 0.0407 +56771.2 1.5 0.0397 +56774.7 1.56 0.0458 +56774.9 1.51 0.0822 +56775.6 1.52 0.0406 +56776.0 1.53 0.0407 +56776.2 1.53 0.0387 +56777.0 1.58 0.0414 +56777.4 1.56 0.0412 +56777.5 1.5 0.0419 +56778.6 1.52 0.042 +56779.4 1.56 0.0442 +56779.9 1.48 0.0401 +56780.3 1.51 0.0409 +56780.5 1.58 0.046 +56780.6 1.57 0.0447 +56782.1 1.46 0.0397 +56782.3 1.54 0.0402 +56782.7 1.52 0.042 +56783.0 1.49 0.0413 +56783.4 1.49 0.0423 +56783.6 1.48 0.0414 +56784.0 1.57 0.0425 +56785.0 1.49 0.0422 +56785.6 1.51 0.0418 +56786.4 1.56 0.0409 +56787.0 1.54 0.0424 +56787.3 1.53 0.0403 +56787.7 1.5 0.0423 +56788.0 1.54 0.0425 +56788.3 1.53 0.0424 +56789.0 1.52 0.0403 +56789.3 1.52 0.04 +56789.6 1.48 0.0426 +56790.0 1.53 0.0413 +56790.6 1.46 0.0403 +56791.0 1.52 0.0419 +56791.6 1.48 0.0416 +56792.0 1.53 0.0406 +56792.4 1.55 0.0427 +56792.5 1.47 0.0437 +56792.8 1.63 0.0425 +56793.8 1.53 0.0401 +56794.2 1.49 0.0419 +56794.7 1.51 0.0447 +56795.4 1.48 0.044 +56795.9 1.5 0.0396 +56796.9 1.52 0.0411 +56797.2 1.49 0.0503 +56798.5 1.57 0.0444 +56798.9 1.47 0.0396 +56799.2 1.5 0.038 +56799.6 1.61 0.0412 +56800.0 1.48 0.0376 +56800.4 1.52 0.0422 +56800.8 1.53 0.04 +56801.1 1.52 0.0401 +56802.1 1.54 0.0381 +56802.6 1.55 0.0385 +56802.9 1.56 0.0449 +56803.6 1.49 0.04 +56804.2 1.57 0.0416 +56805.1 1.52 0.0425 +56806.0 1.54 0.0401 +56806.4 1.52 0.0396 +56806.9 1.54 0.041 +56807.2 1.56 0.0406 +56807.9 1.53 0.041 +56808.6 1.47 0.0393 +56808.9 1.55 0.0415 +56809.2 1.52 0.0426 +56809.9 1.59 0.0425 +56810.2 1.58 0.0435 +56810.6 1.49 0.0402 +56810.9 1.58 0.0423 +56811.2 1.52 0.0449 +56811.8 1.52 0.0417 +56812.0 1.63 0.0449 +56812.4 1.58 0.0436 +56812.6 1.55 0.0423 +56812.9 1.6 0.0439 +56813.2 1.56 0.0443 +56813.6 1.56 0.0432 +56814.0 1.59 0.0414 +56814.4 1.61 0.042 +56814.6 1.58 0.046 +56815.7 1.6 0.0442 +56816.0 1.62 0.0458 +56816.2 1.61 0.0439 +56817.6 1.67 0.0425 +56818.1 1.71 0.0398 +56818.2 1.72 0.0471 +56818.7 1.78 0.0498 +56819.0 1.66 0.044 +56819.7 1.65 0.0457 +56820.2 1.72 0.0468 +56820.6 1.74 0.04785 +56820.7 1.73 0.047 +56821.9 1.71 0.0453 +56822.4 1.67 0.0455 +56823.2 1.66 0.0468 +56823.3 1.67 0.0444 +56824.6 1.73 0.0486 +56825.4 1.65 0.0449 +56825.5 1.78 0.0469 +56826.0 1.59 0.0348 +56826.4 1.65 0.0459 +56826.8 1.64 0.0448 +56827.0 1.59 0.0423 +56827.4 1.58 0.0434 +56827.9 1.57 0.0421 +56828.1 1.59 0.0435 +56828.4 1.57 0.0431 +56828.5 1.61 0.0368 +56829.0 1.61 0.044 +56829.8 1.56 0.0445 +56830.1 1.54 0.0416 +56830.4 1.55 0.0423 diff --git a/lag/data/lcshort/4775A.lc b/lag/data/lcshort/4775A.lc new file mode 100644 index 0000000..f355e7a --- /dev/null +++ b/lag/data/lcshort/4775A.lc @@ -0,0 +1,172 @@ +# 0.1 1 +56693.8 1.3556 0.0018012 +56694.8 1.3742 0.0027779 +56695.7 1.3882 0.0047708 +56696.3 1.3844 0.032561 +56696.7 1.3912 0.0020569 +56697.0 1.4217 0.018527 +56697.3 1.4114 0.023255 +56697.8 1.4082 0.0014072 +56698.3 1.4228 0.031321 +56698.6 1.4162 0.0086627 +56698.7 1.416 0.0016121 +56699.7 1.4234 0.0015308 +56700.7 1.4274 0.0087576 +56701.3 1.392 0.039884 +56701.6 1.4389 0.0016379 +56701.8 1.4246 0.01769 +56702.6 1.4293 0.0015642 +56703.0 1.4306 0.018669 +56703.9 1.4434 0.016975 +56704.8 1.4445 0.017139 +56706.0 1.4395 0.017397 +56707.0 1.4586 0.017364 +56708.0 1.4447 0.018355 +56709.2 1.3975 0.025656 +56709.8 1.4248 0.018702 +56710.7 1.3859 0.0053184 +56711.7 1.3688 0.001846 +56711.9 1.3312 0.022319 +56712.3 1.3782 0.045865 +56713.3 1.376 0.039367 +56713.7 1.3613 0.0014292 +56713.9 1.4009 0.018904 +56714.7 1.3515 0.0027151 +56715.3 1.3844 0.038556 +56715.8 1.3836 0.021491 +56716.7 1.3199 0.0065605 +56717.7 1.2958 0.0021769 +56718.0 1.2649 0.026928 +56718.7 1.293 0.0023803 +56719.6 1.2674 0.021553 +56720.7 1.2655 0.0022636 +56721.7 1.2395 0.0020276 +56722.7 1.2039 0.0023331 +56723.6 1.2086 0.0021431 +56724.5 1.2153 0.0020434 +56725.5 1.1918 0.001573 +56726.2 1.2 0.052623 +56727.1 1.1863 0.06233 +56728.6 1.2158 0.0018774 +56729.5 1.2158 0.0018336 +56730.5 1.2266 0.0017298 +56730.8 1.1981 0.044497 +56733.8 1.184 0.035437 +56734.5 1.255 0.0020904 +56735.5 1.2837 0.0021313 +56735.9 1.3019 0.053416 +56736.5 1.3646 0.0020129 +56736.8 1.2761 0.032299 +56740.9 1.4375 0.023473 +56741.6 1.415 0.0022229 +56741.7 1.4343 0.022541 +56743.6 1.4792 0.0022983 +56744.7 1.4929 0.020653 +56746.8 1.5082 0.021297 +56748.0 1.5504 0.02266 +56748.8 1.4933 0.019786 +56749.8 1.5101 0.017202 +56752.0 1.4874 0.018864 +56752.6 1.5141 0.0033156 +56753.6 1.4791 0.0030625 +56754.6 1.4521 0.0027433 +56755.6 1.4049 0.002122 +56756.0 1.4117 0.01964 +56756.5 1.4193 0.015837 +56757.1 1.4389 0.048528 +56757.5 1.4304 0.0092279 +56758.7 1.434 0.018826 +56759.9 1.4032 0.019818 +56760.2 1.3704 0.053731 +56761.6 1.3948 0.0020177 +56762.5 1.4264 0.0023044 +56762.8 1.4077 0.018136 +56763.6 1.4296 0.0021244 +56763.8 1.4258 0.017724 +56764.8 1.4209 0.017879 +56765.0 1.4136 0.041984 +56765.6 1.4012 0.0021774 +56765.9 1.4106 0.018453 +56770.5 1.4266 0.0029852 +56770.8 1.4534 0.017933 +56771.5 1.4615 0.0030284 +56772.1 1.4842 0.037162 +56772.5 1.4555 0.0023008 +56772.8 1.4586 0.01994 +56773.8 1.4698 0.01858 +56774.8 1.4682 0.023826 +56775.5 1.4881 0.0021703 +56776.1 1.5082 0.026499 +56777.0 1.4913 0.048642 +56777.5 1.4646 0.0028533 +56778.5 1.4665 0.002608 +56779.4 1.4657 0.011854 +56779.5 1.465 0.0025238 +56779.9 1.4536 0.01926 +56780.5 1.4625 0.0029884 +56780.8 1.4588 0.019312 +56781.5 1.4633 0.0030656 +56782.4 1.4378 0.002792 +56782.7 1.4478 0.020494 +56783.4 1.4521 0.0028214 +56784.4 1.4749 0.0032331 +56785.5 1.4874 0.0029764 +56786.5 1.4684 0.0028576 +56787.4 1.4572 0.002205 +56790.5 1.4528 0.0020048 +56793.5 1.4617 0.002066 +56794.5 1.4552 0.0028249 +56795.4 1.4342 0.0035353 +56796.4 1.4478 0.0037027 +56797.4 1.4572 0.0038895 +56798.4 1.4722 0.0034131 +56799.4 1.4602 0.0032299 +56800.4 1.4572 0.0032292 +56801.4 1.4536 0.0034059 +56802.4 1.4516 0.0021506 +56803.4 1.4539 0.0029914 +56805.5 1.4516 0.0032424 +56806.4 1.4541 0.0023379 +56807.4 1.4455 0.0022998 +56808.4 1.4658 0.0029973 +56809.4 1.4679 0.0030522 +56810.4 1.4644 0.0036251 +56813.4 1.4582 0.0032039 +56814.5 1.4841 0.0028946 +56815.4 1.5082 0.0031475 +56816.4 1.5101 0.0032889 +56816.6 1.4827 0.017415 +56817.4 1.5363 0.0028181 +56817.8 1.5248 0.023106 +56818.4 1.5298 0.0025621 +56819.4 1.5733 0.0025888 +56822.4 1.574 0.0029131 +56823.4 1.5714 0.0033928 +56824.4 1.5753 0.0032094 +56825.4 1.5723 0.003941 +56826.3 1.538 0.012682 +56826.4 1.5305 0.003586 +56827.4 1.5166 0.0034523 +56828.4 1.5059 0.0031421 +56829.4 1.4761 0.0033231 +56830.4 1.4707 0.0036825 +56831.4 1.4668 0.0033127 +56832.4 1.4649 0.0030247 +56833.4 1.4757 0.002763 +56834.4 1.4909 0.0027646 +56835.4 1.4627 0.0028351 +56837.2 1.4685 0.012595 +56839.3 1.4648 0.010757 +56841.4 1.4786 0.0030831 +56843.4 1.4545 0.0030295 +56845.4 1.4491 0.0031735 +56847.4 1.4168 0.0022144 +56848.9 1.3626 0.057652 +56858.4 1.4099 0.0033488 +56860.4 1.4178 0.0033028 +56861.4 1.4088 0.0027736 +56862.4 1.4014 0.0035174 +56863.4 1.3759 0.0026065 +56864.4 1.3922 0.0034208 +56864.7 1.3747 0.024862 +56865.4 1.4296 0.0033445 diff --git a/lag/data/lcshort/5404A.lc b/lag/data/lcshort/5404A.lc new file mode 100644 index 0000000..1aa016d --- /dev/null +++ b/lag/data/lcshort/5404A.lc @@ -0,0 +1,364 @@ +# 0.1 1 +56692.9 1.3015 0.011448 +56693.8 1.2926 0.0049648 +56693.9 1.3128 0.0078165 +56697.6 1.334 0.0068248 +56697.8 1.3304 0.0050462 +56698.5 1.3372 0.0039742 +56699.5 1.348 0.0031266 +56700.5 1.3461 0.0033659 +56701.0 1.3591 0.0143864 +56701.6 1.3462 0.0023048 +56701.8 1.3455 0.00448635 +56702.0 1.3657 0.02688 +56702.5 1.3479 0.0028322 +56702.8 1.3469 0.003563 +56703.9 1.3542 0.0069003 +56704.8 1.3734 0.0043926 +56705.9 1.3553 0.0049159 +56706.8 1.362 0.0048569 +56707.0 1.3484 0.003506 +56707.9 1.3807 0.0057964 +56708.0 1.3554 0.0032078 +56708.6 1.3492 0.0035231 +56708.9 1.3488 0.01825445 +56709.0 1.348 0.0030869 +56709.6 1.3372 0.0026157 +56709.8 1.3395 0.0036601 +56709.9 1.3528 0.0054787 +56710.0 1.34445 0.00420245 +56710.5 1.3308 0.0037517 +56710.9 1.3328 0.022782 +56711.0 1.3038 0.00582 +56711.8 1.3381 0.0081593 +56711.9 1.3472 0.034579 +56712.0 1.3301 0.0052106 +56712.2 1.3331 0.0072942 +56712.9 1.3439 0.030065 +56713.2 1.3173 0.0068688 +56713.8 1.3168 0.0058476 +56714.2 1.3016 0.011241 +56714.5 1.2988 0.0035496 +56715.0 1.3066 0.004806 +56715.5 1.3198 0.0076388 +56715.8 1.2902 0.007993 +56715.9 1.262 0.0064742 +56716.0 1.2929 0.0050264 +56716.8 1.2957 0.0089603 +56716.9 1.2496 0.0058402 +56717.9 1.2463 0.0065271 +56718.5 1.2464 0.004673 +56722.9 1.1669 0.0097179 +56723.4 1.1586 0.0041934 +56723.9 1.155 0.010313 +56725.9 1.1526 0.0093364 +56727.4 1.1572 0.0037123 +56729.8 1.187 0.01018 +56730.9 1.19015 0.00927965 +56731.9 1.1974 0.020315 +56732.5 1.2056 0.0025845 +56733.0 1.1503 0.025934 +56733.8 1.1726 0.0091736 +56734.9 1.21405 0.010036 +56735.8 1.266 0.0048115 +56735.9 1.2559 0.0033219 +56737.4 1.263 0.0019183 +56738.4 1.2825 0.0027635 +56739.0 1.3007 0.0036749 +56739.9 1.3336 0.00628055 +56740.0 1.3337 0.029216 +56741.0 1.3431 0.0058499 +56741.7 1.366 0.0054316 +56741.9 1.35 0.00661825 +56742.0 1.3447 0.0080607 +56742.4 1.366 0.0043412 +56742.9 1.3529 0.0065057 +56743.0 1.3745 0.0068076 +56744.4 1.3954 0.0042349 +56744.5 1.3805 0.0074291 +56744.9 1.3925 0.0052984 +56745.0 1.401 0.0065568 +56745.8 1.4134 0.0065152 +56745.9 1.4079 0.0047798 +56746.7 1.4183 0.0083507 +56748.5 1.4361 0.0037938 +56750.4 1.4405 0.0034363 +56752.4 1.4113 0.0040726 +56753.3 1.3975 0.0028203 +56753.5 1.3775 0.010844 +56753.9 1.38 0.0052644 +56754.0 1.3695 0.016217 +56754.4 1.3593 0.0030401 +56755.0 1.3435 0.025901 +56755.4 1.3508 0.0033019 +56755.5 1.3526 0.0089639 +56755.9 1.3509 0.0088153 +56756.7 1.3723 0.0053865 +56756.9 1.3581 0.0048345 +56757.0 1.3783 0.035785 +56757.3 1.3458 0.0017746 +56757.4 1.3627 0.0086038 +56758.0 1.3677 0.020351 +56758.5 1.33815 0.00662395 +56758.9 1.3447 0.008403 +56759.0 1.3535 0.010164 +56759.9 1.3569 0.023958 +56760.6 1.3436 0.0097197 +56760.9 1.3262 0.035314 +56761.5 1.3501 0.0090655 +56762.8 1.3461 0.0060227 +56765.9 1.3461 0.033987 +56766.4 1.3284 0.0018817 +56766.8 1.3143 0.0092455 +56766.9 1.3743 0.050313 +56767.0 1.3149 0.0080411 +56767.9 1.32153333333333 0.0113463666666667 +56768.0 1.332 0.005041 +56768.3 1.3282 0.0040176 +56768.8 1.3465 0.0060648 +56769.0 1.3596 0.033962 +56769.3 1.3387 0.0049062 +56769.9 1.35615 0.00656395 +56770.3 1.3525 0.0085955 +56770.7 1.3663 0.0062835 +56770.9 1.3552 0.008135 +56771.8 1.3759 0.0047685 +56772.5 1.3663 0.0089764 +56772.9 1.3807 0.010976 +56773.2 1.3796 0.0041614 +56773.7 1.393 0.0058436 +56774.3 1.3897 0.00718205 +56774.7 1.3935 0.0062883 +56775.3 1.3925 0.00854555 +56776.0 1.3863 0.010846 +56776.3 1.3858 0.0046827 +56777.3 1.38 0.0045377 +56777.7 1.3743 0.0058751 +56777.9 1.3753 0.007741 +56778.3 1.3797 0.005077 +56779.3 1.377 0.0047289 +56779.8 1.3711 0.014531 +56779.9 1.3627 0.01627685 +56780.2 1.3885 0.0097672 +56780.3 1.3756 0.0048822 +56780.7 1.3867 0.0058075 +56780.8 1.37965 0.00683075 +56781.0 1.3817 0.0095931 +56781.2 1.374 0.0042705 +56781.7 1.38 0.0057356 +56782.0 1.3693 0.013448 +56782.4 1.3729 0.0058877 +56782.7 1.3773 0.0053601 +56783.3 1.3675 0.0078533 +56783.6 1.3724 0.0057689 +56783.7 1.3691 0.0050301 +56783.9 1.3707 0.012399 +56784.6 1.3824 0.0054921 +56784.9 1.3779 0.0066715 +56785.6 1.3996 0.0065604 +56785.9 1.39195 0.00803215 +56786.8 1.3852 0.0035248 +56786.9 1.356 0.0069573 +56787.3 1.3832 0.0057162 +56787.8 1.3766 0.0032015 +56787.9 1.3724 0.013669 +56788.3 1.3829 0.0061468 +56788.7 1.3824 0.0054235 +56788.8 1.3783 0.0030632 +56789.2 1.3636 0.006561 +56789.4 1.3774 0.008889 +56789.7 1.3707 0.0049077 +56789.8 1.375 0.026838 +56789.9 1.3681 0.0048667 +56790.3 1.3509 0.0044785 +56790.4 1.3611 0.0070892 +56791.8 1.3676 0.0082408 +56791.9 1.3482 0.0049296 +56792.7 1.3531 0.0050591 +56792.9 1.3594 0.0062627 +56793.6 1.3627 0.015681 +56793.7 1.3738 0.0053303 +56793.8 1.3762 0.0036891 +56793.9 1.3728 0.018634 +56794.7 1.3723 0.0053666 +56794.9 1.3841 0.027585 +56795.3 1.36805 0.00527345 +56795.6 1.3674 0.0061207 +56795.8 1.3711 0.0034213 +56795.9 1.3497 0.01657005 +56796.3 1.361 0.0064659 +56796.7 1.3681 0.0061379 +56796.9 1.3624 0.0048217 +56797.5 1.3694 0.016301 +56797.7 1.379 0.005442 +56797.8 1.3699 0.00699945 +56798.6 1.3794 0.0059747 +56798.8 1.37183333333333 0.0072274 +56799.6 1.3753 0.0065277 +56799.7 1.37165 0.0071251 +56799.8 1.3739 0.0108239333333333 +56800.2 1.3715 0.0073715 +56800.4 1.3665 0.0033111 +56800.7 1.3733 0.0070077 +56800.9 1.3662 0.0146648666666667 +56801.3 1.3591 0.0089859 +56801.4 1.3724 0.00348 +56801.7 1.3691 0.0059547 +56801.8 1.3795 0.0049688 +56802.0 1.3801 0.015074 +56802.3 1.3554 0.0093418 +56802.4 1.3722 0.0045033 +56802.8 1.3428 0.021998 +56802.9 1.3812 0.010211 +56803.3 1.3758 0.0073988 +56803.4 1.3674 0.0046999 +56803.7 1.3764 0.0050049 +56803.8 1.3644 0.029975 +56803.9 1.3792 0.012749 +56804.3 1.3611 0.0069258 +56804.4 1.37 0.0029551 +56804.8 1.3722 0.01327145 +56805.2 1.3772 0.0094701 +56805.5 1.3634 0.015812 +56805.8 1.3739 0.0044032 +56805.9 1.3639 0.029407 +56806.7 1.3728 0.006829 +56806.8 1.372 0.030215 +56806.9 1.3747 0.009996 +56807.7 1.3779 0.0068201 +56807.9 1.3631 0.01794 +56808.8 1.3696 0.023198 +56809.7 1.3907 0.0059947 +56809.8 1.3467 0.02882 +56810.3 1.3789 0.0070161 +56810.5 1.3849 0.017907 +56810.6 1.3913 0.0059442 +56810.8 1.3816 0.02084 +56811.3 1.3809 0.0042115 +56811.7 1.3891 0.006435 +56812.7 1.38445 0.0063183 +56812.9 1.3829 0.0085367 +56813.7 1.3889 0.0063746 +56813.8 1.386 0.0083673 +56814.7 1.39375 0.00744035 +56814.8 1.3818 0.0087613 +56815.4 1.4064 0.0039732 +56815.6 1.4091 0.0060221 +56815.8 1.4064 0.0087731 +56816.7 1.4149 0.0071136 +56817.3 1.4303 0.0086781 +56817.4 1.428 0.0031016 +56818.3 1.44825 0.00557905 +56818.6 1.4522 0.0071968 +56818.8 1.4665 0.0098153 +56819.3 1.478 0.012136 +56819.7 1.4803 0.010064 +56819.8 1.4911 0.0071611 +56820.7 1.4901 0.0090174 +56820.8 1.49535 0.0197691 +56821.3 1.4987 0.011388 +56821.4 1.4895 0.0025167 +56821.7 1.4662 0.026224 +56822.3 1.4688 0.0046507 +56822.7 1.4814 0.010671 +56823.3 1.473 0.0037618 +56823.7 1.4734 0.029445 +56824.4 1.4702 0.0030449 +56824.7 1.4709 0.027305 +56825.4 1.4637 0.0033362 +56825.7 1.448 0.0093566 +56826.6 1.418 0.0090934 +56826.7 1.419 0.0138211 +56827.4 1.4199 0.0043768 +56827.6 1.409 0.019646 +56827.7 1.427 0.011259 +56827.8 1.4092 0.0088231 +56828.3 1.415 0.0121 +56828.8 1.4112 0.0084499 +56829.3 1.40055 0.0126379 +56829.7 1.3858 0.0093359 +56830.2 1.3956 0.013842 +56830.3 1.4003 0.010476 +56830.8 1.3954 0.0052657 +56831.3 1.39005 0.0096589 +56831.6 1.3797 0.017446 +56832.3 1.37815 0.0090954 +56832.5 1.3874 0.018162 +56832.8 1.3973 0.0083418 +56833.5 1.3831 0.017626 +56833.7 1.3906 0.021709 +56833.8 1.3821 0.0084434 +56834.3 1.3824 0.0074214 +56834.7 1.3851 0.0056076 +56835.4 1.3768 0.0035494 +56835.7 1.3733 0.027463 +56836.3 1.3756 0.004897 +56836.6 1.3788 0.017179 +56836.7 1.37605 0.01342235 +56836.8 1.3778 0.012697 +56837.3 1.3739 0.004824 +56837.6 1.3859 0.017927 +56837.7 1.3712 0.01207465 +56837.8 1.3859 0.0096745 +56838.3 1.3979 0.012039 +56838.6 1.3857 0.0058049 +56838.8 1.3709 0.0150042 +56839.3 1.3789 0.0033839 +56839.5 1.3825 0.01754 +56839.6 1.3799 0.0054273 +56839.7 1.3807 0.0239126 +56839.8 1.3801 0.0093899 +56840.3 1.3708 0.010112 +56840.6 1.4005 0.02501 +56840.7 1.38246666666667 0.0126397666666667 +56840.8 1.3917 0.008624 +56841.7 1.37965 0.01217065 +56841.8 1.3866 0.0086008 +56842.5 1.3824 0.017307 +56844.4 1.3669 0.0020477 +56844.7 1.3787 0.0118218 +56845.3 1.3595 0.0047332 +56845.6 1.3446 0.025227 +56845.7 1.3597 0.020087 +56846.2 1.3638 0.0082164 +56846.3 1.3607 0.001455 +56846.6 1.3618 0.0054481 +56846.8 1.3526 0.0083406 +56847.3 1.3568 0.0062722 +56847.7 1.3426 0.0054332 +56848.3 1.3465 0.0038539 +56848.6 1.3404 0.0057355 +56848.7 1.3505 0.030105 +56850.3 1.32775 0.0054214 +56850.6 1.32325 0.01638215 +56850.7 1.3237 0.033135 +56851.6 1.30955 0.0156043 +56852.3 1.299 0.0019276 +56852.6 1.3141 0.0056779 +56853.3 1.2907 0.0017353 +56854.3 1.277 0.0021893 +56854.7 1.2509 0.032587 +56855.5 1.2734 0.028172 +56855.7 1.283 0.034354 +56855.8 1.2864 0.012566 +56856.7 1.28376666666667 0.0156343666666667 +56857.3 1.3185 0.0074665 +56857.6 1.2979 0.027271 +56857.7 1.3241 0.028554 +56858.3 1.3301 0.0038614 +56858.7 1.3294 0.062865 +56859.3 1.3426 0.011231 +56860.6 1.3308 0.008094 +56860.7 1.3337 0.042759 +56861.2 1.3069 0.0078444 +56861.6 1.3213 0.0053736 +56861.7 1.2993 0.0529125 +56862.7 1.3087 0.0214455 +56863.2 1.2746 0.011061 +56863.6 1.3195 0.0088272 +56863.7 1.32415 0.023349 +56864.5 1.317 0.026839 +56864.6 1.311 0.0084238 +56864.7 1.3381 0.05612 +56865.6 1.3474 0.0089977 +56865.7 1.3945 0.028168 diff --git a/lag/data/lcshort/5468A.lc b/lag/data/lcshort/5468A.lc new file mode 100644 index 0000000..b5017a2 --- /dev/null +++ b/lag/data/lcshort/5468A.lc @@ -0,0 +1,258 @@ +# 0.1 1 +56698.4 1.22 0.0344 +56706.5 1.24 0.0369 +56708.2 1.22 0.0358 +56709.6 1.23 0.0483 +56710.1 1.22 0.0416 +56710.2 1.18 0.0421 +56710.6 1.21 0.0404 +56711.0 1.11 0.04 +56711.4 1.15 0.0434 +56712.1 1.15 0.0387 +56713.2 1.21 0.0425 +56713.5 1.15 0.04 +56714.0 1.18 0.042 +56714.2 1.24 0.0418 +56714.5 1.15 0.0414 +56715.0 1.2 0.0423 +56717.0 1.15 0.04 +56718.4 1.1 0.0361 +56718.6 1.1 0.0391 +56719.7 1.18 0.0392 +56720.1 1.08 0.0404 +56720.4 1.14 0.037 +56720.6 1.06 0.0384 +56721.0 1.16 0.0384 +56721.4 1.04 0.035 +56721.6 1.12 0.0399 +56722.4 1.08 0.0365 +56722.8 1.08 0.0389 +56723.1 1.08 0.0375 +56723.4 1.03 0.035 +56723.9 1.04 0.0368 +56724.5 1.06 0.0364 +56724.6 1.11 0.0389 +56724.8 1.09 0.0395 +56725.2 1.04 0.0367 +56725.3 1.05 0.0371 +56725.6 1.07 0.0379 +56726.0 1.12 0.0425 +56726.3 1.08 0.0349 +56727.0 1.0764 0.027175 +56727.3 1.07 0.0342 +56727.5 1.07 0.0388 +56727.8 1.11 0.0383 +56728.6 1.08 0.0367 +56728.8 1.05 0.0348 +56729.6 1.13 0.0384 +56730.0 1.1 0.0385 +56730.4 1.07 0.0354 +56730.6 1.09 0.0358 +56731.0 1.08 0.0354 +56731.4 1.06 0.038 +56731.6 1.13 0.0372 +56732.0 1.08 0.0364 +56732.4 1.11 0.0354 +56732.7 1.07 0.0355 +56733.0 1.09 0.0357 +56733.2 1.1 0.0351 +56733.6 1.04 0.035 +56734.0 1.08 0.0355 +56734.2 1.06 0.0329 +56734.5 1.1 0.0372 +56734.9 1.13 0.0383 +56735.3 1.13 0.035 +56735.6 1.07 0.0363 +56736.0 1.03 0.0337 +56736.3 1.15 0.0365 +56736.6 1.1 0.0375 +56736.9 1.08 0.0371 +56737.5 1.2 0.0424 +56737.9 1.11 0.0401 +56738.2 1.14 0.037 +56738.5 1.19 0.043 +56738.9 1.19 0.0407 +56739.2 1.15 0.0374 +56739.6 1.17 0.0419 +56740.0 1.17 0.0386 +56740.3 1.25 0.0404 +56740.5 1.25 0.0415 +56740.9 1.23 0.0414 +56741.3 1.25 0.0407 +56741.5 1.24 0.0433 +56741.9 1.21 0.0403 +56742.2 1.21 0.0392 +56742.7 1.26 0.0441 +56743.0 1.27 0.0414 +56743.4 1.27 0.0402 +56743.5 1.29 0.0432 +56744.4 1.3054 0.027995 +56744.5 1.29 0.0421 +56745.4 1.28 0.0442 +56745.6 1.32 0.0445 +56745.9 1.32 0.0445 +56746.2 1.3 0.0423 +56746.6 1.28 0.0438 +56746.9 1.32 0.0438 +56747.7 1.33 0.0439 +56748.0 1.31 0.0434 +56748.5 1.28 0.0463 +56749.1 1.27 0.0414 +56749.4 1.31 0.0425 +56749.5 1.3 0.0452 +56750.5 1.33 0.043 +56750.6 1.24 0.0421 +56751.6 1.27 0.0436 +56752.0 1.25 0.0428 +56752.6 1.31 0.0461 +56753.0 1.27 0.0425 +56753.4 1.34 0.0442 +56753.7 1.28 0.0452 +56753.9 1.24 0.0397 +56754.2 1.25 0.0407 +56754.4 1.23 0.0378 +56755.0 1.29 0.0437 +56755.4 1.28 0.0424 +56755.5 1.2 0.0405 +56756.1 1.17 0.0401 +56756.3 1.15 0.0384 +56756.8 1.2 0.0414 +56757.3 1.28 0.042 +56757.5 1.16 0.0378 +56758.0 1.2 0.0393 +56758.3 1.26 0.0405 +56758.5 1.22 0.0391 +56759.0 1.21 0.0386 +56759.2 1.2 0.0384 +56759.8 1.23 0.0392 +56760.0 1.2 0.0385 +56760.3 1.24 0.0395 +56761.0 1.19 0.0384 +56761.8 1.22 0.0381 +56762.0 1.21 0.0389 +56762.3 1.16 0.0368 +56762.8 1.22 0.0429 +56763.0 1.22 0.0408 +56763.4 1.19 0.0389 +56763.5 1.22 0.0395 +56764.0 1.24 0.0392 +56764.4 1.19 0.0383 +56764.8 1.25 0.0414 +56765.1 1.21 0.042 +56765.7 1.22 0.0435 +56766.1 1.26 0.043 +56766.4 1.17 0.043 +56766.7 1.2 0.0428 +56767.4 1.22 0.0417 +56769.4 1.23 0.0405 +56770.5 1.19 0.0407 +56770.8 1.25 0.0413 +56771.2 1.3 0.0416 +56774.7 1.3 0.0469 +56775.6 1.21 0.0398 +56776.0 1.27 0.0412 +56776.2 1.28 0.0392 +56777.5 1.23 0.0422 +56778.6 1.24 0.0423 +56779.4 1.26 0.044 +56779.9 1.27 0.0417 +56780.3 1.26 0.0417 +56780.5 1.33 0.0473 +56780.6 1.27 0.0446 +56782.1 1.22 0.0409 +56782.3 1.23 0.0394 +56782.7 1.28 0.0432 +56783.0 1.24 0.0423 +56783.4 1.27 0.044 +56783.6 1.26 0.043 +56784.0 1.26 0.0419 +56785.0 1.26 0.0437 +56785.6 1.25 0.0426 +56786.4 1.25 0.0402 +56787.0 1.2 0.0409 +56787.3 1.26 0.0405 +56787.7 1.22 0.0428 +56788.0 1.26 0.0429 +56788.3 1.27 0.0431 +56789.0 1.28 0.0412 +56789.3 1.23 0.0397 +56789.6 1.29 0.045 +56790.0 1.25 0.0412 +56790.6 1.24 0.0419 +56791.6 1.21 0.0421 +56792.0 1.24 0.0403 +56792.4 1.24 0.0425 +56792.5 1.23 0.0451 +56792.8 1.3 0.0415 +56793.8 1.3 0.0413 +56794.2 1.24 0.0428 +56794.7 1.24 0.0453 +56795.4 1.3 0.0469 +56796.9 1.26 0.0416 +56798.5 1.28 0.0446 +56798.9 1.25 0.041 +56799.2 1.27 0.0391 +56799.6 1.24 0.039 +56800.0 1.23 0.0379 +56800.4 1.25 0.0426 +56800.8 1.23 0.0393 +56801.1 1.23 0.0396 +56802.1 1.22 0.037 +56802.6 1.29 0.0386 +56804.2 1.24 0.0403 +56805.1 1.25 0.0427 +56805.4 1.24 0.0409 +56806.0 1.25 0.0397 +56806.4 1.22 0.039 +56806.9 1.3 0.0421 +56807.2 1.28 0.0405 +56807.9 1.26 0.0414 +56808.6 1.2 0.0396 +56808.9 1.25 0.0411 +56809.2 1.31 0.044 +56809.9 1.33 0.043 +56810.2 1.27 0.0429 +56810.6 1.29 0.0421 +56810.9 1.29 0.042 +56811.2 1.24 0.0452 +56811.8 1.28 0.0428 +56812.0 1.31 0.044 +56812.4 1.27 0.0431 +56812.6 1.26 0.0424 +56813.2 1.24 0.0435 +56813.6 1.32 0.0443 +56814.0 1.29 0.0411 +56814.4 1.23 0.0397 +56814.6 1.32 0.047 +56815.7 1.29 0.0436 +56816.0 1.3 0.0451 +56816.2 1.29 0.0433 +56817.6 1.31 0.0405 +56818.1 1.34 0.0376 +56818.2 1.31 0.0441 +56818.7 1.3 0.045 +56819.0 1.36 0.044 +56819.7 1.37 0.0459 +56820.2 1.42 0.0466 +56820.6 1.35 0.04545 +56820.7 1.35 0.0448 +56821.9 1.33 0.0431 +56822.4 1.33 0.0443 +56823.2 1.35 0.0465 +56823.3 1.31 0.0425 +56824.6 1.37 0.047 +56825.4 1.32 0.0439 +56825.6 1.36 0.0439 +56826.0 1.33 0.0346 +56826.4 1.36 0.046 +56826.8 1.29 0.0434 +56827.0 1.29 0.0422 +56827.4 1.33 0.0443 +56827.9 1.28 0.0417 +56828.2 1.32 0.044 +56828.4 1.28 0.0432 +56828.6 1.31 0.0357 +56829.0 1.31 0.0438 +56829.8 1.25 0.0439 +56830.2 1.25 0.0413 +56830.4 1.26 0.0421 diff --git a/lag/data/lcshort/6175A.lc b/lag/data/lcshort/6175A.lc new file mode 100644 index 0000000..971988d --- /dev/null +++ b/lag/data/lcshort/6175A.lc @@ -0,0 +1,169 @@ +# 0.1 1 +56693.8 1.5304 0.0010731 +56694.8 1.542 0.0023399 +56695.7 1.5483 0.0032219 +56696.7 1.5625 0.0012458 +56697.0 1.5768 0.008727 +56697.8 1.5663 0.0021267 +56698.3 1.5354 0.061018 +56698.6 1.5654 0.040809 +56698.7 1.5598 0.0067738 +56699.7 1.5659 0.0015572 +56700.6 1.5875 0.0085348 +56700.7 1.5835 0.0015467 +56701.6 1.5919 0.0028327 +56701.8 1.5886 0.0082288 +56702.6 1.5818 0.0044214 +56703.0 1.5814 0.01016 +56704.8 1.5908 0.0085542 +56705.6 1.5918 0.0069049 +56706.0 1.5806 0.010258 +56707.0 1.6095 0.0087265 +56708.0 1.5907 0.010073 +56709.8 1.5854 0.0099859 +56710.7 1.5756 0.00092644 +56711.0 1.5831 0.012148 +56711.7 1.5626 0.0044413 +56711.9 1.5708 0.0088005 +56712.3 1.5731 0.039074 +56713.7 1.5518 0.003107 +56713.9 1.5678 0.0088717 +56714.7 1.5488 0.0038702 +56715.9 1.5459 0.014546 +56716.6 1.5424 0.010387 +56716.7 1.5293 0.0021776 +56717.7 1.5075 0.0022704 +56718.0 1.5415 0.021901 +56718.6 1.5165 0.023539 +56718.7 1.5025 0.0018707 +56719.6 1.4275 0.098168 +56721.7 1.4499 0.0013701 +56722.7 1.4419 0.001259 +56723.6 1.4425 0.0015329 +56728.6 1.416 0.0014365 +56729.5 1.4353 0.0014823 +56730.5 1.4283 0.0014335 +56730.8 1.4268 0.011391 +56732.5 1.4292 0.0010591 +56733.5 1.4443 0.00089428 +56733.8 1.4226 0.011349 +56734.5 1.4444 0.0010519 +56735.5 1.4529 0.0010809 +56735.9 1.4505 0.010589 +56736.5 1.4627 0.0012419 +56736.8 1.4674 0.010202 +56737.5 1.4839 0.0014325 +56740.9 1.5865 0.014744 +56741.6 1.5566 0.0013468 +56741.7 1.5858 0.01384 +56742.7 1.6059 0.0012955 +56743.6 1.6058 0.0109216 +56744.5 1.628 0.0020369 +56744.6 1.6281 0.070945 +56744.7 1.6036 0.013328 +56746.8 1.6134 0.0096335 +56748.0 1.6145 0.010659 +56748.8 1.6156 0.012206 +56749.8 1.6185 0.010001 +56752.0 1.6167 0.011392 +56752.2 1.6624 0.053472 +56755.6 1.5836 0.0016449 +56756.0 1.5916 0.010162 +56756.5 1.60455 0.03906535 +56757.1 1.5944 0.033012 +56758.7 1.5749 0.010607 +56759.9 1.5721 0.0096926 +56760.2 1.5828 0.028724 +56761.6 1.5567 0.0015441 +56762.8 1.5615 0.012026 +56763.8 1.5439 0.0096355 +56764.8 1.5523 0.013817 +56765.5 1.5505 0.0088584 +56765.6 1.5581 0.0018934 +56765.9 1.5456 0.024446 +56766.4 1.5875 0.011878 +56770.5 1.583 0.0024533 +56770.8 1.5873 0.0097424 +56771.5 1.5914 0.0024341 +56772.5 1.5963 0.0014657 +56772.8 1.5957 0.012014 +56773.4 1.5844 0.01686 +56773.8 1.5962 0.01037 +56774.8 1.6011 0.017435 +56775.4 1.5971 0.015511 +56775.5 1.6173 0.001634 +56776.1 1.6292 0.017462 +56777.5 1.623 0.0023679 +56778.5 1.6277 0.0025071 +56779.4 1.5975 0.059869 +56779.5 1.6049 0.0019692 +56779.9 1.6001 0.011646 +56780.5 1.6195 0.0025443 +56780.8 1.5992 0.011237 +56781.5 1.6092 0.0024733 +56782.4 1.5954 0.0022719 +56782.7 1.5929 0.012836 +56783.5 1.6069 0.0023223 +56784.4 1.6067 0.0023882 +56785.5 1.6031 0.0019389 +56786.5 1.6077 0.0018238 +56787.4 1.5971 0.0014984 +56790.5 1.5832 0.0014121 +56791.4 1.5833 0.0010205 +56794.5 1.5879 0.0023947 +56795.4 1.5825 0.0029154 +56796.4 1.5777 0.0030174 +56800.4 1.6182 0.0025827 +56801.4 1.5996 0.0021498 +56803.4 1.6003 0.0027713 +56805.5 1.5892 0.0024104 +56806.4 1.5932 0.0020715 +56807.4 1.5852 0.0016338 +56808.4 1.6037 0.0028909 +56809.4 1.6159 0.0022402 +56810.4 1.6153 0.0031418 +56811.4 1.6112 0.0029053 +56813.4 1.61 0.0029761 +56814.5 1.62 0.0027937 +56815.4 1.6261 0.0029174 +56816.3 1.6278 0.0073748 +56816.4 1.6279 0.0026668 +56816.6 1.6063 0.0094249 +56817.4 1.6348 0.0026817 +56817.8 1.6135 0.0087746 +56818.4 1.6427 0.0021216 +56819.4 1.6454 0.0020875 +56820.5 1.6782 0.0019164 +56821.2 1.7066 0.010637 +56822.4 1.6807 0.0025122 +56823.4 1.6921 0.0031519 +56824.4 1.6799 0.0032749 +56825.4 1.692 0.0031822 +56826.3 1.6503 0.053443 +56826.4 1.6573 0.0032291 +56827.4 1.6531 0.0031585 +56828.4 1.6394 0.0032611 +56829.4 1.628 0.0030643 +56830.4 1.6201 0.0034631 +56831.4 1.6149 0.003147 +56832.4 1.6239 0.0033012 +56833.4 1.6098 0.0027225 +56834.4 1.6105 0.0027488 +56835.4 1.6067 0.0031663 +56837.2 1.6185 0.053256 +56839.3 1.6228 0.046269 +56841.4 1.6193 0.0025718 +56842.2 1.6181 0.012388 +56843.2 1.6074 0.011288 +56843.4 1.6195 0.0030966 +56845.4 1.6098 0.0028955 +56848.9 1.5512 0.054319 +56858.4 1.5696 0.0032211 +56860.4 1.5604 0.0032847 +56861.4 1.5824 0.0027557 +56862.4 1.5644 0.0027052 +56863.4 1.5653 0.0028026 +56864.4 1.5683 0.0032917 +56864.7 1.5906 0.014082 +56865.4 1.5703 0.003081 +56865.6 1.5934 0.014295 diff --git a/lag/data/lcshort/6439A.lc b/lag/data/lcshort/6439A.lc new file mode 100644 index 0000000..79f5657 --- /dev/null +++ b/lag/data/lcshort/6439A.lc @@ -0,0 +1,129 @@ +# 0.1 1 +56691.6 1.2688 0.0019957 +56692.6 1.3017 0.023046 +56693.6 1.2992 0.020369 +56696.6 1.2726 0.021202 +56697.6 1.3003 0.0042606 +56698.5 1.3226 0.0034718 +56699.5 1.3201 0.002499 +56700.5 1.3069 0.0024999 +56701.6 1.3122 0.0081561 +56702.5 1.3244 0.002033 +56708.6 1.3378 0.0018252 +56709.5 1.3261 0.0027637 +56710.5 1.3216 0.0025764 +56716.5 1.258 0.0035746 +56721.5 1.2182 0.002851 +56723.5 1.1805 0.0018707 +56725.9 1.1738 0.0072591 +56727.5 1.1726 0.0027081 +56730.9 1.2004 0.0062157 +56737.4 1.2511 0.0028873 +56737.6 1.2281 0.019671 +56738.4 1.2735 0.001935 +56738.6 1.2461 0.020741 +56739.3 1.2807 0.0024071 +56739.9 1.2798 0.0064744 +56740.6 1.2562 0.022429 +56741.5 1.3351 0.022079 +56741.8 1.301 0.0041112 +56742.4 1.3194 0.0030607 +56744.4 1.3461 0.0026464 +56746.4 1.4111 0.02069 +56748.5 1.3972 0.01090265 +56750.3 1.398 0.0031287 +56750.6 1.4055 0.02164 +56751.5 1.3973 0.02789 +56752.4 1.3878 0.0042333 +56753.4 1.3772 0.0033446 +56754.4 1.3561 0.0030466 +56755.4 1.3402 0.0022522 +56755.9 1.335 0.0044227 +56757.3 1.3503 0.0023647 +56758.4 1.317 0.0027139 +56758.5 1.3227 0.019807 +56758.9 1.3163 0.0038922 +56763.4 1.2829 0.014517 +56765.5 1.3025 0.013861 +56766.3 1.3115 0.002751 +56774.5 1.3661 0.02031 +56778.8 1.3226 0.0042003 +56779.8 1.3366 0.0046196 +56780.8 1.339 0.004003 +56784.5 1.3433 0.024146 +56788.5 1.3389 0.013393 +56791.8 1.3306 0.0034794 +56792.8 1.3046 0.0042505 +56795.5 1.2926 0.01458 +56797.3 1.3426 0.009419 +56797.5 1.2947 0.021245 +56797.8 1.3269 0.0041007 +56798.8 1.3371 0.0041468 +56799.4 1.3553 0.027743 +56799.7 1.3374 0.0041311 +56800.5 1.3468 0.025034 +56800.8 1.3392 0.0038458 +56801.4 1.3423 0.0021901 +56802.4 1.34173333333333 0.0117790666666667 +56803.2 1.3405 0.0091857 +56803.3 1.3438 0.0042479 +56804.4 1.3411 0.0026984 +56804.8 1.3373 0.0038581 +56805.4 1.3355 0.027686 +56806.4 1.3165 0.018669 +56807.4 1.32 0.016693 +56808.7 1.3216 0.0054774 +56810.3 1.3344 0.0044912 +56811.3 1.3467 0.0035194 +56812.8 1.3474 0.0039135 +56813.8 1.3489 0.0039439 +56814.7 1.3446 0.0042879 +56815.4 1.3513 0.0076174 +56817.4 1.3661 0.00910665 +56818.4 1.4322 0.01803 +56818.8 1.4003 0.0052857 +56819.4 1.3783 0.014352 +56820.8 1.4233 0.0070262 +56821.7 1.4386 0.0064871 +56822.3 1.4059 0.0040318 +56822.4 1.4163 0.016233 +56823.4 1.4074 0.0017815 +56824.4 1.4177 0.01035085 +56825.4 1.42255 0.01656845 +56827.4 1.3926 0.0027796 +56827.8 1.3716 0.0049506 +56828.8 1.3712 0.0060794 +56829.3 1.3782 0.0038435 +56831.3 1.3351 0.0046522 +56831.5 1.3606 0.019864 +56832.3 1.3442 0.0044328 +56832.8 1.356 0.0042153 +56833.8 1.3595 0.0042187 +56834.3 1.346 0.0049128 +56835.4 1.3611 0.0030915 +56836.3 1.3521 0.0029733 +56836.8 1.3378 0.0078432 +56837.3 1.3501 0.0030099 +56837.8 1.3576 0.0050405 +56838.8 1.3577 0.0046788 +56839.3 1.356 0.0029911 +56839.8 1.349 0.0043343 +56840.8 1.364 0.0046477 +56841.8 1.3634 0.0085268 +56844.4 1.353 0.0033987 +56845.3 1.3433 0.0014186 +56846.3 1.3384 0.0018309 +56846.8 1.3473 0.0052071 +56848.3 1.3091 0.0012573 +56850.3 1.3133 0.0014752 +56852.3 1.299 0.0025985 +56853.3 1.2927 0.0016604 +56854.3 1.2791 0.001436 +56855.8 1.2647 0.0044586 +56856.2 1.2705 0.0079139 +56856.7 1.2803 0.0054792 +56857.3 1.2788 0.0026603 +56858.3 1.298 0.0024266 +56859.3 1.3162 0.0036186 +56861.7 1.3241 0.0040494 +56863.7 1.3262 0.0034804 diff --git a/lag/data/lcshort/7647A.lc b/lag/data/lcshort/7647A.lc new file mode 100644 index 0000000..646a5df --- /dev/null +++ b/lag/data/lcshort/7647A.lc @@ -0,0 +1,177 @@ +# 0.1 1 +56693.8 0.99818 0.0010832 +56694.8 1.0013 0.0011449 +56695.7 1.0108 0.0010735 +56696.7 1.0136 0.0013874 +56697.0 1.0183 0.0036828 +56697.8 1.0152 0.0015205 +56698.7 1.0214 0.003556 +56699.7 1.0193 0.0039285 +56700.7 1.0248 0.00057142 +56701.6 1.0255 0.0013993 +56701.8 1.0204 0.0057308 +56702.6 1.0327 0.001377 +56703.0 1.0295 0.0058458 +56703.9 1.0341 0.0028286 +56704.8 1.0351 0.0033558 +56705.6 1.0381 0.0025162 +56706.0 1.0396 0.0033394 +56707.0 1.0394 0.0041289 +56708.0 1.0421 0.004911 +56709.8 1.0268 0.0044325 +56710.7 1.0238 0.0021402 +56711.0 1.0269 0.0057723 +56711.7 1.0219 0.0010382 +56711.9 1.0224 0.0033551 +56713.7 1.0099 0.0038844 +56713.9 1.0189 0.0036202 +56714.7 1.011 0.00047881 +56715.9 1.0075 0.0042615 +56716.7 1.0073 0.0011921 +56717.7 0.99781 0.0010252 +56718.0 1.0032 0.0090012 +56718.6 1.0009 0.0087718 +56718.7 0.98788 0.0009763 +56719.6 0.97784 0.010423 +56720.7 0.97176 0.001192 +56721.7 0.96021 0.00086336 +56722.7 0.94266 0.00073112 +56723.6 0.9498 0.0011062 +56724.5 0.92922 0.0082206 +56727.6 0.94276 0.0092891 +56728.6 0.94829 0.00078424 +56729.5 0.93688 0.00098926 +56730.5 0.94341 0.00084999 +56730.8 0.93824 0.0053844 +56731.5 0.94652 0.000662 +56732.5 0.94518 0.00059886 +56733.5 0.9465 0.00060471 +56733.8 0.94379 0.0041796 +56734.5 0.95518 0.00072721 +56735.5 0.95214 0.00063674 +56735.9 0.95989 0.0042691 +56736.5 0.96861 0.00078904 +56736.8 0.97435 0.0044905 +56737.5 0.98445 0.00084149 +56740.9 1.0188 0.0098614 +56741.6 1.0135 0.00092777 +56741.7 1.0185 0.0087678 +56743.6 1.0336 0.006135 +56744.5 1.0438 0.0011527 +56744.7 1.0422 0.007808 +56746.8 1.0507 0.0046892 +56748.0 1.0586 0.011607 +56748.8 1.0573 0.0073935 +56749.8 1.0654 0.0053101 +56752.0 1.0668 0.0065078 +56752.6 1.071 0.0013997 +56753.6 1.0614 0.0013847 +56754.6 1.0533 0.0014189 +56756.0 1.0354 0.0098934 +56756.5 1.0333 0.00084616 +56757.1 1.0437 0.011788 +56757.5 1.0327 0.0039728 +56758.7 1.0349 0.0055304 +56759.9 1.0302 0.0031799 +56760.2 1.0226 0.0077373 +56762.8 1.0162 0.0031825 +56763.8 1.0142 0.0031806 +56764.8 1.0157 0.0039904 +56765.5 1.0193 0.002708 +56765.6 1.0163 0.0010884 +56765.9 1.013 0.0037752 +56766.4 1.0072 0.0035624 +56770.5 1.0251 0.0013306 +56770.8 1.0251 0.004742 +56771.5 1.0229 0.0013331 +56772.5 1.0284 0.00074432 +56772.8 1.0347 0.0068808 +56773.4 1.0354 0.0055093 +56773.9 1.0367 0.0065486 +56774.8 1.0403 0.011588 +56775.4 1.0443 0.0052589 +56775.5 1.0462 0.0008261 +56776.1 1.0515 0.010514 +56776.5 1.0469 0.00075634 +56777.5 1.0468 0.0012233 +56778.5 1.0451 0.001329 +56779.4 1.045 0.0045924 +56779.5 1.0426 0.0010962 +56779.9 1.0364 0.0064996 +56780.5 1.0415 0.0013409 +56780.8 1.0399 0.0060786 +56781.5 1.0414 0.0013411 +56782.4 1.0339 0.0013211 +56782.7 1.0358 0.007572 +56783.5 1.0321 0.0012952 +56784.4 1.0343 0.0013026 +56785.5 1.0354 0.0011273 +56786.5 1.0373 0.0010105 +56787.4 1.0346 0.0008086 +56790.5 1.0298 0.00089144 +56792.4 1.0234 0.00064158 +56793.5 1.0263 0.0011514 +56794.5 1.0327 0.0013893 +56795.4 1.0266 0.0013657 +56796.4 1.0299 0.0016216 +56797.4 1.0342 0.0015733 +56798.4 1.0344 0.0016566 +56799.4 1.0388 0.0015688 +56800.4 1.0346 0.0012622 +56801.4 1.0319 0.00112 +56802.4 1.0336 0.00097995 +56803.4 1.0358 0.0014131 +56805.5 1.0323 0.0016691 +56806.4 1.0272 0.0010286 +56807.4 1.0338 0.0012573 +56808.4 1.0356 0.0014605 +56809.4 1.0365 0.0013149 +56810.4 1.0381 0.0014683 +56811.4 1.0372 0.001497 +56812.4 1.0398 0.001338 +56813.4 1.0392 0.0017247 +56815.4 1.0443 0.0016613 +56816.3 1.0523 0.0027328 +56816.4 1.0476 0.0014594 +56816.6 1.0492 0.0056383 +56817.4 1.0489 0.001355 +56817.8 1.0501 0.00461 +56818.4 1.0635 0.0012342 +56819.3 1.0607 0.0025741 +56819.4 1.0671 0.0013257 +56820.5 1.0676 0.0010707 +56821.2 1.073 0.0031384 +56822.4 1.0768 0.0011759 +56823.4 1.0863 0.0016316 +56824.4 1.0826 0.0017377 +56825.3 1.0887 0.0053436 +56825.4 1.0888 0.0018402 +56826.4 1.0736 0.0018112 +56827.4 1.0696 0.0016159 +56828.4 1.0676 0.0016659 +56829.4 1.0648 0.0015916 +56830.4 1.0616 0.0018272 +56831.4 1.0419 0.0016339 +56832.4 1.0473 0.0015363 +56833.4 1.0512 0.0016127 +56834.4 1.0565 0.0014259 +56835.4 1.0492 0.0015334 +56839.3 1.0496 0.0039668 +56841.4 1.0514 0.0014987 +56842.2 1.0486 0.004392 +56843.2 1.0442 0.0041289 +56843.4 1.0488 0.0015184 +56845.4 1.0415 0.0016418 +56847.4 1.0284 0.0012048 +56848.4 1.0219 0.00083962 +56848.9 1.0252 0.0065753 +56850.3 1.0311 0.0029486 +56858.4 1.0166 0.0016626 +56860.4 1.0135 0.0019027 +56861.4 1.0197 0.0013262 +56862.4 1.0128 0.0017233 +56863.4 1.0119 0.0015518 +56864.4 1.0245 0.0018702 +56864.7 1.0165 0.0086684 +56865.4 1.0165 0.0016406 +56865.6 1.0161 0.0088544 diff --git a/lag/data/lcshort/8560A.lc b/lag/data/lcshort/8560A.lc new file mode 100644 index 0000000..7a0edee --- /dev/null +++ b/lag/data/lcshort/8560A.lc @@ -0,0 +1,94 @@ +# 0.1 1 +56691.6 0.87317 0.0026959 +56692.6 0.88029 0.012202 +56693.6 0.86513 0.012546 +56697.6 0.89278 0.0027706 +56698.5 0.89709 0.0025896 +56699.5 0.88364 0.0020513 +56700.5 0.88091 0.002057 +56701.6 0.88869 0.0024809 +56702.5 0.89436 0.0017635 +56708.6 0.9057 0.0044293 +56709.6 0.90211 0.0021009 +56710.5 0.89276 0.001945 +56711.6 0.87975 0.011322 +56714.5 0.88213 0.001859 +56716.5 0.87184 0.0024774 +56721.5 0.83886 0.0021876 +56723.5 0.81715 0.0019344 +56724.6 0.81366 0.012583 +56726.6 0.82353 0.021025 +56727.5 0.81925 0.0021967 +56727.6 0.82072 0.017771 +56728.6 0.8203 0.016299 +56729.6 0.8227 0.014817 +56730.6 0.81727 0.013813 +56732.5 0.81692 0.0015562 +56737.5 0.85637 0.0014633 +56738.5 0.86607 0.0014293 +56738.6 0.84869 0.01423 +56739.3 0.8564 0.001926 +56739.6 0.84919 0.011904 +56740.6 0.87901 0.0091033 +56741.5 0.89782 0.0108 +56742.5 0.8915 0.0019131 +56744.4 0.90916 0.0018332 +56746.4 0.92889 0.011265 +56747.4 0.92676 0.0085321 +56748.5 0.92453 0.0015179 +56750.4 0.93011 0.0020754 +56752.4 0.93049 0.0026117 +56753.4 0.92474 0.0024158 +56754.4 0.9176 0.00157 +56755.4 0.90675 0.0036559 +56757.3 0.91152 0.0022711 +56758.4 0.89878 0.0021865 +56762.5 0.86906 0.013725 +56763.4 0.8785 0.016176 +56765.3 0.88668 0.0014039 +56765.5 0.87722 0.0089637 +56766.3 0.88558 0.0020045 +56774.5 0.91516 0.011342 +56784.5 0.91553 0.010877 +56793.5 0.8998 0.014907 +56799.4 0.9084 0.0095921 +56800.4 0.91075 0.0059837 +56800.5 0.91848 0.012066 +56801.4 0.89689 0.001218 +56802.4 0.89536 0.0016556 +56803.3 0.90135 0.0023623 +56804.4 0.89891 0.0010679 +56810.3 0.90305 0.0027017 +56811.3 0.90377 0.0018143 +56815.4 0.90767 0.0014549 +56817.4 0.909335 0.00632285 +56818.4 0.93889 0.015805 +56819.4 0.91493 0.012155 +56820.3 0.9252 0.0012369 +56822.3 0.92788 0.0018752 +56822.4 0.93468 0.0094074 +56823.4 0.92657 0.007523765 +56824.4 0.92816 0.00445645 +56825.4 0.9337 0.0010273 +56827.4 0.92479 0.0017244 +56829.3 0.92087 0.0022199 +56831.3 0.9019 0.002926 +56832.3 0.90169 0.0025419 +56834.3 0.90397 0.0031968 +56834.4 0.92469 0.0096736 +56835.4 0.91293 0.013811 +56836.3 0.90264 0.0017885 +56837.3 0.90328 0.001761 +56837.4 0.91002 0.01468 +56839.3 0.90474 0.0018228 +56844.4 0.90582 0.0017204 +56845.3 0.89892 0.0010768 +56846.3 0.8972 0.00075842 +56848.3 0.87447 0.0054227 +56850.3 0.88867 0.0015854 +56852.3 0.88324 0.0010476 +56853.3 0.87353 0.00303 +56854.3 0.86959 0.0024919 +56857.3 0.87292 0.0016967 +56858.3 0.87835 0.001482 +56859.3 0.88252 0.0014181 diff --git a/lag/data/lcshort/9157A.lc b/lag/data/lcshort/9157A.lc new file mode 100644 index 0000000..dfc60c9 --- /dev/null +++ b/lag/data/lcshort/9157A.lc @@ -0,0 +1,185 @@ +# 0.1 1 +56693.6 0.92243 0.0088403 +56693.8 0.91997 0.0007179 +56694.8 0.92227 0.0015231 +56695.7 0.92849 0.0011644 +56696.3 0.93547 0.0082542 +56696.7 0.92685 0.002241 +56697.0 0.93519 0.006603 +56697.8 0.92937 0.00079993 +56698.6 0.93296 0.018661 +56698.7 0.9281 0.0011176 +56699.3 0.93444 0.0084341 +56699.7 0.93387 0.0032265 +56700.6 0.9483 0.0058924 +56700.7 0.93917 0.00074591 +56701.6 0.93415 0.0021153 +56701.8 0.93332 0.0052709 +56702.6 0.93589 0.00080304 +56703.0 0.93627 0.0078421 +56703.9 0.94014 0.0042069 +56704.8 0.94314 0.0052537 +56705.6 0.94912 0.0059547 +56706.0 0.94135 0.0054783 +56707.0 0.95181 0.0058115 +56708.0 0.94026 0.007787 +56709.8 0.93931 0.0074527 +56710.7 0.937 0.0013689 +56711.0 0.94054 0.0084577 +56711.7 0.93353 0.0011514 +56711.9 0.93897 0.0045735 +56713.3 0.92114 0.0082319 +56713.7 0.92876 0.00088797 +56713.9 0.9262 0.004933 +56714.7 0.92795 0.0011482 +56715.3 0.92284 0.013389 +56715.9 0.93218 0.0059838 +56716.6 0.91745 0.0087617 +56716.7 0.92189 0.001062 +56717.7 0.91761 0.0010295 +56718.0 0.91675 0.0094107 +56718.6 0.90982 0.0097522 +56718.7 0.91318 0.0010625 +56719.6 0.88319 0.059595 +56720.7 0.90444 0.0011842 +56721.7 0.89802 0.0010162 +56722.7 0.89121 0.0011464 +56723.6 0.88897 0.0011197 +56726.2 0.88643 0.0086172 +56727.2 0.88556 0.010663 +56727.6 0.87806 0.0096178 +56728.6 0.89119 0.001001 +56729.5 0.88292 0.00094379 +56730.5 0.88198 0.00093497 +56730.8 0.87772 0.0080025 +56732.5 0.89109 0.0010713 +56733.5 0.89315 0.0010281 +56733.8 0.88256 0.0069804 +56734.5 0.88854 0.00095568 +56735.5 0.89542 0.00099082 +56735.9 0.90394 0.010869 +56736.5 0.89966 0.00099182 +56736.8 0.90315 0.0075066 +56737.5 0.90435 0.00097654 +56740.6 0.92149 0.0010833 +56740.9 0.93118 0.010863 +56741.6 0.92427 0.0010812 +56741.7 0.93448 0.0091251 +56743.6 0.94699 0.0012479 +56744.5 0.95105 0.0012477 +56744.7 0.95164 0.0081884 +56746.8 0.95486 0.005594 +56748.8 0.96146 0.0073677 +56749.8 0.96225 0.0055027 +56752.0 0.95725 0.0062168 +56752.6 0.97096 0.0014163 +56753.6 0.96788 0.0014138 +56754.6 0.95786 0.001496 +56755.6 0.95203 0.0010734 +56756.0 0.94737 0.010428 +56756.5 0.95404 0.0010893 +56758.7 0.94571 0.0072118 +56759.9 0.94253 0.0040218 +56762.8 0.93001 0.0047008 +56763.8 0.92523 0.0048843 +56764.5 0.94457 0.0082901 +56764.8 0.93346 0.0054751 +56765.5 0.92924 0.0086284 +56765.6 0.9296 0.0010925 +56765.9 0.93744 0.0075983 +56768.1 0.91989 0.0078078 +56770.5 0.94039 0.0013889 +56770.8 0.93796 0.0054887 +56771.2 0.94294 0.012459 +56771.5 0.93576 0.0014185 +56772.2 0.94459 0.010315 +56772.5 0.93926 0.0011692 +56772.8 0.94191 0.0072979 +56773.4 0.9419 0.0099593 +56773.9 0.94308 0.0073039 +56774.8 0.94423 0.01157 +56775.4 0.94651 0.0095025 +56775.5 0.95143 0.0010393 +56777.5 0.94941 0.0012739 +56778.5 0.94573 0.0013876 +56779.4 0.94133 0.020644 +56779.5 0.94793 0.0013195 +56779.9 0.94202 0.0062056 +56780.5 0.94598 0.0012671 +56780.8 0.94527 0.0064972 +56781.5 0.94549 0.001364 +56782.4 0.93323 0.0012145 +56782.7 0.94342 0.008012 +56783.5 0.94113 0.0012489 +56784.4 0.93849 0.0014474 +56785.5 0.94683 0.0010173 +56786.5 0.93995 0.00096365 +56787.4 0.9321 0.0011008 +56790.5 0.93759 0.00094167 +56792.4 0.94213 0.0011596 +56793.5 0.93843 0.0011304 +56794.5 0.93416 0.0013987 +56795.4 0.93589 0.0012746 +56796.4 0.93882 0.0014749 +56797.5 0.9374 0.0014896 +56798.4 0.94144 0.0015629 +56799.4 0.94507 0.0013971 +56800.4 0.94239 0.0012396 +56801.4 0.94086 0.0012398 +56802.4 0.94191 0.0010651 +56803.4 0.93911 0.0013572 +56805.5 0.9379 0.0013814 +56806.4 0.93465 0.0015162 +56807.4 0.93667 0.0013304 +56808.4 0.94057 0.0012888 +56809.4 0.93919 0.0013445 +56810.4 0.93999 0.0014715 +56811.4 0.9457 0.0013701 +56812.4 0.94513 0.0013596 +56813.4 0.93901 0.0016499 +56814.5 0.94019 0.0013535 +56815.4 0.94604 0.0016489 +56816.3 0.95324 0.0088622 +56816.4 0.94812 0.0014709 +56816.6 0.94722 0.0070849 +56817.4 0.94202 0.0016533 +56817.8 0.9538 0.0058725 +56818.4 0.95529 0.00143 +56819.3 0.95522 0.0057349 +56819.4 0.95899 0.001311 +56820.5 0.96675 0.0013287 +56821.2 0.9647 0.0065794 +56822.4 0.9684 0.0014717 +56823.4 0.9762 0.0016835 +56824.4 0.97451 0.0016661 +56825.3 0.96372 0.0091574 +56825.4 0.97583 0.0015407 +56826.3 0.96842 0.020209 +56826.4 0.96636 0.0016682 +56827.4 0.96331 0.001762 +56828.4 0.96249 0.0015249 +56829.4 0.9588 0.001358 +56830.4 0.9562 0.0014686 +56831.4 0.94967 0.0015451 +56832.4 0.9477 0.001454 +56833.4 0.95207 0.0013537 +56835.4 0.94231 0.0015401 +56837.2 0.94664 0.023788 +56837.8 0.94491 0.0086448 +56839.3 0.95025 0.014174 +56841.4 0.94424 0.0013421 +56842.3 0.95093 0.0095213 +56843.2 0.94775 0.008541 +56843.4 0.95532 0.0015505 +56845.4 0.94557 0.001623 +56848.4 0.9418 0.001509 +56850.3 0.9349 0.019399 +56858.4 0.92652 0.0016419 +56860.4 0.93598 0.0018796 +56861.4 0.93412 0.0014486 +56862.4 0.93544 0.0018848 +56863.4 0.93719 0.0017521 +56864.4 0.92316 0.0017688 +56864.7 0.92761 0.0090122 +56865.4 0.93475 0.0016411 +56865.6 0.92891 0.0096014 diff --git a/lag/data/lightcurves b/lag/data/lightcurves new file mode 120000 index 0000000..186f49a --- /dev/null +++ b/lag/data/lightcurves @@ -0,0 +1 @@ +/home/caes/science/psdlag-agn/data/STORM_III/lightcurves/Δt=0.01/ \ No newline at end of file diff --git a/lag/data/tophat_fitting_sandbox.ipynb b/lag/data/tophat_fitting_sandbox.ipynb new file mode 100644 index 0000000..c0f3e1b --- /dev/null +++ b/lag/data/tophat_fitting_sandbox.ipynb @@ -0,0 +1,301 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "%pylab inline\n", + "\n", + "from scipy.stats import norm\n", + "from scipy.stats import lognorm\n", + "from scipy.optimize import curve_fit\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgwAAAFkCAYAAABMyWOlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XmcjeX/x/HXmTGDsZshIrIbW4ydGbsh8rUkDBJKkWSU\nQnaJiBBKtrJFEUKyryOhsU1Zs2U3GPvYZs7vj3v8LGFmOPe5zxnv5+NxHmPOue/7+jTfb3nPfV/X\n5wIREREREREREREREREREREREREREREREREREREREREREREREREREREREREREXFzPYAtwCXgNDAP\nyB/POVWA2Ie84jtPRERETOZh0nUrAaOBskBNIBmwDPBJwLn5gCz3vP4xqUYRERFxMX4YdwsCH3NM\nlbhj0jmjIBEREUk4s+4wPCh93NfzCTh2G3ACWIERIkRERMRiNieNsQBIC1R+zHH5gSAgHEgBvA60\njzsn7BHnZI17iYiISOKcjHsliDMCw1jgZYzHEScSee4CwA7Uf8hnWZ9//vkTJ04k9pIiIiICHAdK\nk8DQkMzcWhgNvIIxCfJJ/mbfBLR4xGdZT5w4wfTp0/H393/S+pKE0NBQRo4caXUZltPP4S79LAz6\nOdyln4VBPwfD7t27admyZTaMu/SWBgYbRliojzEP4cgTXqcE8QQNf39/AgICnvDySUP69Omf+Z8B\n6OdwL/0sDPo53KWfhUE/hydnVmAYC4RgBIarGMsjAS4A1+P+PBh4Hngj7vtQ4BCwC/AGWgKN4l4i\nIiJiIbMCQ3uMuQdrHni/NTA17s9ZgBfu+cwL+ALIDkQDfwF1gCUm1SgiIiIJZFZgSMhyzTYPfP9F\n3EtERERcjLP6MIiJQkJCrC7BJejncJd+Fgb9HO7Sz8Kgn8OTc8aySrMEAOHh4eGawCIiIpIIW7du\npWTJkgAlga0JOUd3GERERCReCgwiIiISLwUGERERiZcCg4iIiMRLgUFERETipcDg5j5b9xndV3Qn\nJjbG6lJERCQJM3vzKTHRtpPb6L26N3bsHIw6yLSG00ieLLnVZYmISBKkOwxuym63E7o0FP9M/sx+\nbTYL9i7glZmvcPnGZatLExGRJEiBwU3N2TWHdUfWMaLWCBoXasySlkvYdGwT1adW5+y1s1aXJyIi\nSYwCgxuKvhVN1+VdqZe/HsF5ggGo8mIV1rZey5GLRwicHMi/F/+1uEoREUlKFBjc0PCNwzl5+STD\ng4ff936JrCUIaxPGjZgbVJxckd2Ruy2qUEREkhoFBjdz7NIxBocNpnPZzuTzzfefz/P55mND2w2k\nT5GewO8C2XRskwVViohIUqPA4Ga6r+hOau/U9KrU65HHPJ/meda1Xoe/nz/VplZj6T9LnVihiIgk\nRQoMbmTj0Y3MiJjBoGqDSJci3WOPzZAyA8teX0bVF6tSb2Y9Zv01y0lViohIUqTA4CZi7bF0XtKZ\nEllK0Lp46wSd4+Plw7ym82hWpBnNf27O2M1jzS1SRESSLDVuchPTdkxjy4ktrGu9Dk8PzwSf5+Xp\nxfcNvsfPx4/3fnuPyGuR9K3cF5vNZmK1IiKS1CgwuIHLNy7TfWV3mhZuSlDOoESf72HzYHjwcDKn\nykyPlT2IvBrJVy9/lajgISIizzYFBjcwOGwwF65fYGjNoU98DZvNRvfA7vj5+PHOonc4F32OqQ2n\n4u3p7cBKRUQkqdIcBhd3MOogwzcO5+MKH5MjXY6nvt5bAW8x+7XZzNszj1d+eIUrN684oEoREUnq\nFBhcXNdlXcmcKjMfV/zYYdds5N+IJS2W8MexP9RKWkREEkSBwYWtOrSKeXvmMbTGUFJ5p3Lotavm\nqsqa1ms4FHWIoO+COHrxqEOvLyIiSYsCg4u6HXub0CWhVHihAs2KNDNljICsAYS1DSP6VjQVJ1dk\nz9k9powjIiLuT4HBRU0In0DEmQhG1R5l6hLI/L752dB2A2mTpyVwciCbj282bSwREXFfCgwuKCo6\nit6re9OmeBtKPV/K9PGypc3GujbrKOBXgGpTqrH8wHLTxxQREfeiwOCC+q/tz42YGwyqPshpY2ZM\nmZHlry+nUs5K1P2hLj/9/ZPTxhYREdenwOBidkXuYszmMfQK6kWW1FmcOraPlw+/NPuFJoWb0GxO\nM77e8rVTxxcREdelxk0uxG6388HSD3gx/YuElgu1pAYvTy+mNpyKn48fHRd3JPJqJH0q91EraRGR\nZ5wCgwtZvH8xSw8sZV7TeSRPltyyOjxsHoyoNYJMPpnotboXZ6+dZdTLo/Cw6YaUiMizSoHBRdyM\nuUmXpV2onqs69QvUt7ocbDYbPSv1xM/Hjw6/duBs9FmmNJiiVtIiIs8oBQYXMXrTaA5EHWBu07ku\ndfv/nVLv4OvjS4u5LYiKjuLnJj87vImUiIi4Pt1jdgFnrp5hwLoBdCjVgSKZi1hdzn80LtSYxc0X\ns+HoBqpPrc65a+esLklERJxMgcEF9FrVC0+bJ/2r9Le6lEeqnrs6q99YzYGoAwR9F8SxS8esLklE\nRJxIgcFi205uY+LWifSv0h9fH1+ry3msUs+XIqxNGFdvXaXi5IrsPbvX6pJERMRJFBgsZLfbCV0a\nin8mf9qXam91OQlSwK8AG9puILV3agK/C+TPE39aXZKIiDiBAoOF5uyaw7oj6xhRawRenl5Wl5Ng\n2dNmZ13rdeTNmJeqU6qy4uAKq0sSERGTKTBYJPpWNF2Xd6Ve/noE5wm2upxE8/XxZcXrK6j4QkXq\n/lCXObvmWF2SiIiYSIHBIsM3Dufk5ZMMDx5udSlPLJV3KhaELOBV/1dpMrsJ3/75rdUliYiISdSH\nwQLHLh1jcNhgOpftTD7ffFaX81S8Pb2Z3mg6vil9af9reyKvRdIzqKdL9ZIQEZGnp8Bgge4rupPa\nOzW9KvWyuhSH8LB58NXLX5E5VWZ6r+7NmatnGFl7pFpJi4gkIWb9F70HsAW4BJwG5gH5E3BeZSAc\niAYOAO+YVJ9lNh7dyIyIGQyqNoh0KdJZXY7D2Gw2elfuzdd1vmbM5jG8Pu91bsbctLosERFxELMC\nQyVgNFAWqIlxJ2MZ4POYc3IBi4G1QHFgEPAV0MikGp0u1h5L5yWdKZGlBK2Lt7a6HFN0KN2BWY1n\nMfvv2dSfVZ+rN69aXZKIiDiAWY8kXn7g+zbAGSAACHvEOe2Bw8AHcd/vBUoBXYG5ji/R+abtmMaW\nE1tY13odnh6eVpdjmiaFm5AxZUYazGpAzWk1WdR8ERlTZrS6LBEReQrOesicPu7r+cccUx7jLsS9\nlmGEBrf/2/Xyjct0X9mdpoWbEpQzyOpyTFcjdw1Wv7Gafef2Uem7Shy/dNzqkkRE5Ck4IzDYgBHA\nemDXY457DmO+w71OY9wF8TOnNOcZHDaYC9cvMLTmUKtLcZrS2UoT1jaMSzcuUWFyBfad22d1SSIi\n8oScsUpiDFAYCDTj4qGhoaRPn/6+90JCQggJCTFjuCdyMOogwzcOp3vF7uRIl8PqcpyqoF9BNrTd\nQK3ptag4uSJLWiyh5PMlrS5LROSZMXPmTGbOnHnfexcuXEj0dcxeLD8a+B/GJMgj8Ry7FtgGhN7z\nXkPgRyAlEPPA8QFAeHh4OAEBAY6p1iSNfmzElhNb2NNxD6m8U1ldjiXOXTtHnR/qsCtyF780+4Vq\nuapZXZKIyDNr69atlCxZEqAksDUh55j1SMKGcWehAVCN+MMCwEaMFRX3CsZYnvlgWHAbqw6tYt6e\neQytMfSZDQtgtJJe2WolFV6owMszXubnXT9bXZKIiCSCWYFhLNAi7nUVyBL3SnHPMYOBKfd8Pw7I\nCQwH/IG2ca9hJtVoutuxtwldEkqFFyrQrEgzq8uxXGrv1CwMWUjDgg1pMqcJE8InWF2SiIgkkFlz\nGNoDdmDNA++3BqbG/TkL8MI9nx0G6mBMkOwIHAc6YTR9cksTwicQcSaCLe22qFVyHG9Pb2Y0moFv\nSl/eXvQ2kdci6RHYQz8fEREXZ1ZgSMidizYPeW8dxvMUtxcVHUXv1b1pU7wNpZ4vZXU5LsXTw5Mx\ndcaQOVVmeq7qSeTVSIbXGq5W0iIiLkx7SZik/9r+3Ii5waDqg6wuxSXZbDb6VumLn48fnX7rxNno\ns0z+32S8PL2sLk1ERB5CgcEEuyN3M2bzGD6r9hlZUmexuhyX1rFMR3x9fGk1rxXno88z+7XZ+Hg9\nroO4iIhYQfeAHcxut9NlaRdeTP8ioeVC4z9BaFakGYuaL2LN4TXUnFaT89GPawgqIiJWUGBwsMX7\nF7P0wFKGBQ8jebLkVpfjNoLzBLOq1Sr2nN1D5e8rq5W0iIiLcfvAcNOFdlC+GXOTLku7UD1XdeoX\nqG91OW6nbPayrG+zngvXL1BxckX2n9tvdUkiIhLH7ecwlC8PadKAnx9kyhT/10yZIF06MGMV3+hN\nozkQdYC5TedqmeATKpSpEBvabiB4WrDRSrrlEgKyunYnTxGRZ4HbB4Z+/SB1aoiMhLNnja/798Pv\nvxvfR0X995xkyYwAkdCQ4ecH3t6Pr+PM1TMMWDeADqU6UCRzEVP+WZ8VOdLlYH2b9dT5oQ5Vvq/C\nL81+oWquqlaXJSLyTHP7wFCvHjxuK4lbt+D8eSNI3BsqHvy6b9/dY27d+u910qa9/y7Fg6Fi1tVe\n2GM8eSNnfy5eNI7XTYYnlylVJla1WkXDHxtSe0ZtZr06i4b+Da0uS0TkmeX2gSE+Xl7w3HPGKyHs\ndrh8+fHh4uxZ2LMHwsKM7y+m3AbvTITfRlGml+//j/uwuxiPuoPh52ecI3elSZ6GX5v/Sst5LWk8\nuzHfvvItbwW8ZXVZIiLPpCQfGBLLZjPuDqRNC3nyxH+83W6n8nehnL7iz8zx7blw7tEhY/fuu9/f\nvv3fa6VLF//8i3vfS5Mm6d/FSJ4sObNencV7i9+j3cJ2nL12lm4Vu2mOiIiIkykwPKU5u+aw/ug6\nlrZcSkCehN0isNvh0qX7A8XDQsauXXe/v3Tpv9fx9jaCQ/78EBgIQUF3J4EmJZ4ennxd92syp8pM\nj5U9iLwayRfBX6iVtIiIEykwPIXoW9F0Xd6VevnrEZwnOMHn2WzG3YR06SBv3oSdc+MGnDv335AR\nGQkRETBuHAwcCJ6eULy4ER4CA41XQh/HuDKbzUb/qv3x8/Hj/SXvczb6LBPrTVQraRERJ1FgeArD\nNw7n5OWTrHh9heljJU8Ozz9vvB7Gboe9e2H9euM1fz6MHGl8du8diKAgyJ3bfR9ldCrbCT8fP1rN\nN1pJ/9j4R7WSFhFxAgWGJ3Ts0jEGhw2mc9nO5PPNZ3U52GxQsKDxatfOeO/YMWNi5p0Q8d13RrDI\nmvX+AFG0qHFnwl2EFA0hQ8oMvPrTq9SaXouFIQtJnyK91WWJiCRpbvp7JgABQHh4eDgBj1tXaZKW\nc1uy/OBy9r23j3Qp0jl9/CcRFWX0p7gTILZsMZaQpk0LFSrcDRClS0OKFFZXG7+NRzdS94e6ZE+b\nnaUtl5I1TVarSxIRcQtbt26lZMmSACWBrQk5R7PGnsDGoxuZETGDQdUGuU1YAMiQAerWhc8/hw0b\n4OJFWLsWPv7YuPPw+edQqZIxtyIwEHr0gMWL4cIFqyt/uPIvlGd9m/Wcjz5PhckV+Of8P1aXJCKS\nZOkOQyLF2mMpN7Ect2Nvs6XdFjw93OhefjxiYmDnTuPuw51HGadOGY87iha9ewciMBCyZbO62ruO\nXDhC8PRgTl85TWCOQIpmLkrR54pSNHNRCvgVwNsznjadIiLPmCe5w6A5DIk0bcc0tpzYwrrW65JU\nWABjHkOJEsbr/feNuw4HDtwNEMuWwdixxrG5ct0ND0FBUKCAdRMpc6bPSVibML7c+CXbT29n2s5p\nHL9s7HaZzCMZBXwL/H+AuBMmcqbLqV4OIiKJ4M7/xXT6HYbLNy6Tf0x+KueszKzGs5wypqs5dcoI\nD3fuQGzfDrGxRj+IeydSlihh7NlhlfPR5/n7zN9EnIkg4nSE8fVMBJduGA0t0ninoXDmwveFiKKZ\ni+Lr42td0SIiTvIkdxgUGBLhk5WfMOKPEex9by850uVwypiu7tIl2LjxboDYtAmuX4dUqaBcubsB\nomxZ4z0r2e12jl069p8QsTtyN7dijQ1EsqTO8p8Q4Z/JX0s3RSRJUWAw0cGog/iP9ad7xe70r9rf\n9PHc1Y0bEB5+N0CEhRmTJpMlMzYJu3cehK+L/DJ/K+YW+8/vvy9E/HXmLw5GHQTAho28GfPe91ij\nSOYi5M2YN8k9lhKRZ4MCg4ka/diILSe2sKfjHlJ5W/yrshuJjTVaXN9Zyrl+vdEfAsDf//4AkTOn\nazWUunLzyn2PNf6K/IuI0xFEXosEIEWyFBTKVOj/A8SduxJZU2fV/AgRcWma9GiSVYdWMW/PPH5o\n9IPCQiJ5eECRIsarQwdjIuW//94ND2FhMH68cWz27PcHiMKFjfOtkto7NWWzl6Vs9rL3vX/6yum7\nIeLMX0SciWD2rtlcu3UNgIwpM/4nRBTJXIS0ydNa8Y8hIuIQ7vxrkFPuMNyOvU3AtwGkSZ6GsDZh\n+s3RBGfPGn0h7gSI8HBjN88MGaBixbuTKUuVMjbcckWx9lgORh28L0REnIlg37l9xNpjAciZLud9\nIULLPkXEKrrDYIIJ4ROIOBPBlnZbFBZM4ucH9esbL4CrV43Jk3cCxKefGu+lSGFMnrx3Z860LvJL\nu4fNg7wZ85I3Y14a+jf8//ev377O7sjd94WIB5d9FvQreDdIaNmniLgod/4vkul3GKKio8g3Oh//\nK/A/JtefbMoYEr9bt4zlm/c2lDp71nhcUbz4/cs53WVnzqjoqLsh4vTdiZYXb1wEtOxTRMylSY8O\nFroklEnbJrG/036ypM5iyhiSeHd25rx3Y61Dh4wJk/XqQceOUKOGtfMfnsTDln3+deYvdp/dzc2Y\nm4CWfYqIYygwONDuyN0U/aYon1X7jG6B3Rx+fXGs48dh0SL4+mujvXW+fEZweOMNSO/mG1k+uOzz\nzp2JRy37LJK5CHXz1SWlV0qLKxcRV6XA4CB2u52XZ7zMP+f/4e93/yZ5suQOvb6Yx2437jyMHQs/\n/2xMkmzZ0ggPxYpZXZ1j3bvs897HG5HXImlSuAk/Nv7R6hJFxEVp0qODLN6/mKUHljKv6TyFBTdj\ns92dz3DypLFk89tvja9BQUZwaNQIvLysrvTpPWrZ58StE2m3sB0flPvgP5+JiDwpN3vKa76bMTfp\nsrQL1XNVp36B+laXI08ha1bo2xeOHIGffjLCRLNmRoOofv3gxAmrKzRHm+JtKJK5CB+v+Bi73W51\nOSKSRCgwPGDM5jEciDrAyNojtawtifDygtdeg7VrjfkN9evDsGFGcGjaFNatMx5lJBWeHp4MrTGU\ndUfWsWjfIqvLEZEkQoHhHmeunqH/2v50KNWBIpmLWF2OmKBoUfjmG2OS5PDhxnLNypXhpZeMRxdX\nrlhdoWPUzlubarmq0X1ld27H3ra6HBFJAhQY7tFrVS88bZ70r6LNpZK6dOng/fdh925Ytgxy54Z3\n34Vs2SA0FPbts7rCp2Oz2RhaYyi7Infx/fbvrS5HRJIABYY4205uY+LWifSv0l/NcZ4hHh5QsybM\nnw8HDxqTImfMgAIFIDgYFiyAmBirq3wyJZ8vSfOizemzug9Xb161uhwRcXMKDBjLKEOXhuKfyZ/2\npdpbXY5YJGdOGDQIjh6FqVPh4kVjvkOePPD550Z3SXczsOpAzkWfY8QfI6wuRUTcnAIDMGfXHNYd\nWceIWiPw8kwC6+3kqaRIAa+/buxnsWULVK1qrKrInt1oBLV5s9UVJlyuDLnoWLojQzYM4czVM1aX\nIyJu7JkPDNG3oum6vCv18tcjOE+w1eWIiylVCr77Do4dgwEDjBUVZctCmTIwZQpcv251hfHrGdQT\nT5snA9YOsLoUEXFjz3xgGL5xOCcvn2R48HCrSxEX5ucHH38M//xjzGvImBFatzbuOnTvDocPW13h\no/n6+PJJ0Cd8G/4t+8/tt7ocEXFTz3RgOHbpGIPDBtO5bGfy+eazuhxxA56exgZXS5YYG2C9/jqM\nG2fMc6hf31hxERtrdZX/1alMJ7Kmzsonqz6xuhQRcVNmBoZKwELgOBALxNc2sUrccQ++8ptVYPcV\n3UntnZpelXqZNYQkYfnzw4gRRk+HceOMuwy1akHBgjBqFFy4YHWFd6X0SsmnVT9lzq45/HHsD6vL\nERE3ZGZg8AG2AR3jvk9oL718QJZ7Xv84vjTYeHQjMyJmMKjaINKlSGfGEPKMSJUK2rUzmkCtXw8l\nS0LXrkZPh3feMbpLuoKWxVpS7LlifLT8I7WMFpFEMzMwLAH6APMTed5Z4Mw9L4ff4I21x9J5SWdK\nZClB6+KtHX15eUbZbBAYCDNnwr//QrdusHCh0UWyUiVjP4tbt6yr707L6LB/w1iwd4F1hYiIW3LF\nOQzbgBPACozHFA43bcc0tpzYwqjao/D08DRjCHnGZc0Kffrc3fjKw8PYt8Lqja+C8wRTI3cNtYwW\nkURzpcBwAmgHNIp77QVWAoGOHOTyjcv0WNmDpoWbEpQzyJGXFvmPOxtfrVkDERHWb3x1p2X0nrN7\nmLxtsvMGFhG350qBYR8wCdgO/IEx9+FX4CNHDjI4bDBR16MYWnOoIy8rEq8iRe7f+GrHDms2viqR\ntQQti7Wk75q+XLmZRHbbEhHTOWv/5ligAZDYB6c9gRZAoYd8FgCEBwUFkT59+vs+CAkJISQk5D8n\nHIw6iP9Yf7pX7E7/qtpgSqxlt8PKlTBmjDHXIU0ao7fDu+8aKzDMdPjCYQqMKUDPoJ70qdzH3MFE\nxFIzZ85k5syZ97134cIF1q9fD1AS2JqQ67h6YJgDpAdqPOSzACA8PDycgICABF2s0Y+N2HJiC3s6\n7iGVd6pEliJiniNHjLsMEyYYe1YEBxsbYdWta/R+MEPXZV0Z9+c4Drx/gOdSP2fOICLikrZu3UrJ\nkiUhEYHBzEcSqYDicS+A3HF/fiHu+8HAlHuOD8Xo1ZAPKBz3eSNgjCOKWXVoFfP2zGNojaEKC+Jy\nHrfx1ZAh5mx89UnQJ3h5eqlltIgkiJmBoTRGatmK0YPhy7g/33kWkIW74QHAC/gC2AGsAyoAdUj8\nssz/uB17m9AloVR4oQLNijR72suJmObOxld//HF346u+fe9ufLVli+PGypgyIz2DevJt+LfsPbvX\ncRcWkSTJzMCwJu76HoDnPX9uG/d5G6DaPcd/gdHV0QfwBSpj9HJ4ahPCJxBxJoJRtUdhsznrKYzI\n03nYxldlyjh246v3yrxHtrTZ1DJaROLlSqskTBEVHUXv1b1pU7wNpZ4vZXU5Iolm5sZXKZKlYGDV\ngczdPZffj/7uqJJFJAlK8oGh/9r+3Ii5waDqg6wuReSp3Lvx1b590KqVYza+alGsBS8995JaRovI\nYyXpwLA7cjdjNo+hV1AvsqTOYnU5Ig6TLx98+eV/N77y9zc2vkpMTwcPmwdf1PyC34/+zvw9Tz1l\nSESSqCQbGOx2O12WduHF9C8SWi7U6nJETPHgxlcBAcbGV2XKwIEDCb9OzTw1Cc4TTPeV3bkVY+GG\nFyLispJsYFi8fzFLDyxlWPAwkidLbnU5Iqa6d+Orv/6C27ehbFlYuzbh1xhSYwj7z+1n0rZJ5hUq\nIm4rSQaGmzE36bK0C9VzVad+gfpWlyPiVAUKGMsyX3oJataESQn8+794luK8/tLr9F3Tl8s3Lptb\npIi4nSQZGMZsHsOBqAOMrD1SyyjlmZQxozE5sm1beOst4zFFTEz8531a9VMuXr/I8I3DzS9SRNxK\nkgsMZ66eof/a/nQo1YEimYtYXY6IZby8jM2uvvoKRowwVlJcuvT4c3Kky8H7Zd9n2O/DOHXllHMK\nFRG3kOQCQ69VvfC0edK/ijaXErHZoFMnWLzYmBRZsWL8fRt6BPbA29Ob/mv075CI3JWkAsP2U9uZ\nuHUi/av0x9fH1+pyRFxGrVrGvIZr16B0aQgLe/SxGVJmoFelXkzYOoE9Z/c4r0gRcWlJJjDY7XY6\nL+mMfyZ/2pdqb3U5Ii7H3x82b4bChaF6daO99KN0LN2RF9K9QI+VPZxXoIi4tCQTGObsmsO6I+sY\nUWsEXp5eVpcj4pJ8fY2OkK1aGe2lu3V7+GTI5MmSM7DqQObvmU/Yv4+5HSEiz4wkERiib0XTdXlX\n6uWvR3CeYKvLEXFp3t4wfrzRKXLYMGjU6OGdIUOKhlAiSwm1jBYRIIkEhuEbh3Py8kmGB2spmEhC\n2GzQpYuxmdXq1cZkyH//vf+YOy2j/zj2B3N3z7WmUBFxGW4fGE5fOc3gsMF0LtuZfL75rC5HxK3U\nrQsbN8Lly8ZkyI0b7/+8eu7q1M5bmx4re6hltMgzzu0Dw+jNo0ntnZpelXpZXYqIWypcGDZtgvz5\noWpVmDHj/s+H1BjCP+f/YcLWCdYUKCIuwe0Dw2/7f2NQtUGkS5HO6lJE3FamTLBiBYSEQMuW0LPn\n3a2yiz1XjDeKv0G/Nf3UMlrkGeb2gaGAXwFaF29tdRkibi95cpg8GYYOhcGD4bXX4OpV47MBVQZw\n+eZlvvj9C2uLFBHLuH1g6FqhK54enlaXIZIk2Gzw0Ufwyy/G8sugIDh6FF5I9wKdy3b+/wnGIvLs\ncfvAEJA1wOoSRJKcevVgwwY4dw7KlDEaPnUP7E6KZCnot6af1eWJiAXcPjCIiDmKFTOCQq5cULky\nLJmfnt6VejNx20R2R+62ujwRcTIFBhF5pOeeg1WrjPkMISEQ+VsHcqbLSfeV3a0uTUScTIFBRB4r\nRQpj34nBg2HQgORkjviMBXsXsO7IOqtLExEnUmAQkXjZbNC9O8ydCztnNsXnQklCf/1YLaNFniEK\nDCKSYA0bwoYwD3w2fMG2yE0MXfSz1SWJiJMoMIhIopQoARELqpL+TB16rOjBzJ9uWl2SiDiBAoOI\nJFqWLLC82xDIcJDmw8fz6aegpxMiSZsCg4g8kVI5itC6RGt86vSnz2eXaN4coqOtrkpEzKLAICJP\nbEDV/sQCOPPpAAAgAElEQVQmu0Kj4UP55ReoUgVOqhGkSJKkwCAiTyx72ux0KdeF3y58yc/LjnPs\nmNEZcts2qysTEUdTYBCRp9KtYjd8vHyYe74fW7YY8xsCA2HePKsrExFHUmAQkaeSLkU6+lTuw+Tt\nk4lK9jdr18Irr0CjRkazJ02GFEkaFBhE5Km1L9WeF9O/SPeV3fHxgVmzoG9f+OQTaNUKrl+3ukIR\neVoKDCLy1Lw9vRlcfTCL9i1izeE12GzQrx/MnAlz5kC1anD6tNVVisjTUGAQEYd4rdBrlH6+NB8v\nv9syulkzWLsWDh82JkPu3GltjSLy5BQYRMQhbDYbQ2sOZcuJLczeNfv/3y9Txtgm29cXKlSABQss\nLFJEnpgCg4g4TJUXq/BK/lfosbIHN2PutozOnh3Wr4dataBBAxg6VJMhRdyNAoOIONTn1T/n8IXD\njPtz3H3vp0oFs2cbEyG7dYO2beHGDYuKFJFEU2AQEYcqnLkwbYu3ZcDaAVy8fvG+zzw8YOBAmD7d\nmBBZowZERlpUqIgkigKDiDhc/6r9uXbrGkM2DHno5y1awJo1sH+/Mcfhr7+cW5+IJJ4Cg4g43PNp\nnueD8h8w4o8RHLt07KHHlCtnTIZMlw7Kl4dff3VykSKSKGYFhkrAQuA4EAvUT8A5lYFwIBo4ALxj\nUm0i4gQfV/yY1N6p6bu67yOPyZEDwsKgenWoVw++/FKTIUVclVmBwQfYBnSM+z6+/wTkAhYDa4Hi\nwCDgK6CRSfWJiMnSJk9L38p9+X7H90ScjnjkcalTw9y5xkTIDz+Et9+GmzcfebiIWMSswLAE6APM\nT+Dx7YHDwAfAXmASMBnoakZxIuIcb5d8m9wZctN9ZffHHufhYew7MWUKTJ0KwcFw9qyTihSRBHGV\nOQzlgWUPvLcMKAV4Or8cEXGEOy2jF+9fzKpDq+I9vlUrWLUKdu2CsmWNryLiGlwlMDwHPNhp/jSQ\nDPBzfjki4iiv+r9K2Wxl+Xj5x8TaY+M9vmJFYzKkj48xGXLJEicUKSLxSmZ1AU8rNDSU9OnT3/de\nSEgIISEhFlUkIve60zK68veV+envn2hWpFm857z4Ivz+OzRvDnXrwogR0KkT2Gzm1yuS1MycOZOZ\nM2fe996FCxcSfR1n/OsXCzQAHtdBfi3GJMnQe95rCPwIpARiHnJOABAeHh5OQECAg0oVEbPUn1Wf\niNMR7O64m+TJkifonJgY6N4dhg2Dd96B0aPBy8vkQkWeAVu3bqVkyZIAJYGtCTnHVR5JbARqPvBe\nMLCFh4cFEXEzn1f/nCMXj/DNn98k+BxPT/jiC5g0CSZPhtq14fx5E4sUkUcyKzCkwlgeWTzu+9xx\nf34h7vvBwJR7jh8H5ASGA/5A27jXMJPqExEn88/kz1sl3uLTdZ9y4Xriboe2bQsrVsCOHUbDp717\nTSpSRB7JrMBQGuMWx1aMHgxfxv25f9znWbgbHsBYUlkHqILxaKIn0AmYZ1J9ImKBflX6cf32dT4P\n+zzR51aqZEyG9PIyQsPy5SYUKCKPZFZgWBN3bQ+MZZF3/tw27vM2QLUHzlmH8SwlBZAHGG9SbSJi\nkaxpsvJh+Q8ZtWkURy8eTfT5uXMbkyHLl4eXX4avvzahSBF5KFeZwyAiz4iPKnxEGu809FnT54nO\nT5cOFi40Vk107AjvvQe3bzu4SBH5DwUGEXGqNMnT0K9KP6Zsn8LO0zuf6BqensZSy2+/NV516kBU\nlIMLFZH7KDCIiNO1C2hH3ox56bai21Nd5+23YdkyCA83HlPs3++gAkXkPxQYRMTpvDy9+LzG5yz5\nZwkrDq54qmtVrQqbNhlNncqWhdWrHVSkiNxHgUFELNGwYEPKZy+f4JbRj5M3L2zcCKVLGxtXjdeU\naRGHU2AQEUvcaRm97dQ2Zv0166mvlz49/PortG9vdIUMDdVkSBFHUmAQEcsE5gikQcEGfLLyE27c\nvvHU10uWzGgf/fXXMGYMNGgAt245oFARUWAQEWsNrj6YY5eOMXbLWIdds0MHWLzYmBDZpYvDLivy\nTFNgEBFLFfQrSLuAdgxcN5CoaMetjQwONu4yjB1r7EUhIk9HgUFELNe3Sl9uxtxkcNhgh1737beN\nOQ0dOhgdIkXkySkwiIjlsqTOQtcKXflq01f8e/Ffh1571ChjueWrr8Lx4w69tMgzRYFBRFzCh+U/\nJH2K9PRe3duh1/X2hjlzjAmRDRvC9esOvbzIM0OBQURcwp2W0dN2TGP7qe0OvfZzz8H8+RARYTyi\nsNsdenmRZ4ICg4i4jDdLvEl+3/xP3TL6YUqWhIkTYcoU+Oorh19eJMlTYBARl3GnZfSyA8tYdmCZ\nw6/fogV8+KHxWrnS4ZcXSdIUGETEpdQvUJ8KL1Sg24puT90y+mE+/xyqVYMmTeDQIYdfXiTJUmAQ\nEZdis9n4ouYXbD+1nR8ifnD49ZMlg1mzjFbSDRrA1asOH0IkSVJgEBGXU+GFCjTyb0TPVT25ftvx\nyxoyZoRffoEDB6BNG02CFEkIBQYRcUmDqw/m+KXjjNk8xpTrFykC06bB7Nkw2LH9okSSJAUGEXFJ\n+X3z807Jd/hs/Wecjz5vyhgNG0LfvtCrl7HTpYg8mgKDiLisPpX7cDv2NoPWDzJvjD5Qvz40bw57\n9pg2jIjbU2AQEZf1XOrn+KjCR4zePJrDFw6bMoaHB0ydCtmzG8HhwgVThhFxewoMIuLSPij/ARlT\nZnR4y+h7pUljTII8c8bo1RATY9pQIm5LgUFEXFpq79T0r9Kf6Tuns+3kNtPGyZvXWG65ZAn0Ni+b\niLgtBQYRcXltS7SloF9BPlr+EXYT10DWqmU0dho8GH76ybRhRNySAoOIuLxkHskYUmMIKw+tNKVl\n9L26doWQEKM/w44dpg4l4lYUGETELdTLX4/AHIF0W9GNmFjzJhnYbMYmVQUKGJMgz541bSgRt6LA\nICJu4U7L6B2ndzAjYoapY/n4GNthX7tm7Dlx65apw4m4BQUGEXEb5bKXo3GhxvRa1YvoW9GmjpUj\nB8yZA+vXG48pRJ51Cgwi4lYGVRvEySsnGb15tOljVaoEo0bBV1/Bd9+ZPpyIS1NgEBG3ks83H+1L\ntmfQ+kGcu3bO9PE6dIB27aB9e9i0yfThRFyWAoOIuJ3elXsTY4/hs/WfmT6WzQZjxkCpUtCoEZw8\nafqQIi5JgUFE3E7mVJnpVrEbY7eM5VDUIdPH8/aGn382wkOjRnDjhulDirgcBQYRcUtdynXBN6Uv\nvVb3csp4WbLAvHmwbRt07Agm9o8ScUkKDCLillJ5p2JA1QH8EPED4SfCnTJm6dIwfjxMmgRff+2U\nIUVchgKDiLit1sVbUyhTIdNbRt+rVSsIDYXOnWHNGqcMKeISFBhExG3daRm9+vBqlvyzxGnjfvEF\nVKkCr70GR444bVgRSykwiIhbq5uvLpVyVjK9ZfS9kiWDH380tsVu0MDoCCmS1CkwiIhbu9MyOuJM\nBNN2TnPauL6+RvvoffugbVtNgpSkT4FBRNxemWxlaFK4iVNaRt+rWDGYMsW42zB0qNOGFbGEAoOI\nJAmDqg3izNUzjNo0yqnjNm4MPXtCjx7w229OHVrEqcwODO8Ch4Bo4E8g8DHHVgFiH/LKb26JIpIU\n5MmYhw6lOjA4bDBnrzl3T+oBA6BuXQgJMR5RiCRFZgaGpsAI4FOgOLAe+A14IZ7z8gFZ7nn9Y2KN\nIpKE9KrUC7vdzsB1A506rocHTJ9uNHdq0AAuXXLq8CJOYWZg+ACYCEwG9gJdgKNAh3jOOwucuecV\na2KNIpKEZEqVie6B3fl6y9ccjDro1LHTpYNffoETJ6BlS4jVf7kkiTErMHgDAcCyB95fBlSI59xt\nwAlgBcZjChGRBAstF0qmVJnouaqn08cuUAB++AEWLYJ+/Zw+vIipzAoMfoAncPqB989gPGZ4mBNA\nO6BR3GsvsJLHz3sQEbmPj5cPn1b9lFl/zWLL8S1OH79OHRg0CD79FObOdfrwIqaxmXTd54FjGHcT\n/rjn/U+AVkDBBF5nAWAH6j/kswAgPCgoiPTp09/3QUhICCEhIYmtWUSSiJjYGF4a9xI+Xj583+B7\nCmUq5NTx7XZjAuSiRbBxIxQt6tThRe4zc+ZMZs6ced97Fy5cYP369QAlga0JuY5ZgcEbuAo0Bn65\n5/1RQDGgagKv0xNoATzs3/YAIDw8PJyAgICnKFVEkqL1R9bTZE4TTl05RbVc1ehUphP18tfD08PT\nKeNfvQoVKxoTILdsMRo9ibiKrVu3UrJkSUhEYDDrkcRNIBwIfuD9msDvibhOCYxHFSIiiRKUM4gj\noUf4odEPRN+KpuGPDcn9VW6GhA3h3LVzpo+fKpXRCfLyZWjaFG7fNn1IEVOZuUriS+AtoA3gj7HE\nMjswLu7zwcCUe44PxXj0kA8oHPd5I2CMiTWKSBLm7elNSNEQfn/zd/5s9yfVclWj75q+ZB+RnTd/\neZNtJ7eZOv6LL8Ls2caulh9/bOpQIqYzMzD8hBEC+mCsfAgE6mAsrQRj8uO9PRm8gC+AHcA6jPkP\ndYD5JtYoIs+Iks+X5Lv633G0y1H6Vu7L8oPLCRgfQODkQH7860duxdwyZdwqVWDECOM1daopQ4g4\nhVlzGJxBcxhE5Indjr3Ngr0LGLN5DKsPryZr6qy0L9Wet0u+TZbUj1rM9WTsdnjzTWPJ5fr1ULq0\nQy8vkmiuNIdBRMSlJfNIRiP/Rqx6YxURHSL4X4H/MWTDEHKMyEGLuS3449gf2B20BaXNBt98A8WL\nQ8OGcOqUQy4r4lQKDCLyzCuSuQjjXhnHsS7HGFJjCJuObaL8pPKUmViGKduncP329aceI3lyoy9D\nbKyxYdXNmw4oXMSJFBhEROJkSJmBLuW7sK/TPhaFLMLPx4/Wv7TmhREv0HNlT45ePBr/RR7j+eeN\n0LBlC3Tq5KCiRZxEgUFE5AEeNg/q5q/Lby1+Y+97e2lepDmjN48m16hcNP6pMWsPr33ixxXlyhmP\nJ8aPh3Hj4j9exFUoMIiIPEZ+3/yMenkUxz84zlcvf8WuyF1UmVKFl8a9xPjw8Vy9eTXR12zb1rjD\n0KmTMQlSxB0oMIiIJECa5Gl4t/S7/P3u36x4fQW5M+Smw68dyD4iOx8u/TDRu2MOHw5BQcZ8hqNP\n96RDxCkUGEREEsFms1E9d3XmN5vPgfcP8HbA23y/43vyfpWXejPrsezAMmLt8e9t7eUFP/0EKVNC\ngwYQHe2E4kWeggKDiMgTejH9iwypOYRjXY4x8X8TOXbpGLWm18J/rD+jN43m0o1Ljz3fz89oH717\nN7RrZ/RrEHFVCgwiIk8ppVdK2pZoy9a3t7K+zXpKZCnBB8s+INuX2Xhv8XvsObvnkecWLw7ffQcz\nZhiPKURclQKDiIiD2Gw2AnMEMqvxLA53PkyXcl2YvWs2/mP9CZ4WzIK9C4iJjfnPeU2bQvfu0K0b\nLF1qQeEiCaDAICJigmxpszGg6gD+Df2X6Q2nc+nGJerPqk++0fkY9vswzkefv+/4gQOhVi1o1gz+\n+ceiokUeQ4FBRMREyZMlp0WxFvzx1h9sfmszQTmD6LmqJ9m/zE67Be3YeXonAJ6exl4TmTND/frG\nttgirkSBQUTESUpnK82UBlM42uUoPYN68ts/v/HSuJeo9F0lZv89m1RpbjF/vrHMslUro420iKtQ\nYBARcbLMqTLTs1JPDoceZvZrs7HZbDSZ04Rco3Lxc+RAxn5/hl9+gU8/tbpSkbsUGERELJLMIxmN\nCzVmbeu17Gi/gzr56jBo/SDe2vUCxfq1ot+Ezcyfb3WVIgYFBhERF1DsuWKMrzeeYx8cY1C1QVxK\nFwbtyvLqkrIMXjyNG7dvWF2iPOMUGEREXEjGlBn5sMKH7O+0nx8bLMDHIz2fbGnFC1/moPeq3hy/\ndNzqEuUZpcAgIuKCPD08afJSPXZ0XUq6abtJcbAJIzeNJOfInDSZ3YT1R9Y/8Y6ZIk9CgUFExIXl\nzg0/f1uQExNH0zbqOCNrj2Tn6Z1U+r4SJb4twcStE7l265rVZcozQIFBRMTFVa8Ow4bBV1+kJeM/\n77Gr4y6WtVxGjnQ5eHvh22T/MjsfL/+YQ1GHrC5VkjAFBhERN9C5M7zxBrz5Jmzb6kHNPDVZELKA\nf97/h7Yl2jJh6wTyfJWH+rPqs+LgCj2uEIdTYBARcQM2G4wbB0WLQsOGcOaM8X7uDLkZFjyM4x8c\n59tXvuVQ1CFqTqtJoa8LMXbzWC7fUMtIcQwFBhERN5EiBcydCzdvQuPGxtc7fLx8aFeyHTva72Bt\n67UUyVyEzks6k+3LbLz/2/ucvXbWusIlSVBgEBFxI9mzG6Hhjz8gNPS/n9tsNirlrMTs12ZzOPQw\n75d9n+k7p1NtSjXOXTvn/IIlyVBgEBFxMxUqwNix8M03MGHCo4/LnjY7A6sNZEPbDZy6coqa02oS\nFR3lvEIlSVFgEBFxQ+3aQYcO0LEjbNjw+GP9M/mzstVK/r34L7Wm1+Li9YvOKVKSFAUGERE3NXIk\nlCsHr74Kx449/tiizxVl+evL2X9+Py/PeFmTISXRFBhERNyUtzfMmWN8bdQIrl9//PElspZgWctl\n/B35N3V/qMvVm1edU6gkCQoMIiJuLHNmmDcPIiLgnXcgvvYLpbOVZkmLJWw7tY16M+upS6QkmAKD\niIibK1kSJk2CqVNh1Kj4jy//QnkWN1/MpuObaPhjQ67fjufWhAgKDCIiSULz5vDRR9C1K6xcGf/x\nQTmDWBSyiHVH1vHqT69q+2yJlwKDiEgSMXgw1KgBTZrAwYPxH181V1V+afYLKw+upOmcptyKuWV+\nkeK2FBhERJIIT0+YORMyZoQGDeDKlfjPCc4TzNymc1m8fzHN5zbnduxt8wsVt6TAICKShGTIAPPn\nw6FD0Lp1/JMgAerkq8Ps12Yzf898Ws1rRUxsjOl1ivtRYBARSWIKF4bp0+Hnn+GzzxJ2Tv2C9Zn1\n6ix++vsn2i5oS6w91twixe0oMIiIJEH160O/ftC7NyxcmLBzXi30KtMaTmP6zum8s/AdhYYk6swZ\nGDIk8eclc3wpIiLiCnr3hu3boUULWLwYAgPjPyekaAi3Ym/Ren5rvDy9GFtnLDabzfxixXSxsfDd\nd8ZqmpgneOqkOwwiIkmUh4fRm6FIEQgKgrfegnMJ2LCy1UutmFBvAt/8+Q1dlnbBnpCJEOLSdu2C\nKlWM/w/Uq2fseJpYCgwiIklYmjSwfj18/bXRRrpAAaPJU2w8TxveDHiTb+p+w6hNo/h4+ccKDW4q\nOhp69YLixeHUKaNHx5QpxuTYxFJgEBFJ4jw9jZ0t9+6FunWN3zIDA2HHjsef175Ue0bVHsWwjcPo\ntaqXQoObWb4cihaFL76ATz6BnTuhWrUnv57ZgeFd4BAQDfwJxPcErTIQHnf8AeAdU6sTEXmGPPec\n8dvlmjVw8SIEBECXLnDp0qPPeb/s+wyrOYxBYYP4dN2nTqtVntyZM9CyJQQHQ/bsRjDs1w9SpHi6\n65oZGJoCI4BPgeLAeuA34IVHHJ8LWAysjTt+EPAV0MjEGkVEnjmVKxuTIT//HMaPh4IF4ccfH92z\n4cMKHzKo2iD6runL4PWDnVusJFhsLEycaPzvuWSJMcFx9Wrje0cwMzB8AEwEJgN7gS7AUaDDI45v\nDxyOO28vMCnu3K4m1igi8kzy8jJmy+/eDeXKQbNmUKsW7Nv38ON7BPWgX+V+fLLqE4b/Pty5xUq8\n/v4bKlWCdu2MJbV79hiNuxy5wMWswOANBADLHnh/GVDhEeeUf8TxpQBPh1YnIiIA5MhhzJhftAj+\n+cd45t2njzFZ7kF9Kvfhk8BP6Lq8K6M3jXZ+sfIf0dHQs6cxqTEyElatMu4s+Pk9+pyL1y8+Uegz\nKzD4Yfwlf/qB988AWR5xznMPOf40Rq+Ix/yji4jI06pb1/gttVs3o6lP4cJG74Z72Ww2BlYbSNfy\nXXl/yft8++e31hQrACxbZiyZHTbMWAmxcydUrfr4c8L+DeOlcS8xf8/8RI+nVRIiIgJAypQwYABE\nRECePEaIaNQI/v337jE2m42hNYfyfpn3af9reyZvm2xdwc+oU6eM7cxr1TLuEO3cCX37QvLkjz7n\nVswteq/qTeXvK5MtbTZmNZ6V6HHN6vR4FojBuGtwr+eAk4845xT/vfvwHHA77noPFRoaSvr06e97\nLyQkhJCQkMTUKyIicfLnN357nT0bQkPB39/4C6lLF2Pug81mY2TtkdyMuclbC97C29OblsVaWl12\nkndnUmO3bsZS2SlT4PXX45+nMGLCCAaMHcCF6xco4FuAjBkz8sXFL5xTdAL9AYx94L1dwKO2Qvkc\n+PuB974BNjzi+ADAHh4ebhcREXNcvGi3h4ba7R4ednuhQnb72rV3P4uJjbG3nd/W7tHfwz4rYpZ1\nRT4DIiLs9goV7Haw29u0sdsjI+M/JzY21j5p6yR7qs9S2fOMymPfeHTj/38WHh5uB+xxf5cmiJmP\nJL4E3gLaAP4YSyyzA+PiPh8MTLnn+HFATmB43PFt417DTKxRREQeI21aGDECwsMhXTpjSeYbb8Dp\n0+Bh82B8vfG0KNqCFnNbMHf3E/Qblse6dg169IASJYy23qtXw+TJj5/UCHA++jyvzX6NNxe8SZPC\nTdj2zjbKZS/3VLWYGRh+AkKBPsA2jKZNdTCWVoLx+OHengyH4z6vEnd8T6ATMM/EGkVEJAGKF4ew\nMOOW+KJFxtr+b74B7J58V/87Xiv8Gk3nNGXh3gRujSnxWrLEmNQ4YoSxkdiOHcZ+EPFZdWgVxb4p\nxqpDq5j92mwm159MmuRpnroesyc9foPRkCkFUBoIu+ezNsCDTSrXASXjjs8DjDe5PhERSSAPD3jz\nTaPF9KuvwrvvGj0ctm31ZGqDqdQvUJ/Gsxvz2/7frC7VrZ06BSEh8PLLkCuXMamxT5/HT2oEuHH7\nBh8t+4jqU6uT3zc/OzvspHGhxg6rS6skREQkUfz8jDsNGzbAzZtQpgyEvu/F19V/oHbe2jT8sSEr\nDq6wuky3ExsL48YZd29WrDB2Gl2xwpiEGp/dkbspN6kcozaNYmiNoaxotYLsabM7tD4FBhEReSIV\nKhhzG7780vjLrWghb+rf/Ilquarxv5n/Y83hNVaX6DYiIowNwTp0gMaNjU6NCVkBYbfb+XrL1wSM\nD+D67etsemsTH1X8CA+b4/96V2AQEZEnliyZsfRyzx6jadCbbyTnyqS5lPAN5JUfXiHs37D4L/IM\nu3YNunc3NgKLioK1a427N76+8Z97+spp6s2sR8fFHWlbvC3hb4dTImsJ02pVYBARkaeWLRvMmmX0\nbzh1LAWbuszH93pp6syowx/H/rC6PJf0229GR82RI40+F9u3G/tBJMTi/YspNq4Ym49vZmHIQsbW\nHYuPl4+p9SowiIiIw9Ssadxe79fTh9MjF3Lz35eo/l1tthz/0+rSXMbJk9C0KdSpY3TUjIgwWjvH\nN6kRIPpWNO8tfo+6P9SlZNaSRHSI4JX8r5hfNAoMIiLiYMmTG38B7tqemsrHFnPtiD8VxwWz6M/t\nVpdmqdhYYylqwYJGP4Xp02H5csiXL2Hnbz+1nVITSjFp2yRGvzyaX5v/ynOpH2yobB4FBhERMUXu\n3LBkQRqm1f4NovJQb3YNOn36FzduWF2Z8+3YYUwSffddaNLEmPPRokXCtp+Otccy/PfhlJ1YlmQe\nyfiz3Z+8V+Y9bI7cuzoBFBhERMQ0Nhu0bJyef/ouJXOKFxhzqToFAnez4hlZdXn1Knz8MZQsCZcu\nwbp1MGECZMyYsPOPXzpO8LRgui7vSqcyndj81mYKZy5sbtGPoMAgIiKmy5EpI393W06+5zNzsmY1\najbbR0gInDhhdWXmWbzYmNT41VfQv78xqTEoKOHn/7zrZ4qNK8auyF0sf305w4KHkTxZAiY6mESB\nQUREnMLPx4+wt1eSJ1sGMoRWY9mWAxQsCKNGwe3bVlfnOCdOGI8d6tY1mi799Rf07Ane3gk7/8rN\nK7z5y5s0nt2YyjkrE9Ehghq5a5hbdAIoMIiIiNNkTpWZla1W4pfOB593q1G/1RG6dIHSpeEPN199\nGRMDY8ca24GvXQs//ABLl0LevAm/xubjmynxbQlm/T2LifUm8nOTn/H1SUBTBidQYBAREafKmiYr\nq95YhXeyZGzIV5UFa47h6Qnly8Pbbxu7Mrqb7duNSY3vvQfNmhmTGkNCEjapESAmNobP1n1GhUkV\nyJAiA9vf2c6bAW86fWLj4ygwiIiI02VPm51VrVYRa4/lgx3VmLfiBGPHwk8/QYECxhbOsbFWVxm/\nq1fho4+gVCnjz2Fh8O23kCFDwq9x+MJhqkypQp81fege2J0NbTeQzzeBay2dSIFBREQskTN9Tla9\nsYro29EEz6jOq61Os3ev0dDozTeNCYI7d1pd5aMtWgSFCsGYMfDpp7B1K1SsmLhrzNg5g5fGvcTR\ni0dZ88YaBlYbiJenlzkFPyUFBhERsUzuDLlZ1WoVF69fpPrU6nikjmTqVKOxUVSUscfCBx/A5ctW\nV3rX8ePGBlH16hlNmP76C3r0SPikRoAL1y/QYm4LWs5rSb389djRfgdBOROxhMICCgwiImKpfL75\nWPXGKiKvRVJzWk3OR5+nShVjXsBnnxm3+AsWhNmzwW63rs6YGBg92pjUGBYGM2fCkiVGe+fEWH9k\nPS+Ne4lF+xYxo9EMpjeaTroU6cwp2oEUGERExHIF/QqystVKjl06RvC0YC5cv4C3N3TrBrt2QZky\nxlLF2rVh/37n17dtG5QrB++/D82bw+7dxuTGxMxJvBVzi54re1JlShVypMvBjvY7aF60uXlFO5gC\ng4iIuIQimYuwotUKDkYdpPb02ly6cQmAnDlh3jxYuBD27YMiRYzdHaOjza/pyhX48ENjUuP167Bh\nA4Gljj0AAAvISURBVIwbl7hJjQD7z+2n4uSKDNkwhAFVBrDmjTW8mP5FU2o2iwKDiIi4jOJZirP8\n9eXsObuHOjPqcOXmlf//7JVX4O+/jVUJgwcbweG338yrZeFCY1LjN9/AoEHGpMYKFRJ3DbvdzqSt\nkyjxbQmirkfx+5u/07NSTzw9PM0p2kQKDCIi4lJKPl+SpS2XsvP0Tl754RWu3br2/5/5+MDAgcaW\n0LlyGSsqGjeGo0cdN/6xY9CoEfzvf0Zg+Osv49GIVyIXL5y7do5Xf3qVtxa+RbMizdj2zjbKZCvj\nuEKdTIFBRERcTtnsZVncYjF/nviT+rPqE33r/ucPBQoYW0PPnGk8JvD3h2HD4NatJx8zJsbY98Hf\nH37/HWbNMu5g5M6d+GutOLiCYuOKsfbIWn5u8jMT/zeR1N6pn7w4F6DAICIiLikwRyCLmi9iw78b\naPRTI27cvn9fbJvtblfFt94y7gKUKAHr1yd+rK1bjUmNoaHQsqVxzaZNEzepEeDG7Rt8uPRDak6r\nSaFMhdjZfieN/BslviAXpMAgIiIuq8qLVVgQsoDVh1bz2uzXuBlz8z/HpEsHI0dCeDikSQOVKkHr\n1nDmTPzXv3LF6PNQujTcuGHcrfjmG0ifPvG1/n3mb8pMLMOYLWMYHjycpS2Xki1ttsRfyEUpMIiI\niEurkbsG85vNZ+mBpYT8HMKtmIc/dyhe3PgLf/x4WLDAeGwxbpzxqOFhfvnl/9q7+yCnqjOO498k\nJKvQ8QUFLY5aKtIiIiBLldcqVGQQEChVyixLF2F1RQZhAFHQ2YG66gxKGVYQKdIR7aowoLyIUCqK\nimgXtI5o4Y8ClYo4WhdQgYRk+8cT3TWwKwlkT5L7+8ycIXuTmzz3DDd57rnnxfooPPGEdaLcutXW\ns0hWdXU15e+Wk78wn2OxY7w7+l0mdpmI35dbP7G5dTQiIpKT+rbqy7LfLWPljpUUvljIsdiJ18P2\n+2HMGNixwzoulpTYyIatW2te88knMHgwDBpkIy22b4cpU5Lv1Aiw/+v99K/oz7i14xjdcTSVYypp\nf2H7FI8ysylhEBGRrDDgFwN4fujzLN2+lFEvjSIaq6PpAGjWDBYtshkZDx+2iZ/GjYPHHrNWhS1b\nbKGrNWtstEUqVu9cTbv57aj8tJI1w9cwt99czgyemeLRZb5GrgMQERE5WUPaDOHZIc8yfPlwgv4g\nCwcurLfpv1s369A4dy488ICtKFlSYvMqnJ3ibMzfRr5l0vpJzK+cT//W/Vk0cBHNmzRP8YiyhxIG\nERHJKrdeeSuRWITCFYUEA0Hm3zQfXz3DGRo1ggkTbErnQ4egVavUP/u9fe8xfPlwdlftZl6/edyR\nf0e9n51LlDCIiEjWKbiqgEg0wqiVowgFQszpO+dHf7gvuMBKKmLVMR7d/CjTXp1G2+Zt2Va8jTbN\n2qT2ZllKCYOIiGSloo5FRGIRbl99O0F/kFl9ZqXlan/vwb2MfHEkG3dtZFLXScy8fiZ5jfJO++dk\nOiUMIiKStYo7FROOhhm3dhyhQIiy3mWnNWlY9tEyilcV0zjYmA2FG+jVstdpe+9so4RBRESy2l2/\nuotINMLE9RPJa5RH6XWlp/yeh44eYvwr41n8/mKGXjGUBf0X0PTMpqcebBZTwiAiIllvQpcJhKNh\npv59KkF/kGk9p6X8Xlv2bqFgeQH7v9nP4psXM7L9SM90bKyPEgYREckJ93S/h3A0zPSN0wkFQkzu\nNjmp/Y/FjlH2RhkzXp9Bfot81hWs47Kml6Up2uyjhEFERHLG/b++n3A0zJQNUwgFQoy/dvxJ7bfr\nq10UrChgy94tTO8xnek9pxMMpDD1Yw5TwiAiIjllxvUzOBo9yt3r7iYYCHJn5zvrfG11dTXPfPAM\nY18ey3mNz2PTHzbR7ZJuDRht9lDCICIiOcXn8/HIbx4hHA0z9uWxhAIhRl89+rjXVR2pomRNCc99\n+BwjrhpBeb9yzso7y0HE2UEJg4iI5Byfz8fsG2cTjoYpXlVM0B9kZIeR3z+/ac8mRqwYwYEjB6j4\nbQXDrhzmMNrsoIRBRERyks/no7xfOZFohKKXiggGggy9Yiilr5Xy8JsP0+PSHiwZvIRLzr7EdahZ\nQQmDiIjkLL/Pz4IBC4jEIoxYMYIH33iQnV/upKx3GZO7TibgD7gOMWtoeescUFFR4TqEjKB6qKG6\nMKqHGl6uC7/Pz6KBiyhsX8jByoO8fdvbTO0+VclCktKVMJwLLAGq4uVp4McWEv0LEEsom9MUX07x\n8hdBbaqHGqoLo3qo4fW6CPgDLL55MR2/6Eh+i3zX4WSldN2S+CvQArgR8AFPYgnEwHr2qQbWAkW1\ntoXTFJ+IiIgkIR0JQxssUbgG+Ed82xjgbaA1sLOO/XxYgvB5GmISERGRU5COWxJdgAPUJAsA78S3\ndalnv2rgOmA/sANrlWiWhvhEREQkSeloYbiQE7cSfB5/ri5rgReAPcDPgZnAq0An6rk18fHHH6cc\naK6oqqpi27ZtrsNwTvVQQ3VhVA81VBdG9WDS/dtZyvGdEhNLJ+A+rIUg0Q7gniQ+70LgCDC4jud/\nCuzFWiZUVFRUVFRUkit7sd/Sk5JMC8NcrDNjffYA7YHmJ3iuOfBZEp/3GfAfoFUdz+8DOpPEwYqI\niMj39sWLM22w1obOtbZdE992eRLvcz5wGCg4faGJiIhIJnkZeB9LFK4FPgBeSnjNv4BB8cdNgFnx\n1/4M6/y4GWthaJL2aEVERMSJc7B5Fw7Ey9NA4hJgMaAw/vgM4BVshMRRYDfwFHBRA8QqIiIiIiIi\nIiIiIiIiIiIikqo7gV3YKIpKoLvbcJzoCawC/ov1B7nZbTjO3IvNKnoQ6wOzApuC3ItKgH9S03do\nM9DXaUSZYSp2jsx2HUgDK+X4uXI+dRmQYxcBzwBfAN8A7wFXO42o4e3mxHMolZ/Mztm4vPWt2Ik/\nE+gAvIHNEnmxy6AcaIz9hx8b/7vaYSwu9cTmCLkGuAGbW2Q9Vj9e8wk2OdrV2CRqrwIrgbYug3Ks\nM1CMjdTy4jnyITYJ3nelndtwnDkXeAvrVN8XG/4/EVtN2Us68cP/DzfEt7/gLKI0ewd4PGHbR0CZ\ng1gyRYz6VwL1kvOx+vBiq9OJfMkPV4D1kp9gM8z2AjYCj7kNp8GVYhcVAg8Dr7sOIgP9iboXhDxO\ntrUwhLCrp/UJ29cDXRs+HMlA58T//Z/TKNwLAMOAPKwVzoseB1ZjLS0+x7G4cjl22/LfQAXQ0m04\nzgwEtgJLsVuX24DRTiNyL4RNjPiU60DSpQV29Xhtwvb7sImgvEotDMaH9evw8pVEO+BrIIL16+jn\nNhxnhmH9OULxv73YwtAXW4unLdAbq4N9QFOXQTlyBOvz9kds+YIxwLfUzAXkRbdg3xP1LQqZ1ZQw\nnJgSBvM4diXVwnUgDgWx1V47YrfpDuK9jl0XY1eRte/Xv4b3Oj0maowlDBNcB+JAGHgzYdscrGOw\nV63j+BmYc0oIy4gSRwTMwbJnr1LCYB0f9wCXug4kw/wNWOg6iAY2CDsnIrVKDIhiPxxevT0Bdvs2\nsQ+YF+wGnkzYVoKt1uhFlwLHgAHJ7JRtfRjC2H2oPgnbb8DbmaKX+bAhQYOwzm173IaTcfxk33l+\nqjYAV2JNz+2x0VSV2JC6DnhztARYf5YrcLw6oSNvAb9M2NYaSyS8qAhrhVvjOpB0uwUbGlOEDY2Z\njTW7em1YZRPsy68DdvV0d/yx1+phHvAVNryy9nChM1wG5chDQA9sAbd2wIPYVUQvhzFlitfw3i2J\nWdh50RIbdrwKG0bote8IgHzsgvNeoBUwHOvr83uXQTnixy6sPDOysASbuOkINmmPF4fQXUfNpBvR\nWo9ztsdrHRKP/7vixc5Mf6bmvNiPNT/3dhpR5vBip8cKbITEUazpfSnHX2V7yU3YfByHge3AbW7D\ncaYP9p3ZynUgIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi\nkrr/AxFNOGf2kxxVAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Define model function to be used to fit to the data above:\n", + "def tophat_time(x, *p):\n", + " mean, width = p\n", + " if x>(mean+width): y=0\n", + " if x<(mean-width): y=0\n", + " if x==(mean+width) | x==(mean-width): y=5\n", + " return y\n", + "\n", + "def tophat_freq(f, *pars):\n", + " A,T,t0 = pars\n", + " #return A*T*sinc(pi*f*T)*exp(-i*2*pi*f*t0)\n", + " return A*T*sinc(pi*f*T)*cos(2*pi*f*t0)\n", + "\n", + "\n", + "\n", + "# p0 is the initial guess for the fitting coefficients\n", + "p0 = [3, 3, 3]\n", + "\n", + "\n", + "#x=np.linspace(1,50,200)\n", + "\n", + "# freq bins we agreed on\n", + "x=array([ 0.00964867, 0.02886003, 0.0556922 , 0.08632291, 0.13380051,\n", + " 0.20739079, 0.32145572, 0.49825637])\n", + "\n", + "# from 3471A\n", + "lag = array([ 1.25569486, 2.37000041, 1.7802513 , 1.66775218, 0.49069246,\n", + " 0.21781609, -0.44057362, 0.01545348])\n", + "coeff, var_matrix = curve_fit(tophat_freq, x, lag, p0=p0)\n", + "\n", + "# Get the fitted curve\n", + "\n", + "\n", + "plot(tophat_freq(x, *coeff))\n", + "plot(lag)" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgIAAAFkCAYAAABSAFMWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xt0XXWd9/F376UFjUCnbaCLq0ArCCQFoVNoS9sdwJHx\n8UEhipci6oC3go7XGZ1ZPgrPGuXiiFyHizJkRGcUQbEttJTSG5CAomCRe6GlINALvdPk+eOXPEkP\nSZN9ek5++5z9fq11VpOdvc/5dq/knM/vsn8bJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJElSDpwM3AG8CLQCf9+HY6YAzcBm4CngM2WrTpIkpTIw5f4jgIeBz7Z/39bL/gcBvwUWAscA3wN+\nCHwg5etKkqSMaQXO6GWf/wv8qWDbVcCSslQkSZJSSdsjkNaJwNyCbXOBicCgMr+2JEnqxeAyP/9o\nYE3BtjXtr7tvNz8DGNv+kCRJ6axuf/RZuYNAWmNra2tXrVq1KnYdkiRVoheB40gRBsodBF4CxhRs\nGw28Cfy1m/3Hrlq1iltuuYXx48eXubRsmz17NpdffnnsMjLBcxF4Hjp5LgLPQyfPBTz++OOcc845\n+xF61TMTBJYC7yvYlgAPAjt6Omj8+PHU1dWVs67Mq6mpyf056OC5CDwPnTwXgeehk+eieGknC44k\nXAZ4TPv3B7d/Pa79+4uBm7vsfzVwAPADYDxwbvvj+0XWK0mSSihtj8BxwPz2r9uAS9u/vonwAT+G\nzlAA8CxwOnAZYe2BF4HPA78sqlpJklRSaYPAvey6F2FWN9vuA+pTvo4kSeoH5V5HQEVqbGyMXUJm\neC4Cz0Mnz0XgeejkuSjegNgFFKgDmpubm530IUlSCi0tLdTX10PohW/p63H2CEiSlGMGAUmScswg\nIElSjhkEJEnKMYOAJEk5ZhCQJCnHDAKSJOWYQUCSpBwzCEiSlGMGAUmSciyTQWD16tgVSJKUD5kM\nAsuWxa5AkqR8MAhIkpRjmQwCy5fDjh2xq5AkqfplMghs2ADNzbGrkCSp+mUyCIwcCXPmxK5CkqTq\nl8kgcPzxMHdu7CokSap+mQwCJ5wAS5fC+vWxK5EkqbplNgjs2AELFsSuRJKk6pbJILD//nDIIQ4P\nSJJUbpkMAgBJYhCQJKncMh0EnnwSnn46diWSJFWvzAaBadNg0CCYNy92JZIkVa/MBoG3vz1MGnR4\nQJKk8slsEIAwPHDPPfDmm7ErkSSpOmU+CKxbBw88ELsSSZKqU6aDwHHHQU2NwwOSJJVLpoPAoEEw\nY4ZBQJKkcsl0EIAwPLB8OaxdG7sSSZKqT+aDwMyZ0NoK8+fHrkSSpOqT+SBw4IFw2GEOD0iSVA6Z\nDwIQhgfmzIG2ttiVSJJUXSomCDz7LDz1VOxKJEmqLhURBKZOhcGDHR6QJKnUKiII7LUXTJpkEJAk\nqdQqIghAGB6YPx+2b49diSRJ1aNigkBDA2zYAMuWxa5EkqTqUTFB4NhjYZ99HB6QJKmUKiYIuNyw\nJEmlVzFBAMI8gQcfhNdei12JJEnVoaKCwMyZYVGhe+6JXYkkSdWhooLAuHEwfrzDA5IklUpFBQEI\nwwNz57rcsCRJpVCRQeD55+GJJ2JXIklS5au4IDBlCgwZ4vCAJEmlUHFBYORImDzZICBJUilUXBCA\nMDywYAFs2xa7EkmSKltFBoGGBti4EZYsiV2JJEmVrSKDwNFHw6hRDg9IkrS7igkCFwDPAJuBh4DJ\nvez/MeAPwEZgFXADsHcRr/v/DRwYFhcyCEiStHvSBoGzgMuA7wDHAIuAu4BxPew/lfDBfy0wAfgg\ncBxwfRG17iRJoKUFXnlld59JkqT8ShsELiJ8iN8ArAAuBFYC5/ew/0TgWeBHwHPAYkIomFhErTtx\nuWFJknZfmiAwFKgDCjvk5wKTejhmLjAaOA0Y0P71B4E705X5VrW1cOSRDg9IkrQ70gSBfYFBwJqC\n7S8DY3o45g+EOQI/B7YCq4FXgS+kK7N7LjcsSdLuGVzm5z8BuAn4NjAHqAX+DbgaOK+ng2bPnk1N\nTc1O2xobG2lsbNxpW5LApZfC44/DhAmlLVySpKxqamqiqalpp21r164t6rkGpNh3KGHm/5nA7V22\nXwG8G5jWzTE/a3+ND3XZ9reESYZjeWvvQh3Q3NzcTF1dXa8FbdoEe+8Nl1wCs2f39b8hSVL1aWlp\nob6+HqAeaOnrcWmGBrYBzUBSsH0m0NPSPgOAHQXbWrv8bLeMGAEnnQRz5uzuM0mSlE9prxq4lNCl\nPwsYT7iUcH9CVz/AxcDNXfb/FfC/gX8ADib0BvwQWA68VHTVXTQ0wMKFsGVLKZ5NkqR8SRsEbgNm\nA98CHiYsJnQ64RJCCJMGu64pcCvwReBzwKPtxz8OfKD4kneWJLB5MyxeXKpnlCQpP4qZLHhV+6M7\ns1Luv9uOOgpGjw5XD0yfXq5XkSSpOlXkvQa6GjCg8zJCSZKUTsUHAQhB4JFHYE3hNQiSJGmXqiII\nzJgR/r377rh1SJJUaaoiCIwZE25N7PCAJEnpVEUQAJcbliSpGFUVBF56Cf74x9iVSJJUOaomCEye\nDMOHu8qgJElpVE0QGD4cpkxxnoAkSWlUTRCAsNzwffeFlQYlSVLvqioIJAls3QqLFsWuRJKkylBV\nQWDCBKitdXhAkqS+qqog4HLDkiSlU1VBAEIQePRRWL06diWSJGVf1QWBjuWG582LW4ckSZWg6oLA\nqFFQV+fwgCRJfVF1QQDC8MC8edDaGrsSSZKyrWqDwMsvwx/+ELsSSZKyrSqDwKRJMGKEyw1LktSb\nqgwCw4bBtGnOE5AkqTdVGQQgDA/cfz9s3Bi7EkmSsquqg8C2beHeA5IkqXtVGwQOPxzGjXN4QJKk\nXanaIOByw5Ik9a5qgwCEIPDYY/DCC7ErkSQpm6o6CEyfHnoGXG5YkqTuVXUQ2GcfmDjR4QFJknpS\n1UEAXG5YkqRdyUUQePVVaGmJXYkkSdlT9UHgxBNhzz0dHpAkqTtVHwSGDIFTTjEISJLUnaoPAhCG\nB5YsgQ0bYlciSVK25CYIbN8OCxfGrkSSpGzJRRA49FA48ECHByRJKpSLIOByw5IkdS8XQQBCEFix\nAp57LnYlkiRlR26CwCmnwMCBLjcsSVJXuQkC73gHHH+8wwOSJHWVmyAAYXjg7rthx47YlUiSlA25\nCwKvvw4PPRS7EkmSsiFXQeA974G3vc3hAUmSOuQqCAweDNOnGwQkSeqQqyAAYXhg6VJYvz52JZIk\nxZfLILBjByxYELsSSZLiy10QOPhgOOQQhwckSYIcBgFwuWFJkjrkNgg8+SQ8/XTsSiRJiiuXQWDa\nNBg0yOWGJUnKZRB4+9vhhBMcHpAkKZdBAMLwwD33wJtvxq5EkqR4chsEGhpg3Tp44IHYlUiSFE9u\ng8DEiVBT4/CAJCnfigkCFwDPAJuBh4DJvew/DPgu8CywBXgSmFXE65bUoEEwY4ZBQJKUb2mDwFnA\nZcB3gGOARcBdwLhdHHMbMA04FzgMOBv4c+pKyyBJYPlyWLs2diWSJMWRNghcBFwP3ACsAC4EVgLn\n97D/qcDJwOnAfOB5Qi/C0mKKLbWZM6G1FebPj12JJElxpAkCQ4E6oLAzfS4wqYdjziB88H8NeIEQ\nHv4NGJ6uzPI48EA47DCHByRJ+TU4xb77AoOANQXbXwbG9HDMwYQ5BJuB9wOjgB8D+xCGCqJLErjz\nTmhrgwEDYlcjSVL/ShMEijEQaAU+Amxo33YR8AvCcMLW7g6aPXs2NTU1O21rbGyksbGx5AUmCfzo\nR/DUU3DooSV/ekmSSq6pqYmmpqadtq0tcsJbmiDwV2AHMLpg+2hgdQ/HrAZW0RkCIEwUHADsDzzV\n3UGXX345dXV1KUor3tSpMHhwGB4wCEiSKkF3jeOWlhbq6+tTP1eaOQLbgGYgKdg+E1jSwzH3A7XA\nyC7bDiP0EryQ4rXLZq+9YNIkmDMndiWSJPW/tFcNXAqcR1gHYDzhUsL9gavbf34xcHOX/W8FXgVu\nbN//ZMJkwf+gh2GBGJIkXDmwfXvsSiRJ6l9pg8BtwGzgW8DDhImApxMuIYQwabDrmgIbCT0GNYSr\nB24Bbge+UHzJpdfQAG+8AcuWxa5EkqT+VcxkwavaH93pbsXAFbx1OCFTjj0W9tknzBM46aTY1UiS\n1H9ye6+BrlxuWJKUVwaBdkkCDz4Ir70WuxJJkvqPQaDdzJlhUaF77oldiSRJ/ccg0G7cOBg/3uEB\nSVK+GAS6SJIQBNraYlciSVL/MAh0kSTw/PPwxBOxK5EkqX8YBLqYMgWGDHGVQUlSfhgEuhg5EiZP\ndp6AJCk/DAIFGhpgwQLYmpkFkCVJKh+DQIEkgU2bYOnS2JVIklR+BoECRx8No0Y5PCBJygeDQIGB\nA8PiQgYBSVIeGAS6kSTQ0gKvvBK7EkmSyssg0A2XG5Yk5YVBoBu1tXDkkQ4PSJKqn0GgBy43LEnK\nA4NAD5IEXnwRHnssdiWSJJWPQaAHJ50Ew4Y5PCBJqm4GgR6MGBHCgEFAklTNDAK70NAACxfCli2x\nK5EkqTwMAruQJLB5MyxeHLsSSZLKwyCwC0cdBaNHOzwgSapeBoFdGDCg8zJCSZKqkUGgF0kCjzwC\na9bErkSSpNIzCPRixozw7913x61DkqRyMAj0YsyYcGtihwckSdXIINAHLjcsSapWBoE+SBJ46SV4\n9NHYlUiSVFoGgT6YPBn22MPhAUlS9TEI9MHw4TBlikFAklR9DAJ9lCRw331hpUFJkqqFQaCPkgS2\nboVFi2JXIklS6RgE+mjCBKitdXhAklRdDAJ95HLDkqRqZBBIIUnCJYSrV8euRJKk0jAIpNCx3PC8\neXHrkCSpVAwCKYwaBXV1Dg9IkqqHQSCljnkCra2xK5EkafcZBFJKEnjlFfj972NXIknS7jMIpDRp\nEowc6fCAJKk6GARSGjYMpk41CEiSqoNBoAhJAvffDxs3xq5EkqTdYxAoQpLAtm3h3gOSJFUyg0AR\nDj8cxo1zeECSVPkMAkVwuWFJUrUwCBQpSeCxx+CFF2JXIklS8QwCRZo+PfQMuNywJKmSGQSKtM8+\nMHEizJkTuxJJkopnENgNSRJ6BHbsiF2JJEnFMQjshiSB116Dhx+OXYkkScUxCOyGE0+EPff06gFJ\nUuUqJghcADwDbAYeAib38bi/Bd4Eqqb9PGQInHKKQUCSVLnSBoGzgMuA7wDHAIuAu4BxvRxXA/wE\nuBtoS/mamZYksGQJbNgQuxJJktJLGwQuAq4HbgBWABcCK4HzeznuauAWYCkwIOVrZlqSwPbtsHBh\n7EokSUovTRAYCtQBhR3hc4FJuzhuFnAg8K9UWQgAOPRQOPBAhwckSZVpcIp99wUGAWsKtr8MjOnh\nmHcCFxPmEbSmrq4CuNywJKmSpQkCaQ0CbgW+DTyZ5sDZs2dTU1Oz07bGxkYaGxtLV10JJQlcey08\n9xwccEDsaiRJ1a6pqYmmpqadtq1du7ao50rTVT8U2AicCdzeZfsVwLuBaQX71wCvAV2X2xnY/po7\ngJnAvQXH1AHNzc3N1NXVpSgtrtdfh333hWuugfPOi12NJCmPWlpaqK+vB6gHWvp6XJo5AtuAZiAp\n2D4TWNLN/uuAI4GjuzyuJkwyPBp4IMVrZ9o73gHHH+9yw5KkypN2aOBS4KeE9QOWAZ8G9id8wEOY\nD1ALfJxwmeBjBce/AmzpZnvFSxL44Q/DcsODBsWuRpKkvkl7+eBtwGzgW4SFgSYDpxMuIYQwaXBX\nawq0UWXrCHRoaIC1a+Ghh2JXIklS3xWzsuBVwEHAcOA44P4uP5sFnLKLY/+VMA+g6hx/PLztbV49\nIEmqLN5roEQGD4bp0w0CkqTKYhAooSSBpUth/frYlUiS1DcGgRJKkjBZcMGC2JVIktQ3BoESOvhg\nOOQQhwckSZXDIFBiLjcsSaokBoESSxJ48kl4+unYlUiS1DuDQIlNmxYWFLJXQJJUCQwCJfb2t8MJ\nJxgEJEmVwSBQBkkC99wDb74ZuxJJknbNIFAGDQ1hLYEHqua2SpKkamUQKIOJE6GmxuEBSVL2GQTK\nYNAgmDHDICBJyj6DQJkkCSxfHu5IKElSVhkEymTmTGhthfnzY1ciSVLPDAJlcuCBcNhhDg9IkrLN\nIFBGSQJz5kBbW+xKJEnqnkGgjJIEnn02LDksSVIWGQTKaOpUGDzY4QFJUnYZBMpor71g0iSDgCQp\nuwwCZdbQEK4c2L49diWSJL2VQaDMkgTeeAOWLYtdiSRJb2UQKLNjj4V99nF4QJKUTQaBMnO5YUlS\nlhkE+kGSwIMPwmuvxa5EkqSdGQT6wcyZYVGhe+6JXYkkSTszCPSDceNg/HiHByRJ2WMQ6CcuNyxJ\nyiKDQD9JEli5ElasiF2JJEmdDAL9ZMoUGDLE4QFJUrYYBPrJyJEwebJBQJKULQaBftTQAAsWwNat\nsSuRJCkwCPSjJIFNm2Dp0tiVSJIUGAT60dFHw6hRDg9IkrLDINCPBg4MiwsZBCRJWWEQ6GdJAi0t\n8MorsSuRJMkg0O9cbliSlCUGgX5WWwtHHunwgCQpGwwCEbjcsCQpKwwCESQJrFoFjz0WuxJJUt4Z\nBCI46SQYNszhAUlSfAaBCEaMgJNPNghIkuIzCESSJLBwIWzZErsSSVKeGQQiSRLYvBkWL45diSQp\nzwwCkRx1FIwe7fCAJCkug0AkAwaEXgGDgCQpJoNAREkCjzwCa9bErkSSlFcGgYhmzAj/3n133Dok\nSfllEIhozJhwa+I5c2JXIknKK4NAZB3zBFxuWJIUg0EgsiQJcwQefTR2JZKkPDIIRDZ5Muyxh1cP\nSJLiKDYIXAA8A2wGHgIm72LfDwDzgJeBdcASICnydavO8OEwZYpBQJIURzFB4CzgMuA7wDHAIuAu\nYFwP+58EzAFOA+qA+cAd7ceKMDxw331hpUFJkvpTMUHgIuB64AZgBXAhsBI4v4f9LwS+DzQDTwH/\nBPwFeF8Rr12VkgS2boVFi2JXIknKm7RBYCihVV/YkT0XmJTiNfcCXk352lVrwgSorXV4QJLU/9IG\ngX2BQUDhWngvA2P6+BxfAkYAt6V87arlcsOSpFgG9/PrNQLfBs4A/trTTrNnz6ampmbnAxsbaWxs\nLG91ESUJ3HQTrF4NY8fGrkaSlGVNTU00NTXttG3t2rVFPdeAlPsPBTYCZwK3d9l+BfBuYNoujj2L\nMK/gTMLkwu7UAc3Nzc3U1dWlLK2yvfIK/M3fhDDw8Y/HrkaSVGlaWlqor68HqAda+npc2qGBbYRJ\nf4WX/80kXBbYk0bgRuBseg4BuTZqFNTVOTwgSepfxVw1cClwHjALGE+4lHB/4Or2n18M3Nxl/w8D\nPyHMDXiQMJdgDPC24kquXkkC8+ZBa2vsSiRJeVFMELgNmA18C3iYsJjQ6YRLCCF8yHddU+BT7a9z\nJbCqy+Py4kquXkkShgh+//vYlUiS8qLYyYJXtT+6M6vg+13NG1AXkybByJFheODYY2NXI0nKA+81\nkCHDhsHUqc4TkCT1H4NAxiQJ3H8/bNwYu5J4duyADRvCpZRPPw3bt8euSFKWrVwJL7wAr78O27bF\nrqby9Pc6AupFksAXvxjuPXDaabGr6VlrK2zaFALLG2+Efwsf3W3vy7YtW3Z+rdGj4dxz4bzz4OCD\n4/x/JWXLhg3Q1ATXXgvNzTv/bPBg2HPPMNTa9bE72zoeQ4bE+f+Wk0EgYw4/HMaNC8MDuxsE2to6\nP6zTfjj3tm9fb5C0qz+usWN7/0McMgR+8xv48Y/h4oth5kz4zGfgjDOq8w9S0q41N4cP/1tvDe9v\np58Ot90W3jP68h62YQO89FL3++3Y0fvrDx1aunBRuG3QoPKfv+4YBDKmY7nhO++EU04pvpXd8eiL\nPfbo+Zd09Ojif8H32CP8f3ZXQwNccgn8/OfhDeDMM0Nds2aFXoJDDtn915CUXR2t/2uugZYW2H9/\n+PKXQ0/huJ7ue5tSW1sYVtidXs1162DVqu7368tl4cOG7V6wWL26uP97Cd6mSyq3Kwt2dfvt8P73\n77xt+PDiurJ623fECBhYYTNFHn0UrrsOfvKT8Ic3cyZ8+tOhl2Do0NjVSSqV5ubw4X/rraEX8r3v\nDX/rp54auv8rRVtbuMNsscOlu9q2aVN4/qCFsKhgupUFDQIZ1NYWJr50jHONGBGvyyjLNm3q7CVY\nsiQs0dwxl8BeAqkybdgQPvivvbaz9X/eeaVt/VeTtrYQkjZuhOXLW3jf+8q/xLD6wYAB4Rd+7FjY\nay9DQE9GjAj3ZVi8OPQSnH02XH01HHpo6CX4xS+cQSxVioceCq39sWPhggtgv/3gjjvg2Wfh2982\nBPRkwIDwXjhqVLidfTEMAqoKRx4JV1wBL74IN98cEvIHPxjePL72NXjyydgVSiq0fn3o+q+vh+OO\ng9/9Dr7yFXjuOfj1r+Hv/s6GUH8wCKiqjBgBH/tYWIuho5fgmmvgne+EGTPCUIK9BFI8bW3w4IPw\nqU+FFuwFF4Tu/zvvhGeegW99K3yv/mMQUNXq6CVYtSpMLNyyBT70ofAm89Wv2ksg9af168PQXX09\nHH88zJnT2fq//fYwEdDWfxwGAVW9PfaAj3409BL88Y/w4Q+HiUgdvQS33WYvgVQOha3/z342DNf9\n5je2/rPEIKBcede74PLLO3sJtm6Fs86yl0AqpY7Wf11dZ+v/q1+F558Prf/TT7f1nyUGAeVSRy/B\nokWdvQTXXRd6CaZPt5dASqutDR54IFzqN3YsfO5zcMABna3/f/7ncCWAsscgoNzr6CV48UX46U9D\nAOjoJfjKV+Avf4ldoZRd69bBVVeF1v973gPz5oUrdZ57Dn71K1v/lcAgILXbYw8455zQS/CnP8FH\nPgLXXw+HHRZ6CX72szCUIOVd19Z/bS18/vOh9f/b34Y7htr6rywGAakbEybAZZd19hJs3x4uRbSX\nQHm2bl24Adixx3a2/r/+9c7W/2mn2fqvRAYBaRc6egnuuw8eeyx83dFLcMop9hKo+rW1wfLl8MlP\nhtb/F74ABx3U2fr/p3+y9V/pDAJSH40fH3oJVq2CW26BN9/s7CX4x3+EJ56IXaFUOh2t/2OOgRNO\ngLvvDq3/55+HX/7S1n81MQhIKQ0fHuYPdPQSfPSjcMMNcPjhoZfgv/7LXgJVpo7W/7nndrb+Dz4Y\n7rqrs/Vf7Hr2yi6DgLQbxo+HSy8NcwluuQV27IDGRnsJVFnWroUrr+xs/c+fD9/4Rmfr/9RTbf1X\nM4OAVAIdvQQLF8Ljj+/cSzBtmr0Eyp62Nli2rLP1/8Uvhtt333UXPPUUfPObtv7zwiAgldgRR3T2\nEvznf0Jra+gl2G8/+PKX7SVQXF1b/yeeGFr/3/wmrFwJ//M/tv7zyCAglcnw4WHFwo5ego9/HG68\nsbOXoKnJXgL1j7Y2WLoUZs3qbP0femi47e/TT4cgMHZs7CoVi0FA6gdHHAE/+EFnL0FbWwgJHb0E\nK1bErlDVaO1a+NGP4OijYdIkuPfeMOFv5Ur47/+GhgYY6KdA7vkrIPWjjl6Ce+/t7CW46aYQFKZO\ntZdAu6+w9T97driHxu9+F8b+v/ENW//amUFAiqSjl+CFF+DWW2HAgM5egi99Cf7859gVqpIUtv4X\nLgxL/dr6V2/8tZAiGz48TCZcsCB8+H/iE3DzzeHSxKlTQ0jYsiV2lcqitjZYsiT8ztTWwoUXhtb/\nnDnhltpf/7qtf/VucOwCJHU6/HD4/vfhu98NM7ivvTZclrj33uEubkOHhqsQ2trCo+vXhd/39Wex\n9iv2OdrawrkaODD0onQ8un7f09fF/izWfr397IEHwm20DzootP4/8Qk/+JWeQUDKoGHDQi9BY2OY\nSHjddbB4cc8fEGk+TAYNgsGDS/+h1NefleJ5djdopA0eWX2NCRPC8NKMGXb7q3gGASnjOnoJJKkc\nzJCSJOWYQUCSpBwzCEiSlGMGAUmScswgIElSjhkEJEnKMYOAJEk5ZhCQJCnHDAKSJOWYQUCSpBwz\nCEiSlGMGAUmScswgIElSjhkEJEnKMYOAJEk5ZhCQJCnHDAKSJOWYQUCSpBwzCEiSlGMGgYxqamqK\nXUJmeC4Cz0Mnz0XgeejkuSheMUHgAuAZYDPwEDC5l/2nAM3t+z8FfKaI18wdf6k7eS4Cz0Mnz0Xg\neejkuShe2iBwFnAZ8B3gGGARcBcwrof9DwJ+Cyxs3/97wA+BDxRTrCRJKq20QeAi4HrgBmAFcCGw\nEji/h/3/AXi2/bgVwH+0H/vlImqVJEklliYIDAXqgLkF2+cCk3o45sQe9p8IDErx2pIkqQwGp9h3\nX8KH95qC7S8DY3o4ZnQ3+69pf919u/kZAI8//niKsqrT2rVraWlpiV1GJnguAs9DJ89F4Hno5Lko\n/rNzQIp9a4EXCK3/ZV22fwP4GHBEN8esAG4ELumybRJwPzCWtwaBscCDwH4p6pIkScGLwHHA6r4e\nkKZH4K/ADkIrv6vRu3jBl3hrb8Fo4M325yu0mvAfGJuiLkmSFKwmRQgoxjLgyoJtjwHf7WH/S4A/\nFWy7Clhc4rokSVI/+BCwFZgFjCdcSriezssHLwZu7rL/gcAbwA/a9z+3/fj/1T/lSpKkUjufsKDQ\nFsJ4ftcFhW4E5hfsfzJhQaEthAWFPt0PNUqSJEmSJEmSJEmSpOxKezOjanQycAfhOtBW4O/jlhPV\n1wlzUNYT1pv4JXBY1IriOB/4PbCu/bEEODVqRdnwNcLfyGWxC4ngXwj/966PVTELimg/4BbC5egb\ngYcJK+DmzbO89XeiFfhRXw7Oym2I097MqFqNIPwif7b9+7aItcR2MvDvwHuAmYQ1L+YSzlGerAS+\nSnhzqydMxv018K6YRUV2HGHS8R/I79/IHwlrtHQ8jopbThTvIFyKvpUQjscT7muzNmZRkdSz8+/D\nzPbtt0WrqAjL6X59gu9FqCUrWoEzYheRIfsSzkkee4oKvUq4hDeP9iSsWHoKsAC4NG45UfwLocGQ\nd5cQ7mz3j9rpAAACbUlEQVSrt7oceKKvO2ehR6CYmxkpf2ra/30tahVxDQLOBoYRes3y6ErgTkLP\nSJol0qvNOwlDiE8DTYRbvufNGYRL039OGD5sAc6LWlE2DAXOIdzpt2LUElp6JxRs/wbw5/4vJzPs\nEeg0gDB3Iq/p/yjCwlzbCXMmTo9bTjRnE+ZLDG3/Pq89AqcSFmV7FzCdcB5WA3vHLCqCLYQ5Zf8H\nOBr4FLCJcO+bPPsQ4b2ip5sBZpJBoHsGgU5XElo+tbELiWQIcDBwLGG4bD35mxA1jtDq6zoWfi/5\nnCxYaAQhCFwYu5B+to1wA7uuriBMqM2zOcDtsYtIayghvRTOkL+CkHTzyiAQ/DvwHHBA7EIyZB5w\nXewi+tn7CX8T27s8Wgk3QttGvocJIAylFs6zqnbPAtcWbDufcJfcvDqAcFO/96U5KAtzBLYRxnmS\ngu0zMdnl2QDCpS/vJ0wMey5uOZkykGz87fanu4EjCV3ARxOuLnqIcOnYMeT36gEIc0YmUOY7zmXQ\nYuCIgm2HEQJCXs0i9Jz9JnYhxejtZkZ5MZLwpnYMobUzu/3rvJ0HgB8DrxMuI+x6WczwmEVFcDFw\nEuEGXkcR7vT5JiEc5d295HNo4PuEv4uDCJfX3kG4ZC5v7xMTCQ3JrwOHAh8mzKVpjFlURAMJDaaK\nvtpuVzczyoupdC4EsaPL1xU1+7NECs9BxyNvE4Gup/PvYg2hC3h61IqyI6+TBZsIVwxsJXSD/5y3\ntozz4r2E9SQ2E255/8m45USVEN4zD41diCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJKq//B0U68uCZHjX/AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "time_fit = ifft(fit)\n", + "plot(time_fit)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAFrCAYAAADsC+ITAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsnXmYXGWZvu9Od/YQmhBIwhZCCBgCAZJAICAwOKwqqOCS\n0RkRBRXUAQZEXFBU1HEDdFQEmRFUooAoIDso+yJJ2BMggYQkkIWE7Esn3V2/P956f+erU6eqT3V3\npbo4z31dfXX3qe+c856lzvfU877fVyCEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII\nIYQQQgghhBBCCCGEEEIIIYQQQgghhBCih3AWMA/YCEwHDu+g/ZHAjHz7V4HPJrRpBn4BvJlvNws4\noZviFUIIIcQ7hI8CLcDpwN7AZcBaYNcS7UcB64Gf5tt/Or/+h4I2fYCngNuAQ/PbmgKM7/7whRBC\nCFHPPIk5FyGzgO+VaP/fwIuxZb8CHgv+/xwwB2jsjgCFEEIIUVt6VWm7fYAJwD2x5fdgDkYSh5Zo\nP4lIeJwEPIEJlCXA88BFVO84hBBCCFFFqtWBD8XEw9LY8mXA8BLrDEtovxRoym8PYA/gVKABqwv5\nDvBfwNe7HrIQQgghtjZNtQ6gQnph4uRMIAc8DewMXAB8u8Q6I/I/QgghhKiMxfmfqlEtIbIcaMNc\njpBhlD6gJRS7JcOA1vz2wEbKbMZEiPNSfr2mfNuQETvttNObb775ZkXBCyGEEAKAN4CDqKIYqZYQ\n2YwNwz0WuCVYfgzwlxLrPA68P7bsWGyUTFv+/0eBf8NSMy5G9sIESlyEAIx48803+f3vf8/YsWMr\nOoBzzjmHyy+/vKJ10qxX6vX48mrtvyvrJbVJu6y7YujMejrnXYuhM+vpnHcths6sp3PetRg6s947\n/ZzPnj2bT3ziEztjWYW6EyJgw3B/h80f8gSWTtkFuDL/+veBnYBP5v+/EvgC8BPgN1jx6unAx4Jt\n/irf5grgf4AxWLHqFeUCGTt2LBMmTKgo+Obm5orXSbNeqdfjy6u1/66sl9Qm7bLuiqEz6+mcdy2G\nzqync961GDqzns5512LozHpZOOdbg2oKkRuA7YGLMTX1PHAisDD/+nAK5xSZn3/9MuBszA76IoUO\nyiLguHybZ/NtLgd+2N3BT506tSrrlXq9s/vrru2kWS+pTXfF3ZVt6Zx3Hp3zdG10znXOK3ld51yE\nTAByM2bMyNUb73//+2sdQqep19jrNe5crn5jr9e4c7n6jb1e487l6jf2eo17xowZOawMoqo2iebf\nEEIIIUTNeKfPUDoC+OxnP/tZRoyovxG8++23X61D6DT1Gnu9xg31G3u9xg31G3u9xg31G3s9xr14\n8WKuuuoqgKuoYrFqQ7U23EOYAMyYMWNGTQpwhBBCiHpl5syZTJw4EWAiMLNa+8lcambxYli+vON2\nQgghhKg+mRMiZ54JX/lKraMQQgghBNTfFO9dZs0aGDiw1lEIIYQQAjLoiLS1QXt7raMQQgghBEiI\nCCGEEKKGSIgIIYQQomZIiAghhBCiZkiICCGEEKJmSIgIIYQQomZIiAghhBCiZkiICCGEEKJmSIgI\nIYQQomZIiAghhBCiZkiICCGEEKJmSIgIIYQQomZIiAghhBCiZkiICCGEEKJmSIgIIYQQomZIiAgh\nhBCiZkiICCGEEKJmSIgIIYQQomZIiAghhBCiZkiICCGEEKJmZEqI5HImQiREhBBCiJ5BpoSICxAJ\nESGEEKJnkCkh0tZmvyVEhBBCiJ6BhIgQQgghaoaEiBBCCCFqhoSIEEIIIWpGJoWI/xZCCCFEbcmk\nEJEjIoQQQvQMJESEEEIIUTMkRIQQQghRMyREhBBCCFEzJESEEEIIUTMkRIQQQghRMyREhBBCCFEz\nJESEEEIIUTOqLUTOAuYBG4HpwOEdtD8SmJFv/yrw2TJtPwa0A39JG4yEiBBCCNGzqKYQ+ShwGfAd\n4ADgYeBOYNcS7UcBdwAP5tt/D/gZ8KGEtrsDP8pvM5c2IAkRIYQQomdRTSFyHvAb4H+Bl4FzgYXA\n50u0/xwwP7/ey8A1+XXPj7VrBP4AXAy8BjSkDcgFiISIEEII0TOolhDpA0wA7oktvweYUmKdQ0u0\nn4SJD+diYAnwf1QgQkCOiBBCCNHTaKrSdodi4mFpbPkyYHiJdYYltF+KxTg0//fhwOnA/vnXcyg1\nI4QQQtQt9TRqZhvgd8AZwNv5ZQ1U4IpIiAghhBA9i2o5IsuBNszlCBkGLC6xzhKK3ZJhQGt+e/sB\nI4HbgtddSG0B9sJG6BRxzjnn0NzczIoV9n9rK0ybNpWpU6emORYhhBDiHc20adOYNm1awbJVq1Zt\nlX1XVGNRIU9gQ3HPDpbNwobbfi2h/Q+A9wPjgmW/AsYDhwF9gdHBaw3Ad4FBwH8CczBBEjIBmDFj\nxgwmTJjAP/4BRx9tL+RSJ3SEEEKI7DFz5kwmTpwIMBGYWa39VMsRAfgplkqZjomSM4FdgCvzr38f\n2An4ZP7/K4EvAD/BRtscitWDfCz/egsmZEJW53/HlyfiqRkwIdJQTRkmhBBCiA6pphC5AdgeG+Uy\nAngeOBEbwguWhgnnFJmff/0yzEV5A/gi5Scs61SxKlidSGNj6bZCCCGEqD7VFCJgqZVflXjtUwnL\nHsIsoLQkbaMkEiJCCCFEz6KeRs10mbgQEUIIIURtkRARQgghRM2QEOmAO+6AlpbqxCOEEEJkHQmR\nMqxaBe99L9x1V/ViEkIIIbKMhEgZNm+233JEhBBCiOogIVKG1tbC30IIIYToXiREyuACJFxPCCGE\nEN2HhEiK9nJEhBBCiOqQeSGyZQucdBLMnVvcXo6IEEIIUV0yL0RWr4bbboOnny5urxoRIYQQorpk\nXoj4sqSRMXJEhBBCiOqSeSHiv32oblJ7OSJCCCFEdci8EPFlSUJEjogQQghRXTIvRPx3udSMHBEh\nhBCiOmReiJRzRPw1OSJCCCFEdci8EJEjIoQQQtSOzAqRuNuhGhEhhBBi65NZISJHRAghhKg9mRci\nqhERQgghakfmhYgcESGEEKJ2ZF6IqEZECCGEqB2ZFyLlHBHNrCqEEEJUl8wLETkiQgghRO3IvBBR\njYgQQghROzInRJqa7G85IkIIIUTtyZwQ6d3b/o4LEdWICCGEEFufzAsR/y1HRAghhNj6ZF6IlHNE\nVCMihBBCVJfMC5FyjohmVhVCCCGqS+aFSJpiVTkiQgghRHXIvBBJM3xXjogQQghRHTIvROSICCGE\nELUj80IkzRTvaR2R9nZYs6ZrMQohhBBZIvNCpDsdkb/8BUaP7lqMQgghRJbIvBDpzhqRpUth+XLV\nlAghhBBpybwQKeeIVDqz6pYtpbclhBBCiGIyL0TC33HBUakjIiEihBBCVEbmhUgoMuICotIaEQkR\nIYQQojIyJUTa20s7IlBcJ1LpqBkXLBIiQgghRDoyJUTkiAghhBA9i60hRM4C5gEbgenA4R20PxKY\nkW//KvDZ2OtnAA8Db+d/7gUOShNIuRoRKHZEVCMihBBCVJdqC5GPApcB3wEOwATEncCuJdqPAu4A\nHsy3/x7wM+BDQZsjgT8ARwGHAguAe4CdOgqm2o6IUjNCCCFEZVRbiJwH/Ab4X+Bl4FxgIfD5Eu0/\nB8zPr/cycE1+3fODNp8ArgSey7c5AzuOozsKplJHpNIaETkiQgghRGVUU4j0ASZgbkXIPcCUEusc\nWqL9JKCxxDoDgd5YmqYsqhERQgghehbVFCJDMfGwNLZ8GTC8xDrDEtovBZry20viB8Ai4L6OAurI\nEVFqRgghhNi6NNU6gC7yZawO5Sigw+6/I0dEqRkhhBBi61JNIbIcaMNcjpBhwOIS6yyh2C0ZBrTm\ntxdyPnAR8B7ghXKBnHPOOTQ3NzN/Ptx+uy17/PGpnH761G51RCREhBBC1CPTpk1j2rRpBctWrVq1\nVfZdTSGyGRuGeyxwS7D8GOAvJdZ5HHh/bNmxwFOYqHG+DHw1/9rMjgK5/PLLmTBhAnvvDSedBD/9\nKRyUH/BbzhHR8F0hhBBZYOrUqUydOrVg2cyZM5k4cWLV913tUTM/BT4DfAoYiw3l3QUb9QLwfeDa\noP2VwEjgJ/n2p+d/fhy0uRD4dn75AsxBGY4VrZalrQ169bIf1YgIIYQQtafaNSI3ANsDFwMjgOeB\nE7EhvGACIpxTZH7+9cuAs4E3gC9S6KB8Dhslc1NsX9/CBEpJ2tqgsbFQiLS1Qb9+sGmTakSEEEKI\nrc3WKFb9Vf4niU8lLHsIKOcFjepsIElCpL0d+vc3IaIaESGEEGLrkrnvmnEhErodffva312tEfH2\nLkiEEEIIUZ7MCpHQEWlshD59ip0MFyByRIQQQojqkHkh4sv69k12RPr0sb/DotZSSIgIIYQQlZF5\nIdLebv8nOSKtrVHaJo0rolEzQgghRGVkXoh05Ii4EElTJ9KdjsiyZbBiRde3I4QQQvRk6n2K94qo\n1BEJC1nTOCLdKUTOPBO23RauvbbjtkIIIUS9IkekA0ekX7+oXUeUEyKPPw4nnli47OKL4Yc/TN7W\n8uXwdoffJyyEEELUN5kXIlurRuSf/4Q77ywUNA8/bD9JbNhQLIyEEEKIdxqZFyKhI1IuNdNVR2Tt\nWvsdiovNm2HduuRtbdxok6wJIYQQ72QyI0RyuWjOkFKOSLli1a7WiLgQCV/rSIhU4og8+aQmUhNC\nCFF/ZEaIuPAo5Yh0lJpJ44iUS80kOSItLaWFSCWpmXXrYMoUuO22dO2FEEKInkJmRs24kCjliHQ0\nfLerjsiaNcWvbd4M69cnb6uS1MzatXYcq1alay+EEEL0FDLjiJQSIuUcEf9m3nD9clRaI1LKEcnl\nKnNENm603xs2pGsvhBBC9BQyKUQaG7e+I1JJjciWLRaXhIgQQoh3OpkUIrWsEQlfa2mxdeLtXVik\nTc14O19PCCGEqBcyL0TKOSKVzKyay0X7qGT4LhS7Iu5syBERQgjxTifzQqSUI+LCIm2NiKdleveu\nLDUDxUKkUkdEQkQIIUS9knkhUsoR8fblHJGnn44EiL8+YEDyfB4+asb3kctFf5cSIu3t6WpTvL1S\nM0IIIeqNzAuRUo6IC4BSNSI//SlMmAB33WX/u/gYOLDYEWlvj8SGvxYKjFKpGUiXnqnUEVm6FH79\n63RthRBCiGqSeSHSGUfkV7+C//ov+9tTLuWESDhXiO8j3FcpRwTSpWcqFSK33AKf+5xSOUIIIWpP\n5oVIpY7Igw/CWWfBF75g/7ug8PZJQsTFCkSvhW3KCZFKHJG0qRkXIKtXp2svhBBCVIvMC5FSjkhc\niPj/L7xgBak/+5mt54LCHZEBA9IJkXKOSLVTM+WEyLJlcOWV6bYD8I1vwCWXpG8vhBBChGReiJRy\nRLx9fNTM5s0mThoaCr8or5wQ8UJViNqndUQqSc10hyNy883w+c+nH7Hz8MPw2GPp2gohhBBxMi9E\nKnVEtmwxR8Rfizsi3ZGa2VqOSNJ307z9tv0u9R04cdasKRRaQgghRCVkXoiEjsiWLTasFkrXiGze\nbG2h0BEJh++WEyKVFqtu7dTMypX2uxIhEh5fR9xzj4pkhRBCRGReiISOCBTPCxJ3REIhUqkjEoqU\nnpqacUck6TtwkqhEiKxfD8cfD3/+c7r2Qggh3vlkXoiEjghEDkS5GpEkRyQUIu3thfOOrF0LTU0w\neHCxI9KnT/rUzA03JAuEjhyRhQuj44XI7djajsjq1eY4vfVWuvZCCCHe+WReiMQdkfiEYx05Ikmp\nmXA7YJ31NtsUOij+e8iQZEdkm23sb9/+6tXw0Y/C735XfGyhEPHUkrN6NYwZA3feGS1LUyOSxhFp\nabGftWuL95uE15L4PrrCli02s60QQoj6JvNCpJQjkrZGJCk14+2ctWtNWITtfT/bb58sRJqb7W9P\nzXib6dOLjy2cEj4+vfycObavJUuiZd1VI+JOSGtruloWFyK+j65w001w8MHp603mzIGXX+76foUQ\nQnQvmRci7oi4uHChUGpm1VKOSBohErYv54hs2ADbbWd/e3vvcEsJkV69Cts5c+bY73AfldaIXHxx\n8lwh4WiZNOmZ7nRE3njDrknabZ1/Ppx7btf3K4QQonvJvBBxR8QFR0eOyJYtycWq5VIzSY6I/07r\niLh4ePHFYrGxcWMkXOKvzZ1rv5OESFJqJskReeghuO224rahEEkzhLecENmyBcaPh0cfjZa1tcGr\nryZvy+tMko4hiWXLCl0hIYQQPYPMC5FSjogLi6Ymez10RHwekVLFquF2wITI4MGF7f13KUdk4MDC\n9i4e2trg2WcL22/caILG/w4pJ0TijsjmzZEACduvWWPOSrwOpDsdkYUL4fnn4bnnomV/+QuMG5ec\nJnIhkjbN8/bbsHx5urbdyebN8MgjW3+/QghRL2ReiJRyRLx9U5P9JNWIlBq+6+2czhSr9u9fmMoJ\nnY54embjRttOvB1UlpoJO/Ww81+71o4hPtqlO4XI66/b79DheOMNO/5584rbu6hIK0RWrLD40xTV\ntrfD+96XnAbL5eAznzFnKg033wxHHJHeuRFCiKyReSGSxhFpbEyuEanEEfHUTOiINDRYCqacEImn\nZkaOLO4gN22KHJFSqZlQWGzYYMOSKxEiEIkapzuFyIIF9jvssD2e+fOL21eSmmlvt21t2pSuuHXV\nKrj9drj//uT9XnMN/P3vHW8HYNEiEy+LF6dr//DDcO+96doKIcQ7gcwIERceldaINDamc0TiNSLh\n6JWwWDV0RPr0seVJqZkBA0wsxB2RI44o74iEqZnVq6MO2/eRy5nI2Gmn4k7cBUJjY3FqBiJRE1/u\nx9gR3n7VqsJ5ViByREIx5PF11RFZsya63mnSM97GYwpZuNB+p50LxetSli5N1/4HP7Di4K6Sy8FJ\nJ8ETT6Rr39am4dBCiNqQGSHSUxyRcPhu374waJCJh7BjLpeaefe7YfbsQqFQKjXjwmHXXaP2LS3W\nSe20k3XQYarCO/WddoockdbWSNwkOSKDB0fHGKe9vXD7oXCJi6Ck1IzHkyREKqkRWbGieL2QJ54o\n/OI+b58kRNy5qZYQWbIkeb/+2qJF6bazfLkVGD/wQLr2t94KkyZpsjkhxNYns0LE/+9qjUjSt+96\nO8eLVePDd/v0MSEChamQjRsjRyRMzfTtC5MnW+cefnoNi1WThMgBB0RCxF8fMcKEQiho3BEJhUso\nMJKESHOzHUNciPgn8s9/vrB9U1PhvpwkIeJ/x1MzW7ZEaaU0QiTcV5Ijcu65hS6Et0lKCbkQSVv4\nWqkQWbrU0jhJ87KcdZbVp6TBz+ebb6Zr/9prdj8kib5KueUWuO66dG1zORg1StP+C5FlMitE0joi\njY2Fjkg4fDd0OFpbCydG8+W5XFSsGh++644IFBeTxh2R9etNnOyzjwkUT8+0t1ubpFEzc+bA0KGw\n887JQgSKHYh+/WwdF0YuMHbbrbQjss02xcN3b7rJ6ixmzSpsv9tu9ncaIVLKEQlFQJoakXKOyMaN\nMGNGoVAIUzPx4tYkR2TJEvjudwun0Xd8u2mESC5nw4whSgGFzJxZ6Ja0t8PEifZFgnEqFSJvvGG/\nk8RXEpdcYsIoiZ/9DC6/PN12liyxff7zn+nav/EGfPazxRP3dYbf/x5+9KP07V95Jd13PwkhKiNz\nQqRXr8pqRJIcER++G3dEevcuFiItLbatpGLV0BGJp1qSUjMDBlgsBxxgnRJED8Ztt7Xjijsie+5p\n+3Bh4a/vtJP9DgtW337b5iMZNCiKxwXGxInFQ3hDIRI6IuvXw3nn2d+hCFizBnbfPdqX095uHe+A\nAcWOSENDaSEydGihI3LllXDppRTh+2pqKnYyZsywa+cCIIx5/fpiwZQkRG67Db7xjeTOtBJHZOXK\nqIONp2fWrLFlobBYvtzug7/8pXhblQoRT/kkCZHVq+Gqqwqv/QMPmIuRNApp9uzoPHWEX9vXXkvX\n/p57LJYXXih+bcEC+OQni790shS//S1cfXW6tm1tlrq68sp07cuxfj386lfpRnCBfT1D2jiFqEcy\nJ0QqnVm1XI1IfPhukhDxDrpUsarXlMQdkaTUjKd9dt456gjdAenf314vJURKOSKhEFm50mpNBg4s\ndkQOPNC2EXaoa9aYAIoLkUsvtfhOO61YiIwcaX+HHfyyZSa49tuvuFh1zBiLMVzuxz5mTOHyP/0J\nvv51+OMfKeDtt+1c77xzsRDx2pDly6NrHraJd8xJqRkfERMXBFu2RO2ShMhrr8FXvhLdi+GEa/H9\nese7Zk10bdzFCCeBc1yIeJuOKCdErrnGXIhQXCxYYNctPhpo9WpbtmJFuq8JcCGSNiXk7cL5Zpyb\nbrKU0CuvRMtyueLCaOell2x7/t4ux8KFdo/7B4COaGmxodtJYuPmm81NSjsE/H/+xxy3tFx3Xenz\nOXdu+m/pfvFFGD268D1cjrlz4fHH07XtiJUr010XJ23qU/RMMi9E3BHxn6TUTKkakdDhaG21duWE\nSNwRSUrNtLVZB1bKEQHr/N05CIVI//7FqZkxYyoTInFHxOOfMMF+hyNnkhyRTZvgJz+xKdUnTbKH\nmD+M16yBYcPsuEIh4p3m+PF2XN5+5UoTQFDYQXrnvtdehQ7KkiV2jj/zGftU7qxYYamrHXYoTs08\n9phd4/b2KKbly61uIYzNWbDAzt2KFdE9FAqRsONxl2XEiOIHZS5n9TP//d+Ra+FtGhqK9/v889Hf\nvj8XGS+8UJyictGweHFyyihOudTMHXfYb4+pvT0SLvGOOTzvYXrpwQeTZ9/tyBF5883CNEw5IeKd\nYDgb7/nnw3vfW9x27droawLSuDd+34fXwWlttXs3rHO57TY45RRz3OL4srTffTRrlsWYZvbilhY4\n/XS44ork1yZMgJ//PN1+77vPrstTT6Vrf/HF8LGPJb+Wy6V3gNrbYd99LcWXhsceM4c3PqqvFFu2\nlBbJb79dejbnJC64IP1Qfkif+uyI9evTTwng7UsJ8p5AtYXIWcA8YCMwHTi8g/ZHAjPy7V8FPpvQ\n5hRgFrAJeBH4QJpAOnJEoFhYQPUdkbgQCYVFKSHS3BwJiFKOyJo11hGGjkguV75GxFMzoSPiDz8X\nBGGdSJIQWbrUju3d77bOv7U1es3bDxmSLET239/ab9hgv9eti/YbfsJ76y071yNHFjoiS5bAhRda\nHcpHPhJd47fftn0OHVroZORy9hA76ij734XDihWw9952TkNB4F8eOHGi3U++78WL7RzPmVNYE+PC\nYv/9i4XILbdEtR2+D28zblyyEOnf3/524eLiIZeDJ58sbP/667DjjnZf+ifa1labrj9e4Nvebtsc\nMKD4Qbl2ra0D0WvLlkX3cTkh4h18Swv8678WFi47fl1XriwWU6+9Zp/I//d/o2UeQ3x2YYiESChq\nHn8c7r672CF46aXo7zQdmN/3s2cXf1J/4AG7Pv/4R7TMz0P4rddOJUJk/fromJPSUfPmwTPPRP+/\n8ordmw8+WNz2iSfseoaF7q2tJjSTRIK3SxJ9STz7rF3zpJFdF14Ixx9fuOzUU5PTirNm2f0YjmQr\nxyOP2D3s92lHfO1rcHiJnujcc+HEE9NtZ9Uq+9D1f/+Xrv1jj9kHnPB6Oa2tNnItrVj7ylei51ZH\n5HL2zPrBD9K1h+75PrBKqKYQ+ShwGfAd4ADgYeBOYNcS7UcBdwAP5tt/D/gZ8KGgzaHAH4HfAuOB\n3wE3AAd3FExHjggkzwtSbtRMfPhu795R/UhciPgU70nDd6G4hqNcaqaUIxIKEX+4jhljwqK9vXBC\nrx13tONOSs2ENSUe/w472GiajoSId+bDhkUFtO6KlBIiCxbYNrx+ZNWq6PjGjLHjiguRoUNNNHmn\n2tJi64weDd/7nj20/RODC5G4IzJ3rv3/gQ8Uxr58ubXdffdCQeAP2IkTozjA9nPyyXbewgerp1rG\njzeR4Q+ZjRvtgXfEEdHxg7Xp398+DSYJkSOPjPYHJkR22slijadnXn8dDjnE/nbhcvPNto0hQywm\n72iWLbP7ffJk6/TCh+Hf/x4VaHuH6E7HjjsmC5GddzZXx4/r1Vdt+9dfX9xZzJsXpeviYuG88+ye\nDR/c8+bZ++bZZwvjXLQoEmbhJ1pP0/z+94XbdiHS2Jj8CXj+/ELx6Pd9S0uxcLnxxujY49u/667C\ntuF8LaEQ+cc/zKmId0ShYIoLkS1bbAbgj388WuZC+NlniwWnT9AXpoRuu80cIz+GEI8zyQWK09IS\nHU9cQLS0WI3Lgw9G7taKFeYgfe97xdvyr0RIO6+NC7ukOXOefx4OO6zwefPgg3ZPhR8awK7N3/5m\n90z8g1JSOuvJJ+16pU1H+b2f9L1d119vz5Dw3N1wA3zhC8nbuvNOizONK7JggV2bW25Jfv2WWwrF\n+8yZ9t5OOwdRd1BNIXIe8Bvgf4GXgXOBhUDC5yIAPgfMz6/3MnBNft3zgzbnAPcAPwReAX4A3J9f\nXpZSxaqlHJGwfSWOSDzF445C0rfvJtWIpHVEOkrN+MNy9OhCseMCY+BAEzRJxaoDBxYWq/brZ8e2\n557pHBGwGzkUIi0tdo5ciIQPyddft87Iv7gvFCLbbWefIuKpmR12sPOwYYOdS9/v8OGwxx72t3eE\nnpqJOyKPPWYd5skn2/+hEBk61GIK9+vb8zSVb2vxYhMtJ55YWoi0tETn+vLLrdO8+mo7Bt/ukiUm\n4EaOLBQiuZw9UA8/3K5x6IjssgtMmVIoRNats2s5ZYr97+1feMHO27XXmpjwB5MLrMMPt/snLNy9\n4w5LgR1wQBSTx/v+9ycLkfHjTSC5YHExMHasPVhDR2HePHjPe6K/nbvvtviGDYs645YWO5Z//Vc7\n96FQ8M5g8uRIWKxYYT9Dh1rdRNjJz55t52706EJh8f3v27JRo+BDwUeguXPhoIPs77Bjbm01gde/\nf6EQeflle1888URhp/bKK/Ye3G23QiHy/e/Dl75kdVVhKso7y113LRYEv/iFvT57dvS+njXL3q+5\nXPF3HN2VBI3vAAAgAElEQVR/v32oeumlaB+edrnoosIi302bTLAMHFjsiKxZY5/Ix42L3gOzZ0cf\n6uJC5Lbb7P3c0hJdS79vpk8vdgj8Xn7tteg9s24dfPvbVhAeF2suROKCIJezWpzHHovm09m8OXLT\n4kPGw2vl2/Qi5eOOKy6C9uN89dXilO/KlXD22TZTsuOupac6Q379a/sdXrOrr7ZrfN99hW3nzYvu\n8TSukW9z+vTiep+nn7b7PCzyv/deO+60KbzuoFpCpA8wARMNIfcAU0qsc2iJ9pOAvGfBIRVu8//T\n1maioqEhvSPS2GjtO3JEcrmoRsSXl6oRiQ/fbWqyB0dciAwYUF6IbNpkr5VyRNxqd4cDbB/+ev/+\nhc4KFBar+mgfnwMFzJ1IEiKDB0eCyzuxHXYoFCL+eqnUTFyIuFBxIVLKEfH23ukPHx4NEfYOs1Rq\n5rHH7GG6yy52Dbxjc+ESFwRxIfLWW3YfLV5sHe8HP1g4xHbJEtvOLrvY/779O+6wtnvtZbGGqRkX\nIgsXRh32m2/a+dhvP9tP6IjsvLMJjiefjNr79iZPtvvXhcjLL9vw7//4D0t5eSfnTsJhh9lvF1+5\nnMV6wgkmtEJHpH9/OOYY+zt8CM+ebYJjt92i8/Xyy3bdr7vOxNAvf2nLW1tt/YMOsnvUP5Vt3gz/\n+Z/m3px5ZtR5LVgQzU8DhR3k449bjFOmRNtxAXTRRSYkwvTVSy9ZnKEQWb4cvvpVOzenn26dtL//\n5syBQw+16xM6Ew88YOt97nN2XVavthhfegk+/Wm7P8Ip+72D++hH7bx47cT06Xa806aZwPNrOXu2\niZBDDikUIkuXwje/aSnQXC46F7NmWdtddy1Mz6xda534qaeaCPH38cyZdk/Mn28jeZwXXrBn3qmn\nWgz+3LrvPvtA8rOf2b68PsL3/773FXeO115rLp/vz8/DNttYijg+IuiRR+zegkg03HijHe/kyfb+\n8/2tWmWd8tFHm3AK62iuv962NWBAJG5efNGu6ejRxULkb3+z59a220YC7Zln7Po+/LAJi1AEPfqo\niW4odA+eespi/OUvo2Hsnj7dbTf7HT6HXnjBztmgQdG527LF/u7Vy+7fcL/33mvLhw0rPNennw4H\nH2yiKRyW/uij9sEwlyusZ2lvt2Nqb7fr6vt48EHrl268ceulaKolRIZi4iFey7wMGF5inWEJ7ZcC\nTfntkV83qU2pbf5/QsGRtkbEhUV8HpFw+K6LkHB5khAZNCh5+K6/Fi8m7d+/fGoG7KFXSoi89Za9\nqXz7EAmRfv3smMNak1yucPgu2KcsnxUWTIjMnRuNRFi/Pjk1M2SInYtKhMhuu1k8UFgv0NxsHUwo\nRNwRcSGycmXUyQ8bFo3kiQuRHXawWFxUPvqodVwNDfZGXbbM7gf/FB1PzSxYYO1GjLDz99Zb1ra1\n1ZadeKLdK14X4MJi2LDo/1zOHob+AAs77FCItLVFAsI7oH33NSHiyxctMiFy2GF2Lfzh7NsbPdri\nDYXI3nvb3+PGRRb9okV2vfwTf1iTsGiRHVfoDi1YYB2dp6jcQt+0ya7T2LH2usfxyismuiZNgn/7\nt2gI7MKFdpyjRhWKzb/+1WK94grb1pIldj/460cfXfxJ/fHHTSiMHm3t2toix+HMM+28/e53UfuX\nXoJ3vcs6VRci3pn86Ee2zpYtto+2NhM3Y8bYNQgFwY03Wuyf+IT9P3u2Cbv1683p2XffwjqRGTMs\nxkMOsWN66y3b9sqVVkfx5z+bG+SfYmfNMqGw3352PbyzuOgiez7dcINdO+/gZ82ya3vkkYVC5KGH\n7D790pfs/xdftG3NmAEf/rB1Yt/+dvS+mznT7uWPf9zOg5/LSy6x98Urr9j58H0895ydh+OPt/vB\nn0NLl9rxf/7z1j4UIgceaA7QH/4QtV+0yO6zT3/anq9+b913n3Xut99uMXpKx7fnIsEFxJo1Vqj8\n4Q8XpjymT7f37sUXm8gJ03J/+5ulqSZOjLbzwAP2bP31r+E3v7ERTGDn8sknYepU+/Dj985zz5mz\nuOOOcMYZ5kK1ttpxLV5sQjeXs2vsXHWVve+/8AWLM5ez49qwwY5z+vRC0XTffSY4jj46Oq65c61W\nZccdbb2vfjUSO488YuJ97NhCUXzttfa+Of98e6+++qrd6488Yh8EGhvtvbg1yNSomSQhUsoRaWuL\nhEg5R8SXlRMiAwfaPn37uVzkiEChEEmbmoFiIRKmZsoJkVDQuBDZsMGOwR0RsIepT8YG9gBdv946\n7LD2JZ6a8Y534EA7F2kdET+uJEckrF3wYwuFy5Ildo532MGERdjBh6mZXM7ar1kTfXqESIisWmX3\nhqdmvC3Y9nbbze6XIUPsje7uxIgRdmzjxkUPxyVL7CEVCpFly2yb++xjy0aOLBYiXivjIuj55+1c\n7r677SfuiEycaOfZP/W9/rrFOGJEJFza263zcCGyzz72/5YtUa3JkCF2T7jguPNOu1eOOML2vWCB\nvQ8WLrTzsMcedsz+Kf+VV2w/cUfEhQiYuzJ7tp0HFxajRtm23Mm47z7bxv77228w4TB/vl3jkSOt\nY3Yh0tJi59yFyJYt9uB/5RUTRIMGWYf6xz9G79U5c2zbe+5pD+D2dnso+/nff3973z/1lB3v5s3W\nkboggCgt8+EPR+d19uzIwXnXu+x477oret7MmGHXy9u//HI0OeGkSdYRDh8e2fcuRPbd1+7jJUvs\nel17rTkEw4dbTDNnWoyvvBIJkZkzo3v3/vsjZ8VdnYUL7R6eMMFEyKZNcNll1v7pp+38HJyvvnvu\nOXvfPfaYDeXeZRfbh9c9PPeciespU+y8eEc+bZpds49+1Pbj742ZM+08fPrT9gy66SZb7vfwUUfZ\ncT3zTPSJ/dhjTRR/5jMmSDZtsvM5cKB1tM3NUXrm0kvt2H/8YxPqM2bYs3H6dDs/p5xiz0vv4OfP\nt3PyvveZIPdr8sADtv6ZZ5rYuegiuw4vvGDP08MOs3Pq+/2f/7FnyUMPWZyrV5tgcTfu5JPtPPj1\n3bDBnMJPfcqOeflyuzcfesiO67zzzOH42tfsvm1rs2t5zDGFx/WnP1n7G26I5ve58UZ71rzwgomj\nY4+1Avlczo7hwgvtg8E3vmHPi/vvt/O9dq3VzU2duvVmPK6WEFkOtGEuR8gwoFR5zRKKnY1hQGt+\ne94maZtLKMM555zDVVedxJYtJ3HSSSdx110nsXz5NKC8I+ICxR2RtjZrH9aIQJTGKJWa8dRGnz6R\ng1LKEYmnZkJHxAWCOyKrVnXOEUkSIi4MQkdk3brC+L2DnD+/UFhss41tt63NOpgdd7TXGhpMAJQT\nIqtX28/IkebU9OkT1Yg0NNi2R42y7XsKwGs44qmZoUOja+YdoX/zrjsifm682HHSJFvmQsRzqJ6a\ngcLaCE/7eOFrKETAPuX5pzgXIs3NdlxLl0bpEBcicUdk+PDi/T73nHVEvXpFwmLDBjvunXe28zZx\nYpSPfv116yiamqL2ixbZvRIKkdZWe+gtWhSlj8IUzF//ap/q+/Wz5a2tti13RHr1suP1zsU7YBci\nCxdGAsiFiBfcPvSQCZGGBjve0BH5+9+juhFfz+f82HVXE/zjx0dCxDvhQw+N6oNefbVQeJ12mt1z\nN99sgqe1NXJEWlqsc3dXpaHBjnn8eOtQPY2x557WOc6da+f/jjvsXvzwh+29OXKkxfnSS3a9d9/d\nhMjSpXa/tbfbvTFxom2rVy9rO326rbvDDrbshBNs25s22XG4IwLWqfzud/Zs+OQnbZl38HPn2nHt\ns4+d5/b2yFm5/347pw0NkRvm123iRLt/Tz/d0gkbN9prBx5oz4jddrNz7aNr3vc+W++IIyye5csj\nITJunL3HH33U4r/6aks1bb+9xfnMM/Yee+012+/o0RbXT35i+33kERN8w4ZZXdLTT5sQX7YsStec\ncoo9m+65xzriAw6we33yZHMmFi40N+2CCyz2KVOsE58xw67npEl2vY4/Pupob7/d7qtjjrHXvfj5\noYei0Snf/Kad01/8wgRZU5O1PfRQS3utXGnpoDPOsOszcaI9d+66K0rLDB9uYuquu+x5+Ytf2PPv\njDNM0DQ02Ll76CGLu3dvG+3y2mt2PM88Y/fxMccUHtcf/2giZ8AAe5Ydd5wVaD/+uF2zww6zdV5/\n3d4Xp51m+//Rj+x6HXww/N//TeOTnzyJXr1O4gc/OIm5c09iyZIOyy+7hWoJkc3YMNxjY8uPAUqV\n1zyefz3kWOApTNR4m/g2jwUSpnSKuPzyyznttFsZOPBWbr31Vt73vltpbp4KFDoi8SnbQ0ektTV6\nrRJHJHQUXLhs3lzorJRLzZRzREIh0q+frZMkRMKC2FJFr6EDUcoR8bk15s0rFiK+/aVLIyEC5YVI\nLhd1wiNH2pvQY1q50v7u1SsSQPPm2TqlUjPDAxnrHbzPS+KOCEQzkvbta50RREIknLW1EiHi+/b8\n9ZYtkRBpaLAH69Kl1gH06WMPYI9z9WqL0x2RgQMt3tAR8Y7IHRGv69h5Z/v93vdaR7FuXeQwgQmR\nN96IrPUwNQMmjDzFA5EQmT/fHmI+L0QoQt0R8eP1Dm32bDuPQ4bY6y0t1okvWxYJil12MbHw4IN2\nPXfe2a7DHnvY/16Id/TR1n7AADuW2bPtNY9j/HiLfcsWi7NfP3Mxdt/d7pnXXrNj9v165/zLX0ZF\npe6IgAmCf/7TOhXnoIOs45o7154BI0eaIPSaDB9C6SmqsWMjR2TMGFvnsMPsPr3oouhT9IQJdsy7\n724xPvVUlBYD66hefNFs9PZ2i32PPez9/dxzNpz5Qx+KPpBMmGDbdgG8zz52XCNGWPH0bbfZei7u\n9t3X2s+YYfebz7L8n/9p79Xf/tba+9B5F3233ho5KhCJyptvtnt3/Hh7lh5yiHWkU6fadbjwwijO\ndeuiETpea/Xf/233yb//u63nQ2sPPNDOw+2327F78fW73mXHeNNNkcMEtt8nnrC0y7bbwn/9ly3f\nbz97xt5/v72X/MPHKafYNT/qKKvlOPJIez75tbj6antuuRDZYQdzcH72MxNBEyZYXIccYs/Kiy4y\n8fXpT1v7xkbr/O++24TI5MnR9X37bbvXvvxlEyF77GEx77uvfaB4+OFoVN0BB1h8V1wBX/yiPR8m\nT7bjGjjQ4nzhBXOdnI9/3MTSddfZ9Ro92o6vd2+7Ln/7mwkVv/bveQ/MnTuV0aNv5YgjbuVvf7uV\nhx66lYkTU35XQxepZmrmp8BngE8BY7GhvLsAPkny94Frg/ZXAiOBn+Tbn57/+XHQ5gpMeHwZeBdw\nIfAeoMOzVa5GJEzNlKoRaWsrFiKhI1IuNeMdta/X0hIN34Xyjkj8u2agODXTt68d04AB5VMz69eX\ndkRciMSLW0NHpLnZfpIcET/WZcuiBxWUFiJtbdbeO1vv2LbbLnJE/DhdAM2ZY9vZssWEwsCBdm08\nNRMKEU95uPMSOiLLl9tDe7/9omsWd0SGDrUHee/e0XfOlBIiQ4ZE13LCBLv2s2cXpqlciMyaZWLA\n7y3f3rPP2nF5ey+UffPNaCQK2INj9eroU7o7GZ/4hF3fP/+5UIjsvLNt4+WX7Vi8Ix861I5h1qxo\n9A1EQuSGG+wh64Whvr05c+xc75ofhD9pknU2N95ocbqw8+PyIaMugCCy9OfNi67tqFF23v7wBxNu\n4RwJY8dGqRlvP368na+LL4bvfMce2j6Pjw8znzMnEiJgIygefthi3XbbKA3Tq5e5P+vXFwuRWbPs\nXhk1yq6ZC7hzz7WYLrvM4vU4Z8+2c+3noU8f298DD5gz4PeIn5PZs60z9c4RrPNqbDSXwLfbq5ft\n+5pr7Lg+9amo/YEH2vPqxhuj69rQYJ3Lb35j13CbbSJHYd99bRuPPWaxePx77mmfqr/+detQPc7x\n401s3n13dD/4Nd5996huwu/RKVOs7d/+ZmLB0zsubK6+2t67fm0mTjQn4eaboxoLsA64tdXE47vf\nbWLTOfVUu2Zz50ZC5NBDIyF18cXRc8ndkt/8xrbn5/pjH7PO3VO2p58eHdfQoeZW9O9fKBLPP9+e\nTbfcEgmjSZPsev3613aNXdSDuS7Tp5vgcSFy8MH2rFqyxI7hqqui9lOm2Htv9epIiIDdu6efbqL7\nqKPsvvLjuu46u5+POy5qf/LJdo7/9Cc7nw0N9lyfMsXu569+1Zw35z3vsXN3++2F+/XRPNWmmkLk\nBmxY7cXA09hkZidiQ3jB0jDhnCLz868flW//NeCLQDjlzePAxzBx8yzwH8BHMNekLOVqRDw1E3b8\nYftSjkjocJRLzXTFEUkqVvXtuSPiE12FqZlly6KO14tT3REJUzxJqZnQEQnjh6hwtJwQCR2RoUMj\nIeIjhIYMifY5Y4YJDk9thI6IOx7NzfbwvPfeKD3jD1sXLj701dltN9u+Oy5DhkQOy1tv2ZvRH4xg\nMS9dGjkiQ4ZY2912sw7w7bft3HkH6yNw3nwzih3sU3lDgz3kV6+OxFEoRDwtA1EH7zn1UIjMn28F\nbM3NlsuFaF+ew/aH3siR8C//YrUDCxYUOiLuxOy5Z3SPgsXx4ovJqZlp08yCd1E6cKAd86OP2kPb\nz8Mpp9gD/SMfsU/eXtPhr/vQwzFjov0eeaR9Mp0xIxIWnlK55hrrAP3ag3Xqnprx9u4Q/eAHls++\n/vqo/R57WMff0lIogD7wAbse119vcTY02Htw5Eh7YLvV7hx8sB3rzTdH8Q8caNt/4gkTAwccELUf\nO9ZE2XPPFe73Pe+xbSxebPH7/b/33jZ/yLp1hfvddlvrPB580K63n4v99jPh4tfaGT/e7tU77ii8\nty6/3Lbx2mt2r/q9NW6cPf8eeCDqxJ3zzoueBX5s48fb+3r9+kIhAtZp+WR77vIdd5yJwuuuK5zV\n1tOdnvbx56tfm5/+1J4Pfmzjx9s1euONSEQ5p5wS1aX5Mbjg2WMPcxlCDjvM7vOmpkgwNTZa8e5N\nN5mgmWomOQ0NJj6WL7f1/DkNFr+/F32U2YAB9r4HGz0Vcuyxdg+1tERCpLHRnj8vvRRNHRDGuX69\n7dOPx2P65S9t3+GXTboY+uAHo/4F7D794Aft73Dyti99ye7bSy4p3O+hh9o1bGuLnC7f79ag2sWq\nv8ImKusHHASEI9s/BRwda/8QMDHffjRwFcX8GXNM+gLjgFR1vWkckbDYM40jEjoclTgiLkRKOSI+\niZoLIxdBLkQaG00AxIWIp2a2bLHXXIi4Gl63rtBZCYfvhqmZ0EEJUzMQFY4mCREfBVDKERk82GIJ\nhcjdd9u8EC4Gm5ujUTPuiIA9AG+/PRqm68fmk5olpWYgmqNg++2jItNFi6wD9k98YDGvW2dpB598\nDuzBc889US45yRFxexPsXIwZE42U6EiIDB9u19q/MM/bjxxpnchf/mKfOH0Eku9r+nS7fi4awWoG\n/vEPe3B7nDvtFM066Z/SnXHjTDBt2FCYmvFJxOLTde++e1Sc6I5I377WsX/3u7YdF3dDhth99ve/\nW2ca3kNHHmkP55dfjoRFmPo5OvZUeNe7rKNYtixq19xs8xzcf7+NFvDzA9YhurALHRGf/t+3GbZf\nscI6Xn8vgQmLAQPstVBIuSUe//6XsWPtXC9bVnyuTzzR7nV3DzwGf97EBYHP7hneKz4E9rTTovcL\nWIxjx9r73h0bsHNyxBF2jsPO1Nu0txe+B8A6rUmTolQBRB336NGR0HS80xo3LnqOHnKIiXDv2EP8\n/ojvF+Ccc+xc+z0xaFB03uNCZL/9TFgPGBCd6+22s21ceWXh8UIkGsaPL3RWSuHCMHTmnK9/3QRA\nKAaPPtrutXicO+0UpazCYx4+PHoOJ8U5eXJxnH37mmMYzvzqIiNMyzheQxQew4c+ZKm98AOJb/vw\nw60P8wL+rUmmR83kcoXFqqGjkFQj4pMAJTkicSHibVetit7Q8dRMqWJVv0F9eLB3+uGN627Gpk2F\njsjGjdGn+tCZ8H3Ea0TWrbNz8/bb1lk0NRXWlISpGSh2RAYNil6fP9/OZ6kaEW/nn/Bee81yp8cG\nVT9JjgiYEFmxwvLUENV7uBCJp2biQsTFzw47WGfd1lbsiIB94vRtg+Vw1661kQIQdcChEAkdEbDt\nekoiTM289JKtE3YujY3mRrgQ8fa772731Qc+YDa040LkqacKLWCwT4kDBtg9EzoiEKWEQvbZJ5rM\nLHREwO6F0Lr113yo666Bl9nQYFX9c+dG+XEfubR6daEY8O349fFOZ8CA6Pp5LYPjHXzYHswtiosW\nsA4zl4vcjpAzz7RzHnbYXicSpmXA3gveeXgbsBEmt95afN3DTjouRMA6rrAT8esxZkyh6IZkIXL4\n4fbePO204m17nGH7Umy7bXT94gKoocFctd/+Nlo2ZkyUpot/QnYb38WKEwq6pDjj+3XinfOBB9p7\nzR2wMM4vfcnETuisXHZZsRiAaE6d0Hkqh7sRSUJkr73MGQzF76WX2nu4V0KP+vGPW4omSXjE8aHs\nYZqlHMccYx96ktr/679aCi507cpx9tlWV5Mmzu4m80IEkh2RcPhu3BEJBQdEjoi37907autzUkBx\naibJEdmwIXoTuyJ2qzS8QbzDTkrNhOkLx2dLTZqPZM2aaGSJx9+nT2lH5PXXbd/bbGPn0l/3Mfkd\nCRHfz4032nVIEiJxR+Sgg6yTvu66aLve/o037NhCJ2annSy2Z56x8+jHPHSo5Vl79Sp8uHnMs2YV\nPmCOO8462DvvtE/gvo+hQ00Ezp1b3CFNmBDNdBk6Ip4Gi3cWPqlZv37RuTzkEGv3i18UPvwHD7br\nvWRJsRAZNMjECBQLEUgWIk7oiIAJoHhn4q+FQ7xDRo8u/KTlYiMuRCD6JB0Ki1Gj7N6Lfw9I2KmH\n7UvhaZ499yzspMA64EcfNUHilBIiENUHhI7I+PHJAsi/WBGKz3US3iasQXDGjbOOP0xtHHywvS/8\nOoS4qE4jRHz7229fKCidffaxmgynqcnSol//enHb0aNNjMS/R6YUYZ1EGr75zWgIcJwvftHqPtKw\n7bYmIF0od8QJJ5jY9NRHR/TpEz1P43z5y1Yvk4aGBkvbeIFvR/TqZee+VAolFNAdcfLJNsNvLWjq\nuMk7gyQhEk7jDsWOSFgjsnFj+WLV1tZIOISpGZ/DIlyvI0fEOwDfvqdNkoTIgAGFqZmWlmhyr1CI\n+PfHJAmRVauiycycgQNNPGzYUOyIbN4czZYJxUIknppZu9ZcGm8/eLCd29tus4dx+KnVaz4aGwvj\n6dXLahauucaO3cXgdttFY/RDR6R3b+uEZ80qjGeHHey6jxtXeD5diLz0UnEn42/2ED+3y5YlCxFf\nz0Wox9DUVPxw8OMfNix6oEyenPw18Q0NdlyvvlosRMBGPrz+etRZ7bBD5OjFO0d3BRoaCmt0zj47\nSmGE+DZdYHREOSFy1FE2DNXrCsA+uQ0eXCxyfITUunXF5zoJ32bSfiHqDJ1997X7zW3xpLalthVn\n7Fi798L3TCl8FuAkUdPQkPzdIHFL3TnmGDvu0OUrx+mnmxhMWwOQdG48zqQv2CvFMcdYR5vkGCUx\ndmxxOqizJAmpUjQ2RsXFW5tSguadTKaFiNu9Xa0RKTV81yeOcSGSplg1npqBZCHiqZmGhkJHBKIC\nzbgQSUrNgG0nngoZODCqx4g7ImAFef6w7dvXjt1t+7gjApa28b+9yHT58mJL0QVWY2OxXX3SSSZE\nwuPabrto5E0oRMAe8osWRQ4MRMIg/sD25S0thamZUoQxJKVmIPpiQYiEyJgxxflr77Dj8ZdixIjS\nQmTixMKOoVcva79wYbEQ8Wn4m5oKYwrrGEJciCR9ik6inBD5xCcsHRQewxVXJH9VeUODdUbLlhU7\nHEm4EEnjSoA5cq+8kiywTjnF0mxpnBgwsRx+gVg5GhrMOvfnRlfYd9903yLsfPjDXd9nZ2hoSJ8q\nENkhk6mZxsZ0jkhH84h0NHx39Wrbh3dsHQ3fbWvremoGrGMOv9k33EeSI/KrX9mnr/DBPWhQNEdG\n3BEBG7ceLt9mG+sc+/cv3K+Lj3nzCtu7OAjTMuFxxYURWM6zX79CodDcHKXYQucDoo4lTLW4gIgL\nkT59ov2lESJhm7gQ2X5723cYj/+dZJ17nPH4S+HpliQhUqr90KGFggysU9hnn6g+pCPcuekOR6RP\nn+Jr37t36ULCE08sbl+K5mbraNN+nXtDQ5TOidPUlOxYlOKCCwq/s6Uj+vTZeiMThOipyBGhdI1I\nKFw6ckTiw3fXrSucpROKhYuvP2aMxTJnTuWOiNcMePxgQsSHtzqDBlkHnyRErrrKcqc+vTOYI+JC\nJHREBg2Khq7GhYjPXxHu14992bJiIdK7d3ExWHNzdG3ijsiAATYkLeysXDw0NRV3tN4RJjkiSVX7\nO+5o5zoULqUIHZGwDsN597sLv62zO4WIC5+0QsRnrU3i7LOjYZBptgPpHZHjj7dcd1hf0Vm+9rXK\n2t9wQ9f3KYTYOmRaiFTbEfHRK/EaES9k9PV9DPozzxQ6ImlqRIYOjVIhoSMSdpRgwmLRosJ5RLbf\n3ooS3/ve4pqAQYOi2TtDIQLmiiQJEShMy4THDoXtd97Z1onXA4TiI+6IgBWrhoVr3mbYsOKCtiQh\nsvvu1ikn2cM77mi1L2kckb59o+/YSapbuPrqwm/MHDLEPtHHR6KEcVbqiKR1Mn7848Kvlg9JGvZX\nim22sXk7wlE85Rg2zNoLIUQ5Mi1ESjki/n0w8S+9q2T47ubNhbN0huv5J1D/36vXn3mmMNXSldRM\n3A5PKlZtarJ5KpIIHZF44d2oUTaPRbjc/453ptttZw5JLlfYvpR9HQqRuCPiMSe1T+rEk1IzJ51k\nzlPStl1EpREiELlOScPd4iNOGhoKv3EzKc60NSLuhKQVImkdjDSkreYXQoi0ZFqIxB2R/v2jb8aN\np17oWYwAABj4SURBVGZCR8QFR2OjdTClvvSuVGrGhUg4E94BB5gQ2bw5Spl0lJpZu9bERTw1s2hR\ncZX7oEG2nS1b0o0Td+ECyY4IpHNEvOh05crC9nHHxgldkCRHpFT7pE48yRHp1at0B+5iJk1qBkyw\ndEeh4aBBNrtjOEFSOT74QZupM36uhRCiHslksWpciPhy76A3bEh2ROKpmYYGEwvlHJEBAwqH9UKx\nIwKRECmVmmlsLGzvRZpLlxY7Iq2txZ3UoEFWpxG2K0eYMokLER9BkCREkpwJ79jTDGnsyBGJk0aI\npBUWlToi4ReGdZVTTimucSmF18oIIcQ7gUw7Ip6aCR0RsHRHfPhuUo2I/12uRiTsBP31JCFy4IEm\nKnK5aIKjMDUzYEBhEai7Jm+9VSxEoNhxGDQo+h6dtI4ImBiKDzetxBEBOwdz56YTIuEY+kqESJIA\n2m47mwwp7SyFlQqRSy+1+0IIIUTnybQQ6aojAoWOSFJqJuzU/Eu2SqVmwFyLuCPiQiTEO+n29uLU\nDCQXqzqVOCJJ4qGcI1JKiJTaVpy+faMUWZrvhPDzUKq+Iv59KeU47DArKE0rROLTTgshhKicTAuR\nco5IqRqRXr0KJ1VyR6S1NTk1E08L9O2b7Ijsvrt11GvWJBerlhIiYdzlhEg4t0clQiSelvFYhw8v\nLIjtrtQMFM4NkqbtyScXfnV1Zxk/vnRBqRBCiOqQaSHSkSPiQiB0ROJpCv+G3FI1InFB4HOM+LqO\nzzj40ENRHL69lSuLZ3YMUxguQBobo3i6KkS8fZIQ6dcvGlHjdJcjApZSSStEevWCv6b6/mUhhBA9\nkUwXq3amRiQuRFx0JKVmli8vtvnD1Ex8W56e8Ti8GDYccuskCZHw73JCJOkLy+KUS80kUc4R8XNQ\niSOSpj5ECCFE/ZNpIVLOEQnbh/OIlHJEOpOaCR0RKBYiELkycSHSr1+0ftje21XTEUli//3te06S\nRqhU6ojsuGP6yb2EEELUN5lOzXTGEYnPGxE6ImmESBpHJBQKLjaSxENzc+HwXW/Xu3fxNzh2tkYk\nrXg47DCb5CyJE06wKbrDGMpxxRXp2gkhhKh/Mi1EOjNqJk2NSO/etv1NmypzRMaNs6+enjixsH0Y\nW0iSEOnf31Ih8S/SCtMx8Vk/k6jUESnHyJHw3e+mb5/2S9WEEELUP5kSIt6pl3JE/Jsw3RFJGjWT\nJET8i/LCGhGnkhqRPn3g1lsLl5VKzUDkesQdkaSCURcWvXunmw203KgZIYQQorvIlBDpyBFpaIi+\nb6atLZ0j0qdPNBV6mJpx0g7fLUVHjggUzrcxYECyeHBhkSYtA5FwSZuaEUIIITpDZoVILlf8XTMQ\nfQNv2lEzfftG3ymTRoh4/Yiv2xHlhEiSI3LCCckTgfXpYz9phYgcESGEEFuDzAoRiL5NN5ygzB2R\ntDUioSOSNjXjMYT7LUW51Iw7IqEQueCC0tsaNKhyISJHRAghRDXJ7PBdiL4nJMkRSZpZtdTwXZ+g\nLO6I9O5dPFLEHY40bkjYLq0QKcfAgenmEPFt77UX7LNPuvZCCCFEZ5AjQjpHBGwUTNLw3VI1Ittv\nXzx6xV9LUx8CkRBJEhBJqZlyVOKI9O4NL7+crq0QQgjRWeSIkK5GBGx5kiNSKjWTNLlXpY5IpamZ\nclQiRIQQQoitQaaFSDlHJD6zKtjySkbNJH2La2cdkSQBccIJcPHF6YbjgoSIEEKInkemUzOdcUS2\n265wu337RoImKTUTx4VFWiFSzhHZYw+45JJ02wE49dT0TowQQgixNciUEHHB0ZEj8vbbyTUiSY5I\n2LGnESL+WncUq1bKWWd1fRtCCCFEd5KZ1Ex7e+WOSDhqBkqnZpx4jUi1UzNCCCFEvZMZIdKZGpFq\nOCLdWawqhBBC1DuZFiJJjkj//uVrRJKG7zqVpGbkiAghhBAZFyJJjsiAAaXnEenIEfF2zc3w4Q/D\n4YcXx9GdE5oJIYQQ9U6milXTOiLx4bvl5hFJckSamuCGG5LjqNQRUWpGCCHEOxk5IhQ7Ij7Fe9wR\nyeXS1YiUo9Lhu3JEhBBCvJPJtBAp5YjEZ0oNhUqaUTPlqHT47vbbmwhJO3uqEEIIUU9kWoiUckSc\n+Myq0HVHpNLUzKmnwnPPFYolIYQQ4p1CZrq3ShwRJ40j0tnUTFpHpHdvGD06XVshhBCi3si0EOnI\nEYnXiED3pWbSOiJCCCHEO5lMC5GOHJH4qBkodj2q7YgIIYQQ72QyLUS60xFpaCjcTinkiAghhBAR\nmRYi7og0NETtOlsjksYNCdvLERFCCCGqK0S2A34HrMr/XAdsm2K9bwFvABuAfwD7xLb5c+Cl/Ouv\nA1cAgzvaaClHpFevjoVIGkckTX1I2F6OiBBCCFFdIXI9MB44DjgeOAATJuW4EDgHOBs4CFgC3AsM\nyr++EzAC+C9gHHBaftvXdBRMKUckPiw2afhudzoiEiJCCCFERLWmeB+LCZDJwFP5ZWcAjwN7Aa8k\nrNOAiZBLgb/ml30SWAr8G3AV8CJwarDOPOBrwO8xUdWeFEwuB+3tyY5IvK6js46IUjNCCCFE5VTL\nETkUWE0kQgCezC87tMQ6o4BhwD3Bss3Ag8CUMvtqzm83UYSAiRCo3BGppEZEqRkhhBCicqolRIYD\nyxKWL8u/VmodMAck7TrbA98Afl0umFJCJMkR6ds3qhlJmlk17nzIERFCCCE6T6VC5FuY81DuZ2I3\nxufkEpYNBm4HXgAuKbdyW5v9jtd8JDkiDQ1ReqYao2bkiAghhBARldaI/BwrQi3H68D+wI4Jr+2I\nFaAm4cuHxdrE/wfYBrgLWAN8EGgrF9AFF5wDNHPZZXDDDbB2LcBUtmyZmjj3R//+9g28aWpEmppM\nvKRNzbjI0bfpCiGE6ClMmzaNadOmFSxbtWrVVtl3pUJkRf6nIx7HhuoeRFQnMjm/7LES68zDBMex\nwLP5ZX2AI4ELgnaDgbuBjcBJWB1JWb73vcs56qgJXHghfOQjMGsWjBuX7IiAiYQVK9KNmmlosGVp\nHZFtt4U77oB/+Zd07YUQQohqM3XqVKZOnVqwbObMmUycWI0kRyHVqhGZjTkWV2MC5JD837cBc4J2\nLwEfyP+dAy4Hvppfti/wW2AdkQszGCtmHQB8BitUHZ7/KXksldSIQHFqppwjApaeSStEAE44Afr1\nS99eCCGEeKdSreG7YENuf040CuYW4AuxNntROBnZD4H+wC+xycuewByS9fnXJwAHY6JlbrBeDht1\nsyApEJ9B1cVCuVEzEKVN0tSI+LK0qRkhhBBCRFSz+1wF/HsHbZJcjEsoXXz6QIl1yrJxo/0eODC/\n0wodkY6ESKWOiBBCCCGMTHzXzKZN9tudjo4cERciLkAaGqJ2pRwRCREhhBCicjIhRCp1ROKpmfDv\nJMEhR0QIIYToHJkQIp11REIh4oJFNSJCCCFE95EpIVKpIxK+JkdECCGE6H4yIUQ8NRN3RLZsqcwR\naWpKbi8hIoQQQnSOTAiRUqmZSmtESk3LPngwDBrUPbEKIYQQWSITlQ2bNpljkTSPSNLEYvFRM/53\nKSHyy1/KERFCCCE6QyaEyMaNhd/t0llHJJf01XvAyJHdE6cQQgiRNTIhRDZtigpVofJ5ROJ/CyGE\nEKJ7yIwQqcQRGTkSRoywicycpiaJESGEEKK7yUyxaiWOyAc/CPPmFS4rVyMihBBCiM6RCUek0hqR\nhgYbkhvS1KRJy4QQQojuRo5IyjMgR0QIIYTofjIhRCp1RJIoN4+IEEIIITpHJoRIqWLV+N/lkCMi\nhBBCdD+ZECIbNyanZqAyR0STlgkhhBDdSyaEiBwRIYQQomeSGSESOiLh/CCqERFCCCFqRyaESLxY\ntaEhEiNpHZH+/QvFjBBCCCG6TiZmxog7ImACpK0tvSNyxRVyRIQQQojuJhNCJO6IQCRE0joie+/d\n/XEJIYQQWScTqZlcLlmIgL4/RgghhKglmRAikJyaCX8LIYQQYuuTmW5YjogQQgjR88iMEJEjIoQQ\nQvQ8MtMNyxERQggheh6ZESJyRIQQQoieR2a6YTkiQgghRM8j80JEjogQQghROzLTDZdKzcgREUII\nIWpHZoRIv36F/8sREUIIIWpPJrrhfv2KBYccESGEEKL2ZEaIxJEjIoQQQtSeTHTD5YSIHBEhhBCi\ndmReiMgREUIIIWpHJrrh/v2Ll8kREUIIIWpPJoRIkiPiAkSOiBBCCFE7MtENq0ZECCGE6JlkQoiU\nS83IERFCCCFqRya6YTkiQgghRM+kWkJkO+B3wKr8z3XAtinW+xbwBrAB+AewT4l2DcCdQDtwckcb\nlSMihBBC9Eyq1Q1fD4wHjgOOBw7AhEk5LgTOAc4GDgKWAPcCgxLanoOJEIBcR8HIERFCCCF6Jk1V\n2OZYTIBMBp7KLzsDeBzYC3glYZ0GTFxcCvw1v+yTwFLg34CrgrYHAOcBk4DFaQLSPCJCCCFEz6Qa\n3fChwGoiEQLwZH7ZoSXWGQUMA+4Jlm0GHgSmBMsGYG7LWZhISYXmERFCCCF6JtUQIsOBZQnLl+Vf\nK7UOFIuL+DqXAY8At1USkBwRIYQQomdSSTf8Lawuo9zPxG6OD6IakJOAfwHOzf/fEPtdEjkiQggh\nRM+kkhqRn2NpkXK8DuwP7Jjw2o5YAWoSvnxYrE34/9HAaGwUTsifgYfyrydy443n8MwzzQXLVqyY\nCkyVIyKEECLzTJs2jWnTphUsW7Uq3t1Wh0qEyIr8T0c8jg3VPYioTmRyftljJdaZhwmOY4Fn88v6\nAEcCF+T//z6FRasNwPNYkWvZVM2ZZ17OuedOKFj27nfDnDlyRIQQQoipU6cyderUgmUzZ85k4sRq\nJDoKqcaomdnAXcDVwGcxwXAVJhbmBO1eAr6CjZLJAZcDX823mZv/ex2RC7OU5ALVBZgTUxLViAgh\nhBA9k2oIEbAhtz8nGgVzC/CFWJu9gMHB/z8E+gO/xCZEewJzSNZ3NRjNIyKEEEL0TKolRFYB/95B\nmyQv4pL8T1pS+RmaWVUIIYTomWSiG5YjIoQQQvRMMiFE5IgIIYQQPZNMdMNyRIQQQoieSSaEiBwR\nIYQQomeSiW64KaEkV46IEEIIUXsyIUSSkCMihBBC1J7MdsNyRIQQQojaIyEiISKEEELUjMwLEaVm\nhBBCiNqR2W5YjogQQghRezIvROSICCGEELUjs92wHBEhhBCi9mReiMgREUIIIWpHZrthOSJCCCFE\n7cm8EJEjIoQQQtSOzHbDckSEEEKI2pN5ISJHRAghhKgdme2G5YgIIYQQtSfzQkSOiBBCCFE7MtsN\nyxERQgghak/mhYgcESGEEKJ2ZLYbliMihBBC1J7MCxE5IkIIIUTtyGw3LEdECCGEqD2ZFyJyRIQQ\nQojakdluWI6IEEIIUXsyL0TkiAghhBC1I7PdsBwRIYQQovZkVoi4AJEjIoQQQtSOzHbDckSEEEKI\n2pN5ISJHRAghhKgdme2G5YgIIYQQtSfzQkSOiBBCCFE7MtsNyxERQgghak/mhYgcESGEEKJ2ZLYb\nliMihBBC1J7MCxE5IkIIIUTtyGw3LEdECCGEqD2ZFyJyRIQQQojakdluWEJECCGEqD2Z7YZ79YKG\nBvsRQgghRG2olhDZDvgdsCr/cx2wbYr1vgW8AWwA/gHsk9DmUODvwDpgZb5dv0oDHD0a9tuv0rW2\nHtOmTat1CJ2mXmOv17ihfmOv17ihfmOv17ihfmOv17i3FtUSItcD44HjgOOBAzBhUo4LgXOAs4GD\ngCXAvcCgoM2hwJ3AXfk2k4CfA+2VBnjccfDss5WutfWo5xu3XmOv17ihfmOv17ihfmOv17ihfmOv\n17i3Fk1V2OZYTIBMBp7KLzsDeBzYC3glYZ0GTIRcCvw1v+yTwFLg34Cr8ssuA64Afhis+2o3xi6E\nEEKIrUg1HJFDgdVEIgTgyfyyQ0usMwoYBtwTLNsMPAhMyf+/I3Aw8BbwGOaYPAAc1k1xF9BZBdvR\neqVe7y7FXK24S7XpTqWvc56ujc65znklr+uc65ynbVMr56YaQmQ4sCxh+bL8a6XWAXNASq2zR/73\nt4BfY67LTOB+YM9OxloS3bjp2uhhoXNeyes65zrnadvonNf3Oa+ESlIz3wIu7qDNQZ0PpSS5/G8X\nTVcC1+b/Pg94D3A68NVSG5g9e3bFO121ahUzZ87s9vVKvR5fXq39d2W9pDZpl3VXDJ1ZT+e8azF0\nZj2d867F0Jn1dM67FkNn1nunn/PO9J2doZLBq9vnf8rxOvBx4CfYyJmQlVgdyLXxlTC3Yy5wIBCW\nkN4CvA18CkvfvAp8AiuGdf4ItOaXxxmBpYh27iBuIYQQQhTzBmYyLK7WDipxRFbkfzricWyo7kFE\ndSKT88seK7HOPKzm41giIdIHOBK4IP//fOBN4F2xdfcGbi+x3cX5OEakiFsIIYQQhSymiiKkmtwB\nPIMJkEOA5zB3I+Ql4APB/1/GXJMPAPtirsciYGDQ5j+xeUlOwepCvgOsx9wSIYQQQggAmrF5Q1bn\nf64DBsfatAP/EVv2Tcz12EjpCc0uBBZgE5o9QjSqRgghhBBCCCGEEEIIIYQQQgghhBBCiDjvwwpm\nXwE+XeNYKuUv2LDmG2sdSAXsis2E+yI2MurUmkZTGdsA/wSeBl4AvlDbcCpmADa0/ke1DqRCWrFz\n/jTR1zzUA6OwGrcXsUL9AbUNJzV7E53vp7EvHz2pphGl5yLsfL+IfQ1IPXE+9lx5Hpv+oidTqu+p\n5/60ZjQBL2PDegdhJ29ITSOqjCOxC19PQmQ49kWIADsAC4H+tQunInoRfcNzf+A17BjqhUux+XZ+\n2FHDHsZbtQ6gkzxI9NUTzUBjDWPpLAOx818P79ER2HuyN/ZefQQbrVkP7AfMwKar6IvFnuab6mtF\nUt/T5f60Wt++29M5GFPOi7HRN3dgc5jUCw9icdcTS7BPh2APuLepH/HXDmzK/z0A2BL839MZg33S\nvZPKJjAUnWMc9j1Zj+b/XwW01S6cTnMycB82grGnsx5owd6bfTFBEv+6kJ7Ku7C5tzZjx/AM9o31\nPZWkvqfL/WlWhchO2GxxziI0++rWZBLWKb7RUcMexLZYSmkBZv2urW04qfkR8JVaB9FJBmPfJ/Uw\n9kmsHhiDPYxvxT7pXlTbcDrNR4A/1TqIlKwBLsfem4uAe7FJMuuBF4CjsOdLM3A01j/VE13uTyuZ\nWfWdRK7jJqJKbI9N819vecTVwP7Yt0D/A/um6Lk1jahjTsZs0rnA4TWOpTOMxJy0cdjsyeOxTqcn\n0wS8G7tX3gLuwmaYvq+WQVXIYOyb0j9S60BSMho4C7tfNmHu37sxAdvTmQ38DPg79oz5J+bA1hNd\n7k/r1RE5ArgNU2Ht2AM3zlmYKt4ITKfwQfwmhYptV7bep/Ouxu5sbTHVHXH3BW4Gvgc8UbVIi+mu\ncw72jdAPAAd0e5TFdDXuycDH8q//CDgD+HoV4w3pjnO+JP/7RWAWVfiW7QS6Gvei/LI3MLv9DrbO\nvQLdd5+fDNyNxb816GrckzDRsQoTIrez9WpEuuOcXwVMxNyQLdiHh54aKxT3PV3uT+tViAzAqrrP\nzv8fPzEfBS7DpoA/ALtJ78ROENgnlH0xS2kb4ATsjbc16GrsztbO93c17gbgt5jy/0OVY43T1dh3\nJJoZeDD2aev5KsbrdDXurwK7YaM4zgeuBr5b3ZD/P12NvRkTrgC7YLMsv1bFeJ2uxj0du1+asefr\nEZiI2hp017Nla6dluhr3y9gM232xwuCjsBEcW4PuOOc75n/vjdVbVKsvqlbfU8v+tMfQTvEQsyeB\nX8SWzcI+iTvvx27gOcBnqhZdeTob+93YJ/P12OiTidUKsASdiftwrGhvJtHwwHFVjLEUnYl9Ihbv\nM/mfT1UzwBJ09l5xPkntRs10JvYpWHHzM9i5r8Uw0s6e8+Ox2J8Hfly16MrT2di3xYoOa5W272zc\nX8OcsxewepFa0NnYH8NifxL7BvqtQXf3PT2hP60p8RPaB7O34rbT5Zil3pOo19jrNW6o39jrNW6o\n39jrNW6o39jrNW6or9h7VKz1mpopx1DMnosP31qGzWXRk6nX2Os1bqjf2Os1bqjf2Os1bqjf2Os1\nbqiv2Gsa6ztRiAghhBCiTngnCpHlWC3CsNjyYVjusydTr7HXa9xQv7HXa9xQv7HXa9xQv7HXa9xQ\nX7HXNNZ3ohDZjE0kFJ/Z7RisKKgnU6+x12vcUL+x12vcUL+x12vcUL+x12vcUF+x11OsPYaB2PCi\nA7Cim3Pyf/swo49g0+V+ChiLDUlaQ/EwpFpQr7HXa9xQv7HXa9xQv7HXa9xQv7HXa9xQX7HXU6x1\nwVHYiWzH7CT/+3+DNp/HJmbZhI1z7ikzSx5FfcZ+FPUZN9Rv7EdRn3FD/cZ+FPUZN9Rv7EdRn3FD\nfcV+FPUTqxBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCH+X3twSAAAAAAg6P9rZ1gA\nAAAAAAAAAAAAAAAAAAAAYBZxbYxNwe9BwQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xscale('log')\n", + "plot(np.logspace(0.01,10,200),sinc(pi*x))\n", + "#len(sinc(pi*x))" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAFkCAYAAACAUFlOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJztnXmcFNW5/p+ejWGZYdhmAFkE2VHAAVRwwbjgTow7XpVg\nNCZRE/SqScxNJHo1xiSC1yQaE01cJzFxCS4Q3JEA/gRc2fd9kWUYYAaGmenfH2+/Oaeqq7qrobtn\noJ7v59Ofma4+VXVqPU8973tOAYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC\nCCGEEEIIIYQQQgghhBBCCCGEEEIAfA/AKgA1AOYCOCVJ+VEA5sXKrwBwk0eZEgC/A7AxVm4hgPPS\nVF9CCCGEHMZcCWA/gOsB9AUwCcBuAF19yvcAsBfAw7Hy34rNf4lVpgDAxwBeAzAitqyRAAalv/qE\nEEIIOdz4COJQ2CwE8IBP+V8CWOCa9hiAWdb37wBYBiA3HRUkhBBCSPbJydByCwCUA5jumj4d4lR4\nMcKn/DAYsTEGwByIKNkM4AsAP0bmtoMQQgghaSYvQ8ttDxEMW1zTtwLo6DNPmUf5LZA6to/93xPA\n1wA8B8nz6A3g9wDyAdzrs9xOsQ8hhBBCUmNT7JNWMiU+MkUORIR8G0AUwCcAjgJwJ7zFR6fOnTtv\n3LhxY/ZqSAghhBw5bAAwHGkWIJkSH9sA1EPcDJsy+G/AZsS7ImUA6mLLA6SHSy1EeCiLY/Plxcra\ndNq4cSOee+459O/fP6UNIE2TCRMmYPLkyY1dDZImeDyPPHhMjxwWLVqEa6655ihI9OCwEB+1kC6z\nowH805p+NoBXfOaZDeAi17TRkN4t9bHv/wZwNYAIjADpAxElbuHxH/r374/y8vIUqk+aKiUlJTyW\nRxA8nkcePKYkCJlM1HwYwA0AxgPoD+lq2wXA47HffwHgaav84wC6A/hNrPz1sc+vrTKPAWgL4BGI\n6LgAknDq7lVDCCGEkCZKJnM+XgTQDsDPIJbNFwDOB7Au9ntHOMf8WB37fRKAmyFxplvhdErWAzgn\nVuazWJnJAB7K0DYQQgghJM1kOuH0sdjHi/Ee02YAGJpkmXMg3XIJIYQQchjC8THIYcXYsWMbuwok\njfB4HnnwmJIgUHyQwwre2I4seDyPPHhMSRAoPgghhBCSVUIlPvbsAb7/fWD//sauCSGEEBJeQiU+\nPv0UePRRYPnyxq4JIYQQEl5CJT4aGpx/CSGEEJJ9QiU+6mPjpFJ8EEIIIY0HxQchhBBCsgrFByGE\nEEKyCsUHIYQQQrIKxQchhBBCsgrFByGEEEKyCsUHIYQQQrIKxQchhBBCsgrFByGEEEKyCsUHIYQQ\nQrIKxQchhBBCsgrFByGEEEKyCsUHIYQQQrIKxQchhBBCsgrFByGEEEKyCsUHIYQQQrIKxQchhBBC\nsgrFByGEEEKyCsUHIYQQQrIKxQchhBBCsgrFByGEEEKyCsUHIYQQQrIKxQchhBBCsgrFByGEEEKy\nCsUHIYQQQrIKxQchhBBCskqoxIeKDooPQgghpPEIlfig80EIIYQ0PhQfhBBCCMkqFB+EEEIIySoU\nH4QQQgjJKhQfhBBCCMkqFB+EEEIIySoUH4QQQgjJKhQfhBBCCMkqmRYf3wOwCkANgLkATklSfhSA\nebHyKwDclKDsVQAaALwStDIUH4QQQkjjk0nxcSWASQDuAzAEwIcApgLo6lO+B4A3AXwQK/8AgP8D\ncIlH2aMB/Cq2zGjQClF8EEIIIY1PJsXH7QD+BOApAEsA3AZgHYDv+pT/DoDVsfmWAHgyNu8drnK5\nAJ4H8DMAKwFEglaI4oMQQghpfDIlPgoAlAOY7po+HcBIn3lG+JQfBhEcys8AbAbwZ6QgPACKD0II\nIaQpkJeh5baHCIYtrulbAXT0mafMo/wWSB3bx/4/BcD1AAbHfo+CYRdCCCHksCJT4iMTFAF4FsCN\nAHbEpkUQwP2YMGECSkpK8PHH8v2554BevcZi7NixGaoqIYQQcvhQUVGBiooKx7TKysqMrS9T4mMb\ngHqIm2FTBmCTzzybEe+KlAGoiy3vOADdAbxm/a5howMA+kB61sQxefJklJeX4+yzgbffBq66CqDu\nIIQQQoSxY+MfyOfPn4+hQ4dmZH2ZyvmohXSZHe2afjaAWT7zzI79bjMawMcQIbMIwLGQkMtgSI+Y\nKQDejX1fn6xSDLsQQgghjU8mwy4PQ8IkcwHMAfBtAF0APB77/RcAOgMYF/v+OIBbAPwG0ktmBCS/\n46rY7/sBLHStY1fsr3u6Jyo+9C8hhBBCsk8mxceLANpBeqd0AvAFgPMh3W0BCbHYY36sjv0+CcDN\nADYAuBWJBxFjwikhhBBymJHphNPHYh8vxntMmwEglQCT1zJ8ofgghBBCGh++24UQQgghWYXigxBC\nCCFZheIjARUVwL33Zq4+hBBCSBih+EjAO+8AU6Zkrj6EEEJIGKH4SEBdnXwIIYQQkj4oPpKU55gg\nhBBCSHqh+EgAnQ9CCCEk/YRefOzZA2zd6l2+ro7OByGEEJJuQiU+VHTY4uOBB4BLLvEuT+eDEEII\nST+hEh9ezkdlJbBtm395Oh+EEEJIegm9+KivB2prvcvT+SCEEELST+jFR0MDsH+/d3nmfBBCCCHp\nJ/TiI5HzUV9P54MQQghJN6EXHw0NicMudD4IIYSQ9BJ68VFfnzjsQueDEEIISS+hFx/qfESj3uXp\nfBBCCCHpJfTio75ehIeXw0HngxBCCEk/oRcf+r9X3gdzPgghhJD0E3rxodO88j7q66WsV0iGEEII\nIQdHaMSHl9th/+/nfAB0PwghhJB0EhrxYQsIL+cjkfhg3gchhBCSPkIvPvR/r7ALnQ9CCCEk/YRe\nfCRyPvQ3Oh+EEEJI+gi9+KDzQQghhGSX0ImPvDzmfBBCCCGNSejER35+cOdD56HzQQghhKSP0IuP\nIM4HxQchhBCSPkIvPoKM88GwCyGEEJI+Qi8+ko1wav8lhBBCyKETevFB54MQQgjJLqEXH37ORzRK\n54MQQgjJBKEXH37Oh12GzgchhBCSPkIvPvycD1twBHU+nn4a2Ljx4OtICCGEhIHQiw8/58MWH0Gd\njxtuAF5++eDrSAghhISB0IuPdDkf0ajM45W4SgghhBBDaMSHCo6gzoctOII4H1qG4oMQQghJTGjE\nR6ojnKbqfBw44L0cQgghhDgJvfjwe7dLqjkfdD4IIYSQYIRefPg5H7bbkYrzoX8JIYQQ4k3oxUe6\nnA+GXQghhJBgZEN8fA/AKgA1AOYCOCVJ+VEA5sXKrwBwk+v3GwF8CGBH7PMWgOHJKpHpnA+GXQgh\nhJBgZFp8XAlgEoD7AAyBiIapALr6lO8B4E0AH8TKPwDg/wBcYpUZBeB5AKcDGAFgLYDpADonqkiq\nzkeqvV3ofBBCCCHByLT4uB3AnwA8BWAJgNsArAPwXZ/y3wGwOjbfEgBPxua9wypzDYDHAXweK3Mj\nZDvOSFQR9nYhhBBCmgaZFB8FAMohroTNdAAjfeYZ4VN+GIBcn3laAsiHhGB8scWHLSbSNcIpxQch\nhBASjEyKj/YQwbDFNX0rgI4+85R5lN8CIC+2PC8eBLAewNuJKpPqCKep9nZhzgchhBASjLzGrsAh\nchckr+R0AAmb/Uy/24XOByGEEBKMTIqPbQDqIW6GTRmATT7zbEa8K1IGoC62PJs7APwYwJkAvkxU\nkQkTJqCmpgQA8MYbwI4dQEXFWIwdOzZt73ah+CCEEHK4UlFRgYqKCse0ysrKjK0vk+KjFtJldjSA\nf1rTzwbwis88swFc5Jo2GsDHECGj3AXg7thv85NVZPLkyVixohxXXAFcfjnw5JPA2LHyW7qcD4Zd\nCCGEHK6MHSsP5Dbz58/H0KFDM7K+TPd2eRjADQDGA+gP6XbbBdJbBQB+AeBpq/zjALoD+E2s/PWx\nz6+tMj8EcG9s+lqIU9IRknjqS6Kcj0jk0HM+6HwQQgghwch0zseLANoB+BmATgC+AHA+pLstIKLB\nHvNjdez3SQBuBrABwK1wOiXfgfRu+YdrXRMhosSTRDkfzZsz54MQQgjJFtlIOH0s9vFivMe0GQAS\n+Tw9DqYSiZyP4mKOcEoIIYRkC77bJeZ8pGuEU75YjhBCCElM6MRHXp4RH/o3WdiFOR+EEEJI+giV\n+IhEgNxcb/Hh19W2WTP2diGEEELSSajER24ukJNjRIc6Gl7Oh/7WrBmdD0IIISSdhFp8uMMu0agp\nn6rzkU7xsWYNcM89zvoQQgghRwqhFh+28wE4k0VVcBQWpqe3y+LFzt8OHAA++8y77PTpwL33xoeC\nCCGEkCOBUIsP/VtYKH/txl4FR0HBoTsf9fVAeTnw97+baa+9BgwbBlRXx5evqYmvDyGEEHKkEErx\nAUhIww67AE7hUFcnZfPzU8v5OHAgPlyyZ48ICnuY/F27ZB1VVfHLovgghBByJBNa8dHQEB92cYuP\nvDyZJ5XeLkD8WB+7d8cvX4XF3r3xy1I3ZN++5OslhBBCDjdCLT7czoftNNTVSfm8vNScDyA+9KLi\nw16+ltmzJ35ZqToff/gD8A/3YPOEEEJIEyXU4iOR81Ffn5rzEUR82NPTKT6eecaZT0IIIYQ0ZUIt\nPpI5H3l56XU+vMIuXuIj1bBLTY134iohhBDSFAmN+GhoyF7Oh1t8aFJppsIuFB+EEEIOJ0IjPlJ1\nPrT8wTgfqSScpkt86DyEEEJIUyd04iM3V76n2/lIZ8Ipwy6EEEKOZEInPhI5H17iI6jzkSjskumE\nUzofhBBCDidCLT7czodX2CUV56NZM/n/UBNOmfNBCCHkSCbU4uNQnI9nngGeeMJ8P3AAaNkyfjlA\nZsMudXXyofgghBByuBBq8ZHI+UiU8/Hkk8C4ccCf/+ws36KF/J9N50PLBg27VFUBffsCS5cGK08I\nIYSkm1CLj0TOh19vl4oK4MYbgVatnOIgnc7HwYoP3Z5EbNwowmPhwuRlCSGEkEwQavFhv7k2Egnm\nfNx6K3DZZcD48U6RkUh86DgfQRNOUwm72I5HkPK6bPsldwfLjh3AokWHvhxCCCHhItTiQ52C3FxJ\nFg2S81FVBZx+OlBYGC9WDibs4vViuYNxPtz/+6HiY9eu+N+2bwd69wZWrUq+HACYNAm4+OJgZQkh\nhBAl1OJDRUVOjrgfyZyPaFQcjoKCeLGSrrBLXZ0ZMySI+LDdjiBJp4nEx8qVwPLlwLJlyZcDANu2\nyYcQQghJhVCLj0TOh1fOh4qCgoJ4sRJEfARJOE01jJJO52PHDu86+VFVZbaNEEIICUqoxYfb+Ug2\nwqktPrzCNF6Jq0BqzoctIFINu6TifHjlfOzcKX+9QkFeVFXJPgk6Hsn3vw+8/XawsoQQQo5cQi0+\n3M6HX9hFRYoKhvx8b+dDp9viIxoV8VFSEizhNFviw8v5OBjxAQR3P555BnjrrWBlCSGEHLmEWnwk\ncj7ssIs6H/q7X86Hig/7PS/798v87dvHh11atYoXHyoOcnKcYZf77wd+85v47UoWdvn734EPP4xf\nfrrCLkAw8RGNSnldByGEkPASavFxsM6H5nzU1ZllHDgg5fPznSJDG+h27eLDLm3bynx2eRUQJSXO\n8tOnA08/Hb9dyZyPn/7UORJrYzkfe/eKAEmH+Ni0CfjOd4INe08IIaTpEWrxESTnI5HzYU+rq/MO\nu2jD7OV8tGsn/9tOg4qJNm2c4qO6WgYGcwuMRM5Hfb30YLHFhP6fKOfDrs+uXf5jeaQiPrSsruNQ\neP994A9/ANatC1b+j38EHn300NdLCCEkPYRafNjOhzuHw36xnJ/zAZh5/HI+tGH2cz4AZ2Ov4qKk\nJL4bbX098Nlnzu2qqTF1cQuTtWulXl7LTxR2scXKb38LnHlmfFng4MSHn/Mxb17wgc+0e2/Q8v/4\nB/C3vwUrSwghJPOEWnzYzkeiQcb8ersAZp4g4qO2VkIPgAgRL/GRyPkAgLlzndtVUyO5I/n58eJj\n+fL45acadvnqKwlzuBv6/fvNdh6q+IhGReDY4aGdO4Ef/cg7tPLVV876JmPHDjMPIYSQxidU4iMn\nJ7Hz4dfV1q+3C2AEgpZPFHaJRp3LSjXsAniLj+bN5eMOu6j4sMWELmf//vhxRLwSTrX+uixFxYRd\nJhGJxMeOHSKG7AHLZswAfvlL73fQpOp8bN+e2mBoS5f6vydn+3YjIJPx0UfA7bcHXy8hhISFUImP\nZM6HO+ySSs5HMuejfXv5u3+/rLuuLvWwS26uv/ho0SI15wOIdz+8nA+tv3vU01TFh5bZuze+C/Ga\nNfLXFhNaF6+h3g/G+di5M1iC6u7dwLHHAq+8Ev9bZSXQpQvw3nvB1vvGG8AjjziH5yeEEBJy8ZHM\n+UhnzocKjdpa87tf2CU/X0ZL1WVHoyIaysuBxYvjy6v4cDsfKhjc4qNNG/nfT3zY5VVkHKr4sMu7\nRcPatfHTVYisXh2/LHUxgoiPujrZzqA9bbZulWO5ZEn8bytXiiBcsSL5cgBg82Y5x7ZvD1Z+7FjJ\nsUkHixenZzmEEJIJQi0+EjkfB9PbxS/s0qqVvIgOcOZKqPhwh0WaN3fWp7ZW6nvaafL3009NeTvs\n4uV85OXFi4/OneV/W3zU1ko9WrTwdj78wi45OamLD7cI8HI+9P9EzkeQsItdJkjoRctonWxUJAXN\nH9myxfk3Ge+/D3zwQbCyifh//w/o31/CR0F4803g978/9PUSQkhQQi0+EjkfGnbxcz5UfCRzPqqq\ngKIi45TU1pp5SkqASCTeyWjRQpavYRcVFcOGiYixQy9+YZf6enlCHzBApuu2VlcDnTrJ/7b4UBeh\na9fUwi5lZU5hoaxcKY2puzwQTHxofQ7V+bBdBy/x8T//A9x7b3x5r/WmKj42b5a/QcRHQ4Ms10v0\nADLAnL0/E6GuTdC3Ez/9NPDww8HKJuPAgeA5MVVVwGuvpWe9hJDDi1CLj2TOh3uEU/eL5YBgOR9u\n8aG/FxZKeMUrjFJYaOqjoqJ1a2DIEG/x4U44Xb9e1nP88c5l2OLDq7Hv2jU+7JKf7y8+jjoq3vmo\nrwcuuQS48UZn+VatnOtStFEP4nw0NKSWcGoLHS/R8MwzwDvvmO9BnI+gyaupiI/t22W/ea23oQGY\nOBGoqDDTolHJPfFq6LWeGzcGq+f69TJP0NyUOXO8B6I7cEByYv75z2DLef55YMwY755XXtTWOkcP\nPhT02BBCGodQi49D6e3idj4ShV2Ki53lbQfFPcS6V9hFhUOLFuJ+BHE+NEwyZIj81XVUVwMdO8r/\n9k1fG2kv52PgQGkcbdFQVSX7pqwsXnz84Q8yHond2FdVAd27O9elJHM+7AZ21y7Tc8muT3W1twNj\nr8stGtatk8/WrWaaOh9r18Y37F7OxyuvAH37xjeK0WhqYRcts3VrfO7OmjVy/DZtMtPmzgXOOMM5\ndL5dHgguPjZskPrby/ejrg4YNco7TLNypdTfDgsmQnNngjo0V1wB/OAH3r95JTL7sXKliOaPPw5W\nftYsYNKkYGXTTbrEFiFNjdCKj/r61Mf58Es4VSET1PnQm2SzZvHiI1HYpUUL4LjjJJavdU8kPnJz\nRTgATvFRXCzr9Qu77Nkjjae+j6W83CxTqaqS5RQVOcXHV18BP/kJ0KGDLF/3XVWV9Php1cpbfHTs\nKOJDG/zKStmmqiqnyNCGv3t35/Tvfx8YOjT+KVrFRHFxvPMxe7b8tcWHCpSamvjyOqKqPX3ePDke\nM2Y4y+7aZY6zn/iwnQa7jIoc5Ysv5K8tJjQsNHNm/HJTER8NDSI+7GXaPPig7Ftl40Y5h+fNiy+r\nI+G66++Hio6VK4OV//RT4N//9v7twguBu+4KtpzPPpPt/vzzYOX//GcJz/l1v06F884DXn01WNmZ\nMyUvLGjCcjp57z0KH5JZQiM+GhrSN8Kp7XzYVnB+vnzsi1bFR1Dnww67HDggdbTFR9u25k25gAgU\nr7DL8uVAjx6SVwIYN6O6WpbTurW3+OjSRda5f795KZ6KDzv04ic+fvpT+Xv//fJXhYaWb9vWKT60\nkR88WNal27pzJzBokPxvPxmrOOjd2+mUrFgh2zx+vNOx2LFDtrdLl3jnY9YsU0aP2fbtRii6QyBr\n18r5YC9H3QJ311wVE7m53uLj/vtlm93lvdb75ZfOdQFGMHg1xqmEXb76yghEt/iIRsXFeuMNM00F\n2Pz58cs6WPERxPk4cEDWvWiRU9wDcg7NnOkc/TcalbCOeywbu57uJGo/li+X89JLnG3cGN/9/cYb\ngddfjy+7ZQswbZq8pykIs2fLvcE9qrEfP/0pcNtt3r/97W/ykskgrFkjrlrQ8m+/DVx5ZbCyyfjr\nX4Nvb3U18MAD8edDNti+PT1iNMyERnwcyrtd6uvlZlZbK9+1PGAaaMA/7OLnfCQLu2h5W3y0bi3/\na8Pr53wsWwb06mXyLNTN0B4tbvGxY4cIHh2PZM8eIyq6dAFKS4OJj1dekZe+9esn3/WpzU98aEOl\nDbFuV2WlyVexb/rqOvTp43Q+tmwRsfLKK06LfMcOWWf79t7iQ7dXf9u2Tdwl93pra6Xx79/f6Xyo\nIHj1Vafo0ZyCvn3jxcfKlcB99wELFphzYfNmOY45OfHiQ52PzZvNOaviY/Zs500wGpX5I5Fg4mP9\nevO/e71Llsg+sPNB9HgtWxYf5tJG3X7nzsKFEi7xeulhIvGxbBnw0EPOejY0eHeDnj9frkG7C/SC\nBcA114hr4Ua7IQcVH3re63Gwuf124LLLzPf9+4GnngIefzy+rAo2r27cXugAe17r9eL114Fnn/Vu\nFP/nf7zfiu2FulpBw2evvAK8+KL3u5Y2bQL+9S/ntLVrvfN86upEuAUNcU2bJi5r0B5i8+Z5i0JA\ntsHrmHlRXS0Pds89F6z82rXysBE0ETsRzz3nzFFLRH29vNPK623nTYFMi4/vAVgFoAbAXACnJCk/\nCsC8WPkVAG7yKHMpgIUA9gFYAODiIBVJlPMRiSR+q62Wr601IsLP+fATH3Z5/T1Z2AWQJzdbfKiT\noRev3zgfy5fHi48DB2Q/qPhw51i0aWPK791rGpeiIlmWfbPWXBZbfNTXS+N99NFm9Fa3+GjTxik+\ntMHzEh9afy/n45hjnPXfvBm4+mppDH74Q7N/tm834sMWDdXVwCefSMIjYEIv27aJsGnVytkYb9gg\nN4/yctnPekw2bRKhtWGD8wlYxcegQfHi4447jGDVG/aWLZII3Lmzt/hQR0q3YcMGOUd27nSO6bFt\nm9RvwACn+Jg+HfjmN8XJsEWkipguXeKf7KdOlb91dUZk2Q2Mu3FatEiuLztfZto0eYJ+8EFn2cpK\n+eTmxoddolHg+uvlOHoNNucOl8yZY7ZFnQ7dJ88+izj0tyDjtVRXm32kDpT922uvmZwcXWZDg4Qt\n3K6LNupu8eHXKKn4cK8XkHP3kkvMvaS+XrZr+/b4UYHXrpVrd8ECs666OuDyy2U5XssGgoelVBxp\nGNPm7ruBiy92DvB37rnAd7/rvZw9e4KLHt2fevxtotH4/XbffcC4cd7hpHvvNW5tMubOlXveu+8G\nK//00yL+vEZrnj0buOqqeLfWa/iChgZxtn7xi2Dr/fBDCZm+9FKw8gsWOJPaM00mxceVACYBuA/A\nEAAfApgKoKtP+R4A3gTwQaz8AwD+D8AlVpkRAP4K4C8ABgF4FsCLAE5IVhk/50PFhV9X27w8+V5X\nJyetio/8fPm7f38w8WE7JUHDLlpeG7qWLf2dD3ucj4YGuQn26iXzALIOt4hxh13atDHl9+41F0BR\nkYQ5kjkfO3bIusvK/MWHl/MRicioorpd+jK8Nm1EyLidDxUT+/fL9u/fL/UvK5Mbal2dmWfHDqlL\nhw5O5+Pjj6XcxTHpquJj+3ZZdvfuThGgT/xDh5p6ANIoX365rMMOvWzZIsewTx+n+Hj7bSl3zz3O\n5W7ZIvV3r7e2Vhqr0aPN+gBpEEePlvNZw0eAmXfECCmrAvtPf5Kn05tvFjdGy61fL+f4CSfEi483\n3wS6dZP/9be1a0VsFRY6Qy/RqDR+J54oja7uax1r5KGHnI29ionhw+Odj7/+1eSyaEO9erWcJ506\nxTeKs2fLOR2NmnrqemfPdopmrWeHDjLdvumvWAE89hhwyy1GeGudW7aMdyCmTjXXlAoa/VtdHZ+P\nM2+ebMOGDeaanzdPzmf3iw+jUWmsIpH4RrShAbjpJjmPtE6rVxux43YCtJHcs8ecbwsWyAsXb701\nXvzocfVyXOrqpMu3OmHRqDke9nkIyD3kH/+Qeul+0bdkv/RSvBOp+8t2BBOh9fQSH489Jg7mggVm\n2ty5cj9w75/160XwrF/v7AV1770yZo4b3U6v9QLxPcE++kj+vvlmfNn775djb99bv/EN4Otfjz8u\nn38u++yjj4KN1qwh2bfeiv9t+XLpvGCHSB98ELjuumCJ5+kgk+LjdgB/AvAUgCUAbgOwDoCH5gUA\nfAfA6th8SwA8GZv3DqvMBADTATwEYCmABwG8E5ueED/nQ7/7dbVVcVJfLw2Bio6cHPm/tjZx2CXR\nOB/NmsV3tXWHXWzx0by5t/NRWOgMu2zeLBf8Mcc4nQ+3iHGHXdq2dYoVFRXFxSJk/MSHhnS0AS8t\nNQOoJRMfa9bI036HDvK9stLUq6RE7E2389G+vRmldedOs96OHU1jqU/ofmGXWbOk7l/7mny3nY9E\n4kPzXzRXYutWcQ3GjHGKj82bRUyUlUkZFQE//zkwciRw553O5fqJj8WLZT0qPtTN2LBBRMTgwc68\nD13eSSfJOasiackSubFog6tPlxs2yP7v2dMpPvbskSTam2Leo9Zp3TopO2iQU3xog6r11HosXQpc\ncIGcE3Y+gh7TM86Q9er+2btX9s2550rDq6GcVauknkOHejsfKiJVLCxdKnUsKpLcD2XTJjmvL7hA\n/ur+eeopOcdvvRX43e9MXoYKl/POixcBf/+7iHLA1HPxYjlvO3c2zpEyf74MFKj1A0SMVlbK0+/k\nyabs+vWGgyFbAAAgAElEQVSyP089VdZrh1L+8hcRz5GIcSm0kT366PjG9Z13TPd63QZ1Df797/iu\n0Z98Ivti40bnNTN9uvSe+9rXRFQAcj7s2iXH151/9Oqr5t6m54rWt7Y2Pmwxc6bcI+rqjEuwapVc\n0+PGyfK1QY5GZRtatZLjbzfU27aJ0wCY3mCbNhkH6+WXneu1c5rUvVy9Wh4QLrww3omcNUvu9UuW\nOO9l0agcw5ISEfo6TQWM+3xYu9ZMU0Gzd6/8/9578blBb78tf/fscZ6LixbJ9w0bnOeJirm33nLu\nn2hUHJF584ApU8z0GTNk3//pT8gKmRIfBQDKIULBZjqAkT7zjPApPwxATALgpBSX+R+COB91debg\n2Tkf+t0Ou+g8QZyPVLra+oVdmjWTuiZyPjTsog1pWZmsIz9fTmp37oiX8+EXdundWy40dwJpUZHJ\nJdEn/NJSWWdxsbf4sHM11qyRBldF1c6d5nc/56NDB1O+stI8rZSViQDJzzeNn1/YZdYsaaBbtZLP\n1q2yHdu3i4vhFgHr1pnpgNzgdJ5OnaTxW7zYPOFt3ix1KSuTc2fnTjm3PvlEnmwKC+U3t/g4+mjn\nevUmc+aZ0ths2iTr3LBBuouOHBnvfDRvbpJ1N26U9S5bJmKle3c59npzX79elqPr1fP/3XflPL3s\nMtluPQbr1kmPqPJyp2Wvje8558hfW3wcf7zkG7z2mhkobfVqOQ9POEHOcT2Gv/yl7Nvf/U7qqvtz\n9WoRooMGOcXHunWyLy69VM51DeEsXSoN5WWXSehFb75azwsvlL8qVl5+WRr6HTuc3XCXLZNz/Iwz\npLHRa7emRvIHxo0T8an1XLJEnKFzz5WQk7Jtm+yTsWNNOUDWM2qUhJhuuw144QWZrsfniiucjkVl\npbzt+b/+S/KPtFFfuFCur6uukkbEbqTfeUfKFxUZkTJ/vtRz9GhZt97DNm+Wc2zcOPmu7sfzz8ux\nbdNGxIC+30h//9a35Hywn/qfflrEVq9epp7z5sn5eckl0sjZ9Zw5E7j2WqeomjJFro0PPwROOcUI\ntPXr5Xq+7jo5ZvaD0U9+Iudxnz7m2lCxdeml8pBgN9Kvvy71bN/eiI8PPpB6NG8uDxZ6j45GxU27\n4gr5rq7G3r3igN52m8yjAmf1aqnn+efLNth5Uk89JddAr15GuM2ZI/eLo48GfvxjZz3fekvOlfx8\ns11ffikh1uOOk/NQX2RZXy/1HDVKjqcd8pkyRURPu3Ymf2TNGjnHevSQ0GwQZ+VQyZT4aA8RDO48\n/60AOvrMU+ZRfguAvNjyEJvXq4zfMv9DEOcDcMZQ7ZwPdT5s8aHdc/3ER329NPipdrX1Cru0aGHm\nKSw07yvxSjjVRlbdBF2HW3zYOROJnA8VH4B5ErTFByBlbdEDyMm9fbsRXH5hl+7dZZsKCkwuAGCc\nD3usDy/nQ0VPx45yPLt0MTdr2/nQXA29gYyMSdbSUqn77t1yLP2cj27dTILqV18Ze7JTJ+Css2Td\n+rSxZYsRH/p93Tq5SQ0YINO6dXOKj44dZb0bNpiL/4svpLFv317quXGjbPO+fdJInnyyNLR6zFXM\nHXWUfN+4UdZbUyPiIxKR9evNaMMG2V/duzvH+pg6VZyz3r2dAnDtWiM+Fi4059SiRXJuDh8uf9et\nk3NowwZpBC67TObTEU1XrZJj27On+Q7I0/D48TK9f3/TqK9aJfUYNMj5RK7W98kny/JUTCxZIuu9\n5hqZpuUWL5br9Kyz5Ls6QXPmiMAoLpZtUPGxfLnsg+OOk2OiomHqVNPg9O/vdD769hWnZOFCc3y1\n8TvjDDkndDlz58r6HnxQxM9f/yrTFy6U61pFkorQBx6Qff7QQyLqtJFeuFCO66hRci6ps7J4sRzT\nM8+Ubve281FeLmJv2TLztKvLu+IKuSZV6D33nDTQM2bItmnX8s8/l3vJlVfK/U4b7w0b5En9uuuc\nQnX+fBGFN90kQkgb79Wr5biee64cN3Xm3npLRMfy5bKvn3rKLAcwuSN6fOfOBf74R8nvOPdc00jP\nnSvX0G23icDS/JSaGmmAL7rIOYbS++/LufbGGyJob7nFnA/btolIat/erPeRR0TEvPyyjEXz1luy\nP3T7Jk6U80cb+7o64MknJU/tzDNNPWfMkPvm00/LPlOHad8+ES8XXST7U8tXVMh9cuZMyel69lm5\n1y5YIG3Ej34k16OGXmpqgAkTZN98//smhKZu2Z/+JMcuGyMPh6K3y4QJE7B9+xhUVIzBddeNATAG\nH3xQEed8AM53tegIp/o9mfPhDruoqCgqMuEaO+E0SG8Xt/gA5GSrrJTlRKNGfBw4IPV0iw8N7QTJ\n+XA7H5GIzN+jh0zXRkjFR3GxfFfxUVholtGunTT+qvZVfFRWmpjxmjXSCEciZrvczkd1tRE26nyo\n+FDnIxIx22s36nbOByA3jlWrRBSdEMsUUvGhDZo6HLt2GSGk4qN5c9kfbvHRooU8SepN0Q67ANIg\naAPlFh8NDc6wS329sYi/+MLkw3Tq5LSP1fkAzM1IxVxpqYihDRtMQ9e3r1m/l/OhxyMalfj0eefJ\nflVXpLpa9lu3bnIDbGgwT76LFkmjkZdntkuFap8+spxRo0yjpeJDz6tVq8xH3ZN+/bydD90vgDQi\nPXrIvjvmGGkotm+X496nD3D66SJ6/vIXKb94sYiJ1q1F7C1fLp/t2yVPBhAxMG+ecYx69TLj5Wjj\n/fe/S1369JF6Llok+02dj7POkvuHuh/z5sn5f8wxchyWLDHD6Q8bJmXOP18ap/375fj06yf7snVr\n2d79+6XB+u53JaxTXi7dUuvrjfg4+WRZrzYm774r955TT5VtWLBA7hGffSYhrCFDxI355S9l+ief\nyPp695blaRLou++KYxeJiAhZtEiumS++EGF27LGyfXoePv+83MMuv9yIpIYG2Q9Dh8r+6d5dhAJg\nRPvIkVKnTz6R+9n77xthf/XVsv+XLpXllJbKNvXvb0Ivt98u0777XdkXK1bItTV3rqx3xAi5jjQJ\n8733pEG+4AIjOqNRWe/pp8t2/fKX0qgvWybbF4mIa3rSSbLe+nrgiSekft/4hjTsO3ZIHT/6SM7P\n4cOlnpr3MXWqXHvf/rZs88KFct+bMUOO1Wmnyflw991yb509W+p51lnG7YxGJV/kkktkW2+/XdY7\nbZo4KXl5spxTTzUhnHvukXvCI4+I6KmslH09YwbQtWsFJk8egzZtxuDb3x6DMWPGYMKEpBkNB02m\nxMc2APUQN8OmDIBfOstmxDsYZQDqYsvTMl7LTDhY8uTJk1FUNAXjxk3BCy9MATAFJ588NqHz4e7t\nksj50KdUt/NhOweRiBErbvFhW5XusIuX+FDXQsMsGnbR+b/6yjSSgL/zoe4JYMSHrkcTTlu1kn1U\nUiI3F31C9XI+tmyRG0IkItPU+bBzR3ScEh2pdP16E8pQ8eF2PgAjetT5sMM0W7bINBWK2vjpG23V\n+QBk3+hTmOZvqPjQEJE6H4BxP/SJHzDJq5s2ybaqwLCfRO2wCyB1XLhQ9q/mpWg9d+yQfaHiw16v\n3twBb/HRrZvUS+PBKuby8mR5GzdKQ1dQYATGwIHSeOgAY+p86H7++GOp19e/LtO6d5fpmkfTtavc\nlPPyjNhavFhurvZ26dO3umannSblq6qM+GjVSvbnypXSEKhIAaTxXbFCzp+NG6X+vXvLtaFP5LNn\nSyMAiFuyYoVZb58+cu5ef700hlVVznpqDy59Cj7xRPk7fLiUXbbMOB9t2sj+/vJLqfvLL0soA5Dl\nLV8u5/KuXVLvkhKpl3bBnj9fzo+cHCM+9Cl7+HD5e/75co3OmGHEhCZjf/mlPI3u2CHbA5ieV4sW\nyWfAALkey8uN+HjnHalHy5aynIUL5VNTY87/O+6Q8+aVV+T8HTJE1qshrunT5Z510UXmOALyJP75\n51IuN1fW8+9/y7ImT5ZGsbhY1rN7twiepUvle06OdMnX1xvMnCn1b9tW1v/ZZ3Jc9u4Fzj5b1nfO\nOXL9vPSScW4iEREUc+ZIw/7hhyIW8vKMMP/3v2VfDxsm6/3GN2QZy5bJPu3ZU47ZsGFyH5g5U873\n00+X+a+/Xs7RX/9aGv2BA83x/egjaezXrDH5USeeKPfXadMk30PPq/POE9ExZ47kNR1/vAiik0+W\n3z/4QH7T/fvww1Kfb35TnIvSUrkXjBwp5+Cbb8r5rmOsHHecfJ5/XrahvFz219lny7Jfegn41a/E\nPevTRx6+WraU/T9jBjBmzFhMmTIFjz46Bdu2TcGvfjUFk+1EpDSTKfFRC+kyO9o1/WwAs+KLAwBm\nx363GQ3gY4iQ0TLuZY4G4DPuoSFIzgdgQiLJervoPIlyPmzxoeU17KLJrCo+NLbnDrtozofb+di1\nyyk+9PfqauMOKLoOt/ioq5Nl6Ovm27aV/dO8uQm7aN0jERMCqa+X5dnio6pKLpTSUrNeFR9u5wOQ\n9W3cKHXQxtgWH5GILFsbTBU9um3qDu3caVwGRRs/dVBs8bFtm9xgO3Y0w8yXloo4UOfDT3xoPTt0\nMM5Haak5R/RJ9MAB2RcdO8o2FBYa8dG/vzkHtZ4aNiorM+tYs0b229q1Rnx07iz7TMVHp06yny6/\nXOz6AwdM2MUuv3SpNLR6rg8YIMddn2qPOkrqqbkdf/ubbJfefNX5UDepWzfZ9wMHmvDEokVmbJeu\nXY34aN/eHPNRo+Q815u7CsuePeX4vvuu7EN1tfr1k3Pt3XflHO3RQ/b1wIHS6K1eLY26OhbqfKjT\no6LnxhvlOnruOREfWs9eveTmPXu2HBcVtOpEzJghgqJXL/l+3HGyz370I9mum2+W6f37y3msiYu6\n/Jtuksbm3nvNEz8g4mPpUtl3bdqY/XDccXIs3nzTiA/AiI8//1kaMhVP+uqEV1+Va1vLjxolDd81\n18gYG2ecIdMHDpT9oFa+jqNz/PFyrCdNkmtDpw8aJOt95RWZ95hjZHqXLnLM3npL9qeenyNHSkN/\n9tlyfeq4Irq8p56S46j74Y475On70ktl351yiim/e7e4CW3amPmbNxeBpuJDl3PSSXI+3HmnbPt5\n55l6du0q27tlizmu48bJPaNPHxnb48IL5TrS33/9a+PwAHL9Tpgg7tnUqUbUnHSS3IfvuksSv9VJ\nzcuT7Xr9dTk/VXycf75cuyNGSKP/zDMyvWdPud4eeUSOz6mnmvPk2WdF6D78sCwzJ8es/4475DzU\n4wuIIJ4yRYS87s+zz5bz46qrRED+93/L9Px82cYXXhAhptt72WUiULTHYqbIZNjlYQA3ABgPoD+k\n220XADqUyy8APG2VfxxAdwC/iZW/Pvb5tVXmEYjYuAtAPwA/BHAmgKTyLGjOhw6XHo0m7u2i89g5\nH+6wi1t8aI8a20HREIXmIqj4SNX50N9raqThc4sPL+cDMMuprTU3fRUr6m4oGvu3nQx3zoctArzE\nh65jxw6THKiNZZs2JuxSUmIcl9JSiQHv2yfboUJCxYq6DEq3bnKRa6jGHXaxb7BAvPPRrp0sr6BA\nGt1du2T7VBho8uqmTaYXASDLrKmRxqyuTvaFOiMqPrSB0HrW1JgkwLIyOTYdOsh6H39c9oE+2dvO\nR2mpOYfGjZPteukl2Qa3+ND8B0XroFZsly7m+K5cKeLj8suNqDr6aDk/VGhoPsl550lseuJE2T7b\n+Vi3ThpYe729e8t+/cc/zEBNgPxduVJEhn0j1UZcewSoEB00SG6wAwfKftCeLj17yjnywQfS6Og1\ncdRR4uJMmiRiwhYf6nyogAHkPOzVy+RfqIg59lip44svys1ZnUXd7ldflfuF5rFce62UmzhRrhtb\nfOzdK71Mhg0zTmEkIvv0hRfkvNbjdNxxcu5MmyZPwUpJiaxLe/No+csuk3N07Vpp2MePN/UHpEHr\n1cvcAwDJhZg9W8SYOiLHHSfn54svmvFwlFGjpJ719SYUNnKk1HvPHhEmek126CDn2HPPyX1N91de\nniy7a1c5p9UBUFH1179Kg6v3YEC2Z948Od9s8VFfLwL4wQfN/gRkmTpSq4qLE06Q62jaNHFJtDHu\n3Fk+U6bItqtoBiSMU1go57U2/iecIOtauFBcHHu955wj18u+fUaUnHqqnIeTJ4tjoscjEpF6vv++\n3Ht1+wEp/7OfSTugeUqdO5tk7EsvNdcpICG0fftk+3R/Dh5sjsHTTzvreeaZxkVU0dOsmSS76n02\nU2RSfLwI6QL7MwCfQAYYOx/S3RaQEIs95sfq2O+nx8r/BMCtAOyBq2cDuAoiaD4DcB2AKyDuSEKS\nOR+202B3nQ2S8+EVdrGHQPdyPlRc2F1htZ9+srCLl/OhYRcv58Od8+Husms7BHZ52/kAjPiwxYRb\nfKTifHzwgdwAtTGwnQ+tHyA35NdfN86EblubNibs4hYfDQ0mPt+2rey/5s1N2MVLfGzbZsrl5Mhy\n3E/8un4Nu7jFB2AaS62TLT70xmsvTxt1FW7du4sVes898sSlT96dO4vQWrfOCABAbv6DB5tBknS5\ntvjQfA9AbkKtWhnxocvq3l0a0A0b5ClJUTEzY4bUUc/N//1fedr8+c/luy0+Nm2S/W+LDw2paGNg\ni4+PPpJ5bPGhuT1Tp8p1qmGvk06S8+qGG2Sf6nR9Mp82zbleQBoPzUHR8+2YY2Q5n3/uFB+AhEK0\nR4ftfOzdK43ztdeasqWlUs9335Vl2veIH/9Yun3m55t16LGYP980iMr55xvRrPvz2GPlHlNQ4Dwu\ngJxzixfLNav74cQT5ZjPmCFP13r8OnaUetpCSLnwQrOdtvMByD3LLT5OO83c37QRPeUUcXv+9S8j\nwJTycrmuBw92PsAVF4vrcf31Jrm2rEyuq/p60+AqF1xgzj/dhgEDZDmXXGKEujJypHkQsK+Ztm1F\nINx1l7leAHM81PVTWrc2ya16HIuKZNtbtpR8DxvNW8rLM/uzoECurx/8wCkYtJ6ACAb3b/fcI/PZ\n55yWd58P3boZB0PFR06O3D/fe888/Clnnil/e/d23suyQaYTTh+DDB5WCGA4AHvYnfEAznCVnwFg\naKz8MQCe8FjmSxBnpBmAgQACvaYpmfNh50zY4uNgersAsgy7q6pd3sv52LPHKSYShV0SOR9+YZc9\ne+TGWVAg26VPPbt2md4nbufDLT407KKJqsXFpqG2cz4UFR92eVt8TJ8uJ79ebHbCqX2RXHSRuAPa\nX14VuTolXmEXwGTM6zrbt5flbNpknu4AqXNNjQgNW+0fe6wMVnTrrc7l+jkfmqPiJT4++UT2g9v5\nAGS7WrQw50L37vIU1LmzWPZKp05yXn3+ufNGCoj7oWLLdj5WrhTxZIsP7fGiYyB07ix/jz5ajleX\nLubmZi9v1iznjTo3V540n3lGBKI26t26mbFE3CLgtNNMgrU6GT17isjOyzNWsdazXz+pf5cu5jy5\n4QYRVY88En9+AsZStznjDONg2M4HIHV1N1rDh8v0oiJzTp94olw/kyaZ+4ZdzwMHzLJt7rtPBIUt\ntrQB1nwPRa+H/HwjprRx/8Y3nKIcMOexHc7zwx7Mzz7/AZn37rvlXNVtKC2V76Wl5uld0Qbu6KON\nO9q8ubh1Gobxqqd7vYCcL08+6XQa9On/bFcgvqhIuge3a2fEVm6uiHVNXrXR89h2mBKhx8MtPgDZ\nP88/b84jQITE/fc7HWJArhkdh0fblkRoPXW/2uTkiANii7avf11EjboVNnfeKULFvieecIK53mwG\nDZK2QvOsskkoersAyZ0Pu/HWnhjJertoGMUOu+gJcuCAadT1hqFOyf793uLDdiZSdT7ssIuf+LCX\nY4sPu3cJIEreL+yyb5/pU19cbHIz/MIu+k6U3FxTz4ICETFz5phBqXS7vJyP0aNlHn1Ph25bSYm3\n86E3Jbf46NDBdDlzOx+APEXbcc4//lHi+ytWyL6xbWQv8aHL1Rdj6b4oKzN1scVHhw5ynOfNMyEa\nwDT2TzxhrH3AiITPPosXH1dfbcKE+lvnzkb42eIDkJDF/v2mDoC5OV1xhbMha91atn/3brNvba69\nVvIUdDkqUKLReBGgN7k2bcw5qI3yiSea60HRp38tA8g22sdbadHCHA/3erVxPf10sw5t3IuLnccF\nMI1Qr17muPTtK9eEVwOh9XTvZ8U+n/PyzLrdzkdxsTQoffuae0+7dvLSuJ/8JH652pi76++H9trx\nEgHjx4vrZT95n3++THcLmx49RBB6CQ0v9HrzWq8Xo0bJst0OCiChEnf4YNgwp3hRBg+W88wtLv0Y\nPVquH6/GuLhYrjN7vd/6lggQLyZNEncwCMOGSb5G0Bf0XXmlOGd2SEq58EKTT5KMnBxxCu+7L1j5\ndJKXvMiRQSacDw2juMMugEzfvl1uOnoxa/ncXO+wizY0LVqYF9ip+LBv+l7Oh25HsoRTt/iorDTh\nHq+wi+0EaAOgMUIVJkVFIgD27o13PgBJJtQeP7qel16SfeolPjTnQ9GRSNVRsJ2P5culQbBFT1GR\n/Pbpp7K96iK1by8XbOvWzsbMFh92WKR9e7np//jHsi/0XOjQQeq4e3e8+CgvlwSxVq3M8Swrk4a4\nWTPneiMRaaiXLXPW/6ab5MlPLVFF17V/f7z4KCuTLn5ffGHONxUrQHyjqI2V5nsAxglwW7mACKKd\nO53Ohx/2ueoWAQMGyH61l6MNzBluHxTmKdzrqc2LY44RUeglAr75TWfORJs2co5q7wsb7ZliP+UC\n5rp1o+eNl/PhRd++8nBi73/lkUfiX9pnO2DuegLBxcegQXLe+YkAd2Om42q4iUTE5bDvM4k4+WR5\n+nY7GX7ceacZMMtN//7O6zQReXniLLqvFz9OOMH5ssVDQRNfg1BQEPxFdekmqCBMN6EQH9GoSSD1\ncz78xIe7t4v9ZOZ2PrzEh/0kreVzc005e1Av274EpNEM2ttFt6OqShoJv5wPXY6KgV27jOOiDb5f\n2EWfyPXJ3hYfOriTn/iwHZS2bUUE9O7tbIxt8eF+wh4zRmLJhYVmn7VpY3o2uJ+Eu3WTeto3dxUt\n2pVQ0TqvX+9tY+blOcNAupy6Om/nw10fFRb206xdT7f46NMnvtF2L9PrZjp5snNgNBUf7drFZ65r\nY2UvZ/Ro6a3gDgUA0vh/+qm38+GmRQsTclNBo0Qi8tRmN+LdukmPlOuui1+WNub2eZKInj2lN43X\n/vNi/Hjvm2/LlvIEqcPvJyOZ8+HmppskL8ArFBDUTQDkvPntb03SbTK++c34ZMqD5YILgpdt184M\nuBWEnJzkYaSgBD0XSHYJhfiwwyh+zodX2MXL+bDjbgUF5m2xgLf4sJ2DZM6HHXYBjFjxEh+1tSZc\nYosPHYshWdglJ0cEwa5dEi5p1cpsW8uW8vToDruo/a7Oh9a9qMgk8wUVH4DT9dDt0gG23Nb2hRdK\n18b27c0N2x4ozW68ASM+7Jus7hM75KL1jEREoAbpXmbvW9tdAExDZtdH//d6OlVB566/F/n5JuTj\nJT569XI29lrGq0H0cj5yc525Hl71DCI+ANn/LVt6x7t/+1vn99xcCTF5karz0auXXGda32T86lf+\nv7nfeZKIs84Sm127VSYjlafiZGiX3yA0b+7MqyGksQiF+NAxNHJzTcMVxPkIkvOxfXv8i+UAf+dD\nxYeWKyqS+bZsMWXtodT9utoC5n0YhYVmO7RnRjLxoct55BFp7O2XfmnOh9v5AOQJdP58ma7CrajI\nJDu6cz4Aye+wny7VRdCMcEWdl40b47Oyu3WT+K39NGSX8XI+7DoARgi6xUdenpTTAcySYZdxOx86\nfoiX8+ElPrSeQcSHrs9PfLhp104Ei5f40JEzgzbqWi5I2AWQp02v14KnSq9eco7qgGfJuOkmEQBu\nhynTNGsmPZMIIcEIhfiwnY9IRD5u5yMnR24g1dWp53z4OR/btjntYk04zckx5fLypFH6/HNTNkjY\nBTCJnOpYNG9ubHe3+Ni/X5wMO4GxbVvJc3jiCelBYJffs8e8kdfm6KNFfNhORlGRcW3shlndlH37\n4p2PvLz4jHI7z8Od1Q9IUpT9lk0tk5MT71hoI2k7H37iAxDHZtu21J0Pr8THO+5wNtJaJpH48FqO\nF507e/d28SInRwSe22HS32bODO4Q9O8vxyxo+ON3v3O+FOtgiUTkHRRBKS313l5CSNMiFOLDdj4A\nufG6nQ/AvBnWDruk0tvFK+xiZ7N7hV0AyUH49FOTjJUs7GI7H7at3by5t/OhguOrr5wi4IknROC4\nY8wtW0pIR18GZ6NPwG7xAUjDbT9xRiIybfNmZ/kzz5R53MLGdjLczgdghnd2lyktjU+U8xIfp54q\ng/J4JauVlooQC+J8lJSYNwx7JSDqoEVKnz6Sna/jGHjVMxXnwx6nJRmJXhCl3S6DMHq05NfYYbVE\nZHp0RELI4U2oxYftfAByU7edD68RThP1drHDKX5hlz17nOUAER8vvmjGP7DDLjU14hz4OR+2+GjR\nQpwPfZ29orkZOuS34pVYqOV1oCOvsIt7uv7v1YB6iY9rr3UOmOPeLvf/fqj48Fqvl/gYONAMLe1G\nG9Ug4iMSkXJBRwCMRLyTKQERQi1aBM/eLy+XBNUgYxakk0jEu9sjIYQcDKEY58MOuwD+zkeLFsl7\nu/g5H3l55uVxgEz3Szi1RzgFRHzs2ycJkvYyCgtNUmkQ56NFC1lnhw7OxskWH/Zy/GjZ0gi2VJwP\nr6diFV/u5XhhD/ccRHxoGa+QhVfORyK07kHLd+iQnhEBO3eW8FbQrpK33GIGByOEkMOVUIgPbUjt\n/A4/58MddknW20VzPnS6CoevvpJ5vBJO3Q7K4MHyd9YsqYMKh2bNzEBltmjQN826nQ/93933XsXH\n9u3BxYfi53wEFR/qPAQRH4WFZkwOr7CLm0TOR6dOUp+g3exScT4ACVnocTtUvAYKIoSQI5lQhF1S\ncTGsc94AABVBSURBVD7cYZegOR/2QGKACAPAKT68Ek4BaaC7dpUhuO2nf31rq9ZN0W6ylZXxzgcQ\nLz5sMRFEfNhjmbjFhyYoZsL5AMTN2Lz50J2P3FwZtyNorwcVMEGdj4qKYOUIIYTEEyrnI0jOx8GO\ncOp2PrzEh+18uBMVhwwREWOLicJCb+cDMA1vKs6H13K8sMWKWzS0aiXugJf48Mv58FqOH7pdQZyP\n4mI5Rn7hj/z84LkRV14prw4Psn8IIYQcGqFwPoL2dnE7H6n0dlHxoX91DA638+Ee50MZMkR6Jthi\nws/5ALzFh5/zkar4SOR8APIiJTvkoMIiXc5Hs2Ym/JIIfVuj+6VXB0Pr1sFHiSSEEHJohEJ8+IVd\n/Hq7JMr58BvnI9Wwi5fzATjFQbNmElpxTwdMeCYTYRe7vPtFXwDw7W87v6c77BLE9VDcA5URQghp\n+oQ67OI1zodfzseBAzLd7Xz4JZxu3CgNvdvJ8Eo4BYz4cIddVAgdStglL8+InVTER8uWwZIh0+18\nBB3DghBCyOFJKJyPoDkfXl1tdR5986u7twsggsUddtm0KT550S/hFJAurEVF8WLFrptNKs4HYEY5\nTSXs4hVy8WLoUOA3v/EeN0TfBRJ0cKqTT6b4IISQI51Qi48gI5zq7zp8uNv5AGRwMHVIcnLMu1oG\nDXLWw363izvskpMj7of7rbnKoeR8ALLcVLvaBhUf+fn+r78eOhRYsEBedR6EW24JVo4QQsjhSyjE\nR9CcD6+utvq7vr7eS3zs3RvviFRXezsffgmnAPDYY87eGZp0GYnEixV1PuzETL+wC2BETSrOR9BQ\nSTKCDqBFCCEkHIRCfCQKu3g5H3bYJRKRMl7iQ//3Ex/uAasSJZwCMvy3jZ2n4e4ymqrzYedxJKOg\nQLY9qPNBCCGEpELoE069nA877KJ/kzkf9mBWWsbtfDRrBkSjsg4v58NNoiRRr5wPfYusV2+RVJwP\nQEQKxQchhJBMEArnwx12yc0N5nzY5b1yPhI5H4B32MXrfz80pOIlGLycj//6L6BvX6egUlIVH61a\npS/sQgghhNjQ+XCN86EvfgO8nQ9bZCTK+QC8nQ+v//1I1flo21Zefe6FhlvofBBCCGlsQul8+OV8\naMOsr7ZX8ZHM+dizxznEd7qcj0Tiw8v5SESqzsd99wXvoUIIIYSkQijERyrOBwDs3u0sHyTnI9Ww\nSxDnI9WwSyJSFR9XXBGsHCGEEJIqoQi7pOp8VFVJ7xIVJgfT2wWI7+1iC45DdT7atxdRFPQtrK1a\neQ9uRgghhGQbOh8+zofdeyWZ81Fd7SyvQiTTYZcvvgD69Em+HC1fXBz8La+EEEJIpgi1+PBzPtzi\nI1nOB5CZhNNEYRcA6Ncv+TKU668HRowIXp4QQgjJFKEOuyRyPmxRksz5AOLFR15efFfVdDofqVJS\nQvFBCCGkaRAK8ZHKCKdAYufDy+Hwmt62bXyII9WE03SKD0IIIaSpEArxEdT58Au7+Dkf9v/uEU7d\nyaZA6gmnycIuhBBCyOFIKMTHwTgf9nS/3i65uaac7Xy0bOn9CvnGDLsQQgghTYVQJ5weTG8XW2QA\nIhCqq53Tf/5zYN+++Hqkc4RTQggh5HAlFOIj6DgfeXkiInbvdg4tnpsrw67n53vncbi72vbs6V2P\ndL7bhRBCCDlcCW3Ypb4+3vkAxP2oqooXJYC3YFB3wu2IeMGEU0IIISQk4iOo8wFIQ19XF9/bBfAW\nGKmID7+eMn4UFwPnngsMHZq8LCGEEHK4EIqwS9CcD8DkfbhzPgBvwaDT8gLsyUhEytfWBhMfeXnA\n1KnJyxFCCCGHE6FwPhoapOHXfI1kzgfg7XwcathFy9u9ZAghhJCwEQrno77e2dgHcT6C5nzotKDi\no6BAwjqEEEJIWAmF+HA7HJlwPoKEXbS85qAQQgghYSQU4sPtcGQi54POByGEEBKMUIiPVJwPr7BL\nunq7ABQfhBBCSCYTTtsAeBZAZezzDIDWAeabCGADgGoA7wEY4FrmowAWx35fA+ARAK73xzpJJefD\nK+ySrt4ugIiVIGN8EEIIIUcqmRQfLwAYBOAcAOcCGAIRI4n4IYAJAG4GMBzAZgBvAWgV+70zgE4A\n/hvAQADfjC37yUQLjUZTdz4y1duloCBYN1tCCCHkSCVTYZf+ENFxIoCPY9NuBDAbQB8ASz3miUCE\nx/0AXo1NGwdgC4CrATwBYAGAy6x5VgH4CYDnIEKqwasyB+N8ZKq3CxNOCSGEhJ1MOR8jAOyCER4A\n8FFs2gifeXoAKAMw3ZpWC+ADACMTrKsktlxP4QEcXM5Hpnq70PkghBASdjIlPjoC2OoxfWvsN795\nAHE6gs7TDsBPAfwhUWX8xEc6cz4YdiGEEEKCkWrYZSKAnyUpM/zgqpKQqMe0YgBvAPgSwM8TzTx1\n6gTs2FGCMWPk+9y5QPv2Y9HQMDZQV9t09nZh2IUQQkhTo6KiAhUVFY5plZWVGVtfquLjUUgiaSLW\nABgMoNTjt1JIEqkXOr3MVcb9HQCKAEwDUAXgGwASNudnnTUZ779fjilT5PuVVwI7dgDLlwfrapvO\n3i79+gHV1cHKEkIIIdlg7NixGDt2rGPa/PnzMTRDbzZNVXxsj32SMRvSrXY4TN7HibFps3zmWQUR\nGaMBfBabVgBgFIA7rXLFAP4FoAbAGEheSEL8Ek4bGoKFXdLZ2+Whh4KVI4QQQo5UMpXzsQjiTPwR\nIjpOiv3/GoBlVrnFAC6O/R8FMBnA3bFpxwL4C4A9MG5LMSQhtQWAGyDJph1jH99tSZTzESThNJ05\nH4QQQkjYyeQIp1dDwjTae+WfAG5xlekD5wBhDwFoDuD3kAHF5kCckL2x38sBnAARKsut+aKQ3jJr\nvSpSW2tEBRDM+fAa4TQdvV0IIYSQsJPJJrMSwLVJyni5FT+HfwLp+z7zJKSmxogKQARHfX3wrraJ\nnI9Uwy6EEEJI2MnkCKdNhn37vMWH/m+TKOfDS2Aw7EIIIYSkRijER00N0LKl+Z6TAxw4IP8fam8X\nOh+EEEJIaoRCfHg5H/pm2VTG+UhHV1tCCCEk7IRGfAR1PlId4ZTOByGEEJIaoRAfXgmn6XY+KD4I\nIYSQYIRCfHiFXZI5H0FzPgYMAI4/HmjTJn31JYQQQo5kQpGp4JVwejDOh5e70a8fMH9++upKCCGE\nHOnQ+XA5H/n5Mi1o2IUQQgghqRFa8eHnfABSNmjYhRBCCCGpEQrx0dAQvLcLANx5J3DOOeY7nQ9C\nCCEkfYQi5wNIzfn46U+d3+l8EEIIIekjFM4HkJrz4YbOByGEEJI+QiM+UnE+3KjzwbE8CCGEkEMn\ntOKjoUH+p/NBCCGEZJfQiA932MXrfz+Y80EIIYSkj9CID7fzodD5IIQQQrJL6MUHnQ9CCCEku4RG\nfPiFXeh8EEIIIdklNOKjsND8n6rz0bMn0KMH0KFD+utFCCGEhI1QDDJWWOgvOII4H/36AStXpr9e\nhBBCSBgJhfNhux5A6s4HIYQQQtJHKJreROIjiPNBCCGEkPQRevFB54MQQgjJLqFoeps3d36n80EI\nIYQ0HqEQH3Q+CCGEkKZDKJpe5nwQQgghTYfQiw86H4QQQkh2CUXT6875sN0OOh+EEEJIdgmF+KDz\nQQghhDQdQtH0MueDEEIIaTqEQnwk6mpL54MQQgjJLqFoeul8EEIIIU2HUIgPOh+EEEJI0yEUTS+d\nD0IIIaTpEHrxQeeDEEIIyS6haHr5bhdCCCGk6RAK8UHngxBCCGk6hKLpZc4HIYQQ0nQIhfhgbxdC\nCCGk6RCKppdhF0IIIaTpkKmmtw2AZwFUxj7PAGgdYL6JADYAqAbwHoABPuUiAKYCaADw9WQL9XM+\nIhH5EEIIISR7ZEp8vABgEIBzAJwLYAhEjCTihwAmALgZwHAAmwG8BaCVR9kJEOEBANFklfFzPpjv\nQQghhGSfvAwssz9EdJwI4OPYtBsBzAbQB8BSj3kiEEFxP4BXY9PGAdgC4GoAT1hlhwC4HcAwAJuC\nVMhPfDDkQgghhGSfTDS/IwDsghEeAPBRbNoIn3l6ACgDMN2aVgvgAwAjrWktIK7K9yDCJBD5+c7v\ndD4IIYSQxiMT4qMjgK0e07fGfvObB4gXFO55JgGYCeC1VCrkzuug80EIIYQ0Hqk0vxMheRaJPkPT\nXD/A5HSMAfA1ALfFvkdcfwND54MQQghpPFLJ+XgUEvJIxBoAgwGUevxWCkki9UKnl7nK2N/PAHAM\npPeMzUsAZsR+92TChAkoKSn5z/dt2wBgLHJyxvrNQgghhISGiooKVFRUOKZVVrqb2/SRiY6m/QEs\ngDPh9ERIwmlfAMt86rEBElb5VWxaASTscieAP0KESDvXPF8A+D4kDLPGY7nlAObNmzcP5eXl/5n4\n/vvA174GtGunQoQQQgghNvPnz8fQoUMBiWrMT+eyM9HbZRGAaRDBcBNEJDwBEQi28FgM4EeQ3i1R\nAJMB3B0rszz2/x4Yt2ULvJNM18JbePjCnA9CCCGk8ciE+ACke+yjML1X/gngFleZPgCKre8PAWgO\n4PeQQcrmABgNYG+6K8ecD0IIIaTxyJT4qARwbZIyXr7Dz2OfoByUd0HngxBCCGk8Qtn80vkghBBC\nGo9Qiw86H4QQQkj2CWXzS/FBCCGENB6hbH4ZdiGEEEIaj1CLDzofhBBCSPYJZfNL54MQQghpPEIt\nPuh8EEIIIdknlM0vnQ9CCCGk8Qi1+KDzQQghhGSfUDa/dD4IIYSQxiPU4oPOByGEEJJ9Qtn80vkg\nhBBCGo9Qiw86H4QQQkj2CWXzS+eDEEIIaTxCLT7ofBBCCCHZJ5TNL50PQgghpPEItfig80EIIYRk\nn1A2v3Q+CCGEkMYj1OKDzgchhBCSfULZ/NL5IIQQQhqPUIsPOh+EEEJI9gll80vngxBCCGk8Qi0+\n6HwQQggh2SeUzS+dD0IIIaTxCLX4oPNBCCGEZJ9QNr90PgghhJDGI9Tig84HIYQQkn1C2fzS+SCE\nEEIaj1CKj0hE/tL5IIQQQrJPKJvfSEQ+dD4IIYSQ7BNK8QGI60HngxBCCMk+oW1+c3LofBBCCCGN\nQajFB50PQgghJPuEtvml80EIIYQ0DqEVH7m5dD4IIYSQxiC0zS+dD0IIIaRxCLX4oPNBCCGEZJ/Q\nNr90PgghhJDGIdTig84HIYQQkn1C2/zS+SCEEEIah1CLDzofhx8VFRWNXQWSRng8jzx4TEkQMtX8\ntgHwLIDK2OcZAK0DzDcRwAYA1QDeAzDAo8wIAO8C2ANgZ6xcYaoVfOAB4IorUp2LNDa8sR1Z8Hge\nefCYkiBkSny8AGAQgHMAnAtgCESMJOKHACYAuBnAcACbAbwFoJVVZgSAqQCmxcoMA/AogIZUKzh+\nPNC/f6pzEUIIIeRQycvAMvtDRMeJAD6OTbsRwGwAfQAs9ZgnAhEe9wN4NTZtHIAtAK4G8ERs2iQA\njwB4yJp3RRrrTgghhJAMkwnnYwSAXTDCAwA+ik0b4TNPDwBlAKZb02oBfABgZOx7KYATAHwFYBbE\nGXkfwMlpqjchhBBCskAmnI+OALZ6TN8a+81vHkCcDvc83WL/94z9nQjgvwF8CnFH3gFwLIDlfhVa\ntGhRsjqTw4TKykrMnz+/satB0gSP55EHj+mRQ1NpOydCcisSfYYCuBvAEo/5l0DyOrwYGZvfLU6e\ngOR42GX+11XmMwAP+Cy3E4D1AKL88MMPP/zww0/Kn/WQtjStpOJ8PApJJE3EGgCDISESN6WQUIkX\nOr3MVcb+vin2d6Fr3kUw7oibTZDE1LTvOEIIISQEbIJpf5s0/SEOxXBr2omxab195okA2AjgTmta\nAaSb7o1WmfUA7nXN+wni3RBCCCGEhIw3ITkZJwI4CcDnAP7pKrMYwMXW97sg43ZcDMnheAEiNlpa\nZX4AESSXAugF4D4AeyEJq4QQQggJMSWQcT12xT7PACh2lWkAcJ1r2j0QB6QG/oOM/RDAWsggYzNh\nesMQQgghhBBCCCGEEEIIIYQQQgghhJDDn+8BWAXJH5kL4JTGrQ4JyETEjx+z0aNMshcQksbhNACv\nQY5PA4Cve5SZiMTHrxmka/9XkNyufwI4KjPVJQFIdkz/gvhrdparDI9p0+HHkBHIqyADe74CefWJ\nm4ngdZoyVwLYD+B6AH0h74TZDaBrY1aKBGIipHdUqfVpZ/3+Q0iPp4sBDARQAblAWoE0Bc6FdIe/\nGNIIjXH9HuT4PQZgHYAzIC+lfAfSpT5TL8IkiUl2TP8M4A04r9kSVxke06bDVEhnj/6QF8C+BmA1\ngBZWGV6nB8lHAH7nmrYQ/iOhkqbDRMgJ7EUEMtiNezyYnQC+ndlqkYPA3VAFOX6tIQ8Ol1tlOgGo\nAzA6YzUlQfESH3+BPD37wWPatGkPOa4aHcjKdXokKpQCAOVwvqQOse/slnt40BuisldCFLeO4xLk\nBYSk6RLk+A0FkO8qswnAl+AxbqpEAZwOsfCXQF6L0cH6nce0aaMu1Y7Y36xcp0ei+GgPIBfeL6nz\ne7EdaTrMAXAtRD3fCDlmswC0ReIXEPLYNn2CHL+OkBvdLleZLZAbIml6TAVwNYCvQV76ORzAu5AH\nQYDHtCkTgaQlfAjz6pKsXKeZeKstIYfCNOv/BQBmA1gBeYPxRwnmi2ayUiTj8Pgdvrxo/b8QkuC/\nGsAFSByOIY3PbyE5HUE7ZKTtOj0SnY9tAOoRr77KcJi8HIc4qAbwBWQ4fT1+XsfW76WFpOlgv0DS\nxj5+myFPzK1dZTqCx/hwYTNkFOpe1nce06bHowAuhDhWdo/CrFynR6L4qAUwD/FJL2cjvvsXafo0\ng3Tx2gTpOr0ZzmNbAGAUeGwPB4Icv3kADrjKdII8nfEYHx60h/Qs1IcFHtOmRQTieFwM6amyxvU7\nr9ND4ApIJu54SHeiSZA+zexq2/T5NWRcgR6QFxO+BunypccuyAsISePREtLtbggkg35C7P9Ujt/v\nIU/OZwA4HtKFbz7kpkmyT6Jj2hJyzZ4E4GhI4uksyPHjMW2a/B5yDZ4GcSr0U2iV4XV6CHwXouD2\nQQZU4SBjhwfan3w/5GT/O4B+rjJBXkBIGofTYQaaqrf+f8oqk+z4FQD4P0gIdS84eFFjczr8j2kh\nJE9rC+SaXR2b7j5ePKZNB/dx1E+qL3rlMSWEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGE\nEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkDTz/wEAUPQR5jY+FgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot(np.fft.fft(ifft(sinc(pi*x))))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'A' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m----------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mA\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0msinc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpi\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mcos\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mpi\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mt0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'A' is not defined" + ] + } + ], + "source": [ + "A*T*sinc(pi*f*T)*cos(2*pi*f*t0)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'np' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mA\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0msinc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpi\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mcos\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mpi\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mt0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 16\u001b[0;31m \u001b[0mx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlogspace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfqd\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mfqd\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m200\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 17\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0;31m# p0 is the initial guess for the fitting coefficients\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'np' is not defined" + ] + } + ], + "source": [ + "from scipy.optimize import curve_fit\n", + "\n", + "# Define model function to be used to fit to the data above:\n", + "def tophat_time(x, *p):\n", + " mean, width = p\n", + " if x>(mean+width): y=0\n", + " if x<(mean-width): y=0\n", + " if x==(mean+width) | x==(mean-width): y=5\n", + " return y\n", + "\n", + "def tophat_freq(f, *pars):\n", + " A,T,t0 = pars\n", + " #return A*T*sinc(pi*f*T)*exp(-i*2*pi*f*t0)\n", + " return A*T*sinc(pi*f*T)*cos(2*pi*f*t0)\n", + "\n", + "x=np.logspace(fqd[0],fqd[-1],200)\n", + "\n", + "# p0 is the initial guess for the fitting coefficients\n", + "p0 = [3, 3, 3]\n", + "coeff, var_matrix = curve_fit(tophat_freq, fqd, lag, p0)\n", + "fit = tophat_freq(fqd, *coeff)\n", + "\n", + "\n", + "mpl.rcParams['xtick.labelsize']=12\n", + "mpl.rcParams['ytick.labelsize']=12\n", + "xscale('log'); xlim(.009,.6)\n", + "xlabel(\"Fourier Frequency (days$^{-1}$)\",fontsize=20)\n", + "ylabel(\"Time Lag (days)\",fontsize=20)\n", + "\n", + "\n", + "errorbar(fqd, lag, yerr=lage, fmt='o', ms=5,color=\"black\")\n", + "plot(fqd,fit)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lag/report/AGN_standard.png b/lag/report/AGN_standard.png new file mode 100644 index 0000000..a272823 Binary files /dev/null and b/lag/report/AGN_standard.png differ diff --git a/lag/report/TCCF_fausnaugh.pdf b/lag/report/TCCF_fausnaugh.pdf new file mode 100644 index 0000000..f39bcdf Binary files /dev/null and b/lag/report/TCCF_fausnaugh.pdf differ diff --git a/lag/report/basic_geometry.png b/lag/report/basic_geometry.png new file mode 100644 index 0000000..186c23c Binary files /dev/null and b/lag/report/basic_geometry.png differ diff --git a/lag/report/freq_3465A.png b/lag/report/freq_3465A.png new file mode 100644 index 0000000..60c28a5 Binary files /dev/null and b/lag/report/freq_3465A.png differ diff --git a/lag/report/freq_3471A.png b/lag/report/freq_3471A.png new file mode 100644 index 0000000..2502f48 Binary files /dev/null and b/lag/report/freq_3471A.png differ diff --git a/lag/report/freq_6175A.png b/lag/report/freq_6175A.png new file mode 100644 index 0000000..dce89f8 Binary files /dev/null and b/lag/report/freq_6175A.png differ diff --git a/lag/report/freq_6439A.png b/lag/report/freq_6439A.png new file mode 100644 index 0000000..1e1b466 Binary files /dev/null and b/lag/report/freq_6439A.png differ diff --git a/lag/report/freq_7657A.png b/lag/report/freq_7657A.png new file mode 100644 index 0000000..49a1eb7 Binary files /dev/null and b/lag/report/freq_7657A.png differ diff --git a/lag/report/freq_9157A.png b/lag/report/freq_9157A.png new file mode 100644 index 0000000..4fade43 Binary files /dev/null and b/lag/report/freq_9157A.png differ diff --git a/lag/report/isodelay.jpg b/lag/report/isodelay.jpg new file mode 100644 index 0000000..d93ec72 Binary files /dev/null and b/lag/report/isodelay.jpg differ diff --git a/lag/report/isodelay_detail.jpg b/lag/report/isodelay_detail.jpg new file mode 100644 index 0000000..6d81c82 Binary files /dev/null and b/lag/report/isodelay_detail.jpg differ diff --git a/lag/report/isodelay_eq.gif b/lag/report/isodelay_eq.gif new file mode 100644 index 0000000..8c35bcf Binary files /dev/null and b/lag/report/isodelay_eq.gif differ diff --git a/lag/report/lightcurves.pdf b/lag/report/lightcurves.pdf new file mode 100644 index 0000000..3110185 --- /dev/null +++ b/lag/report/lightcurves.pdf @@ -0,0 +1,4537 @@ +%PDF-1.4 +%ρ\r +1 0 obj +<< +/CreationDate (D:20150928155533) +/ModDate (D:20150928155533) +/Title (R Graphics Output) +/Producer (R 2.9.2) +/Creator (R) +>> +endobj +2 0 obj +<< +/Type /Catalog +/Pages 3 0 R +>> +endobj +5 0 obj +<< +/Type /Page +/Parent 3 0 R +/Contents 6 0 R +/Resources 4 0 R +>> +endobj +6 0 obj +<< +/Length 7 0 R +>> +stream +q +Q q +0.000 0.000 0.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +104.97 19.66 m 495.20 19.66 l S +104.97 19.66 m 104.97 14.98 l S +235.05 19.66 m 235.05 14.98 l S +365.12 19.66 m 365.12 14.98 l S +495.20 19.66 m 495.20 14.98 l S +BT +0.000 0.000 0.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 98.30 7.49 Tm (700) Tj +ET +BT +/F2 1 Tf 8.00 0.00 -0.00 8.00 228.37 7.49 Tm (750) Tj +ET +BT +/F2 1 Tf 8.00 0.00 -0.00 8.00 358.45 7.49 Tm (800) Tj +ET +BT +/F2 1 Tf 8.00 0.00 -0.00 8.00 488.53 7.49 Tm (850) Tj +ET +52.42 19.66 m +538.13 19.66 l +538.13 646.13 l +52.42 646.13 l +52.42 19.66 l +S +Q q 0.94 0.94 538.13 646.13 re W n +BT +0.000 0.000 0.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 265.14 2.81 Tm (HJD - 2,456,000) Tj +ET +Q q 52.42 19.66 485.71 626.47 re W n +0.000 0.000 0.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +78.43 19.66 m 78.43 646.13 l S +0.663 0.663 0.663 RG +0.75 w +[ 3.00 5.00] 0 d +100.56 19.66 m 100.56 646.13 l S +100.56 19.66 m 100.56 646.13 l S +165.16 19.66 m 165.16 646.13 l S +227.71 19.66 m 227.71 646.13 l S +248.60 19.66 m 248.60 646.13 l S +328.06 19.66 m 328.06 646.13 l S +414.54 19.66 m 414.54 646.13 l S +444.43 19.66 m 444.43 646.13 l S +505.87 19.66 m 505.87 646.13 l S +516.27 19.66 m 516.27 646.13 l S +528.76 19.66 m 528.76 646.13 l S +Q q +0.000 0.000 0.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +78.95 19.66 m 538.13 19.66 l S +78.95 19.66 m 78.95 24.51 l S +104.97 19.66 m 104.97 24.51 l S +130.98 19.66 m 130.98 24.51 l S +157.00 19.66 m 157.00 24.51 l S +183.01 19.66 m 183.01 24.51 l S +209.03 19.66 m 209.03 24.51 l S +235.05 19.66 m 235.05 24.51 l S +261.06 19.66 m 261.06 24.51 l S +287.08 19.66 m 287.08 24.51 l S +313.09 19.66 m 313.09 24.51 l S +339.11 19.66 m 339.11 24.51 l S +365.12 19.66 m 365.12 24.51 l S +391.14 19.66 m 391.14 24.51 l S +417.16 19.66 m 417.16 24.51 l S +443.17 19.66 m 443.17 24.51 l S +469.19 19.66 m 469.19 24.51 l S +495.20 19.66 m 495.20 24.51 l S +521.22 19.66 m 521.22 24.51 l S +78.95 19.66 m 538.13 19.66 l S +78.95 19.66 m 78.95 22.08 l S +91.96 19.66 m 91.96 22.08 l S +104.97 19.66 m 104.97 22.08 l S +117.98 19.66 m 117.98 22.08 l S +130.98 19.66 m 130.98 22.08 l S +143.99 19.66 m 143.99 22.08 l S +157.00 19.66 m 157.00 22.08 l S +170.01 19.66 m 170.01 22.08 l S +183.01 19.66 m 183.01 22.08 l S +196.02 19.66 m 196.02 22.08 l S +209.03 19.66 m 209.03 22.08 l S +222.04 19.66 m 222.04 22.08 l S +235.05 19.66 m 235.05 22.08 l S +248.05 19.66 m 248.05 22.08 l S +261.06 19.66 m 261.06 22.08 l S +274.07 19.66 m 274.07 22.08 l S +287.08 19.66 m 287.08 22.08 l S +300.08 19.66 m 300.08 22.08 l S +313.09 19.66 m 313.09 22.08 l S +326.10 19.66 m 326.10 22.08 l S +339.11 19.66 m 339.11 22.08 l S +352.12 19.66 m 352.12 22.08 l S +365.12 19.66 m 365.12 22.08 l S +378.13 19.66 m 378.13 22.08 l S +391.14 19.66 m 391.14 22.08 l S +404.15 19.66 m 404.15 22.08 l S +417.16 19.66 m 417.16 22.08 l S +430.16 19.66 m 430.16 22.08 l S +443.17 19.66 m 443.17 22.08 l S +456.18 19.66 m 456.18 22.08 l S +469.19 19.66 m 469.19 22.08 l S +482.19 19.66 m 482.19 22.08 l S +495.20 19.66 m 495.20 22.08 l S +508.21 19.66 m 508.21 22.08 l S +521.22 19.66 m 521.22 22.08 l S +534.23 19.66 m 534.23 22.08 l S +78.95 646.13 m 538.13 646.13 l S +78.95 646.13 m 78.95 641.27 l S +104.97 646.13 m 104.97 641.27 l S +130.98 646.13 m 130.98 641.27 l S +157.00 646.13 m 157.00 641.27 l S +183.01 646.13 m 183.01 641.27 l S +209.03 646.13 m 209.03 641.27 l S +235.05 646.13 m 235.05 641.27 l S +261.06 646.13 m 261.06 641.27 l S +287.08 646.13 m 287.08 641.27 l S +313.09 646.13 m 313.09 641.27 l S +339.11 646.13 m 339.11 641.27 l S +365.12 646.13 m 365.12 641.27 l S +391.14 646.13 m 391.14 641.27 l S +417.16 646.13 m 417.16 641.27 l S +443.17 646.13 m 443.17 641.27 l S +469.19 646.13 m 469.19 641.27 l S +495.20 646.13 m 495.20 641.27 l S +521.22 646.13 m 521.22 641.27 l S +78.95 646.13 m 538.13 646.13 l S +78.95 646.13 m 78.95 643.70 l S +91.96 646.13 m 91.96 643.70 l S +104.97 646.13 m 104.97 643.70 l S +117.98 646.13 m 117.98 643.70 l S +130.98 646.13 m 130.98 643.70 l S +143.99 646.13 m 143.99 643.70 l S +157.00 646.13 m 157.00 643.70 l S +170.01 646.13 m 170.01 643.70 l S +183.01 646.13 m 183.01 643.70 l S +196.02 646.13 m 196.02 643.70 l S +209.03 646.13 m 209.03 643.70 l S +222.04 646.13 m 222.04 643.70 l S +235.05 646.13 m 235.05 643.70 l S +248.05 646.13 m 248.05 643.70 l S +261.06 646.13 m 261.06 643.70 l S +274.07 646.13 m 274.07 643.70 l S +287.08 646.13 m 287.08 643.70 l S +300.08 646.13 m 300.08 643.70 l S +313.09 646.13 m 313.09 643.70 l S +326.10 646.13 m 326.10 643.70 l S +339.11 646.13 m 339.11 643.70 l S +352.12 646.13 m 352.12 643.70 l S +365.12 646.13 m 365.12 643.70 l S +378.13 646.13 m 378.13 643.70 l S +391.14 646.13 m 391.14 643.70 l S +404.15 646.13 m 404.15 643.70 l S +417.16 646.13 m 417.16 643.70 l S +430.16 646.13 m 430.16 643.70 l S +443.17 646.13 m 443.17 643.70 l S +456.18 646.13 m 456.18 643.70 l S +469.19 646.13 m 469.19 643.70 l S +482.19 646.13 m 482.19 643.70 l S +495.20 646.13 m 495.20 643.70 l S +508.21 646.13 m 508.21 643.70 l S +521.22 646.13 m 521.22 643.70 l S +534.23 646.13 m 534.23 643.70 l S +Q q 52.42 19.66 485.71 626.47 re W n +1.000 0.000 0.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +80.54 608.51 m 80.54 610.77 l S +82.96 611.50 m 82.96 613.68 l S +85.18 614.62 m 85.18 616.71 l S +87.60 616.35 m 87.60 618.42 l S +92.66 618.45 m 92.66 620.44 l S +95.20 623.05 m 95.20 624.93 l S +97.96 625.52 m 97.96 627.35 l S +100.56 628.64 m 100.56 630.42 l S +102.97 626.02 m 102.97 627.85 l S +105.57 625.17 m 105.57 627.01 l S +108.50 625.78 m 108.50 627.59 l S +110.58 627.52 m 110.58 629.31 l S +113.17 628.88 m 113.17 630.64 l S +118.87 625.77 m 118.87 627.60 l S +121.11 623.86 m 121.11 625.73 l S +123.71 625.95 m 123.71 627.76 l S +126.47 620.72 m 126.47 622.65 l S +129.06 618.03 m 129.06 620.04 l S +131.65 611.86 m 131.65 614.02 l S +133.90 606.66 m 133.90 608.99 l S +136.66 608.89 m 136.66 611.16 l S +139.25 608.51 m 139.25 610.77 l S +142.02 607.33 m 142.02 609.63 l S +144.11 602.85 m 144.11 605.29 l S +146.33 601.64 m 146.33 604.13 l S +148.77 597.97 m 148.77 600.62 l S +153.95 594.52 m 153.95 597.25 l S +157.39 591.29 m 157.39 594.21 l S +159.65 586.96 m 159.65 590.07 l S +162.43 585.42 m 162.43 588.59 l S +165.16 583.30 m 165.16 586.63 l S +172.76 589.30 m 172.76 592.27 l S +175.36 584.27 m 175.36 587.49 l S +177.26 586.96 m 177.26 590.07 l S +180.19 587.81 m 180.19 590.89 l S +182.44 590.71 m 182.44 593.63 l S +185.22 590.51 m 185.22 593.44 l S +188.14 589.70 m 188.14 592.68 l S +190.58 588.67 m 190.58 591.69 l S +193.02 592.47 m 193.02 595.30 l S +195.61 598.30 m 195.61 600.93 l S +198.23 607.98 m 198.23 610.28 l S +199.76 613.95 m 199.76 616.05 l S +203.01 615.72 m 203.01 617.78 l S +205.14 617.52 m 205.14 619.53 l S +208.20 623.41 m 208.20 625.28 l S +209.97 626.60 m 209.97 628.43 l S +212.54 623.50 m 212.54 625.38 l S +220.48 633.50 m 220.48 635.17 l S +222.70 632.57 m 222.70 634.27 l S +225.29 632.14 m 225.29 633.84 l S +227.71 634.05 m 227.71 635.72 l S +230.47 634.26 m 230.47 635.92 l S +232.89 631.26 m 232.89 632.96 l S +235.83 629.35 m 235.83 631.10 l S +238.07 627.03 m 238.07 628.82 l S +240.31 626.44 m 240.31 628.26 l S +242.90 616.58 m 242.90 618.61 l S +245.38 609.03 m 245.38 611.27 l S +248.60 607.98 m 248.60 610.28 l S +251.02 609.78 m 251.02 612.01 l S +253.61 611.50 m 253.61 613.68 l S +259.14 609.27 m 259.14 611.52 l S +261.39 610.53 m 261.39 612.73 l S +263.80 614.72 m 263.80 616.82 l S +266.57 615.61 m 266.57 617.67 l S +268.98 616.69 m 268.98 618.71 l S +272.09 617.30 m 272.09 619.34 l S +274.51 614.05 m 274.51 616.17 l S +276.58 616.15 m 276.58 618.20 l S +279.35 618.55 m 279.35 620.53 l S +282.11 620.43 m 282.11 622.38 l S +284.87 625.94 m 284.87 627.77 l S +287.29 627.59 m 287.29 629.39 l S +289.88 628.96 m 289.88 630.72 l S +292.29 631.85 m 292.29 633.55 l S +295.06 631.11 m 295.06 632.82 l S +297.47 630.51 m 297.47 632.23 l S +299.03 631.11 m 299.03 632.82 l S +301.62 628.95 m 301.62 630.73 l S +304.57 624.99 m 304.57 626.84 l S +306.45 627.28 m 306.45 629.06 l S +309.08 624.30 m 309.08 626.16 l S +311.63 624.21 m 311.63 626.07 l S +314.28 623.86 m 314.28 625.73 l S +316.64 622.59 m 316.64 624.49 l S +319.27 619.74 m 319.27 621.71 l S +321.83 625.86 m 321.83 627.68 l S +325.47 631.11 m 325.47 632.82 l S +328.06 634.19 m 328.06 635.86 l S +330.50 630.58 m 330.50 632.30 l S +332.05 629.27 m 332.05 631.03 l S +334.64 628.40 m 334.64 630.17 l S +337.23 623.60 m 337.23 625.46 l S +339.82 620.04 m 339.82 621.99 l S +342.41 619.54 m 342.41 621.51 l S +345.00 626.20 m 345.00 628.01 l S +347.42 627.02 m 347.42 628.83 l S +350.01 624.83 m 350.01 626.67 l S +352.78 622.14 m 352.78 624.03 l S +354.99 622.32 m 354.99 624.22 l S +357.51 628.33 m 357.51 630.10 l S +360.20 626.94 m 360.20 628.74 l S +362.94 625.77 m 362.94 627.60 l S +365.18 626.86 m 365.18 628.66 l S +367.79 626.28 m 367.79 628.09 l S +370.39 625.85 m 370.39 627.68 l S +372.95 625.43 m 372.95 627.26 l S +378.13 622.40 m 378.13 624.31 l S +380.72 622.60 m 380.72 624.48 l S +383.65 621.57 m 383.65 623.49 l S +386.07 623.23 m 386.07 625.11 l S +388.83 624.74 m 388.83 626.58 l S +390.90 623.68 m 390.90 625.55 l S +393.32 622.49 m 393.32 624.41 l S +396.43 626.20 m 396.43 628.01 l S +398.85 627.77 m 398.85 629.54 l S +401.78 628.33 m 401.78 630.10 l S +403.85 631.11 m 403.85 632.82 l S +406.96 632.21 m 406.96 633.91 l S +409.21 635.55 m 409.21 637.20 l S +411.78 639.76 m 411.78 641.33 l S +414.38 642.06 m 414.38 643.58 l S +416.47 641.42 m 416.47 642.97 l S +419.74 639.09 m 419.74 640.66 l S +421.98 637.14 m 421.98 638.75 l S +424.42 634.60 m 424.42 636.27 l S +427.16 634.06 m 427.16 635.72 l S +429.23 632.86 m 429.23 634.54 l S +431.84 629.74 m 431.84 631.48 l S +435.10 621.29 m 435.10 623.21 l S +437.36 621.09 m 437.36 623.03 l S +439.24 619.63 m 439.24 621.62 l S +442.18 615.83 m 442.18 617.88 l S +444.43 616.16 m 444.43 618.19 l S +447.54 620.14 m 447.54 622.08 l S +449.08 620.62 m 449.08 622.56 l S +453.06 625.94 m 453.06 627.77 l S +455.65 626.85 m 455.65 628.67 l S +458.24 622.41 m 458.24 624.31 l S +459.34 622.69 m 459.34 624.57 l S +463.07 623.05 m 463.07 624.93 l S +464.45 622.50 m 464.45 624.39 l S +467.11 623.59 m 467.11 625.47 l S +469.53 624.82 m 469.53 626.68 l S +472.29 622.32 m 472.29 624.22 l S +474.89 622.60 m 474.89 624.48 l S +477.30 620.43 m 477.30 622.38 l S +480.07 617.00 m 480.07 619.03 l S +482.25 617.11 m 482.25 619.13 l S +485.07 617.51 m 485.07 619.54 l S +487.49 615.39 m 487.49 617.46 l S +490.08 615.07 m 490.08 617.14 l S +492.84 614.17 m 492.84 616.28 l S +495.20 609.40 m 495.20 611.64 l S +497.62 607.47 m 497.62 609.76 l S +500.21 607.45 m 500.21 609.77 l S +502.80 609.02 m 502.80 611.28 l S +505.74 606.25 m 505.74 608.59 l S +508.33 609.53 m 508.33 611.76 l S +511.26 614.62 m 511.26 616.71 l S +513.85 621.09 m 513.85 623.03 l S +516.26 624.47 m 516.26 626.34 l S +518.33 621.29 m 518.33 623.21 l S +521.43 618.75 m 521.43 620.74 l S +523.68 618.33 m 523.68 620.35 l S +525.93 615.61 m 525.93 617.67 l S +528.69 614.05 m 528.69 616.17 l S +531.28 619.14 m 531.28 621.13 l S +533.87 620.52 m 533.87 622.47 l S +536.63 627.11 m 536.63 628.90 l S +Q q +1.000 0.000 0.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +52.42 613.90 m 52.42 613.90 l S +52.42 613.90 m 47.74 613.90 l S +BT +1.000 0.000 0.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 14.61 615.70 Tm (HST H1) Tj +ET +BT +/F2 1 Tf 8.00 0.00 -0.00 8.00 17.70 606.34 Tm (1158 A) Tj +ET +Q q 52.42 19.66 485.71 626.47 re W n +1.000 0.000 0.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +55.02 606.31 m 55.02 621.48 l S +53.72 621.48 m 56.32 621.48 l S +53.72 606.31 m 56.32 606.31 l S +BT +1.000 0.000 0.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 56.32 611.16 Tm (=40%) Tj +ET +0.000 0.000 1.000 RG +80.54 574.86 m 80.54 576.85 l S +82.96 576.68 m 82.96 578.63 l S +85.18 580.00 m 85.18 581.90 l S +87.60 580.60 m 87.60 582.51 l S +92.66 584.41 m 92.66 586.26 l S +95.20 588.58 m 95.20 590.38 l S +97.96 589.84 m 97.96 591.61 l S +100.56 593.24 m 100.56 594.99 l S +102.97 590.43 m 102.97 592.20 l S +105.57 590.67 m 105.57 592.43 l S +108.50 592.34 m 108.50 594.09 l S +110.58 592.66 m 110.58 594.39 l S +113.17 592.45 m 113.17 594.20 l S +118.87 590.40 m 118.87 592.17 l S +121.11 589.13 m 121.11 590.91 l S +123.71 591.41 m 123.71 593.17 l S +126.47 587.33 m 126.47 589.16 l S +129.06 585.06 m 129.06 586.88 l S +131.65 579.96 m 131.65 581.89 l S +133.90 576.33 m 133.90 578.30 l S +136.66 575.63 m 136.66 577.59 l S +139.25 576.26 m 139.25 578.24 l S +142.02 575.14 m 142.02 577.13 l S +144.11 570.26 m 144.11 572.33 l S +146.33 568.74 m 146.33 570.83 l S +148.77 567.06 m 148.77 569.18 l S +153.95 561.53 m 153.95 563.76 l S +157.39 560.02 m 157.39 562.28 l S +159.65 555.14 m 159.65 557.52 l S +162.43 551.60 m 162.43 554.05 l S +165.16 550.67 m 165.16 553.15 l S +172.76 553.29 m 172.76 555.71 l S +175.36 552.74 m 175.36 555.14 l S +177.26 553.55 m 177.26 555.96 l S +180.19 555.48 m 180.19 557.85 l S +182.44 556.88 m 182.44 559.23 l S +185.22 556.18 m 185.22 558.52 l S +188.14 557.21 m 188.14 559.54 l S +190.58 556.56 m 190.58 558.88 l S +193.02 557.76 m 193.02 560.06 l S +195.61 563.28 m 195.61 565.48 l S +198.23 571.89 m 198.23 573.94 l S +199.76 577.19 m 199.76 579.12 l S +203.01 580.23 m 203.01 582.15 l S +205.14 583.04 m 205.14 584.91 l S +208.20 586.36 m 208.20 588.19 l S +209.97 590.00 m 209.97 591.79 l S +212.54 589.75 m 212.54 591.54 l S +220.48 599.60 m 220.48 601.27 l S +222.70 600.04 m 222.70 601.71 l S +225.29 597.78 m 225.29 599.49 l S +227.71 601.76 m 227.71 603.42 l S +230.47 600.21 m 230.47 601.88 l S +232.89 598.08 m 232.89 599.78 l S +235.83 596.77 m 235.83 598.47 l S +238.07 594.45 m 238.07 596.18 l S +240.31 591.50 m 240.31 593.26 l S +242.90 584.34 m 242.90 586.20 l S +245.38 577.79 m 245.38 579.73 l S +248.60 575.16 m 248.60 577.14 l S +251.02 576.69 m 251.02 578.65 l S +253.61 579.36 m 253.61 581.27 l S +259.14 577.29 m 259.14 579.25 l S +261.39 577.03 m 261.39 578.98 l S +263.80 581.63 m 263.80 583.53 l S +266.57 581.95 m 266.57 583.84 l S +268.98 582.24 m 268.98 584.12 l S +272.09 583.73 m 272.09 585.61 l S +274.51 580.83 m 274.51 582.73 l S +276.58 582.48 m 276.58 584.34 l S +279.35 584.26 m 279.35 586.12 l S +282.11 585.03 m 282.11 586.88 l S +284.87 589.81 m 284.87 591.60 l S +287.29 593.51 m 287.29 595.25 l S +289.88 594.90 m 289.88 596.64 l S +292.29 594.76 m 292.29 596.48 l S +295.06 595.71 m 295.06 597.44 l S +297.47 596.21 m 297.47 597.93 l S +299.03 595.17 m 299.03 596.90 l S +301.62 595.48 m 301.62 597.20 l S +304.57 590.60 m 304.57 592.39 l S +306.45 591.03 m 306.45 592.80 l S +309.08 590.01 m 309.08 591.80 l S +311.63 588.65 m 311.63 590.46 l S +314.28 590.15 m 314.28 591.93 l S +316.64 587.70 m 316.64 589.51 l S +319.27 584.94 m 319.27 586.79 l S +321.83 589.81 m 321.83 591.60 l S +325.47 596.38 m 325.47 598.09 l S +328.06 598.80 m 328.06 600.49 l S +330.50 595.52 m 330.50 597.24 l S +332.05 594.45 m 332.05 596.18 l S +334.64 593.84 m 334.64 595.59 l S +337.23 590.77 m 337.23 592.53 l S +339.82 587.48 m 339.82 589.29 l S +342.41 586.91 m 342.41 588.72 l S +345.00 590.11 m 345.00 591.89 l S +347.42 592.28 m 347.42 594.04 l S +350.01 591.16 m 350.01 592.93 l S +352.78 587.84 m 352.78 589.64 l S +354.99 588.55 m 354.99 590.36 l S +357.51 594.44 m 357.51 596.17 l S +360.20 594.57 m 360.20 596.30 l S +362.94 591.72 m 362.94 593.49 l S +365.18 590.91 m 365.18 592.69 l S +367.79 593.04 m 367.79 594.79 l S +370.39 591.05 m 370.39 592.81 l S +372.95 592.87 m 372.95 594.63 l S +378.13 589.16 m 378.13 590.95 l S +380.72 587.61 m 380.72 589.43 l S +383.65 587.60 m 383.65 589.42 l S +386.07 589.22 m 386.07 591.01 l S +388.83 591.89 m 388.83 593.66 l S +390.90 590.35 m 390.90 592.12 l S +393.32 589.07 m 393.32 590.85 l S +396.43 592.03 m 396.43 593.79 l S +398.85 593.04 m 398.85 594.79 l S +401.78 595.17 m 401.78 596.90 l S +403.85 598.50 m 403.85 600.18 l S +406.96 600.10 m 406.96 601.77 l S +409.21 600.97 m 409.21 602.63 l S +411.78 606.53 m 411.78 608.15 l S +414.38 608.96 m 414.38 610.56 l S +416.47 608.87 m 416.47 610.47 l S +419.74 606.70 m 419.74 608.31 l S +421.98 603.88 m 421.98 605.53 l S +424.42 602.49 m 424.42 604.14 l S +427.16 600.75 m 427.16 602.42 l S +429.23 599.51 m 429.23 601.18 l S +431.84 596.53 m 431.84 598.25 l S +435.10 590.52 m 435.10 592.30 l S +437.36 587.92 m 437.36 589.73 l S +439.24 588.19 m 439.24 590.01 l S +442.18 585.82 m 442.18 587.68 l S +444.43 584.62 m 444.43 586.47 l S +447.54 585.41 m 447.54 587.25 l S +449.08 588.04 m 449.08 589.83 l S +453.06 592.54 m 453.06 594.31 l S +455.65 592.24 m 455.65 594.00 l S +458.24 588.94 m 458.24 590.74 l S +459.34 588.68 m 459.34 590.49 l S +463.07 588.65 m 463.07 590.46 l S +464.45 588.87 m 464.45 590.67 l S +467.11 588.88 m 467.11 590.68 l S +469.53 589.71 m 469.53 591.51 l S +472.29 588.78 m 472.29 590.58 l S +474.89 589.11 m 474.89 590.90 l S +477.30 586.17 m 477.30 588.01 l S +480.07 584.25 m 480.07 586.11 l S +482.25 584.56 m 482.25 586.40 l S +485.07 583.60 m 485.07 585.47 l S +487.49 581.62 m 487.49 583.51 l S +490.08 580.35 m 490.08 582.26 l S +492.84 579.12 m 492.84 581.04 l S +495.20 576.80 m 495.20 578.79 l S +497.62 574.84 m 497.62 576.84 l S +500.21 574.06 m 500.21 576.08 l S +502.80 574.73 m 502.80 576.72 l S +505.74 573.22 m 505.74 575.24 l S +508.33 575.31 m 508.33 577.32 l S +511.26 580.41 m 511.26 582.32 l S +513.85 587.41 m 513.85 589.23 l S +516.26 589.63 m 516.26 591.43 l S +518.33 588.13 m 518.33 589.96 l S +521.43 584.21 m 521.43 586.07 l S +523.68 583.73 m 523.68 585.61 l S +525.93 582.97 m 525.93 584.85 l S +528.69 579.56 m 528.69 581.50 l S +531.28 584.53 m 531.28 586.40 l S +533.87 587.42 m 533.87 589.25 l S +536.63 591.90 m 536.63 593.67 l S +Q q +0.000 0.000 1.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +52.42 580.84 m 52.42 580.84 l S +52.42 580.84 m 47.74 580.84 l S +BT +0.000 0.000 1.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 14.61 582.64 Tm (HST H2) Tj +ET +BT +/F2 1 Tf 8.00 0.00 -0.00 8.00 17.70 573.28 Tm (1367 A) Tj +ET +Q q 52.42 19.66 485.71 626.47 re W n +0.000 0.000 1.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +55.02 571.02 m 55.02 590.66 l S +53.72 590.66 m 56.32 590.66 l S +53.72 571.02 m 56.32 571.02 l S +BT +0.000 0.000 1.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 56.32 578.10 Tm (=40%) Tj +ET +1.000 0.000 0.000 RG +80.64 541.57 m 80.64 543.19 l S +83.05 544.68 m 83.05 546.30 l S +85.22 546.88 m 85.22 548.46 l S +87.64 546.88 m 87.64 548.46 l S +92.78 550.40 m 92.78 552.00 l S +95.24 554.90 m 95.24 556.45 l S +98.00 556.56 m 98.00 558.12 l S +100.59 557.94 m 100.59 559.47 l S +103.01 556.94 m 103.01 558.49 l S +105.60 556.69 m 105.60 558.24 l S +108.54 557.56 m 108.54 559.11 l S +110.61 557.81 m 110.61 559.35 l S +113.20 559.01 m 113.20 560.57 l S +118.91 555.93 m 118.91 557.49 l S +121.15 554.76 m 121.15 556.33 l S +123.74 556.94 m 123.74 558.49 l S +126.51 552.36 m 126.51 553.94 l S +129.10 550.13 m 129.10 551.70 l S +131.69 545.48 m 131.69 547.08 l S +133.93 541.73 m 133.93 543.35 l S +136.70 542.57 m 136.70 544.20 l S +139.29 543.24 m 139.29 544.84 l S +142.05 541.90 m 142.05 543.52 l S +144.19 538.77 m 144.19 540.41 l S +146.42 536.00 m 146.42 537.67 l S +148.92 532.89 m 148.92 534.54 l S +154.10 529.97 m 154.10 531.67 l S +157.42 527.79 m 157.42 529.49 l S +159.73 523.35 m 159.73 525.10 l S +162.50 520.09 m 162.50 521.85 l S +165.20 517.98 m 165.20 519.72 l S +172.80 520.61 m 172.80 522.35 l S +175.39 519.31 m 175.39 521.05 l S +177.42 521.62 m 177.42 523.38 l S +180.28 524.09 m 180.28 525.81 l S +182.61 525.29 m 182.61 526.98 l S +185.37 525.74 m 185.37 527.46 l S +188.18 525.51 m 188.18 527.23 l S +190.73 524.58 m 190.73 526.28 l S +193.15 525.74 m 193.15 527.46 l S +195.75 532.07 m 195.75 533.74 l S +198.34 539.49 m 198.34 541.11 l S +199.85 545.00 m 199.85 546.61 l S +203.11 548.52 m 203.11 550.11 l S +205.29 551.12 m 205.29 552.69 l S +208.30 555.03 m 208.30 556.58 l S +210.11 557.56 m 210.11 559.11 l S +212.63 557.56 m 212.63 559.11 l S +220.57 566.47 m 220.57 568.00 l S +222.74 566.88 m 222.74 568.40 l S +225.33 566.26 m 225.33 567.79 l S +227.74 568.79 m 227.74 570.31 l S +230.51 568.89 m 230.51 570.41 l S +232.93 565.74 m 232.93 567.27 l S +235.87 564.78 m 235.87 566.32 l S +238.11 561.93 m 238.11 563.47 l S +240.35 559.73 m 240.35 561.28 l S +242.94 552.64 m 242.94 554.21 l S +245.49 545.16 m 245.49 546.77 l S +248.64 541.73 m 248.64 543.35 l S +251.06 544.04 m 251.06 545.65 l S +253.65 545.48 m 253.65 547.08 l S +259.18 546.26 m 259.18 547.86 l S +261.42 545.64 m 261.42 547.23 l S +263.84 548.52 m 263.84 550.11 l S +266.60 550.26 m 266.60 551.85 l S +269.02 550.40 m 269.02 552.00 l S +272.13 550.26 m 272.13 551.85 l S +274.55 549.40 m 274.55 550.99 l S +276.62 550.55 m 276.62 552.13 l S +279.38 551.53 m 279.38 553.11 l S +282.15 553.32 m 282.15 554.87 l S +284.91 557.69 m 284.91 559.23 l S +287.32 559.73 m 287.32 561.28 l S +289.91 561.58 m 289.91 563.13 l S +292.33 563.04 m 292.33 564.59 l S +295.09 562.82 m 295.09 564.37 l S +297.51 563.71 m 297.51 565.24 l S +299.20 562.60 m 299.20 564.14 l S +301.79 561.93 m 301.79 563.47 l S +304.72 558.29 m 304.72 559.85 l S +306.49 559.01 m 306.49 560.57 l S +309.15 558.17 m 309.15 559.72 l S +311.67 556.56 m 311.67 558.12 l S +314.42 558.04 m 314.42 559.61 l S +316.68 557.06 m 316.68 558.62 l S +319.37 555.93 m 319.37 557.49 l S +321.86 558.66 m 321.86 560.20 l S +325.62 564.14 m 325.62 565.68 l S +328.22 566.05 m 328.22 567.58 l S +330.64 563.38 m 330.64 564.91 l S +332.15 563.04 m 332.15 564.59 l S +334.74 561.82 m 334.74 563.35 l S +337.33 560.20 m 337.33 561.75 l S +339.92 556.82 m 339.92 558.36 l S +342.51 557.43 m 342.51 558.99 l S +345.10 560.66 m 345.10 562.22 l S +347.51 562.60 m 347.51 564.14 l S +350.10 560.32 m 350.10 561.86 l S +352.87 557.31 m 352.87 558.87 l S +355.03 557.81 m 355.03 559.35 l S +357.59 561.70 m 357.59 563.25 l S +360.28 562.04 m 360.28 563.58 l S +362.98 560.32 m 362.98 561.86 l S +365.22 560.20 m 365.22 561.75 l S +367.87 561.02 m 367.87 562.56 l S +370.46 560.55 m 370.46 562.10 l S +372.99 559.73 m 372.99 561.28 l S +378.17 557.56 m 378.17 559.11 l S +380.76 556.56 m 380.76 558.12 l S +383.69 556.06 m 383.69 557.61 l S +386.11 557.69 m 386.11 559.23 l S +388.87 559.26 m 388.87 560.80 l S +390.94 558.04 m 390.94 559.61 l S +393.36 557.56 m 393.36 559.11 l S +396.47 559.38 m 396.47 560.92 l S +398.88 560.20 m 398.88 561.75 l S +401.82 561.37 m 401.82 562.89 l S +403.89 564.47 m 403.89 566.00 l S +407.00 565.74 m 407.00 567.27 l S +409.24 568.00 m 409.24 569.51 l S +411.82 573.59 m 411.82 575.10 l S +414.42 575.51 m 414.42 577.03 l S +416.55 575.95 m 416.55 577.45 l S +419.77 572.59 m 419.77 574.11 l S +422.02 571.48 m 422.02 572.99 l S +424.50 569.28 m 424.50 570.80 l S +427.20 568.98 m 427.20 570.51 l S +429.32 568.00 m 429.32 569.51 l S +431.99 565.63 m 431.99 567.16 l S +435.14 559.38 m 435.14 560.92 l S +437.45 556.05 m 437.45 557.62 l S +439.41 555.80 m 439.41 557.36 l S +442.35 553.18 m 442.35 554.74 l S +444.59 551.67 m 444.59 553.25 l S +447.63 554.23 m 447.63 555.82 l S +449.12 554.90 m 449.12 556.45 l S +453.09 559.38 m 453.09 560.92 l S +455.68 559.50 m 455.68 561.04 l S +458.27 555.54 m 458.27 557.11 l S +459.46 554.90 m 459.46 556.45 l S +463.16 555.93 m 463.16 557.49 l S +464.49 554.76 m 464.49 556.33 l S +467.27 556.56 m 467.27 558.12 l S +469.66 556.31 m 469.66 557.87 l S +472.45 556.19 m 472.45 557.73 l S +475.03 556.05 m 475.03 557.62 l S +477.44 553.58 m 477.44 555.15 l S +480.21 551.95 m 480.21 553.52 l S +482.29 550.27 m 482.29 551.84 l S +485.21 550.69 m 485.21 552.27 l S +487.61 549.54 m 487.61 551.14 l S +490.20 548.38 m 490.20 549.97 l S +492.98 545.80 m 492.98 547.39 l S +495.24 544.84 m 495.24 546.46 l S +497.66 542.90 m 497.66 544.52 l S +500.24 541.39 m 500.24 543.02 l S +502.83 543.40 m 502.83 545.00 l S +505.78 540.71 m 505.78 542.33 l S +508.37 542.23 m 508.37 543.87 l S +511.30 548.38 m 511.30 549.97 l S +513.89 554.64 m 513.89 556.20 l S +516.29 557.18 m 516.29 558.75 l S +518.37 555.93 m 518.37 557.49 l S +521.47 552.64 m 521.47 554.21 l S +523.72 553.04 m 523.72 554.61 l S +525.96 550.11 m 525.96 551.71 l S +528.73 547.17 m 528.73 548.77 l S +531.32 552.21 m 531.32 553.81 l S +533.91 554.23 m 533.91 555.82 l S +536.67 559.50 m 536.67 561.04 l S +Q q +1.000 0.000 0.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +52.42 547.78 m 52.42 547.78 l S +52.42 547.78 m 47.74 547.78 l S +BT +1.000 0.000 0.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 14.61 549.58 Tm (HST H3) Tj +ET +BT +/F2 1 Tf 8.00 0.00 -0.00 8.00 17.70 540.22 Tm (1479 A) Tj +ET +Q q 52.42 19.66 485.71 626.47 re W n +1.000 0.000 0.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +55.02 538.52 m 55.02 557.04 l S +53.72 557.04 m 56.32 557.04 l S +53.72 538.52 m 56.32 538.52 l S +BT +1.000 0.000 0.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 56.32 545.04 Tm (=40%) Tj +ET +0.000 0.000 1.000 RG +80.64 507.64 m 80.64 510.19 l S +83.05 510.05 m 83.05 512.53 l S +85.22 514.72 m 85.22 517.13 l S +87.64 514.74 m 87.64 517.11 l S +92.78 517.32 m 92.78 519.73 l S +95.24 521.11 m 95.24 523.45 l S +98.00 522.38 m 98.00 524.67 l S +100.59 523.93 m 100.59 526.17 l S +103.01 522.54 m 103.01 524.82 l S +105.60 524.66 m 105.60 526.93 l S +108.54 523.91 m 108.54 526.19 l S +110.61 523.93 m 110.61 526.17 l S +113.20 524.37 m 113.20 526.63 l S +118.91 523.76 m 118.91 526.04 l S +121.15 522.23 m 121.15 524.52 l S +123.74 523.93 m 123.74 526.17 l S +126.51 519.66 m 126.51 522.03 l S +129.10 519.51 m 129.10 521.85 l S +131.69 511.96 m 131.69 514.42 l S +133.93 508.26 m 133.93 510.78 l S +136.70 510.40 m 136.70 512.94 l S +139.29 510.42 m 139.29 512.92 l S +142.05 508.26 m 142.05 510.78 l S +144.19 506.38 m 144.19 508.99 l S +146.42 504.47 m 146.42 507.12 l S +148.92 500.19 m 148.92 502.93 l S +154.10 496.04 m 154.10 498.90 l S +157.42 494.24 m 157.42 497.13 l S +159.73 489.04 m 159.73 492.05 l S +162.50 487.59 m 162.50 490.62 l S +165.20 484.21 m 165.20 487.37 l S +172.80 489.30 m 172.80 492.36 l S +175.39 486.37 m 175.39 489.48 l S +177.42 487.88 m 177.42 490.91 l S +180.28 490.19 m 180.28 493.15 l S +182.61 491.01 m 182.61 493.98 l S +185.37 492.13 m 185.37 495.04 l S +188.18 491.57 m 188.18 494.51 l S +190.73 491.55 m 190.73 494.53 l S +193.15 491.86 m 193.15 494.77 l S +195.75 498.77 m 195.75 501.53 l S +198.34 505.32 m 198.34 507.97 l S +199.85 511.20 m 199.85 513.67 l S +203.11 513.63 m 203.11 516.06 l S +205.29 518.01 m 205.29 520.38 l S +208.30 520.15 m 208.30 522.50 l S +210.11 523.77 m 210.11 526.03 l S +212.63 523.46 m 212.63 525.73 l S +220.57 531.78 m 220.57 533.94 l S +222.74 531.65 m 222.74 533.81 l S +225.33 532.68 m 225.33 534.83 l S +227.74 534.44 m 227.74 536.59 l S +230.51 532.82 m 230.51 534.96 l S +232.93 530.86 m 232.93 533.03 l S +235.87 530.73 m 235.87 532.88 l S +238.11 527.43 m 238.11 529.64 l S +240.35 526.00 m 240.35 528.23 l S +242.94 521.11 m 242.94 523.45 l S +245.49 513.26 m 245.49 515.70 l S +248.64 508.04 m 248.64 510.60 l S +251.06 511.19 m 251.06 513.69 l S +253.65 513.61 m 253.65 516.08 l S +259.18 513.26 m 259.18 515.70 l S +261.42 511.00 m 261.42 513.50 l S +263.84 515.94 m 263.84 518.37 l S +266.60 515.60 m 266.60 518.01 l S +269.02 517.50 m 269.02 519.89 l S +272.13 517.32 m 272.13 519.73 l S +274.55 515.95 m 274.55 518.35 l S +276.62 517.34 m 276.62 519.71 l S +279.38 520.31 m 279.38 522.67 l S +282.15 518.52 m 282.15 520.87 l S +284.91 522.69 m 284.91 524.98 l S +287.32 525.11 m 287.32 527.37 l S +289.91 526.84 m 289.91 529.09 l S +292.33 528.97 m 292.33 531.16 l S +295.09 527.98 m 295.09 530.21 l S +297.51 528.81 m 297.51 531.03 l S +299.20 528.55 m 299.20 530.75 l S +301.79 527.43 m 301.79 529.64 l S +304.72 525.84 m 304.72 528.09 l S +306.49 525.99 m 306.49 528.24 l S +309.15 525.09 m 309.15 527.38 l S +311.67 522.21 m 311.67 524.53 l S +314.42 523.31 m 314.42 525.59 l S +316.68 523.46 m 316.68 525.73 l S +319.37 521.43 m 319.37 523.76 l S +321.86 522.53 m 321.86 524.84 l S +325.62 528.54 m 325.62 530.76 l S +328.22 531.78 m 328.22 533.94 l S +330.64 530.18 m 330.64 532.37 l S +332.15 528.39 m 332.15 530.63 l S +334.74 527.41 m 334.74 529.66 l S +337.33 525.25 m 337.33 527.51 l S +339.92 522.23 m 339.92 524.52 l S +342.51 521.59 m 342.51 523.91 l S +345.10 522.69 m 345.10 524.98 l S +347.51 526.26 m 347.51 528.53 l S +350.10 524.81 m 350.10 527.08 l S +352.87 521.11 m 352.87 523.45 l S +355.03 522.06 m 355.03 524.38 l S +357.59 527.43 m 357.59 529.64 l S +360.28 526.28 m 360.28 528.52 l S +362.98 524.80 m 362.98 527.09 l S +365.22 524.34 m 365.22 526.66 l S +367.87 525.25 m 367.87 527.51 l S +370.46 524.66 m 370.46 526.93 l S +372.99 524.94 m 372.99 527.24 l S +378.17 522.53 m 378.17 524.84 l S +380.76 523.14 m 380.76 525.45 l S +383.69 523.45 m 383.69 525.75 l S +386.11 524.21 m 386.11 526.48 l S +388.87 526.28 m 388.87 528.52 l S +390.94 525.56 m 390.94 527.79 l S +393.36 523.74 m 393.36 526.06 l S +396.47 526.12 m 396.47 528.40 l S +398.88 526.71 m 398.88 528.95 l S +401.82 529.22 m 401.82 531.45 l S +403.89 530.85 m 403.89 533.04 l S +407.00 533.57 m 407.00 535.71 l S +409.24 535.55 m 409.24 537.68 l S +411.82 539.65 m 411.82 541.74 l S +414.42 541.33 m 414.42 543.38 l S +416.55 542.62 m 416.55 544.66 l S +419.77 539.42 m 419.77 541.52 l S +422.02 538.28 m 422.02 540.38 l S +424.50 535.81 m 424.50 537.91 l S +427.20 534.81 m 427.20 536.97 l S +429.32 535.07 m 429.32 537.19 l S +431.99 532.80 m 431.99 534.97 l S +435.14 527.28 m 435.14 529.51 l S +437.45 524.50 m 437.45 526.79 l S +439.41 522.69 m 439.41 524.98 l S +442.35 520.14 m 442.35 522.51 l S +444.59 519.16 m 444.59 521.55 l S +447.63 522.06 m 447.63 524.38 l S +449.12 521.76 m 449.12 524.06 l S +453.09 526.12 m 453.09 528.40 l S +455.68 526.56 m 455.68 528.81 l S +458.27 524.20 m 458.27 526.50 l S +459.46 523.76 m 459.46 526.04 l S +463.16 524.21 m 463.16 526.48 l S +464.49 522.67 m 464.49 525.00 l S +467.27 523.12 m 467.27 525.46 l S +469.66 524.66 m 469.66 526.93 l S +472.45 524.49 m 472.45 526.81 l S +475.03 524.35 m 475.03 526.64 l S +477.44 521.73 m 477.44 524.09 l S +480.21 520.15 m 480.21 522.50 l S +482.29 518.32 m 482.29 520.74 l S +485.21 518.16 m 485.21 520.56 l S +487.61 517.13 m 487.61 519.57 l S +490.20 516.80 m 490.20 519.23 l S +492.98 516.11 m 492.98 518.54 l S +495.24 512.49 m 495.24 515.00 l S +497.66 511.00 m 497.66 513.50 l S +500.24 510.21 m 500.24 512.76 l S +502.83 509.21 m 502.83 511.81 l S +505.78 509.03 m 505.78 511.60 l S +508.37 510.40 m 508.37 512.94 l S +511.30 514.17 m 511.30 516.60 l S +513.89 518.65 m 513.89 521.06 l S +516.29 522.37 m 516.29 524.69 l S +518.37 522.35 m 518.37 524.70 l S +521.47 519.51 m 521.47 521.85 l S +523.72 519.97 m 523.72 522.36 l S +525.96 516.11 m 525.96 518.54 l S +528.73 514.33 m 528.73 516.80 l S +531.32 518.99 m 531.32 521.39 l S +533.91 521.10 m 533.91 523.46 l S +536.67 526.28 m 536.67 528.52 l S +Q q +0.000 0.000 1.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +52.42 514.72 m 52.42 514.72 l S +52.42 514.72 m 47.74 514.72 l S +BT +0.000 0.000 1.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 14.61 516.53 Tm (HST H4) Tj +ET +BT +/F2 1 Tf 8.00 0.00 -0.00 8.00 17.70 507.17 Tm (1746 A) Tj +ET +Q q 52.42 19.66 485.71 626.47 re W n +0.000 0.000 1.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +55.02 504.77 m 55.02 524.66 l S +53.72 524.66 m 56.32 524.66 l S +53.72 504.77 m 56.32 504.77 l S +BT +0.000 0.000 1.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 56.32 511.98 Tm (=40%) Tj +ET +1.000 0.000 0.000 RG +80.07 475.00 m 80.07 478.45 l S +100.71 489.91 m 100.71 493.22 l S +103.84 487.66 m 103.84 491.14 l S +121.85 489.64 m 121.85 493.02 l S +126.39 485.73 m 126.39 489.12 l S +129.86 484.74 m 129.86 488.61 l S +131.27 482.04 m 131.27 485.66 l S +131.43 482.02 m 131.43 485.68 l S +132.65 477.19 m 132.65 480.79 l S +133.65 480.15 m 133.65 483.84 l S +134.52 475.68 m 134.52 479.50 l S +136.44 477.19 m 136.44 480.79 l S +139.39 474.87 m 139.39 478.59 l S +140.12 476.33 m 140.12 479.98 l S +141.29 475.44 m 141.29 479.16 l S +141.98 476.89 m 141.98 480.53 l S +142.72 475.44 m 142.72 479.16 l S +144.11 474.87 m 144.11 478.58 l S +145.67 463.97 m 145.67 472.54 l S +149.30 466.71 m 149.30 470.44 l S +152.76 462.85 m 152.76 466.46 l S +153.46 458.99 m 153.46 462.78 l S +156.25 462.49 m 156.25 466.15 l S +157.27 462.05 m 157.27 465.91 l S +157.98 461.50 m 157.98 465.11 l S +158.67 456.47 m 158.67 460.29 l S +159.52 459.04 m 159.52 462.72 l S +160.60 456.19 m 160.60 459.84 l S +161.09 453.87 m 161.09 457.72 l S +163.17 453.18 m 163.17 456.90 l S +164.40 451.20 m 164.40 455.05 l S +165.10 452.78 m 165.10 456.55 l S +165.97 453.18 m 165.97 456.90 l S +167.14 450.83 m 167.14 454.64 l S +168.58 452.41 m 168.58 456.15 l S +168.89 451.21 m 168.89 455.04 l S +169.57 452.35 m 169.57 456.21 l S +170.45 452.01 m 170.45 455.79 l S +170.78 451.23 m 170.78 455.02 l S +171.67 453.52 m 171.67 457.33 l S +172.69 453.43 m 172.69 457.41 l S +173.42 452.46 m 173.42 456.10 l S +175.29 453.60 m 175.29 456.30 l S +176.02 452.47 m 176.02 456.09 l S +176.55 454.23 m 176.55 458.10 l S +177.42 455.03 m 177.42 458.79 l S +179.33 452.42 m 179.33 456.14 l S +180.02 454.71 m 180.02 458.38 l S +182.09 456.15 m 182.09 459.87 l S +183.12 456.85 m 183.12 460.63 l S +183.99 458.00 m 183.99 461.63 l S +184.67 456.55 m 184.67 460.20 l S +185.53 458.36 m 185.53 461.99 l S +186.58 456.59 m 186.58 460.17 l S +187.26 458.35 m 187.26 462.00 l S +188.34 457.97 m 188.34 461.66 l S +189.19 456.95 m 189.19 460.54 l S +190.09 458.71 m 190.09 462.34 l S +190.77 456.56 m 190.77 460.20 l S +191.43 456.59 m 191.43 460.17 l S +192.32 455.07 m 192.32 458.75 l S +193.35 456.93 m 193.35 460.56 l S +194.05 460.17 m 194.05 463.69 l S +194.76 459.04 m 194.76 462.72 l S +195.76 463.82 m 195.76 467.50 l S +196.80 465.53 m 196.80 469.04 l S +197.69 466.12 m 197.69 469.74 l S +199.41 472.93 m 199.41 476.46 l S +200.10 472.88 m 200.10 476.51 l S +200.96 477.18 m 200.96 480.80 l S +202.56 478.25 m 202.56 481.94 l S +203.57 476.29 m 203.57 480.01 l S +204.44 478.87 m 204.44 482.41 l S +205.17 479.86 m 205.17 483.58 l S +206.17 482.04 m 206.17 485.66 l S +207.04 482.09 m 207.04 485.61 l S +207.96 484.33 m 207.96 488.01 l S +208.99 487.40 m 208.99 490.92 l S +209.86 488.36 m 209.86 491.89 l S +210.38 488.59 m 210.38 492.14 l S +211.41 488.10 m 211.41 491.68 l S +212.47 488.60 m 212.47 492.14 l S +212.97 489.02 m 212.97 492.67 l S +213.97 491.20 m 213.97 494.75 l S +214.84 489.81 m 214.84 493.32 l S +216.10 493.67 m 216.10 497.30 l S +216.75 493.96 m 216.75 497.47 l S +217.81 493.98 m 217.81 497.45 l S +218.17 493.26 m 218.17 496.81 l S +220.59 496.52 m 220.59 498.92 l S +220.77 497.48 m 220.77 500.97 l S +223.03 497.65 m 223.03 501.24 l S +223.56 498.93 m 223.56 502.50 l S +224.39 498.51 m 224.39 502.08 l S +225.27 497.47 m 225.27 500.98 l S +226.14 498.93 m 226.14 502.51 l S +226.98 499.58 m 226.98 503.10 l S +229.06 502.05 m 229.06 505.57 l S +229.93 500.20 m 229.93 503.74 l S +231.18 499.94 m 231.18 503.59 l S +232.70 497.70 m 232.70 501.19 l S +233.43 498.33 m 233.43 501.83 l S +233.78 498.71 m 233.78 502.30 l S +236.23 497.47 m 236.23 500.98 l S +236.55 497.88 m 236.55 501.42 l S +239.13 494.58 m 239.13 498.19 l S +240.35 494.36 m 240.35 497.95 l S +241.90 491.37 m 241.90 495.03 l S +242.95 488.34 m 242.95 491.91 l S +243.81 486.38 m 243.81 489.96 l S +244.68 482.78 m 244.68 486.47 l S +245.23 482.61 m 245.23 486.13 l S +245.89 480.75 m 245.89 484.30 l S +246.41 479.99 m 246.41 483.45 l S +248.18 476.33 m 248.18 479.98 l S +249.01 480.73 m 249.01 484.32 l S +249.41 476.63 m 249.41 480.23 l S +250.92 478.28 m 250.92 481.92 l S +251.45 479.40 m 251.45 482.98 l S +252.67 481.77 m 252.67 485.40 l S +254.04 480.73 m 254.04 484.32 l S +254.60 480.75 m 254.60 484.30 l S +255.81 480.75 m 255.81 484.30 l S +256.67 479.42 m 256.67 482.95 l S +257.21 479.14 m 257.21 482.69 l S +258.38 479.42 m 258.38 482.95 l S +259.07 479.43 m 259.07 482.95 l S +260.63 481.30 m 260.63 484.82 l S +260.98 479.69 m 260.98 483.23 l S +261.85 478.05 m 261.85 481.59 l S +263.77 481.03 m 263.77 484.56 l S +265.84 481.58 m 265.84 485.06 l S +266.38 481.82 m 266.38 485.34 l S +267.06 482.10 m 267.06 485.59 l S +268.44 477.41 m 268.44 481.12 l S +268.99 481.26 m 268.99 484.86 l S +269.86 477.21 m 269.86 480.77 l S +270.21 475.23 m 270.21 478.80 l S +271.57 481.31 m 271.57 484.81 l S +272.47 480.76 m 272.47 484.28 l S +273.47 481.79 m 273.47 485.37 l S +274.38 483.06 m 274.38 486.71 l S +275.90 482.25 m 275.90 485.96 l S +276.94 482.28 m 276.94 485.93 l S +277.68 482.23 m 277.68 485.98 l S +278.56 483.04 m 278.56 486.73 l S +280.27 479.91 m 280.27 483.54 l S +283.04 481.21 m 283.04 484.91 l S +285.48 489.07 m 285.48 492.62 l S +288.41 483.08 m 288.41 486.70 l S +289.28 489.55 m 289.28 493.10 l S +290.15 491.91 m 290.15 495.42 l S +299.37 493.42 m 299.37 497.11 l S +301.60 492.14 m 301.60 495.66 l S +302.79 493.06 m 302.79 496.57 l S +303.32 491.94 m 303.32 495.39 l S +305.22 489.96 m 305.22 493.64 l S +306.27 490.54 m 306.27 494.46 l S +306.65 484.86 m 306.65 488.49 l S +309.42 489.29 m 309.42 492.88 l S +311.48 486.10 m 311.48 489.75 l S +312.71 489.07 m 312.71 492.62 l S +313.75 485.64 m 313.75 489.22 l S +314.45 489.48 m 314.45 493.17 l S +314.62 489.25 m 314.62 492.92 l S +318.55 486.39 m 318.55 489.95 l S +319.10 486.17 m 319.10 489.68 l S +320.13 487.10 m 320.13 490.71 l S +320.84 488.81 m 320.84 492.41 l S +321.85 487.58 m 321.85 491.22 l S +322.37 486.37 m 322.37 489.97 l S +323.41 491.65 m 323.41 495.21 l S +326.21 494.35 m 326.21 497.96 l S +327.58 495.48 m 327.58 499.05 l S +329.66 494.42 m 329.66 497.90 l S +331.24 492.80 m 331.24 496.37 l S +332.10 493.51 m 332.10 497.02 l S +333.16 488.55 m 333.16 492.19 l S +333.86 492.33 m 333.86 495.92 l S +334.70 490.24 m 334.70 493.83 l S +336.63 492.38 m 336.63 495.87 l S +337.31 482.87 m 337.31 486.39 l S +338.19 488.54 m 338.19 492.20 l S +339.02 487.87 m 339.02 491.42 l S +340.76 485.87 m 340.76 489.48 l S +341.81 484.88 m 341.81 488.47 l S +343.36 486.36 m 343.36 489.98 l S +344.22 483.63 m 344.22 487.18 l S +345.27 487.10 m 345.27 490.71 l S +345.64 486.30 m 345.64 490.04 l S +346.51 489.58 m 346.51 493.07 l S +349.11 489.57 m 349.11 493.08 l S +350.16 488.81 m 350.16 492.41 l S +351.32 488.03 m 351.32 491.75 l S +353.06 487.78 m 353.06 491.51 l S +354.44 485.44 m 354.44 489.41 l S +357.04 490.02 m 357.04 493.57 l S +361.25 492.77 m 361.25 496.40 l S +362.24 487.88 m 362.24 491.41 l S +363.11 490.31 m 363.11 493.76 l S +363.99 489.35 m 363.99 492.82 l S +365.19 487.18 m 365.19 490.63 l S +366.06 485.38 m 366.06 488.97 l S +367.28 489.82 m 367.28 493.30 l S +367.98 491.23 m 367.98 494.72 l S +370.58 489.62 m 370.58 493.04 l S +371.96 489.85 m 371.96 493.27 l S +372.64 483.54 m 372.64 487.26 l S +376.13 485.41 m 376.13 488.94 l S +378.37 489.28 m 378.37 492.89 l S +380.67 489.10 m 380.67 492.59 l S +381.70 488.38 m 381.70 491.87 l S +383.05 489.32 m 383.05 492.84 l S +383.92 487.89 m 383.92 491.40 l S +385.65 488.84 m 385.65 492.38 l S +387.38 489.32 m 387.38 492.84 l S +388.25 493.27 m 388.25 496.79 l S +389.11 487.61 m 389.11 491.20 l S +390.85 491.43 m 390.85 494.97 l S +391.72 489.77 m 391.72 493.35 l S +392.58 488.84 m 392.58 492.38 l S +393.45 490.27 m 393.45 493.80 l S +394.32 490.88 m 394.32 494.59 l S +395.71 489.06 m 395.71 492.64 l S +396.40 492.10 m 396.40 495.69 l S +397.31 494.60 m 397.31 498.18 l S +397.79 493.03 m 397.79 496.59 l S +399.53 496.34 m 399.53 499.95 l S +401.48 492.84 m 401.48 496.32 l S +402.51 486.90 m 402.51 490.43 l S +402.99 495.21 m 402.99 498.88 l S +403.17 495.99 m 403.17 499.43 l S +405.96 495.71 m 405.96 499.27 l S +406.63 498.50 m 406.63 502.09 l S +407.34 500.19 m 407.34 503.74 l S +410.97 505.27 m 410.97 508.69 l S +412.19 505.33 m 412.19 508.62 l S +412.58 505.99 m 412.58 509.51 l S +413.79 508.25 m 413.79 511.80 l S +414.45 508.48 m 414.45 511.94 l S +416.36 505.80 m 416.36 509.33 l S +417.74 508.84 m 417.74 512.33 l S +418.65 504.23 m 418.65 507.78 l S +418.81 506.56 m 418.81 510.10 l S +418.95 507.33 m 418.95 510.85 l S +422.11 504.27 m 422.11 507.74 l S +423.31 501.85 m 423.31 505.37 l S +425.36 502.43 m 425.36 506.01 l S +425.73 496.61 m 425.73 500.12 l S +429.17 503.42 m 429.17 507.00 l S +431.10 498.95 m 431.10 502.48 l S +431.60 500.02 m 431.60 503.51 l S +432.65 498.68 m 432.65 501.91 l S +433.88 499.14 m 433.88 502.71 l S +434.75 493.25 m 434.75 496.82 l S +435.46 492.14 m 435.46 495.66 l S +436.48 491.41 m 436.48 494.99 l S +437.66 489.31 m 437.66 492.86 l S +438.36 489.77 m 438.36 493.35 l S +439.08 490.95 m 439.08 494.53 l S +439.41 491.56 m 439.41 494.84 l S +440.61 489.06 m 440.61 492.64 l S +442.69 486.83 m 442.69 490.50 l S +443.56 489.32 m 443.56 492.85 l S +444.27 489.06 m 444.27 492.64 l S +448.42 488.56 m 448.42 491.69 l S +453.80 487.60 m 453.80 490.72 l S +461.95 491.18 m 461.95 494.30 l S +468.18 491.61 m 468.18 494.80 l S +469.91 490.89 m 469.91 494.11 l S +474.28 489.77 m 474.28 492.89 l S +480.32 476.58 m 480.32 479.72 l S +485.52 486.11 m 485.52 489.24 l S +489.33 482.52 m 489.33 485.69 l S +494.19 477.41 m 494.19 480.56 l S +500.60 476.58 m 500.60 479.72 l S +506.35 473.41 m 506.35 476.57 l S +506.54 471.73 m 506.54 475.28 l S +510.68 474.59 m 510.68 477.72 l S +516.22 487.22 m 516.22 490.35 l S +520.56 484.93 m 520.56 488.06 l S +526.63 481.87 m 526.63 484.99 l S +530.60 483.04 m 530.60 486.16 l S +535.80 488.97 m 535.80 492.09 l S +Q q +1.000 0.000 0.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +52.42 481.66 m 52.42 481.66 l S +52.42 481.66 m 47.74 481.66 l S +BT +1.000 0.000 0.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 0.38 483.47 Tm (Swift UVW2) Tj +ET +BT +/F2 1 Tf 8.00 0.00 -0.00 8.00 17.70 474.11 Tm (1928 A) Tj +ET +Q q 52.42 19.66 485.71 626.47 re W n +1.000 0.000 0.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +55.02 474.50 m 55.02 488.81 l S +53.72 488.81 m 56.32 488.81 l S +53.72 474.50 m 56.32 474.50 l S +BT +1.000 0.000 0.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 56.32 478.92 Tm (=20%) Tj +ET +0.000 0.000 1.000 RG +80.08 440.33 m 80.08 444.25 l S +100.73 454.19 m 100.73 457.95 l S +121.86 452.38 m 121.86 456.18 l S +126.40 453.94 m 126.40 457.70 l S +131.27 447.67 m 131.27 451.85 l S +131.43 447.07 m 131.43 451.35 l S +132.65 440.46 m 132.65 444.72 l S +133.66 443.68 m 133.66 447.97 l S +134.53 442.10 m 134.53 446.65 l S +136.44 442.00 m 136.44 446.17 l S +139.40 441.05 m 139.40 445.33 l S +140.13 441.06 m 140.13 445.33 l S +141.29 440.37 m 141.29 444.81 l S +141.99 444.00 m 141.99 448.23 l S +142.73 441.08 m 142.73 445.31 l S +144.11 439.87 m 144.11 444.11 l S +149.31 433.53 m 149.31 437.83 l S +152.77 431.28 m 152.77 435.41 l S +153.47 430.14 m 153.47 434.51 l S +156.26 431.24 m 156.26 435.45 l S +157.27 430.07 m 157.27 434.58 l S +157.99 428.88 m 157.99 433.00 l S +158.67 427.69 m 158.67 432.07 l S +159.53 423.39 m 159.53 427.63 l S +160.61 425.63 m 160.61 429.81 l S +161.10 423.28 m 161.10 427.75 l S +163.18 421.44 m 163.18 425.78 l S +164.41 420.61 m 164.41 425.06 l S +165.11 419.88 m 165.11 424.25 l S +165.97 421.87 m 165.97 426.12 l S +167.14 420.24 m 167.14 424.67 l S +168.59 419.09 m 168.59 423.46 l S +168.90 420.55 m 168.90 425.12 l S +169.57 417.38 m 169.57 421.96 l S +170.46 419.07 m 170.46 423.48 l S +170.79 417.42 m 170.79 421.93 l S +171.68 419.80 m 171.68 424.32 l S +172.69 422.73 m 172.69 427.54 l S +173.43 420.75 m 173.43 424.93 l S +175.30 421.59 m 175.30 424.83 l S +176.03 424.59 m 176.03 428.67 l S +176.55 421.47 m 176.55 425.75 l S +177.42 421.02 m 177.42 425.44 l S +179.33 421.69 m 179.33 426.30 l S +180.02 422.82 m 180.02 427.45 l S +182.10 423.71 m 182.10 428.05 l S +183.12 422.18 m 183.12 426.57 l S +184.00 428.85 m 184.00 433.03 l S +184.68 427.09 m 184.68 431.24 l S +185.54 423.41 m 185.54 427.61 l S +187.27 424.90 m 187.27 429.10 l S +188.35 425.23 m 188.35 429.49 l S +189.20 425.67 m 189.20 429.78 l S +190.09 425.60 m 190.09 429.84 l S +190.78 424.10 m 190.78 428.41 l S +191.44 425.32 m 191.44 429.40 l S +192.33 425.63 m 192.33 429.82 l S +193.36 426.38 m 193.36 430.52 l S +194.06 426.81 m 194.06 430.81 l S +195.77 429.50 m 195.77 433.77 l S +196.81 430.03 m 196.81 433.93 l S +197.70 431.26 m 197.70 435.43 l S +198.57 429.61 m 198.57 433.66 l S +199.42 438.14 m 199.42 442.16 l S +200.11 440.80 m 200.11 444.99 l S +200.97 441.71 m 200.97 445.86 l S +202.57 443.79 m 202.57 447.86 l S +203.57 443.45 m 203.57 447.63 l S +204.44 444.65 m 204.44 448.72 l S +205.18 446.72 m 205.18 451.15 l S +206.17 449.55 m 206.17 453.76 l S +207.05 449.62 m 207.05 453.68 l S +207.96 451.12 m 207.96 455.37 l S +209.00 452.79 m 209.00 456.80 l S +209.87 451.50 m 209.87 455.50 l S +210.39 454.30 m 210.39 458.34 l S +211.42 454.74 m 211.42 458.90 l S +212.47 453.78 m 212.47 457.85 l S +212.98 454.27 m 212.98 458.38 l S +213.98 455.56 m 213.98 459.58 l S +214.85 453.83 m 214.85 457.80 l S +216.11 459.58 m 216.11 463.75 l S +216.76 458.96 m 216.76 462.95 l S +217.82 462.28 m 217.82 466.13 l S +218.18 458.74 m 218.18 462.70 l S +220.59 462.89 m 220.59 465.63 l S +220.78 459.99 m 220.78 463.81 l S +223.03 464.11 m 223.03 468.34 l S +223.56 464.42 m 223.56 468.46 l S +224.40 464.87 m 224.40 468.91 l S +225.28 463.35 m 225.28 467.32 l S +226.14 461.74 m 226.14 465.76 l S +226.99 462.44 m 226.99 466.42 l S +229.07 467.70 m 229.07 471.66 l S +229.94 463.56 m 229.94 467.55 l S +231.18 465.95 m 231.18 470.00 l S +232.71 461.30 m 232.71 465.29 l S +233.43 461.57 m 233.43 465.48 l S +233.79 462.23 m 233.79 466.17 l S +236.23 464.41 m 236.23 468.48 l S +236.56 464.63 m 236.56 468.70 l S +239.13 458.91 m 239.13 463.00 l S +240.36 457.33 m 240.36 461.71 l S +241.91 455.53 m 241.91 460.10 l S +242.96 454.28 m 242.96 458.37 l S +243.81 453.00 m 243.81 457.10 l S +244.69 450.94 m 244.69 455.55 l S +245.24 448.53 m 245.24 452.62 l S +245.90 447.14 m 245.90 451.28 l S +246.42 448.62 m 246.42 452.53 l S +248.18 444.87 m 248.18 449.08 l S +249.02 446.33 m 249.02 450.43 l S +249.42 443.18 m 249.42 447.32 l S +250.93 444.61 m 250.93 448.76 l S +251.46 444.32 m 251.46 448.48 l S +252.67 448.80 m 252.67 452.90 l S +254.05 448.01 m 254.05 452.06 l S +254.61 448.05 m 254.61 452.02 l S +255.82 448.07 m 255.82 452.01 l S +256.68 446.93 m 256.68 450.94 l S +257.22 447.16 m 257.22 451.26 l S +258.39 446.11 m 258.39 450.09 l S +259.08 445.81 m 259.08 449.82 l S +260.64 444.69 m 260.64 448.68 l S +260.99 445.83 m 260.99 449.81 l S +261.86 446.12 m 261.86 450.09 l S +263.78 446.08 m 263.78 450.12 l S +265.85 449.97 m 265.85 453.87 l S +266.39 449.89 m 266.39 453.95 l S +267.07 450.92 m 267.07 455.04 l S +268.45 446.10 m 268.45 450.66 l S +269.00 449.90 m 269.00 453.94 l S +269.87 442.64 m 269.87 446.69 l S +270.22 441.96 m 270.22 446.20 l S +271.57 450.48 m 271.57 454.42 l S +272.48 449.93 m 272.48 453.91 l S +273.48 449.07 m 273.48 453.17 l S +274.39 445.80 m 274.39 449.83 l S +275.90 446.80 m 275.90 451.07 l S +276.94 449.05 m 276.94 453.19 l S +277.68 451.34 m 277.68 455.66 l S +278.56 448.66 m 278.56 453.04 l S +280.28 447.35 m 280.28 451.63 l S +285.49 452.53 m 285.49 456.54 l S +288.42 451.79 m 288.42 456.25 l S +289.29 456.04 m 289.29 460.08 l S +290.15 456.12 m 290.15 460.00 l S +299.37 457.63 m 299.37 461.90 l S +301.60 456.58 m 301.60 460.52 l S +302.80 458.46 m 302.80 462.97 l S +303.32 456.62 m 303.32 460.48 l S +306.65 451.18 m 306.65 455.31 l S +309.42 454.51 m 309.42 458.64 l S +311.49 454.50 m 311.49 458.65 l S +312.72 455.55 m 312.72 459.59 l S +313.76 450.12 m 313.76 454.25 l S +314.45 454.73 m 314.45 458.91 l S +314.63 456.24 m 314.63 460.38 l S +318.56 452.21 m 318.56 456.35 l S +319.11 450.75 m 319.11 454.69 l S +320.14 451.71 m 320.14 455.81 l S +320.85 454.28 m 320.85 458.37 l S +321.86 455.10 m 321.86 459.04 l S +322.38 452.68 m 322.38 456.91 l S +323.42 456.06 m 323.42 460.06 l S +326.21 459.27 m 326.21 464.06 l S +327.58 460.34 m 327.58 464.38 l S +329.66 459.47 m 329.66 463.39 l S +331.24 461.92 m 331.24 466.94 l S +332.11 460.64 m 332.11 464.55 l S +333.17 454.54 m 333.17 458.61 l S +333.87 458.43 m 333.87 462.54 l S +334.71 455.46 m 334.71 459.68 l S +336.63 455.58 m 336.63 459.55 l S +337.32 451.27 m 337.32 455.22 l S +338.20 453.73 m 338.20 457.91 l S +339.03 454.04 m 339.03 458.61 l S +340.77 449.59 m 340.77 455.31 l S +343.37 456.15 m 343.37 464.82 l S +344.23 450.99 m 344.23 454.97 l S +345.28 454.19 m 345.28 458.46 l S +345.65 452.31 m 345.65 456.25 l S +346.52 457.55 m 346.52 461.49 l S +349.12 456.34 m 349.12 460.27 l S +350.17 454.97 m 350.17 459.17 l S +351.33 451.64 m 351.33 456.39 l S +353.06 453.21 m 353.06 457.92 l S +357.05 456.79 m 357.05 460.81 l S +361.25 455.33 m 361.25 459.30 l S +362.25 453.55 m 362.25 457.58 l S +363.12 453.59 m 363.12 457.53 l S +364.00 457.82 m 364.00 461.71 l S +365.20 451.30 m 365.20 455.19 l S +366.07 453.76 m 366.07 457.87 l S +367.29 454.87 m 367.29 458.78 l S +367.99 455.86 m 367.99 459.77 l S +370.59 457.15 m 370.59 460.93 l S +371.97 455.92 m 371.97 459.72 l S +376.14 451.51 m 376.14 455.49 l S +378.38 454.53 m 378.38 458.61 l S +380.67 456.80 m 380.67 460.80 l S +381.71 455.06 m 381.71 459.08 l S +383.06 455.38 m 383.06 459.75 l S +383.93 455.69 m 383.93 459.94 l S +385.66 456.31 m 385.66 460.31 l S +387.39 456.82 m 387.39 460.78 l S +388.26 458.50 m 388.26 462.47 l S +389.12 454.79 m 389.12 458.85 l S +390.86 459.21 m 390.86 463.18 l S +391.73 456.69 m 391.73 460.91 l S +392.59 454.55 m 392.59 458.60 l S +393.46 457.29 m 393.46 461.27 l S +394.32 455.20 m 394.32 459.44 l S +395.71 457.75 m 395.71 462.25 l S +396.41 458.02 m 396.41 461.98 l S +397.32 458.68 m 397.32 462.76 l S +397.79 458.22 m 397.79 462.26 l S +398.66 456.02 m 398.66 460.10 l S +399.54 459.23 m 399.54 463.17 l S +401.48 461.00 m 401.48 465.11 l S +402.52 456.83 m 402.52 460.77 l S +402.99 461.91 m 402.99 466.05 l S +403.18 460.41 m 403.18 464.32 l S +405.97 460.77 m 405.97 464.89 l S +406.64 462.97 m 406.64 467.25 l S +407.35 466.10 m 407.35 470.28 l S +410.98 469.43 m 410.98 473.29 l S +412.20 470.75 m 412.20 474.42 l S +412.58 470.20 m 412.58 474.17 l S +413.79 473.41 m 413.79 477.38 l S +414.45 475.42 m 414.45 479.63 l S +416.37 468.68 m 416.37 472.79 l S +417.75 474.71 m 417.75 478.81 l S +418.65 468.54 m 418.65 472.51 l S +418.82 469.07 m 418.82 474.06 l S +418.95 469.58 m 418.95 473.55 l S +422.11 469.15 m 422.11 473.16 l S +423.31 467.94 m 423.31 472.28 l S +425.37 469.48 m 425.37 473.65 l S +425.73 463.23 m 425.73 467.44 l S +429.18 466.49 m 429.18 470.75 l S +431.11 461.94 m 431.11 466.01 l S +431.60 465.34 m 431.60 469.30 l S +432.67 465.28 m 432.67 470.23 l S +433.89 460.78 m 433.89 464.88 l S +434.75 458.66 m 434.75 462.78 l S +435.47 459.03 m 435.47 463.36 l S +436.49 456.59 m 436.49 461.00 l S +437.67 456.32 m 437.67 460.30 l S +438.37 457.48 m 438.37 461.57 l S +439.09 455.29 m 439.09 459.35 l S +439.42 456.93 m 439.42 460.67 l S +440.62 455.75 m 440.62 459.88 l S +442.70 454.14 m 442.70 458.51 l S +443.57 452.08 m 443.57 456.48 l S +444.27 451.66 m 444.27 455.86 l S +Q q +0.000 0.000 1.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +52.42 448.60 m 52.42 448.60 l S +52.42 448.60 m 47.74 448.60 l S +BT +0.000 0.000 1.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 1.27 450.41 Tm (Swift UVM2) Tj +ET +BT +/F2 1 Tf 8.00 0.00 -0.00 8.00 17.70 441.05 Tm (2246 A) Tj +ET +Q q 52.42 19.66 485.71 626.47 re W n +0.000 0.000 1.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +55.02 441.49 m 55.02 455.71 l S +53.72 455.71 m 56.32 455.71 l S +53.72 441.49 m 56.32 441.49 l S +BT +0.000 0.000 1.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 56.32 445.86 Tm (=20%) Tj +ET +1.000 0.000 0.000 RG +80.06 406.79 m 80.06 411.16 l S +100.70 423.94 m 100.70 428.07 l S +103.83 420.57 m 103.83 424.85 l S +111.25 421.62 m 111.25 425.80 l S +121.84 420.90 m 121.84 425.19 l S +126.37 419.22 m 126.37 423.48 l S +131.26 414.82 m 131.26 419.53 l S +131.42 416.55 m 131.42 421.32 l S +132.64 410.82 m 132.64 415.50 l S +133.65 410.38 m 133.65 415.21 l S +134.52 412.49 m 134.52 417.53 l S +136.43 408.57 m 136.43 413.23 l S +139.38 411.11 m 139.38 415.96 l S +140.12 411.91 m 140.12 416.64 l S +141.28 410.72 m 141.28 415.60 l S +141.98 405.81 m 141.98 410.57 l S +142.72 408.09 m 142.72 412.96 l S +144.10 408.87 m 144.10 413.70 l S +145.66 408.11 m 145.66 412.94 l S +149.29 404.99 m 149.29 409.82 l S +152.75 398.09 m 152.75 402.74 l S +153.45 393.11 m 153.45 398.06 l S +156.25 398.05 m 156.25 402.78 l S +157.26 393.46 m 157.26 398.60 l S +157.98 395.49 m 157.98 400.12 l S +158.66 395.33 m 158.66 400.28 l S +159.52 389.53 m 159.52 394.31 l S +160.59 392.33 m 160.59 397.03 l S +161.08 389.89 m 161.08 394.88 l S +163.17 389.05 m 163.17 393.85 l S +164.39 384.58 m 164.39 389.64 l S +165.09 386.61 m 165.09 391.51 l S +165.96 389.06 m 165.96 393.83 l S +167.13 384.13 m 167.13 389.10 l S +168.57 386.65 m 168.57 391.48 l S +168.88 384.61 m 168.88 389.61 l S +170.44 385.13 m 170.44 390.08 l S +170.78 386.59 m 170.78 391.54 l S +171.67 390.39 m 171.67 395.31 l S +172.68 387.39 m 172.68 392.65 l S +173.42 388.65 m 173.42 393.30 l S +175.28 388.96 m 175.28 392.48 l S +176.02 387.23 m 176.02 391.86 l S +176.54 387.97 m 176.54 393.03 l S +177.41 389.00 m 177.41 393.90 l S +179.32 387.60 m 179.32 392.44 l S +180.01 388.14 m 180.01 392.86 l S +182.08 390.43 m 182.08 395.26 l S +183.11 391.31 m 183.11 396.23 l S +183.98 394.60 m 183.98 399.26 l S +184.66 394.15 m 184.66 398.82 l S +185.52 391.43 m 185.52 396.11 l S +186.57 390.57 m 186.57 395.13 l S +187.26 392.33 m 187.26 397.03 l S +188.34 392.30 m 188.34 397.07 l S +189.18 390.54 m 189.18 395.15 l S +190.08 393.69 m 190.08 398.37 l S +190.77 392.80 m 190.77 397.47 l S +191.42 391.95 m 191.42 396.51 l S +192.31 390.94 m 192.31 395.67 l S +193.34 391.90 m 193.34 396.56 l S +194.04 393.35 m 194.04 397.83 l S +194.75 395.44 m 194.75 400.17 l S +195.75 398.47 m 195.75 403.21 l S +196.79 398.17 m 196.79 402.66 l S +197.68 402.25 m 197.68 406.93 l S +199.40 404.75 m 199.40 409.26 l S +200.09 406.62 m 200.09 411.33 l S +200.96 409.31 m 200.96 414.01 l S +202.56 409.23 m 202.56 414.09 l S +203.56 408.84 m 203.56 413.73 l S +204.43 414.91 m 204.43 419.44 l S +205.16 414.02 m 205.16 418.90 l S +206.16 413.38 m 206.16 418.09 l S +207.03 414.19 m 207.03 418.73 l S +207.95 419.63 m 207.95 424.44 l S +208.98 418.39 m 208.98 422.95 l S +209.85 417.01 m 209.85 421.56 l S +210.38 420.06 m 210.38 424.69 l S +211.41 420.72 m 211.41 425.36 l S +212.46 422.42 m 212.46 426.98 l S +212.96 419.30 m 212.96 424.08 l S +213.96 421.08 m 213.96 425.67 l S +214.83 418.75 m 214.83 423.27 l S +216.09 423.95 m 216.09 428.71 l S +216.74 425.35 m 216.74 429.89 l S +217.80 428.52 m 217.80 432.96 l S +218.17 424.98 m 218.17 429.61 l S +220.58 430.26 m 220.58 433.31 l S +220.77 430.01 m 220.77 434.54 l S +223.02 429.00 m 223.02 433.72 l S +223.55 431.45 m 223.55 436.10 l S +224.39 432.05 m 224.39 436.70 l S +225.26 430.62 m 225.26 435.14 l S +226.13 430.85 m 226.13 435.51 l S +226.97 431.49 m 226.97 436.06 l S +228.01 429.63 m 228.01 434.31 l S +229.05 432.68 m 229.05 437.24 l S +229.92 433.26 m 229.92 437.84 l S +231.17 430.46 m 231.17 435.30 l S +232.70 432.42 m 232.70 436.91 l S +233.42 430.62 m 233.42 435.13 l S +236.22 430.62 m 236.22 435.13 l S +236.54 428.74 m 236.54 433.37 l S +239.12 429.93 m 239.12 434.61 l S +240.34 425.60 m 240.34 430.27 l S +241.90 424.58 m 241.90 429.38 l S +242.94 423.69 m 242.94 428.32 l S +243.80 420.05 m 243.80 424.70 l S +244.68 417.20 m 244.68 422.07 l S +245.22 419.45 m 245.22 423.94 l S +245.89 416.99 m 245.89 421.58 l S +246.40 414.62 m 246.40 419.01 l S +248.17 416.23 m 248.17 420.94 l S +249.01 415.19 m 249.01 419.87 l S +249.40 410.81 m 249.40 415.51 l S +250.91 411.54 m 250.91 416.27 l S +251.44 414.16 m 251.44 418.76 l S +252.66 409.27 m 252.66 414.05 l S +254.03 413.79 m 254.03 418.41 l S +254.60 417.37 m 254.60 421.90 l S +255.80 415.95 m 255.80 420.51 l S +256.66 413.45 m 256.66 418.01 l S +257.20 415.26 m 257.20 419.79 l S +258.37 413.11 m 258.37 417.64 l S +259.06 413.84 m 259.06 418.35 l S +260.63 414.92 m 260.63 419.43 l S +261.84 413.11 m 261.84 417.64 l S +263.76 413.84 m 263.76 418.36 l S +265.83 417.41 m 265.83 421.85 l S +266.37 415.63 m 266.37 420.14 l S +267.05 413.87 m 267.05 418.33 l S +268.44 412.95 m 268.44 417.80 l S +268.98 414.13 m 268.98 418.79 l S +269.85 413.81 m 269.85 418.39 l S +270.20 412.37 m 270.20 416.91 l S +271.55 414.21 m 271.55 418.70 l S +272.47 416.69 m 272.47 421.18 l S +273.46 417.67 m 273.46 422.30 l S +274.37 413.34 m 274.37 418.12 l S +275.89 418.93 m 275.89 423.78 l S +276.93 413.72 m 276.93 418.48 l S +277.67 417.18 m 277.67 422.09 l S +278.55 415.10 m 278.55 419.95 l S +280.27 411.53 m 280.27 416.28 l S +283.03 412.69 m 283.03 417.32 l S +285.47 421.09 m 285.47 425.66 l S +288.41 418.33 m 288.41 423.01 l S +289.27 419.05 m 289.27 423.66 l S +290.14 422.11 m 290.14 426.64 l S +299.36 426.76 m 299.36 431.63 l S +299.89 423.97 m 299.89 428.69 l S +301.59 426.94 m 301.59 431.45 l S +302.78 423.08 m 302.78 427.63 l S +303.30 424.14 m 303.30 428.52 l S +305.22 423.43 m 305.22 427.93 l S +306.26 423.75 m 306.26 428.26 l S +306.64 421.36 m 306.64 426.06 l S +309.41 422.36 m 309.41 427.04 l S +312.70 423.39 m 312.70 427.97 l S +313.74 422.07 m 313.74 426.68 l S +314.44 421.27 m 314.44 426.14 l S +314.62 420.29 m 314.62 425.13 l S +316.00 418.71 m 316.00 423.31 l S +318.55 423.71 m 318.55 428.30 l S +319.09 419.79 m 319.09 424.28 l S +320.13 418.66 m 320.13 423.36 l S +320.83 422.68 m 320.83 427.38 l S +321.85 423.32 m 321.85 428.05 l S +322.36 422.68 m 322.36 427.38 l S +323.40 424.02 m 323.40 428.64 l S +324.65 424.96 m 324.65 430.27 l S +326.20 427.47 m 326.20 432.17 l S +327.57 428.42 m 327.57 433.07 l S +329.65 428.20 m 329.65 432.67 l S +331.23 427.19 m 331.23 431.82 l S +332.10 423.43 m 332.10 427.93 l S +333.15 421.00 m 333.15 425.75 l S +333.85 425.60 m 333.85 430.27 l S +334.69 425.60 m 334.69 430.27 l S +336.62 423.09 m 336.62 427.62 l S +337.30 419.44 m 337.30 423.95 l S +338.19 419.63 m 338.19 424.43 l S +339.01 423.39 m 339.01 427.97 l S +340.75 417.64 m 340.75 422.33 l S +341.80 419.02 m 341.80 423.68 l S +344.21 418.73 m 344.21 423.29 l S +345.26 419.01 m 345.26 423.69 l S +345.63 420.25 m 345.63 425.17 l S +346.50 425.06 m 346.50 429.53 l S +349.10 422.45 m 349.10 426.94 l S +351.32 421.26 m 351.32 426.16 l S +353.05 417.17 m 353.05 422.10 l S +354.43 418.05 m 354.43 422.60 l S +357.03 422.08 m 357.03 426.67 l S +357.90 419.81 m 357.90 424.25 l S +358.64 417.59 m 358.64 422.38 l S +359.64 415.89 m 359.64 420.57 l S +360.50 422.10 m 360.50 426.65 l S +361.24 421.33 m 361.24 426.09 l S +362.23 420.75 m 362.23 425.33 l S +363.10 423.16 m 363.10 427.55 l S +363.98 422.82 m 363.98 427.24 l S +365.18 418.47 m 365.18 422.86 l S +366.06 417.98 m 366.06 422.67 l S +367.27 424.10 m 367.27 428.56 l S +367.97 422.45 m 367.97 426.94 l S +370.57 423.20 m 370.57 427.52 l S +371.95 425.46 m 371.95 429.78 l S +372.64 421.29 m 372.64 426.12 l S +376.12 419.77 m 376.12 424.30 l S +378.36 420.02 m 378.36 424.73 l S +380.66 422.46 m 380.66 426.94 l S +381.69 421.80 m 381.69 426.29 l S +383.04 421.76 m 383.04 426.32 l S +383.91 422.79 m 383.91 427.27 l S +385.35 426.47 m 385.35 433.78 l S +385.64 421.75 m 385.64 426.33 l S +386.52 422.98 m 386.52 427.73 l S +388.24 424.37 m 388.24 428.93 l S +389.11 424.98 m 389.11 429.61 l S +389.97 425.66 m 389.97 430.21 l S +390.84 425.01 m 390.84 429.57 l S +391.71 422.04 m 391.71 426.71 l S +392.58 421.09 m 392.58 425.66 l S +393.45 423.72 m 393.45 428.28 l S +394.31 422.25 m 394.31 427.15 l S +397.30 421.03 m 397.30 425.72 l S +398.65 424.66 m 398.65 429.30 l S +399.53 426.20 m 399.53 430.93 l S +400.38 422.69 m 400.38 427.37 l S +401.47 427.28 m 401.47 431.73 l S +402.50 423.76 m 402.50 428.25 l S +402.98 429.87 m 402.98 434.67 l S +403.16 427.30 m 403.16 431.71 l S +404.02 422.40 m 404.02 427.00 l S +405.95 428.12 m 405.95 432.75 l S +406.63 433.49 m 406.63 438.19 l S +407.34 428.75 m 407.34 433.36 l S +410.96 435.11 m 410.96 439.46 l S +412.17 438.34 m 412.17 442.45 l S +412.57 438.66 m 412.57 443.24 l S +413.78 435.82 m 413.78 440.48 l S +414.44 438.43 m 414.44 442.90 l S +416.36 435.26 m 416.36 439.89 l S +417.74 442.20 m 417.74 446.73 l S +418.81 434.70 m 418.81 439.31 l S +418.94 436.14 m 418.94 440.72 l S +422.10 436.18 m 422.10 440.68 l S +423.30 434.71 m 423.30 439.29 l S +424.88 437.08 m 424.88 442.03 l S +425.36 436.65 m 425.36 441.33 l S +425.72 428.48 m 425.72 433.01 l S +429.16 434.66 m 429.16 439.34 l S +431.10 433.27 m 431.10 437.83 l S +431.59 431.22 m 431.59 435.73 l S +432.63 431.50 m 432.63 435.46 l S +433.88 430.55 m 433.88 435.21 l S +434.74 428.12 m 434.74 432.75 l S +435.45 427.55 m 435.45 432.09 l S +436.47 423.02 m 436.47 427.69 l S +437.66 425.35 m 437.66 429.89 l S +438.35 424.01 m 438.35 428.65 l S +439.07 425.30 m 439.07 429.94 l S +439.39 424.93 m 439.39 429.03 l S +440.61 423.36 m 440.61 428.00 l S +441.31 423.99 m 441.31 428.67 l S +442.68 420.98 m 442.68 425.77 l S +443.55 421.74 m 443.55 426.34 l S +444.26 421.06 m 444.26 425.69 l S +Q q +1.000 0.000 0.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +52.42 415.54 m 52.42 415.54 l S +52.42 415.54 m 47.74 415.54 l S +BT +1.000 0.000 0.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 0.38 417.35 Tm (Swift UVW1) Tj +ET +BT +/F2 1 Tf 8.00 0.00 -0.00 8.00 17.70 407.99 Tm (2600 A) Tj +ET +Q q 52.42 19.66 485.71 626.47 re W n +1.000 0.000 0.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +55.02 407.00 m 55.02 424.08 l S +53.72 424.08 m 56.32 424.08 l S +53.72 407.00 m 56.32 407.00 l S +BT +1.000 0.000 0.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 56.32 412.80 Tm (=20%) Tj +ET +0.000 0.000 1.000 RG +80.06 375.84 m 80.06 381.54 l S +100.70 387.86 m 100.70 393.30 l S +103.83 388.23 m 103.83 393.90 l S +111.26 391.20 m 111.26 396.69 l S +121.85 387.26 m 121.85 392.92 l S +126.37 387.79 m 126.37 393.37 l S +129.85 387.11 m 129.85 394.05 l S +131.26 385.50 m 131.26 391.72 l S +131.42 387.43 m 131.42 393.73 l S +132.64 384.04 m 132.64 390.16 l S +133.65 378.20 m 133.65 384.59 l S +134.52 379.11 m 134.52 385.80 l S +136.43 381.49 m 136.43 387.59 l S +139.39 382.89 m 139.39 389.28 l S +140.12 373.92 m 140.12 380.17 l S +141.28 379.23 m 141.28 385.67 l S +141.98 379.87 m 141.98 386.08 l S +142.72 376.57 m 142.72 382.98 l S +144.10 376.60 m 144.10 382.95 l S +145.66 374.42 m 145.66 380.77 l S +149.30 371.65 m 149.30 377.94 l S +152.75 365.35 m 152.75 371.39 l S +153.46 362.73 m 153.46 369.14 l S +156.25 365.30 m 156.25 371.44 l S +157.26 359.48 m 157.26 366.15 l S +157.98 365.98 m 157.98 371.97 l S +158.66 362.11 m 158.66 368.54 l S +159.52 358.48 m 159.52 364.61 l S +160.59 361.68 m 160.59 367.72 l S +161.08 360.85 m 161.08 367.31 l S +163.17 356.52 m 163.17 362.68 l S +164.40 353.04 m 164.40 359.53 l S +165.10 350.39 m 165.10 356.72 l S +165.96 350.47 m 165.96 356.64 l S +167.13 355.77 m 167.13 362.11 l S +168.57 350.45 m 168.57 356.66 l S +168.89 353.76 m 168.89 360.15 l S +169.56 353.70 m 169.56 360.21 l S +170.45 350.37 m 170.45 356.74 l S +170.78 357.10 m 170.78 363.41 l S +171.67 357.70 m 171.67 364.09 l S +172.69 350.82 m 172.69 357.67 l S +173.42 356.61 m 173.42 362.59 l S +175.29 354.69 m 175.29 359.23 l S +176.02 353.99 m 176.02 359.93 l S +176.54 355.69 m 176.54 362.20 l S +177.41 355.80 m 177.41 362.08 l S +179.32 353.18 m 179.32 359.39 l S +180.01 355.90 m 180.01 361.98 l S +182.09 354.49 m 182.09 360.75 l S +183.11 352.41 m 183.11 358.80 l S +183.99 356.55 m 183.99 362.65 l S +184.66 355.90 m 184.66 361.98 l S +185.52 359.81 m 185.52 365.83 l S +186.57 357.30 m 186.57 363.20 l S +187.26 357.87 m 187.26 363.92 l S +188.34 357.17 m 188.34 363.33 l S +189.18 357.92 m 189.18 363.86 l S +190.08 357.21 m 190.08 363.29 l S +190.77 357.22 m 190.77 363.28 l S +191.42 355.97 m 191.42 361.91 l S +192.32 355.89 m 192.32 361.99 l S +193.35 355.25 m 193.35 361.33 l S +194.04 360.56 m 194.04 366.34 l S +194.75 357.16 m 194.75 363.34 l S +195.76 364.66 m 195.76 370.88 l S +196.80 364.87 m 196.80 370.67 l S +197.68 359.10 m 197.68 365.25 l S +199.40 367.21 m 199.40 373.13 l S +200.09 368.25 m 200.09 374.43 l S +200.96 370.00 m 200.96 376.18 l S +202.56 368.13 m 202.56 374.56 l S +203.56 373.82 m 203.56 380.27 l S +204.43 375.71 m 204.43 381.67 l S +205.17 383.35 m 205.17 389.84 l S +206.16 378.28 m 206.16 384.51 l S +207.03 379.46 m 207.03 385.44 l S +207.95 382.88 m 207.95 389.29 l S +208.98 383.58 m 208.98 389.61 l S +209.86 385.12 m 209.86 391.09 l S +210.38 386.04 m 210.38 392.16 l S +211.41 385.01 m 211.41 391.20 l S +212.46 383.04 m 212.46 389.12 l S +212.96 389.34 m 212.96 395.69 l S +213.97 388.98 m 213.97 395.10 l S +214.84 386.60 m 214.84 392.58 l S +216.10 387.37 m 216.10 393.79 l S +216.74 390.92 m 216.74 396.97 l S +217.80 395.18 m 217.80 401.08 l S +218.17 394.12 m 218.17 400.32 l S +220.58 395.89 m 220.58 399.95 l S +220.77 400.45 m 220.77 406.48 l S +223.02 398.54 m 223.02 404.90 l S +223.55 397.71 m 223.55 403.95 l S +224.39 400.78 m 224.39 407.02 l S +225.26 400.44 m 225.26 406.49 l S +226.13 399.89 m 226.13 406.17 l S +226.98 397.31 m 226.98 403.47 l S +229.05 400.82 m 229.05 406.98 l S +229.92 398.64 m 229.92 404.80 l S +231.18 400.63 m 231.18 407.17 l S +232.70 400.89 m 232.70 406.91 l S +233.42 400.88 m 233.42 406.92 l S +233.78 400.29 m 233.78 406.64 l S +236.22 400.44 m 236.22 406.49 l S +236.55 398.61 m 236.55 404.83 l S +239.12 399.46 m 239.12 405.73 l S +240.35 394.55 m 240.35 400.80 l S +241.90 398.51 m 241.90 404.93 l S +242.94 395.05 m 242.94 401.21 l S +243.80 393.21 m 243.80 399.38 l S +244.68 393.09 m 244.68 399.50 l S +245.22 389.54 m 245.22 395.48 l S +245.89 390.93 m 245.89 396.96 l S +246.40 388.18 m 246.40 393.94 l S +248.17 383.47 m 248.17 389.72 l S +249.01 384.03 m 249.01 390.17 l S +249.40 384.53 m 249.40 390.67 l S +250.91 384.00 m 250.91 390.20 l S +251.45 385.08 m 251.45 391.13 l S +254.04 387.04 m 254.04 393.14 l S +254.60 389.53 m 254.60 395.49 l S +255.81 387.58 m 255.81 393.58 l S +256.67 386.10 m 256.67 392.10 l S +257.20 387.11 m 257.20 393.07 l S +258.37 386.14 m 258.37 392.06 l S +259.07 383.62 m 259.07 389.57 l S +260.63 381.05 m 260.63 386.99 l S +260.97 375.71 m 260.97 381.67 l S +261.84 380.54 m 261.84 386.48 l S +263.77 379.98 m 263.77 385.96 l S +265.83 385.69 m 265.83 391.53 l S +266.37 381.03 m 266.37 387.01 l S +267.05 386.17 m 267.05 392.03 l S +268.44 385.91 m 268.44 392.29 l S +268.98 380.44 m 268.98 386.58 l S +269.85 383.08 m 269.85 389.08 l S +270.21 378.40 m 270.21 384.39 l S +271.56 386.65 m 271.56 392.53 l S +272.47 383.10 m 272.47 389.06 l S +273.46 383.53 m 273.46 389.66 l S +274.37 382.92 m 274.37 389.24 l S +275.89 385.38 m 275.89 391.83 l S +276.93 384.46 m 276.93 390.74 l S +277.67 380.74 m 277.67 387.30 l S +278.55 381.84 m 278.55 388.27 l S +280.27 382.96 m 280.27 389.20 l S +283.03 389.48 m 283.03 395.55 l S +285.47 386.57 m 285.47 392.62 l S +288.41 384.00 m 288.41 390.20 l S +289.28 390.91 m 289.28 396.98 l S +290.14 390.48 m 290.14 396.46 l S +299.36 393.94 m 299.36 400.50 l S +299.89 395.43 m 299.89 401.75 l S +301.59 395.12 m 301.59 401.14 l S +302.78 391.88 m 302.78 397.90 l S +303.31 394.79 m 303.31 400.56 l S +305.22 393.78 m 305.22 399.74 l S +306.26 390.47 m 306.26 396.47 l S +306.64 387.44 m 306.64 393.72 l S +309.41 390.84 m 309.41 397.05 l S +311.48 389.82 m 311.48 396.17 l S +312.53 388.07 m 312.53 394.05 l S +312.70 389.96 m 312.70 396.04 l S +313.74 391.37 m 313.74 397.47 l S +314.44 387.32 m 314.44 393.85 l S +314.62 390.27 m 314.62 396.67 l S +318.55 390.89 m 318.55 397.00 l S +319.10 386.13 m 319.10 392.07 l S +320.13 388.92 m 320.13 395.16 l S +320.84 388.92 m 320.84 395.16 l S +321.85 390.30 m 321.85 396.64 l S +322.37 387.94 m 322.37 394.19 l S +323.40 391.35 m 323.40 397.49 l S +326.20 388.87 m 326.20 395.21 l S +327.57 394.57 m 327.57 400.78 l S +329.65 393.31 m 329.65 399.27 l S +331.23 387.48 m 331.23 393.68 l S +332.10 391.90 m 332.10 397.88 l S +333.15 393.13 m 333.15 399.46 l S +333.85 390.84 m 333.85 397.05 l S +334.70 395.01 m 334.70 401.25 l S +336.62 391.88 m 336.62 397.90 l S +337.30 385.12 m 337.30 391.09 l S +338.19 388.84 m 338.19 395.24 l S +339.02 390.42 m 339.02 396.52 l S +340.76 385.99 m 340.76 392.21 l S +341.80 390.37 m 341.80 396.57 l S +343.36 381.91 m 343.36 388.20 l S +344.22 383.06 m 344.22 389.10 l S +345.26 388.93 m 345.26 395.15 l S +346.51 388.07 m 346.51 394.05 l S +349.10 388.07 m 349.10 394.05 l S +350.16 393.15 m 350.16 399.44 l S +351.32 388.28 m 351.32 394.83 l S +353.05 388.27 m 353.05 394.84 l S +354.44 390.02 m 354.44 395.98 l S +357.04 388.03 m 357.04 394.10 l S +357.90 391.01 m 357.90 396.88 l S +360.50 391.87 m 360.50 397.91 l S +361.24 393.13 m 361.24 399.46 l S +362.24 388.52 m 362.24 394.60 l S +363.11 389.61 m 363.11 395.42 l S +363.98 393.83 m 363.98 399.69 l S +365.19 388.67 m 365.19 394.45 l S +366.06 390.35 m 366.06 396.59 l S +367.27 387.13 m 367.27 393.05 l S +367.97 387.59 m 367.97 393.57 l S +370.57 388.21 m 370.57 393.92 l S +371.96 389.18 m 371.96 394.90 l S +372.64 387.84 m 372.64 394.29 l S +374.56 386.57 m 374.56 392.62 l S +376.13 387.07 m 376.13 393.11 l S +378.36 388.91 m 378.36 395.17 l S +380.66 389.08 m 380.66 395.00 l S +381.69 390.99 m 381.69 396.90 l S +383.04 392.35 m 383.04 398.38 l S +383.91 389.54 m 383.91 395.48 l S +385.64 391.39 m 385.64 397.45 l S +387.38 392.35 m 387.38 398.38 l S +388.24 396.92 m 388.24 402.96 l S +389.11 388.39 m 389.11 394.72 l S +390.85 390.43 m 390.85 396.51 l S +391.71 395.03 m 391.71 401.23 l S +392.58 392.80 m 392.58 398.86 l S +393.45 391.86 m 393.45 397.92 l S +394.31 391.61 m 394.31 398.18 l S +396.40 391.78 m 396.40 398.00 l S +397.30 393.19 m 397.30 399.40 l S +397.78 391.81 m 397.78 397.97 l S +398.65 388.94 m 398.65 395.14 l S +399.53 391.73 m 399.53 398.06 l S +400.38 391.78 m 400.38 398.00 l S +401.47 392.85 m 401.47 398.81 l S +402.51 390.97 m 402.51 396.92 l S +402.98 396.70 m 402.98 403.19 l S +403.16 392.90 m 403.16 398.76 l S +405.96 396.38 m 405.96 402.60 l S +406.63 399.42 m 406.63 405.77 l S +407.34 401.25 m 407.34 407.42 l S +410.97 403.55 m 410.97 409.38 l S +412.18 403.32 m 412.18 408.76 l S +412.57 399.06 m 412.57 405.25 l S +413.78 408.24 m 413.78 414.57 l S +414.44 408.39 m 414.44 414.43 l S +416.36 406.27 m 416.36 412.48 l S +417.74 407.11 m 417.74 413.28 l S +418.64 402.92 m 418.64 409.16 l S +418.81 405.43 m 418.81 411.66 l S +418.94 405.47 m 418.94 411.62 l S +422.10 404.70 m 422.10 410.74 l S +423.30 407.51 m 423.30 413.69 l S +425.36 407.84 m 425.36 414.17 l S +425.72 404.28 m 425.72 410.32 l S +429.17 402.45 m 429.17 408.78 l S +431.10 401.68 m 431.10 407.84 l S +431.59 402.17 m 431.59 408.21 l S +432.64 403.46 m 432.64 408.63 l S +433.88 397.25 m 433.88 403.52 l S +434.74 398.62 m 434.74 404.82 l S +435.46 394.19 m 435.46 400.25 l S +436.48 395.03 m 436.48 401.23 l S +437.66 395.57 m 437.66 401.61 l S +438.36 398.63 m 438.36 404.81 l S +439.07 394.12 m 439.07 400.32 l S +439.40 395.92 m 439.40 401.27 l S +440.61 395.03 m 440.61 401.23 l S +442.69 386.40 m 442.69 392.79 l S +443.56 392.79 m 443.56 398.87 l S +444.26 392.30 m 444.26 398.43 l S +Q q +0.000 0.000 1.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +52.42 382.48 m 52.42 382.48 l S +52.42 382.48 m 47.74 382.48 l S +BT +0.000 0.000 1.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 17.72 384.29 Tm (Swift U) Tj +ET +BT +/F2 1 Tf 8.00 0.00 -0.00 8.00 17.70 374.93 Tm (3472 A) Tj +ET +Q q 52.42 19.66 485.71 626.47 re W n +0.000 0.000 1.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +55.02 372.61 m 55.02 392.35 l S +53.72 392.35 m 56.32 392.35 l S +53.72 372.61 m 56.32 372.61 l S +BT +0.000 0.000 1.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 56.32 379.74 Tm (=20%) Tj +ET +1.000 0.000 0.000 RG +86.64 342.29 m 86.64 350.66 l S +88.82 353.31 m 88.82 353.78 l S +91.37 352.71 m 91.37 353.55 l S +93.81 353.69 m 93.81 354.24 l S +96.46 356.25 m 96.46 356.69 l S +97.12 348.40 m 97.12 366.68 l S +99.14 359.43 m 99.14 359.98 l S +101.35 360.00 m 101.35 363.02 l S +101.64 360.07 m 101.64 360.53 l S +104.23 359.20 m 104.23 360.14 l S +106.77 360.20 m 106.77 361.08 l S +109.05 355.55 m 109.05 356.16 l S +109.71 358.13 m 109.71 374.27 l S +111.84 358.05 m 111.84 359.81 l S +112.81 361.59 m 112.81 375.46 l S +115.20 362.48 m 115.20 374.84 l S +117.56 356.42 m 117.56 366.01 l S +120.45 370.29 m 120.45 379.59 l S +123.13 350.66 m 123.13 367.09 l S +125.84 352.07 m 125.84 366.08 l S +130.54 347.20 m 130.54 361.45 l S +132.71 355.38 m 132.71 355.84 l S +133.63 347.92 m 133.63 363.45 l S +135.38 353.63 m 135.38 355.39 l S +135.77 346.49 m 135.77 360.85 l S +140.68 351.33 m 140.68 352.17 l S +140.96 345.63 m 140.96 363.41 l S +143.28 350.21 m 143.28 350.61 l S +146.37 338.80 m 146.37 350.74 l S +148.30 344.99 m 148.30 345.64 l S +151.09 342.05 m 151.09 342.82 l S +151.70 313.97 m 151.70 340.81 l S +153.53 336.94 m 153.53 337.67 l S +156.26 338.40 m 156.26 338.93 l S +161.45 327.94 m 161.45 328.85 l S +164.11 326.25 m 164.11 327.20 l S +166.28 323.99 m 166.28 324.79 l S +171.39 320.19 m 171.39 320.80 l S +179.30 323.52 m 179.30 324.29 l S +181.69 320.46 m 181.69 321.20 l S +184.40 324.24 m 184.40 324.95 l S +185.16 319.21 m 185.16 332.85 l S +189.49 321.64 m 189.49 322.62 l S +192.07 322.56 m 192.07 323.53 l S +192.89 320.41 m 192.89 329.56 l S +198.26 313.61 m 198.26 336.46 l S +199.92 338.45 m 199.92 339.18 l S +200.65 335.45 m 200.65 347.83 l S +202.49 342.78 m 202.49 343.43 l S +205.39 346.88 m 205.39 347.66 l S +210.62 359.20 m 210.62 359.89 l S +211.24 334.94 m 211.24 363.08 l S +213.21 357.78 m 213.21 358.58 l S +213.48 341.95 m 213.48 361.45 l S +215.92 359.31 m 215.92 360.27 l S +218.37 366.63 m 218.37 367.24 l S +220.82 365.57 m 220.82 366.30 l S +220.87 359.26 m 220.87 362.79 l S +221.24 354.31 m 221.24 371.62 l S +226.60 365.00 m 226.60 376.08 l S +231.76 351.37 m 231.76 368.64 l S +234.39 360.89 m 234.39 372.79 l S +241.75 370.71 m 241.75 371.30 l S +244.34 367.50 m 244.34 368.09 l S +246.88 360.67 m 246.88 361.26 l S +249.51 355.34 m 249.51 356.09 l S +250.59 350.74 m 250.59 358.49 l S +251.97 353.87 m 251.97 354.71 l S +254.50 364.41 m 254.50 369.07 l S +260.54 356.95 m 260.54 369.97 l S +265.22 353.00 m 265.22 353.65 l S +268.41 342.92 m 268.41 360.48 l S +270.18 353.17 m 270.18 356.13 l S +270.81 356.70 m 270.81 368.18 l S +273.58 344.57 m 273.58 360.44 l S +275.57 356.25 m 275.57 356.80 l S +285.81 359.80 m 285.81 360.34 l S +288.43 360.60 m 288.43 361.18 l S +291.00 363.67 m 291.00 364.26 l S +293.56 363.26 m 293.56 363.97 l S +294.40 348.70 m 294.40 368.40 l S +299.22 365.51 m 299.22 366.01 l S +299.45 355.41 m 299.45 378.43 l S +301.50 365.17 m 301.50 365.86 l S +306.65 366.23 m 306.65 366.82 l S +309.17 365.63 m 309.17 366.22 l S +311.53 363.37 m 311.53 367.54 l S +311.75 364.88 m 311.75 365.49 l S +312.63 357.07 m 312.63 372.47 l S +314.37 365.68 m 314.37 366.27 l S +315.19 348.39 m 315.19 366.42 l S +317.70 356.13 m 317.70 372.10 l S +324.63 364.58 m 324.63 365.17 l S +327.33 366.15 m 327.33 366.73 l S +329.95 364.29 m 329.95 364.94 l S +332.34 362.48 m 332.34 363.13 l S +350.71 360.48 m 350.71 361.05 l S +353.26 359.71 m 353.26 360.30 l S +355.87 359.81 m 355.87 360.44 l S +358.48 363.60 m 358.48 364.18 l S +363.66 363.37 m 363.66 363.91 l S +366.26 362.19 m 366.26 362.74 l S +368.83 362.72 m 368.83 363.28 l S +371.45 363.89 m 371.45 364.50 l S +374.06 361.21 m 374.06 361.82 l S +379.32 362.18 m 379.32 362.73 l S +384.46 360.05 m 384.46 360.70 l S +387.00 364.03 m 387.00 364.59 l S +389.64 364.18 m 389.64 364.77 l S +392.25 363.84 m 392.25 364.40 l S +394.82 364.35 m 394.82 364.92 l S +397.45 367.88 m 397.45 368.42 l S +399.98 365.85 m 399.98 366.40 l S +402.72 368.08 m 402.72 368.62 l S +405.18 368.50 m 405.18 369.06 l S +407.80 368.71 m 407.80 369.31 l S +410.41 370.69 m 410.41 371.28 l S +413.02 374.74 m 413.02 375.26 l S +415.62 378.09 m 415.62 378.61 l S +423.38 376.38 m 423.38 376.92 l S +426.01 377.22 m 426.01 377.78 l S +431.23 377.75 m 431.23 378.32 l S +433.50 366.26 m 433.50 371.68 l S +433.77 370.90 m 433.77 371.53 l S +436.39 369.40 m 436.39 369.99 l S +438.99 370.48 m 438.99 371.00 l S +441.13 371.11 m 441.13 378.12 l S +441.62 367.54 m 441.62 368.11 l S +444.20 366.85 m 444.20 367.39 l S +449.50 366.88 m 449.50 367.45 l S +452.00 367.27 m 452.00 367.84 l S +454.59 367.07 m 454.59 367.64 l S +457.19 365.67 m 457.19 366.28 l S +467.43 361.17 m 467.43 364.66 l S +472.85 365.86 m 472.85 366.47 l S +478.00 362.60 m 478.00 363.21 l S +483.25 361.41 m 483.25 362.02 l S +488.43 356.30 m 488.43 357.00 l S +517.01 355.67 m 517.01 356.35 l S +522.21 353.36 m 522.21 354.09 l S +524.81 356.39 m 524.81 357.02 l S +527.41 347.31 m 527.41 347.98 l S +530.01 351.88 m 530.01 352.51 l S +532.61 354.17 m 532.61 354.89 l S +535.21 356.64 m 535.21 357.33 l S +Q q +1.000 0.000 0.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +52.42 349.42 m 52.42 349.42 l S +52.42 349.42 m 47.74 349.42 l S +BT +1.000 0.000 0.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 14.60 351.23 Tm (SDSS u) Tj +ET +BT +/F2 1 Tf 8.00 0.00 -0.00 8.00 17.70 341.87 Tm (3466 A) Tj +ET +Q q 52.42 19.66 485.71 626.47 re W n +1.000 0.000 0.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +55.02 338.93 m 55.02 359.91 l S +53.72 359.91 m 56.32 359.91 l S +53.72 338.93 m 56.32 338.93 l S +BT +1.000 0.000 0.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 56.32 346.69 Tm (=20%) Tj +ET +0.000 0.000 1.000 RG +80.07 310.13 m 80.07 316.79 l S +100.71 317.71 m 100.71 323.93 l S +103.83 319.35 m 103.83 325.86 l S +111.26 318.40 m 111.26 325.03 l S +121.85 314.83 m 121.85 321.39 l S +126.38 314.88 m 126.38 321.34 l S +129.85 308.26 m 129.85 316.78 l S +131.26 315.33 m 131.26 322.73 l S +131.42 308.72 m 131.42 316.31 l S +132.64 310.76 m 132.64 318.06 l S +133.65 315.23 m 133.65 322.82 l S +134.52 308.46 m 134.52 316.57 l S +136.43 305.01 m 136.43 312.28 l S +139.39 309.66 m 139.39 317.27 l S +140.12 304.90 m 140.12 312.39 l S +141.29 304.77 m 141.29 312.53 l S +141.98 312.58 m 141.98 319.97 l S +142.72 309.62 m 142.72 317.31 l S +144.10 306.77 m 144.10 314.43 l S +145.67 303.86 m 145.67 311.47 l S +149.30 301.88 m 149.30 309.47 l S +152.75 297.02 m 152.75 304.12 l S +153.46 292.47 m 153.46 300.19 l S +156.25 301.05 m 156.25 308.29 l S +157.26 297.59 m 157.26 305.60 l S +157.98 298.06 m 157.98 305.14 l S +158.66 295.65 m 158.66 303.39 l S +159.52 296.93 m 159.52 304.20 l S +160.59 289.46 m 160.59 296.66 l S +161.09 291.38 m 161.09 299.12 l S +163.17 289.40 m 163.17 296.72 l S +164.40 289.16 m 164.40 296.97 l S +165.10 287.05 m 165.10 294.62 l S +165.96 293.74 m 165.96 301.06 l S +167.13 283.62 m 167.13 291.26 l S +168.57 287.14 m 168.57 294.54 l S +168.89 289.24 m 168.89 296.88 l S +169.56 283.49 m 169.56 291.38 l S +170.45 284.75 m 170.45 292.41 l S +170.78 284.78 m 170.78 292.37 l S +171.67 287.01 m 171.67 294.67 l S +172.69 285.57 m 172.69 293.87 l S +173.42 286.18 m 173.42 293.26 l S +175.29 292.99 m 175.29 298.44 l S +176.02 289.59 m 176.02 296.54 l S +176.54 283.49 m 176.54 291.38 l S +177.41 291.50 m 177.41 298.99 l S +179.32 294.81 m 179.32 302.13 l S +180.01 294.89 m 180.01 302.04 l S +182.09 288.22 m 182.09 295.69 l S +183.11 285.88 m 183.11 293.56 l S +183.99 290.57 m 183.99 297.77 l S +184.67 290.60 m 184.67 297.73 l S +185.52 289.47 m 185.52 296.65 l S +186.57 290.70 m 186.57 297.63 l S +187.26 286.10 m 187.26 293.34 l S +188.34 290.51 m 188.34 297.83 l S +189.19 292.84 m 189.19 299.82 l S +190.08 299.06 m 190.08 306.20 l S +190.77 290.59 m 190.77 297.74 l S +191.42 294.99 m 191.42 301.94 l S +192.32 291.64 m 192.32 298.86 l S +193.35 292.75 m 193.35 299.90 l S +194.04 290.78 m 194.04 297.56 l S +194.75 295.86 m 194.75 303.18 l S +195.76 293.69 m 195.76 301.11 l S +196.80 301.27 m 196.80 308.07 l S +197.69 292.67 m 197.69 299.99 l S +199.40 302.20 m 199.40 309.15 l S +200.09 303.01 m 200.09 310.33 l S +200.96 297.91 m 200.96 305.28 l S +202.56 306.77 m 202.56 314.43 l S +203.56 302.80 m 203.56 310.54 l S +204.43 304.15 m 204.43 311.18 l S +205.17 306.68 m 205.17 314.52 l S +206.16 311.63 m 206.16 319.05 l S +207.03 311.84 m 207.03 318.84 l S +207.95 309.62 m 207.95 317.31 l S +208.99 316.35 m 208.99 323.50 l S +209.86 317.30 m 209.86 324.35 l S +210.38 312.64 m 210.38 319.91 l S +211.41 317.17 m 211.41 324.47 l S +212.46 312.68 m 212.46 319.88 l S +212.96 313.39 m 212.96 321.01 l S +213.97 320.75 m 213.97 327.97 l S +214.84 319.99 m 214.84 326.99 l S +216.10 317.90 m 216.10 325.54 l S +216.74 319.91 m 216.74 327.06 l S +217.80 320.88 m 217.80 327.83 l S +218.17 318.93 m 218.17 326.27 l S +220.58 327.20 m 220.58 331.91 l S +220.77 322.53 m 220.77 329.65 l S +223.02 330.68 m 223.02 338.18 l S +223.55 326.63 m 223.55 334.03 l S +224.39 327.45 m 224.39 334.85 l S +225.26 324.22 m 225.26 331.37 l S +226.13 323.23 m 226.13 330.67 l S +226.98 326.70 m 226.98 333.95 l S +229.06 328.36 m 229.06 335.61 l S +229.92 330.00 m 229.92 337.24 l S +231.18 325.59 m 231.18 333.40 l S +232.70 327.63 m 232.70 334.68 l S +233.42 325.08 m 233.42 332.21 l S +233.78 330.66 m 233.78 338.20 l S +236.22 331.69 m 236.22 338.77 l S +236.55 329.14 m 236.55 336.46 l S +239.12 326.61 m 239.12 334.05 l S +240.35 324.96 m 240.35 332.33 l S +241.90 323.97 m 241.90 331.63 l S +242.94 324.17 m 242.94 331.42 l S +243.80 318.07 m 243.80 325.37 l S +244.68 315.17 m 244.68 322.88 l S +245.22 320.00 m 245.22 326.98 l S +245.89 317.26 m 245.89 324.38 l S +246.41 321.02 m 246.41 327.70 l S +248.17 313.48 m 248.17 320.92 l S +249.01 315.38 m 249.01 322.68 l S +249.41 313.55 m 249.41 320.85 l S +250.91 309.74 m 250.91 317.19 l S +251.45 312.69 m 251.45 319.86 l S +252.66 314.36 m 252.66 321.85 l S +254.04 314.51 m 254.04 321.71 l S +254.60 311.82 m 254.60 318.87 l S +255.81 319.06 m 255.81 326.14 l S +256.67 314.57 m 256.67 321.64 l S +257.20 317.32 m 257.20 324.32 l S +258.37 309.02 m 258.37 316.02 l S +259.07 311.84 m 259.07 318.84 l S +260.63 317.35 m 260.63 324.30 l S +260.97 309.00 m 260.97 316.03 l S +261.84 311.85 m 261.84 318.83 l S +263.77 310.88 m 263.77 317.93 l S +265.83 318.32 m 265.83 325.12 l S +266.38 316.42 m 266.38 323.43 l S +267.05 313.76 m 267.05 320.64 l S +268.44 311.52 m 268.44 319.16 l S +268.99 311.69 m 268.99 318.99 l S +269.85 310.85 m 269.85 317.97 l S +270.21 309.93 m 270.21 317.00 l S +271.56 315.58 m 271.56 322.48 l S +272.47 317.35 m 272.47 324.30 l S +273.47 310.79 m 273.47 318.03 l S +274.37 312.52 m 274.37 320.04 l S +275.89 316.96 m 275.89 324.68 l S +276.93 313.46 m 276.93 320.93 l S +277.67 309.51 m 277.67 317.42 l S +278.55 314.27 m 278.55 321.94 l S +280.27 317.11 m 280.27 324.53 l S +283.04 313.61 m 283.04 320.78 l S +285.47 315.44 m 285.47 322.61 l S +288.41 315.33 m 288.41 322.73 l S +289.28 319.00 m 289.28 326.20 l S +290.14 318.19 m 290.14 325.24 l S +299.36 323.03 m 299.36 330.87 l S +299.89 315.34 m 299.89 329.86 l S +301.59 319.92 m 301.59 327.05 l S +302.79 320.81 m 302.79 327.91 l S +303.31 320.98 m 303.31 327.74 l S +305.22 325.16 m 305.22 332.13 l S +306.26 323.43 m 306.26 330.48 l S +306.64 318.00 m 306.64 325.44 l S +309.41 319.80 m 309.41 327.17 l S +311.48 323.17 m 311.48 330.73 l S +312.71 316.31 m 312.71 323.54 l S +313.75 318.99 m 313.75 326.21 l S +314.45 324.76 m 314.45 332.53 l S +314.62 324.00 m 314.62 331.59 l S +318.55 314.48 m 318.55 321.73 l S +319.10 321.75 m 319.10 328.71 l S +320.13 319.80 m 320.13 327.17 l S +320.84 317.12 m 320.84 324.52 l S +321.85 317.04 m 321.85 324.60 l S +322.37 316.19 m 322.37 323.66 l S +323.41 324.19 m 323.41 331.41 l S +326.20 317.04 m 326.20 324.60 l S +327.57 318.91 m 327.57 326.30 l S +329.65 323.45 m 329.65 330.45 l S +331.24 321.56 m 331.24 328.90 l S +332.10 320.85 m 332.10 327.87 l S +333.16 317.96 m 333.16 325.48 l S +333.86 321.55 m 333.86 328.92 l S +334.70 320.66 m 334.70 328.06 l S +336.62 319.95 m 336.62 327.02 l S +337.31 319.97 m 337.31 327.00 l S +338.19 316.08 m 338.19 323.77 l S +339.02 320.76 m 339.02 327.96 l S +340.76 314.42 m 340.76 321.79 l S +341.80 319.81 m 341.80 327.16 l S +343.36 316.18 m 343.36 323.67 l S +344.22 320.82 m 344.22 327.90 l S +345.27 322.42 m 345.27 329.76 l S +345.63 315.06 m 345.63 323.00 l S +346.51 329.32 m 346.51 336.27 l S +349.11 320.86 m 349.11 327.86 l S +350.16 317.07 m 350.16 324.57 l S +351.32 318.66 m 351.32 326.55 l S +353.06 315.96 m 353.06 323.89 l S +354.44 318.19 m 354.44 325.24 l S +357.04 319.88 m 357.04 327.10 l S +357.91 316.31 m 357.91 325.33 l S +361.24 324.03 m 361.24 331.57 l S +362.24 315.44 m 362.24 322.61 l S +363.11 318.34 m 363.11 325.10 l S +363.98 327.74 m 363.98 334.57 l S +365.19 316.53 m 365.19 323.31 l S +366.06 319.79 m 366.06 327.18 l S +367.27 320.87 m 367.27 327.85 l S +367.98 319.97 m 367.98 327.00 l S +370.57 321.93 m 370.57 328.53 l S +371.96 322.77 m 371.96 329.41 l S +372.64 323.12 m 372.64 330.78 l S +374.56 317.25 m 374.56 324.40 l S +376.13 324.26 m 376.13 331.34 l S +378.36 319.75 m 378.36 327.22 l S +380.66 321.75 m 380.66 328.71 l S +381.69 320.01 m 381.69 326.96 l S +383.05 321.68 m 383.05 328.78 l S +383.91 323.47 m 383.91 330.43 l S +385.65 320.78 m 385.65 327.93 l S +387.38 315.47 m 387.38 322.59 l S +388.24 322.52 m 388.24 329.67 l S +389.11 319.75 m 389.11 327.22 l S +390.85 325.93 m 390.85 333.06 l S +391.72 324.97 m 391.72 332.32 l S +392.58 317.22 m 392.58 324.42 l S +393.45 325.07 m 393.45 332.22 l S +394.31 319.54 m 394.31 327.43 l S +395.70 319.83 m 395.70 327.15 l S +396.40 329.12 m 396.40 336.47 l S +397.31 324.96 m 397.31 332.33 l S +397.78 322.45 m 397.78 329.73 l S +398.65 326.67 m 398.65 333.99 l S +399.53 323.17 m 399.53 330.73 l S +400.38 323.25 m 400.38 330.65 l S +401.47 326.02 m 401.47 332.97 l S +402.51 327.68 m 402.51 334.63 l S +402.99 324.76 m 402.99 332.53 l S +403.17 327.75 m 403.17 334.55 l S +405.96 326.64 m 405.96 334.01 l S +406.63 328.22 m 406.63 335.76 l S +407.34 327.52 m 407.34 334.79 l S +410.97 332.65 m 410.97 339.43 l S +412.18 336.09 m 412.18 342.30 l S +412.57 336.32 m 412.57 343.62 l S +413.78 340.81 m 413.78 348.27 l S +414.44 331.69 m 414.44 338.77 l S +416.36 330.73 m 416.36 338.13 l S +417.74 336.35 m 417.74 343.59 l S +418.64 341.64 m 418.64 348.94 l S +418.81 333.94 m 418.81 341.31 l S +418.94 337.12 m 418.94 344.37 l S +422.10 335.66 m 422.10 342.73 l S +423.30 332.40 m 423.30 339.68 l S +425.36 331.47 m 425.36 338.99 l S +425.72 332.49 m 425.72 339.59 l S +429.17 337.00 m 429.17 344.49 l S +431.10 330.81 m 431.10 338.05 l S +431.59 341.03 m 431.59 348.05 l S +432.64 326.57 m 432.64 332.42 l S +433.88 330.72 m 433.88 338.14 l S +434.74 329.97 m 434.74 337.27 l S +435.46 325.94 m 435.46 333.04 l S +436.48 324.99 m 436.48 332.31 l S +437.66 324.22 m 437.66 331.37 l S +438.36 325.84 m 438.36 333.14 l S +439.08 324.14 m 439.08 331.46 l S +439.40 328.11 m 439.40 334.20 l S +440.61 327.50 m 440.61 334.80 l S +442.69 323.14 m 442.69 330.76 l S +443.56 321.63 m 443.56 328.83 l S +444.26 322.45 m 444.26 329.73 l S +Q q +0.000 0.000 1.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +52.42 316.36 m 52.42 316.36 l S +52.42 316.36 m 47.74 316.36 l S +BT +0.000 0.000 1.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 18.16 318.17 Tm (Swift B) Tj +ET +BT +/F2 1 Tf 8.00 0.00 -0.00 8.00 17.70 308.81 Tm (4390 A) Tj +ET +Q q 52.42 19.66 485.71 626.47 re W n +0.000 0.000 1.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +55.02 310.22 m 55.02 322.50 l S +53.72 322.50 m 56.32 322.50 l S +53.72 310.22 m 56.32 310.22 l S +BT +0.000 0.000 1.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 56.32 313.63 Tm (=10%) Tj +ET +1.000 0.000 0.000 RG +83.15 281.61 m 83.15 283.87 l S +85.69 283.65 m 85.69 290.97 l S +88.31 282.81 m 88.31 291.80 l S +91.06 286.01 m 91.06 291.23 l S +93.66 281.68 m 93.66 292.63 l S +101.00 291.04 m 101.00 292.07 l S +103.64 291.32 m 103.64 292.21 l S +106.32 291.25 m 106.32 292.11 l S +109.08 293.01 m 109.08 293.68 l S +120.55 293.29 m 120.55 294.77 l S +123.17 294.43 m 123.17 295.49 l S +125.76 293.48 m 125.76 295.35 l S +127.30 293.96 m 127.30 294.85 l S +129.86 292.31 m 129.86 293.37 l S +132.40 289.46 m 132.40 292.87 l S +132.54 287.24 m 132.54 288.19 l S +135.15 284.81 m 135.15 289.53 l S +147.89 276.79 m 147.89 279.02 l S +159.64 268.19 m 159.64 271.69 l S +160.88 265.87 m 160.88 268.05 l S +162.20 260.45 m 162.20 265.51 l S +163.48 256.32 m 163.48 265.65 l S +166.03 260.03 m 166.03 262.02 l S +166.08 255.73 m 166.08 265.15 l S +168.67 252.59 m 168.67 262.12 l S +169.03 254.92 m 169.03 260.84 l S +172.16 251.50 m 172.16 257.25 l S +174.24 254.66 m 174.24 260.44 l S +176.44 259.87 m 176.44 261.24 l S +176.51 255.45 m 176.51 264.95 l S +176.77 259.50 m 176.77 264.34 l S +179.43 256.01 m 179.43 260.71 l S +182.01 261.35 m 182.01 267.44 l S +184.50 254.61 m 184.50 259.08 l S +185.41 260.15 m 185.41 264.73 l S +187.05 254.80 m 187.05 266.22 l S +187.09 257.65 m 187.09 263.51 l S +189.43 262.48 m 189.43 267.90 l S +192.09 264.53 m 192.09 270.37 l S +193.25 262.20 m 193.25 266.14 l S +193.33 262.94 m 193.33 267.10 l S +194.63 263.97 m 194.63 272.27 l S +197.28 263.85 m 197.28 272.04 l S +197.48 268.63 m 197.48 271.50 l S +201.04 276.88 m 201.04 279.26 l S +201.12 277.43 m 201.12 279.78 l S +202.41 278.92 m 202.41 279.51 l S +202.44 276.66 m 202.44 283.31 l S +202.82 277.39 m 202.82 280.32 l S +203.64 285.06 m 203.64 293.36 l S +203.72 280.18 m 203.72 281.89 l S +205.04 282.92 m 205.04 289.54 l S +205.04 283.18 m 205.04 284.39 l S +205.34 283.31 m 205.34 287.19 l S +207.28 284.41 m 207.28 285.98 l S +207.98 287.77 m 207.98 292.18 l S +208.81 288.55 m 208.81 290.42 l S +208.82 287.99 m 208.82 289.83 l S +210.53 289.69 m 210.53 294.25 l S +213.00 293.24 m 213.00 299.17 l S +213.99 294.91 m 213.99 297.39 l S +215.45 294.79 m 215.45 296.25 l S +216.61 292.96 m 216.61 296.26 l S +220.63 301.26 m 220.63 302.69 l S +224.27 299.87 m 224.27 302.66 l S +225.76 303.78 m 225.76 309.45 l S +231.12 306.75 m 231.12 308.04 l S +235.99 304.69 m 235.99 306.36 l S +236.61 303.96 m 236.61 308.51 l S +239.05 302.67 m 239.05 309.94 l S +241.38 303.40 m 241.38 304.71 l S +245.26 295.83 m 245.26 297.98 l S +246.46 293.37 m 246.46 294.40 l S +249.21 290.52 m 249.21 291.61 l S +251.89 289.95 m 251.89 295.62 l S +253.05 293.91 m 253.05 295.95 l S +254.20 291.90 m 254.20 292.49 l S +257.23 292.27 m 257.23 296.68 l S +263.38 287.88 m 263.38 289.25 l S +267.44 287.05 m 267.44 289.65 l S +271.07 287.88 m 271.07 289.16 l S +273.83 288.33 m 273.83 289.67 l S +274.91 287.79 m 274.91 288.52 l S +275.40 289.32 m 275.40 291.64 l S +277.48 288.84 m 277.48 290.52 l S +286.69 294.03 m 286.69 296.07 l S +291.77 296.54 m 291.77 298.47 l S +294.38 297.42 m 294.38 299.52 l S +309.09 296.89 m 309.09 306.36 l S +315.13 295.83 m 315.13 297.87 l S +324.71 297.39 m 324.71 304.29 l S +330.68 297.64 m 330.68 298.71 l S +333.43 297.57 m 333.43 298.64 l S +335.13 298.79 m 335.13 301.36 l S +336.04 296.90 m 336.04 298.41 l S +345.59 288.09 m 345.59 297.48 l S +348.22 295.73 m 348.22 300.76 l S +349.10 295.91 m 349.10 296.83 l S +353.42 292.15 m 353.42 294.98 l S +354.13 295.35 m 354.13 297.39 l S +358.56 295.79 m 358.56 298.47 l S +359.39 298.19 m 359.39 300.62 l S +361.96 296.23 m 361.96 298.78 l S +363.45 294.67 m 363.45 304.98 l S +364.50 295.91 m 364.50 297.95 l S +366.02 296.71 m 366.02 298.50 l S +366.31 291.75 m 366.31 304.43 l S +368.79 296.07 m 368.79 297.52 l S +369.89 295.00 m 369.89 297.41 l S +371.21 296.55 m 371.21 298.57 l S +371.25 294.58 m 371.25 301.15 l S +373.86 297.21 m 373.86 299.33 l S +376.54 297.17 m 376.54 298.29 l S +377.51 295.80 m 377.51 297.90 l S +380.16 295.93 m 380.16 297.80 l S +394.66 298.71 m 394.66 300.05 l S +405.15 303.16 m 405.15 303.78 l S +410.38 305.85 m 410.38 307.63 l S +410.44 303.39 m 410.44 306.35 l S +412.92 306.28 m 412.92 309.27 l S +415.68 305.43 m 415.68 308.33 l S +418.02 311.84 m 418.02 312.62 l S +423.20 310.20 m 423.20 310.68 l S +425.90 310.85 m 425.90 311.43 l S +428.51 310.20 m 428.51 311.13 l S +428.53 308.97 m 428.53 312.16 l S +431.21 308.63 m 431.21 309.18 l S +431.28 306.73 m 431.28 309.63 l S +436.39 302.66 m 436.39 303.69 l S +441.42 298.76 m 441.42 300.47 l S +446.56 296.01 m 446.56 298.19 l S +449.15 295.79 m 449.15 298.02 l S +454.48 298.33 m 454.48 300.56 l S +454.61 296.47 m 454.61 303.74 l S +457.23 297.13 m 457.23 298.25 l S +457.26 295.30 m 457.26 301.78 l S +459.65 296.47 m 459.65 298.01 l S +462.26 297.64 m 462.26 299.15 l S +462.46 296.62 m 462.46 302.46 l S +467.53 296.90 m 467.53 297.97 l S +480.52 294.85 m 480.52 295.49 l S +482.91 293.10 m 482.91 294.08 l S +485.71 291.68 m 485.71 292.77 l S +490.76 289.83 m 490.76 290.42 l S +496.07 287.81 m 496.07 288.81 l S +498.61 285.10 m 498.61 285.49 l S +501.15 285.98 m 501.15 286.59 l S +503.79 283.00 m 503.79 283.79 l S +506.38 281.09 m 506.38 281.76 l S +514.13 286.90 m 514.13 288.52 l S +516.78 290.58 m 516.78 291.36 l S +Q q +1.000 0.000 0.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +52.42 283.30 m 52.42 283.30 l S +52.42 283.30 m 47.74 283.30 l S +BT +1.000 0.000 0.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 5.26 285.11 Tm (Johnson B) Tj +ET +BT +/F2 1 Tf 8.00 0.00 -0.00 8.00 17.70 275.75 Tm (4390 A) Tj +ET +Q q 52.42 19.66 485.71 626.47 re W n +1.000 0.000 0.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +55.02 276.32 m 55.02 290.29 l S +53.72 290.29 m 56.32 290.29 l S +53.72 276.32 m 56.32 276.32 l S +BT +1.000 0.000 0.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 56.32 280.57 Tm (=10%) Tj +ET +0.000 0.000 1.000 RG +86.62 251.24 m 86.62 256.76 l S +88.81 248.48 m 88.81 249.00 l S +91.36 251.09 m 91.36 251.91 l S +93.81 252.87 m 93.81 254.25 l S +95.22 248.24 m 95.22 257.75 l S +96.46 253.69 m 96.46 254.28 l S +97.12 255.76 m 97.12 261.02 l S +97.86 253.57 m 97.86 260.25 l S +99.13 256.24 m 99.13 256.65 l S +100.42 254.08 m 100.42 263.00 l S +101.35 256.37 m 101.35 258.84 l S +101.63 257.34 m 101.63 257.79 l S +104.22 258.41 m 104.22 258.85 l S +106.77 257.94 m 106.77 260.44 l S +108.29 248.31 m 108.29 259.92 l S +109.04 260.59 m 109.04 261.04 l S +109.73 256.28 m 109.73 261.32 l S +111.83 259.25 m 111.83 259.69 l S +112.81 257.01 m 112.81 262.31 l S +115.06 259.06 m 115.06 263.84 l S +117.55 259.21 m 117.55 264.02 l S +120.45 258.46 m 120.45 263.35 l S +123.13 261.17 m 123.13 265.98 l S +125.84 259.06 m 125.84 264.21 l S +129.03 251.19 m 129.03 258.61 l S +130.53 256.15 m 130.53 261.48 l S +132.71 252.44 m 132.71 254.00 l S +135.37 250.42 m 135.37 250.98 l S +135.98 241.67 m 135.98 248.46 l S +136.90 245.35 m 136.90 258.82 l S +139.48 245.96 m 139.48 257.57 l S +140.67 249.38 m 140.67 249.79 l S +141.18 252.66 m 141.18 258.14 l S +143.28 247.72 m 143.28 248.54 l S +144.72 247.36 m 144.72 258.63 l S +146.15 249.73 m 146.15 256.04 l S +148.31 242.32 m 148.31 244.34 l S +151.10 239.26 m 151.10 239.94 l S +151.67 230.40 m 151.67 239.02 l S +153.54 238.80 m 153.54 239.54 l S +155.96 231.65 m 155.96 238.56 l S +158.80 234.45 m 158.80 235.16 l S +161.46 230.27 m 161.46 230.94 l S +164.12 224.30 m 164.12 225.09 l S +166.29 225.14 m 166.29 225.85 l S +168.78 226.28 m 168.78 226.95 l S +171.40 222.40 m 171.40 222.92 l S +173.05 215.16 m 173.05 232.92 l S +175.60 211.07 m 175.60 232.34 l S +179.31 226.37 m 179.31 227.01 l S +181.70 226.39 m 181.70 226.99 l S +184.41 228.20 m 184.41 228.76 l S +185.17 216.21 m 185.17 231.24 l S +192.90 215.25 m 192.90 227.38 l S +194.67 232.79 m 194.67 233.46 l S +197.32 237.36 m 197.32 238.03 l S +198.25 232.25 m 198.25 248.85 l S +199.93 249.79 m 199.93 250.38 l S +200.63 231.37 m 200.63 241.63 l S +211.27 257.32 m 211.27 263.93 l S +213.22 257.12 m 213.22 257.75 l S +213.49 256.99 m 213.49 263.37 l S +218.38 266.09 m 218.38 266.73 l S +221.25 265.48 m 221.25 271.07 l S +226.81 267.49 m 226.81 273.20 l S +229.76 272.98 m 229.76 278.91 l S +231.81 265.64 m 231.81 271.02 l S +234.40 268.29 m 234.40 272.92 l S +240.20 264.95 m 240.20 270.10 l S +241.76 270.70 m 241.76 271.60 l S +244.35 266.00 m 244.35 266.82 l S +246.89 262.29 m 246.89 263.07 l S +249.52 255.68 m 249.52 256.28 l S +250.60 254.13 m 250.60 259.77 l S +251.90 255.78 m 251.90 260.29 l S +253.62 253.98 m 253.62 267.64 l S +254.48 258.31 m 254.48 260.92 l S +257.80 257.45 m 257.80 262.79 l S +260.76 252.88 m 260.76 258.59 l S +261.59 243.00 m 261.59 258.89 l S +265.23 254.21 m 265.23 254.81 l S +267.48 258.72 m 267.48 259.39 l S +268.30 253.76 m 268.30 258.98 l S +270.31 259.21 m 270.31 259.81 l S +270.82 256.45 m 270.82 261.48 l S +273.60 255.72 m 273.60 260.83 l S +274.17 251.22 m 274.17 263.24 l S +275.58 255.12 m 275.58 255.76 l S +276.34 254.15 m 276.34 259.45 l S +288.44 258.65 m 288.44 259.51 l S +289.11 260.35 m 289.11 265.35 l S +291.01 263.57 m 291.01 264.39 l S +292.48 262.03 m 292.48 272.17 l S +293.57 262.83 m 293.57 263.46 l S +294.42 260.81 m 294.42 266.34 l S +297.04 262.57 m 297.04 267.68 l S +299.46 261.62 m 299.46 268.18 l S +301.51 267.32 m 301.51 267.92 l S +302.88 266.78 m 302.88 273.91 l S +305.34 261.47 m 305.34 274.67 l S +306.66 264.02 m 306.66 264.81 l S +309.18 264.32 m 309.18 265.03 l S +311.52 262.92 m 311.52 266.20 l S +311.76 264.12 m 311.76 264.82 l S +312.71 260.20 m 312.71 265.57 l S +314.38 263.70 m 314.38 264.53 l S +315.21 260.92 m 315.21 266.30 l S +316.98 263.80 m 316.98 264.66 l S +319.46 260.27 m 319.46 261.06 l S +320.22 259.19 m 320.22 264.94 l S +322.07 262.29 m 322.07 263.07 l S +324.64 265.38 m 324.64 266.28 l S +327.34 267.12 m 327.34 267.94 l S +329.95 264.54 m 329.95 265.33 l S +332.35 263.09 m 332.35 263.69 l S +340.30 262.49 m 340.30 263.05 l S +348.12 263.72 m 348.12 264.28 l S +350.72 262.72 m 350.72 263.50 l S +353.27 259.66 m 353.27 260.66 l S +355.88 261.54 m 355.88 262.59 l S +358.49 262.85 m 358.49 263.93 l S +361.07 264.99 m 361.07 265.92 l S +363.67 263.35 m 363.67 264.25 l S +366.27 262.94 m 366.27 263.84 l S +368.83 262.42 m 368.83 263.35 l S +371.46 262.31 m 371.46 262.90 l S +374.07 262.51 m 374.07 263.33 l S +379.33 262.16 m 379.33 263.05 l S +381.86 262.62 m 381.86 263.26 l S +384.46 261.43 m 384.46 262.06 l S +387.01 264.17 m 387.01 264.99 l S +389.65 264.43 m 389.65 265.29 l S +392.26 263.87 m 392.26 264.88 l S +399.99 263.07 m 399.99 263.97 l S +402.73 266.69 m 402.73 267.47 l S +405.19 269.92 m 405.19 270.78 l S +407.81 270.16 m 407.81 271.06 l S +408.40 264.51 m 408.40 269.28 l S +410.42 273.72 m 410.42 274.47 l S +411.51 269.49 m 411.51 275.64 l S +413.03 272.90 m 413.03 273.57 l S +415.63 278.57 m 415.63 279.25 l S +423.39 278.63 m 423.39 279.38 l S +426.02 278.24 m 426.02 279.10 l S +428.60 278.76 m 428.60 279.58 l S +431.24 278.28 m 431.24 279.28 l S +433.51 272.64 m 433.51 276.00 l S +433.78 272.85 m 433.78 273.78 l S +436.40 271.00 m 436.40 271.93 l S +439.00 269.62 m 439.00 270.48 l S +441.63 265.55 m 441.63 266.45 l S +444.21 264.75 m 444.21 265.76 l S +446.79 264.25 m 446.79 265.18 l S +449.51 264.04 m 449.51 264.86 l S +452.01 265.57 m 452.01 266.32 l S +454.59 267.64 m 454.59 268.39 l S +457.20 263.76 m 457.20 264.54 l S +461.98 263.20 m 461.98 266.67 l S +467.45 262.94 m 467.45 265.92 l S +472.86 265.91 m 472.86 266.76 l S +478.01 262.57 m 478.01 263.42 l S +483.26 261.80 m 483.26 262.70 l S +488.44 257.36 m 488.44 258.00 l S +492.21 241.22 m 492.21 258.35 l S +517.02 256.20 m 517.02 257.17 l S +522.22 257.36 m 522.22 258.29 l S +524.82 256.15 m 524.82 256.93 l S +527.42 254.97 m 527.42 255.98 l S +530.02 251.35 m 530.02 252.14 l S +532.62 253.63 m 532.62 254.64 l S +533.41 247.92 m 533.41 255.23 l S +535.22 259.04 m 535.22 259.97 l S +Q q +0.000 0.000 1.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +52.42 250.24 m 52.42 250.24 l S +52.42 250.24 m 47.74 250.24 l S +BT +0.000 0.000 1.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 14.60 252.05 Tm (SDSS g) Tj +ET +BT +/F2 1 Tf 8.00 0.00 -0.00 8.00 17.70 242.69 Tm (4808 A) Tj +ET +Q q 52.42 19.66 485.71 626.47 re W n +0.000 0.000 1.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +55.02 240.92 m 55.02 259.57 l S +53.72 259.57 m 56.32 259.57 l S +53.72 240.92 m 56.32 240.92 l S +BT +0.000 0.000 1.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 56.32 247.51 Tm (=10%) Tj +ET +1.000 0.000 0.000 RG +83.17 212.91 m 83.17 214.08 l S +86.42 213.23 m 86.42 217.08 l S +88.91 212.81 m 88.91 214.50 l S +89.07 215.72 m 89.07 218.33 l S +98.60 219.39 m 98.60 221.64 l S +99.30 219.11 m 99.30 220.76 l S +99.33 218.13 m 99.33 220.78 l S +101.14 220.39 m 101.14 221.68 l S +103.58 222.30 m 103.58 223.30 l S +106.26 221.94 m 106.26 223.02 l S +107.56 222.38 m 107.56 229.76 l S +107.66 222.18 m 107.66 223.99 l S +109.01 222.12 m 109.01 222.88 l S +109.69 222.32 m 109.69 223.48 l S +109.72 221.00 m 109.72 222.76 l S +110.11 221.34 m 110.11 229.92 l S +111.55 222.32 m 111.55 223.24 l S +112.27 222.04 m 112.27 223.20 l S +115.00 222.70 m 115.00 224.91 l S +117.45 226.15 m 117.45 227.56 l S +120.21 223.18 m 120.21 224.75 l S +122.78 224.27 m 122.78 225.83 l S +123.20 222.30 m 123.20 223.42 l S +125.47 227.09 m 125.47 228.94 l S +125.79 223.46 m 125.79 224.51 l S +127.40 222.42 m 127.40 223.54 l S +128.09 222.34 m 128.09 231.09 l S +128.17 217.61 m 128.17 220.53 l S +128.39 222.30 m 128.39 223.30 l S +129.92 220.62 m 129.92 221.46 l S +130.49 220.82 m 130.49 222.02 l S +130.61 222.68 m 130.61 224.45 l S +130.88 224.15 m 130.88 225.79 l S +131.00 218.91 m 131.00 219.99 l S +132.21 219.37 m 132.21 220.62 l S +133.40 216.60 m 133.40 224.07 l S +133.61 214.58 m 133.61 216.50 l S +135.66 219.87 m 135.66 222.52 l S +135.90 217.06 m 135.90 228.26 l S +136.19 219.03 m 136.19 220.76 l S +136.73 219.19 m 136.73 221.56 l S +138.56 217.27 m 138.56 227.01 l S +139.30 216.64 m 139.30 218.93 l S +140.91 216.74 m 140.91 218.67 l S +141.94 213.27 m 141.94 217.04 l S +142.58 214.10 m 142.58 215.30 l S +144.06 215.20 m 144.06 216.80 l S +145.40 216.92 m 145.40 219.45 l S +146.12 211.91 m 146.12 214.60 l S +146.32 207.32 m 146.32 209.56 l S +146.61 212.87 m 146.61 214.56 l S +148.79 212.67 m 148.79 215.68 l S +148.98 205.27 m 148.98 207.32 l S +151.54 204.57 m 151.54 206.85 l S +153.01 204.91 m 153.01 206.55 l S +164.65 189.56 m 164.65 193.17 l S +165.97 189.04 m 165.97 190.61 l S +167.08 187.19 m 167.08 191.09 l S +172.23 186.91 m 172.23 190.44 l S +176.38 188.86 m 176.38 190.26 l S +182.57 193.23 m 182.57 196.96 l S +185.28 193.49 m 185.28 196.82 l S +185.40 194.46 m 185.40 197.95 l S +187.90 189.34 m 187.90 200.09 l S +187.93 197.20 m 187.93 201.30 l S +189.51 198.03 m 189.51 198.95 l S +190.92 183.34 m 190.92 193.17 l S +192.94 190.73 m 192.94 194.14 l S +195.70 195.86 m 195.70 199.15 l S +195.87 200.53 m 195.87 204.43 l S +198.04 208.30 m 198.04 209.94 l S +198.47 206.79 m 198.47 207.96 l S +202.35 208.30 m 202.35 208.94 l S +204.98 211.49 m 204.98 212.41 l S +206.40 214.40 m 206.40 215.64 l S +208.82 218.99 m 208.82 221.80 l S +208.84 219.87 m 208.84 221.16 l S +208.90 215.70 m 208.90 225.25 l S +211.56 221.06 m 211.56 222.94 l S +213.55 224.83 m 213.55 226.55 l S +213.92 221.64 m 213.92 224.33 l S +214.02 222.48 m 214.02 224.05 l S +214.12 220.96 m 214.12 223.56 l S +215.39 224.99 m 215.39 226.39 l S +216.62 222.54 m 216.62 224.63 l S +216.83 225.95 m 216.83 228.12 l S +220.58 229.66 m 220.58 230.99 l S +220.76 226.81 m 220.76 229.14 l S +221.87 229.04 m 221.87 230.69 l S +222.03 230.16 m 222.03 232.21 l S +224.13 232.11 m 224.13 234.12 l S +224.30 231.53 m 224.30 233.01 l S +226.46 232.59 m 226.46 235.16 l S +231.06 236.00 m 231.06 237.16 l S +236.04 236.72 m 236.04 237.77 l S +241.31 232.17 m 241.31 233.41 l S +243.68 230.20 m 243.68 231.09 l S +244.15 225.81 m 244.15 229.22 l S +245.29 227.09 m 245.29 228.74 l S +245.42 223.66 m 245.42 228.84 l S +246.40 224.13 m 246.40 225.09 l S +248.01 217.87 m 248.01 226.25 l S +249.15 222.70 m 249.15 223.78 l S +249.42 222.10 m 249.42 224.99 l S +250.34 221.84 m 250.34 224.69 l S +252.55 225.83 m 252.55 227.56 l S +253.08 223.64 m 253.08 225.21 l S +253.20 221.98 m 253.20 233.29 l S +254.14 222.16 m 254.14 222.72 l S +254.38 223.78 m 254.38 226.55 l S +255.75 222.70 m 255.75 229.20 l S +257.09 220.70 m 257.09 223.06 l S +257.17 219.53 m 257.17 221.50 l S +258.16 220.90 m 258.16 223.62 l S +258.40 222.04 m 258.40 225.33 l S +260.86 220.37 m 260.86 228.08 l S +262.57 220.49 m 262.57 223.66 l S +263.50 213.45 m 263.50 225.05 l S +265.02 221.68 m 265.02 224.61 l S +268.34 221.50 m 268.34 223.46 l S +276.51 216.98 m 276.51 227.98 l S +277.65 219.31 m 277.65 219.91 l S +278.74 215.76 m 278.74 218.81 l S +279.10 219.05 m 279.10 234.98 l S +279.31 216.06 m 279.31 218.71 l S +281.54 216.90 m 281.54 219.27 l S +281.59 219.07 m 281.59 220.80 l S +281.72 213.81 m 281.72 221.00 l S +281.83 219.37 m 281.83 221.02 l S +282.75 218.91 m 282.75 220.23 l S +284.06 221.58 m 284.06 223.54 l S +284.38 219.23 m 284.38 230.10 l S +285.14 220.49 m 285.14 222.10 l S +286.72 223.70 m 286.72 225.19 l S +286.95 222.42 m 286.95 225.15 l S +287.81 222.14 m 287.81 224.91 l S +288.84 224.73 m 288.84 226.73 l S +289.54 222.66 m 289.54 225.27 l S +291.80 226.49 m 291.80 228.02 l S +293.48 224.31 m 293.48 227.15 l S +294.68 226.29 m 294.68 229.74 l S +295.52 227.17 m 295.52 228.50 l S +296.68 229.02 m 296.68 230.87 l S +298.19 227.90 m 298.19 229.38 l S +298.19 228.72 m 298.19 231.73 l S +299.20 229.04 m 299.20 231.01 l S +300.80 228.72 m 300.80 230.40 l S +300.85 228.36 m 300.85 232.01 l S +302.68 227.19 m 302.68 230.61 l S +303.36 228.08 m 303.36 229.56 l S +305.95 227.19 m 305.95 228.64 l S +307.11 226.09 m 307.11 227.94 l S +307.73 225.93 m 307.73 228.38 l S +308.55 227.05 m 308.55 228.66 l S +311.23 226.69 m 311.23 228.18 l S +312.54 224.19 m 312.54 228.80 l S +312.88 219.69 m 312.88 227.44 l S +312.89 225.37 m 312.89 228.10 l S +313.68 227.72 m 313.68 230.77 l S +313.78 226.43 m 313.78 228.00 l S +314.81 228.06 m 314.81 229.86 l S +315.16 226.87 m 315.16 228.44 l S +315.27 226.69 m 315.27 229.42 l S +315.57 226.67 m 315.57 229.68 l S +316.34 226.27 m 316.34 227.64 l S +317.51 227.56 m 317.51 229.40 l S +317.60 226.45 m 317.60 228.22 l S +318.17 224.07 m 318.17 228.36 l S +319.33 225.85 m 319.33 227.74 l S +320.12 226.63 m 320.12 228.32 l S +321.63 224.69 m 321.63 227.17 l S +322.56 225.79 m 322.56 227.64 l S +322.61 225.37 m 322.61 226.97 l S +323.21 224.47 m 323.21 228.40 l S +325.17 227.42 m 325.17 229.14 l S +325.79 226.51 m 325.79 228.64 l S +327.76 229.96 m 327.76 232.01 l S +328.38 228.88 m 328.38 230.97 l S +328.52 228.18 m 328.52 231.11 l S +330.70 228.16 m 330.70 229.28 l S +331.15 222.96 m 331.15 225.21 l S +332.00 227.52 m 332.00 229.32 l S +333.46 226.87 m 333.46 227.88 l S +333.68 224.55 m 333.68 228.88 l S +334.57 227.40 m 334.57 229.32 l S +335.65 227.42 m 335.65 229.14 l S +336.07 227.15 m 336.07 228.12 l S +337.07 224.27 m 337.07 226.35 l S +337.65 226.09 m 337.65 228.90 l S +338.33 225.65 m 338.33 227.21 l S +338.67 222.86 m 338.67 231.37 l S +338.94 225.23 m 338.94 226.79 l S +339.84 222.54 m 339.84 223.99 l S +340.03 223.76 m 340.03 226.05 l S +343.72 224.65 m 343.72 227.25 l S +344.11 222.02 m 344.11 223.62 l S +346.06 222.80 m 346.06 224.45 l S +346.72 223.62 m 346.72 225.63 l S +348.39 222.66 m 348.39 227.68 l S +348.63 226.09 m 348.63 227.78 l S +348.91 226.35 m 348.91 227.84 l S +349.13 227.09 m 349.13 227.94 l S +349.21 223.82 m 349.21 229.72 l S +351.25 225.85 m 351.25 227.54 l S +351.79 224.23 m 351.79 232.89 l S +352.93 225.79 m 352.93 228.28 l S +352.99 224.55 m 352.99 225.43 l S +353.76 224.93 m 353.76 226.89 l S +354.16 225.95 m 354.16 227.03 l S +354.41 216.70 m 354.41 226.09 l S +354.50 224.05 m 354.50 225.41 l S +355.51 223.84 m 355.51 225.93 l S +356.46 225.03 m 356.46 226.99 l S +357.06 224.35 m 357.06 225.87 l S +358.74 223.64 m 358.74 228.82 l S +359.20 226.89 m 359.20 228.62 l S +359.35 223.78 m 359.35 226.55 l S +359.41 226.59 m 359.41 228.28 l S +361.58 226.81 m 361.58 228.82 l S +361.60 226.93 m 361.60 228.70 l S +361.93 226.21 m 361.93 229.10 l S +361.98 226.93 m 361.98 228.58 l S +361.99 223.24 m 361.99 225.61 l S +364.22 226.11 m 364.22 228.20 l S +364.27 225.21 m 364.27 226.81 l S +364.30 225.71 m 364.30 228.60 l S +364.53 226.41 m 364.53 228.02 l S +364.58 225.53 m 364.58 227.21 l S +364.73 223.72 m 364.73 230.75 l S +365.75 225.39 m 365.75 227.72 l S +366.11 225.25 m 366.11 226.29 l S +366.83 225.85 m 366.83 227.50 l S +367.06 225.61 m 367.06 228.42 l S +367.39 220.68 m 367.39 228.90 l S +367.39 223.64 m 367.39 225.49 l S +367.57 225.81 m 367.57 229.74 l S +368.41 223.14 m 368.41 226.03 l S +368.83 226.15 m 368.83 227.28 l S +369.56 225.39 m 369.56 227.52 l S +369.58 225.09 m 369.58 226.73 l S +369.92 227.05 m 369.92 228.62 l S +370.21 225.53 m 370.21 230.30 l S +371.12 222.48 m 371.12 225.49 l S +371.25 225.95 m 371.25 227.40 l S +372.54 218.39 m 372.54 225.53 l S +372.63 226.49 m 372.63 229.70 l S +373.78 226.07 m 373.78 228.40 l S +373.89 225.17 m 373.89 226.65 l S +374.86 226.55 m 374.86 228.12 l S +375.13 220.64 m 375.13 230.22 l S +375.25 225.77 m 375.25 229.78 l S +376.20 223.80 m 376.20 226.01 l S +376.56 225.87 m 376.56 226.79 l S +377.54 226.47 m 377.54 228.76 l S +377.71 222.64 m 377.71 228.78 l S +378.66 225.95 m 378.66 228.96 l S +379.53 222.74 m 379.53 227.80 l S +380.19 226.23 m 380.19 227.64 l S +380.37 220.66 m 380.37 230.04 l S +382.51 225.69 m 382.51 227.86 l S +382.92 221.84 m 382.92 231.43 l S +383.02 225.49 m 383.02 228.66 l S +385.13 226.49 m 385.13 228.66 l S +385.59 222.36 m 385.59 228.10 l S +388.10 222.56 m 388.10 229.94 l S +390.25 228.64 m 390.25 230.52 l S +390.72 217.93 m 390.72 227.23 l S +392.00 226.63 m 392.00 228.84 l S +392.54 225.87 m 392.54 231.49 l S +392.81 228.76 m 392.81 230.61 l S +393.21 224.87 m 393.21 231.45 l S +394.60 227.40 m 394.60 228.72 l S +395.56 228.34 m 395.56 230.34 l S +398.04 227.70 m 398.04 229.66 l S +398.19 227.54 m 398.19 229.54 l S +398.65 227.01 m 398.65 229.70 l S +400.79 228.72 m 400.79 230.56 l S +400.85 227.92 m 400.85 230.04 l S +400.93 227.54 m 400.93 230.18 l S +403.28 228.94 m 403.28 230.91 l S +403.42 228.88 m 403.42 231.57 l S +403.54 226.81 m 403.54 229.58 l S +405.19 231.41 m 405.19 232.65 l S +405.83 231.53 m 405.83 233.37 l S +406.26 230.67 m 406.26 233.39 l S +408.51 233.63 m 408.51 236.32 l S +408.65 230.87 m 408.65 232.55 l S +410.20 234.38 m 410.20 237.02 l S +410.35 234.88 m 410.35 235.84 l S +412.71 235.48 m 412.71 238.01 l S +412.76 239.65 m 412.76 240.49 l S +413.59 237.93 m 413.59 240.09 l S +414.06 239.69 m 414.06 242.62 l S +415.26 238.97 m 415.26 242.98 l S +415.31 243.14 m 415.31 246.27 l S +416.40 241.70 m 416.40 244.67 l S +416.68 243.72 m 416.68 245.81 l S +419.08 243.30 m 419.08 245.95 l S +419.18 241.64 m 419.18 250.59 l S +419.24 243.38 m 419.24 245.95 l S +420.60 244.21 m 420.60 247.54 l S +420.67 244.19 m 420.67 244.91 l S +421.71 237.20 m 421.71 244.99 l S +423.16 240.82 m 423.16 242.18 l S +424.12 241.78 m 424.12 244.91 l S +425.86 241.56 m 425.86 242.68 l S +426.90 237.83 m 426.90 246.53 l S +428.60 241.26 m 428.60 242.14 l S +429.48 237.75 m 429.48 245.85 l S +431.14 240.23 m 431.14 241.24 l S +432.11 236.98 m 432.11 239.79 l S +434.45 232.41 m 434.45 235.22 l S +434.48 231.45 m 434.48 237.83 l S +434.54 232.27 m 434.54 234.36 l S +436.40 233.45 m 436.40 234.78 l S +436.96 229.40 m 436.96 235.46 l S +437.11 233.47 m 437.11 236.92 l S +437.38 231.11 m 437.38 233.83 l S +438.74 231.49 m 438.74 235.22 l S +440.00 231.47 m 440.00 234.08 l S +441.29 227.30 m 441.29 233.27 l S +441.36 230.99 m 441.36 232.91 l S +442.51 228.46 m 442.51 232.71 l S +442.52 226.23 m 442.52 227.84 l S +443.80 228.20 m 443.80 232.53 l S +443.96 229.46 m 443.96 232.71 l S +445.17 229.50 m 445.17 231.15 l S +446.48 229.20 m 446.48 233.01 l S +446.50 226.73 m 446.50 228.98 l S +447.39 225.11 m 447.39 230.61 l S +449.07 225.79 m 449.07 229.24 l S +449.09 226.57 m 449.09 228.86 l S +449.63 226.23 m 449.63 231.93 l S +450.50 229.32 m 450.50 231.93 l S +452.23 225.63 m 452.23 231.17 l S +452.90 226.19 m 452.90 232.97 l S +453.11 226.91 m 453.11 229.56 l S +454.42 227.11 m 454.42 229.44 l S +455.30 227.84 m 455.30 229.60 l S +457.17 226.83 m 457.17 227.96 l S +458.04 222.50 m 458.04 231.21 l S +459.59 226.43 m 459.59 228.00 l S +460.40 225.01 m 460.40 230.42 l S +460.60 223.92 m 460.60 225.69 l S +460.67 226.39 m 460.67 233.05 l S +460.89 225.55 m 460.89 229.56 l S +462.20 226.17 m 462.20 227.70 l S +463.00 226.03 m 463.00 231.65 l S +463.08 226.11 m 463.08 227.92 l S +463.25 223.06 m 463.25 228.96 l S +463.38 227.32 m 463.38 230.36 l S +464.76 228.82 m 464.76 232.59 l S +465.61 227.90 m 465.61 229.70 l S +465.95 221.48 m 465.95 228.30 l S +465.99 226.65 m 465.99 229.42 l S +467.47 227.19 m 467.47 228.28 l S +467.83 225.53 m 467.83 231.07 l S +468.19 227.03 m 468.19 228.76 l S +468.38 228.20 m 468.38 229.80 l S +468.46 220.25 m 468.46 233.77 l S +468.55 226.43 m 468.55 229.40 l S +469.85 224.85 m 469.85 228.06 l S +470.77 227.23 m 470.77 235.02 l S +470.90 227.70 m 470.90 229.58 l S +471.00 228.18 m 471.00 229.98 l S +471.04 223.02 m 471.04 231.29 l S +471.21 228.40 m 471.21 231.09 l S +473.50 226.83 m 473.50 228.52 l S +473.67 225.03 m 473.67 231.01 l S +473.95 227.60 m 473.95 230.28 l S +475.61 225.55 m 475.61 231.01 l S +480.53 225.51 m 480.53 226.15 l S +481.39 224.99 m 481.39 226.75 l S +481.47 226.65 m 481.47 232.35 l S +482.90 224.07 m 482.90 226.43 l S +482.92 223.72 m 482.92 224.37 l S +483.75 218.15 m 483.75 226.33 l S +484.08 221.48 m 484.08 227.90 l S +485.37 225.55 m 485.37 228.16 l S +485.42 222.48 m 485.42 225.13 l S +485.67 224.61 m 485.67 225.09 l S +486.45 224.15 m 486.45 225.87 l S +486.84 222.20 m 486.84 224.89 l S +488.06 223.20 m 488.06 225.21 l S +489.11 221.04 m 489.11 222.80 l S +490.75 221.94 m 490.75 223.18 l S +491.65 220.64 m 491.65 222.48 l S +491.86 218.35 m 491.86 228.06 l S +495.97 220.01 m 495.97 221.02 l S +496.05 217.20 m 496.05 219.77 l S +496.73 215.30 m 496.73 223.60 l S +496.84 216.84 m 496.84 219.29 l S +497.07 213.37 m 497.07 224.29 l S +499.32 211.59 m 499.32 220.25 l S +499.45 216.18 m 499.45 217.95 l S +501.13 214.42 m 501.13 215.06 l S +502.04 216.30 m 502.04 218.19 l S +503.81 213.03 m 503.81 213.63 l S +506.43 210.63 m 506.43 211.39 l S +507.45 200.84 m 507.45 212.19 l S +509.62 205.59 m 509.62 215.22 l S +510.07 206.19 m 510.07 217.87 l S +510.19 210.48 m 510.19 214.74 l S +512.63 210.20 m 512.63 213.37 l S +512.64 208.48 m 512.64 218.31 l S +512.76 209.88 m 512.76 212.73 l S +514.11 216.76 m 514.11 219.21 l S +514.86 209.98 m 514.86 219.13 l S +515.28 214.22 m 515.28 223.60 l S +516.76 219.25 m 516.76 220.53 l S +517.87 209.48 m 517.87 230.06 l S +519.39 220.09 m 519.39 223.74 l S +522.87 218.67 m 522.87 221.32 l S +523.11 213.49 m 523.11 227.46 l S +524.34 214.76 m 524.34 217.37 l S +525.44 217.57 m 525.44 219.33 l S +525.57 212.09 m 525.57 217.35 l S +525.62 199.75 m 525.62 229.96 l S +528.22 210.65 m 528.22 216.02 l S +528.24 214.90 m 528.24 223.76 l S +529.64 208.72 m 529.64 212.49 l S +530.65 216.68 m 530.65 219.61 l S +530.86 216.78 m 530.86 223.68 l S +530.96 213.35 m 530.96 221.82 l S +532.95 213.29 m 532.95 222.16 l S +533.25 215.34 m 533.25 218.15 l S +533.44 212.07 m 533.44 230.32 l S +535.87 221.24 m 535.87 224.17 l S +536.03 225.79 m 536.03 234.58 l S +Q q +1.000 0.000 0.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +52.42 217.18 m 52.42 217.18 l S +52.42 217.18 m 47.74 217.18 l S +BT +1.000 0.000 0.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 5.26 218.99 Tm (Johnson V) Tj +ET +BT +/F2 1 Tf 8.00 0.00 -0.00 8.00 17.70 209.63 Tm (5386 A) Tj +ET +Q q 52.42 19.66 485.71 626.47 re W n +1.000 0.000 0.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +55.02 207.15 m 55.02 227.21 l S +53.72 227.21 m 56.32 227.21 l S +53.72 207.15 m 56.32 207.15 l S +BT +1.000 0.000 0.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 56.32 214.45 Tm (=10%) Tj +ET +0.000 0.000 1.000 RG +86.62 184.31 m 86.62 187.62 l S +88.81 179.06 m 88.81 179.52 l S +91.36 181.17 m 91.36 182.08 l S +93.80 182.23 m 93.80 183.54 l S +96.45 185.45 m 96.45 185.97 l S +97.12 186.82 m 97.12 190.25 l S +99.13 186.02 m 99.13 186.88 l S +100.43 167.99 m 100.43 192.59 l S +101.35 178.20 m 101.35 194.36 l S +101.63 183.83 m 101.63 186.51 l S +104.22 186.08 m 104.22 186.71 l S +106.53 188.96 m 106.53 192.27 l S +106.77 189.53 m 106.77 190.16 l S +109.04 190.93 m 109.04 192.02 l S +109.14 186.31 m 109.14 189.79 l S +109.73 189.25 m 109.73 192.45 l S +111.83 188.65 m 111.83 190.36 l S +112.81 187.45 m 112.81 191.45 l S +117.55 189.62 m 117.55 192.93 l S +119.56 190.13 m 119.56 192.82 l S +120.45 187.28 m 120.45 191.28 l S +123.13 193.22 m 123.13 196.58 l S +125.84 189.28 m 125.84 193.22 l S +130.54 188.28 m 130.54 192.16 l S +132.70 188.14 m 132.70 188.48 l S +133.63 187.39 m 133.63 192.13 l S +135.37 184.85 m 135.37 186.62 l S +135.99 185.62 m 135.99 189.11 l S +136.90 180.12 m 136.90 195.53 l S +140.67 182.94 m 140.67 184.20 l S +141.18 185.02 m 141.18 188.51 l S +143.28 182.20 m 143.28 183.74 l S +146.37 179.49 m 146.37 185.31 l S +148.26 179.63 m 148.26 183.80 l S +148.32 178.63 m 148.32 179.49 l S +151.10 174.15 m 151.10 175.06 l S +151.67 177.12 m 151.67 185.91 l S +153.26 171.64 m 153.26 181.29 l S +153.54 173.18 m 153.54 173.98 l S +155.96 136.39 m 155.96 179.03 l S +161.46 162.25 m 161.46 162.82 l S +164.12 160.56 m 164.12 161.08 l S +166.29 160.59 m 166.29 161.28 l S +179.31 154.88 m 179.31 155.51 l S +181.70 159.08 m 181.70 159.71 l S +184.41 157.57 m 184.41 158.20 l S +185.17 155.08 m 185.17 160.05 l S +189.50 157.85 m 189.50 158.31 l S +192.08 161.14 m 192.08 161.53 l S +192.90 154.17 m 192.90 159.14 l S +194.67 161.14 m 194.67 161.59 l S +197.32 162.93 m 197.32 163.39 l S +198.26 160.42 m 198.26 164.93 l S +199.94 164.99 m 199.94 165.50 l S +200.63 164.10 m 200.63 168.38 l S +202.50 169.44 m 202.50 170.01 l S +211.27 187.56 m 211.27 193.33 l S +213.22 184.28 m 213.22 184.80 l S +213.49 187.59 m 213.49 193.02 l S +215.93 193.96 m 215.93 194.47 l S +218.34 188.62 m 218.34 196.33 l S +218.38 195.53 m 218.38 196.27 l S +220.84 198.04 m 220.84 198.84 l S +220.91 184.97 m 220.91 211.97 l S +221.25 191.19 m 221.25 196.33 l S +226.71 193.79 m 226.71 197.50 l S +229.73 193.82 m 229.73 197.93 l S +231.81 193.73 m 231.81 198.41 l S +234.40 194.70 m 234.40 198.52 l S +240.20 194.07 m 240.20 198.47 l S +240.68 194.96 m 240.68 214.88 l S +249.52 189.56 m 249.52 190.19 l S +250.60 189.45 m 250.60 193.39 l S +251.94 180.97 m 251.94 210.37 l S +251.99 191.93 m 251.99 192.50 l S +253.62 185.57 m 253.62 198.41 l S +257.80 186.08 m 257.80 190.25 l S +260.76 185.71 m 260.76 189.53 l S +261.59 184.08 m 261.59 195.33 l S +265.23 184.25 m 265.23 184.88 l S +268.31 183.11 m 268.31 187.91 l S +270.84 180.06 m 270.84 183.94 l S +273.51 180.91 m 273.51 186.45 l S +275.47 181.54 m 275.47 185.08 l S +275.58 184.45 m 275.58 185.20 l S +276.35 177.43 m 276.35 187.25 l S +277.71 188.31 m 277.71 192.93 l S +288.45 189.28 m 288.45 190.25 l S +289.11 188.68 m 289.11 192.50 l S +291.01 190.90 m 291.01 191.87 l S +293.57 192.05 m 293.57 192.62 l S +294.43 189.88 m 294.43 194.56 l S +295.89 186.71 m 295.89 193.33 l S +297.05 190.30 m 297.05 194.36 l S +299.46 189.91 m 299.46 196.64 l S +301.14 189.51 m 301.14 195.50 l S +301.51 196.07 m 301.51 196.70 l S +302.88 195.36 m 302.88 201.98 l S +306.67 197.04 m 306.67 197.95 l S +309.18 197.90 m 309.18 198.87 l S +311.52 180.97 m 311.52 204.20 l S +311.76 193.64 m 311.76 194.39 l S +312.71 190.82 m 312.71 195.33 l S +314.38 196.33 m 314.38 197.30 l S +315.21 190.73 m 315.21 195.07 l S +316.98 194.36 m 316.98 195.33 l S +319.46 191.73 m 319.46 192.59 l S +320.22 189.19 m 320.22 194.16 l S +322.07 193.93 m 322.07 194.84 l S +324.65 193.90 m 324.65 194.81 l S +327.34 193.30 m 327.34 194.04 l S +329.96 194.21 m 329.96 194.90 l S +332.35 192.22 m 332.35 192.79 l S +340.30 189.51 m 340.30 190.08 l S +342.84 189.62 m 342.84 190.02 l S +350.72 190.25 m 350.72 191.16 l S +353.27 189.08 m 353.27 190.22 l S +355.88 188.11 m 355.88 189.31 l S +366.27 196.07 m 366.27 197.04 l S +368.84 192.56 m 368.84 193.42 l S +374.07 192.59 m 374.07 193.67 l S +379.33 190.50 m 379.33 191.42 l S +381.86 191.33 m 381.86 192.13 l S +384.47 189.88 m 384.47 190.50 l S +387.01 193.22 m 387.01 194.36 l S +389.65 195.70 m 389.65 196.56 l S +392.26 195.41 m 392.26 196.61 l S +394.83 194.64 m 394.83 195.78 l S +399.99 194.41 m 399.99 195.56 l S +402.73 196.36 m 402.73 197.44 l S +405.20 197.53 m 405.20 198.61 l S +407.46 197.01 m 407.46 199.81 l S +407.82 197.90 m 407.82 198.92 l S +408.41 192.45 m 408.41 196.10 l S +410.42 199.21 m 410.42 200.24 l S +411.52 193.99 m 411.52 197.35 l S +413.03 200.84 m 413.03 201.64 l S +415.63 201.32 m 415.63 202.12 l S +418.41 207.52 m 418.41 208.20 l S +420.39 211.11 m 420.39 214.99 l S +423.39 207.86 m 423.39 208.77 l S +426.02 209.83 m 426.02 210.97 l S +428.60 207.57 m 428.60 208.77 l S +431.24 209.83 m 431.24 210.97 l S +433.52 192.62 m 433.52 212.71 l S +433.78 203.38 m 433.78 204.58 l S +436.40 202.58 m 436.40 203.78 l S +439.01 199.98 m 439.01 201.24 l S +441.63 197.87 m 441.63 199.01 l S +444.22 196.27 m 444.22 197.58 l S +446.80 195.33 m 446.80 196.53 l S +449.51 197.04 m 449.51 198.30 l S +452.01 194.44 m 452.01 195.47 l S +454.60 194.56 m 454.60 195.64 l S +457.20 193.76 m 457.20 194.96 l S +461.99 186.42 m 461.99 206.80 l S +467.46 188.59 m 467.46 206.29 l S +472.86 196.30 m 472.86 197.27 l S +475.03 194.19 m 475.03 198.92 l S +477.55 192.33 m 477.55 196.67 l S +478.01 196.21 m 478.01 197.41 l S +483.26 194.39 m 483.26 195.53 l S +492.22 172.61 m 492.22 194.30 l S +517.02 186.48 m 517.02 187.74 l S +522.22 184.63 m 522.22 185.94 l S +524.82 189.08 m 524.82 190.16 l S +527.43 185.54 m 527.43 186.62 l S +530.02 185.74 m 530.02 186.82 l S +532.62 186.19 m 532.62 187.51 l S +533.42 188.51 m 533.42 193.99 l S +535.22 186.65 m 535.22 187.85 l S +535.87 189.02 m 535.87 194.56 l S +Q q +0.000 0.000 1.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +52.42 184.13 m 52.42 184.13 l S +52.42 184.13 m 47.74 184.13 l S +BT +0.000 0.000 1.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 16.38 185.93 Tm (SDSS r) Tj +ET +BT +/F2 1 Tf 8.00 0.00 -0.00 8.00 17.70 176.57 Tm (6288 A) Tj +ET +Q q 52.42 19.66 485.71 626.47 re W n +0.000 0.000 1.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +55.02 176.99 m 55.02 191.26 l S +53.72 191.26 m 56.32 191.26 l S +53.72 176.99 m 56.32 176.99 l S +BT +0.000 0.000 1.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 56.32 181.39 Tm (=5%) Tj +ET +1.000 0.000 0.000 RG +83.05 139.31 m 83.05 148.17 l S +83.19 144.00 m 83.19 144.89 l S +85.69 146.69 m 85.69 156.70 l S +88.32 146.71 m 88.32 155.57 l S +96.12 140.59 m 96.12 150.02 l S +98.62 150.44 m 98.62 152.32 l S +101.17 155.44 m 101.17 156.96 l S +103.60 155.13 m 103.60 156.23 l S +106.27 152.27 m 106.27 153.36 l S +109.03 152.21 m 109.03 155.71 l S +111.57 156.15 m 111.57 157.03 l S +127.25 159.04 m 127.25 159.82 l S +129.81 156.36 m 129.81 157.56 l S +132.22 155.44 m 132.22 156.54 l S +132.40 151.04 m 132.40 157.87 l S +147.84 141.22 m 147.84 142.83 l S +160.83 132.28 m 160.83 133.58 l S +166.01 123.60 m 166.01 124.48 l S +172.27 120.68 m 172.27 124.17 l S +176.39 121.49 m 176.39 122.79 l S +185.42 127.33 m 185.42 130.24 l S +202.36 139.83 m 202.36 141.14 l S +202.82 130.69 m 202.82 139.76 l S +204.99 145.07 m 204.99 145.91 l S +205.34 134.62 m 205.34 144.06 l S +207.24 146.58 m 207.24 147.63 l S +208.81 145.46 m 208.81 148.33 l S +210.53 136.58 m 210.53 146.69 l S +213.00 154.17 m 213.00 163.55 l S +213.78 150.65 m 213.78 152.42 l S +215.40 154.87 m 215.40 156.17 l S +220.59 160.63 m 220.59 161.72 l S +225.76 170.38 m 225.76 178.66 l S +231.07 169.86 m 231.07 170.74 l S +231.25 169.18 m 231.25 177.10 l S +235.95 171.26 m 235.95 172.51 l S +236.61 169.05 m 236.61 177.75 l S +239.05 166.10 m 239.05 177.41 l S +241.33 168.97 m 241.33 170.69 l S +243.79 166.96 m 243.79 168.32 l S +246.42 162.66 m 246.42 163.91 l S +249.16 159.48 m 249.16 160.42 l S +250.35 157.89 m 250.35 159.77 l S +254.15 161.57 m 254.15 162.56 l S +257.00 154.43 m 257.00 155.57 l S +257.23 151.98 m 257.23 160.47 l S +258.15 154.01 m 258.15 155.68 l S +270.00 144.37 m 270.00 150.78 l S +275.40 148.85 m 275.40 154.90 l S +277.43 153.23 m 277.43 154.43 l S +298.86 161.15 m 298.86 169.54 l S +309.99 155.31 m 309.99 157.09 l S +312.54 158.18 m 312.54 160.16 l S +315.26 158.86 m 315.26 160.53 l S +324.72 155.52 m 324.72 165.69 l S +335.13 156.83 m 335.13 162.51 l S +343.71 157.19 m 343.71 158.65 l S +346.38 151.41 m 346.38 153.23 l S +353.42 146.53 m 353.42 152.89 l S +358.11 158.47 m 358.11 162.43 l S +358.55 145.54 m 358.55 154.82 l S +359.34 156.23 m 359.34 158.00 l S +361.93 158.39 m 361.93 160.16 l S +363.46 157.32 m 363.46 168.89 l S +364.30 158.47 m 364.30 160.24 l S +366.32 156.07 m 366.32 166.60 l S +367.14 158.94 m 367.14 160.55 l S +368.84 159.93 m 368.84 160.86 l S +371.26 158.44 m 371.26 168.34 l S +371.26 158.39 m 371.26 159.64 l S +371.36 156.51 m 371.36 160.21 l S +373.51 158.08 m 373.51 161.93 l S +373.81 159.82 m 373.81 161.59 l S +376.57 159.56 m 376.57 160.71 l S +377.59 158.52 m 377.59 160.14 l S +379.27 153.07 m 379.27 164.80 l S +381.81 150.88 m 381.81 158.91 l S +384.29 152.08 m 384.29 159.22 l S +387.87 154.82 m 387.87 157.16 l S +392.01 157.76 m 392.01 159.69 l S +394.61 160.58 m 394.61 162.04 l S +398.42 160.63 m 398.42 162.30 l S +401.00 160.94 m 401.00 162.61 l S +403.41 159.95 m 403.41 161.78 l S +405.20 160.68 m 405.20 163.86 l S +410.37 167.95 m 410.37 169.05 l S +410.45 158.91 m 410.45 165.43 l S +412.92 175.15 m 412.92 182.29 l S +414.05 171.29 m 414.05 173.43 l S +415.68 164.93 m 415.68 170.82 l S +419.27 175.56 m 419.27 178.38 l S +421.66 178.72 m 421.66 181.27 l S +423.17 172.67 m 423.17 174.29 l S +423.41 172.33 m 423.41 178.79 l S +425.87 173.43 m 425.87 174.16 l S +428.53 173.01 m 428.53 179.26 l S +428.53 174.57 m 428.53 176.55 l S +431.22 174.52 m 431.22 176.40 l S +431.29 172.51 m 431.29 183.77 l S +436.35 170.22 m 436.35 171.37 l S +437.37 165.48 m 437.37 167.51 l S +440.05 165.16 m 440.05 167.67 l S +441.37 167.07 m 441.37 168.63 l S +446.52 157.87 m 446.52 159.85 l S +446.98 160.08 m 446.98 168.37 l S +449.10 159.85 m 449.10 161.72 l S +450.45 162.38 m 450.45 164.15 l S +453.12 163.11 m 453.12 164.88 l S +454.44 160.14 m 454.44 162.22 l S +457.12 163.68 m 457.12 164.98 l S +459.61 161.83 m 459.61 163.08 l S +460.89 157.76 m 460.89 161.10 l S +462.21 161.41 m 462.21 162.66 l S +463.43 162.56 m 463.43 164.64 l S +465.99 162.64 m 465.99 164.57 l S +467.42 162.64 m 467.42 163.89 l S +468.54 160.89 m 468.54 162.72 l S +471.22 163.97 m 471.22 165.89 l S +473.94 163.03 m 473.94 166.57 l S +480.54 161.93 m 480.54 163.34 l S +482.93 160.32 m 482.93 160.89 l S +485.68 159.17 m 485.68 159.95 l S +486.83 160.34 m 486.83 162.53 l S +490.76 153.05 m 490.76 153.57 l S +495.98 153.88 m 495.98 154.51 l S +501.14 150.55 m 501.14 151.69 l S +503.82 149.37 m 503.82 150.10 l S +506.40 146.43 m 506.40 147.05 l S +510.19 142.54 m 510.19 144.53 l S +511.45 143.07 m 511.45 146.61 l S +512.76 145.80 m 512.76 148.20 l S +514.08 146.06 m 514.08 147.26 l S +516.77 150.36 m 516.77 151.41 l S +519.44 154.04 m 519.44 155.60 l S +525.74 155.65 m 525.74 157.37 l S +530.95 156.25 m 530.95 157.71 l S +Q q +1.000 0.000 0.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +52.42 151.07 m 52.42 151.07 l S +52.42 151.07 m 47.74 151.07 l S +BT +1.000 0.000 0.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 4.82 152.87 Tm (Johnson R) Tj +ET +BT +/F2 1 Tf 8.00 0.00 -0.00 8.00 17.70 143.51 Tm (6499 A) Tj +ET +Q q 52.42 19.66 485.71 626.47 re W n +1.000 0.000 0.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +55.02 144.55 m 55.02 157.58 l S +53.72 157.58 m 56.32 157.58 l S +53.72 144.55 m 56.32 144.55 l S +BT +1.000 0.000 0.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 56.32 148.33 Tm (=5%) Tj +ET +0.000 0.000 1.000 RG +86.63 118.23 m 86.63 119.91 l S +88.81 114.80 m 88.81 115.60 l S +91.36 115.94 m 91.36 116.75 l S +93.80 119.40 m 93.80 120.21 l S +96.45 120.31 m 96.45 121.32 l S +97.12 121.18 m 97.12 123.81 l S +99.13 120.85 m 99.13 121.92 l S +101.63 122.33 m 101.63 124.88 l S +104.22 121.45 m 104.22 124.28 l S +106.76 124.61 m 106.76 125.02 l S +109.04 124.55 m 109.04 125.55 l S +109.73 121.18 m 109.73 125.29 l S +111.83 127.13 m 111.83 128.08 l S +112.82 124.41 m 112.82 128.58 l S +115.07 127.10 m 115.07 129.12 l S +117.56 127.30 m 117.56 129.66 l S +119.56 128.65 m 119.56 130.39 l S +120.46 128.88 m 120.46 131.24 l S +123.13 128.55 m 123.13 131.44 l S +125.85 129.22 m 125.85 132.65 l S +130.54 123.94 m 130.54 127.10 l S +132.70 123.67 m 132.70 125.22 l S +133.63 123.50 m 133.63 127.60 l S +135.37 123.40 m 135.37 124.14 l S +135.99 122.76 m 135.99 125.18 l S +140.66 118.06 m 140.66 120.88 l S +141.18 121.39 m 141.18 124.01 l S +143.28 119.70 m 143.28 120.04 l S +146.37 117.05 m 146.37 120.14 l S +148.32 118.09 m 148.32 118.97 l S +151.10 114.70 m 151.10 115.44 l S +151.68 113.79 m 151.68 120.31 l S +153.26 113.02 m 153.26 119.40 l S +153.54 111.07 m 153.54 111.80 l S +155.97 103.80 m 155.97 111.60 l S +158.80 104.98 m 158.80 105.85 l S +161.46 100.71 m 161.46 101.38 l S +164.12 94.06 m 164.12 94.59 l S +166.29 96.64 m 166.29 97.52 l S +168.76 85.85 m 168.76 92.31 l S +176.81 90.76 m 176.81 97.96 l S +179.31 96.21 m 179.31 96.81 l S +181.70 91.70 m 181.70 92.44 l S +184.42 94.29 m 184.42 94.96 l S +185.18 90.53 m 185.18 94.69 l S +186.89 95.53 m 186.89 96.07 l S +189.50 95.06 m 189.50 95.53 l S +192.08 95.57 m 192.08 96.04 l S +192.88 93.15 m 192.88 96.38 l S +194.67 98.86 m 194.67 99.40 l S +197.32 97.75 m 197.32 98.22 l S +198.26 99.33 m 198.26 102.56 l S +199.94 103.94 m 199.94 104.54 l S +200.63 104.71 m 200.63 108.07 l S +202.50 109.86 m 202.50 110.46 l S +211.27 119.13 m 211.27 126.19 l S +213.22 120.44 m 213.22 121.12 l S +213.50 119.44 m 213.50 125.69 l S +218.35 125.79 m 218.35 130.09 l S +220.84 131.10 m 220.84 131.91 l S +221.25 128.24 m 221.25 133.69 l S +226.72 132.31 m 226.72 135.54 l S +229.77 132.65 m 229.77 140.65 l S +231.81 133.66 m 231.81 138.77 l S +234.41 137.19 m 234.41 140.82 l S +240.21 137.25 m 240.21 141.69 l S +241.76 140.45 m 241.76 141.39 l S +244.35 137.15 m 244.35 138.09 l S +246.90 134.33 m 246.90 135.34 l S +250.60 125.08 m 250.60 132.08 l S +251.99 127.54 m 251.99 128.14 l S +253.62 127.34 m 253.62 135.61 l S +254.45 126.19 m 254.45 129.02 l S +254.69 129.49 m 254.69 134.73 l S +257.80 126.43 m 257.80 130.33 l S +260.77 125.59 m 260.77 127.87 l S +261.60 121.28 m 261.60 126.80 l S +268.31 120.58 m 268.31 122.86 l S +270.83 119.87 m 270.83 122.16 l S +273.52 120.11 m 273.52 123.00 l S +275.48 121.89 m 275.48 123.84 l S +275.59 121.39 m 275.59 122.19 l S +276.35 119.23 m 276.35 121.92 l S +277.72 117.22 m 277.72 119.77 l S +288.45 124.44 m 288.45 125.39 l S +289.11 123.23 m 289.11 126.60 l S +291.01 123.67 m 291.01 124.61 l S +293.58 125.82 m 293.58 126.36 l S +294.43 125.89 m 294.43 130.73 l S +295.90 126.63 m 295.90 130.53 l S +297.12 126.70 m 297.12 131.34 l S +299.46 126.23 m 299.46 134.36 l S +301.14 129.86 m 301.14 133.55 l S +301.51 132.04 m 301.51 132.65 l S +302.89 130.53 m 302.89 137.86 l S +303.89 132.34 m 303.89 132.88 l S +306.67 132.14 m 306.67 133.02 l S +309.18 131.50 m 309.18 132.45 l S +311.52 130.33 m 311.52 133.55 l S +311.76 130.73 m 311.76 131.47 l S +312.71 126.63 m 312.71 131.20 l S +314.38 130.23 m 314.38 131.17 l S +315.21 128.04 m 315.21 132.28 l S +316.98 130.19 m 316.98 131.13 l S +319.46 127.57 m 319.46 128.51 l S +320.22 126.06 m 320.22 131.37 l S +322.07 126.93 m 322.07 127.87 l S +324.65 127.71 m 324.65 128.65 l S +327.34 128.18 m 327.34 128.98 l S +329.96 128.88 m 329.96 129.62 l S +332.35 128.01 m 332.35 128.55 l S +340.30 126.29 m 340.30 126.90 l S +345.36 124.07 m 345.36 124.55 l S +348.12 124.95 m 348.12 125.76 l S +350.72 127.10 m 350.72 128.11 l S +353.28 124.98 m 353.28 125.92 l S +355.88 126.06 m 355.88 127.20 l S +358.49 127.57 m 358.49 128.71 l S +361.08 127.64 m 361.08 128.78 l S +363.67 129.22 m 363.67 130.29 l S +366.28 127.84 m 366.28 128.71 l S +368.84 126.93 m 368.84 127.74 l S +371.46 127.60 m 371.46 128.28 l S +374.08 128.21 m 374.08 129.22 l S +379.33 126.87 m 379.33 128.08 l S +381.86 125.29 m 381.86 126.02 l S +384.47 127.57 m 384.47 128.44 l S +387.02 128.14 m 387.02 129.15 l S +389.66 128.48 m 389.66 129.42 l S +392.26 129.02 m 392.26 130.02 l S +394.83 128.68 m 394.83 129.76 l S +397.46 129.66 m 397.46 130.60 l S +399.99 129.29 m 399.99 130.50 l S +405.20 131.13 m 405.20 132.28 l S +407.47 133.52 m 407.47 135.40 l S +407.82 132.34 m 407.82 133.35 l S +408.42 131.44 m 408.42 135.34 l S +410.42 132.82 m 410.42 133.76 l S +411.53 132.11 m 411.53 135.34 l S +413.03 137.89 m 413.03 138.77 l S +415.27 136.51 m 415.27 138.26 l S +415.64 139.13 m 415.64 140.01 l S +418.42 139.37 m 418.42 140.11 l S +420.40 140.51 m 420.40 142.66 l S +423.39 142.46 m 423.39 143.27 l S +426.02 145.56 m 426.02 146.63 l S +428.61 144.28 m 428.61 145.42 l S +430.97 145.12 m 430.97 148.68 l S +431.24 146.33 m 431.24 147.54 l S +433.79 141.19 m 433.79 142.40 l S +436.40 139.91 m 436.40 140.98 l S +439.01 139.17 m 439.01 140.31 l S +441.64 138.26 m 441.64 139.34 l S +444.22 137.05 m 444.22 138.33 l S +446.80 130.29 m 446.80 131.44 l S +449.51 132.21 m 449.51 133.29 l S +452.01 133.52 m 452.01 134.66 l S +454.60 135.44 m 454.60 136.45 l S +457.20 132.85 m 457.20 133.92 l S +467.47 132.18 m 467.47 134.93 l S +472.86 133.66 m 472.86 134.66 l S +475.04 131.67 m 475.04 134.70 l S +477.56 130.23 m 477.56 133.12 l S +478.01 132.71 m 478.01 133.79 l S +483.26 130.13 m 483.26 131.27 l S +488.44 125.65 m 488.44 126.53 l S +491.02 123.47 m 491.02 124.07 l S +492.23 122.60 m 492.23 127.30 l S +495.88 126.02 m 495.88 128.11 l S +517.03 121.28 m 517.03 122.49 l S +522.23 120.11 m 522.23 121.45 l S +524.82 122.53 m 524.82 123.47 l S +527.43 119.91 m 527.43 121.12 l S +530.03 119.60 m 530.03 120.75 l S +532.63 124.04 m 532.63 125.39 l S +533.43 118.73 m 533.43 124.98 l S +535.23 121.25 m 535.23 122.46 l S +535.88 118.49 m 535.88 124.88 l S +Q q +0.000 0.000 1.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +52.42 118.01 m 52.42 118.01 l S +52.42 118.01 m 47.74 118.01 l S +BT +0.000 0.000 1.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 17.27 119.82 Tm (SDSS i) Tj +ET +BT +/F2 1 Tf 8.00 0.00 -0.00 8.00 17.70 110.46 Tm (7667 A) Tj +ET +Q q 52.42 19.66 485.71 626.47 re W n +0.000 0.000 1.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +55.02 109.60 m 55.02 126.41 l S +53.72 126.41 m 56.32 126.41 l S +53.72 109.60 m 56.32 109.60 l S +BT +0.000 0.000 1.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 56.32 115.27 Tm (=5%) Tj +ET +1.000 0.000 0.000 RG +83.05 84.48 m 83.05 93.71 l S +83.12 83.29 m 83.12 85.82 l S +85.70 82.25 m 85.70 93.41 l S +88.32 74.96 m 88.32 86.64 l S +98.63 92.26 m 98.63 94.79 l S +101.19 94.30 m 101.19 96.61 l S +103.61 88.43 m 103.61 90.29 l S +106.29 87.20 m 106.29 89.06 l S +109.05 90.55 m 109.05 92.78 l S +111.58 93.45 m 111.58 95.01 l S +127.27 97.36 m 127.27 101.30 l S +129.83 96.80 m 129.83 98.66 l S +132.24 92.63 m 132.24 94.42 l S +135.16 82.36 m 135.16 92.78 l S +142.62 87.83 m 142.62 89.54 l S +147.85 82.77 m 147.85 85.08 l S +160.85 67.33 m 160.85 69.41 l S +165.99 56.80 m 165.99 58.74 l S +169.04 49.77 m 169.04 62.27 l S +174.25 50.59 m 174.25 71.20 l S +176.41 57.73 m 176.41 59.89 l S +176.79 50.78 m 176.79 68.26 l S +179.44 51.30 m 179.44 67.37 l S +182.02 53.19 m 182.02 67.78 l S +184.50 50.96 m 184.50 64.65 l S +189.54 56.88 m 189.54 58.44 l S +202.59 76.00 m 202.59 77.41 l S +205.01 80.58 m 205.01 81.92 l S +205.35 66.29 m 205.35 79.83 l S +207.25 75.81 m 207.25 77.60 l S +207.98 67.63 m 207.98 78.94 l S +210.53 83.07 m 210.53 91.40 l S +213.00 90.92 m 213.00 100.67 l S +215.42 92.07 m 215.42 93.78 l S +220.60 100.03 m 220.60 101.67 l S +225.76 104.61 m 225.76 114.43 l S +228.41 104.87 m 228.41 112.31 l S +231.09 106.95 m 231.09 108.29 l S +231.25 101.34 m 231.25 109.15 l S +235.96 109.19 m 235.96 110.97 l S +241.34 109.11 m 241.34 111.34 l S +243.81 106.69 m 243.81 108.78 l S +246.43 103.90 m 246.43 105.32 l S +249.18 98.14 m 249.18 101.41 l S +254.17 100.89 m 254.17 102.90 l S +257.02 95.27 m 257.02 97.21 l S +267.44 76.30 m 267.44 89.02 l S +269.99 79.57 m 269.99 94.45 l S +274.88 90.10 m 274.88 91.37 l S +275.41 82.29 m 275.41 90.55 l S +277.45 89.32 m 277.45 91.18 l S +298.87 98.51 m 298.87 108.55 l S +324.72 98.88 m 324.72 108.48 l S +348.22 89.99 m 348.22 103.38 l S +363.47 96.24 m 363.47 104.80 l S +366.19 98.92 m 366.19 104.20 l S +366.33 99.66 m 366.33 110.30 l S +368.85 94.83 m 368.85 95.94 l S +371.28 93.93 m 371.28 95.42 l S +373.83 96.35 m 373.83 98.43 l S +376.59 95.79 m 376.59 96.76 l S +392.03 96.95 m 392.03 99.33 l S +394.63 97.65 m 394.63 99.29 l S +405.12 99.55 m 405.12 100.82 l S +410.30 102.16 m 410.30 104.09 l S +410.45 94.04 m 410.45 103.42 l S +412.92 107.07 m 412.92 120.68 l S +415.68 98.06 m 415.68 108.78 l S +418.01 107.36 m 418.01 108.48 l S +423.19 108.29 m 423.19 109.93 l S +423.41 108.00 m 423.41 116.11 l S +425.89 108.33 m 425.89 109.15 l S +426.00 102.16 m 426.00 114.43 l S +428.53 103.38 m 428.53 110.38 l S +428.55 111.16 m 428.55 111.98 l S +431.10 111.16 m 431.10 112.05 l S +436.36 106.99 m 436.36 108.48 l S +441.39 105.06 m 441.39 106.99 l S +446.53 96.31 m 446.53 98.92 l S +449.12 96.39 m 449.12 98.70 l S +454.45 97.13 m 454.45 99.96 l S +454.62 103.46 m 454.62 111.94 l S +457.27 96.43 m 457.27 108.63 l S +459.62 97.13 m 459.62 98.77 l S +462.23 97.47 m 462.23 99.03 l S +462.45 94.75 m 462.45 107.77 l S +467.44 98.06 m 467.44 99.70 l S +480.57 98.58 m 480.57 100.15 l S +482.94 95.79 m 482.94 96.76 l S +485.69 95.16 m 485.69 95.83 l S +490.75 82.66 m 490.75 87.65 l S +496.00 90.96 m 496.00 92.37 l S +501.16 88.69 m 501.16 89.65 l S +503.84 83.29 m 503.84 86.12 l S +506.42 81.73 m 506.42 84.04 l S +514.10 83.66 m 514.10 85.23 l S +516.79 86.27 m 516.79 87.61 l S +519.50 88.20 m 519.50 89.47 l S +Q q +1.000 0.000 0.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +52.42 84.95 m 52.42 84.95 l S +52.42 84.95 m 47.74 84.95 l S +BT +1.000 0.000 0.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 8.37 86.76 Tm (Johnson I) Tj +ET +BT +/F2 1 Tf 8.00 0.00 -0.00 8.00 17.70 77.40 Tm (8909 A) Tj +ET +Q q 52.42 19.66 485.71 626.47 re W n +1.000 0.000 0.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +55.02 75.65 m 55.02 94.25 l S +53.72 94.25 m 56.32 94.25 l S +53.72 75.65 m 56.32 75.65 l S +BT +1.000 0.000 0.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 56.32 82.21 Tm (=5%) Tj +ET +0.000 0.000 1.000 RG +86.63 47.26 m 86.63 52.36 l S +88.37 44.75 m 88.37 55.17 l S +88.81 48.11 m 88.81 48.91 l S +91.36 49.01 m 91.36 50.81 l S +93.80 52.87 m 93.80 54.27 l S +95.22 52.82 m 95.22 62.43 l S +96.45 51.26 m 96.45 53.87 l S +97.13 53.62 m 97.13 61.33 l S +99.13 53.62 m 99.13 54.52 l S +101.35 45.30 m 101.35 67.04 l S +101.63 52.67 m 101.63 53.97 l S +103.08 52.11 m 103.08 61.93 l S +104.22 54.77 m 104.22 58.58 l S +106.53 61.68 m 106.53 68.39 l S +106.76 59.33 m 106.76 60.23 l S +109.04 55.62 m 109.04 58.12 l S +109.14 51.41 m 109.14 65.74 l S +109.74 53.32 m 109.74 59.43 l S +111.83 57.42 m 111.83 58.33 l S +112.82 53.52 m 112.82 62.63 l S +115.07 57.87 m 115.07 62.78 l S +117.56 59.08 m 117.56 65.09 l S +119.57 62.08 m 119.57 68.89 l S +120.46 57.87 m 120.46 64.19 l S +123.14 63.73 m 123.14 70.35 l S +125.85 55.87 m 125.85 64.89 l S +130.54 55.52 m 130.54 64.14 l S +132.70 57.72 m 132.70 59.33 l S +133.63 55.67 m 133.63 65.49 l S +135.37 55.82 m 135.37 57.12 l S +135.99 56.97 m 135.99 62.28 l S +139.49 44.35 m 139.49 54.07 l S +140.66 53.22 m 140.66 54.22 l S +141.19 49.31 m 141.19 55.12 l S +143.28 52.56 m 143.28 53.87 l S +144.73 42.30 m 144.73 58.12 l S +146.37 52.21 m 146.37 59.23 l S +148.27 41.85 m 148.27 52.26 l S +148.32 49.01 m 148.32 50.31 l S +151.10 46.55 m 151.10 47.76 l S +151.69 41.04 m 151.69 52.16 l S +153.27 36.69 m 153.27 48.31 l S +153.54 43.85 m 153.54 45.15 l S +155.97 0.00 m 155.97 63.03 l S +158.80 38.59 m 158.80 39.99 l S +161.46 34.78 m 161.46 35.99 l S +164.12 30.58 m 164.12 31.98 l S +166.29 29.17 m 166.29 30.58 l S +173.06 23.01 m 173.06 33.63 l S +175.61 21.26 m 175.61 34.38 l S +176.81 17.20 m 176.81 29.12 l S +179.31 30.63 m 179.31 31.83 l S +181.70 25.57 m 181.70 26.77 l S +184.42 25.02 m 184.42 26.22 l S +185.18 18.00 m 185.18 27.92 l S +189.51 30.53 m 189.51 31.83 l S +192.08 31.83 m 192.08 33.03 l S +192.91 21.66 m 192.91 30.28 l S +194.67 29.02 m 194.67 30.22 l S +197.32 33.23 m 197.32 34.43 l S +198.27 32.43 m 198.27 45.55 l S +199.94 35.78 m 199.94 36.99 l S +200.64 33.98 m 200.64 43.00 l S +202.50 38.64 m 202.50 39.84 l S +210.64 48.76 m 210.64 50.06 l S +211.28 48.76 m 211.28 61.48 l S +213.23 50.41 m 213.23 51.71 l S +213.50 51.71 m 213.50 62.33 l S +218.39 63.58 m 218.39 64.99 l S +220.84 65.89 m 220.84 67.29 l S +221.26 62.28 m 221.26 71.60 l S +226.77 65.59 m 226.77 72.00 l S +231.82 68.34 m 231.82 76.66 l S +234.41 69.85 m 234.41 76.06 l S +240.21 66.59 m 240.21 73.70 l S +241.77 77.06 m 241.77 78.66 l S +244.35 75.36 m 244.35 76.96 l S +246.90 69.65 m 246.90 71.35 l S +249.52 66.54 m 249.52 67.74 l S +250.60 58.48 m 250.60 70.50 l S +251.99 67.69 m 251.99 68.89 l S +257.81 59.38 m 257.81 67.69 l S +260.77 59.43 m 260.77 64.04 l S +268.32 51.66 m 268.32 57.17 l S +270.83 48.76 m 270.83 54.47 l S +272.87 58.12 m 272.87 67.64 l S +273.52 53.27 m 273.52 59.68 l S +275.46 48.91 m 275.46 59.03 l S +275.59 53.57 m 275.59 54.87 l S +276.34 54.37 m 276.34 63.18 l S +282.07 43.90 m 282.07 53.12 l S +288.45 59.68 m 288.45 61.28 l S +289.12 55.87 m 289.12 62.28 l S +290.14 54.77 m 290.14 69.09 l S +291.01 56.97 m 291.01 58.58 l S +292.72 56.92 m 292.72 68.84 l S +293.58 59.13 m 293.58 60.53 l S +294.44 57.12 m 294.44 65.54 l S +295.90 55.57 m 295.90 67.09 l S +297.12 57.82 m 297.12 66.24 l S +299.47 56.02 m 299.47 69.34 l S +301.15 58.53 m 301.15 69.45 l S +301.51 66.24 m 301.51 67.44 l S +306.67 64.89 m 306.67 66.39 l S +309.19 62.73 m 309.19 64.34 l S +311.52 49.11 m 311.52 72.95 l S +311.76 64.09 m 311.76 65.59 l S +312.71 57.82 m 312.71 65.04 l S +314.38 62.93 m 314.38 64.44 l S +315.21 59.53 m 315.21 67.04 l S +316.98 62.63 m 316.98 64.24 l S +319.46 55.62 m 319.46 57.02 l S +320.22 57.62 m 320.22 66.84 l S +322.07 60.18 m 322.07 61.58 l S +324.65 58.53 m 324.65 60.23 l S +327.34 63.58 m 327.34 64.79 l S +329.96 59.68 m 329.96 60.78 l S +332.36 55.02 m 332.36 56.32 l S +340.30 58.28 m 340.30 59.38 l S +345.36 60.83 m 345.36 62.13 l S +348.13 58.68 m 348.13 59.98 l S +350.72 56.07 m 350.72 57.67 l S +353.28 57.12 m 353.28 58.63 l S +355.89 58.73 m 355.89 60.43 l S +358.49 57.87 m 358.49 59.58 l S +361.08 60.18 m 361.08 61.98 l S +363.67 62.38 m 363.67 63.99 l S +366.28 60.93 m 366.28 62.33 l S +368.84 60.03 m 368.84 61.43 l S +371.47 60.73 m 371.47 61.93 l S +374.08 58.93 m 374.08 60.53 l S +379.33 58.23 m 379.33 59.83 l S +381.86 56.22 m 381.86 58.02 l S +384.47 57.57 m 384.47 59.08 l S +387.02 59.83 m 387.02 61.33 l S +389.66 58.98 m 389.66 60.58 l S +392.26 59.38 m 392.26 61.08 l S +394.84 62.73 m 394.84 64.34 l S +397.46 62.38 m 397.46 63.99 l S +399.99 58.73 m 399.99 60.63 l S +402.73 59.58 m 402.73 61.18 l S +405.20 62.78 m 405.20 64.69 l S +407.48 62.78 m 407.48 72.90 l S +407.82 64.09 m 407.82 65.79 l S +408.43 60.33 m 408.43 68.44 l S +410.42 60.48 m 410.42 62.38 l S +411.54 64.84 m 411.54 71.55 l S +413.04 68.24 m 413.04 69.85 l S +415.28 65.74 m 415.28 72.25 l S +415.64 70.35 m 415.64 71.85 l S +418.42 74.75 m 418.42 76.26 l S +420.41 70.65 m 420.41 78.06 l S +423.39 75.56 m 423.39 77.26 l S +426.02 79.86 m 426.02 81.77 l S +428.61 78.91 m 428.61 80.82 l S +430.98 68.64 m 430.98 78.96 l S +431.25 79.71 m 431.25 81.42 l S +433.54 65.09 m 433.54 87.83 l S +433.79 74.35 m 433.79 76.26 l S +436.40 72.55 m 436.40 74.55 l S +439.01 72.25 m 439.01 73.95 l S +441.64 70.25 m 441.64 71.75 l S +444.22 68.69 m 444.22 70.40 l S +446.80 64.89 m 446.80 66.69 l S +449.51 63.84 m 449.51 65.54 l S +452.01 66.44 m 452.01 67.94 l S +457.21 60.68 m 457.21 62.48 l S +462.01 50.41 m 462.01 77.76 l S +463.36 58.12 m 463.36 68.04 l S +467.48 58.02 m 467.48 74.25 l S +472.86 61.93 m 472.86 63.43 l S +475.05 61.08 m 475.05 72.00 l S +477.57 59.78 m 477.57 69.60 l S +478.01 68.14 m 478.01 69.95 l S +483.27 62.48 m 483.27 64.39 l S +491.02 60.43 m 491.02 62.13 l S +495.89 46.00 m 495.89 68.54 l S +517.03 51.41 m 517.03 53.32 l S +522.23 56.82 m 522.23 59.03 l S +524.83 55.97 m 524.83 57.67 l S +527.43 56.52 m 527.43 58.73 l S +530.03 57.62 m 530.03 59.63 l S +532.63 49.36 m 532.63 51.46 l S +533.44 47.76 m 533.44 58.28 l S +535.23 56.27 m 535.23 58.17 l S +535.89 48.16 m 535.89 59.38 l S +Q q +0.000 0.000 1.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +52.42 51.89 m 52.42 51.89 l S +52.42 51.89 m 47.74 51.89 l S +BT +0.000 0.000 1.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 15.05 53.70 Tm (SDSS z) Tj +ET +BT +/F2 1 Tf 8.00 0.00 -0.00 8.00 17.70 44.34 Tm (9163 A) Tj +ET +Q q 52.42 19.66 485.71 626.47 re W n +0.000 0.000 1.000 RG +0.75 w +[] 0 d +1 J +1 j +10.00 M +55.02 39.37 m 55.02 64.41 l S +53.72 64.41 m 56.32 64.41 l S +53.72 39.37 m 56.32 39.37 l S +BT +0.000 0.000 1.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 56.32 49.15 Tm (=5%) Tj +ET +Q q +BT +0.000 0.000 0.000 rg +/F2 1 Tf 8.00 0.00 -0.00 8.00 55.42 5.62 Tm (Scale) Tj +ET +Q +endstream +endobj +7 0 obj +140235 +endobj +3 0 obj +<< +/Type /Pages +/Kids [ +5 0 R +] +/Count 1 +/MediaBox [0 0 540 648] +>> +endobj +4 0 obj +<< +/ProcSet [/PDF /Text] +/Font <> +/ExtGState << >> +>> +endobj +8 0 obj +<< +/Type /Encoding +/BaseEncoding /WinAnsiEncoding +/Differences [ 45/minus ] +>> +endobj +9 0 obj << +/Type /Font +/Subtype /Type1 +/Name /F2 +/BaseFont /Helvetica +/Encoding 8 0 R +>> endobj +xref +0 10 +0000000000 65535 f +0000000021 00000 n +0000000163 00000 n +0000140602 00000 n +0000140685 00000 n +0000000212 00000 n +0000000292 00000 n +0000140580 00000 n +0000140766 00000 n +0000140860 00000 n +trailer +<< +/Size 10 +/Info 1 0 R +/Root 2 0 R +>> +startxref +140956 +%%EOF diff --git a/lag/report/ngc5548.png b/lag/report/ngc5548.png new file mode 100644 index 0000000..43d48e1 Binary files /dev/null and b/lag/report/ngc5548.png differ diff --git a/lag/report/psd1367A.pdf b/lag/report/psd1367A.pdf new file mode 100644 index 0000000..3cfec8c Binary files /dev/null and b/lag/report/psd1367A.pdf differ diff --git a/lag/report/psd_atlas.pdf b/lag/report/psd_atlas.pdf new file mode 100644 index 0000000..2d0cf22 Binary files /dev/null and b/lag/report/psd_atlas.pdf differ diff --git a/lag/report/report.tex b/lag/report/report.tex new file mode 100644 index 0000000..184627c --- /dev/null +++ b/lag/report/report.tex @@ -0,0 +1,261 @@ + + + +\documentclass[11pt,letterpaper]{article} + +\usepackage{aas_macros} +%\usepackage{natbib} +%\usepackage{cite} +\usepackage{biblatex} +\usepackage{graphicx} +\usepackage[margin=1.in,centering]{geometry} +\usepackage{hyperref} +\usepackage{caption} +\usepackage[export]{adjustbox} +\usepackage{float} + + +\bibliography{/home/caes/wmu/phy-4660/adv_lab.bib} + + +\begin{document} + + + +\title{Lab 3: Continuum Reverberation in NGC 5548} +\author{Otho Ulrich, Ed Cackett} +\maketitle + +\begin{abstract} + New data describing the time-variable spectrum from NGC 5548 provide the most detailed look so far at this prototypical Seyfert galaxy. A reverberation mapping of NGC 5548 is attempted using a novel frequency-domain technique. The power spectral densities of lightcurves in 19 wavelength bands are recovered. Time lags are computed from the cross spectra, but results are marred by some computational issues. Empirical fits are obtained for 6 lightcurves, and the time lags are compared with those computed by Fausnaugh et al. in STORM III. Results are mixed but overall protective of the thermal reprocessing by an accretion disk hypothesis. +\end{abstract} + +%───────────── +\section{Active Galactic Nuclei} + \label{sec:agn} + Active Galactic Nuclei, or AGN, are a class of compact objects that are of great interest to modern astronomers. AGN are superluminous ($\sim10^{44}-10^{50} ergs\ s^{-1})$ systems that surround supermassive ($\sim 10^5 - 10^{10} M_{\odot}$) blackholes. Seyfert galaxies (also called active galaxies) are defined by these objects at their center, and the AGN often outshine all the stars in those galaxies. Quasars are too distant to resolve optically, but their spectra are typical of AGN, leading researchers to believe these are also galaxies with AGN at their core. \cite{2014A&ARv..22...72U} AGN have a variable spectrum in time across all observed wavelengths, and with no known period. The physics underlying these variable spectra are not well-understood and astronomers are highly motivated to quantify them for many reasons. + + AGN science is a strong candidate for computing more accurate and precise values of the Hubble constant, which is a cosmological parameter that argues the rate of expansion of the universe \cite{1999MNRAS.302L..24C}. Type IA supernovae are the standard used to calculate this value now, because their spectra are well-predicted with known physics, and they are very bright. AGN are much brighter (arguably the brightest objects in the cosmos in terms of intrinsic luminosity), so if their physics were well-understood, we could use them to probe the universe beyond the supernova horizon. Toward the goal of computing a more accurate and precise Hubble constant, we study the fundamental physics at play in AGN, but that is not the only concern. + + Evidence exists that AGN are the engines that power evolution of their host galaxies; this field of study is called AGN feedback. \cite{2012ARA&A..50..455F} They also present an interesting challenge on their own merits, because they are complex systems of gasses and plasmas in a variety of thermodynamic conditions and spatial configurations. Working out those dynamics is particularly difficult because AGN in Seyfert galaxies, and especially in quasars, are too small and too distant to resolve optically. The standard model AGN structure is shown in figure \ref{fig:AGN_standard}. It is believed that an accretion disk surrounds the supermassive blackhole, and thermal emission from this disk is the primary contributer to the continuum emission. + + \begin{figure}[h] + \center + \includegraphics[width=3in]{ngc5548.png} + \caption{NGC 5548: the most well-studied Seyfert galaxy. The physics underlying the time-variable spectrum of its nucleus remain an object of great interest and study. The nucleus at the center of the galaxy has approximately the same luminosity as the rest of the galaxy. \cite{ngc5548photo}} + \label{fig:ngc5548} + \end{figure} + + \begin{figure}[h] + \centering + \includegraphics[width=3.5in]{AGN_standard.png} + \caption{Standard model of AGN structure. An accretion disk surrounds the supermassive blackhole at the center, and thermal emission from the accretion disk is believed to be the primary contributor to the continuum component of the observed spectrum. The broad line region extends beyond the accretion disk, as does an obscuring torus, narrow line region, and relativistic jet; these features are not covered by this work. \cite{2016ASSL..439..249B}} + \label{fig:AGN_standard} + \end{figure} + + The Seyfert galaxy NGC 5548, shown in figure \ref{fig:ngc5548}, is the most well-studied active galaxy, and the physics of its nucleus are still mysterious. An ongoing study of this object, the Space Telescope and Optical Reverberation Mapping Project (STORM), is being conducted now, and is the most in-depth study of an AGN to date. Data from the third edition of STORM \cite{2016ApJ...821...56F} is used here to quantify the continuum emission variability and time lags seen in NGC 5548. + + + + + +%───────────── +\section{Reverberation Mapping} + \label{sec:reverbmap} + + Reverberation mapping is a popular method for measuring AGN features, and has been employed for about three decades. Since AGN cannot be resolved optically, reverberation mapping uses observed lags between wavelengths in the time-dependent spectrum to infer spatial distributions, thermodynamic properties, and blackhole mass. \cite{2014A&ARv..22...72U} Work is underway to use reveberation mapping to measure blackhole spin, as well. \cite{2016Natur.535..388K}. This study uses reveberation mapping to study the UV/Optical continuum emission in NGC 5548 as an attempt to protect the thermal reprocessing by an accretion disk hypothesis. + + Reverberation mapping is essentially mapping using light echoes. Some light escapes directly to the observer, while other light is reprocessed in the surrounding gas. Assuming that light travels with velocity $c$, additional path length traversed by reprocessed light results in an observed time delay. As an illustrative example, consider a spherically-distributed gas. This geometry results in ellipsoid isodelay surfaces with the source of light at one focus and the observer at the other. Because the distances to AGN are so great, these surfaces can be approximated as paraboloids; see Figure~\ref{fig:isodelay}. The time delay $\tau$ is associated with the geometry of the system by the equation + + \begin{center} + $\tau = (1+cos(\theta)) \frac{r}{c}$. + \end{center} + + If the time delay is observable, this model can be used to compute the radius of the gas cloud. AGN are more complicated than the spherical model, but the concept is the same, and the spherical model has been used to compute upper-limit radii for some AGN. A transfer function can capture the arbitrarily complex reverberation observed in AGN. This will be discussed in detail in section \ref{subsec:transferfunc}. + + \begin{figure} + \hfill + \includegraphics[width=3in]{isodelay.jpg}[A] + \includegraphics[width=3in]{isodelay_detail.jpg}[B] + \caption{[A] Isodelay paraboloids predicted for a gas cloud that is spherically distributed. This is a simple case of reverberation mapping, but AGN systems are more complicated. [B] Radius and angle dependence of a single reprocessed emission. \cite{2001sac..conf....3P}} + \label{fig:isodelay} + \end{figure} + + \subsection{Continuum Reverberation in the Accretion Disk of NGC 5548} + \label{subsec:contreverb} + + The thermal reprocessing hypothesis suggests that a hot accretion disk surrounds and feeds the supermassive blackhole. This disk responds thermally to high-energy EM emission from a corona near the event horizon. The temperature increases along the disk toward the gravitational well of the blackhole, and as the coronal emission varies, the disk responds with an increase in temperature, and in turn an increase in overall emission and Wien wavelength. Collier et al. \cite{1999MNRAS.302L..24C} provide a model for the average time lag $\tau$ as a function of Wien wavelength $\lambda$. This model assumes the accretion disk consists of a distribution of blackbody radiators with temperature distribution $T(R) = T_0 \left(\frac{R}{R_0}\right)^{-\frac{3}{4}}$. The average time lag under these conditions can be predicted numerically, but for these purposes it is sufficient to conclude that $\tau \propto \lambda^{\frac{4}{3}}$. The precise nature of the accretion disk remains a topic of debate, so this should be considered only a rough estimate. A simple picture is presented in Figure~\ref{fig:simple_geometry} + + \begin{figure} + \center + \includegraphics[width=4in]{basic_geometry.png} + \caption{Cross-section of the accretion disk at the center of a standard model AGN. High-energy emission irradiates the accretion disk from a corona just outside the event horizon of the supermassive blackhole. Shorter-wavelength emission emerges from deeper within the system as it responds to that emission. The observer sees longer time delays accompanying longer wavelengths.} + \label{fig:simple_geometry} + \end{figure} + + At the very least, we may conclude two things from these ideas. The Wien wavelength decreases with temperature, and the temperature increases toward the center of the disk, so we expect to see an increase in time delay as wavelength increases. Hotter gas emits more power at every wavelength, so we also expect to see decreasing variability as wavelength increases. If these characteristics are observed, it will protect the thermal reprocessing hypothesis. More robust analysis tools may also shed light on more detailed aspects of this hypothesis. + + +%───────────── +\section{Analysis of Reverberating Lightcurves} + \label{sec:analysis} + + Observational astronomy in the optical and UV bands suffers from unevenly sampled data due mainly to weather effects and periodic orbital blindness of space observatories. Fausnaugh et al., in STORM III \cite{2016ApJ...821...56F}, published the longest and most detailed to date time-variable lightcurves in the optical and UV spectrum of NGC 5548; see figure \ref{fig:lightcurves}. Reverberation mapping in the optical and UV wavelengths has thus far involved time-domain analyses, and Fausnaugh et al. published one in their paper, included here as figure~\ref{fig:reverb_time}. These analyses have the advantage of weak sensitivity to the unevenness of the data sampling, but the disadvantage of returning only the average time lag in each band. More information than the average time lag is present in the observed data, and a frequency-domain analysis has the potential to deconvolve that information. An important test of our approach will be to confirm the average time lags we compute agree with those reported by Fausnaugh et al. + + Fourier-frequency analysis using the Fast Fourier Transform (FFT) is a common method for analysing the correlations between time-dependent signals. However, even a small deviation in the time interval between samples can create artifacts in the frequency-dependent output. X-ray astronomy suffers from unevenly sampled data in the time domain as well. X-ray astronomer Abdu Zoghbi from the University of Michigan is developing the program $psdlag$ to solve this problem by populating frequency-space bins using a maximum likelihood fitting. We apply this program in an attempt to solve the problem of unevenly sampled data in the optical/UV lightcurves reported by Fausnaugh et al. + + \begin{figure} + \center + \includegraphics[width=6.5in]{lightcurves.pdf} + \caption{Optical and UV lightcurves published in STORM III. \cite{2016ApJ...821...56F}. The variable nature is very clear, and by observing the promiment bumps one can see that time delays exist between the curves. The x axis is the observation day and the y axis indicates the wavelength filter and observed flux.} + \label{fig:lightcurves} + \end{figure} + + \begin{figure} + \center + \includegraphics[width=4in]{TCCF_fausnaugh.pdf} + \caption{Time-domain analyses of lightcurves published by Fausnaugh et al. The average time lags are computed from the light curves (left column in legend) and the best fit is compared against competing accretion disk models (right column).} + \label{fig:reverb_time} + \end{figure} + + + + \subsection{Time Delay and Transfer Function Theory} + \label{subsec:transferfunc} + + A transfer function $g(t,\lambda)$ encodes the time-dependent response of each lightcurve relative to a reference lightcurve. By constructing the transfer function from the observed lightcurves, we obtain a description of the reprocessing of the coronal emission by the hypothesized accretion disk. One way to define the transfer function for each wavelength is as the function by which one convolves the reference lightcurve $x(t)$ to return the reprocessed lightcurve $y(t)$, i.e., + + \begin{equation} + \label{eq:time_transfunc} + y(t) = \int_{-\infty}^{\infty} g(\tau) x(t-\tau) {\rm d}\tau. + \end{equation} + + The convolution theorem provides that convolution in the time $t$ domain is equivalent to multiplication in the frequency $\nu$ domain, so we can also say + + \begin{equation} + \label{eq:freq_transfunc} + Y(\nu) = G(\nu) X(\nu). + \end{equation} + + The power spectral density (PSD) provides a measure of the variability of a lightcurve. We define the PSD as $|X(\nu)|^2 = X^*(\nu) X(\nu)$, where $X^*$ is the complex conjugate of $X$. This quantity can be calculated using Fourier transforms, and suggests a useful relationship involving the lightcurves and the transfer function. + + \begin{equation} + |Y(\nu)|^2 = |G(\nu)|^2 |X(\nu)|^2. + \end{equation} + + We also define a cross spectrum between two lightcurves as $C(\nu) = X^*(\nu) Y(\nu)$. The argument $\phi$ of the cross spectrum is the phase between those two signals. The time lag can be computed from the phase using equation \ref{eq:timelag}. An empirical fit of the time delay in frequency space can be produced, and then transformed to the time domain. The average time delay can be obtained from this new function, but this function describes more fully the time-dependent response of the reprocessed lightcurve. Composing the many specific time-dependent responses into a single function $g(t,\lambda)$ provides the desired description of the reveberation in the system. + + \begin{equation} + \tau(\nu) = \frac{\phi(\nu)}{2\pi\nu}. + \label{eq:timelag} + \end{equation} + +% Given equation \ref{eq:freq_transfunc}, the cross-spectrum can be written as + +% \begin{equation} +% C(\nu) = X^*(\nu) G(\nu) X(\nu) = G(\nu) |X(\nu)|^2 +% \end{equation} + +% Discrete samples of the transfer function can therefore be recovered as + +% \begin{equation} +% G(\nu) = \frac{C(\nu)}{|X(\nu)|^2}. +% \end{equation} + + + + \subsection{Computational Details} + \label{subsec:computation} + + 1365\AA\ is chosen to be the reference wavelength. The $psdlag$ program is used to generate the power spectral densities, cross spectra, and time lags, all in the frequency domain. A least-squares method is used to fit an empirical function to the computed time lags. The inverse FFT transforms that function to the time domain. The most-likely average time lag reported by Fausnaugh et al. is plotted over that function for comparison. + + A tophat function describes one possible time-response mode, and examples of this function in the time domain and their corresponding FFTs to the frequency domain are plotted in figure \ref{fig:tophat_theory}. A tophat function is a rectangular function with mean $t_0$ and width $\sigma$ such that when $(t_0-\sigma) < t < (t_0+\sigma)$, this function returns 1, and otherwise it returns 0. In frequency space, it is known that the function takes the form + + \begin{equation} + A T sinc\left(\pi \nu T\right) e^{\left(-i 2 \pi \nu t_0\right)}, + \end{equation} + + where $A$ is a normalization amplitude and $T$ is a factor describing the periodicity in frequency space. We fit the real component of this function to the data, i.e., + + \begin{equation} + A T sinc\left(\pi \nu T\right) cos\left(2 \pi \nu t_0\right) + \end{equation} + + in frequency space, then perform an inverse real FFT to retrieve the response in the time domain. This is perhaps the simplest response function we could use, but it still provides a rough measure for comparison with the time lags reported by Fausnaugh et al. in Storm III. + + + + + \begin{figure} + \centering + \includegraphics[width=0.5\linewidth]{tophat_timedomain.pdf}[A] + \includegraphics[width=0.5\linewidth]{tophat_freqdomain.pdf}[B] + \caption{[A] Tophat transfer functions in the time domain show an average time lag of the reverberating curve and a constant distribution in time over an interval. [B] The frequency-dependent time lags associated with each tophat function. Important features related to the average time lag are observable (maximum, corresponding to the average time delay; value of $\nu$ at steepest change), and complicated relationships with higher frequency waves can be noted.} + \label{fig:tophat_theory} + \end{figure} + + + + + +%───────────── +\section{Results} +\label{sec:results} + Figure~\ref{fig:PSD_ref} shows the power spectral density computed for the reference curve, illustrating its strong variability. The power spectral densities for all wavelengths were computed as a cohort and compiled into a grid, presented in figure~\ref{fig:grids}. The time lags were also computed for all wavelengths, but observation of the output grid indicates significant computational issues. The errors reported in these grids were sampled from the covariance matrix, which does not account for all correlations between frequency bins. These can therefore only be considered lower-limits estimates of the uncertainty. + + Of the 19 lightcurves for which a time lag analysis was attempted, 10 produced possibly meaningful results through this method. A more rigorously computation was attempted for each of these, by sampling the error from the maximum likelihood function, which does account for error correlations. It was also found that a good fit for 3465\AA\ could be obtained by eliminating the highest-frequency bin from the model. The 6 models that ran successfully are compiled in figures \ref{fig:results1} and \ref{fig:results2}. The $psdlag$-computed time delays are reported as black error-barred dots, and the empirical fits are drawn in blue. The average time lag reported in STORM III is drawn as a black vertical line in the time domain plot. + + \begin{figure} + \centering + \includegraphics[width=4in]{psd1367A.pdf} + \caption{The power spectral density for the chosen reference lightcurve. It is strongly variable across all computed Fourier frequencies.} + \label{fig:PSD_ref} + \end{figure} + + \begin{figure} + \includegraphics[width=.46\textwidth]{psd_atlas.pdf}[A] + \includegraphics[width=.46\textwidth]{timelag_atlas.pdf}[B] + \caption{[A] Power spectral densities for all observed light curves, excluding the reference curve. A decrease in variability is observed with increasing wavelength. [B] Time lags as a function of Fourier frequency. Computational issues make many of these results dubious, but ten curves provide at least a lower-limit estimate of the uncertainty. It can nevertheless be noted that time delay increases with wavelength.} + \label{fig:grids} + \end{figure} + + + \begin{figure} + \centering + \includegraphics[width=.45\textwidth]{freq_3465A.png} + \includegraphics[width=.45\textwidth]{time_3465A.png}[3465\AA] + \centering + \includegraphics[width=.45\textwidth]{freq_3471A.png} + \includegraphics[width=.45\textwidth]{time_3471A.png}[3471\AA] + \centering + \includegraphics[width=.45\textwidth]{freq_6175A.png} + \includegraphics[width=.45\textwidth]{time_6175A.png}[6175\AA] + \caption{The shorter wavelengths, corresponding to emission from the inner region of the accretion disk, do not show strong agreement with the average time lags reported by Fausnaugh et al. This may be due to difficulty fitting the function because the computer is unable to distinguish between emission from the source and reprocessing.} + \label{fig:results1} + \end{figure} + + \begin{figure} + \centering + \includegraphics[width=.45\textwidth]{freq_6439A.png} + \includegraphics[width=.45\textwidth]{time_6439A.png}[6439\AA] + \centering + \includegraphics[width=.45\textwidth]{freq_7657A.png} + \includegraphics[width=.45\textwidth]{time_7657A.png}[7657\AA] + \centering + \includegraphics[width=.45\textwidth]{freq_9157A.png} + \includegraphics[width=.45\textwidth]{time_9157A.png}[9157\AA] + \caption{The empirical fits in these wavelengths show a strong agreement with the average time lags reported by Fausnaugh et al. The strong response trending downward from time 0 may be from the source emission, while the bump is from thermal emission further out in the accretion disk. These components appear to overlap in 6439\AA.} + \label{fig:results2} + \end{figure} + +\section{Conclusion} + \label{sec:conclusion} + + Response curves in the time domain were successfully computed for 6 of the 19 lightcurves. All indicate some variable time-dependent response. The functions fit to 3465\AA, 3471\AA, and 6175\AA\ do not show strong agreement with the average time delays reported by Fausnaugh et al. 7657\AA\ and 9157\AA\ show a response bump precisely where Fausnaugh et al. predicted. The response bump in 6439\AA\ overlaps with the driving emission, but still appears to be in agreement with the time lag computed in STORM III. The model used to compute these functions is rudimentary, and a more rigorous analysis may provide better fits and more insight. + + The thermal reprocessing hypothesis predicted that the variability would decrease as the wavelength increases, and this is certainly observed in the PSD grid in figure \ref{fig:grids}. It was also predicted that the time lag would increase with wavelength due to the decreasing temperature along the accretion disk's increasing radius. This feature is observed in a general sense along the grid of time lags in figure \ref{fig:grids}, and also between the fitted curves for 6439\AA\ and 7657\AA/9157\AA, but not in the other fitted curves. This may be due to inaccuracies from the rudimentary fitting function. This information does seem protective of the accretion disk hypothesis. One thing is certain: further study is warranted. + +\printbibliography + + +\end{document} diff --git a/lag/report/time_3465A.png b/lag/report/time_3465A.png new file mode 100644 index 0000000..7abca75 Binary files /dev/null and b/lag/report/time_3465A.png differ diff --git a/lag/report/time_3471A.png b/lag/report/time_3471A.png new file mode 100644 index 0000000..2c06ecb Binary files /dev/null and b/lag/report/time_3471A.png differ diff --git a/lag/report/time_6175A.png b/lag/report/time_6175A.png new file mode 100644 index 0000000..eb1e07f Binary files /dev/null and b/lag/report/time_6175A.png differ diff --git a/lag/report/time_6439A.png b/lag/report/time_6439A.png new file mode 100644 index 0000000..66b3144 Binary files /dev/null and b/lag/report/time_6439A.png differ diff --git a/lag/report/time_7657A.png b/lag/report/time_7657A.png new file mode 100644 index 0000000..38ca26e Binary files /dev/null and b/lag/report/time_7657A.png differ diff --git a/lag/report/time_9157A.png b/lag/report/time_9157A.png new file mode 100644 index 0000000..78e4797 Binary files /dev/null and b/lag/report/time_9157A.png differ diff --git a/lag/report/timelag_atlas.pdf b/lag/report/timelag_atlas.pdf new file mode 100644 index 0000000..8b0c016 Binary files /dev/null and b/lag/report/timelag_atlas.pdf differ diff --git a/lag/report/tophat_freqdomain.pdf b/lag/report/tophat_freqdomain.pdf new file mode 100644 index 0000000..8041846 Binary files /dev/null and b/lag/report/tophat_freqdomain.pdf differ diff --git a/lag/report/tophat_timedomain.pdf b/lag/report/tophat_timedomain.pdf new file mode 100644 index 0000000..969bfba Binary files /dev/null and b/lag/report/tophat_timedomain.pdf differ