phy-4600/solutions/chap9/prob11
2016-03-14 01:10:25 -04:00

100 lines
5.1 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

The harmonic oscillator potential is V(x) = ½kx² = ½mω²x². The hamiltonian is time independent.
The initial state vector is
Ψ(t=0) = A⎛❙0❭ + 2exp(ι͟π͟)❙1❭⎞
⎝ 2 ⎠
Finding the normalization constant A is simple enough, since
1 = A² + (2Aexp(ι͟π͟))² = A²(1 + (2exp(ι͟π͟))²).
2 2
A = √⎛ ______͟1͟______ ⎞ = √⎛ ________͟1͟_______ ⎞
⎜ 1 + (2exp(ι͟π͟))² ⎟ ⎜ 1 + 4exp(ι͟π͟ - ι͟π͟ ) ⎟,
⎝ 2 ⎠ ⎝ 2 2 ⎠
(𝐚)
A = √⎛ ____͟1͟____ ⎞ = √⅕.
⎝ 1 + 4exp(0) ⎠
The time evolution prescription for a time-independent hamiltonian is
Ψ(t) = exp(-ι͟E͟ₙ͟t) Ψ(t=0);
ħ
Ψ(t) = exp(-ι͟E͟ₙ͟t) √⅕⎛❙0❭ + 2exp(ι͟π͟)❙1❭⎞.
ħ ⎝ 2 ⎠
(𝐛)
Ψ(t) = √⅕⎛exp⎛-ι͟E͟₀͟t⎞❙0❭ + 2 exp⎛ι⎛_͟π͟ - E͟₁͟t⎞⎞❙1❭⎞.
⎝ ⎝ ħ ⎠ ⎝ ⎝ 2 ħ ⎠⎠ ⎠
The expecation values ❬x̂❭ and ❬p̂❭ are of interest.
❬x̂❭ = ❬Ψ⃰(t)❙x̂❙Ψ(t)❭.
Ψ⃰(t) = √⅕⎛exp⎛ι͟E͟₀͟t⎞❬0❙ + 2 exp⎛ι⎛E͟₁͟t - _͟π͟⎞⎞❬1❙⎞.
⎝ ⎝ ħ ⎠ ⎝ ⎝ ħ 2⎠⎠ ⎠
❬x̂❭ = ⅕⎛exp⎛ι͟E͟₀͟t⎞❬0❙ + 2 exp⎛ι⎛E͟₁͟t - _͟π͟⎞⎞❬1❙⎞ x̂ ⎛exp⎛-ι͟E͟₀͟t⎞❙0❭ + 2 exp⎛ι⎛_͟π͟ - E͟₁͟t⎞⎞❙1❭⎞.
⎝ ⎝ ħ ⎠ ⎝ ⎝ ħ 2⎠⎠ ⎠ ⎝ ⎝ ħ ⎠ ⎝ ⎝ 2 ħ ⎠⎠ ⎠
The matrix representations of the position operator x̂ and momentum operator p̂ have been developed from the definition of the increment/decrement operators. The matrix elements may be ascertained by inspection.
x̂ ≐ p̂ ≐
⎛ 0 √1 ⎞ ⎛ 0 -ι√1 ⎞
⎝ √1 0 ⎠, ⎝ ι√1 0 ⎠.
❬0❙x̂❙0❭ = x₀₀ = ❬1❙x̂❙1❭ = x₁₁ = 0.
❬0❙x̂❙1❭ = x₀₁ = ❬1❙x̂❙0❭ = x₁₀ = √1 = 1.
❬x̂❭ = ⅕⎛exp⎛ι͟E͟₀͟t⎞ exp⎛-ι͟E͟₀͟t⎞❬0❙x̂❙0❭ + ⎞
⎜ ⎝ ħ ⎠ ⎝ ħ ⎠ ⎟
⎜ ⎟
⎜ exp⎛ι͟E͟₀͟t⎞ 2 exp⎛ι⎛_͟π͟ - E͟₁͟t⎞⎞ ❬0❙x̂❙1❭ + ⎟
⎜ ⎝ ħ ⎠ ⎝ ⎝ 2 ħ ⎠⎠ ⎟
⎜ ⎟
⎜ exp⎛-ι͟E͟₀͟t⎞ 2 exp⎛ι⎛E͟₁͟t - _͟π͟⎞⎞ ❬1❙x̂❙0❭ + ⎟
⎜ ⎝ ħ ⎠ ⎝ ⎝ ħ 2⎠⎠ ⎟
⎜ ⎟
⎜ 2 exp⎛ι⎛E͟₁͟t - _͟π͟⎞⎞2 exp⎛ι⎛_͟π͟ - E͟₁͟t⎞⎞❬1❙x̂❙1❭⎞⎟
⎝ ⎝ ⎝ ħ 2⎠⎠ ⎝ ⎝ 2 ħ ⎠⎠ ⎠⎠.
Substituting the matrix elements:
❬x̂❭ = ⅖⎛exp⎛ι͟E͟₀͟t + ι⎛_͟π͟ - E͟₁͟t⎞⎞ + ⎞ = ⅖⎛exp⎛ι⎛⎛E͟₀͟͟E͟₁͟⎞t + _͟π͟⎞⎞ + ⎞
⎜ ⎝ ħ ⎝ 2 ħ ⎠⎠ ⎟ ⎜ ⎝ ⎝⎝ ħ ⎠ 2⎠⎠ ⎟
⎜ ⎟ ⎜ ⎟
⎜ exp⎛-ι͟E͟₀͟t + ι⎛E͟₁͟t - _͟π͟⎞⎞⎟ ⎜ exp⎛ι͟⎛⎛E͟₁͟͟E͟₀͟⎞ - _͟π͟⎞⎞⎟
⎝ ⎝ ħ ⎝ ħ 2⎠⎠⎠ ⎝ ⎝ ⎝⎝ ħ ⎠ 2⎠⎠⎠;
❬x̂❭ = ⅖⎛ exp⎛ι͟E͟₀͟t + ι⎛_͟π͟ - E͟₁͟t⎞⎞ + exp⎛-ι͟E͟₀͟t + ι⎛E͟₁͟t - _͟π͟⎞⎞ ⎞
⎝ ⎝ ħ ⎝ 2 ħ ⎠⎠ ⎝ ħ ⎝ ħ 2⎠⎠ ⎠;
❬x̂❭ = ⅖⎛ exp⎛ι⎛⎛E͟₀͟͟E͟₁͟⎞t + _͟π͟⎞⎞ + exp⎛ι⎛⎛E͟₁͟͟E͟₀͟⎞t - _͟π͟⎞⎞ ⎞
⎝ ⎝ ⎝⎝ ħ ⎠ 2⎠⎠ ⎝ ⎝⎝ ħ ⎠ 2⎠⎠ ⎠.
For the Harmonic Oscillator, Eₙ = ħω(n + ½).
EₙEₙ = ħω(n - n):
E₀E₁ = ħω(0 - 1) = -ħω;
E₁E₀ = ħω.
❬x̂❭ = ⅖⎛ exp⎛ι⎛⎛͟ħ͟ω͟⎞t + _͟π͟⎞⎞ + exp⎛ι⎛⎛ħ͟ω͟⎞t - _͟π͟⎞⎞ ⎞
⎝ ⎝ ⎝⎝ ħ ⎠ 2⎠⎠ ⎝ ⎝⎝ ħ⎠ 2⎠⎠ ⎠.
(𝐜,x̂)
❬x̂❭ = ⅖⎛ ι(-ωt + _͟π͟)⎞ + exp⎛ι⎛ωt - _͟π͟⎞⎞ ⎞
⎝ e 2 ⎠ ⎝ ⎝ 2⎠⎠ ⎠.
The expectation value progresses with the time parameter t. ω is a characteristic parameter of the system. It is related to the steepness of the parabolic potential curve.