mirror of
				https://asciireactor.com/otho/phy-4600.git
				synced 2025-11-02 23:28:06 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			131 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			131 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
A particle in an infinite square well has an initial state vector, with A a real number and ι the imaginary unit,
 | 
						||
 | 
						||
    ❙Ψ(t=0)❭ = A(❙φ₁❭ - ❙φ₂❭ + ι❙φ₃❭).
 | 
						||
 | 
						||
where ❙φₙ❭ are the energy eigenstates. This also means
 | 
						||
 | 
						||
    ❬Ψ(t=0)❙ = A(❬φ₁❙ - ❬φ₂❙ - ι❬φ₃❙)
 | 
						||
 | 
						||
 | 
						||
In the energy basis,
 | 
						||
 | 
						||
    ❙φ₁❭ ≐ ⎛1⎞  ❙φ₂❭ ≐ ⎛0⎞  and ❙φ₃❭ ≐ ⎛0⎞
 | 
						||
           ⎜0⎟         ⎜1⎟             ⎜0⎟
 | 
						||
           ⎝0⎠,        ⎝0⎠,            ⎝1⎠.
 | 
						||
 | 
						||
So, 
 | 
						||
    ❙Ψ(t=0)❭ ≐ ⎛ A ⎞
 | 
						||
               ⎜-A ⎟
 | 
						||
               ⎝ιA ⎠.
 | 
						||
 | 
						||
(𝐚) The state vector is normalized by taking the quotient of the magnitude.
 | 
						||
 | 
						||
    ❙Ψ′(t=0)❭ ≐  __͟A͟__ ⎛ 1 ⎞ =  _͟1͟ ⎛ 1 ⎞     
 | 
						||
                √(3A²) ⎜-1 ⎟    √3 ⎜-1 ⎟     
 | 
						||
                       ⎝ ι ⎠       ⎝ ι ⎠.    
 | 
						||
 | 
						||
When the Hamiltonian operates on ❙φₙ❭ with results according to the general eigenvalue equation, with Eₙ the measured energy of state n, 
 | 
						||
 | 
						||
    Ĥ❙φₙ❭ = Eₙ❙φₙ❭.
 | 
						||
 | 
						||
The measured energies for a point particle in an infinite square well are given by, with L the x-width of the well, and m the particle mass,
 | 
						||
 | 
						||
    Eₙ = n͟²͟π͟²͟ħ͟².
 | 
						||
          2mL²
 | 
						||
 | 
						||
So,
 | 
						||
 | 
						||
    Ĥ❙Ψ′(t=0)❭ = _͟1͟ (E₁❙φ₁❭ - E₂❙φ₂❭ + ιE₃❙φ₃❭).
 | 
						||
                 √3
 | 
						||
 | 
						||
(𝐛) There is an equal chance of measuring any of the three values, so 𝓟ₙ=1/3. The measured enemies are given by the previous expression.
 | 
						||
 | 
						||
    Energy          Probability     
 | 
						||
 | 
						||
     π͟²͟ħ͟².          𝓟₁=¹/₃
 | 
						||
     2mL²    
 | 
						||
 | 
						||
    2͟π͟²͟ħ͟².          𝓟₂=¹/₃
 | 
						||
     mL²                         
 | 
						||
 | 
						||
    9͟π͟²͟ħ͟².          𝓟₃=¹/₃
 | 
						||
     2mL²                         
 | 
						||
 | 
						||
 | 
						||
The average value of the energy, or the expectation value, is given by
 | 
						||
 | 
						||
 | 
						||
    │❬Ψ′❙Ĥ❙Ψ′❭│² = │_͟1͟ (❬φ₁❙ - ❬φ₂❙ - ι❬φ₃❙)_͟1͟ (E₁❙φ₁❭ - E₂❙φ₂❭ + ιE₃❙φ₃❭)│²
 | 
						||
                   │√3                      √3                            │. 
 | 
						||
 | 
						||
    ❬Ψ′❙Ĥ❙Ψ′❭ = _͟1͟ (❬φ₁❙ - ❬φ₂❙ - ι❬φ₃❙)_͟1͟ (E₁❙φ₁❭ - E₂❙φ₂❭ + ιE₃❙φ₃❭)
 | 
						||
                √3                      √3
 | 
						||
 | 
						||
    = ¹/₃ (❬φ₁❙ - ❬φ₂❙ - ι❬φ₃❙)(E₁❙φ₁❭ - E₂❙φ₂❭ + ιE₃❙φ₃❭)
 | 
						||
    
 | 
						||
    = ¹/₃ (❬φ₁❙E₁❙φ₁❭ - ❬φ₁❙E₂❙φ₂❭ + ❬φ₁❙ιE₃❙φ₃❭) (-❬φ₂❙E₁❙φ₁❭ + ❬φ₂❙E₂❙φ₂❭ - ❬φ₂❙ιE₃❙φ₃❭) 
 | 
						||
        (-ι❬φ₃❙E₁❙φ₁❭ + ι❬φ₃❙E₂❙φ₂❭ - ι❬φ₃❙ιE₃❙φ₃❭).
 | 
						||
 | 
						||
Orthogonality is a property of the energy eigenstates: 
 | 
						||
 | 
						||
                               ⎧ 0 if n≠m   
 | 
						||
    ❬Eₙ❙Eₘ❭ = δₙₘ, where δₙₘ = ⎨          , so
 | 
						||
                               ⎩ 1 if n=m   
 | 
						||
 | 
						||
❬Ψ′❙Ĥ❙Ψ′❭ = ¹/₃ (❬φ₁❙E₁❙φ₁❭) (❬φ₂❙E₂❙φ₂❭) (-ι❬φ₃❙ιE₃❙φ₃❭)
 | 
						||
 | 
						||
= ¹/₃ E₁ E₂ E₃ = ¹/₃ π͟²͟ħ͟² 4͟π͟²͟ħ͟² 9͟π͟²͟ħ͟² = _͟3͟ ⎛π͟²͟ħ͟²⎞³
 | 
						||
                     2mL²  2mL²  2mL²    2 ⎝ mL²⎠.
 | 
						||
 | 
						||
(𝐜) Therefore, the energy expectation value 
 | 
						||
 | 
						||
    │❬Ψ′❙Ĥ❙Ψ′❭│² = _͟9͟ ⎛π͟²͟ħ͟²⎞⁶
 | 
						||
                    4 ⎝ mL²⎠.
 | 
						||
 | 
						||
Because the hamiltonian is time-independent, the state vector progresses timewise according to,
 | 
						||
 | 
						||
    ❙Ψ′(t)❭ = exp(-ι͟Ĥ͟t͟ )❙Ψ′(t=0)❭ = _͟1͟ exp(-ι͟Ĥ͟t͟ ) (❙φ₁❭ - ❙φ₂❭ + ι ❙φ₃❭).
 | 
						||
                    ħ               √3       ħ                       
 | 
						||
 | 
						||
    _͟1͟ ⎛exp(-ι͟E͟₁͟t͟ )❙φ₁❭ - exp(-ι͟E͟₂͟t͟ )❙φ₂❭ + ι exp(-ι͟E͟₃͟t͟ )❙φ₃❭⎞
 | 
						||
    √3 ⎝       ħ                    ħ                   ħ    ⎠
 | 
						||
 | 
						||
(𝐝)
 | 
						||
    = _͟1͟ ⎛exp(-ι π͟²͟ħ͟t͟ )❙φ₁❭ - exp(-ι 2͟π͟²͟ħ͟t͟ )❙φ₂❭ + ι exp(-ι 9͟π͟²͟ħ͟t͟ )❙φ₃❭⎞
 | 
						||
      √3 ⎝       2mL²                 mL²                    2L²       ⎠.
 | 
						||
 | 
						||
 | 
						||
What are the possible measurements at time t = ħ/E₁?
 | 
						||
 | 
						||
(𝐞) The same value of energy will be measured for each state. Since there has been no change to the coefficients besides a change in phase, and the phase term goes to 1 under the modulus, the probabilities remain the same. 
 | 
						||
 | 
						||
❙Ψ′(t=ħ/E₁)❭ = _͟1͟ ⎛exp(-ι)❙φ₁❭ - exp(-ι E͟₂͟ )❙φ₂❭ + ι exp(-ι E͟₃͟ )❙φ₃❭⎞ 
 | 
						||
               √3 ⎝                     E₁                  E₁      ⎠
 | 
						||
 | 
						||
    Energy          Probability     
 | 
						||
 | 
						||
     π͟²͟ħ͟².          𝓟₁=¹/₃
 | 
						||
     2mL²    
 | 
						||
 | 
						||
    2͟π͟²͟ħ͟².          𝓟₂=¹/₃
 | 
						||
     mL²                         
 | 
						||
 | 
						||
    9͟π͟²͟ħ͟².          𝓟₃=¹/₃
 | 
						||
     2mL²  
 | 
						||
 | 
						||
 | 
						||
 | 
						||
 | 
						||
 | 
						||
 | 
						||
 | 
						||
 | 
						||
 | 
						||
 | 
						||
 | 
						||
 | 
						||
 | 
						||
 | 
						||
 | 
						||
 |