❙Ψ❭ ≐ Ψ(x) Ψ(x) = ❬x❙Ψ❭ 𝓟(x) = │Ψ(x)│² 𝓟(x) = ⎮Ψ(x)⎮² ⌠ ∞ 1 = ❬Ψ❙Ψ❭ = ⎮ │Ψ(x)│² dx = 1 ⌡-∞ ❙Ψ❭ → Ψ(x) ❬Ψ❙ → Ψ⃰(x)  → A(x) ⌠b 𝓟(a<x<b) = ⎮ │Ψ(x)│² dx ⌡a │⌠∞ │² 𝓟(Eₙ) = │❬Eₙ❙Ψ❭│² = │⎮ Eₙ⃰(x) Ψ(x) dx │ │⌡-∞ │ x̂ = x p̂ = ι͟ ∂͟ ħ ∂x ⎛- ħ͟²͟ d͟²͟ + V(x)⎞ φₙ(x) = E φₙ(x) ⎝ 2m dx² ⎠ Boundary conditions: 1) φₙ(x) is continuous. 2) d φₙ(x) is continuous unless V = ∞. dx Infinite square potential energy well: Eₙ = n͟²͟π͟²͟ħ͟², n = 1, 2, 3, ... 2mL² φₙ(x) = √⎛2͟⎞ sin⎛n͟π͟x͟⎞, n = 1, 2, 3, ... ⎝L⎠ ⎝ L ⎠ Energy eigenstates obey the following properties: Bra-ket Notation Wavefunction Notation Normalization ⌠∞ ❬Eₙ❙Eₙ❭ = 1 ⎮ │φₙ(x)│² dx = 1 ⌡-∞ Orthogonality ⌠∞ ❬Eₙ❙Eₘ❭ = δₙₘ ⎮ φₙ⃰(x) φₘ(x) dx = δₙₘ ⌡-∞ Completeness ❙Ψ❭ = ∑ cₙ ❙Eₙ❭ Ψ(x) = ∑ cₙ φₙ(x) ⁿ ⁿ