Rotational Invariance 𝐩² and 𝐫 are invariant under rotation. Consider R̂(dϕ k̂) = 1 - ι/ħ L̂𝓏 dϕ ❙x - ydϕ,y + xdϕ,z❭ = ❙x,y,z❭ + ∂/∂x ❙ ❭ dϕ + ∂/∂y ❙ ❭ dϕ = [1 - ι/ħ p𝓍 (-ydϕ)][1 - ι/ħ p𝓎 (xdϕ)] ❙x,y,z❭ = [1 - ι/ħ (x p𝓎 - y p𝓍)dϕ] ❙x,y,z❭ (x p𝓎 - y p𝓍) ≝ L̂𝓏 (angular momentum in z axis) L̂𝓏 is the z component of L̂ = 𝐫×𝐩̂ Commutation: [L̂𝓏,p̂𝓏] = [x p𝓎 - y p𝓍,p𝓏] = (xp𝓎p𝓍 - yp𝓍p𝓍) - (p𝓍xp𝓎 - p𝓍yp𝓍) = [x,p𝓍]p𝓎 - [y,p𝓍]p𝓍 = [x,p𝓍]p𝓎 = ιħp𝓎 ↓ 0 [L̂𝓏,p̂𝓍] = ιħp̂𝓎 [L̂𝓏,p̂𝓎] = -ιħp̂𝓎 [L̂𝓏,p̂𝓏] = 0 [L̂𝓏,p̂²] = 0 i.e. the kinetic energy commutes with the L̂𝓏, so one can measure angular momentum and kinetic energy without disturbing the other. Proof: [L̂𝓏,p̂²] = [L̂𝓏,p̂𝓍² + p̂𝓎² + p̂𝓏²] = [L̂𝓏,p̂𝓍²] + [L̂𝓏,p̂𝓎²] + [L̂𝓏,p̂𝓏²] = p̂𝓍[L̂𝓏,p̂𝓍] + [L̂𝓏,p̂𝓍]p̂𝓍 + p̂𝓎[L̂𝓏,p̂𝓎] + [L̂𝓏,p̂𝓎]p̂𝓎 + p̂𝓏[L̂𝓏,p̂𝓏] + [L̂𝓏,p̂𝓏]p̂𝓏 (f.n. 1) = ιħp̂𝓍p̂𝓎 + ιħp̂𝓎p̂𝓍 - ιħp̂𝓎p̂𝓍 - ιħp̂𝓍p̂𝓎 = 0 [L̂𝓏,r̂²] = 0 (homework) → [L̂𝓏,1/r²] = 0 → [L̂𝓏,V(│r│)] = 0 So, [L̂𝓏,Ĥ] = 0. L̂𝓏 is therefore a constant of motion (time-independent) - Must do work to change? [L̂²,Ĥ] = 0, so L̂² is also a constant of motion. (f.n. 1) [L̂𝓏,p̂𝓍²] = [L̂𝓏,p̂𝓍 p̂𝓍] = L̂𝓏 p̂𝓍 p̂𝓍 - p̂𝓍 p̂𝓍 L̂𝓏 = ? = p̂𝓍[L̂𝓏,p̂𝓍] + [L̂𝓏,p̂𝓍]p̂𝓍 = (p̂𝓍 L̂𝓏 p̂𝓍 - p̂𝓍 p̂𝓍 L̂𝓏) + (L̂𝓏 p̂𝓍 p̂𝓍 - p̂𝓍 L̂𝓏 p̂𝓍) = L̂𝓏 p̂𝓍 p̂𝓍 - p̂𝓍 p̂𝓍 L̂𝓏 ✓ = [L̂𝓏,p̂𝓍²] = [L̂𝓏,p̂𝓍 p̂𝓍]